Results for 'super-Turing machine'

1000+ found
Order:
  1. Super Turing-machines.Jack Copeland - 1998 - Complexity 4 (1):30-32.
    The tape is divided into squares, each square bearing a single symbol—'0' or '1', for example. This tape is the machine's general-purpose storage medium: the machine is set in motion with its input inscribed on the tape, output is written onto the tape by the head, and the tape serves as a short-term working memory for the results of intermediate steps of the computation. The program governing the particular computation that the machine is to perform is also (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  2. Super turing-machines.B. Jack Copeland - 1998 - Complexity 4 (1):30-32.
  3. Philosophy and Science, the Darwinian-Evolved Computational Brain, a Non-Recursive Super-Turing Machine & Our Inner-World-Producing Organ.Hermann G. W. Burchard - 2016 - Open Journal of Philosophy 6 (1):13-28.
    Recent advances in neuroscience lead to a wider realm for philosophy to include the science of the Darwinian-evolved computational brain, our inner world producing organ, a non-recursive super- Turing machine combining 100B synapsing-neuron DNA-computers based on the genetic code. The whole system is a logos machine offering a world map for global context, essential for our intentional grasp of opportunities. We start from the observable contrast between the chaotic universe vs. our orderly inner world, the noumenal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Neural and super-Turing computing.Hava T. Siegelmann - 2003 - Minds and Machines 13 (1):103-114.
    ``Neural computing'' is a research field based on perceiving the human brain as an information system. This system reads its input continuously via the different senses, encodes data into various biophysical variables such as membrane potentials or neural firing rates, stores information using different kinds of memories (e.g., short-term memory, long-term memory, associative memory), performs some operations called ``computation'', and outputs onto various channels, including motor control commands, decisions, thoughts, and feelings. We show a natural model of neural computing that (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  5. Computing machinery and intelligence.Alan M. Turing - 1950 - Mind 59 (October):433-60.
    I propose to consider the question, "Can machines think?" This should begin with definitions of the meaning of the terms "machine" and "think." The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous, If the meaning of the words "machine" and "think" are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the (...)
    Direct download (18 more)  
     
    Export citation  
     
    Bookmark   997 citations  
  6.  14
    Alan Turing's systems of logic: the Princeton thesis.Alan Turing - 2012 - Woodstock, England: Princeton University Press. Edited by Andrew W. Appel & Solomon Feferman.
    Though less well known than his other work, Turings 1938 Princeton Thesis, this title which includes his notion of an oracle machine, has had a lasting influence on computer science and mathematics. It presents a facsimile of the original typescript of the thesis along with essays by Appel and Feferman that explain its still-unfolding significance.
    Direct download  
     
    Export citation  
     
    Bookmark  
  7. Can automatic calculating machines be said to think?M. H. A. Newman, Alan M. Turing, Geoffrey Jefferson, R. B. Braithwaite & S. Shieber - 2004 - In Stuart M. Shieber (ed.), The Turing Test: Verbal Behavior as the Hallmark of Intelligence. MIT Press.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   34 citations  
  8.  96
    Political Inequality and the 'Super-Rich': Their Money or (some of) Their Political Rights.Dean J. Machin - 2013 - Res Publica 19 (2):121-139.
    The ability of very wealthy individuals (or, as I will call them, the ‘super-rich’) to turn their economic power into political power has been—and remains—an important cause of political inequality. In response, this paper advocates an original solution. Rather than solving the problem through implementing a comprehensive conception of political equality, or through enforcing complex rules about financial disclosure etc., I argue that we should impose a choice on the super-rich. The super-rich must choose between (i) forfeiting (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Logically possible machines.Eric Steinhart - 2002 - Minds and Machines 12 (2):259-280.
    I use modal logic and transfinite set-theory to define metaphysical foundations for a general theory of computation. A possible universe is a certain kind of situation; a situation is a set of facts. An algorithm is a certain kind of inductively defined property. A machine is a series of situations that instantiates an algorithm in a certain way. There are finite as well as transfinite algorithms and machines of any degree of complexity (e.g., Turing and super-Turing (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  10. Mdl Codes for Non-Monotonic Learning.S. Muggleton, A. Srinivasan, M. Bain & Turing Institute - 1991 - Turing Institute.
     
    Export citation  
     
    Bookmark  
  11. Accelerating Turing machines.B. Jack Copeland - 2002 - Minds and Machines 12 (2):281-300.
    Accelerating Turing machines are Turing machines of a sort able to perform tasks that are commonly regarded as impossible for Turing machines. For example, they can determine whether or not the decimal representation of contains n consecutive 7s, for any n; solve the Turing-machine halting problem; and decide the predicate calculus. Are accelerating Turing machines, then, logically impossible devices? I argue that they are not. There are implications concerning the nature of effective procedures and (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  12.  5
    Mark Burgin’s Legacy: The General Theory of Information, the Digital Genome, and the Future of Machine Intelligence.Rao Mikkilineni - 2023 - Philosophies 8 (6):107.
    With 500+ papers and 20+ books spanning many scientific disciplines, Mark Burgin has left an indelible mark and legacy for future explorers of human thought and information technology professionals. In this paper, I discuss his contribution to the evolution of machine intelligence using his general theory of information (GTI) based on my discussions with him and various papers I co-authored during the past eight years. His construction of a new class of digital automata to overcome the barrier posed by (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13. The Turing Machine on the Dissecting Table.Jana Horáková - 2013 - Teorie Vědy / Theory of Science 35 (2):269-288.
    Since the beginning of the twenty-first century there has been an increasing awareness that software rep- resents a blind spot in new media theory. The growing interest in software also influences the argument in this paper, which sets out from the assumption that Alan M. Turing's concept of the universal machine, the first theoretical description of a computer program, is a kind of bachelor machine. Previous writings based on a similar hypothesis have focused either on a comparison (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14. We Turing machines aren't expected-utility maximizers (even ideally).Vann McGee - 1991 - Philosophical Studies 64 (1):115 - 123.
  15. Even Turing machines can compute uncomputable functions.Jack Copeland - unknown
    Accelerated Turing machines are Turing machines that perform tasks commonly regarded as impossible, such as computing the halting function. The existence of these notional machines has obvious implications concerning the theoretical limits of computability.
     
    Export citation  
     
    Bookmark   12 citations  
  16.  62
    Turing machines and the spectra of first-order formulas.Neil D. Jones & Alan L. Selman - 1974 - Journal of Symbolic Logic 39 (1):139-150.
  17.  22
    Turing machine arguments.R. J. Nelson - 1980 - Philosophy of Science 47 (4):630-633.
    In I used Turing machine arguments to show that computers can recognize humanly recognizable patterns in principle. In 1978 James D. Heffernan has expressed some doubts about such arguments. He does not question the propositions that I defend in the paper, nor the specific arguments in their support. What he does criticize are certain background assumptions.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  18.  92
    Turing machines and mental reports.Robert H. Kane - 1966 - Australasian Journal of Philosophy 44 (3):344-52.
  19. Infinite time Turing machines.Joel David Hamkins & Andy Lewis - 2000 - Journal of Symbolic Logic 65 (2):567-604.
    Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
    Direct download (20 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  20.  39
    Turing machines.David Barker-Plummer - 2008 - Stanford Encyclopedia of Philosophy.
  21.  92
    The Turing machine may not be the universal machine.Matjaz Gams - 2002 - Minds and Machines 12 (1):137-142.
    Can mind be modeled as a Turing machine? If you find such questions irrelevant, e.g. because the subject is already exhausted, then you need not read the book Mind versus Computer (Gams et al., 1991). If, on the other hand, you do find such questions relevant, then perhaps you need not read Dunlop's review of the book (Dunlop, 2000). (...).
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark  
  22.  77
    On Turing machines knowing their own gödel-sentences.Neil Tennant - 2001 - Philosophia Mathematica 9 (1):72-79.
    Storrs McCall appeals to a particular true but improvable sentence of formal arithmetic to argue, by appeal to its irrefutability, that human minds transcend Turing machines. Metamathematical oversights in McCall's discussion of the Godel phenomena, however, render invalid his philosophical argument for this transcendentalist conclusion.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Do Accelerating Turing Machines Compute the Uncomputable?B. Jack Copeland & Oron Shagrir - 2011 - Minds and Machines 21 (2):221-239.
    Accelerating Turing machines have attracted much attention in the last decade or so. They have been described as “the work-horse of hypercomputation” (Potgieter and Rosinger 2010: 853). But do they really compute beyond the “Turing limit”—e.g., compute the halting function? We argue that the answer depends on what you mean by an accelerating Turing machine, on what you mean by computation, and even on what you mean by a Turing machine. We show first that (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  24. Infinite time Turing machines.Joel David Hamkins - 2002 - Minds and Machines 12 (4):567-604.
    Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
    Direct download (18 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  25.  13
    Super-intelligent” machine: technological exuberance or the road to subjection.Peter Brödner - 2018 - AI and Society 33 (3):335-346.
    Looking back on the development of computer technology, particularly in the context of manufacturing, we can distinguish three big waves of technological exuberance with a wave length of roughly 30 years: In the first wave, during the 1950s, mainframe computers at that time were conceptualized as “electronic brains” and envisaged as central control unit of an “automatic factory”. Thirty years later, during the 1980s, knowledge-based systems in computer-integrated manufacturing were adored as the computational core of the “unmanned factory”. Both waves (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  26.  38
    Infinite Time Turing Machines With Only One Tape.D. E. Seabold & J. D. Hamkins - 2001 - Mathematical Logic Quarterly 47 (2):271-287.
    Infinite time Turing machines with only one tape are in many respects fully as powerful as their multi-tape cousins. In particular, the two models of machine give rise to the same class of decidable sets, the same degree structure and, at least for partial functions f : ℝ → ℕ, the same class of computable functions. Nevertheless, there are infinite time computable functions f : ℝ → ℝ that are not one-tape computable, and so the two models of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Turing machines and causal mechanisms in cognitive science.Otto Lappi & Anna-Mari Rusanen - 2011 - In Phyllis McKay Illari, Federica Russo & Jon Williamson (eds.), Causality in the Sciences. Oxford University Press. pp. 224--239.
     
    Export citation  
     
    Bookmark   2 citations  
  28.  15
    Turing Machines, Finite Automata and Neural Nets.Michael Arbib - 1970 - Journal of Symbolic Logic 35 (3):482-482.
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  27
    Universal turing machines: An exercise in coding.Hao Wang - 1957 - Mathematical Logic Quarterly 3 (6-10):69-80.
  30.  15
    Universal turing machines: An exercise in coding.Hao Wang - 1957 - Mathematical Logic Quarterly 3 (6‐10):69-80.
  31.  16
    Turing-Machine Computable Functionals of Finite Types I.S. C. Kleene, Ernest Nagel, Patrick Suppes & Alfred Tarski - 1970 - Journal of Symbolic Logic 35 (4):588-589.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  9
    Simulating Turing machines on Maurer machines.J. A. Bergstra & C. A. Middelburg - 2008 - Journal of Applied Logic 6 (1):1-23.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  33.  19
    Infinite time Turing machines.Joel David Hamkins & Andy Lewis - 2000 - Journal of Symbolic Logic 65 (2):567-604.
    We extend in a natural way the operation of Turing machines to infinite ordinal time, and investigate the resulting supertask theory of computability and decidability on the reals. Everyset. for example, is decidable by such machines, and the semi-decidable sets form a portion of thesets. Our oracle concept leads to a notion of relative computability for sets of reals and a rich degree structure, stratified by two natural jump operators.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  34.  59
    Eventually infinite time Turing machine degrees: Infinite time decidable reals.P. D. Welch - 2000 - Journal of Symbolic Logic 65 (3):1193-1203.
    We characterise explicitly the decidable predicates on integers of Infinite Time Turing machines, in terms of admissibility theory and the constructible hierarchy. We do this by pinning down ζ, the least ordinal not the length of any eventual output of an Infinite Time Turing machine (halting or otherwise); using this the Infinite Time Turing Degrees are considered, and it is shown how the jump operator coincides with the production of mastercodes for the constructible hierarchy; further that (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  35.  82
    We Turing Machines Can’t Even Be Locally Ideal Bayesians.Beau Madison Mount - 2016 - Thought: A Journal of Philosophy 5 (4):285-290.
    Vann McGee has argued that, given certain background assumptions and an ought-implies-can thesis about norms of rationality, Bayesianism conflicts globally with computationalism due to the fact that Robinson arithmetic is essentially undecidable. I show how to sharpen McGee's result using an additional fact from recursion theory—the existence of a computable sequence of computable reals with an uncomputable limit. In conjunction with the countable additivity requirement on probabilities, such a sequence can be used to construct a specific proposition to which Bayesianism (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. Turing vs. super-Turing: a defence of the Church-Turing thesis.Luciano Floridi - 1999 - In Philosophy and computing: an introduction. Oxford:
  37. Beyond the universal Turing machine.Jack Copeland - 1999 - Australasian Journal of Philosophy 77 (1):46-67.
    We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of well-defined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  38. Turing machines and the mind-body problem.J. J. Clarke - 1972 - British Journal for the Philosophy of Science 23 (February):1-12.
  39.  8
    Turing machine-inspired computer science results.Juris Hartmanis - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 276--282.
  40. Are Turing Machines Platonists? Inferentialism and the Computational Theory of Mind.Jon Cogburn & Jason Megil - 2010 - Minds and Machines 20 (3):423-439.
    We first discuss Michael Dummett’s philosophy of mathematics and Robert Brandom’s philosophy of language to demonstrate that inferentialism entails the falsity of Church’s Thesis and, as a consequence, the Computational Theory of Mind. This amounts to an entirely novel critique of mechanism in the philosophy of mind, one we show to have tremendous advantages over the traditional Lucas-Penrose argument.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  98
    The irrelevance of Turing machines to artificial intelligence.Aaron Sloman - 2002 - In Matthias Scheutz (ed.), Computationalism: New Directions. MIT Press.
    The common view that the notion of a Turing machine is directly relevant to AI is criticised. It is argued that computers are the result of a convergence of two strands of development with a long history: development of machines for automating various physical processes and machines for performing abstract operations on abstract entities, e.g. doing numerical calculations. Various aspects of these developments are analysed, along with their relevance to AI, and the similarities between computers viewed in this (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  42. Eventually Infinite Time Turing Machine Degrees: Infinite Time Decidable Reals.P. D. Welch - 2000 - Journal of Symbolic Logic 65 (3):1193-1203.
    We characterise explicitly the decidable predicates on integers of Infinite Time Turing machines, in terms of admissibility theory and the constructible hierarchy. We do this by pinning down $\zeta$, the least ordinal not the length of any eventual output of an Infinite Time Turing machine ; using this the Infinite Time Turing Degrees are considered, and it is shown how the jump operator coincides with the production of mastercodes for the constructible hierarchy; further that the natural (...)
     
    Export citation  
     
    Bookmark   3 citations  
  43. The myth of the Turing machine: The failings of functionalism and related theses.Chris Eliasmith - 2002 - Journal of Experimental and Theoretical Artificial Intelligence 14 (1):1-8.
    The properties of Turing’s famous ‘universal machine’ has long sustained functionalist intuitions about the nature of cognition. Here, I show that there is a logical problem with standard functionalist arguments for multiple realizability. These arguments rely essentially on Turing’s powerful insights regarding computation. In addressing a possible reply to this criticism, I further argue that functionalism is not a useful approach for understanding what it is to have a mind. In particular, I show that the difficulties involved (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  44.  26
    Infinite Time Turing Machines.Joel David Hamkins - 2002 - Minds and Machines 12 (4):521-539.
    Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time. By doing so, they provide a natural model of infinitary computability, a theoretical setting for the analysis of the power and limitations of supertask algorithms.
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  45.  39
    Some doubts about Turing machine arguments.James D. Heffernan - 1978 - Philosophy of Science 45 (December):638-647.
    In his article “On Mechanical Recognition” R. J. Nelson brings to bear a branch of mathematical logic called automata theory on problems of artificial intelligence. Specifically he attacks the anti-mechanist claim that “[i]nasmuch as human recognition to a very great extent relies on context and on the ability to grasp wholes with some independence of the quality of the parts, even to fill in the missing parts on the basis of expectations, it follows that computers cannot in principle be programmed (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  46.  84
    Intuitionists are not (turing) machines.Crispin Wright - 1995 - Philosophia Mathematica 3 (1):86-102.
    Lucas and Penrose have contended that, by displaying how any characterisation of arithmetical proof programmable into a machine allows of diagonalisation, generating a humanly recognisable proof which eludes that characterisation, Gödel's incompleteness theorem rules out any purely mechanical model of the human intellect. The main criticisms of this argument have been that the proof generated by diagonalisation (i) will not be humanly recognisable unless humans can grasp the specification of the object-system (Benacerraf); and (ii) counts as a proof only (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  47. Can a Turing Machine Know That the Gödel Sentence is True?Storrs McCall - 1999 - Journal of Philosophy 96 (10):525-532.
  48.  59
    Intension in terms of Turing machines.Pavel Tichý - 1969 - Studia Logica 24 (1):7 - 25.
  49.  23
    Physical Oracles: The Turing Machine and the Wheatstone Bridge.Edwin J. Beggs, José Félix Costa & John V. Tucker - 2010 - Studia Logica 95 (1-2):279-300.
    Earlier, we have studied computations possible by physical systems and by algorithms combined with physical systems. In particular, we have analysed the idea of using an experiment as an oracle to an abstract computational device, such as the Turing machine. The theory of composite machines of this kind can be used to understand (a) a Turing machine receiving extra computational power from a physical process, or (b) an experimenter modelled as a Turing machine performing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  57
    Physical Oracles: The Turing Machine and the Wheatstone Bridge.Edwin J. Beggs, José Félix Costa & John V. Tucker - 2010 - Studia Logica 95 (1-2):279-300.
    Earlier, we have studied computations possible by physical systems and by algorithms combined with physical systems. In particular, we have analysed the idea of using an experiment as an oracle to an abstract computational device, such as the Turing machine. The theory of composite machines of this kind can be used to understand (a) a Turing machine receiving extra computational power from a physical process, or (b) an experimenter modelled as a Turing machine performing (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000