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Abstract

Prior to Kripke’s seminal work on the semantics of modal logic, McKinsey offered
an alternative interpretation of the necessity operator, inspired by the Bolzano-Tarski
notion of logical truth. According to this interpretation, ‘it is necessary that A’ is true
just in case every sentence with the same logical form as A is true. In our paper, we
investigate this interpretation of the modal operator, resolving some technical ques-
tions, and relating it to the logical interpretation of modality and some views in modal
metaphysics. In particular, we present an hitherto unpublished solution to problems
41 and 42 from Friedman’s 102 problems, which uses a different method of proof from
the solution presented in the paper of Tadeusz Prucnal.

A common conception of a logical truth, often credited to Bolzano, is that of a sentence
true in virtue of its logical form alone. In a given interpreted language one might make this
precise by stipulating a sentence to be logically true if and only if the result of uniformly
substituting any of the non-logical constants with expressions of the same grammatical
category is true, and dually, logically consistent if and only if some substitution instance is
true. For instance, ‘if John is tall then John is tall’ is a logical truth, since the result of
substituting any name and predicate for ‘John’ and ‘is tall’ respectively results in a truth,
whereas ‘John is tall’ is not a logical truth because it is either already false or the result of
substituting the predicate ‘not tall’ for ‘tall’ in it is false.

This analysis makes salient a formal analogy between the notion of a substitution in the
Bolzanoean definition of logical truth and logical consistency, and the notion of a possible
world in the analysis of necessity and possibility in a Kripke model. Indeed, prior to Kripke’s
work on the semantics of modal logic, McKinsey proposed a substitutional interpretation
— or more accurately, a constraint on such an interpretation — of the modal operator
exactly along Bolzanoean lines.1 Given a language L containing the usual truth functional
connectives and a unary connective 2, McKinsey laid out some conditions that the set of
true sentences of this language should satisfy, on the intended interpretation of 2. Apart

*We cross generations in paying tribute to Saul’s work on modal logic, one of us having learned of his
work at its outset and the other having learned of it after several decades of development. He has done
more than anyone to put the semantical study of modal logic on a firm technical footing, and our debt to
his pioneering work should be evident throughout the paper.

Thanks are due to Lloyd Humberstone and Peter Fritz for correspondence with AB on this material that
greatly benefited the paper. Theorems 13, 24 and 34 are due to AB, and theorems 9, 26, 42 and section 6
are due to KF. The results in section 4.2 were joint. Other minor propositions and observations are due to
AB unless otherwise indicated.

1See McKinsey (1945).
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from the usual clauses for the truth functional compounds, McKinsey requires that for every
sentence A:

The Substitutional Constraint 2A is true if and only if iA is true for every substitution
i of the language.

McKinsey leaves it open what sort of language L is, and the exact nature of the class of
substitutions, stipulating only that the sentences of the language be closed under the truth-
functional and modal connectives, and that the substitutions be closed under composition
and contain a trivial substitution. We will consider more concrete versions shortly.

Under an alternative approach, the logical truths are not as Bolzano thought of them,
but are nonetheless given by some theory ∆. Since ∆ is being informally understood as the
set of logical truths we should require that ∆ be a subset of the truths, and one could then
replace McKinsey’s constraint with:

The Metalogical Constraint 2A is true if and only if A ∈ ∆

constraining the interpretation of the modal operator 2 to include in its extension propo-
sitions expressed by sentences in ∆ and to exclude propositions expressed by sentences not
in ∆. Provided the theory ∆ is closed under the rule of substitution, one direction of McK-
insey’s constraint is ensured, although not necessarily the other. In the case where L is the
language of propositional modal logic, and ∆ a logic (which we may assume to be at least
closed under modus ponens and the rule of necessitation), we obtain an interpretation of
propositional modal logic hit upon independently by Meyer and Fine in the 70s.2

Whether or not these constraints are plausible will depend both on the interpretation of
the modal operator and on the range of interpretations of the non-logical constants of the
language in which the constraints are formulated.

Under what interpretations of the modal operator could these schemas be plausible? One
possibility, following Quine, is to treat the modal operator as ‘crypto-quotational’, so that a
sentence embedded under a modal operator should be understood as residing inside invisible
quotation marks, and the modality ascribes some metalinguistic property to the embedded
sentence. But although we motivated the constraints by analogy with the metalinguistic
notion of logical truth, one doesn’t have to identify the modality under either constraint
with a metalinguistic property. One could instead posit a genuine propositional operator
that yields an interpretation of 2 under which the substitutional or metalogical conditions
are satisfied with respect to a suitable language L. The schemas then impose a substantive
constraint on a propositional operator by articulating a sense in which the postulated notion
of logical necessity stands to the world as logical truth stands to language, without thereby
identifying the two.

The constraints are not plausible on arbitrary interpretations of the non-logical con-
stants either. For instance, if the language in question contained predicates ‘bachelor’ and
‘married’ with their customary meanings then either constraint will imply, given reasonable

2Specifically, the metalogical constraint is satisfied by any metavaluation (see Meyer (1971), and section
5.2 below): a valuation mapping sentences of propositional modal logic to 1 or 0, satisfying the conditions
that v(A ∧ B) = min(v(A), v(B)), v(¬A) = 1 − v(A), and v(2A) = 1 iff A ∈ ∆. If, additionally, v(A) = 1
whenever A ∈ ∆ for any metavaluation v, ∆ is called coherent. Fine applies the metalogical interpretation
of 2 to obtain simple proofs of the disjunction problem in modal and intuitionistic logics. For instance, any
coherent modal logic, ∆, will have the disjunction property, for if 2A1 ∨ ... ∨ 2An ∈ ∆, then v(2A1 ∨ ... ∨
2An) = 1 is true in any metavaluation v based on ∆, and so Ai ∈ ∆ for some i. Indeed a similar argument
may be used to establish that many logics possess an apparent strengthening of the disjunction property,
which we call the extended disjunction property; the details may be found in section 5.2.
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side conditions, that it is possible that there are married bachelors.3 While this result might
be acceptable when it is interpreted as a metalinguistic logical consistency claim in disguise,
it is arguably not so on the worldly interpretation proposed above. For plausibly, to be a
bachelor just is to be a man who is not married, so, by Leibniz’s law, the alleged possibility
would imply that it is possible that there are married men who are not married, which is
certainly not true on any candidate interpretation of the modal operator.(Such an appeal to
Leibniz’s law would not be legitimate on a crypto-quotational reading of the modal opera-
tor as logical consistency, since Leibniz’s law does not permit the substitution of identicals
within quotation marks.)

One can avoid these untoward results by working in what Russell calls a logically per-
fect language: a language where the non-logical constants do not denote logically complex
properties and no two non-logical constants codenote.4 The former requirement rules out
predicates like ‘bachelor’ that denote conjunctions of simpler properties, and the latter pairs
of synonymous predicates like ‘lawyer’ and ‘attorney’. The schemas then capture a sort of
Humean vision in which the logically simple, or fundamental, properties and relations can,
in the proposed sense of ‘can’, stand in any consistent logical relationship to one another.

Lastly, McKinsey left it open what sort of language could be plugged into his constraint.
It could simply be the language of propositional modal logic — and this will be the option
we will explore in this paper — although it could be a more expressive language, such as a
first-order or higher-order language. If it is a higher-order language there is the possibility
of a Tarskian analysis of logical truth. A sentence A(c1...cn) in non-logical constants c1...cn
is a logical truth, according to Tarski, when it is true under every possible interpretation of
c1...cn. We can achieve generality over the interpretations c1...cn in a higher-order language
by simply quantifying into the positions they occupy, leaving the logical truth of A(c1...cn)
amounting to the truth of ∀x1...xn.A(x1...xn), where each xi is a variable of the same type
as ci. Thus, for instance, the logical truth of ‘If John is tall then John is tall’ amounts to
the mere truth of ‘for any individual x and property Y if x is Y then x is Y ’. In this case,
we can fully internalize what in the first two constraints was stated in metalinguistic terms,
since ∀x1...xn.A(x1...xn) is a sentence of the object language. So another constraint, in
the same spirit as the substitutional and metalogical constraints, replaces the Bolzanoean
conception of logical truth with the Tarskian, yielding:

The Tarskian Constraint 2A(c1...cn) ↔ ∀x1...xn.A(x1...xn)

And this can likewise be thought of as articulating a Humean metaphysics of freely recom-
binable fundamental entities.5

The paper is organized as follows. In section 1, McKinsey’s substitutional constraint
on the interpretation of necessity is made precise within the context of propositional modal
logic, and associated notions of valuation and validity are defined. In section 2 we raise
the question of when an assignment of truth values to the sentence letters can be extended

3We can assume ∆ is a logical theory, so it will not prove specific relationships concerning the non-logical
constants, and we can also assume that the substitutions are rich enough we may substitute for ‘married’
and ‘bachelor’ predicates, like ‘married’ and ‘not a bachelor’, that are coinstantiated.

4Russell writes: ‘In a logically perfect language the words in a proposition would correspond one by
one with the components of the corresponding fact, with the exception of such words as “or”, “not”, “if”,
“then”, which have a different function. In a logically perfect language, there will be one word and no more
for every simple object, and everything that is not simple will be expressed by a combination of words, by a
combination derived, of course, from the words for the simple things that enter in, one word for each simple
component.’ Russell (1940), p25

5See Bacon (2020).
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uniquely to a valuation of the modal language satisfying the substitutional constraint. We
show that unique extensions exist for any class of non-modal substitutions, and for the
full substitution class we present a previously unpublished proof of the existence of an
extension, leaving the uniqueness as a conjecture. Sections 3 and 4 concern the logic of
logical necessity. We consider the validity of various principles of modal logic with respect
to various substitution classes, such as the McKinsey and Grzegorczyk axioms, and settle
some questions raised in Humberstone (2016). Section 5 treats the metalogical and Tarskian
constraints, and the paper concludes with some remarks on the substitutional approach to
modal predicate logic.

1 Substitutional interpretations of 2

1.1 Preliminaries

McKinsey does not specify the language he is working in or provide a concrete account of
what he means by a substitution. Rather, he proceeds by imposing some abstract constraints
on the language and the substitutions. He assumes that the language is closed under the
formation of truth-functional compounds and necessity sentences. For simplicity, we will
assume that our own language L is at least closed under conjunction and negation and the
formation of necessity sentences:

L1. If A,B ∈ L then (A ∧B) ∈ L

L2. If A ∈ L then ¬A ∈ L

L3. If A ∈ L then 2A ∈ L

We will regiment McKinsey’s account of substitution in terms of a set, S, of abstract substi-
tutions and an action µ : S×L → L where µ(i, A) — written as iA — informally represents
the result of applying the substitution i ∈ S to the sentence A of L to produce another
sentence of L. We shall say that a pair (S, µ) is a substitution class if and only if the
conditions below of Commutativity, Identity and Composition are satisfied. We will often
suppress mention of the action µ, and refer to a substitution class solely by its associated
set of substitutions provided no ambiguity arises.

Commutativity The action of each substitution i ∈ S on L commutes with the logical
connectives, ∧,¬,2:

1. i(A ∧B) = (iA ∧ iB)

2. i¬A = ¬iA
3. i2A = 2iA

Identity There is a substitution i ∈ S such that iA = A for every sentence A of L.

Composition For any two substitutions, i, j ∈ S there is as substitution k ∈ S such that
kA = i(jA) for every sentence A of L

As previously mentioned, these constraints may be satisfied by some very expressive lan-
guages, including first and higher-order languages. However we will mostly restrict our
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attention to propositional languages. Going forward, we will use L to refer to the propo-
sitional modal language with letters p0, p1, p2, ... and connectives ∧,¬,2. For technical
reasons, it will sometimes be convenient to suppose that the language contains primitive
0-ary constants ⊤ and ⊥, in which case the Commutativity condition must be extended to
include the equations i⊤ = ⊤ and i⊥ = ⊥ for any i ∈ S. (Note that these equations might
not hold if ⊥, for instance, were treated as a defined connective, such as (p0 ∧ ¬p0).)

Occasionally we will need to talk about other languages with further or fewer connectives.
For any subset {C1...Cn} ⊆ {∧,∨,¬,→,⊤,⊥,3,2} we will write L(C1...Cn) to represent
the sublanguage in the connectives C1...Cn: the smallest set containing the sentence letters,
and containing CmA1...Ak whenever it contains A1...Ak, k the arity of Cm and 1 ≤ m ≤ n.
L() thus refers to the set of sentence letters. A substitution class for a language with some
of these logical connectives is defined as above except that we require the substitutions
commute with any additional logical connectives, as with i(A∨B) = (iA∨iB) or i3A = 3iA.
We say that a language is complete iff it is truth-functionally complete and contains either
2 or 3.

Example 1 (The full monoid of substitutions of propositional modal logic). Let S be the set
of concrete substitutions of L, i.e. functions i : L() → L from sentence letters to arbitrary
sentences of L. µ(i, A) may be defined as the result of uniformly substituting i(pk) for pk in
A, for each k ∈ N.

Commutativity and L1-L3 are clearly satisfied. Identity is witnessed by the element that
maps each letter to itself, and composition by the element of S that maps each letter pk to
µ(i, j(pk)).

Note, however, that a set satisfying McKinsey’s requirements may not be isomorphic
to the full monoid of substitutions of a language. There might be distinct substitutions
i, j ∈ S such that iA = jA for every sentence A ∈ L (there could, for instance, be two
identity elements satisfying Identity). Say that i ∼ j iff iA = jA for every A ∈ L. If one
quotients a set S satisfying Commutativity, Identity and Composition by this equivalence
relation one gets another set S/ ∼ which satisfies Commutativity, Identity and Composition
under the action defined by setting µ∼([i]∼, A) = µ(i, A). Indeed, under this quotienting
operation S forms a monoid: the unit ι may be defined as the equivalence class [i]∼ of
any element of S satisfying Identity, and [i] ◦ [j] may defined to be the equivalence class
of any k satisfying Composition. For most purposes we can simply treat S as a set of
concrete substitutions of the language containing the identity substitution and closed under
composition of substitutions. However, even if we impose these additional conditions, one
still does not get that any function from the non-logical constants (the sentence letters in
this case) to arbitrary expressions (sentences in this case) extends to a substitution in S.
This property is distinctive to the full substitution class alone.

Example 2 (Substitutions within a sublanguage). Write S(C1...Cn) for the substitution
class defined by the set of functions

� i : L() → L(C1...Cn)

When L′ is a language containing C1...Cn (so that L(C1...Cn) ⊆ L′), the action of i ∈
S(C1...Cn) may be defined in the usual way (as in example 1), thereby satisfying Commu-
tativity.

Since L(C1...Cn) contains each sentence letter, S(C1...Cn) contains the identity sub-
stitution and satisfies Identity. Since L(C1...Cn) is itself a language, it is closed under
substitutions of letters by sentences in L(C1...Cn). So Composition is also satisfied.
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We will also investigate a class of substitutions introduced in Humberstone (2016), in
relation to McKinsey’s theory of necessity:

Example 3 (Humberstone substitutions). A Humberstone substitution is a function i :
L() → L(⊤⊥) such that

� i(pk) is either pk, ⊤ or ⊥.

These substitutions act on the language with primitive ⊤ and ⊥ connectives (i.e. on L(¬ ∧
2⊤⊥)). µ(i, A) is defined in the usual way, so that McKinsey’s conditions are satisfied. We
call the set of Humberstone substitutions H.

A positive formula is one whose letters all occur positively, where the letters occurring
positively and negatively in a formula are defined by a simultaneous recursion as follows:

� P (pk) = {pk}, N(pk) = ∅,

� P (A ∧B) = P (A) ∪ P (B), N(A ∧B) = N(A) ∪N(B),

� P (¬A) = N(A), N(¬A) = P (A)

� P (2A) = P (A), N(2A) = N(A).

Example 4 (Positive substitutions). A positive substitution is a substitution that maps
letters to positive formulas, and acts on formulas in the usual way. We will call the class of
positive substitutions P .

Lastly, we consider a special sort of substitution that will play a role later in our discus-
sion of Carnap’s theory of logical necessity.

Example 5 (Carnapian substitutions). A Carnapian substitution is a function i on sentence
letters such that

� i(pk) is the result of prefixing some number (possibly zero) of ¬ sign to pk.

and µ(i, A) is defined as before. We call the set of Carnapian substitutions K.

1.2 S-valuations, Pre-validity and Validity

We introduce the notion of an S-valuation: a valuation, taking sentences of the language L
to truth values, that satisfies McKinsey’s constraints.

Definition 1. Suppose that L, S and µ satisfy L1-L3, Commutativity, Identity and Com-
position. An S-valuation is a function v : L → {0, 1} such that

� v(A ∧B) = min(v(A), v(B))

� v(¬A) = 1− v(A)

� v(2A) = 1 if and only if, for every i ∈ S, v(iA) = 1

By a truth-value assignment we mean a function defined on the sentence letters, v− : L() →
{0, 1}. A valuation v extends a truth-value assignment, v−, iff v ↾L()= v−.
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Formally speaking we identify truth and falsity with the numbers 1 and 0, but we shall
sometimes talk of a sentence being true or false in a valuation rather than receiving the
value 1 or 0.

In cases where some of ⊤,⊥,∨ or 3 are also taken as primitive, the notion of valuation
should respect the natural clauses for those connectives:

� v(A ∨B) = max(v(A), v(B))

� v(⊤) = 1

� v(⊥) = 0

� v(3A) = 1 if and only if, for some i ∈ S, v(iA) = 1.

We introduce two senses in which a formula can be valid relative to a substitution class.
The first is not so straightforwardly related to the Bolzano-Tarski conception of validity,
since the set of valid sentences in this sense need not be closed under the rule of substitution:

Definition 2 (Pre-validity). A sentence A is pre-valid relative to the substitution class S
if and only if v(A) = 1 for every S-valuation v.

To see that pre-validity is not closed under the rule of substitution, consider any substi-
tution class S which contains a substitution i such that i(p0) = ⊤ (as with S(C1...Cn) for
any set of connectives C1...Cn containing ⊤). For any S-valuation v, v(3p0) = 1 because
v(ip0) = v(⊤) = 1. So 3p0 is pre-valid relative to the class S. However the substitution
instance 3⊥ is not pre-valid; indeed it is false in every S-valuation.

Validity proper thus cannot be understood as the result of closing the pre-validities under
the rule of substitution. Rather we consider a sentence to be valid relative to a substitution
class S only if all of its substitution instances are pre-valid.

Definition 3 (Validity). A sentence A is valid relative to the substitution class S if and
only if iA is pre-valid relative to the substitution class S, for every substitution i in the full
substitution class S(¬ ∧2).

If S is a substitution class, then we will write L(S) for the set of sentences valid with
respect to S, and we call it the logic of S.

Note that the ‘external’ notion of validity defined above, for which we required the
theorems of the logic to be valid, can be distinguished from the ‘internal’ notion of validity
by which 2 is interpreted. The former requires truth under all substitutions, whereas the
latter requires only truth under all substitutions in S. Consequently, they can diverge when
2 is interpreted by a notion of validity more restricted than our external notion of logical
validity. According to the interpretation of 2 as logical validity, however, the two notions
will coincide, and for this reason the case where S is the full substitution class is of special
interest.6

Let us remark briefly on the choice of primitives. It is easily verified that standard
definitions of arbitrary truth-functional compounds in terms of ¬ and ∧ receive the same

6It is also possible to adopt an external notion of validity intermediate between prevalidity and validity,
whose validities are those sentences with prevalid S-substitution instances. This secures the coincidence
between the external and internal notions in another way, although this is not an avenue we have pursued.
The rationale behind requiring logic to be closed under arbitrary substitutions, at any rate, is that logic
shouldn’t say anything substantive about particular individuals, properties or relations (apart from the
logical ones), so that any sentence that holds, as a matter of logic, for a particular non-logical constant
should hold, as a matter of logic, for an arbitrary expression of the same type.
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truth value in any valuation. Similarly 3 may be defined, as usual, in terms of ¬ and
2. In most contexts it is more economical to work in the language L, whose primitives
consist of only ∧,¬ and 2. But in some cases, the presence of the other primitives make
the definitions simpler: for instance if we identified ⊤ and ⊥ with particular definitions,
such as ¬(p0 ∧¬p0) and p0 ∧¬p0, then our official definition of S(⊤⊥) would not satisfy the
commutativity equations i⊥ = ⊥ and i⊤ = ⊤.

The differences between the logics of different substitution classes will be the subject of
the next few sections. However, we are already in a position to see how different substitution
classes may behave differently at the level of pre-validity. We have, for instance, the following
contrast between full and non-modal substitutions:

Proposition 1. The sentence 3(3p∧3¬p∧2(p → 2p)) (for p a sentence letter) is pre-valid
over S(¬ ∧2), while its negation is pre-valid over S(¬∧).

Proof. Let v be any S(¬∧2) valuation. First note that v(2⊤) = 1 since v(i⊤) = v(⊤) = 1
for every i ∈ S(¬ ∧ 2). Similarly for any sentence letter q, v(¬2q) = 1: v(2q) = 0 since
v(r ∧ ¬r) = 0 and for some i ∈ S(¬ ∧2), iq = r ∧ ¬r.

We shall show that upon substituting 2q for p in (3p ∧ 3¬p ∧ 2(p → 2p)) we get
something true in v, and so 2q witnesses the truth of 3(3p ∧ 3¬p ∧ 2(p → 2p)). (i)
v(32q) = 1 since 2q has a true-in-v substitution, namely v(2⊤) = 1. (ii) v(3¬2q) = 1
since ¬2q is already true in v. (iii) v(2(2q → 22q)) = 1. Take any i ∈ S(¬ ∧ 2). If
v(2iq) = 1 then v(jiq) = 1 for every j. This means v(kliq) = 1 for any k and l, and so
v(22iq) = 1. Thus v(2iq → 22iq) = 1 for any i ∈ S(¬ ∧2), and so v(2(2q → 22q) = 1.

Now let v be any S(¬∧)-valuation, take any i ∈ S(¬∧), and let A := ip. By definition A
is non-modal. Suppose for reductio that v(3A∧3¬A∧2(A → 2A)) = 1. Since v(3A) = 1
and A is non-modal, there is some valuation of propositional logic, u, on the non-modal
language that makes A true. Now construct a substitution j that maps each letter p in A
to a literal that is true in v, if u(p) = 1, and a literal that is false in v if u(p) = 0, and in
such a way that we never pick two literals containing the same letter. Since for each letter
pm occuring in A we have v(jpm) = u(pm), we have that v(A(jp1...jpn)) = u(A(p1...pn)
(writing A as a function of its sentence letters), which means v(jA) = u(A) = 1. Moreover,
since v(3¬A) = 1, A is not a tautology, and so jA is not either (from the way it was
constructed). So v(2jA) = 0 (since if B is non-modal, v(2B) = 1 only if B is a tautology).
So we have v(jA) = 1 and v(2jA) = 0 so v(jA → 2jA) = 0 and so v(2(A → 2A)) = 0.
This contradicts the assumption that v(3A ∧3¬A ∧2(A → 2A)) = 1.

Thus v(3ip ∧ 3¬ip ∧ 2(ip → 2ip)) = 0 for every non-modal substitution i; and so
v(3(3p ∧3¬p ∧2(p → 2p))) = 0 for every S(¬∧)-valuation v.

This proposition technically doesn’t rule out the pre-validities of S(¬∧) and S(¬ ∧ 2)
coinciding by being the inconsistent logic. We will eventually rule out this possibility by
showing the existence S(¬∧) and S(¬∧2)-valuations. It’s also worth noting, however, that
despite the stark contrast between the pre-validities of these two classes, for all we know
the logics of these two substitution classes are identical.

1.3 Relationship to Kripke models

We briefly remark on the relationship between the foregoing substitutional interpretation
of propositional modal logic and the more familiar interpretation due to Kripke (1959).
Although the clauses for substitutional necessity are on the surface quite different from the
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clauses for necessity in a Kripke model, any S-valuation may be reconceived as a Kripke
model.

Definition 4. For any given substitution class, S, the Kripke frame associated with S,
(WS , RS), is defined by:

� WS := S

� RS := {(i, j ◦ i) | i, j ∈ S}, that is, RSik if and only if there is some j ∈ S such that
k = j ◦ i.

Given an S-valuation, v, the Kripke model associated with v is obtained by defining a
valuation V : WS × L() → {0, 1} on (WS , RS) as follows:7

� V (i, pk) = v(ipk).

V may then be extended to arbitrary formulas in the usual manner.

In what follows we reserve the lower case letters v and u for S-valuations and use the
uppercase letters V and U for valuations in a Kripke model.

Proposition 2. For any i ∈ S and formula A, V (i, A) = v(iA).

Proof. By induction. The clauses for the sentence letters and truth functional connectives
are trivial. For the modal clause, we reason as follows.

V (i,2A) = 1 if and only if, for every j ∈ S, V (j ◦ i, A) = 1. By the inductive hypothesis,
this holds iff v(jiA) = 1 for every j ∈ S, which holds iff v(i2A) = 1, as required.

We will also frequently appeal to the notion of p-morphism of frames:

Definition 5 (p-morphism). A p-morphism from a Kripke frame (W,R) to another Kripke
frame (W ′, R′) is a function f : W → W ′ such that:

(i) For any x, y ∈ W , if Rxy then R′f(x)f(y).

(ii) For any x ∈ W and y′ ∈ W ′, if R′f(x)y′ then there exists a y ∈ W such that Rxy and
f(y) = y′.

If f is a p-morphism between the frames of the models (W,R, V ) and (W ′, R′, V ′) and
f preserves the truth values of some sentences, B1...Bn, — i.e. V (x,Bk) = V ′(f(x), Bk) for
k = 1...n and any x ∈ W — then it may be shown that for any sentence A constructed from
B1...Bn using only the truth-functional and modal connectives, V (x,A) = V ′(f(x), A). If f
preserves the truth values of all the letters (and so preserves the truth values of all sentences),
then f is sometimes called a p-morphism between the models (W,R, V ) and (W ′, R′, V ′).
Given the above correspondence between valuations and Kripke models, we can talk about
p-morphisms between substitution classes and Kripke frames.

Definition 6 (p-morphism between substitution classes and Kripke frames). A p-morphism
from a substitution class S to a Kripke frame (W ′, R′) is a p-morphism from the frame
(WS , RS) to (W ′, R′).

7See Drake (1962).
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2 The Existence and Uniqueness of S-valuations

If there were no valuations for a given substitution class, S, the concepts of pre-validity
and validity would be trivial and uninteresting. However, given a substitution class S, the
existence of an S-valuation is not always obvious. Consider, for instance, a valuation for
the full substitution class mapping letters to arbitrary sentences of L. While the truth
values of conjunctions and negations are determined by the truth values of sentences of
lower complexity (the conjuncts or the negatum), the truth value of modal formulas is not.
The truth value of 2A is determined by the truth values of iA for all possible substitutions
of letters within A, including substitutions of higher complexity: i might map some of the
letters appearing in A to A itself for example, yielding a potentially vicious circularity.8

In many cases the circularity is not vicious. Let’s say that a substitution i is non-modal
iff ipk is a formula of the propositional calculus for each k. The following proposition
shows that whenever S is a class of non-modal substitutions, S-valuations exist and can be
constructed in a familiar inductive manner. Indeed, any assignment to the sentence letters
extends to a unique S-valuation on L.

Proposition 3. Suppose that S is a class of non-modal substitutions and that v− : L() →
{0, 1} is a truth-value assignment on the sentence letters of L. Then there exists a unique
S-valuation extending v−.

Proof. v may be defined inductively on the modal degree of the the formula. In particu-
lar, suppose that v(A) has been defined for every formula of modal degree n, and we are
attempting to evaluate v(2A) and v(3A) of modal degree n + 1. Since each i ∈ S is non-
modal, iA will have modal degree n, and so v(2A) and v(3A) may and must be defined as
mini∈S v(iA) and maxi∈S v(iA), respectively.

When S contains substitutions with modal formulas in their range, the constraints of
definition 1 can no longer be met through a straightforward inductive construction. Nonethe-
less, we might conjecture that an analogue of proposition 3 holds for the full substitution
class:

Conjecture 4 (The Uniqueness Conjecture). Suppose that S is the class of all substitutions
on L, and suppose that v− : L() → {0, 1} is a truth-value assignment on the sentence letters.
Then there exists a unique S-valuation v extending v−.

Indeed this conjecture is a slight variant of a conjecture made by Harvey Friedman in
Friedman (1975).9 The existence portion of the conjecture was settled independently by Kit
Fine and Tadeusz Prucnal.10 Prucnal’s method is rather indirect, and goes via a solution
to a related problem concerning intuitionistic logic. In section 2.1 we present Fine’s direct
proof of the existence of a valuation of the full substitution class. The uniqueness part of
the conjecture is still open.

For some classes of modal substitutions we can prove the existence of an S-valuation
through a slightly different inductive construction. To illustrate, consider the ‘positive
substitutions’ from example 4, that map formulas to positive formulas (in which letters only

8See the related remarks in Kripke (1976),p332 concerning the substitutional interpretation of the quan-
tifiers.

9Friedman’s conjecture (see problem 42 of Friedman (1975)) was concerned with the existence and unique-
ness of a valuation on the full substitution class making all the sentence letters true. Moreover, his version
of the conjecture postulates the existence and non-uniqueness of such a valuation.

10See Prucnal (1979).
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appear under an even number of negations). Let P be the class of all positive substitutions
on L.

Proposition 5. There exist P -valuations.

Proof. Let X0 be the set of positive formulas, and Xn+1 the truth functional combinations
of formulas from {A,2A | A ∈ Xn}. We define a valuation inductively as follows. Each
formula of X0 is treated as true. For any positive substitution i and sentence A ∈ Xn, it
is readily shown that iA is also in Xn. Thus assuming the valuation is defined on Xn we
can extend the valuation (uniquely) to formulas of the form 2A for A ∈ Xn and thus to
arbitrary formulas in Xn+1.

2.1 The existence of valuations of the full substitution class

Next we settle the harder question of whether there are any valuations for the full sub-
stitution class. We will show that every truth-value assignment to the sentence letters,
v− : L() → {0, 1}, can be extended to a valuation of the full substitution class.

In order to do this we will introduce a special class of finite, partially ordered frames that
have the property that every world can easily be characterized, in relation to the endpoints
of the order, by a modal formula. Henceforth we will write P 0(X) for P (X) \ ∅ and we will
write (being somewhat sloppy) ⊇ for the superset relation restricted to P 0(X) when X is
clear from context.

Definition 7 (Medvedev frame). A Medvedev frame is a frame of the form (P 0(X),⊇) for
some finite non-empty set X.

We write Med for the logic of Medvedev frames.

We begin with a brief informal overview of our proof strategy. The key idea is to take a
countable set of disjoint models over Medvedev frames for which Med is complete, and glue
them together to make a new model M by placing a new root world that lies underneath
the original ‘component’ models and that sees itself and all the worlds of the component
models. The truth values of the letters at the new root world are determined by v−, and
at the other worlds by their truth value in the relevant component model. We then argue
that a sentence 2A is true at the root of this global model if and only if every substitution
instance of A is true at the root. The valuation of the full substitution class is then obtained
by identifying the truth value of a sentence with its truth value at the root world.

To make this precise, enumerate all of the consistent sentences of Med, C1, C2, C3, ....
For each Ci, pick a model Mi = (P 0(Xi),⊇, Vi) on which Ci is satisfiable at some world.
We may assume without loss of generality that Xi and Xj are disjoint when i ̸= j. Then
our global model M = (W,⊇, V ) may be defined as follows:

� X :=
⋃

i∈ω Xi

� W := {w ⊆ X | w = X or w ∈ P 0(Xi) for some i}

� V (w, pj) = Vi(w, pj) if w ∈ P 0(Xi) for some i

� V (X, pj) = v−(pj).

Our goal is to show that for any formula A:

11



Proposition 6. V (X,2A) = 1 if and only V (X, iA) = 1 for every substitution i.

The proof of the left-to-right direction is quite straightforward. The frame of M is not
Medvedev because W is infinite, but it may nonetheless be shown to be a model of Med in
the sense that V (w,B) = 1 for any formula B ∈ Med and world w ∈ W (lemma 7 below).
The left-to-right direction follows, since if 2A is true at the root X of M , A must be true in
each component model, and thus must be in Med by the completeness of Med with respect
to the component models. But since Med is closed under the rule of substitution, every
substitution instance of A is in Med, and so every substitution instance of A must be true
at the root world since M is a model of Med.

The proof of the right-to-left direction is more involved. It suffices to show that if 2A
is false at the root world X then some substitution instance of A is also false at X. If 2A
is false at the root, then A must be false at some world in M , and so must not belong to
Med since, as before, M is a model of Med. So A can be made false at a world in a model
N = (P 0(Y ),⊇, U) over a Medvedev frame based on the set Y = {1, ..., n}; indeed it can be
made false at the root Y of such a model.11 This model refuting A encodes in a natural way
the required substitution instance of A that is false at the root X of M . We now describe
how to extract that substitution from the model N .

Without loss of generality we may assume that the terminal worlds of N , {1}, ..., {n},
make different propositional letters true and so there are propositional formulas A1, ...An

such that Am is true at {m} and false at {m′} for m′ ̸= m. For reasons that will come in
to play later, we will also choose A1...An so that they are pairwise incompatible and have
a tautologous disjunction.12 Since a singleton {m} sees only itself, 2Am will be true at
{m}. Now a given world Z (i.e. subset of {1, ..., n}), is uniquely determined by its singleton
subsets, or equivalently the terminal worlds {m} it sees. Thus Z makes 32Am when m ∈ Z
and 32Am false when m /∈ Z, and is the unique world of our model to do so. Thus we may
define a formula, DZ that is true only at world Z in N :

DZ :=
∧

m∈Z 32Am ∧
∧

m ̸∈Z ¬32Am

Since N is finite, any set of worlds is characterized by a disjunction of these world formulas.
In particular, for each propositional letter p we may define a formula made only out of
formulas characterizing the terminal worlds (i.e. A1...An) that has the same truth value as
p at any world.

Dp :=
∨

U(Z,p)=1 DZ

We can now define our desired substitution by mapping each letter p to Dp:

i(p) := Dp

Since p and ip have the same truth value at every world in N , the result of uniformly
substituting p for ip in any formula must have the same truth value at any world in N .
Since A is false at the root Y = {1, ..., n} in N , iA must also be false at the root Y .

11If A is refuted at world Y of cardinality n at a non-root world of a larger Medvedev frame, the submodel
generated by Y is easily seen to be isomorphic to a model on the Medvedev frame {1, ..., n}.

12This may always be done, for when we are constructing a model that refutes A over a Medvedev frame
we are free to set the truth-values of letters not appearing in A how we please. So pick sentence letters
p1...pk not appearing in A such that 2k ≥ n and pick a surjection σ : 2k → n. Am may then be defined as∨

σ(u)=m(
∧

u(r)=1 pr ∧
∧

u(r)=0 ¬pr). A valuation in which U({m}, Am) = 1 can be constructed by picking

some representative element u from σ−1(m) and letting U({am}, pr) = u(r) for r = 1...k.
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We now show that iA must also be false at the root of M . According to any world
w in our global model M , some of A1...An are possibly necessary, and others are not: so
there is a unique world in N that agrees with w about which A1...An are possibly necessary,
namely the world {m1, ...,mk} assuming Am1

, ..., Amk
are possibly necessary at w in M .

Note that the root of M , X, gets associated with Y = {1, ..., n} since each Ak is possibly
necessary at the root of M . Let us call this function associating worlds of M to worlds on
N , f : W → P 0(Y ):

f(w) = {m | V (w,32Am) = 1}

It may be shown (lemma 8) that this function f is a p-morphism of frames (it is here we use
the fact that A1...An are pairwise incompatible). Now if a p-morphism preserves the truth
values of some modal formulas C1, ..., Ck then it will also preserve the truth value of any
formula constructed from C1...Ck using the truth-functional and modal connectives (recall
definition 5). Since by definition f preserves the truth values of formulas of the form 32Ak,
and the formulas Dp, and thus also iA, are constructed from these formulas using the modal
and truth-functional connectives f preserves the truth values of the formulas Dp and thus
also iA. Since f maps X to Y and iA is false at Y , iA is false at the root of M as required.

It remains to prove the lemmas appealed to above. The first is that M is a model of
Med:

Lemma 7. If A ∈ Med and w ∈ W , then V (w,A) = 1.

This is a consequence of a more general result — proposition 39 — that will we prove
later in section 5.2, so we will defer its proof.13

Lemma 8. f is a p-morphism from the frame of M to the frame of N

Proof. We first we show that f preserves the accessibility relation. Suppose w sees v in
M . Since the accessibility relation is transitive, anything possible at v is possible at w. So
f(v) ⊆ f(w) and hence f(w) sees f(v) in N .

To establish the reverse condition, suppose that f(w) sees a world Z ∈ P 0(Y ), so that
Z ⊆ f(w). We must show that there exists a v ⊆ w such that f(v) = Z.

By definition, for each m ∈ f(w), w ⊩ 32Am. Thus for each m ∈ f(w) there is a
terminal world {am} ∈ W such that {am} ⊆ w and {am} ⊩ Am. Let v = {am | m ∈ Z}.
Clearly v ⊆ w. Moreover, we may show that f(v) = Z. For, given any m ∈ Z, {am} ⊩ 2Am

and {am} ⊆ v, so v ⊩ 32Am, and so m ∈ f(v). Conversely, if v ⊩ 32Am then v sees
a terminal world that makes Am true. Since A1...An are pairwise incompatible the only
singleton v sees where Am is true is {am}, so am ∈ v and so m ∈ Z.

We may, finally, obtain a valuation v of the full substitution class by setting v(A) =
V (X,A).

Theorem 9. Every truth-value assignment v− may be extended to a valuation of the full
substitution class.

It should be observed that, in the constructed valuation, the truth of a possiblity sentence
3A, may always be witnessed by a substitution of formulas of modal degree 2.

13In section 5.2 it is shown that Med is a coherent logic (see definition 10), and lemma 7 follows from the
observation that the function v, defined by setting v(A) := V (X,A), is a meta-valuation (see definition 9).
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2.2 The uniqueness conjecture

Proposition 3 established that for any non-modal substitution class S, any truth assigment
to the sentence letters extends to a unique S-valuation. The analogue of proposition 3 for
the full substitution class is the principle we called conjecture 4:

Any truth-value assignment v− : L() → {0, 1} extends to a unique S(¬∧2)-valuation.

Theorem 9 establishes the existence portion of the conjecture. The uniqueness conjecture is
important to the study of logical necessity because it is implies that there are interpretations
of 2 in which 2 means valid. Letting S be the full substitution class, conjecture 4 is
equivalent to:

For any S-valuation v, v(2A) = 1 iff A is valid with respect to S.

Supposing the uniqueness conjecture to be true, v(2A) = u(2A) for any pair of S-valuations,
and so v(2A) = 1 iff u(2A) = 1 for all valuations u. Either side of the biconditional holds
iff, for every valuation u and substitution i, u(iA) = 1. So under the supposition, 2A will
coincide with validity with respect to the full substitution class. The converse holds too.
For suppose the previous claim holds. Then for any pair of S-valuations u and v, u(2A) = 1
iff A is valid with respect to S iff v(2A) = 1; and so if v and u additionally agree on the
sentence letters, then u = v.

Notice that in the valuation constructed in theorem 9, v(2A) = 1 if and only if A ∈ Med.
Thus an extension of a truth-value assignment, v−, to a valuation for the full substitution
class may be defined inductively as follows.

� v(p) = v−(p)

� v(A ∧B) = min(A,B)

� v(¬A) = 1− v(A)

� v(2A) = 1 iff A ∈ Med

For an arbitrary valuation v of L, let ∆v = {A | v(2A) = 1}. Then another way to state
conjecture 4 is:

For any valuation v of the full substitution class, ∆v = Med

While we are not able to settle the uniqueness conjecture, we will here establish the weaker
claim:

For any valuation v of the full substitution class, ∆v ⊆ Med

Moreover, in section 4.2 we’ll show that some principles distinctive to Med must also belong
to ∆v. Thus ∆v would appear to be tightly sandwiched betweenMed and a strong subsystem
of Med, lending further credence to the uniqueness conjecture.

Let v be a valuation for the full substitution class. For each n, pick a propositional
partition A1...An — i.e. n propositional formulas that are pairwise inconsistent and have a
tautologous disjunction. For any substitution, i, let f(i) = {m | v(32iAm) = 1}. By a ⊤⊥
substitution we shall mean a substitution whose range on L() is {⊤,⊥}.

Lemma 10. For any substitution i and Y ⊆ f(i), there exists a substitution j such that
f(j ◦ i) = Y .
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Proof. In this proof we will frequently appeal to the fact that if B is a formula, v a valuation,
and j a substitution such that v(2jB) = 1, then there exists a ⊤⊥ substitution k such that
v(2kB) = 1. For if v(2jA) = 1, for an arbitrary j then the result of pre-composing j with
any ⊤⊥ substitution k′, yields ⊤⊥ substitution, k′ ◦ j, with the required property.

Suppose that Y ⊆ f(i). Let p1...pr be the letters appearing in A1...An, and henceforth
let k be variable for a ⊤⊥ substitution defined only on p1...pr.

Since, by definition, v(32iAm) = 1 for each m ∈ f(i), there must exist for each m ∈ f(i)
a substitution k such that v(2kiAm) = 1. And without loss of generality we may assume that
k is a ⊤⊥ substitution. For each m ∈ f(i) we shall pick a representative ⊤⊥ substitution,
km, such that v(2kiAm) = 1.

Let S be the set of all ⊤⊥ substitutions defined on p1...pr, and let S′ = {km | m ∈ Y }.
Our goal will be to find a substitution j that ‘filters’ the substitutions in S leaving all and
only substitutions in S′ behind: i.e. for any k ∈ S, k ◦ j is equivalent to a substitution in
S′ and every substitution in S′ is equivalent to something of the form k ◦ j for some k ∈ S.
Here two substitutions, k and k′ are said to be equivalent when v(2(kp ↔ k′p)) = 1 for any
sentence letter p from p1...pr.

Because A1...An are pairwise inconsistent and have a tautologous disjunction, we also
know that for each⊤⊥ substitution k there is a unique sentence Am such that v(2kiAm) = 1.
For a give k we will call this sentence Ak. Now pick any surjection σ : S → S′ and define a
substitution j as follows:

j(p) =
∨

σ(k)(p)=⊤

Ak

for each p ∈ {p1...pr}
We now show that for any ⊤⊥ substitution k, k ◦ j and σ(k) are equivalent. Firstly, we

show that for any ⊤⊥ substitution k on p1...pn, σ(k) and k ◦ j are equivalent substitutions.
We will show for each letter p, v(2kjp) = 1, if and only if σ(k)(p) = ⊤. Suppose that
σ(k)(p) = ⊤. So Ak is a disjunct of

∨
σ(k)(p)=⊤(A

k) = j(p), and so k(Ak) — which recall is

necessary in v by definition — is a disjunct kj(p). Conversely, suppose that v(2kjp) = 1.
Since the Ak are pairwise incompatible, this can only happen if Ak is one of the disjuncts
of j(p), and thus can only happen if σ(k)(p) = ⊤.

This delivers us our desired result: for if m ∈ Y then, because σ is surjective, there
is some ⊤⊥ substitution such that σ(k) = km, and km and k ◦ j are equivalent. Since
v(2kmiAm) = 1, by definition, and km is equivalent to k ◦ j, v(2kjiAm) = 1, and thus
v(32jiAm) = 1. So m ∈ f(j ◦ i). Conversely if m ∈ f(j ◦ i), this means v(32jiAm) = 1
and so there is substitution k (which we may assume without loss of generality to be ⊤⊥)
such that v(2kjiAm). k ◦ j is equivalent to σ(k) which may be seen to equivalent to km.
Since v(2kmiAm) = 1, m ∈ Y .

The significance of lemma 10 is this. Let (W,R, V ) be the Kripke model associated with
v (so W is the class of substitutions, R = {(i, j ◦ i) | i, j ∈ W} and V (i, p) = v(ip)). Then:

Corollary 11. f : W → P 0(X) is a p-morphism of frames from (W,R) to (P 0(X),⊇)
where X = {1, ..., n}.

Proof. Since Rik iff there exists a j such that k = j◦i, the back-and-forth condition amounts
to the claim that if f(i) ⊇ Y then there exists a j such that f(j ◦ i) = Y . This is just lemma
10.
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It remains to show that f(j ◦ i) ⊆ f(i) for every i, j ∈ W . If m ∈ f(j ◦ i) then
v(32jiAm) = 1 and so there is a substitution k such that v(2kjiAm) = 1. In which case
the substitution k ◦ j witnesses the truth of v(32iAm) = 1 so m ∈ f(i).

Let X = {1, ..., n}. For a given Y ⊆ X we define, as before:

DY :=
∧

m∈Y 32Am ∧
∧

m̸∈Y ¬32Am

As before, DY andDZ are inconsistent when Y ̸= Z. Observe, also, that for any substitution
i, v(iDf(i)) = 1 since, by definition, f(i) is just the set of m such that v(32iAm) = 1.

Suppose that (P 0(X),⊇, V ) is a Medvedev model, that X = {1, ..., n} and that A1...An

are a partition of propositional formulas such that V ({m}, Am) = 1. We may define a
substitution as follows:

i(p) =
∨

V (Y,p)=1

DY

Proposition 12. For any formula A and substitution j, v(jiA) = V (f(j), A)

Proof. We may prove this by induction of formula complexity.
Base case: Suppose that V (f(j), p) = 1. So Df(j) is a disjunct of i(p), and since j

distributes over disjunctions, jDf(j) is a disjunct of jip. By our observation v(jDf(j)) = 1
so v(jip) = 1.

Conversely, suppose v(jip) = 1. So v(jDY ) = 1 for some Y such that V (Y, p) = 1.
By our observation we know that v(jDf(j)) = 1. Since the DZ ’s are pairwise incompatible
(and, thus, so are their substitution instances) it follows that v(jDY ) = v(jDf(j)) = 1 only
if f(j) = Y . So V (f(j), p) = V (Y, p) = 1

Inductive step: the negation and conjunction cases are straightforward, and the 2 case
follows from the fact that f is a p-morphism. Explicitly: if v(2jiA) = 0 then v(kjiA) = 0
for some substitution k. So V (f(kj), A) = 0 by the inductive hypothesis.

Conversely, if V (f(j),2A) = 0 then V (Y,A) = 0 for some non-empty Y ⊆ f(j). By
lemma 10 there exists a k such that f(k ◦ j) = Y , and so by the inductive hypothesis,
v(kjiA) = V (f(k ◦ j), A) = V (Y,A) = 0.

Theorem 13. If v is a valuation of the full substitution class, ∆v ⊆ Med

Proof. It suffices to show that any sentence C consistent in Med is consistent in ∆v: there is
some substitution k such that v(kC) = 1. If C is consistent in Med then there is a Medvedev
model (P 0(X),⊇, V ) such that C is true at some world Y ⊆ X. Construct a substitution i
as above, and pick some substitution j such that f(j) = Y (this is possible by lemma 10).
Then v(jiC) = V (f(j), C) = V (Y,C) = 1. j ◦ i is the required substitution.

3 The Logic of Logical Necessity

Which principles of modal logic are valid on the logical interpretation of 2? The existence
of an identity substitution immediately ensures the validity of the the T axiom, 2A → A.
For given any substitution class S, and S-valuation, v, it follows that v(2A) = 1 only if
v(iA) = 1 for any substitution and, in particular, that v(ιA) = v(A) = 1 when ι is the
identity substitution. Similarly, the closure of the substitutions under composition ensures
the validity of the S4 axiom, since if v(2A) = 1 then, for any pair of substitution i, j ∈ S,
their composition i ◦ j is also in S, and so v((i ◦ j)A) = 1. For fixed j, if v(ijA) = 1 for
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every i ∈ S, it follows that v(2jA) = 1; and since this holds for every j ∈ S, v(22A) = 1.
Indeed, McKinsey showed that for every substitution class S, L(S) contains the theorems
of S4.14

Theorem 14 (McKinsey). Let S be any substitution class.

1. The set of validities L(S) is closed under the rules of necessitation, modus ponens and
uniform substitution.

2. The formulas 2A → 22A, 2A → A, 2(A → B) → (2A → 2B) are all valid.

Thus every theorem of S4 is valid with respect to the class of S-valuations.

Proof. This result appears in McKinsey (1945). We may obtain it directly from proposition 2
by noting that the Kripke model associated with any S-valuation v is transitive and reflexive,
as ensured, respectively, by the Composition and Identity conditions on substitution classes.
It follows that for any A and B, 2A → 22A, 2A → A and 2(A → B) → 2A → 2B are
true in any valuation. Closure under the rules of necessitation, modus ponens and uniform
substitution follows straightforwardly from the definitions of validity and S-valuation.

3.1 The Brouwer and McKinsey axioms

Which further principles of modal logic might be valid under the logical interpretation of
necessity? Taking the logic of metaphysical necessity as our cue, one might wonder if the
Brouwerian axiom

B A → 23A

is valid. The result of adding B to S4 yields S5, a logic commonly supposed to be the
logic of metaphysical necessity. In correspondence, McKinsey offers the following argument
against the truth of the Brouwerian axiom.15 While is certainly true that sugar is sweet,
and vinegar is not, the Brouwerian axiom, if it were true, would further imply that it’s
necessarily possible that sugar is sweet and vinegar is not sweet. But given the left-to-right
direction of the substitutional constraint, substituting sugar for vinegar, we may infer the
absurd conclusion that it’s possible that sugar is sweet and sugar is not sweet.

This conclusion is not peculiar to McKinsey’s definition of logical necessity either, since it
is also a consequence of our more general class of metalogical constraints on logical necessity.
For as we noted there, so long as our account of logical truth, ∆, is closed under the rule of
substitution we have the left-to-right direction of McKinsey’s substitutional constraint. (The
reader may have noticed that we actually do have a candidate notion of logical truth which
isn’t closed under the rule of substitution — pre-validity. We’ll investigate this interpretation
in section 3.2, where we will see that it is indeed consistent with the logic of S5.)

What is special about the substitution of ‘sugar’ for ‘vinegar’ in ‘sugar is sweet and
vinegar is not’ is that no further substitutions to the resulting sentence can change its truth
value. Let us sharpen this notion:

14Drake (1962) improves on this result by showing that the intersection of the logics L(S) for every
substitution class S is exactly S4.

15See Anderson and Belnap (1975) p122-123.
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Definition 8. A substitution i ∈ S is terminal with respect to S if and only if v(2iA) = 1
or v(2¬iA) = 1 for every sentence A of L and S-valuation v. A terminal substitution, i,
matches to a ⊤⊥-substitution j if and only if v(2ip) = 1 when jp = ⊤ and v(2¬ip) = 1
when jp = ⊥.

Finally, say that a substitution class contains all terminal substitutions when it has a
terminal substitution matching any ⊤⊥ substitution, where, as before a ⊤⊥-substitution is
a substitution whose range on L() is {⊤,⊥}.

Clearly any substitution class containing a ⊤⊥ substitution, such as S(⊤⊥...) or H (the
class of substitutions that leave letters alone or replace them with ⊤ or ⊥) has a terminal
substitution. However, many other formulas can play the role of ⊤, such as (p0 ∨ ¬p0) or
2p0 → 22p0, and similarly many formulas can play the role of ⊥. So one need not have ⊤
and ⊥ in the range of substitutions in order to have terminal substitutions.

The presence of terminal substitutions imposes its own distinctive modal logic. The
McKinsey axiom says:

M 23A → 32A

It characterises the Kripke frames in which each world sees a terminal world: a world that
sees only itself.16

Proposition 15 (McKinsey). Let S be a substitution class containing a terminal substitu-
tion. Then the theorems of S4M are valid over the class of S-valuations.

Proof. Since, by theorem 14, the validities of any substititution class are closed under modus
ponens and necessitation and contain the axioms of S4, it remains only to show that the
McKinsey axiom M is valid. If 23A is true in some arbitrary S-valuation v, then for
some terminal substitution i ∈ S, v(3iA) = 1. Since i is terminal, v(2iA) = 1, and so
v(32A) = 1.

The McKinsey axiom is compatible with Brouwer’s axiom. However, the only consistent
modal logic containing S4, McKinsey’s axiom, and Brouwer’s axiom is the trivial modal logic
Triv in which 2 just means true.17 The modal logic Triv has as its characteristic axiom:

Triv 2A ↔ A

Triv is the logic of the trivial substitution class that has the identity substitution ι as its
sole element.

Indeed, according to the Brouwerian axiom, truths of the form 23A are quite common-
place: for any sentence A, either 23A or 23¬A is true, depending on whether A or ¬A

16McKinsey actually considers the formula:

F 23A ∧ 23B → 3(A ∧B)

which is only equivalent to M in the context of S4. The principle M appears to originate from Cresswell and
Hughes (1996).

17

1. A → 23A (an instance of B)

2. 23A → 32A (an instance of M)

3. 32A → 2A (an equivalent of S5)

4. A → 2A from 1-3

5. 2A → A by T.
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is true. By contrast, in a substitution class containing all terminal substitutions, truths of
the form 23A are quite special: it may be shown that the sentence 23A is true only if
A is a theorem of Triv, or equivalently, if the result of deleting all modal operators from A
is a tautology. Let us write A− for the propositional formula that results from deleting all
modal operators from A. Then:

Proposition 16. Suppose S is a substitution class for which there is at least one S-valuation
and which contains all terminal substitutions. Then the following are equivalent.

1. 23A is true in all S-valuations.

2. 23A is true in some S-valuation.

3. A− is a tautology.

4. A is a theorem of Triv

Proof. The equivalence of 3 and 4 is straightforward. Clearly 1 implies 2. We show that 2
implies 3 and 3 implies 1, establishing the equivalence of 1-3.

We may show by a straightforward induction that if i is a terminal substitution, then
v(iB) = v(i(B−)) for any B. The only non-trivial case is to show that v(i2C) = v(i(2C)−).
v(i2C) = v(2iC) = 1 iff v(iC) = 1 since i is terminal. Moreover, by the inductive hypoth-
esis, v(iC) = 1 iff v(i(C−)) = 1. But v(i(2C)−) = v(i(C−)). So v(i2C) = v(i((2C)−)).

Assume 2, and let v be an S-valuation such that v(23A) = 1. Thus for every terminal
substitution i, v(3iA) = v(iA) = 1. So v(iA−) = 1 for every terminal substitution i, which
clearly implies that A− is a tautology. This establishes 3.

Now suppose that A− is a tautology and j an arbitrary S substitution. Let i be any
terminal substitution and v any S-valuation. v(ijA) = v(i((jA)−)) from before. But if
A− is a tautology, then (jA)− is a substitution instance of A− of the letters by sentences
of propositional logic (specifically the substitution j− where j−(pk) = (jpk)

−). So (jA)−

is a tautology too, and hence v(ijA) = v(i((jA)−) = 1. Thus i witnesses the truth of
v(3jA) = 1; and since j was an arbitrary S substitution, v(23A) = 1

3.2 Carnap’s Theory of Logical Necessity

Earlier we reported a general argument, due to McKinsey, that the logic of logical necessity
does not contain the Brouwerian axiom. It rested on the proposed constraint connecting
logical necessity and logical truth, along with the assumption that logical truth is closed
under the rule of substitution. Might we resist this argument by adopting a conception of
logic that is not closed under the rule of substitution? Interestingly, an early example of
a theory of logical necessity in Carnap (1946) and Carnap (1947) (pp173-177) results in a
notion of logical truth that fails to be closed under the rule of substitution (see Cresswell
(2013)), whilst simultaneously validating all the theorems of S5, including all instances of
Brouwer’s axiom.

Indeed, we have encountered our own candidate notion of logical truth not closed under
substitution: pre-validity. This raises the question of whether there might be a substitutional
interpretation of 2 as pre-validity:

Is there a substitution class S such that, for any S-valuation v, v(2A) = 1 if and only
if A is pre-valid with respect to S?
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Indeed, we will show that there is and that the pre-validities of this class coincide with
Carnap’s notion of logical truth for propositional modal logic.18

Recall from example 5 in section 1.1 that K is the class of substitutions i such that i(pk)
is either pk itself, or the result of prefixing a finite string of negations in front of pk. Note
that there is in effect no difference between substitutions with the same parity: if for each
k, ipk and jpk agree on whether they contain an even or odd number of negations, then for
the purposes of valuation we might as well treat these substitutions as the same. However
this redundancy is necessary to meet the formal requirement that a substitution class be
closed under substitution.

Proposition 17. For any K-valuation v, v(2A) = 1 iff A is pre-valid with respect to K

Proof. Given any K-valuation v and substitution i ∈ K, let (iv) be the unique K-valuation
defined by setting (iv)(pk) = v(ipk) (so (iv)(pk) = 1 iff ipk has an even number of negations
and v(pk) = 1, or ipk has an odd number of negations and v(pk) = 0).

We show by induction on the modal degree of A that for any v and i ∈ K:

v(iA) = (iv)(A)

The identity holds of the sentence letters by construction and is clearly inherited over truth-
functional compounds. So suppose that for sentences of modal degree n, v(iA) = (iv)(A)
for any K-valuation v and substitution i ∈ S. Recall that v(2iA) = 1 iff v(jiA) = 1 for
every substitution j ∈ K. Now for any j, we may apply the inductive hypothesis to v and
the substitution j ◦ i to get v(jiA) = (jiv)(A); and by similarly applying the inductive
hypothesis to iv and j, we get that (jiv)(A) = (iv)(jA). So v(jiA) = 1 for every j ∈ S iff
(iv)(jA) = 1 for every j ∈ S, which holds iff (iv)(2A) = 1, as required.

We may now prove the proposition. Note that for a fixed v, every K-valuation u is of the
form iv for some substitution i ∈ K. (Set i(pk) = pk if u(pk) = v(pk), and let i(pk) = ¬pk if
u(pk) ̸= v(pk).) So v(2A) = 1 iff v(iA) = 1 for every i ∈ K, iff (iv)(A) = 1 for every i ∈ K,
iff u(A) = 1 for every K-valuation, iff A is pre-valid with respect to K.

It is also easy to verify that all the theorems of S5 are valid with respect the class of K
valuations.

We now compare the pre-logic of our substitution class with the propositional modal
logic of Carnap’s theory of logical necessity.19 Formulas of propositional modal logic are
evaluated with respect to truth-value assignments to sentence letters, v− : L() → {0, 1}.
We define what it means for a sentence A of propositional modal logic, L(∧¬2), to be true
at a truth-value assignment v−, written v− |= A, as follows:

� v− |= pk iff v−(pk) = 1

� v− |= A ∧B iff v− |= A and v− |= B

� v− |= ¬A iff v− ̸|= A

� v− |= 2A iff u− |= A for every truth-value assignment u−.

18See Carnap (1946). The propositional fragment of Carnap’s logic has been treated in Cresswell (2013),
Thomason (1973), Hendry and Pokriefka (1985). A related project is carried out in Cocchiarella (1974); see
also Carroll (1978).

19A presentation of the propositional fragment of Carnap’s theory may be found in Cresswell (2013).
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Thus 2A can be taken to mean in an extended sense that A is a tautology. A sentence A is
C-valid iff v− |= A for every truth-value assignment v−. C-validity is not closed under the
rule of substitution: for instance, ¬2p0 is C-valid, while ¬2¬(p0 ∧ ¬p0) is not. Much like
our proposition 17, a sentence of the form 2A is true at a propositional valuation iff A is
C-valid. Indeed, we can show:

Proposition 18. A is C-valid iff A is pre-valid with respect to K.

Proof. Given a K-valuation v, we write v− for corresponding the truth-value assignment:
v ↾L(). By proposition 3 every truth-value assignment is identical to v− for some unique K-
valuation v, and so we lose no generality by restricting attention to truth-value assignments
of the form v−. We shall show by induction that for every K-valuation v , v(A) = 1 iff
v− |= A.

The identity clearly holds for sentence letters. The clauses for the truth functional
connectives are straightforward. v− |= 2A iff u− |= A for every truth-value assignment
u−. So by the inductive hypothesis, u(A) = 1 for every K-valuation u. Now for every
substitution i ∈ K, iv (as defined in proposition 17) is a K-valuation, so (iv)(A) = 1 and
since (iv)(A) = v(iA), v(iA) = 1 for every i ∈ K. Thus v(2A) = 1. Conversely, since
every K-valuation is of the form iv for some i ∈ K, if v(2A) = 1, then u(A) = 1 for every
valuation, so by the inductive hypothesis u− |= A for every u and so v− |= 2A.

As we saw, A is pre-valid iff v(2A) = 1. By the above, v(2A) = 1 iff v− |= 2A iff A is
C-valid. This completes the proof.

4 The Logic of Specific Substitution Classes

The foregoing remarks give us some idea of what sort of logical principles must be a part of
the logic of logical necessity. The situation becomes more intricate when we look at specific
substitution classes. We shall see that the logics of some, though not all, substitution classes
include the Grzegorczyk axiom Grz

Grz 2(2(A → 2A) → A) → A

a principle that is not a theorem of S4M.
We shall also see that the logics of some, though not all, substitution classes include an

axiom we call “the subset principle” that is distinctive of Med.

4.1 The logic of non-modal substitution classes

In this section we investigate various classes of of non-modal substitutions — substitutions
that map letters to non-modal propositional formulas. In his book Philosophical Applications
of Modal Logic, Lloyd Humberstone provides an interpretation of McKinsey’s theory of
modality in terms of (what we have called) the class of Humberstone substitutions, H.
These are substitutions that either map a letter to itself, ⊤ or ⊥. After noting that every
theorem of S4M is valid with respect to this substitution class (Proposition 14), he poses
the following questions (p.168):

1. Are the theorems of S4M exactly the validities with respect to the class H?

2. How sensitive is the logic to the exact substitution class used? Is the logic of H the
same as the logic of S(⊤⊥) or the logic of the full substitution class?
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The first question may be answered negatively. In particular, the Grzegorczyk axiom Grz
above is valid with respect to the class of H-valuations but is not a theorem of S4M.20

Proposition 19. Grz is valid with respect to H-valuations.

Proof. Let v be an arbitrary H-valuation and A an arbitrary formula. We suppose that
v(A) = 0 and then show that v(2(2(A → 2A) → A)) = 0. Our goal is thus to find a
substitution i such that v(iA) = 0 and v(2(iA → 2iA)) = 1.

Without loss of generality, we may restrict our attention to substitutions that map
sentence letters not appearing in A to ⊤. Partially order these remaining substitutions as
follows: i ≤ j when there exists a k such that j = k ◦ i (or, equivalently, for all n, j(pn) = ⊤
whenever i(pn) = ⊤ and j(pn) = ⊥ whenever i(pn) = ⊥).

Because there are only finitely many letters in A, there are only finitely many substi-
tutions in this ordering. Since v(A) = 0, there must be a maximal substitution, i, with
respect to this ordering such that v(iA) = 0. This means that v(iA) = 0 and that for any
j > i v(jA) = 1. We now show that v(2(iA → 2iA) = 1. For any j, either (a) j ◦ i = i, so
v(jiA) = 0 or else (b) j ◦ i > i, in which case v(2jiA) = 1, for v(kjiA) = 1 for any k ∈ H,
since i was the maximal substitution making A false and k ◦ j ◦ i ≥ j ◦ i > i. Either way,
v(jiA → 2jiA) = 1 and since j was arbitrary, v(2(iA → 2iA) = 1. This completes the
argument.

We can also use Grz to make progress with Humberstone’s second question regarding
S(⊤⊥). Recall that the difference between S(⊤⊥) and H is that while H substitutions
must map p to itself or to ⊤ or ⊥, an S(⊤⊥) substitution can map p to any other letter, in
addition to ⊤ and ⊥. We can now show:

Proposition 20. Grz ̸∈ L(S(⊤⊥)) and, specifically, Grz may be invalidated through the
instance A = p → 2p.

Proof. Let v be a S(⊤⊥)-valuation with a true and a false letter, p and q. We will show that
v(2(2(A → 2A) → A)) = 1 and v(A) = 0 when A = p → 2p. Let i be any substitution in
S(⊤⊥), and suppose v(i(p → 2p)) = 0. It straightforardly follows that ip cannot be ⊤ or
⊥, and so it must be some sentence letter r. Let j be a substitution such that jr = q, the
false sentence letter.

Then v(jiA) = v(q → 2q) = 1 since q is false, and v(ji2A) = v(2(q → 2q)) = 0 since
p → 2p is a substitution instance of q → 2q and is false. Thus v(jiA → 2jiA) = 0, and
so v(2(iA → 2iA)) = 0. So we have shown that, for an arbitrary substitution i ∈ S(⊤⊥),
when v(iA) = 0 then v(2(iA → 2iA)) = 0 and hence that v(2(2(A → 2A) → A)) = 1.
Finally, v(p → 2p) = 0 since p is true and 2p false in v.

We can extend the above line of argument to show that Grz is invalid with respect to
the class of all non-modal substitutions S(¬∧). In order to do this, we need to appeal to
the following fact about propositional logic:

Lemma 21. Suppose that A is a sentence of the propositional calculus that is neither
tautologous nor contradictory, and that B is any other sentence (possibly involving modal
operators). Then there exists a substitution i ∈ S(¬ ∧2) such that iA is equivalent to B.

20To see that Grz is not a theorem of S4M, consider the frame ({0, 1, 2}, {(0, 1), (1, 0), (0, 2), (1, 2)} ∪
{(w,w) | w = 0, 1, 2}) and the model over it in which p is true at 0 and 2, but not at 1. Since it is
transitive, reflexive and every world sees a terminal world, the theorems of S4M hold in this model, but
2(2(p → 2p) → p) holds at 1 while p does not.
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When B ∈ L(¬∧), this substitution will be S(¬∧). When B ∈ L(⊤⊥¬), there will
similarly exist a substitution i ∈ S(⊤⊥¬) such that iA is equivalent to B..

Proof. Let p1...pn be the sentence letters in A and consider the truth-value assignments to
p1...pn. Since A is neither tautologous nor contradictory, there are assignments v and v′

making A true and false respectively. Since v′ may be obtained from v by picking a letter pk
from p1...pn and flipping its truth value, and repeating this as many times as necessary, there
must exist some assignment u and letter pk such that u makes A true, but the assignment
that results from flipping the truth value of pk in u makes A false. We can then define the
desired substitution as follows:

ipm =


B if m = k and u(pk) = 1

¬B if m = k and u(pk) = 0

¬(p0 ∧ ¬p0) if m ̸= k and u(pk) = 1

p0 ∧ ¬p0 if m ̸= k and u(pk) = 0

Clearly i ∈ S(¬∧) when B ∈ L(¬∧)
For B ∈ L(⊤⊥¬) we may analogously obtain a substitution i ∈ S(⊤⊥¬) such that iA is

equivalent to B by replacing ¬(p0∧¬p0) with ⊤ and p0∧¬p0 with ⊥ in the above definition.

Proposition 22. Grz ̸∈ L(S(¬∧)) and Grz ̸∈ L(S(⊤⊥¬)).

Proof. The proof is completely parallel to the proof of proposition 20, except that when
we assume that i is a S(¬∧) or S(⊤⊥¬) substitution and that v(i(p → 2p)) = 0 we may
infer that i is neither tautologous nor contradictory and can apply lemma 21 to obtain the
relevant substitution j.

We end our discussion of these non-modal substitution classes by relating them to Kripke
semantics. For the substitution class H we will work with the class of partial function frames
(W,⊆) where:

W := X ⇀ {⊤,⊥} (the set of partial functions from a finite set X to a two valued
set).

We call the logic of these frames the logic of finite partial functions.
Recall that the Kripke frame (WH , RH) associated with H is defined by letting WH = H

and RH = {(i, j ◦ i) | i, j ∈ H}, and the valuation V on (WH , RH) associated with a H-
valuation v is defined by V (i, pk) = v(ipk)..

Proposition 23. For any finite set X there is a surjective p-morphism, f , from the Kripke
frame associated with H, (WH , RH), to the finite partial function frame (X ⇀ {⊤,⊥},⊆).

Moreover, for any H-valuation v and letters p1...pn where n = |X|, there exists a valu-
ation U for which the truth-values of p1...pn are preserved by f :

V (i, pk) = U(f(i), pk) for k = 1...n

here V is the valuation associated with v, defined by V (i, pk) = v(ipk).
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Proof. For convenience we will let X = {p1...pn}. Define a function f : H → ({p1...pn} ⇀
{⊤,⊥}) as follows:

f(i)(pk) =

{
undefined if ipk = pk

ipk otherwise

It remains to show that f satisfies the two conditions for being a p-morphism. To establish
the first condition we must show that f(i) ⊆ f(j ◦ i) for any i and j in H. If f(i)(pk) is
defined and = ⊤ then ipk = ⊤ and so jipk = ⊤, and thus f(j ◦ i)(pk) = ⊤. Similarly if
f(i)(pk) is defined and = ⊥ then f(j ◦ i)(pk) = ⊥, so f(i) ⊆ f(j ◦ i).

The second condition amounts to showing that, for any i ∈ H and w ∈ {p1...pn} ⇀
{⊤,⊥}, if f(i) ⊆ w then there exists a substitution j ∈ H such that f(j ◦ i) = w. j(pk) may
be defined as w(pk) if w(pk) is defined, and as pk otherwise.

Given a H-valuation v, we can now define a valuation U on ({p1...pk} ⇀ {⊤,⊥}):

U(w, pk) =


v(pk) if w(pk) is undefined

1 if w(pk) = ⊤
0 if w(pk) = ⊥

To establish that it respects the letters p1...pn we must show that v(ipk) = V (f(i), pk) for
each k = 1, ..., n. If ipk = pk, then f(i)(pk) is undefined and so by the definition of V ,
V (f(i), pk) = v(pk). But since ipk = pk, V (f(i), pk) = v(ipk) as required. Otherwise ipk =
⊤ or ipk = ⊥. In the former case V (f(i), pk) = 1 by definition of V , and v(ipk) = v(⊤) = 1,
so they are identical as required. The latter case is proved in the same manner.

Theorem 24. L(H) is the logic of finite partial functions.

Proof. We shall show that a sentence is consistent with L(H) iff it is satisfiable in some
finite partial function frame.

If A is consistent with L(H) then for some (arbitrary) substitution instance A′ and some
H-valuation, v, v(A′) = 1. Let p1...pn be the letters in A′. It is immediate from proposition
23 that there is a valuation U over the partial function frame ({p1...pn} ⇀ {⊤,⊥},⊆) such
that U(f(ι), A′) = 1 and so A′ is satisfiable in a finite partial function frame. A thus must
be also consistent in the logical of partial function frames, for otherwise its substitution
instances would be inconsistent too.

Now suppose that A is true at some world w in a partial function model (X ⇀ {⊤,⊥},⊆
, U): U(w,A) = 1. By proposition 23 there exists a surjective p-morphism from (WH , RH)
to (X ⇀ {⊤,⊥},⊆). Choose some substitution k ∈ H such that f(k) = w.

Here we follow the proof of proposition 12. Let v be anyH-valuation and V the associated
valuation on (WH , RH). We can construct a substitution, i (which need not necessarily
belong to H), such that for any j ∈ H, V (j, ipm) = U(f(j), pm). Then, because f is a p-
morphism, V (j, iB) = U(f(j), B) for any sentence B (see proposition 12). So in particular,
V (k, iA) = U(f(k), A) = U(w,A) = 1. Thus some substitution instance of A, namely kiA,
is true in a H-valuation, namely v, and thus A is consistent in L(H).

Here is how we find such a substitution i. For each w : X ⇀ {⊤,⊥} define a sentence

Cw :=
∧

w(pm)=⊤

2pm ∧
∧

w(pm)=⊥

2¬pm ∧
∧

pm ̸∈dom(w)

(3pm ∧3¬pm)
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where pm ranges over the letters p1...pn. Now consider the substitution:

ipm :=
∨

U(w,pm)=1

Cw

Observe firstly that Cw and C ′
w are inconsistent in the propositional calculus when w ̸= w′.

First we establish that for any j ∈ H, V (j, Cf(j)) = v(jCf(j)) = 1. There is a conjunct
of jCf(j) for each pm where m ∈ {1, ..., n}: we will show that each such conjunct is true.
If f(j)(pm) is undefined, then jpm = pm and the relevant conjunct 3jpm ∧3¬jpm is true
according to v. If f(j)(pm) = ⊤ or ⊥ then jpm = ⊤ or ⊥, respectively, and the relevant
conjunct, 2jpm or 2¬jpm respectively, is true according to v.

Now V (j, ipm) = 1 iff v(jipm) = v(j
∨

U(w,pm)=1 Cw) = 1 iff for some w such that

U(w, pm) = 1, v(jCw) = 1. v(jCf(j) = 1 and the Cs are pairwise incompatible, w = f(j).
So the last statement holds iff U(f(j, pm) = 1 as required.

Next we turn to the logic of the non-modal substitution class. Let C denote the set of
substitutions of letters for arbitrary non-modal sentences (i.e. S(¬∧)). Consider the class
of frames FX = (W,≤), where X is a finite set and:

W := {(P, a) | P ⊆ {0, 1}X , a ∈ P}

(P, a) ≤ (Q, b) iff P ⊇ Q.

The logic of the substitution class C may similarly be related to the logic of this class of
frames.

Proposition 25. For any finite set X there is a surjective p-morphism, f , from the Kripke
frame associated with C, (WC , RC), to the frame FX .

Moreover, for any C-valuation v and letters p1...pn where n = |X|, there exists a valua-
tion U for which the truth-values of p1...pn are preserved by f :

V (i, pk) = U(f(i), pk) for k = 1...n

Proof. Let v be any C-valuation. Without loss of generality we will suppose that X =
{p1...pn}. Given a finite set of letters, Z, and a ∈ 2Z , let Ba be the formula

∧
a(pm)=1 pm ∧∧

a(pm)=0 ¬pm.

Define a function f : C → {(P, a) | P ⊆ 2X , a ∈ P} as follows:

f(i) = ({a ∈ 2X | v(3iBa) = 1}, v ◦ i ↾ X)

It remains to show that f satisfies the two conditions for being a p-morphism. To
establish the first condition we must show that f(i) ≤ f(j ◦ i) for any i and j in C. Suppose
a belongs to the first component of f(j ◦ i), so that v(3jiBa) = 1. So for some k ∈ C,
v(kjiBa) = 1. k◦j ∈ C, so v(3iBa) = 1, which means that a belongs to the first component
of f(i). Since a was arbitrary, we have shown that f(i) ≤ f(j ◦ i).

Now suppose that f(i) ≤ (Q, e), where f(i) = (P, d). We wish to find a substitution j
such that f(j ◦ i) = (Q, b). Let q1...qr be the letters appearing in ip1...ipn, and call members
of 2{q1...qr} truth-value assignments to q1...qr. Given a ∈ 2{q1...qr} and a propositional
formula A in the letters q1...qr we write a(A) for As truth-value under the assignment
a. Let a ◦ i : {p1...pn} → {0, 1} be the function pm 7→ a(ipm), and let Y be the set
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{a ∈ 2{q1...qr} | a ◦ i ∈ Q}. (Note that every element of P is of the form a ◦ i for some
a ∈ X.) For any a ∈ 2{q1...qr} there is a corresponding ⊤⊥ substitution, ka, defined
on {q1...qr} defined by ka(qm) = ⊤ if a(qm) = 1 and ka(qm) = ⊥ otherwise. For any
propositional formula A in the letters q1...qr it is clear that v(kaA) = a(A).

Given a surjection σ : 2{q1...qr} → Y , we can define a substitution on q1...qr (as in lemma
10):

j(qm) =
∨

σ(a)(qm)=1

Ba

where a ranges over members of 2{q1...qr}. Notice that σ(a)(pm) = 1 iff Ba is a disjunct of
j(qm), iff a(jqm) = 1, iff v(kajqm) = 1. So we have σ(a)(qm) = a(jqm) = v(kajqm), for any
a ∈ 2{q1...qr} and m ∈ {1, ..., r}, and so for any propositional formula A in letters q1...qr:

σ(a)(A) = a(jA) = v(kajA)

Since iBc is a propositional formula, we get thatσ(a)(iBc) = a(jiBc) = v(kajiB
c).

We firstly show that {a | v(3jiBa) = 1} = Q. If c ∈ Q then c = b ◦ i for some b ∈ Y and
so there exists an a such that σ(a) = b since σ is surjective. So v(kajiB

c) = σ(a)(iBc) =
b(iBc) = c(Bc) = 1. So for any c ∈ Q, v(3jiBc) = 1, and thus Q ⊆ {c ∈ 2X | v(3jiBc) =
1}. Conversely, if v(3jiBc) = 1 then for some substitution k, v(kjiBc) = 1. Indeed, since
jiBc is a propositional formula, we may assume without loss of generality that k is a ⊤⊥-
substitution, ka for some a ∈ X. So 1 = v(kajiB

c) = σ(a)(iBc) = (σ(a) ◦ i)(Bc), and since
σ(a) ∈ Y , σ(a) ◦ i ∈ Q. But (σ(a) ◦ i)(Bc) = 1 iff σ(a) ◦ i = c, c ∈ Q.

We would further like v(jiBe) = 1, so that f(j ◦ i) = (Q, e) as required of a p-morphism.
Since e ∈ Q, we know there exists a substitution k such that v(kjiBe) = 1. Moreover,
since jiBe is a propositional formula, any substitution k′ such that v(kqm) = v(k′qm) will
also be such that v(k′jiBe) = 1. So we may assume without loss of generality that k is a
substitution that maps qm to itself or ¬qm for m = 1...r. We claim that k ◦ j is the required
substitution. By construction, v(kjiBe) = 1, but also, since we have replaced literals for
literals, {a | v(3kjiBa) = 1} = {a | v(3jiBa) = 1} = Q.

Now define a valuation U on FX . For m = 1...n:

U((P, d), pm) = d(pm)

U may be set arbitrarily on the remaining letters. It is immediate f preserves the truth-
values of p1...pn: f(i) = (P, v ◦ i) for some P , so V (i, pm) = v(ipm) = v ◦ i(pm) = U((P, v ◦
i), pm).

Theorem 26. L(C) is the logic of the frames FX for finite sets X.

Proof. We shall show that a sentence is consistent with L(C) iff it is satisfiable in some
frame FX .

If A is consistent with L(C) then for some (arbitrary) substitution instance A′ and some
C-valuation, v, v(A′) = 1. Let X = {p1...pn} be the set of letters in A′. It is immediate
from proposition 25 that there is a valuation U over the frame FX such that U(f(ι), A′) = 1
and so A′ is satisfiable in FX . A must be also consistent in the logical of partial function
frames, for otherwise its substitution instances would be inconsistent too.

Now suppose that A is true at some world (P, d) in a model (FX , U): U((P, d), A) = 1.
By proposition 25 there exists a surjective p-morphism from (WC , RC) to FX . Choose some
substitution k ∈ C such that f(k) = (P, d).
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Here we follow the proof of proposition 12. Let v be any C-valuation and V the associated
valuation on (WC , RC). We can construct a substitution, i (which need not necessarily
belong to C), such that for any j ∈ H, V (j, ipm) = U(f(j), pm). Then, because f is a
p-morphism, V (j, iB) = U(f(j), B) for any sentence B in letters p1...pn. So in particular,
V (k, iA) = U(f(k), A) = U((P, d), A) = 1. Thus some substitution instance of A, namely
kiA, is true in a C-valuation, namely v, and thus A is consistent in L(C).

For each world (P, d) of FX define a sentence:

CP,d :=
∧
a∈P

3Ba ∧
∧

a∈2X\P

¬3Ba ∧Bd

Where, as before, Ba =
∧

a(pm)=1 pm ∧
∧

a(pm)=0 ¬pm and m ranges from 1 to n. Now
consider the substitution:

ipm :=
∨

U((P,d),pm)=1

CP,d

Observe firstly that CP,d and CP ′,d′ are inconsistent in the propositional calculus when
(P, d) ̸= (P ′, d′).

First it can be shown that for any j ∈ C, V (j, Cf(j)) = v(jCf(j)) = 1. In fact, this is
trivial from the definition of f : the conjuncts of the form 3jBa in Cf(j) are defined as those
where v(3jBa) = 1, the conjuncts of the form ¬3jBa in Cf(j) are defined as those where
v(3jBa) ̸= 1, and the final conjunct is Bv◦j and v ◦ j(Bv◦j) = 1 (since a(Ba) = 1 for any
a ∈ 2X).

Now V (j, ipm) = 1 iff v(jipm) = v(j
∨

U((P,d),pm)=1 CP,d) = 1 iff for some (P, d) such that

U((P, d), pm) = 1, v(jCP,d) = 1. v(jCf(j) = 1 and since the Cs are pairwise incompatible,
(P, d) = f(j). So the last statement holds iff U(f(j), pm) = 1 as required.

The final non-modal substitution class we will consider is K. In section 3.2 we showed
that the pre-validities of K were identical to the C-valid sentences — the sentences valid
according to Carnap’s interpretation of propositional modal logic. In Thomason (1973)
an axiom system extending S5 is presented, and it is shown to be complete with respect
to the C-valid sentences. It consists of the result of closing all instances of the following
axioms under modus ponens and the rule of necessitation (but not the rule of uniform
substitution):21

PC Any instance of a propositional tautology.

K 2(A → B) → 2A → 2B

T 2A → A

5 ¬2A → 2¬2A

Log ¬2A when A is a propositional formula that is not tautologous.

It follows from proposition 17 and Thomason’s completeness result that this system com-
pletely axiomatizes the pre-validities of K.

21This system is closely related to S13 from Cocchiarella (1974), the main difference being that Coc-
chiarella’s system doesn’t have a primitive notion of negation.
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What of the validities of the substitution class K, L(K)? In light of the fact that C-
validity is not closed under the rule of substitution, Cresswell (2013) has proposed that we
treat a sentence as valid according to the Carnapian interpretation of 2 only if all of its
substitution instances are C-valid. Thus Cresswell’s proposed notion of validity stands to
Carnap’s as the present notion of validity with respect to a substitution class stands to pre-
validity (as in definitions 2 and 3). Cresswell proves that the validities of Carnap’s theory
are exactly the theorems of S5. Thus we have

Corollary 27. L(K) = S5

Proof. From proposition 17 and theorem 3.3 of Cresswell (2013).

4.2 The logic of the full substitution class

Section 2.1 established the existence of a valuation for the full substitution class S(¬ ∧2),
and so we know that the logic of this class is non-trivial. While we do not know what the
logic of the full substitution class is, we will show in this section that, given a variant of
Friedman’s conjecture (conjecture 4 above), it is exactlyMed, and that even if this conjecture
is false, the logic of the full substitution class contains Sub, a distinctive principle belonging
to Med.

The uniqueness conjecture tells us that for any S(¬ ∧ 2)-valuation v, v(2A) = 1 iff
A ∈ Med. We may now see how this conjecture settles the logic of the full substitution
class:

Proposition 28. Given the uniqueness conjecture, L(S(¬ ∧2)) = Med.

Proof. Suppose A ∈ Med. So for any S(¬ ∧ 2)-valuation v, v(2A) = 1 by the conjecture
and theorem 9. So v(iA) = 1 for every substitution i ∈ S(¬ ∧ 2). Since v was arbitrary,
A is valid. Conversely, suppose that A is valid, so that v(iA) = 1 for every substitution
i ∈ S(¬ ∧ 2) and S(¬ ∧ 2)-valuation v. By theorem 9 we know there is at least one such
v, and by the condition for necessity, we know v(2A) = 1. Moreover, according to the
valuation constructed in theorem 9 v(2A) = 1 only if A ∈ Med.

Note that we only appealed to the conjecture in proving one of the two directions,
allowing us to establish the following without assuming the conjecture.

Proposition 29. S4M ⊆ L(S(¬ ∨2)) ⊆ Med

This rules out some extensions of S4M, but obviously leaves open any modal logic be-
tween S4M and Med.

One distinctive feature of Med is that it contains something we will call the “subset prin-
ciple”. To state this principle we will begin by describing some formulas DY for Y ∈ P 0(X)
that characterize the worlds of certain sorts of Medvedev models of the form (P 0(X),⊇, V ).
Write Z ⊆0 Y (Z ⊂0 Y ) to mean that Z is a non-empty (proper) subset of Y . To each set,
X = {1, ..., n}, associate in some canonical way a propositional partition A1...An. For non-
empty Y ⊆ X, we will define a formula DX

Y (or simply DY when X is clear from context).
When |Y | = 1:

D{m} = 32Am ∧
∧

k ̸=m ¬32Ak

When DZ is defined for |Z| ≤ k and |Y | = k + 1:
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DY =
∧

Z⊂0Y 3DZ ∧2(
∧

Z⊂0Y 3DZ ∨
∨

Z⊂0Y DZ).

The subset principle is then:22

Sub
∨

Y ∈P 0(X) DY

Observe that Sub implies the formula 2(
∧

Z⊂0Y 3DZ ∨
∨

Z⊂0Y DZ) for each non-empty
Y ⊆ X, and indeed, these formulas provide an equivalent formulation of Sub.

Proposition 30. Every instance of Sub is in Med

Proof. Consider a Medvedev model (P 0(Y ),⊇, V ), and for each w ∈ P 0(Y ) let f(w) = {k ∈
X | w ⊩ 32Ak} for X = {1, 2, ..., n}.

Claim: w ⊩ Df(w)

The proof is by induction on the cardinality of f(w). If |f(w)| = 1 then f(w) = {m} for
some m ∈ X, so w ⊩ 32Am and w ⊩ ¬32Ak for m ̸= k. That is, w ⊩ D{m}.

Suppose the claim is true when |f(w)| ≤ k. We must now show:

1. w ⊩ 3DZ for each Z ⊂ f(w)

2. w ⊩ 2(
∧

Z⊂0f(w) 3DZ ∨
∨

Z⊂0f(w) DZ)

For 1, note that for any Z ⊂0 f(w), w sees at least a world v such that f(v) = Z, namely
{a ∈ w | ∃k ∈ Z, {a} ⊩ Ak}. By the inductive hypothesis v ⊩ Df(v) where f(v) = Z, and
so w ⊩ 3DZ .

For 2, suppose that w ⊇ v. If f(v) = f(w) then w ⊩
∧

Z⊂0f(w) 3DZ by the previous

argument. Otherwise f(v) ⊂ f(w), and by the inductive hypothesis v ⊩ Df(v), and so
v ⊩

∨
Z⊂0f(w) DZ .

Note that f is a p-morphism from the present Medvedev frame on P 0(Y ) to the frame
on P 0(X).

It may also be shown that all instances of Sub are valid for the full substitution class:

Proposition 31. Sub ∈ L(S(¬ ∧2))

Proof. Let X = {1, ..., n}, and let v be an arbitrary valuation of the full substitution class.
We will show that v(iDf(i)) = 1. It follows that v(i

∨
Y⊆X DY ) = 1 for every substitution

i, securing the validity of Sub.
Base: suppose |f(i)| = 1. So f(i) = {m}, which means that v(32iAm) = 1 and

v(32iAr) = 0 for r ̸= m.
Inductive Step: suppose the inductive hypothesis holds when |f(i)| ≤ m, and suppose

that |f(i)| = m+ 1.
We must show

(i) v(3iDZ) = 1 for each Z ⊂ f(i) and

(ii) v(2(
∧

Z⊂f(i) 3iDZ ∨
∨

Z⊂f(i) iDZ)) = 1.

22It can be see to be a generalization of an axiom schema from Holliday (2017) and Hamkins et al. (2015),
where 1 < k ≤ m:

(
∧

i≤m 32Ai ∧ ¬3
∨

i ̸=j Ai ∧Aj) → 3(
∧

i≤k−1 32Ai ∧
∧

k≤j≤m ¬32Aj)

Our axiom is strictly stronger than this axiom in the presence of S4.
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For (i), we may appeal to lemma 10 to obtain a j such that f(j ◦ i) = Z. Since |f(j ◦ i)| ≤
n we may apply the inductive hypothesis and conclude v(jiDf(j◦i)) = 1, and thus that
v(3iDf(j◦i)) = 1 = v(3iDZ).

Now we show (ii). For any j, f(j ◦ i) ⊆ f(i). If f(j ◦ i) = f(i) then v(3jiDZ) = 1 for
each Z ⊂ f(i) = f(j ◦ i) by repeating the reasoning for part (i) (using j ◦ i instead of i). If
f(j ◦ i) ⊂ f(i) then v(jiDf(j◦i)) = 1 by the inductive hypothesis. So for any substitution j,
v(j(

∧
Z⊂f(i) 3iDZ ∨

∨
Z⊂f(i) iDZ)) = 1 and so v(2(

∧
Z⊂f(i) 3iDZ ∨

∨
Z⊂f(i) iDZ)) = 1.

Thus we have a tight bound on the logic of the full substitution class:

S4MSub ⊆ L(S(¬ ∧2)) ⊆ Med.

There are, however, further valid principles of Med that we have not been able to verify
to be valid for the full substitution class. One is:

(A1) DY → 3(DY ∧
∧

Z⊆0Y

∨
k 2(DZ → Ak))

where A1...Ar is an arbitrary partition of propositional formulas.
(A1) may be seen to be valid as follows. Let (P 0(Y ),⊇, V ) be a model over a Medvedev

frame. Suppose DZ is true at w, where Z ⊆ X = {1, ..., n}. The formulas A1...An partition
the terminal worlds {{m} | m ∈ w} according to which Ak they make true. For each formula
Ak of A1...An such that w ⊩ 32Ak, pick a single representative mk ∈ w, such that {mk} ⊩
Ak. It is clear that w sees {m1...mn}, and that for any Z ⊆ {1, ..., n}, DZ is true only at the
corresponding subset of {m1, ...,mn}: {mk | k ∈ Z}. Because each DZ is true in exactly one
world seen by {m1, ...,mn}, it follows that {m1, ...,mn} ⊩ DY ∧2

∧
Z⊆0Y

∨
k 2(DZ → Bk).

Another is a rule under which Med is closed:

(R1) If ⊢ (DX
X ∧

∧
Z⊆0X

∨
k 2(D

X
Z → Sk)) → C for for every finite set X, then ⊢ C

Where Sk range over all possible consistent conjunctions of literals in the letters appearing
in C and DX . Indeed, it may be shown, without too much difficulty, that Med is the smallest
modal logic containing S4, Sub and closed under (R1). Thus if we could show that ∆v is
closed under (R1) whenever v is a valuation of the full substitution class, the uniqueness
conjecture would be solved.

We may also use the fact that Sub belongs to the logic of the full substitution class
to fully resolve Humberstone’s second question: the logic of the full substitution class is
different from the logic of H.

Proposition 32. L(H) does not contain all instances of Sub.

Proof. Let A1...A4 be the four way partition of propositional formulas: p1 ∧ p2, p1 ∧ ¬p2,
¬p1 ∧ p2, and ¬p1 ∧ ¬p2.

In any H-valuation, it is easy to see that p1 ∧ p2, p1 ∧ ¬p2, ¬p1 ∧ p2, and ¬p1 ∧ ¬p2 are
all possibly necessary by considering the four possible ways of substituting ⊤ and ⊥ for p1
and p2. Thus v(DY ) = 0 for any proper subset Y of {1, 2, 3, 4} and valuation v. So if Sub
were valid, then v(D{1,2,3,4}) = 1; and so, in particular, v(3D{1,4}) = 1 by the definition of
D{1,2,3,4}.

But 3D{1,4} implies 32(p1 ∧ p2) and 32(¬p1 ∧ ¬p2), and also ¬32(p1 ∧ ¬p2) and
¬32(¬p1∧p2). Yet any H substitution according to which p1∧p2 is possibly necessary and
¬p1 ∧ ¬p2 is possibly necessary, p1 and p2 must be mapped to themselves, and not to ⊤ or
⊥, since it must remain possible to change the truth values of both p1 and p2. But relative
to any substitution in which p1 and p2 are mapped to themselves, ¬p1 ∧ p2 and p1 ∧ ¬p2
must also be possibly necessary, since p1 and p2 may be replaced with ⊤ or ⊥ at will.
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We end this section with a weaker conjecture. It’s interesting to note that in the S(¬ ∧
2)-valuations that we constructed by setting v(2A) = 1 iff A ∈ Med, every possibility
is witnessed by a substitution of sentence letters with sentences of modal degree 2 (the
sentences Di

p) — for short, a substitution of modal degree 2. So if v is such a valuation,
and if v(3A) = 1 then there is some substitution i of modal degree 2 such that v(iA) = 1.
(Note that the substitutions of modal degree 2 do not themselves form a substitution class,
since they are not closed under composition, despite the fact that they are well-behaved in
this context.) This suggests the following more general claim:

Conjecture 33. If v is a S(¬ ∧ 2)-valuation and v(3A) = 1, then v(iA) = 1 for some
substitution of modal degree 2.

Given the above observation, this claim clearly follows from conjecture 4, but is a question
that might be more easily tackled directly.

5 Other Theories of Logical Necessity

In the introduction we considered a couple of alternatives to McKinsey’s constraint. The
first replaces the substitutional analysis of logical truth with an arbitrary logic ∆. The
propositional analogue of logical truth, so conceived, is an interpretation of the modal
operator 2 under which a sentence 2A is true just in case A is a member of ∆. In the
second, we replaced the Bolzanoean substitutional analysis with a Tarski-style analysis
in a higher-order logic, in which a sentence A(c1...cn) is logically true just in case the
∀x1...xn.A(x1...xn) is true where c1...cn enumerate the non-logical constants appearing in
A.23 The corresponding constraint on logical necessity can then by stated by a single
biconditional:

2A(c1...cn) ↔ ∀x1...xn.A(x1...xn)

In this section we will investigate both of these options.

5.1 The Tarskian Constraint

According to the Tarskian analysis, one can express the logical truth of a sentence of a
propositional modal logic, such as 2p → p, with a single sentence of propositionally quan-
tified modal logic, in this case ∀X(2X → X). More generally, the logical truth of a closed
sentence A(p1...pn) in sentential constants p1...pn should be equivalent to the truth of the
quantified sentence ∀X1...Xn.A(X1...Xn); and so one might articulate the idea that a propo-
sitional operator expresses the worldly analogue of logical truth under this conception by
means of the following schema:

2A(p1...pn) ↔ ∀X1...Xn.A(X1...Xn)

This is clearly a restriction of what we earlier called the Tarskian Constraint to a sublanguage
of higher-order logic.

We will find it helpful to consider the dualized form of this schema:

3A(p1...pn) ↔ ∃X1...Xn.A(X1...Xn)

23Tarski’s theory of logical truth was originally formulated in a higher-order logic, as opposed to the set-
theoretic model theory it has come to be associated with. See also the notion of ‘Metaphysical Universality’
from Williamson (2013).
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employing standard definitions for ∃ and 3.
This schema may be regarded as expressing a principle of recombinatorialism with re-

spect to the atomic propositions, a position once popular among the early logical atomists.
For let us suppose that the sentential constants p1, ..., pn of the language express atomic
propositions. Since A(X1...Xn) contains propositional variables, not sentential constants,
it expresses a relation among propositions defined in purely logical terms. So the right-to-
left direction of the equivalence says that the particular atomic propositions p1, ..., pn can
instantiate any logical pattern that is in fact instantiated by some propositions, and the
left-to-right direction tells us that these exhaust the logical patterns that the atomic propo-
sitions can instantiate. For instance, since there are truths and falsehoods, two instances of
the schema (3p0 ↔ ∃X.X and 3¬p0 ↔ ∃X.¬X) tell us that every atomic proposition must
be contingent. Similarly, since there are logically necessary propositions and logically false
propositions, we may infer that every atomic proposition is possibly necessary and possibly
necessarily false: 32p0 and 32¬p0.24 It is also worth noting that for this very reason we
should not expect the schema itself to be necessary: we have already established that it is
possible that p0 is necessary, and also that certain instances of the schema imply that p0 is
contingent and so if all instances of the schema were necessary it would be possible for p0
to be both necessary and contingent.

Here we show that there are indeed interpretations of propositionally quantified modal
logic under which the schema is true. In the rest of this section we let L refer to the
language of propositionally quantified modal logic, with the logical constants ¬,∧,∀, 2 and
with infinitely many sentence letters. This language augments the language of propositional
modal logic with an infinite set of variables that may occupy sentence position, X1, X2, ...,
and a quantifier ∀ that can bind sentence variables. In addition to the usual syntactic
clauses for propositional modal logic we also stipulate that sentence variables are formulas,
and that ∀Xk.A is a formula whenever A is.

We will consider the “full” Kripke models for this language in which the propositional
quantifiers range over all sets of worlds (see Fine (1970)). Given an ordinary Kripke model
for propositional modal logic, (W,R, V ), we interpret an arbitrary formula of propositionally
quantified modal logic as follows. Let g and g′ range over variable assignments mapping
each propositional variable Xk to a subset of W :

� V g(w, pk) = V (w, pk)

� V g(w,Xk) = 1 iff w ∈ g(Xk)

� V g(w,A ∧B) = min(V g(w,A), V g(w,B))

� V g(w,¬A) = 1− V g(w,A)

� V g(w,2A) = 1 iff V g(w′, A) = 1 for every w′ such that Rww′.

� V g(w,∀XkA) = 1 iff V g′
(w,A) = 1 for every g′ for which g and g′ agree on every

variable except possibly on Xk

24The existence of truths and falsehoods may be derived given the usual axioms for the propositional
quantifiers. E.g. existential generalization lets one move from ⊤ to ∃X.X and ¬⊥ to ∃X.¬X. The existence
of logically necessary propositions and logically false propositions can also be derived directly: 2∀X(X ∨
¬X) ↔ ∀X(X ∨ ¬X) is an instance of the schema (where n = 0), and since the usual quantificational
axioms secure ∀X(X ∨¬X), we may infer 2∀X(X ∨¬X) from which we may conclude ∃X2X by existential
generalization. The existence of logically false propositions follows by a similar argument.
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We may now construct a model of the Tarskian constraint.25

Theorem 34. There is a model of the Tarskian constraint.

Proof. Consider the Kripke frame:

� W := N<ω (finite sequences of naturals)

� Rww′ iff w is a (proper or improper) initial segment of w′.

The frame can be visualised as an infinitary tree, that has the empty sequence as its root,
and that branches infinitely many times at each node. Enumerate the sentences satisfiable
at the root of this frame – A1, A2, A3.... For each n, let (W,R, Vn) be a Kripke model over
this frame in which An is true at the root. We paste these models together to make a single
model over (W,R) as follows:

� V ((), pi) may be set arbitrarily

� V ((n1, ..., nk), pi) = Vn1
((n2, ..., nk), pi) when k ≥ 1

It is clear by construction that An is true at the world (n), and thus 3An is true at the root
world () for every n. Let F ↑ w be the subframe of F generated by w. Then it is also clear
that (W,R) ↑ w is isomorphic to (W,R) for any world w ∈ W .

Now if ∀X1...Xn.A(X1...Xn) is true at the root world () then A is valid over the frame
(W,R). But since for any world w ∈ W , the generated frame (W,R) ↑ w is isomorphic to
(W,R), it follows that A is valid over the frame (W,R) ↑ w, and so true at the submodel
of (W,R, V ) generated by w. This means that A is true at w in (W,R, V ), and since
w was arbitrary, 2A is true at the base world (). Conversely, if 2A is true at (), then
A must be true at (n) for each n ∈ N, and thus ¬A is not satisfiable in (W,R). So
∀X1...Xn.A[X1/p1...Xn/pn]) is true at ().

We end with a conjecture that we have not been able to verify:

Conjecture 35. There exists a model of the Tarskian constraint in L in which the propo-
sitional quantifiers are interpreted substitutionally.

We make the conjecture precise as follows: there exists a valuation v : L → {0, 1} such
that (i) v(¬A) = 1−v(A), (ii) v(A∧B) = min(v(A), v(B)), (iii) v(∀p.A) = 1 iff v(A[B/p]) =
1 for every closed sentence B of L and (iv) v(2A(p1...pn) ↔ ∀X1...Xn.A(X1...Xn)) = 1 for
every sentence A in the letters p1, ..., pn.

Given the substitutional interpretation of the quantifiers, the McKinseyan and Tarskian
requirements coincide: it is easily verified that the conjecture is true if and only if there
exists a valuation v : L → {0, 1} satisfying (i)-(iii) that additionally satisfies McKinsey’s
requirement for the full substitution class of this language: v(2A) = 1 iff v(iA) = 1 for every
substitution imapping sentence letters to arbitrary closed sentences of L. The substitutional
intepretation of the quantifiers corresponds in a natural way to the idea found in early
Wittgenstein and Russell that every proposition may ultimately be analyzed in terms of the
logically atomic propositions and logical operations.

25This sort of construction can be generalized to all of higher-order logic — for details see the appendix of
Bacon (2020). As opposed to here, the construction there is presented in terms of ‘metaphysical substitutions’
(see Bacon (2019) and also Fine (1977)) as opposed to Kripke models.
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5.2 The Metalogical Constraint

We observed previously that in the valuation constructed in theorem 9, v(2A) = 1 if and
only if A was a member of a certain modal logic, Med. Let ∆v = {A | v(2A) = 1}. Then
we have the following general result:

Proposition 36. If v is a S(¬ ∧2)-valuation then ∆v is a modal logic extending S4M.

Proof. Propositions 14 and 15 already establish that whenever A is an instance of K, T, 4
or M then A is valid in v, i.e. v(iA) = 1 for every substitution i ∈ S(¬ ∧ 2) and, since v
is a S(¬ ∧ 2)-valuation, it follows that v(2A) = 1, and so A ∈ ∆v. Since every instance
of 4 is true in v, ∆v is closed under the rule of necessitation. Finally, ∆v is closed under
the rule of substitution since if v(2A) = 1, then v(22A) = 1, and so v(2iA) = 1 for any
substitution i ∈ S(¬ ∧2).

Note that for an arbitrary substitution class, S, and S-valuation v, ∆v will contain all
instances of K, T, 4 and will be closed under the rule of necessitation. However, it may not
be a modal logic because it may not be closed under the rule of substitution, but will only
be guaranteed to be closed under substitutions in S.

It follows that the interpretation of 2 in a S(¬∧2)-valuation will satisfy an instance of
the Meta-Logical Constraint considered in the introduction, according to which the inter-
pretation of logical necessity is identified with a fixed modal logic ∆. We make this precise
as follows:

Definition 9 (Meta-valuations). Let ∆ be a normal modal logic. A function v : L(¬∧2) →
{0, 1} is a ∆-valuation if and only if

� v(A ∧B) = min(v(A), v(B))

� v(¬A) = 1− v(A)

� v(2A) = 1 iff A ∈ ∆

As with the substitutional constraint, it is easily checked that whenever ∆ is a consistent
normal modal logic, then 4 must be true in a ∆-valuation, and moreover, the left-to-right
direction of McKinsey’s constraint is satisfied.

Any modal logic may, of course, be plugged into this definition. But if ∆ is supposed
to represent the logical truths and v a possible interpretation of 2 as logical truth, then
we would like the truths under the interpretation to include the logical truths: v(A) = 1
whenever A ∈ ∆. Following Meyer (1971) we say:

Definition 10. A modal logic ∆ is coherent iff for every A ∈ ∆ and ∆-valuation v, v(A) =
1.

Intuitively, a modal logic is coherent when it accommodates an interpretation of 2 with
its own logic. Not every modal logic is coherent. Indeed, we can see that coherent modal
logics cannot contain the B axiom (much as McKinsey’s constraint rules out the Brouwerian
axiom, except in degenerate cases). For suppose, for reductio, that ∆ is a consistent modal
logic and that v is a ∆-valuation in which every instance of B holds. For a sentence letter,
p, v(p) = 1 or v(¬p) = 1, so that either v(23p) = 1 or v(23¬p) = 1. If the former, then
3p ∈ ∆, and since ∆ is closed under the rule of substitution, 3⊥ ∈ ∆, contradicting the
assumption that ∆ is a consistent modal logic. In the latter, we may similarly conclude
3¬⊤ ∈ ∆.
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Coherence is closely related to the disjunction property. In fact, it can be shown to be
equivalent to an extended version of the disjunction property, which is satisfied by a normal
modal logic ∆ when the following holds for any sentences A1...An and any non-modal
sentence A0:

If A0 ∨2A1 ∨ ... ∨2An ∈ ∆ then Ak ∈ ∆ for some k with 0 ≤ k ≤ n.

We do not know of any normal modal logics possessing the disjunction property but not
this extended version; we leave it as an open question whether it is indeed stronger.

Proposition 37. A normal modal logic is coherent iff it has the extended disjunction prop-
erty.

Proof. Let ∆ be a normal modal logic. Suppose that ∆ is coherent, and A0∨2A1∨...∨2An ∈
∆. Suppose that for each k with 1 ≤ k ≤ n, Ak ̸∈ ∆. It suffices to show that A0 ∈ ∆. From
our first supposition it follows that v(A0∨2A1∨ ...∨2An) = 1, for any given ∆-valuation v.
From our second supposition it follows that v(2A1) = ... = v(2An) = 0; and so v(A0) = 1.
Since v was arbitrary, A0 must be true in every ∆-valuation, and since A0 is a propositional
formula it must be a tautology.

Now suppose that ∆ has the extended disjunction property. We will show that if a
formula A is true in some ∆-valuation, v, then A is consistent with ∆, from which it follows
that ∆ is coherent. Suppose A is a truth functional combination of a formulas of the form
2B and propositional letters p1...pn. Let 2B1...2Bm be the true formulas of the form
2B, and 2C1...2Ck the false formulas of this form. Finally, let D be the conjunction∧

v(pi)=1 pi ∧
∧

v(pi)=0 ¬pi. Clearly v(D) = 1 so D is truth-functionally consistent. So
¬D ̸∈ ∆. By the definition of a ∆-valuation B1 ∈ ∆, ..., Bm ∈ ∆, and ¬C1 ̸∈ ∆, ...,¬Ck ̸∈ ∆.
Since ∆ has the extended disjunction property (¬D ∨ 2¬C1 ∨ ... ∨ 2¬Cn) ̸∈ ∆. So the set
{D,¬2¬C1, ...,¬2¬Cn,2B1, ...,2Bm} is consistent with ∆, and since this set entails A, A
too is consistent with ∆.

Remark 1. Fine MS has considered a wider class of metavaluations obtained by relaxing
the requirement that ∆ be closed under the rule of substitution and/or necessitation. With
the rule of substitution relaxed, we may find non-trivial valuations that validate B. (For
instance by letting ∆ be the set of C-validities; see section 3.2.)

If ∆ is not closed under rule of necessitation, the S4 axiom is no longer guaranteed to
hold. Urquhart (2010) investigates the result of letting ∆ be the set of substitutions instances
of tautologies, yielding an interpretation of logical necessity corresponding to tautologousness,
which does not satisfy S4.

Which normal modal logics are coherent? We may see immediately that if v is a valuation
of the full substitution class, then ∆v is a coherent modal logic.

Proposition 38. If v is a S(¬ ∧2)-valuation, ∆v is a coherent modal logic.

Proof. Let A ∈ ∆v and let u be any ∆v valuation. Since A ∈ ∆v, v(2A) = 1, and so v(iA) =
1 for every substitution i. We may construct a substitution j such that v(jA) = u(A) by
letting jpk be pk if v(pk) = u(pk) and be ¬pk otherwise (this is proved by induction). So
u(A) = v(jA) = 1, as required.

35



But many other modal logics are coherent. Here is a fairly general sufficient condition for
coherence. Recall that a pointed frame is a Kripke frame (W,R) equipped with a designated
world w0 ∈ W which bears the ancestral of R to every element of W . The logic of a class
of pointed frames is the set of sentences true at the designated world in any model over a
pointed frame. If ∆ is the logic of a class of Kripke frames C, in the ordinary sense, it is
also the logic of a class of pointed frames, {F ↑ w | F ∈ C, w a world in F}, writing F ↑ w
for the subframe of F generated by w, and w ↑ to be the set {v | Rwv} when R is the
accessibility relation of F .

Definition 11 (Disjoint p-morphic copies). A class C of pointed frames is closed under
disjoint p-morphic copies iff for any pointed frames F1, ...,Fn ∈ C, there is another pointed
frame F ∈ C, worlds w1...wn accessible to the designated world of F , and p-morphisms
fi : F ↑ wi → Fi for i = 1...n such that wi ↑ ∩wj ↑= ∅ when i ̸= j, and fi(wi) is the
designated world of Fi.

Example 6 (Coalesced sums). Given disjoint pointed Kripke frames F1...Fn, their coalesced
sum is the pointed Kripke frame F = (W,R,w0) where:

� W := W1 ∪ ... ∪Wn ∪ {w0}

� R := R1 ∪ ... ∪Rn ∪ {w0} ×W

The designated worlds wi ∈ Wi, and the identity mappings from F ↑ wi to Fi comprise the
relevant p-morphisms.

Note that many properties of the component frames are inherited by the coalesced sum.
For instance, if F1...Fn are some combination of the properties of being reflexive, serial or
transitive, then F is also that combination of reflexive, serial or transitive. So these classes
are all closed under taking disjoint p-morphic copies.

Example 7. The singleton class consisting of the frame (N<ω,≤) from theorem 34 —
finite sequences of naturals with the initial subsequence ordering — is closed under disjoint
p-morphic copies, since it is a countably infinite coalesced sum of isomorphic copies of itself.

Example 8 (The class of Medvedev frames). The class of Medvedev frames is closed under
disjoint p-morphic copies.

Suppose (P 0(Xi),⊇) for i = 1...n are Medvedev frames. We can suppose, without loss of
generality that Xi ∩ Yj = ∅ when i ̸= j. Then (P 0(X1 ∪ ... ∪Xn),⊇) is a Medvedev frame,
and the worlds X1, ..., Xn ∈ P (X1 ∪ ... ∪ Xn) with the evident identity mappings provide
p-morphisms into each component (P 0(Xi),⊇).

Example 9 (The class of finite partial function frames). The class of finite partial function
frames is closed under disjoint p-morphic copies.

Suppose (Xi ⇀ {⊤,⊥},⊆) are finite partial function frames for i = 1...n. We can
suppose, without loss of generality that Xi∩Yj = ∅ when i ̸= j, and that no Xi contains any
numbers. Then ((X1 ∪ ... ∪Xn ∪ {1, .., n}) ⇀ {⊤,⊥},⊆) is a finite partial function frame.
For each i = 1...n, let wi be any function that is defined everywhere except Xi, maps i to ⊤
and maps j to ⊥ for j ∈ 1, ..., n and j ̸= i. Due to the last condition, no partial function can
be above both wi and wj when i ̸= j. Moreover, the mapping w 7→ w ↾ Xi is a p-morphism
from the frame generated by wi to ((X1 ∪ ... ∪Xn ∪ {1, .., n}) ⇀ {⊤,⊥},⊆).

Proposition 39. If ∆ is characterized by a class of pointed frames that are closed under
disjoint p-morphic copies, then ∆ is coherent.
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Proof. Suppose ∆ the logic of a class of pointed frames C that is closed under disjoint p-
morphic copies, and suppose that there is some ∆ valuation u such that u(A) = 1. We will
show that A is true in some model over a frame in C. Suppose that 2B1, ...,2Bn are the
subformulas of A of the form 2B such that v(2B) = 0. So ¬B1...¬Bn are ∆-consistent
and thus true in models M1...Mn over frames F1...Fn ∈ C. We know there is a frame F
containing worlds w1...wn and p-morphisms fi : F ↑ wi → Fi. Let V be any valuation on F
such that whenever w is above wi, V (w, pk) = Vi(fi(w), pk), and V (w, pk) = u(pk) when w is
the designated world of F . We know these assignments cannot conflict, since wi ↑ ∩wj ↑= ∅
when i ̸= j. A is a truth-functional combination of sentence letters and formulas of the form
2B. We know that V (w, pk) = u(pk) for each sentence letter. If u(2B) = 1 then B ∈ ∆ so
V (w,2B) = 1 since F ∈ C. If u(2B) = 0, and 2B is subformula of A, then by construction,
w sees a world in which B is false, so V (w,2B) = 0. Thus V (w,A) = u(A), as required.

Appealing to examples 6, 8 and 9 we may immediately infer:

Corollary 40. K, KT, S4, KD, K4D are coherent.

Corollary 41. Medvedev logic and the logic of finite partial functions are coherent.

It also follows that the logic of the infinite tree (N<ω,≤) is coherent, but since this is
just S4 this observation is already implied by corollary 40.

Say that a coherent logic, ∆, ismaximal iff whenever ∆ ⊆ ∆′ and ∆′ is coherent, ∆ = ∆′.
A straightforward application of Zorn’s lemma establishes that there exist maximal coherent
logics. Here we show that Med is a maximal coherent logic using the formulas described in
section 2.1.26

Theorem 42. Med is a maximal coherent logic.

Proof. Suppose that ∆ is a coherent logic and Med ⊆ ∆. To show the logics are identical,
it suffices to show that anything consistent in Med is consistent in ∆.

Suppose that C(p1...pm), in letters p1...pm, is consistent in Med and true at the root
X of a Medvedev model (P 0(X),⊆, V ). Without loss of generality, we may suppose that
X = {1, ..., n}. Fix a propositional partition A1...An and define the formulas DY , for
Y ⊆0 X as in section 4.2.

Since Ak is a consistent propositional formula, it has a tautologous substitution instance,
A′

k. Thus 32A′
k ∈ KD ⊆ ∆. Since 32Ak has a substitution instance that is consistent

in ∆ it is itself consistent in ∆. Since ∆ has the disjunction property, it follows that
32A1 ∧ ... ∧ 32An must be consistent in ∆, for otherwise its negation, and thus the
disjunction 23¬A1 ∨ ... ∨23¬An would be in ∆ while none of its disjuncts are.

The formula 32A1 ∧ ... ∧32An → DX is a consequence of Sub and so belongs to Med
and thus also ∆. Since the antecedent is consistent in ∆, DX must be consistent as well.
So DX is true at the root of a transitive reflexive Kripke model (W,R,U) which verifies all
the theorems of ∆.

Since Sub ⊆ Med ⊆ ∆ it follows that for every w ∈ W , there is some Y ⊆0 X such that
U(w,DY ) = 1, and this Y is moreover unique because the DY are pairwise incompatible.

26This is closely related to the problem of finding maximal superintuitionistic logics with the disjunction
property. Indeed, the intuitionistic analogue of Med has this property, (see Maksimova (1986), Chagrov
(1992) and the references found therein). For a survey, including a discussion of the related properties for
modal systems, see Chagrov and Zakharyashchev (1991).
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In fact, it is easily seen that this Y is {k | U(w,32Ak) = 1}. Thus define a function
f : W → P 0(X) by setting f(w) = {k | U(w,32Ak) = 1}. This function is a p-morphism
from the frame (W,R) to (P 0(X),⊆). If Rxy then everything possible at y is possible at x
since R is transitive, so f(x) ⊆ f(y). If f(x) ⊆ Y , then, since U(x,Df(x)) = 1, Df(x) has
3DY as a conjunct, and so x sees a world y such that U(y,DY ) = 1, and so f(y) = Y .

For each letter pk we may define a formula Dpk
as

∨
V (Y,pk)=1 DY . It is clear by defi-

nition that U(w,Dpk
) = V (f(w), pk), and since f is a p-morphism, U(w,C(Dp1

...Dpm
)) =

V (f(w), C(p1...pm)). We know that DX is true at the root w0 of W , so f(w0) = X and
thus U(w0, C(Dp1

...Dpm
)) = V (X,C(p1...pm)) = 1. So C(p1...pm) has a ∆-consistent sub-

stitution instance, C(Dp1 ...Dpm), and so must itself be ∆-consistent.

6 The Substitutional Approach to Modal Predicate Logic

The present paper has focused on modal propositional logic. But it is natural also to
consider the application of the substitutional approach to modal predicate logic. This raises
some interesting questions, which provide a new slant on some familiar approaches to the
interpretation of modal predicate logic. We shall briefly discuss these questions although
they call for a far more detailed treatment.

The introduction of identity into the language brings to the forefront some difficulties for
the logical interpretation of 2 that are closely related to difficulties Quine raised for modal
logic more generally.27 Quine noted that certain notions, like analyticity and logical truth,
are not closed under the substitution of co-referential terms. For instance, ‘Hesperus’ is co-
referential with ‘Phosphorus’ yet, while ‘Hesperus is Hesperus’ is a logical truth, ‘Hesperus
is Phosphorus’ is not. This trio of claims is perfectly consistent with Leibniz’s law, for the
names ‘Hesperus’ and ‘Phosphorus’ do not actually appear in the latter two assertions, but
are mere lexicographic components of a quotation name for a sentence. But, for just this
reason, Quine argued that we cannot move up a grade of modal involvement and introduce a
sentence operator that stands to the world, so to speak, as analyticity or logical truth stands
to language. Now Kripke (1972) famously argued that we should distinguish analyticity,
logical truth, and the like from metaphysical necessity and that metaphysical necessity can
be expressed by a sentential operator for which it is necessary that Hesperus is identical
to Phosphorus. Indeed, the inconsistency of the corresponding trio of claims involving
metaphysical necessity may be interpreted as a demonstration of the necessity of identicals
from Leibniz’s law (Kripke (1971) p.163).

But these considerations take on a critical significance when our goal is to introduce a
notion of logical necessity that stands to reality as logical truth stands to language, for we
would then like the metalinguistic and metaphysical notions to line up. So how might it
be maintained to be logically necessary that Hesperus is Phosphorus? If one could speak
of the logical form of a proposition — construed as a composite of individuals, relations,
and so on, as opposed to sentences or Fregean thoughts — the proposition that Hesperus
is Phosphorus would involve the same object on either side of the identity relation and
so any proposition with the same logical form would be true. The enquoted sentence, by
contrast, does not involve the same name twice: the discrepancy arises because the structure
of the language used to express the propositions does not perfectly reflect the structure of
the underlying reality — we have two different names for the same object. We ensured

27See, for example, Reference and Modality in Quine (1953).
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that this problem wouldn’t arise when stating the substitutional, metalogical and Tarskian
constraints on logical necessity, when we insisted that we only accept the instances of these
schemas formulated in a logically perfect language in Russell’s sense; a language in which
non-logical constants do not denote logically complex properties and no two non-logical
constants co-denote. In this section we will show, among other things, how one might
extend our treatment of logical necessity to logically imperfect languages.

An interpretation for a first-order language (without modality) may be taken to consist
of a non-empty domain D of individuals and a function δ which assigns an individual from
D to each individual constant and a subset of Dn to each n-place non-logical predicate
letter. We shall assume, as usual, that = is assigned the identity relation on D. We shall,
for convenience, suppose that the models are full in the sense that for each individual d ∈ D
there is an individual constant a for which δ(a) = d — i.e. δ is surjective on individuals. An
interpreted first-order language is logically perfect (with respect to the individual constants)
when δ is injective.

The notion of a (concrete) substitution function and of its action on an arbitrary formula
is now more complicated than in the propositional case. We should allow each individual
constant to be replaced by another individual constant and we might also allow it to be
replaced by a complex term should these be taken to be part of the original language (either
through the use of a description operator or function letters). Similarly, we should allow
each non-logical predicate letter to be replaced by another non-logical predicate letter, and
we might also allow it to be replaced by any complex predicate expression. In order to
indicate how a complex predicate expression is to apply to its arguments, we might indicate
it by something like a λ-term λx1x2...xn.A and then, in making the substitution, we should
take care to avoid any unintended clash of variables (a similar problem will also arise for
complex individual terms should they be allowed to contain the description operator or other
variable-binding operators). This means that we no longer have a simple compositional rule
according to which for any substitution i:

i(Pt1t2 . . . tn) = iP (it1it2...itn)

since the result of substituting λx1x2...xnA(x1, x2, ..., xn), for example, for P will beA(t1, ..., tn)
rather than λx1x2...xnA(x1, x2, ..., xn)t1t2...tn. We could, on the other hand, already allow
complex predicate expressions to belong to the language and thereby avoid this difficulty,
although at the expense of complicating the syntax of the language.

We can now bring to bear our earlier remarks concerning a Russellian logically perfect
language. For the instances of McKinsey’s schema — that ‘2A’ is true iff every substitution
instance of A is true — will depend on the language in which it is formulated. But as we
have argued, in a logically imperfect language there may be instances of the schema that
are false. For consider a valuation v for which v(a = b) = 1 and v(a = c) = 0 (where a and
b are co-referential while a and c are not, as can happen in a logically imperfect language).
Now v(2(a = b)) = 1 only if v(i(a = b)) = 1 for any allowable substitution i. But consider
the substitution i of a for a and c for b. Then v(i(a = b)) = v(a = c) = 0; and so, if this
substitution is allowed, v(a = b → 2(a = b)) = 0. But this violates the Necessity of Identity.
It also leads to a violation of Leibniz’s law, which we have suggested should be valid for any
notion of propositional necessity. For substituting an arbitrary term for a in a = a yields a
truth. Hence v(2a = a) = 1 and v(a = b → 2a = a → 2a = b) = 0.

Of course, no ordinary language will be logically perfect. How then might we adopt a
substitutional interpretation of necessity for such a language and yet still save Leibniz’s law?
One possible line of solution, considered in Fine (2005), pp. 51-2, 109-10, is to introduce a
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notion of logical form of a sentence that takes into account the referents of the individuals
constants. Thus ‘Hesperus is Phosphorus’ will be taken to be of a different logical form
than ‘Hesperus is Mars’, since the former pair of terms are coreferential while the latter
pair are not; and on the resulting conception of logical truth, ‘Hesperus is Phosphorus’
will count as a logical truth. What this means is that in logically imperfect languages, we
should impose the constraint that substitutions preserve co-reference: if δ(a) = δ(b) then
δ(ia) = δ(ib).28 In a logically perfect language this constraint is vacuously satisfied, since
δ(a) = δ(b) only when a and b are the same term; and a requirement of this sort — in which
semantical elements are allowed to make a contribution to logical form — is quite different
from anything that arises in the propositional case.

Even with the assumption that we are working within a logically perfect language or
with the above constraint on substitutions, we may still generate counterexamples to the
necessity of distinctness:

a ̸= b → 2a ̸= b

For surely we can have two names for two different objects, a and b, whether our language
is logically perfect or not. So v(a ̸= b) = 1. Consider now the substitution i of a for a and
of a for b. Then v(i(a ̸= b)) = v(a ̸= a) = 0, and so v(2a ̸= b) = 0, assuming that i is
indeed an allowable substitution.

One option here is to embrace these failures of the necessity of distinctness.29 For
unlike contingently true identities, contingently true distinctness claims are consistent with
the usual logical axioms governing quantification and identity. It is only in the presence
of Brouwer’s principle, or one of its various weakenings, that the necessity of distinctness
becomes a theorem of quantified modal logic (Prior (1967) p146).30 Yet we have already
considered an argument of McKinsey in section 3.1 that Brouwer’s principle is not part
of the logic of logical necessity. Perhaps we should say the same about the necessity of
distinctness? (For there is, after all, a striking resemblance between McKinsey’s argument
and the above argument against the necessity of distinctness.)

We could, alternatively, ensure the necessity of distinctness by imposing additional con-
straints on substitutions. For just as we previously required that co-referential constants be
substituted for co-referential constants, we could now require that non-co-referential con-
stants be substituted for non-co-referential constants.31 For we might wish to insist, at least
in the case of the individual constants, that a substitution should preserve the exact logical
form of the original expression — distinctions of logical form within the original expression
should not be made to disappear. Thus, in the present case, a cannot be substituted for

28This corresponds to the requirement that the interpretation of identity should be persistent in a Kripke
model of quantified S4. More precisely, we may define a Kripke model (W,R, V ) just as in proposition
2 in which W is the set of substitutions, R = {(i, j ◦ i) | i, j ∈ W} and V (i, Ra1...an) = v(i(Ra1...an))
when R is any relation or predicate symbol (including identity). If V (i, a = b) = 1, then v(i(a = b)) = 1
so δ(ia) = δ(ib), and since all substitutions preserve co-reference, δ(jia) = δ(jib) for any j ∈ W . So
v(ji(a = b)) = V (j ◦ i, a = b) = 1, which means that identity is persistent.

29See Bacon (2020) (pp. 554-556).
30The proof in Prior (1967) is attributed to E.J. Lemmon. An earlier proof of the necessity of distinctness

within a the stronger background logic of S5 may be found in Prior (1955) p.206, concerning which Prior
writes ‘the obscurity of the issue does leave S5 under a measure of suspicion, and this must be set against
our earlier argument from simplicity in its favour’ (p.207). (The necessity of distinctness may also be derived
from various weakenings of Brouwer’s principle, such as A → 233A, or 2(A → 2A) → 3A → A. However,
in the present substitutional setting in which the principles of S4 are being granted, these variant principles
are not strict weakenings of Brouwer’s principle but equivalent to it.)

31This corresponds to the requirement that the interpretation of identity be anti-persistent in the Kripke
model associated with a valuation v, i.e. if j ◦ i ⊩ a = b then i ⊩ a = b. See footnote 28 above.
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both a and b since a = b and a = a are not of exactly the same logical form. And again,
this is a requirement that has no counterpart - or, at least, no useful counterpart - in the
propositional case.

We might wish to further restrict or modify the constraints on which substitutions on
individual constants should be allowed. Let IC the set of individual constants and PL the
set of predicate letters of the language in question. We may then represent a substitution
as a partial function from IC ∪ PL subject to the requirement that individual constants
go into individual terms and predicate letters go into predicate expressions. We may then
suppose that we are given an arbitrary set S of allowable substitutions subject only to the
requirement that the restriction of any substitution in S is also a substitution S. Since the
functions in S are now partial, the clause for 2A should be modified accordingly, so that
v(2A) = 1 iff v(iA) = 1 for all allowable substitutions i defined on A.

Further conditions of a general structural nature might then be imposed on S. It might be
required, for example, that each partial function in S should be extendible to a total function
or that the functions on individual constants and on predicate letters should be freely
combinable, so that if i and j are two partial functions in S then the partial function i ↿ IC∪
j ↿ PL should also be in S. But the former requirement might be questioned if it was thought
that the individuals designated by the constants in the range of a substitution function
should somehow be compossible; and even the latter requirement might be questioned if it
was thought that a predicate letter P could contain a “hidden” individual constant a, so
that a restriction on what could be substituted for a would result in a restriction on what
could be substituted for P .

Constraints of a more particular character might also be imposed on S. It might be sup-
posed, for example, that certain constants a (including the special constants that correspond
to an individual a) should be “rigid”, so that only a can be substituted for a. This would
provide us with another way of securing the validity of the principle a = b → 2(a = b) and
of the principle a ̸= b → 2a ̸= b in the case in which a and b are rigid constants, since the
allowable substitutions would leave them intact. It would also allow us, given that certain
non-logical predicates were allowed to be rigid, to sustain the truth of various substantive
essentialist claims. If, for example, ‘Felix’ was a rigid constant for a tiger and ‘tiger’ a
rigid predicate, then Felix would necessarily be a tiger (v(2Tiger(Felix)) = 1) while it
might well be false that Felix is necessarily in a zoo ((v(2Zoo(Felix)) = 0) given that the
predicate ‘Zoo’ is not rigid, since a predicate P for which P (Felix) is false might then be
substituted for ‘Zoo’. In this way, we could, to some extent, mimic an essential view of
individual objects within the substitutional framework.

We could, in a similar way, mimic Lewis’s counterpart theory. For when Lewis would
say that a′ is a counterpart of a, we might say that a′ can be substituted for a or when one
might say, more generally, that a′, b′, c′, ... are relational counterparts of a, b, c, ..., we might
say that a′, b′, c′, ... can be simultaneously substituted for a, b, c, ... . Our substitution-
theoretic clause for necessity would then correspond to his counterpart-theoretic clause.
We thereby obtain a highly non-realist version of counterpart theory, one that might be
especially suited to someone who wished to adopt a linguistic view of necessity. We should
also note that, just as we might wish the substituends for predicate letters with “hidden”
individual constants to vary with those for the individual constants, so one might wish the
counterparts for the non-qualitative properties expressed by predicate letters to vary with
those for the individuals designated by individual constants, even though this was no part
of Lewis’ original proposal.32

32Dorr (2005) discusses a related difficulty which arises when the language allows us to quantify over
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Quantifiers give rise to further issues. Within the present setting, it is natural to adopt
a substitutional interpretation of the quantifier. Thus we can either say:

v(∀xA(x)) = 1 iff v(A(t)) = 1 for all terms t

thereby obtaining something akin to a “conceptual” interpretation of the quantifier, or we
can say:

v(∀xA(x)) = 1 iff v(A(t)) = 1 for all rigid terms t,

thereby obtaining something akin to an “objectual” interpretation of the quantifiers. Let us
restrict our attention to the objectual interpretation although some related issues also arise
for the conceptual interpretation.

Then under the innocuous assumption that a rigid constant can always be substituted for
itself, we can establish the equivalence of ∀x2A(x) to 2∀xA(x) (v(∀x2A(x)) = v(2∀xA(x)
for any valuation v). How might this equivalence be avoided, i.e. how might we gain
the effect of a variable domain of quantification? One possibility is to suppose that our
quantifiers are restricted. Thus universal quantifications now take the form ∀x(A(x) : B(x))
(all A’s are B’s) and we set v(∀x(A(x) : B(x))) = 1 iff for every rigid term a either v(A(a)) =
0 or v(A(a)) = 1.

We now take the unrestricted quantification ∀xA(x) to be implicitly restricted to a
dummy domain predicate letter D. Thus ∀xA(x) is read as ∀x(Dx : B(x)). This will then
give us the effect of a variation in the domain, since different substitutions of a predicate
P for D will provide us with different range of rigid constants a for which v(Pa) = 1. The
equivalence of ∀x2A(x) to 2∀xA(x) will then fail in both directions. For ∀x2A(x) will be
read as ∀x(Dx → 2A(x)) while 2∀xA(x) will be read as 2∀x(Dx → A(x)); and as long as
the domain predicate D is not rigid, neither formula will be equivalent to the other under
a constant domain interpretation of the unrestricted quantifier.

As should be clear from this brief discussion, the substitutional approach has enormous
flexibility in its application to modal predicate logic. It is able to accommodate a wide variety
of interpretative stances - necessary versus contingent identity, objectual versus conceptual
quantification, rigid versus counterpart-theoretic accounts of de re modality, fixed versus
variable domains; and it may also be able to provide a certain degree of succor for those
who favor a less metaphysical understanding of de re modality.
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