32 found
Sort by:
  1. Wolfgang Rautenberg (2006). A Concise Introduction to Mathematical Logic. Springer.
    Traditional logic as a part of philosophy is one of the oldest scientific disciplines. Mathematical logic, however, is a relatively young discipline and arose from the endeavors of Peano, Frege, Russell and others to create a logistic foundation for mathematics. It steadily developed during the 20th century into a broad discipline with several sub-areas and numerous applications in mathematics, informatics, linguistics and philosophy. While there are already several well-known textbooks on mathematical logic, this book is unique in that it is (...)
    Direct download  
     
    My bibliography  
     
    Export citation  
  2. Wolfgang Rautenberg (1997). Review: Jan von Plato, The Axioms of Constructive Geometry. [REVIEW] Journal of Symbolic Logic 62 (2):687-688.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  3. Wolfgang Rautenberg (1993). On Reduced Matrices. Studia Logica 52 (1):63 - 72.
    It is shown that the class of reduced matrices of a logic is a 1 st order -class provided the variety associated with has the finite replacement property in the sense of [7]. This applies in particular to all 2-valued logics. For 3-valued logics the class of reduced matrices need not be 1 st order.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  4. David Pearce & Wolfgang Rautenberg (1991). Propositional Logic Based on the Dynamics of Disbelief. In André Fuhrmann & Michael Morreau (eds.), The Logic of Theory Change. Springer. 241--258.
    Direct download  
     
    My bibliography  
     
    Export citation  
  5. Wolfgang Rautenberg (1991). Common Logic of 2‐Valued Semigroup Connectives. Mathematical Logic Quarterly 37 (9‐12):187-192.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  6. Wolfgang Rautenberg (1990). Common Logic of Binary Connectives has Finite Maximality Degree (Preliminary Report). Bulletin of the Section of Logic 19 (2):36-38.
    Direct download  
     
    My bibliography  
     
    Export citation  
  7. Wolfgang Rautenberg (1990). Mail Box. Studia Logica 49 (4):613-614.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  8. Wolfgang Rautenberg (1989). A Calculus for the Common Rules of ∧ and ∨. Studia Logica 48 (4):531-537.
    We provide a finite axiomatization of the consequence , i.e. of the set of common sequential rules for and . Moreover, we show that has no proper non-trivial strengthenings other than and . A similar result is true for , but not, e.g., for +.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  9. Wolfgang Rautenberg (1989). A Calculus for the Common Rules of $\Wedge $ and $\Vee $. Studia Logica 48 (4):531 - 537.
    We provide a finite axiomatization of the consequence $\vdash ^{\wedge}\cap \vdash ^{\vee}$ , i.e. of the set of common sequential rules for $\wedge $ and $\vee $ . Moreover, we show that $\vdash ^{\wedge}\cap \vdash ^{\vee}$ has no proper non-trivial strengthenings other than $\vdash ^{\wedge}$ and $\vdash ^{\vee}$ . A similar result is true for $\vdash ^{\leftrightarrow}\cap \vdash ^{\rightarrow}$ , but not, e.g., for $\vdash ^{\leftrightarrow}\cap \vdash ^{+}$.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  10. Wolfgang Rautenberg (1989). Axiomatization of Semigroup Consequences. Archive for Mathematical Logic 29 (2):111-123.
    We show (1) the consequence determined by a variety V of algebraic semigroup matrices is finitely based iffV is finitely based, (2) the consequence determined by all 2-valued semigroup connectives, Λ, ∨, ↔, +, in other words the collection of common rules for all these connectives, is finitely based. For possible applications see Sect. 0.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  11. Wolfgang Rautenberg (1986). Applications of Weak Kripke Semantics to Intermediate Consequences. Studia Logica 45 (1):119 - 134.
    Section 1 contains a Kripke-style completeness theorem for arbitrary intermediate consequences. In Section 2 we apply weak Kripke semantics to splittings in order to obtain generalized axiomatization criteria of the Jankov-type. Section 3 presents new and short proofs of recent results on implicationless intermediate consequences. In Section 4 we prove that these consequences admit no deduction theorem. In Section 5 all maximal logics in the 3 rd counterslice are determined. On these results we reported at the 1980 meeting on Mathematical (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  12. Wolfgang Rautenberg (1985). A Note On Implicational Consequences. Bulletin of the Section of Logic 14 (3):103-106.
     
    My bibliography  
     
    Export citation  
  13. Wolfgang Rautenberg (1983). Modal Tableau Calculi and Interpolation. Journal of Philosophical Logic 12 (4):403 - 423.
  14. Jacek K. Kabziński, Wolfgang Rautenberg, Bohdan Grell & Agnieszka Wojciechowska (1982). Books Received. [REVIEW] Studia Logica 41 (1):83-90.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  15. Wolfgang Rautenberg (1982). Klassische Und Nichtklassische Aussagenlogik. Studia Logica 41 (4):431-431.
     
    My bibliography  
     
    Export citation  
  16. Wolfgang Rautenberg (1982). Results and Problems Concerning Fragments of Classical Propositional Logic. Bulletin of the Section of Logic 11 (1-2):69-70.
    Several problems arise with the Axiomatizability Theorem : Each 2-valued consequence is s.f.a . We mention in particular.
     
    My bibliography  
     
    Export citation  
  17. Wolfgang Rautenberg (1981). 2-Element Matrices. Studia Logica 40 (4):315 - 353.
    Sections 1, 2 and 3 contain the main result, the strong finite axiomatizability of all 2-valued matrices. Since non-strongly finitely axiomatizable 3-element matrices are easily constructed the result reveals once again the gap between 2-valued and multiple-valued logic. Sec. 2 deals with the basic cases which include the important F i from Post's classification. The procedure in Sec. 3 reduces the general problem to these cases. Sec. 4 is a study of basic algebraic properties of 2-element algebras. In particular, we (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  18. Wolfgang Rautenberg (1979). More About the Lattice of Tense Logic. Bulletin of the Section of Logic 8 (1):21-25.
  19. Wolfgang Rautenberg (1978). The Lattice of Ramified Modal and Tense Logic. Bulletin of the Section of Logic 7 (1):31-33.
     
    My bibliography  
     
    Export citation  
  20. Wolfgang Rautenberg (1977). The Lattice of Normal Modal Logics (Preliminary Report). Bulletin of the Section of Logic 6 (4):193-199.
    Most material below is ranked around the splittings of lattices of normal modal logics. These splittings are generated by nite subdirect irreducible modal algebras. The actual computation of the splittings is often a rather delicate task. Rened model structures are very useful to this purpose, as well as they are in many other respects. E.g. the analysis of various lattices of extensions, like ES5, ES4:3 etc becomes rather simple, if rened structures are used. But this point will not be touched (...)
    Direct download  
     
    My bibliography  
     
    Export citation  
  21. Wolfgang Rautenberg (1976). Some Properties of the Hierarchy of Modal Logics (Preliminary Report). Bulletin of the Section of Logic 5 (3):103-104.
    We are concerned with modal logics in the class EM0 of extensions of M0 . G denotes re exive frames. MG the modal logic on G in the sense of Kripke. M is nite if M = MG for some nite G. Finite G's will be drawn as framed diagrams, e.g. G = ! ; G = ! ; the latter shorter denoted by . EM0 is a complete lattice with zero M0 and one M . If M M0 M0 (...)
    Direct download  
     
    My bibliography  
     
    Export citation  
  22. Kurt Hauschild, Heinrich Herre & Wolfgang Rautenberg (1972). Interpretierbarkeit und Entscheidbarkeit in der Graphentheorie II. Mathematical Logic Quarterly 18 (25‐30):457-480.
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  23. Wolfgang Rautenberg (1971). Review: L. W. Szczerba, A. Tarski, Yehoshua Bar-Hillel, Metamathematical Properties of Some Affine Geometries. [REVIEW] Journal of Symbolic Logic 36 (2):333-334.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  24. Wolfgang Rautenberg & Kurt Hauschild (1971). Interpretierbarkeit und Entscheidbarkeit in der Graphentheorie I. Mathematical Logic Quarterly 17 (1):47-55.
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  25. Wolfgang Rautenberg (1968). Nichtdefinierbarkeit der Multiplikation in Dividierbaren Ringen. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 14 (1-5):59-60.
    No categories
    Translate to English
    | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  26. Wolfgang Rautenberg (1968). Unterscheidbarkeit Endlicher Geordneter Mengen mit Gegebener Anzahl von Quantoren. Mathematical Logic Quarterly 14 (13‐17):267-272.
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  27. Wolfgang Rautenberg (1966). Über Hilberts Schnittpunktsätze. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 12 (1):57-59.
    No categories
    Translate to English
    | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  28. Wolfgang Rautenberg (1965). Beweis Des Kommutativgesetzes in Elementar‐Archimedisch Geordneten Gruppen. Mathematical Logic Quarterly 11 (1):1-4.
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  29. Wolfgang Rautenberg (1963). Bemerkung Zur Axiomatik Der Vektorgeometrie. Mathematical Logic Quarterly 9 (11):173-174.
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  30. Wolfgang Rautenberg (1962). Über Metatheoretische Eigenschaften Einiger Geometrischer Theorien. Mathematical Logic Quarterly 8 (1):5-41.
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  31. Wolfgang Rautenberg (1961). Unentscheidbarkeit Der Euklidischen Inzidenzgeometrie. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 7 (1-5):12-15.
    No categories
    Translate to English
    | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  32. Gönter Asser & Wolfgang Rautenberg (1960). Ein Verfahren Zur Axiomatisierung Der Kontradiktionen Gewisser Zweiwertiger Aussagenkalküle. Mathematical Logic Quarterly 6 (15‐22):303-318.
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation