Many-Valued Logics
A Mathematical and Computational Introduction

Luis M. Augusto
Contents

 Preface xi

 1. Introduction 1
 1.1. Logics, classical and non-classical, among which the many-valued 1
 1.2. Logic and mathematics 3
 1.3. Logic and computation 5

 I. THINGS LOGICAL 9

 2. Logical languages 11
 2.1. Formal languages and logical languages 11
 2.2. Propositional and first-order languages 13
 2.3. The language of classical logic 17
 2.4. Clausal and normal forms 18
 2.4.1. Literals and clauses 18
 2.4.2. Negation normal form 19
 2.4.3. Prenex normal form 19
 2.4.4. Skolem normal form 21
 2.4.5. Conjunctive and disjunctive normal forms 22
 2.5. Signed logic and signed clause logic 26
 2.5.1. Signed logic 26
 2.5.2. Signed clause logic 28
 2.6. Substitutions and unification for FOL 29
 Exercises 34

 3. Logical systems 39
 3.1. Logical consequence and inference 39
 3.2. Semantics and model theory 42
 3.2.1. Truth-functionality and truth-functional completeness 43
 3.2.2. Semantics and deduction 46
 3.2.3. Matrix semantics 50
 3.3. Syntax and proof theory 53
 3.3.1. Inference rules and proof systems 54
Contents

3.3.2. Syntax and deduction 56
3.4. Adequateness of a deductive system 58
3.5. The system of classical logic 62
Exercises ... 64

4. Logical decisions .. 67
 4.1. Meeting the decision problem and the SAT 67
 4.1.1. The Boolean satisfiability problem, or SAT 68
 4.1.2. Refutation proof procedures 69
 4.2. Some historical notes on automated theorem proving 70
 4.3. Herbrand semantics 72
 4.4. Proving validity and satisfiability 78
 4.4.1. Truth tables 79
 4.4.2. Axiom systems 79
 4.4.3. Natural deduction 80
 4.4.4. The sequent calculus \(\mathcal{LK}\) 83
 4.4.5. The DPLL procedure 87
 4.5. Refutation I: Analytic tableaux 91
 4.5.1. Analytic tableaux as a propositional calculus 91
 4.5.2. Analytic tableaux as a predicate calculus 99
 4.5.2.1. FOL tableaux without unification 101
 4.5.2.2. FOL tableaux with unification 103
 4.6. Refutation II: Resolution 105
 4.6.1. The resolution principle for propositional logic 105
 4.6.2. The resolution principle for FOL 107
 4.6.3. Completeness of the resolution principle 108
 4.6.4. Resolution refinements 110
 4.6.4.1. A-ordering 111
 4.6.4.2. Hyper-resolution and semantic resolution 115
 4.6.5. Implementation of resolution in Prover9-Mace4 118
Exercises ... 125

II. MANY-VALUED LOGICS 131

5. Many-valued logics 133
 5.1. Some historical notes 133
 5.2. Many-valuedness and interpretation 134
 5.2.1. Suszko’s Thesis 134
 5.2.2. Non-trivial many-valuedness 136
 5.2.3. Classical generalizations to the many-valued logics 137
 5.3. Structural properties of many-valued logics 141