9 found
Order:
  1. Angus Macintyre, Joachim Reineke, J. T. Baldwin, Jan Saxl & Walter Baur (1984). On Ω 1 -Categorical Theories of Abelian Groups. Journal of Symbolic Logic 49 (1):317-321.
    Direct download  
     
    Export citation  
     
    My bibliography   6 citations  
  2.  4
    Walter Baur (1974). Rekursive Algebren mit Kettenbedingungen. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 20 (1-3):37-46.
    No categories
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  3.  1
    Walter Baur (1980). On the Elementary Theory of Quadruples of Vector Spaces. Annals of Mathematical Logic 19 (3):243-262.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  4.  1
    Walter Baur (1974). Rekursive Algebren mit Kettenbedingungen. Mathematical Logic Quarterly 20 (1‐3):37-46.
    No categories
    Translate
      Direct download (3 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  5.  7
    Walter Baur (1982). On the Elementary Theory of Pairs of Real Closed Fields. II. Journal of Symbolic Logic 47 (3):669-679.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  6.  5
    Walter Baur (1975). ℵ0-Categorical Modules. Journal of Symbolic Logic 40 (2):213 - 220.
    It is shown that the first-order theory Th R (A) of a countable module over an arbitrary countable ring R is ℵ 0 -categorical if and only if $A \cong \bigoplus_{t finite, n ∈ ω, κ i ≤ ω. Furthermore, Th R (A) is ℵ 0 -categorical for all R-modules A if and only if R is finite and there exist only finitely many isomorphism classes of indecomposable R-modules.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  7.  2
    Walter Baur (1975). $Aleph_0$-Categorical Modules. Journal of Symbolic Logic 40 (2):213-220.
    It is shown that the first-order theory $\mathrm{Th}_R(A)$ of a countable module over an arbitrary countable ring $R$ is $\aleph_0$-categorical if and only if $A \cong \bigoplus_{t < n}A_i^{(\kappa_i)}, A_i$ finite, $n \in \omega, \kappa_i \leq \omega$. Furthermore, $\mathrm{Th}_R(A)$ is $\aleph_0$-categorical for all $R$-modules $A$ if and only if $R$ is finite and there exist only finitely many isomorphism classes of indecomposable $R$-modules.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  8. Walter Baur (1985). Review: Martin Ziegler, Einige Unentscheidbare Korpertheorien. [REVIEW] Journal of Symbolic Logic 50 (2):552-552.
  9. Walter Baur (1985). Ziegler Martin. Einige Unentscheidbare Körpertheorien. Logic and Algorithmic, An International Symposium Held in Honour of Ernst Specker, Monographic No. 30, L'Enseignement Mathématique, Université de Genève, Geneva 1982, Pp. 381–392. , Pp. 269–280.). [REVIEW] Journal of Symbolic Logic 50 (2):552.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography