Building Ontologies with Basic Formal Ontology

Robert Arp, Barry Smith, and Andrew Spear

Detailed Table of Contents

Introduction
Overwhelmed with Information
Obstacles to Accessibility: Human and Technical Idiosyncrasy
 The Computer Limitations Problem
 Some Implications of Computer Limitations for Information Representation and Management
 The Problem of Imprecise Thinking
An Example: The BRIDG Model
Ontology as Part of the Solution
A New Organon for the Information Age
Suggested Further Reading

1 What Is an Ontology?
Introduction
 Ontologies Are Representational Artifacts
Artifacts
Representational Artifacts
 Representational Units and Composite Representations
A Note on “Term”
Ontology, Terminology, Conceptology
Ontology and Terminology: The Case of ISO
The Concept Orientation
Philosophical and Historical Background to Conceptualism
Realism and Ontology
Accurately Representing Entities in Reality
Respecting the Use-Mention Distinction
Ontologies Represent Universals, Defined Classes, and the Relations Between Them
The Goal of Science Is to Represent General Features of Reality
Ontological Realism
Metaphysical Nominalism
Universals and Particulars
Empty or Potentially Empty General Terms
Universal vs. Class
Relations in Ontologies
Basic Relations
Universal-Universal Relations
Universal-Particular Relations
Particular-Particular Relations

Conclusion
Further Reading on Issues of Epistemological and Ontological Realism

2 Kinds of Ontologies and the Role of Taxonomies
Philosophical Ontology
Philosophical Ontology and Taxonomy
Simple Taxonomies
Formal vs. Material Ontologies
Domain Ontology
Domain Ontology and Taxonomy
Definition, Taxonomy, Ontology
Top-Level Ontology
Semantic Interoperability
Choice of Top-Level Ontology
Application vs. Reference Ontology

Conclusion
Further Reading on Top-Level and Domain Ontology
Further Reading on Taxonomy and Classification

3 Principles of Best Practice I: Domain Ontology Design
General Principles of Ontology Design
1. Realism
2. Perspectivalism
3. Fallibilism
4. Adequatism
Additional Principles of Ontology Design

5. The Principle of Reuse
6. The Ontology Design Process Should Balance Utility and Realism
7. The Ontology Design Process Is Open-Ended
8. The Principle of Low-Hanging Fruit

Overview of the Domain Ontology Design Process

Explicitly Determine the Subject Matter of the Domain

Ontology
Domain and Top-Level Ontologies
Relevance
Granularity
The Problem of Nonexistents

Conclusion

Further Reading on Relevance, Perspectivalism, Granularity, and Adequatism

4 Principles of Best Practice II: Terms, Definitions, and Classification

Principles for Terminology

Gather and Select Terminology

1. Include in the terminology terms used by scientists
2. Strive to ensure maximal consensus with the scientists’ usage
3. Identify areas of disciplinary overlap where terminological usage is not consistent
4. In terminology construction and ontology design, make use of as many existing resources (terminologies and ontologies) as possible.

Formatting Terminology

5. Use singular nouns.
6. Use lowercase for common nouns.
7. Avoid acronyms.
8. Associate each term in the ontology with a unique alphanumeric identifier.
10. Ensure univocity of relational expressions.
11. Avoid mass terms.
12. Distinguish the general from the particular.

Principles for Definitions

13. Provide all nonroot terms with definitions
14. Use Aristotelian definitions
15. Use essential features in defining terms.
16. Start with the most general terms in your domain.
17. Avoid circularity in defining terms.
18. To ensure the intelligibility of definitions, use simpler terms than the term you are defining.
19. Do not create terms for universals through logical combination.
20. Definitions should be unpackable (Term-definition intersubstitutability)

Principles for Taxonomies
21. Structure every ontology around a backbone is_a hierarchy.
22. Ensure is_a completeness.
23. Ensure asserted single inheritance.
24. Both developers and users of an ontology should respect the open-world assumption.
25. Adhere to the rule of objectivity, which means: describe what exists in reality, not what is known about what exists in reality

Conclusion
Further Readings on Definitions and Categorization
Examples of Critical Reviews

5 Introduction to Basic Formal Ontology I: Continuants
Some Basic Features of BFO
Basic Types of Entity: Continuant and Occurrent
BFO: Continuant
 BFO: Independent Continuant
 BFO: Material Entity
 BFO: Object
 BFO: Object Aggregate
 BFO: Fiat Object Part
 Combination Object-Entities
 BFO: Specifically Dependent Continuant
 BFO: Quality
 BFO: Relational Quality
 Relations That Do and Relations That Do Not Have Instances
 BFO: Realizable Entity
 BFO: Role
 BFO: Disposition
 BFO: Function
 BFO: Specifically Dependent Continuant: Summary
Reciprocal Dependence among Realizable Dependent Continuants
BFO: Generically Dependent Continuant
BFO: Immaterial Entity
 BFO: Continuant Fiat Boundary (including Zero-, One-, and Two-Dimensional Continuant Fiat Boundary)
Boundaries and Granularity
 BFO: Site
 BFO: Spatial Region (including Zero-, One-, Two-, and Three-Dimensional Spatial Regions)
Spatial Regions and Frames of Reference
A BFO Continuant Classification
Further Reading on Basic Formal Ontology
Further Reading on Granularity
Further Reading on Independent Continuants
Further Reading on Dependent Continuants
Further Reading on Boundaries, Spatial Regions, and Topology

6 Introduction to Basic Formal Ontology II: Occurrents
BFO: Process
 BFO: History
BFO: Process Boundary
BFO: Spatiotemporal Region
BFO: Temporal Region
 BFO: Zero-Dimensional Temporal Region
 BFO: One-Dimensional Temporal Region
An Example of Occurrent Classification
Classifying Universals with BFO
 Exhaustiveness of BFO Categories
 BFO’s Perspectivalism
 BFO’s Perspectivalism in Practice
Further Reading on Processes and Events

7 The Ontology of Relations
BFO Relations
Relations: Formal Properties and Conventions
Primitive Instance-level Relations
Universal-Universal Relations in BFO
Foundational Relation: is_a
Foundational Relations: continuant_part_of and occurrent_part_of
 Spatial and Temporal Relations
 Spatial Relation: adjacent_to
 Temporal Relation: derives_from
 Temporal Relation: preceded_by
 Participation Relation: has_participant
Some Further Top-Level Relations
 proper_continuant_part_of and proper_occurrent_part_of
 has_continuant_part and integral_continuant_part; has_occurrent_part
 and integral_occurrent_part
Relations and Definitions of Categories
The All-Some Rule
 Inversion and Reciprocity
 Some Examples of Axioms
 Reflexivity, Symmetry, and Transitivity
Further Reading on Relations

8 Basic Formal Ontology at Work
The Protégé Ontology Editor and BFO
The Web Ontology Language (OWL)
Hypertext Markup Language (HTML) and Extensible Markup Language (XML)
Resource Description Framework (RDF)
RDF Schema (RDFS)
Simple Protocol and RDF Query Language (SPARQL)
Basic Features of OWL
OWL vs. Standard Relational Databases
OWL 2
Building Ontologies with Basic Formal Ontology
 Example: The Ontology for General Medical Science (OGMS)
 Infectious Disease Ontology (IDO)
 Information Artifact Ontology (IAO)
 The Emotion Ontology (MFO-EM)
Facilitation of Interoperability
Further Reading in OWL, RDFS, and RDF

Appendix on Implementation: Languages, Editors, Reasoners, Browsers, Tools for Reuse
Glossary
Web Links Mentioned in the Text
Notes
Bibliography