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Abstract

Traditional Bayesianism requires that an agent’s degrees of belief be represented by
a real-valued, probabilistic credence function. However, in many cases it seems that
our evidence is not rich enough to warrant such precision. In light of this, some have
proposed that we instead represent an agent’s degrees of belief as a set of credence
functions. This way, we can respect the evidence by requiring that the set, often
called the agent’s credal state, includes all credence functions that are in some sense
compatible with the evidence. One known problem for this evidentially-motivated
imprecise view is that in certain cases, our imprecise credence in a particular propo-
sition will remain the same no matter how much evidence we receive. In this paper
I argue that the problem is much more general than has been appreciated so far, and
that it’s difficult to avoid it without compromising the initial evidentialist motivation.
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1 Introduction

In the orthodox Bayesian framework, agents must have precise degrees of belief, in
the sense that these degrees of belief are represented by a real-valued credence func-
tion. This may seem implausible in several respects. In particular, one might think
that our evidence is rarely rich enough to justify this kind of precision—choosing
one number over another as our degree of belief will often be an arbitrary decision
with no basis in the evidence. For this reason, Joyce ([2010]) suggests that we should



represent degrees of belief by a set of credence functions insteadE] This way, we can
avoid arbitrariness by requiring that the set contains all credence functions that are,
in some sense, compatible with the evidence. However, this requirement creates a
new difficulty. The more limited our evidence is, the greater the number of credence
functions compatible with it will be. In certain cases, the number of compatible cre-
dence functions will be so vast that the range of our credence in some propositions
will remain the same no matter how much evidence we subsequently go on to ob-
tain. This is the problem of belief inertia. Joyce is willing to accept this implication,
but I will argue that the phenomenon is much more widespread than he seems to
realize, and that there is therefore decisive reason to abandon his view.

In the next section, I introduce the traditional Bayesian formalism and provide
some reason for thinking that its precision may be problematic. In Section 3, I present
Joyce’s preferred alternative—imprecise Bayesianism—and attempt to spell out its
underlying evidentialist motivation. In particular, I suggest an account of what it
means for a credence function to be compatible with a body of evidence. After that,
in Section 4, I introduce the problem of belief inertia via an example from Joyce. I
also prove that one strategy for solving the problem (suggested but not endorsed by
Joyce) is unsuccessful. Section 5 argues that the problem is far more general than one
might think when considering Joyce’s example in isolation. The argument turns on
the question of what prior credal state an evidentially motivated imprecise Bayesian
agent should have. I maintain that, in light of her motivation for rejecting precise
Bayesianism, her prior credal state must include all credence functions that satisfy
some very weak constraints. However, this means that the problem of belief inertia
is with us from the very start, and that it affects almost all of our beliefs. Even those
who are willing to concede certain instances of belief inertia should find this general
version unacceptable. Finally, in Section 6 I consider a few different ways for an
imprecise Bayesian to respond. The upshot is that we must give up the very strong
form of evidentialism and allow that the choice of prior credal state is to a large
extent subjective. However, this move greatly decreases the imprecise Bayesian’s
dialectical advantage over the precise subjective Bayesian.

2 Precision and Its Problems

Traditional Bayesianism, as I will understand it here, makes the following two nor-
mative claims:

Probabilism
A rational agent’s degrees of belief are represented by a credence function

1 Although Joyce is my main target in this essay, the view is of course not original to him. For an

influential early exponent, see Levi ([1980]).



¢ which assigns a real number ¢(P) to each proposition P in some Boolean
algebra Q). The credence function c respects the axioms of probability
theory:

1. ¢(P) >0 forall P € Q.
2. If T is a tautology, then ¢(T) = 1.
3. If P and Q are logically incompatible, then c(P V Q) = c(P) + ¢(Q).

Conditionalization

A rational agent updates her degrees of belief over time by condition-
alizing her credence function on all the evidence she has received. If
E is the strongest proposition an agent with credence function cy at ¢t
learns between ty and f;, then her new credence function c; is given as

c1(-) = co(- | E).

Some philosophers within the Bayesian tradition have taken issue with the preci-
sion required by probabilism. For one thing, it may appear descriptively inadequate.
It seems implausible to think that flesh-and-blood human beings have such fine-
grained degrees of beliefE] However, even if this psychological obstacle could be
overcome, Joyce ([2010]) argues that precise probabilism should be rejected on nor-
mative grounds, because our evidence is rarely rich enough to justify having precise
credences. His point is perhaps best appreciated by way of example. Consider the
following case, adapted from (Bradley [unpublished]).

Three Urns

There are three urns in front of you, each of which contains a hundred
marbles. You are told that the first urn contains fifty black and fifty white
marbles, and that all marbles in the second urn are either black or white,
but you don’t know their ratio. You are given no further information
about marble colours in the third urn. For each urn i, what credence
should you have in the proposition B; that a marble drawn at random
from that urn will be black?

Here I will understand a random draw simply as one where each marble in the
urn has an equal chance of being drawn. That makes the first case straightforward.
We know that there are as many black marbles as there are white ones, and that
each of them has an equal chance of being drawn. Hence we should apply some
chance-credence principle and set ¢(B;) = 0.5 The second case is not so clear-cut.

2 Whether this is implausible will depend on what kind of descriptive claim one thinks is involved

in ascribing a precise degree of belief to an agent. See for instance (Meacham and Weisberg [2011]).
Hardcore subjectivists may insist that, even in this case, any probabilistically coherent credence
assignment is permissible.
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Some will say that any credence assignment is permissible, or at least that a wide
range of them are. Others will again try to identify a unique credence assignment
as rationally required, typically via an application of the principle of indifference.
They will claim that we have no reason to consider either black or white as more
likely than the other, and that we should therefore give them equal consideration
by setting c(B) = 0.5. However, as is well-known, the principle of indifference
gives inconsistent results depending on how we partition the space of possibilitiesﬁ
This becomes even more evident when we consider the third urn. In the first two
cases we knew that all marbles were either black or white, but now we don’t even
have that piece of information. So in order to apply the principle of indifference,
we must first settle on a partition of the space of possible colours. If we settle on
the partition {black, not black}, the principle of indifference gives us ¢(B3) = 0.5. If
we instead think that the partition is given by the eleven basic colour terms of the
English language, the principle of indifference tells us to set ¢(B3) = 1/11.

How can we determine which partition is appropriate? In some problem cases,
the principle’s adherents have come up with ingenious ways of identifying a priv-
ileged partitionﬂ However, Joyce ([2005], p. 170) argues that even if this could be
done across the board (which seems doubtful), the real trouble runs deeper. The
principle of indifference goes wrong by always assigning precise credences, and
hence the real culprit is (precise) probabilism. In the first urn case, our evidence is
rich enough to justify a precise credence of 0.5. But in the second and third cases,
our evidence is so limited that any precise credence would constitute a leap far be-
yond the information available to us. Adopting a precise credence in these cases
would amount to acting as if we have evidence we simply do not possess, regardless
of whether that precise credence is based merely on personal opinion, or whether it
has been derived from some supposedly objective principle.

The lesson Joyce draws from this example is therefore that we should only require
agents to have imprecise credences. This way we can respect our evidence even when
that evidence is ambiguous, partial, or otherwise limited. My target in this paper
will be this sort of evidentially motivated imprecise Bayesianism. In the next section
I present the view and clarify the evidentialist argument for adopting it.

3 Imprecise Bayesianism and Respecting Ambiguous Evidence

Joyce’s ([2010], p. 287) imprecise Bayesianism makes the following two normative
claims:

4 Widely discussed examples include Bertrand’s ([1889]) paradox, and van Fraassen’s ([1989]) cube

factory.

5 See for example (Jaynes [1973]).



Imprecise Probabilism

A rational agent’s degrees of belief are represented by a credal state C,
which is a set of credence functions. Each c € C assigns a real number
c(P) to each proposition P in some Boolean algebra (). Furthermore, each
c € C respects the axioms of probability theory.

Imprecise Conditionalization

A rational agent updates her credal state over time by conditionalizing
each of its elements on all the evidence she has received. If E is the
strongest proposition an agent with credal state Cy at tg learns between tg
and t;, then her new credal state C; is given as C; = {co(- | E) : ¢o € CO}EI

Each individual credence function thus behaves just like the credence functions
of precise Bayesianism: they are probabilistic, and they are updated by conditional-
ization. The difference is only that the agent’s degrees of belief are now represented
by a set of credence functions, rather than a single one. As a useful terminological
shorthand, I will write C(P) for the set of numbers assigned to the proposition P by
the elements of C, so that C(P) = {x : 3c € Cs.t. ¢(P) = x}. I will refer to C(P) simply
as the agent’s credence in P.

Agents with precise credences are more confident in a proposition P than in
another proposition Q if and only if their credence function assigns a greater value
to P than to Q. In order to be able to make similar comparisons for agents with
imprecise credences, we will adopt what I take to be the standard, supervaluationist,
view and say that an imprecise believer is determinately more confident in P than in
Q if and only if ¢(P) > ¢(Q) for each ¢ € C. If there are ¢, ¢’ € C such that ¢(P) > ¢(Q)
and ¢’(P) < c’(Q), it is indeterminate which of the two propositions she regards as
more likely. In general, any claim about her overall doxastic state requires unanimity
among all the credence functions in order to be determinately true or false

Now, Joyce defends imprecise Bayesianism on the grounds that many evidential
situations do not warrant precise credences. With his framework in place, we can
respect the datum that a precise credence of 0.5 is the correct response in the first

6 As stated, the update rule doesn’t tell us what to do if an element of the credal state assigns zero

probability to a proposition that the agent later learns. This problem is of course familiar from
the precise setting. Three options suggest themselves: (i) discard all such credence functions from
the posterior credal state, (ii) require that each element of the credal state the regularity principle,
so that they only assign zero to doxastically impossible propositions, thereby ensuring that the
situation can never arise, or (iii) introduce a primitive notion of conditional probability. For my
purposes, we don’t need to settle on a solution. I'll just assume that the imprecise Bayesian has
some satisfactory way of dealing with these cases.

This supervaluationist view of credal states is endorsed by Joyce ([2010]), van Fraassen ([1990]), and
Hajek ([2003]), among others.



urn case, without thereby being forced to assign precise credences in the second and
third cases as well. In these last two cases, our evidence is ambiguous or partial, and
assigning precise credences would require making a leap far beyond the information
available to us. This raises the question of how far in the direction of imprecision
we should move in order to remain on the ground. How many credence functions
must we include in our credal state before we can be said to be faithful to our
evidence? Joyce answers that we should include just those credence functions that
are ompatible with our evidenceﬁ We can state this as:

Evidence Grounding Thesis

At any point in time, a rational agent’s credal state includes all and only
those credence functions that are compatible with the total evidence she
possesses at that time.

To unpack this principle, we need a substantive account of what it takes for a cre-
dence function to be compatible with a body of evidence. One such proposal is due
to (White [2010], p. 174):

Chance Grounding Thesis

Only on the basis of known chances can one legitimately have sharp
credences. Otherwise one’s spread of credence should cover the range of
possible chance hypotheses left open by your evidence.

The chance grounding thesis posits a very tight connection between credence and
chance. As Joyce ([2010], p. 289) points out, the connection is indeed too tight, in at
least one respect. There are cases where all possible chance hypotheses are left open
by our evidence, but where we should nevertheless have sharp (precise) credences.
He provides the following example.

Symmetrical Biases

Suppose that an urn contains coins of unknown bias, and that for each
coin of bias & there is another coin of bias (1 — «). One coin has been
chosen from the urn at random. What credence should we have in the
proposition H, that it will come up heads on the first flip?

Because the chance of heads corresponds to the bias of the chosen coin (whatever
it is), and since (for all we know) the chosen coin could have any bias, every pos-
sible chance hypothesis is left open by the evidence. In this setup, for each c € C,

8 Joyce writes ([2010], p. 288) that each element of the credal state is a probability function that the

agent takes to be compatible with her evidence. This formulation leaves it open whether compati-
bility is meant to be an objective or a subjective notion; we will return to this issue later.



the credence assignment c(H) is given as the expected value of a corresponding
probability density function (pdf), f., defined over the possible chance hypotheses:
c(H) = fol x - fe(x)dx. The information that, for any «, there are as many coins of
bias « as there are coins of bias (1 — &) translates into the requirement that for each
a,b € [0,1] and for every f.,

b 1—a
/a fewydx= [ f@dx. (1)

Any f. which satisfies this constraint will be symmetrical around the midpoint, and
will therefore have an expected value of 0.5. This means that c¢(H) = 0.5 for each
c € C. Thus we have a case where all possible chance hypotheses are left open by
the evidence, but where we should still have a precise credence

Nevertheless, something in the spirit of the chance grounding thesis looks like a
natural way of unpacking the evidence grounding thesis. In Joyce’s example, each
possible chance hypothesis is indeed left open by the evidence, but we do know that
every pdf f. must satisfy constraint (??) for each a,b € [0,1]. So any f, which doesn’t
satisfy this constraint will be incompatible with our evidence. And similarly for any
other constraints our evidence might impose on f.. In the case of a known chance
hypothesis, the only pdf compatible with the evidence will be the one that assigns
all weight to that known chance value. Similarly, if the chance value is known to lie
within some particular range, then the only pdfs compatible with the evidence will
be those that are equal to zero everywhere outside of that range. However, as Joyce’s
example shows, these are not the only ways in which our evidence can rule out pdfs.
More generally, evidence can constrain the shape of the compatible pdfs. In light of
this, we can propose the following revision.

Revised Chance Grounding Thesis

A rational agent’s credal state contains all and only those credence func-
tions that are given as the expected value of some probability density
function over chance hypotheses that satisfies the constraints imposed by
her evidence.

Just like White’s original chance grounding thesis, my revised formulation posits

9 An anonymous referee suggested that it might make a difference whether the coin that is to be

flipped has been chosen yet or not. If it has not yet been chosen, a precise credence of 0.5 seems
sensible in light of one’s knowledge of the setup. If instead it has already been chosen, then it has a
particular bias, and since the relevant symmetry considerations are no longer in play, one’s credence
should be maximally imprecise: [0, 1]. However, one might argue that rationally assigning a precise
credence of 0.5 when the coin has not yet been chosen does not constitute a counterexample to the
original chance grounding thesis, by arguing that the proposition ‘The next coin to be flipped will
come up heads’ has an objective chance of 0.5. My argument won’t turn on this, so I'm happy to
go along with Joyce and accept that we have a counterexample to the chance grounding thesis.



an extremely tight connection between credence and chance. For any given body of
evidence, it leaves no freedom in the choice of which credence functions to include in
one’s credal state. Because of the way compatibility is understood, there will always
be a fact of the matter about which credence functions are compatible with one’s
evidence, and hence about which credence functions ought to be included in one’s
credal state.

The question, then, is whether we should settle on this formulation, or whether
we can change the requirements without thereby compromising the initial motiva-
tion for the imprecise model. In his discussion of the chance grounding thesis, Joyce
([2010], p. 288) claims that even when the error in White’s formulation has been
taken care of, as I proposed to do with my revision, the resulting principle is not
essential to the imprecise proposal. Instead, he thinks it is merely the most extreme
view an imprecise Bayesian might adopt. Now, this is certainly correct as a claim
about imprecise Bayesianism in general. One can accept both imprecise probabilism
and imprecise conditionalization without accepting any claim about how knowl-
edge of chance hypotheses, or any other kind of evidence, should constrain which
credence functions are to be included in the credal state. However, on the eviden-
tially motivated proposal that Joyce advocates himself, it’s not clear whether any
other way of specifying what it means for a credence function to be compatible with
one’s evidence could be defended.

One worry you might have about the revised chance grounding thesis is that
far from all constraints on rational credence assignments appear to be mediated by
information about chance hypotheses. In many cases, our evidence seems to rule
out certain credence assignments as irrational, even though it’s difficult to see which
chance hypotheses we might appeal to in explaining why this is so. Take for in-
stance the proposition that my friend Jakob will have the extraordinarily spicy phaal
curry for dinner tonight. I know that he loves spicy food, and I've had phaal with
him a few times in the past year. In light of my evidence, some credence assign-
ments seem clearly irrational. A value of 0.001 certainly seems too low, and a value
of 0.9 certainly seems too high. However, we don’t normally think of our credence
in propositions of this kind as being constrained by information about chances. If
this is correct, then the revised chance grounding thesis can at best provide a partial
account of what it takes for a body of evidence to rule out a credence assignment
as irrational. Of course, one could insist that we do have some information about
chances which allows us to rule out the relevant credence assignments, but such an
idea would have to be worked out in a lot more detail before it could be made plausi-
ble. Alternatively, one could simply deny my claim that these credence assignments
would be irrational. However, as we’ll soon discover, that response would merely



strengthen my objectionm

Going forward, I will assume that the evidence grounding thesis holds, so that
a rational agent’s credal state should include all and only those credence functions
that are compatible with her total evidence. I will also assume that this notion of
compatibility is an objective one, so that there is always a fact of the matter about
which credence functions are compatible with a given body of evidence. However,
I will not assume any particular understanding of compatibility, such as those pro-
vided by White’s chance grounding thesis or my revised formulation. As we'll see,
these assumptions spell trouble for the imprecise Bayesian. I will therefore revisit
them in Section 6, to see whether they can be given up.

4 Local Belief Inertia

In certain cases, evidentially-motivated imprecise Bayesianism makes inductive learn-
ing impossible. Joyce already recognizes this, but I will argue that the implications
are more wide-ranging and therefore more problematic than has been appreciated
SO farE] To illustrate the phenomenon, consider an example adapted from (Joyce
[2010], p. 290).

Unknown Bias

A coin of unknown bias is about to be flipped. What is your credence
C(H;) that the outcome of the first flip will be heads? And after having
observed n flips, what is your credence that the coin will come up heads
on the (n + 1)th flip?

As in the Symmetrical Biases example discussed earlier, each ¢ € C is here given
as the expected value of a corresponding probability density function, f., over the
possible chance hypotheses. We are not provided with any evidence that bears on the

10 Another case where it’s not immediately clear how to apply the revised chance grounding thesis
is propositions about past events. On what I take to be the standard view, such propositions have
an objective chance of either 1 or 0, depending on whether they occurred or not (see for instance
(Schaffer [2007]). So for a proposition P about an event that is known to be in the past, the only
chance hypotheses left open by the evidence are (at most) 0 and 1. However, in certain cases, this
will be enough to give us maximal imprecision. If we have no knowledge of what the chance of
P was prior to the event’s occurring (or not occurring), then it seems that any way of distributing
credence across these two chance hypotheses will be compatible with our evidence, and hence that
the credal state will include a credence function ¢ with ¢(P) = x for each x € [0,1]. Indeed, if
we accept Levi’s ([1980], chapter 9) credal convexity requirement, then whenever the credal state
includes 0 and 1, it will also include everything in between. A further worry, which I will set aside
here, is whether we can have any non-trivial objective chances if determinism is true.

Joyce is of course not the first to recognize this. See for instance Walley’s ([1991], p. 93) classic
monograph for a discussion of how certain types of imprecise probability have difficulties with
inductive learning.
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question of whether the first outcome will be heads, and hence our evidence cannot
rule out any pdfs as incompatible. In turn, this means that no value of ¢(H;) can be
ruled out, and therefore that our overall credal state with respect to this proposition
will be maximally imprecise: C(H;) = (0, 1) However, this starting point renders
inductive learning impossible, in the following sense. Suppose that you observe the
coin being flipped a thousand times, and see 500 heads and 500 tails. This looks
like incredibly strong evidence that the coin is very, very close to fair, and would
seem to justify concentrating your credence on some fairly narrow interval around
0.5. However, although each element of the credal state will indeed move toward
the midpoint, there will always remain elements on each extreme. Indeed, for any
finite sequence of outcomes and for any x € (0, 1), there will be a credence function
¢ € C which assigns a value of x to the proposition that the next outcome will be
heads, conditional on that sequence. Thus your credence that the next outcome will
be heads will remain maximally imprecise, no matter how many observations you
make.

Bradley ([2015]) calls this the problem of belief inertia. I will refer to it as local
belief inertia, as it pertains to a limited class of beliefs, namely those about the
outcomes of future coin flips. This is a troubling implication, but Joyce ([2010], p.
291) is willing to accept it:

if you really know nothing about the [...] coin’s bias, then you also really
know nothing about how your opinions about [H,.1] should change in
light of frequency data. [...] You cannot learn anything in cases of pro-
nounced ignorance simply because a prerequisite for learning is to have
prior views about how potential data should alter your beliefs, but you
have no determinate views on these matters at all.

Nevertheless, he suggests a potential way out for imprecise Bayesians who don’t
share his evidentialist commitments. The underlying idea is that we should be al-
lowed to rule out those probability density functions that are especially biased in
certain ways. Some pdfs are equal to zero for entire subintervals (a, b), which means
that they could never learn that the true chance of heads lies within (a, b). Perhaps
we want to rule out all such pdfs, and only consider those that assign a non-zero
value to every subinterval (a,b). Similarly, some pdfs will be extremely biased to-
ward chance hypotheses that are very close to one of the endpoints, with the result
that the corresponding credence functions will be virtually certain that the outcome
will be heads, or virtually certain that the outcome will be tails, all on the basis of

12 Joyce ([2010], p. 290) thinks we should understand maximal imprecision here to mean the open set
(0, 1) rather than the closed set [0, 1], but it’s not obvious on what basis we might rule out the two
extremal probability assignments. At any rate, my objection won’t turn on which of these is correct,
as we’ll see shortly.
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no evidence whatsoever. Again, perhaps we want to rule these out, and require that
each ¢ € C assigns a value to H; within some interval (c_,c*), with c. > 0 and
c" <L

With these two restrictions in place, the spread of our credence is meant to shrink
as we make more observations, so that after having seen 500 heads and 500 tails, it
is centred rather narrowly around 0.5, thereby making inductive learning possible
again. While recognizing this as an available strategy, Joyce does not endorse it
himself, as it is contrary to the evidentialist underpinnings of his view. In any case,
the strategy doesn’t do the trick. Even if we could find a satisfactory motivation, it
would not deliver the result Joyce claims it does, as the following theorem shows:

Theorem 1. Let the random variable X be the coin’s bias for heads, and let the
random variable Y}, be number of heads in the first n flips. For a given n, a given vy,
a given interval (c_, c¢") with c_ > 0 and ¢* < 1, and a given ¢y € (c—,c"), there is a
pdf, fx, such that

1. E[X] € (c—,c"),
2. E[X | Yy =yn] = co, and
3. fgb fx(x)dx > 0 for every a,b € [0,1] with a < b.

The first and third conditions are the two constraints that Joyce suggested we impose.
The first ensures that the pdf is not extremely biased toward chance hypotheses that
are very close to one of the endpoints, and the third ensures that it is non-zero for
every subinterval (g, b) of the unit interval. The second condition corresponds to the
claim that we still don’t have inductive learning, in the sense that no matter what
sequence of outcomes is observed, for every ¢y € (c—, c*), there will be a pdf whose
expectation conditional on that sequence is co.

Proof. Consider the class of beta distributions. First, we will pick a distribution
from this class whose parameters x and  are such that the first two conditions are
satisfied. Now, the expectation and the conditional expectation of a beta distribution
are respectively given as

& +1Yy

o

+pB’
The first two conditions now give us the following constraints on « and f:

« «+
< — <c, andiynzco.
«

+pB x+p+n
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The first of these constraints gives us that

c_ ct
1_C_,B<tx< 1_C+,B.

The second constraint allows us to express a as

_ CO(.B"'H)_yn
N=————"—"".
1—C()

Putting the two together, we get

B> (1 —c_)(yn — con) and § > (1 —c")yn — con)
co — C— co—ct '

As we can make f arbitrarily large, it is clear that for any given set of values for n,
Yn, c—, ¢ and ¢y, we can find a value for f such that the two inequalities above hold.
We have thus found a beta distribution that satisfies the first two conditions. Finally,
we show that the third condition is met. The pdf of a beta distribution is given as

1
Bla, B)

where the beta function B is a normalization constant. As is evident from this ex-
pression, we will have fx(x) > 0 for each x € (0,1), which in turn implies that
f ab fx(x)dx > 0 for every a,b € [0,1] with a < b. Moreover, this holds for any val-
ues of the parameters & and . Therefore every beta distribution satisfies the third
condition, and our proof is done. O

xtx—l(l _ x)ﬁ—l/

fx(x) =

What this shows is that all the work is being done by the choice of the initial
interval. Although many credence functions will be able to move outside the interval
in response to evidence, for every value inside the interval, there will always be a
a credence function that takes that value no matter what sequence of outcomes has
been observed. Thus the set of prior credence values will be a subset of the set of
posterior credence values. The intuitive reason for this is that we can always find
an initial probability density function which is sufficiently biased in some particular
way to deliver the desired posterior credence value.

There are therefore two separate things going on in the unknown bias case, both
of which might be thought worrisome: the problem of maximal imprecision, and
the problem of belief inertia. As the result shows, Joyce’s proposed fix addresses the
former but not the latter, and our beliefs can therefore be inert without being max-
imally imprecise Granted, having a set of posterior credence values that always

13 In turn, this explains why it doesn’t matter whether we understand maximal imprecision to mean
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includes the set of prior credence values as a subset is a less severe form of belief
inertia than having a set of posterior credence values that is always identical to the
set of prior credence values. However, even this weaker form of belief inertia means
that no matter how much evidence the agent receives, she cannot converge on the
correct answer with any greater precision than is already given in her prior credal
state.

Now, Theorem 1 only shows that one particular set of constraints is insufficient
to make inductive learning possible in the unknown bias case. Thus some other set
of constraints could well be up to the job. For example, consider the set of beta
distributions with parameters a and p such that f/m < a < mf for some given
number m. If we let the credal state contain one credence function for each of these
distributions, inductive learning will be possible.

It may be objected that we should regard belief inertia, made all the more press-
ing by Theorem 1, not as a problem for imprecise Bayesianism, but rather as a prob-
lem for an extreme form of evidentialism Suppose that a precise Bayesian says that
all credences that satisfy the first and third conditions are permissible to adopt as
one’s precise credences. Theorem 1 would then tell us that it is permissible to change
your credence by an arbitrarily small amount in response to any evidence. Although
hardcore subjectivists would be happy to accept this conclusion, most others would
presumably want to say that this constitutes a failure to respond appropriately to the
evidence. Therefore, whatever it is that a precise moderate subjectivist would say to
rule out such credence functions as irrational, the imprecise Bayesian could use the
same account to explain why those credence functions should not be included in the
imprecise credal state.

I agree that belief inertia is not an objection to imprecise Bayesianism as such: it
becomes an objection only when that framework is combined with Joyce’s brand
of evidentialism. Nevertheless, I do believe the problem is worse for imprecise
Bayesianism than it is for precise Bayesianism. On the imprecise evidentialist view,
you are epistemically required to include all credence functions that are compatible
with your evidence in your credal state. If we take Joyce’s line and don’t impose any
further conditions, this means that, in the unknown bias case, you are epistemically
required to adopt a credal state that is both maximally imprecise and inert. If we
instead are sympathetic to the two further constraints, it means that you are epis-
temically required to adopt a credal state that will always include the initial interval
from which you started as a subset. By contrast, on the precise evidentialist view,
you are merely epistemically permitted to adopt one such credence function as your
own. Of course, we may well think it’s epistemically impermissible to adopt such
credence functions. But a view on which we are epistemically required to include

(0,1) or [0,1]. Belief inertia will arise regardless of which of the two we choose.
14 I'm grateful to an anonymous referee for drawing my attention to this point.
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them in our credal state seems significantly more implausible.

A fturther difference is that any fixed beta distribution will eventually be pushed
toward the correct distribution. Thus any precise credence function will eventually
give us the right answer, even though this convergence may be exceedingly slow for
some of them. By contrast, Theorem 1 shows that the initial interval (c_,c") will
always remain a subset of the imprecise Bayesian’s posterior credal state. Therefore,
belief inertia would again seem to be more of a problem for the imprecise view than
for the precise view.

Finally, it’s not at all obvious what principle a precise Bayesian might appeal to
in explaining why the credence functions that intuitively strike us as insufficiently
responsive to the evidence are indeed irrational. Existing principles provide con-
straints that are either too weak (for instance the principal principle or the reflection
principle) or too strong (for instance the principle of indifference). It may well be
possible to formulate an adequate principle, but to my knowledge this has not yet
been done.

At any rate, Joyce is willing to accept local belief inertia in the unknown bias case,
and his reasons for doing so may strike one as quite plausible. When one’s evidence
is so extremely impoverished, it might make sense to say that one doesn’t even know
which hypotheses would be supported by subsequent observations. This case is a
fairly contrived toy example, and one might hope that such cases are the exception
and not the rule in our everyday epistemic lives. So a natural next step is to ask how
common these cases are. If it turns out that they are exceedingly common—as I will
argue that they in fact are—then we ought to reject evidentially-motivated imprecise
Bayesianism, even if we were initially inclined to accept particular instances of belief
inertia.

5 From Local to Global Belief Inertia

I will argue that belief inertia is in fact very widespread. My strategy for establishing
this conclusion will be to first argue that an imprecise Bayesian who respects the
evidence grounding thesis must have a particular prior credal state, and second to
show that any agent who starts out with this prior credal state and updates by
imprecise conditionalization will have inert beliefs for a wide range of propositions.

In order for the Bayesian machinery—whether precise or imprecise—to get going,
we must first have priors in place. In the precise case, priors are given by the credence
function an agent adopts before she receives any evidence whatsoever. Similarly, in
the imprecise case, priors are given by the set of credence functions an agent adopts
as her credal state before she receives any evidence whatsoever.

The question of which constraints to impose on prior credence functions is a fa-
miliar and long-standing topic of dispute within precise Bayesianism. Hardcore sub-
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jectivists hold that any probabilistic prior credence function is permissible, whereas
objectivists wish to narrow down the number of permissible prior credence func-
tions to a single one. In between these two extremes, we find a spectrum of mod-
erate views. These more measured proposals suggest that we add some constraints
beyond probabilism, without thereby going all the way to full-blown objectivism.

The same question may of course be asked of imprecise Bayesianism as well. In
this context, our concern is with which constraints to impose on the set of prior
credence functions. Hardcore subjectivists hold that any set of probabilistic prior
credence functions is permissible, whereas objectivists will wish to narrow down the
number of permissible sets of prior credence functions to a single one. In between
these two extremes, we again find a spectrum of moderate views.

For an imprecise Bayesian who is motivated by evidential concerns, the answer to
the question of priors should be straightforward. By the evidence grounding thesis,
our credal state at a given time should include all and only those credence functions
that are compatible with our evidence at that time. In particular, this means that
our prior credal state should include all and only those credence functions that are
compatible with the empty body of evidence. Thus, in order to determine which
prior credal states are permissible, we must determine which credence functions are
compatible with the empty body of evidence. As you’ll recall, I assumed that the
relevant notion of compatibility is an objective one. This means that there will be
a unique set of all and only those credence functions that are compatible with the
empty body of evidence Which credence functions are these?

In light of our earlier examples, we can rule out some credence functions from the
prior credal state. In particular, we can rule out those that don’t satisfy the principal
principle. If we were to learn only that the chance of P is x, then any credence
function that does not assign a value of x to P will be incompatible with our evidence.
And given that the credal state is updated by conditionalizing each of its elements
on all of the evidence received, it follows that we must have c(P|ch(P) = x) = x for
each c in the prior credal state Cy. Along these lines, some may also wish to add
other deference principles.

Now, one way of coming to know the objective chance of some event seems to be
via inference from observed physical symmetries@ If that’s right, it would appear
to give us a further type of constraint on credence functions in the prior credal state.
More specifically, if some proposition Symm about physical symmetries entails that
ch(P) = x, then all credence functions c in the prior credal state should be such that
c(ch(P) = x | Symm) = 1. Given that we’ve accepted the principal principle, this
means that we also get that ¢(P | Symm) = x. Now, what sort of things do we have

15 This objectivism may strike you as implausible or undesirable. In the next section, we will consider
whether an imprecise Bayesian can give it up without also giving up their evidentialist commitment.
16 I'm grateful to Pablo Zendejas Medina and an anonymous referee for emphasizing this.
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to include in Symm in order for the inference to be correct? In the case of a coin flip,
we presumably have to include things like the coin’s having homogenous density
together with facts about the manner in which it is ﬂippedm But given that we are
trying to give a priori constraints on credence functions, it seems that this cannot be
sufficient. We must also know that, say, the size of the coin or the time of the day
are irrelevant to the chance of heads, and similarly for a wide range of other factors.
Far-fetched as these possibilities may be, it nevertheless seems that we cannot rule
them out a priori.

I will return to a discussion of the role of physical symmetries shortly. For the
moment, it suffices to note that symmetry considerations, just like the principal prin-
ciple and other deference principles, can only constrain conditional prior credence
assignments, leaving the whole range of unconditional prior credence assignments
open. Are there any legitimate constraints on unconditional prior credence assign-
ments? Some endorse the regularity principle, which requires credence functions to
assign credence 0 only to propositions that are in some sense (usually doxastically)
impossible. So perhaps we should demand that all credence functions in the prior
credal state be regular@

So far, I've surveyed a few familiar constraints on credence functions. The
thought is that if we add enough of these, we may be able to avoid many instances
of belief inertia. However, this strategy faces a dilemma: on the one hand, adding
more constraints means that we are more likely to successfully solve the problem.
On the other, the more constraints we add, the more it looks like we’re going beyond
our evidence, in much the same way that the principle of indifference would have
us do. Given that Joyce endorsed imprecise Bayesianism for the very reason that it
allowed us to avoid having to go beyond the evidence in this manner, this would
be especially problematic. Let us therefore assume that the only constraints we can
impose on the credence functions in our prior credal state are the principal principle
and other deference principles, constraints given by symmetry considerations, and
possibly also the regularity principle. This gives us the following result. The evi-
dence grounding thesis, together with an objective understanding of compatibility,

imply:

Maximally Imprecise Priors
For any contingent proposition P, a rational agent’s prior credence Cy(P)
in that proposition will be maximally imprecise

17
18

See Strevens (1998) for one account of how this works in more detail.

For reasons given by Easwaran ([2014]), Hajek ([unpublished]), and others, I'm skeptical of regular-
ity as a normative requirement on credence functions, but for present purposes I'm happy to grant
it.

Where ‘maximally imprecise’ means either Cyo(P) = (0, 1) or Co(P) = [0, 1], depending on whether or
not we accept the regularity principle.
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Why does this follow? Take an arbitrary contingent proposition P. If we accept
the regularity principle, the extremal credence assignments 0 and 1 are of course
ruled out. The principal principle and other deference principles only constrain
conditional credence assignments. For example, the principal principle requires each
¢ in the prior credal state Cy to satisfy c¢(P | ch(P) = x) = x, where ch(P) = x is the
proposition that the objective chance of P is x. Other deference principles have the
same form, with ch(-) replaced by some other probability function one should defer
to. By the law of total probability for continuous variables, we have that

1
C(P)ZLA ¢(P | ch(P) = x) - fu(x) dx,

where f.(x) is the pdf over possible chance hypotheses that is associated with c. By
the principal principle, it follows for all values of x that ¢(P | ch(P) = x, which in
turn means that

qm:/im&mx

This means that the value of c¢(P) is effectively determined by the pdf f.(x). Therefore,
if we are to use the principal principle to rule out some assignments of unconditional
credence in P, we have to do so by ruling out, a priori, some pdfs over chance hy-
potheses. Given the constraints we have accepted on the prior credal state, the only
way of doing thisETI would be via symmetry considerations. However, in order to
do so we would first have to rule out certain credence assignments over the various
possible symmetry propositions. As we have no means of doing so, it follows that
neither the principal principle nor symmetry considerations allow us to rule out any
values for ¢(P). Any other deference principles will have the same formal structure
as the principal principle, and the corresponding conclusions therefore hold for them
as well. We thus get maximally imprecise priors.

Next, we will examine how an agent with maximally imprecise priors might
reduce their imprecision. Before doing that, however, I'd like to address a worry
you might have about the inference to Maximally Imprecise Priors above. I have
been speaking of prior credal states as if they were just like posterior credal states,
the only difference being that they’re not based on any evidence. But of course, the
notion of a prior credal state is a fiction: there is no point in time at which an actual
agent adopts it as her state of belief. And given that my formulation of the evidence
grounding thesis makes it clear that it is meant to govern credal states at particular
points in time, we have no reason to think that it also applies to prior credal states.

If the prior credal state is a fiction, what kind of a fiction is it? Titelbaum ([un-

20 Other than the uninteresting case of the regularity principle ruling out discontinuous pdfs that
concentrate everything on the endpoints 0 and 1.
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published], p. 110) suggests that we think of priors as encoding an agent’s ultimate
evidential standards?T Her ultimate evidential standards determine how she inter-
prets the information she receives. In the precise case, an agent whose credence
function at #; is ¢; will regard a piece of evidence E; as favouring a proposition P if
and only if ¢1(P|E;) > ¢1(P). So her credence function ¢; gives us her evidential stan-
dards at t;. Of course, her evidential standards in this sense will change over time
as she obtains more information. It may be that in between t; and f, she receives a
piece of evidence E; such that c2(P|E;) < c2(P). If she does, at f, she will no longer
regard E; as favouring P. In order to say something about how she is disposed to
evaluate total bodies of evidence, we must turn to her prior credence function, which
encodes her ultimate evidential standards. If an agent with prior credence function
co has total evidence E, she will again regard that evidence as favouring P if and only
if co(P|E) > co(P). In the same way, we can think of a prior credal state as encoding
the ultimate evidential standards of an imprecise agent@

Suppose that we have a sequence of credence functions ¢y, ¢z, c3, ..., where each
element ¢; is generated by conditionalizing the preceding element c;_; on all of the
evidence obtained between t;_; and t;. We will then be able to find a prior credence
function ¢y such that, for each ¢; in the sequence, c;(-) = co(-|E;), where E; is the
agent’s total evidence at t;. Because a credal state is just a set of credence functions,
we will also be able to find a prior credal state Cy such that the preceding claim holds
of each of its elementsF_gI This means that, in order to arrive at Joyce’s judgements
about particular cases, we must make assumptions about the prior credal state as
well. Consider for instance the third urn example, where we don’t even know what
colours the marbles might have. If we are to be able to say that it is irrational to
have a precise credence in B; (the proposition that a marble drawn at random from
this urn will be black), we must also say that it is irrational to have a prior credal
state Cp such that there is an x such that ¢(B3|E) = x for each ¢ € Cy, where E is
the (limited) evidence available to us (namely that the urn contains one hundred
marbles of unknown colours, and that one will be drawn at random). Similarly, in

21 This kind of view of priors is of course not original to Titelbaum. See for example Lewis ([1980], p.
288).

In this case, we will have to say a bit more about what it means for an agent to regard a piece of
evidence as favouring a proposition. Presumably a supervaluationist account, along the lines of the
one we sketched for unconditional comparative judgements, will do: an agent with credal state C
will regard a piece of evidence E; as determinately favouring P if and only if ¢(P|E;) > ¢(P) for each
cecC.

Now, ¢; and E; will not determine a unique c¢g. There will be distinct cyp and ¢y’ such that ¢;(-) =
co(- | Ej) and ¢;(-) = co’(- | E;). In the case of an imprecise Bayesian agent, this means that we cannot
infer her prior credal state from her current credal state together with her current total body of
evidence. However, given that we are for the moment assuming that the notion of compatibility is
an objective one, the prior credal state Cy should consist of all and only those credence functions
that satisfy the relevant set of constraints, and hence that Cy will be unique.
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the unknown bias case, we must rule out as irrational any prior credal state which
does not yield the verdict of maximal imprecision.

So although the prior credal state is in a certain sense fictitious, the evidence
grounding thesis must still apply to it, if it is to apply to posterior credal states at
all. Because of the intimate connection (via imprecise conditionalization on the total
evidence) between the prior credal state and posterior credal states, any claims about
the latter will imply claims about the former. Therefore, if the evidence grounding
thesis is to constrain an agent’s posterior credal states, it must also constrain her
ultimate evidential standards, namely her prior credal state. Thus the argument for
Maximally Imprecise Priors still stands.

In order to determine how widespread belief inertia is, we must now consider
how an agent with maximally imprecise priors might reduce her imprecision with
respect to some particular proposition. One obvious way for her to do so is through
learning the truth of that proposition. If she learns that P, then all credence functions
in her posterior credal state will agree that ¢(P) = 1. Given that we required all
credence functions in the prior credal state to satisfy the principal principle, another
way for the agent to reduce her imprecision with respect to P is to learn something
about the chance of P. If she learns that ch(P) = x, then all credence functions in her
posterior credal state will agree that c(P) = x. Similarly, if she learns that the chance
of P lies within some interval [a, b], then all of them will assign a value to P that lies
somewhere in that interval@ And if we take other deference principles on board as
well, those will yield analogous cases.

Although knowledge of objective chance is a staple of probability toy examples,
how often do we come by such knowledge in real life? The question is all the more
pressing for the imprecise Bayesian. As the unknown bias case illustrated, if an
imprecise Bayesian starts out with no information about the objective chance of some
class of events, she cannot use observed outcomes of events in this class to narrow
down her credence. By contrast, precise Bayesians can use such information to obtain
a posterior credence that will eventually be within an epsilon of the objective chance
value.

As discussed earlier, we do have one other way of obtaining information about
objective chance, namely via inference from physical symmetries. Now, the question
is: how often are we in a position to conditionalize on propositions about such
symmetries? First, and most obviously, the principle will only be able to constrain
credences in propositions for which the relevant physical symmetries are present.

24 T have not explained how the update works when an agent learns that the chance of P lies within
some interval [4,b]. One way of doing this is to set each pdf f; to equal zero everywhere outside
of that interval and then normalize it, so that f ﬂb fe(x)dx = 1. Although I don’t believe much of
my argument turns on it, there are other ways of doing this as well. I'm grateful to an anonymous
referee for drawing my attention to this.
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Thus even if we are happy to say that the proposition that my friend Jakob will have
phaal curry for dinner tonight, or the proposition that the next raven to be observed
will be black have non-trivial objective chances, there are presumably no physical
symmetries to rely on here. Hence the principle has limited applicability.

Second, in cases where the relevant physical symmetries do exist, we must also
know that other factors are irrelevant to the objective chance, as mentioned earlier.
From our everyday interactions with the world, as well as from physical theory, we
know that the size of a coin and the time of the day are irrelevant to the chance
of heads. But how might our imprecise Bayesian accommodate this datum? We
know from before that she will have a maximally imprecise prior in any contingent
proposition, and hence in any physical theory. So in order to make use of these phys-
ical symmetries, she must first narrow down the range of these credences, and assign
higher credence to theories according to which the irrelevant factors are indeed irrel-
evant. But this brings us back to the same problem: how can the imprecise Bayesian
reduce her imprecision with respect to these physical theories? Even if we think it’s
intelligible to think of physical theories as having objective chance of being true, it
seems clear that we’ll never be in a position to conditionalize on propositions about
their objective chance. Furthermore, given that physical theories make claims that
go beyond one’s evidence, we cannot directly conditionalize a physical theory itself.
Thus it would appear that, in practice, the imprecise Bayesian cannot use symmetry
considerations to reduce her imprecision. I take it as a given that we do have some
way of rationally narrowing down the range of possible objective chance values. We
may not know their exact values, but we can nevertheless do a lot better than for-
ever remaining maximally imprecise. The challenge for the evidentially-motivated
imprecise Bayesian is to explain how this is possible within their framework.

As you will recall, I suggested that we might want to take on board deference
principles other than the principal principle. So a further way of reducing one’s
imprecision with respect to some proposition would be to defer to a relevant ex-
pert. To do so, we must say a bit more about who counts as an expert. The first
thing to note here is that if someone has arrived at a relatively precise credence in
P through reasoning that is not justified by the lights of evidentially-motivated im-
precise Bayesianism, she cannot plausibly count as an expert with respect to P. If
the precision of her credence goes beyond her evidence in an unwarranted way, the
same must hold of anyone who defers to her credence as well. This greatly limits the
applicability of the deference principle. Therefore, we can only legitimately defer to
experts in cases where those experts have conditionalized on P directly However,
in order to do so we must not only know what the expert’s credence in P is, but also
that she is indeed an expert. And again, we don’t seem to have a way of narrowing

25 As well as in cases where the expert herself bases her credence on that of another expert, along a
sequence of deferrals that must eventually end with someone who conditionalized on P directly.
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down our initial, maximally imprecise credence that this person is an expert with
respect to P.

Given that the constraints we accepted on prior conditional credence assignments
have such limited practical applicability, we get the following result:

Global Belief Inertia
For any proposition P, a rational agent will have a maximally imprecise
credence in P unless her evidence logically entails either P or its negation.

Even if we were willing to concede some instances of local belief inertia, such as
in the unknown bias case, this conclusion should strike us as unacceptable. It in-
validates a wide range of canonically rational comparative confidence judgements.
Propositions that are known to be true are assigned a credence of 1, those that are
known to be false are assigned a credence of 0, and all others are assigned a maxi-
mally imprecise credence. Although some comparative confidence judgements will
remain intact—for instance, all credence functions will regard four heads in a row
as more likely than five heads in a row—many others will not@ Surely a theory of
inductive inference should do better.
Where does this leave us?

6 Responding to Global Belief Inertia

In a sense, Global Belief Inertia is hardly a surprising result in light of my strong
assumptions. I assumed the evidence grounding thesis, which states that the credal
state must contain all and only those credence functions that are compatible with the
evidence. Moreover, I assumed that compatibility is an objective notion, so that there
is always an agent-independent fact of the matter as to whether a particular credence
function is compatible with a given body of evidence. Finally, I noted that compat-
ibility must be very permissive (in the sense of typically counting a wide range of
credence functions as compatible with any particular body of evidence), because
otherwise we risk making the same mistake as the one we accused the principle of
indifference of making. With all of these assumptions on board, it’s almost a given
that Global Belief Inertia follows. The question is whether we can motivate imprecise
Bayesianism on the grounds that precise credences are often epistemically reckless
because they force us to go beyond our evidence, without having the resulting view
fall prey to Global Belief Inertia.

Some technical fixes may solve the problem. We saw that Joyce’s suggestion for
how to avoid belief inertia in the unknown bias case didn’t do the job, but perhaps an

26 See (Rinard [2013]) for further discussion of the implications of maximal imprecision for compara-
tive confidence judgements.
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approach along similar lines could be made to workF_7] However, as Joyce concedes,
such a proposal could not be justified in light of his evidentialist commitments. Sim-
ilarly, we might try replacing imprecise conditionalization with some other update
rule that allows us to move from maximal imprecision to some more precise credal
state. One natural idea is to introduce a threshold, so that credence functions which
assigned a value below that threshold to a proposition that we then go on to learn,
get discarded from the posterior credal state: C; = {c(- | E1) : ¢ € Co A c(E1) > t}
The threshold proposal comes with problems of its own: it violates the commuta-
tivity of evidence (the order in which we learn two pieces of evidence can make a
difference for which credal state we end up with), and it may lead to cases where
the credal state becomes the empty set. But again, the more fundamental problem is
that it violates the evidentialist commitment. By discarding credence functions that
don’t meet the threshold, we go beyond the evidence.

In general, the dilemma for evidentially-motivated imprecise Bayesianism is that
in order to avoid widespread belief inertia, we must either place stronger constraints
on the uniquely rational prior credal state, or concede that there is a range of differ-
ent permissible prior credal states. However, these two strategies expose the view
to the same criticism that we made of objective and subjective precise Bayesianism:
they allow agents to go beyond their evidence.

You might worry that the argument for Global Belief Inertia relied on a tacit
assumption that the only way of spelling out the underlying evidentialism is via
some connection to objective chance (as done, for example, by the chance grounding
theses). Once we see that this leads to Global Belief Inertia, we should give up that
view, but that doesn’t mean we have to give up the evidentialism itself. Indeed,
even in the absence of a detailed account of how evidence constrains credal states, it
seems quite obvious that our current evidence does not support a precise credence
in, say, the proposition that there will be four millimeters of precipitation in Paris on
3 April 2237. So the case for evidentially-motivated imprecision still stands@

The claim is not merely that there is no unique precise credence that is best
supported by the evidence. If it were, precise Bayesians could simply respond by
saying that there are multiple precise credences, each of which one could rationally
adopt in light of the evidence. Instead, the claim must be that, on its own, any precise
credence would be an unjustified response to the evidence. Hence the evidence only
supports imprecise credences. But does it support a unique imprecise credence, or
are there multiple permissible imprecise credences? On the face of it, the claim that

27 I mentioned one such idea in the context of the unknown bias case: let all the credence functions
be based on beta distributions whose parameters are restricted in a particular way.

28 This threshold rule is mentioned by Bradley and Steele ([2014]). A related method is the maximum
likelihood rule given by Gilboa and Schmeidler ([1993]).

2 I'm grateful to an anonymous referee for articulating this line of thought in a very helpful way.
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it supports a unique imprecise credence looks quite implausible. At any rate, it is
a claim that stands in need of further motivation. The revised chance grounding
thesis gave us one possible explanation of this uniqueness. By including credence
functions in the credal state on the basis of their consistency with what we know
about objective chance, our criterion gives a clear-cut answer in every case, and
hence uniqueness follows. But now that we’ve rejected the revised chance grounding
thesis because of the widespread belief inertia it gave rise to, we no longer have any
reason to suppose that the evidence will always support a unique credal state. In the
absence of a more detailed account of evidential support for credal states, we should
reject uniqueness.

Suppose therefore that we instead accept that our evidence supports multiple
imprecise credences. On what grounds can we then say that it doesn’t also support
some precise credences? The intuition behind the thought that no precise credence
is supported by the evidence also suggests that, for sufficiently small values of e,
no imprecise credence of [x — €, x + €] is supported by the evidence, so the relevant
distinction cannot merely be between precise and imprecise credences. What the
intuition suggests is instead presumably that no credence that is too precise is sup-
ported by the evidence, whether this be perfect precision or only something close to
it. But again, to say what qualifies as too precise, we need a more detailed account
of evidential support for credal states.

At this point, my interlocutor might simply reiterate their original point, cast in
a slightly new form. Yes, they will say, we don’t know exactly which credences are
too precise for our evidence. But even though we don’t have a detailed account, it
is still quite clear that some credences are too precise whereas others aren’t. So the
case for evidentially-motivated imprecision still stands. To give this idea a bit more
flesh, consider an analogy with precise BayesianismF_GI Unless they are thoroughly
subjectivist, precise Bayesians hold that some prior credence functions are rational
and others aren’t. For example, stubborn priors that are moved an arbitrarily small
amount even by large bodies of evidence may well be irrational. This cannot be
explained by any evidence about objective chance, or indeed by any other kind of
evidence, because by definition priors aren’t based on any evidence. There are just
facts about which of them are rational and which aren’t. Furthermore, a credence
function is supported by a body of evidence just in case it is the result of condition-
alizing a rational prior on that body of evidenceErI Now, imprecise Bayesians can say
the same of their view. Some imprecise prior credal states are rational and others
aren’t. Again, this cannot be based on any evidence about objective chance, because
prior credal states aren’t based on any evidence. There are just facts about which of

30" Again helpfully suggested to me by an anonymous referee.
31 gee (Williamson [2000], chapter 10) for an example of a view of this kind, cast in terms of evidential
probability.
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them are rational and which aren’t. Furthermore, a credal state is supported by a
body of evidence just in case it is the result of conditionalizing a rational prior credal
state on that body of evidence.

I won't attempt to resolve this large dispute here, so let me just say two things
in response. The first is simply that those who follow Joyce’s line of argument is
unlikely to be happy with this kind of position, given that it appears to be vulnerable
to the same criticisms as those he raised for precise objective Bayesianism. Of course,
imprecise Bayesians who don’t share these commitments may well want to respond
along these lines, which brings me to my second point: even if they can’t give us an
exact characterization of which imprecise priors are permissible, they should at least
be able to show that none of the permissible priors give rise to widespread belief
inertia. Before that has been done, it seems premature to think that the problem has
been solved.

Before concluding, let me briefly explore some other tentative suggestions for
where to go from here. If we wish to keep the formal framework as it is (namely
imprecise probabilism and imprecise conditionalization, together with the super-
valuationist understanding of credal states), then one option is to scale back our
ambitions. Instead of saying that imprecise credences are rationally required in, say,
the second and third urn cases, we only say that they are among the permissible
options. This response constitutes a significant step in the direction of subjectivism.
We can still place some constraints on the credence functions in the prior credal state
(for example that they satisfy the principal principle). But instead of requiring that
the prior credal state includes all and only those credence functions that satisfy the
relevant constraints, we merely require that it includes only (but not necessarily all)
credence functions that satisfy them. On this view, precise Bayesianism goes wrong
not in that it forces us to go beyond our evidence (any view that avoids belief inertia
will have to!), but rather because it forces us to go far beyond our evidence, when
other more modest leaps are also available. How firm conclusions we want to draw
from limited evidence is in part a matter of epistemic taste: some people will prefer
to go out on a limb and assign relatively precise credences, whereas others are more
cautious, and prefer to remain more non-committal. Both of these preferences are
permissible, and we should therefore give agents some freedom in choosing their
level of precision.

Another option is to enrich the formal framework in a way that provides us with
novel resources for dealing with belief inertia. For example, we might associate a
weight with each credence function in the credal state and let the weight represent
the credence functions degree of support in the evidenceﬂ By letting the weights
change in response to incoming evidence, inductive learning becomes possible again,

32 See (Girdenfors and Sahlin [1982]) for an approach along these lines.
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even in cases where the spread of values assigned to a proposition by elements
of the credal state remains unchanged. In a similar vein, Bradley ([unpublished])
suggests that we introduce a confidence relation over the set of an agent’s probability
judgements For example, after having observed 500 heads and 500 tails in the
unknown bias case, we may be more confident in the judgement that the probability
of heads is in [0.48, 0.52] than we are in the judgement that it is in [0.6, 1]. Needless to
say, the details of these proposals have to be worked out in much greater detail before
we can assess them. Nevertheless, they look like promising options for imprecise
Bayesians to explore in the future.

7 Conclusion

I have argued that evidentially motivated imprecise Bayesianism entails that, for any
proposition, one’s credence in that proposition must be maximally imprecise, unless
one’s evidence logically entails either that proposition or its negation. This means
that the problem of belief inertia is not confined to a particular class of cases, but
is instead completely general. I claimed that even if one is willing to accept certain
instances of belief inertia, one should nevertheless reject any view which has this
implication. After briefly looking at some responses, I tentatively suggested that
the most promising options are either (i) to give up objectivism and concede that
the choice of a prior credal state is largely subjective, or (ii) to enrich the formal
framework with more structure.
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