
Applied Ontology 20 (2012) 1–3 1
IOS Press

A Type-Theoretical Approach for Ontologies:
the Case of Roles.

Patrick Barlatiera, Richard Dapoignya,∗
a LISTIC/Polytech’Annecy-Chambéry
University of Savoie, Po. Box 80439, 74944 Annecy-le-vieuxcedex, France
E-mail: {patrick.barlatier,richard.dapoigny}@univ-savoie.fr

Abstract. In the domain of ontology design as well as in Knowledge Representation, modeling universals is a challenging
problem. Most approaches that have addressed this problem rely on Description Logics (DLs) but many difficulties remain, due to
under-constrained representation which reduces the inferences that can be drawn and further causes problems in expressiveness.
In mathematical logic and program checking, type theories have proved to be appealing but, so far they have not been applied in
the formalization of ontologies. To bridge this gap, we present in this paper a theory for representing ontologies in a dependently-
typed framework which relies on strong formal foundations including both a constructive logic and a functional type system.
The language of this theory defines in a precise way what ontological primitives such as classes, relations, properties,etc., and
thereof roles, are. The first part of the paper details how these primitives are defined and used within the theory. In a second
part, we focus on the formalization of the role primitive. A review of significant role properties leads to the specification of a
role profile and most of the remaining work details through numerous examples, how the proposed theory is able to fully satisfy
this profile. It is demonstrated that dependent types can model several non-trivial aspects of roles including a formal solution for
generalization hierarchies, identity criteria for roles and other contributions. A discussion is given on how the theory is able to
cope with many of the constraints inherent in a good role representation.

Keywords: Ontology, Dependent Types, Categories, Relation Type, Role Type, Context, Subsumption, Generalization hierarchies

1. Introduction

Despite the increasing interest in the role of foundationalontologies for conceptual modeling and
knowledge representation, most modeling languages that have been proposed so far to express ontological
constraints (or rules) are based on a very simple meta-conceptualization as underlined in Guizzardi-et-al
(2006). Usual languages offer appropriate structuring mechanisms such as classes, relationships and sub-
sumption (subclass relations). However, in the representation of a formula, some structures have meaning
whereas others do not make sense. This aspect requires "suitable ontological distinctions" understood as
meta-properties of ontological structures as pointed out in Guarino (1994). The principle of identity or
rigidity are such meta-properties. In addition, the distinction of ontological meta-level categories such as
types, kinds, roles, relations, etc., further make accurate and explicit the real-world semantics of the terms
that are involved in domain representations. Not only is an ontology committed to represent knowledge
of reality in a way that is independent of the different uses one can make of it, but it is intended to pro-
vide a certified and coherent map of a domain. All these constraints can only be fulfilled within a highly
expressive language built on a solid logical background. For that purpose in this paper, we propose a two-
layered theory including a higher-order dependent type theory as lower layer and an ontological layer as
upper layer. While type theory is widely used in mathematical logic Barendregt (1997, 2001); Martin-Lof
(1982); Andrews (1986) and in Computer Science Barendregt (1992); Constable (1988); Reus (1999);
Oury (2008); Hancock (2000); Luo (1994), there are few worksusing it for knowledge representation. The
proposed theory called K-DTT (Knowledge-based Dependent Type Theory) is derived from Dapoigny
(2010b) for the modeling of contexts and from Dapoigny (2012) for the modeling of situations. The logic
in the lower layer operates on (names of) types whose meaningis constrained in the upper (ontological)
layer.

* Corresponding author: Richard Dapoigny.

1570-5838/12/$17.00c© 2012 – IOS Press and the authors. All rights reserved

2 P. Barlatier et al. / Applied Ontology

The core ingredients of dependent type theory are universesand dependent types. Type theory is strat-
ified in a cumulative way with universes (types of types) in order to solve the inconsistency:Type is of
typeType. Adopting a stratified hierarchy of universes results in a very powerful system, in which every
universe includes the option of talking about the types nested in the universe below. Dependent types are
types indexed by some value and give rise to indexed familiesof types. These indexed families provide a
high expressiveness since they can represent subset types,relations or constraints as typed structures on
which reasoning is achieved in the form of sequences transforming each type in another one at each step.
The dependency could be used to enforce semantic conditionsas we will see in section 4. Dependent types
and universes will be exploited for representing knowledgein an elegant and secure way. The last aspect is
analyzed in Cirstea-et-al (2004) where the authors investigate typing applied to reasoning languages of the
Semantic Web and point out that dependent types ensure normalization. For example, type theory enjoys
the property of subject reduction which expresses that no illegal term will appear during the execution of a
well-typed query in a well-typed program. By contrast, languages using some kind of untyped logic (e.g.,
FOL) allow to assert axioms which are not well-formed. In addition, many foundational ontologies have
lexical description and axioms in some controlled languageas completely separated components. From
an engineering perspective, it has been proved advantageous in a recent work of the FP7 European project
Enache (2011), to use a common language for both. Furthermore, the authors have shown the ability of
the type-theoretical approach to cope with scalability on the SUMO foundational ontology.

Type theory is a generalization of higher-order logic with the corresponding expressive power and has
variables of many different sorts imposing significant constraints on the ways in which these variables can
be combined. However, a general objection against higher-order logic is its computational intractability.
This argument is no longer valid if we consider a higher-order dependent type theory such as the Calculus
of Constructions (CC) Coquand (1988) and its extended version, the Extended Calculus of Constructions
(ECC) Luo (1994) since their computational property stems from the Curry-Howard isomorphism (more
details will be given in section 2.2). The remaining difficulty is that most ontologists and researchers in
the area of AI seem unaware of the benefits that a type theory can offer for knowledge representation.

On the one hand, the topic of type theory is fundamental both in logic and computer science Reynolds
(1983, 1984) while on the other hand the topic of ontology1 is challenging from the perspective of knowl-
edge representation and reasoning. In order to bridge the gap between these two domains, we propose
the K-DTT approach extending the works in Dapoigny (2010a,b). We introduce a foundational approach
departing from the existing ones such as usual first-order logic and set-based theories with the purpose of
providing a simple, coherent and tractable theory. We will demonstrate that the proposed theory is able to
satisfy most of all the constraints inherent in an expressive knowledge representation. To reach this ob-
jective, we discuss the impact of an expressive and rigorousontological language in a first part and then,
address the particular problem of role modeling Guarino (1992); Steimann (2000); Masolo-et-al (2004);
Welty (2001); Guizzardi (2005)) in a second part. In Section2, we present in an informal way the major
characteristics of the type-theoretical framework. In Section 3, we summarize the basic syntax of the type
theoretical layer of K-DTT. Section 4 outlines the terms of the ontological layer language for representing
high-level notions such as classes, relations, propertiesand subsumption. Section 5 enumerates a small
number of properties that a role structure should satisfy from a review of related works while Section 6
explains how the representation of roles can be captured in K-DTT. Section 7 focuses on the mechanism of
subsumption and its ability to address formally the generalization hierarchies problem. Section 8 considers
some role properties such as the identity problem with roles, roles of roles and solves in a formal way the
so-called counting problem. The results obtained in the proposed theory are discussed and followed by the
conclusion in Section 9.

1Understood here as ontology in computer science.

P. Barlatier et al. / Applied Ontology 3

2. Motivations for a Type-Theoretical Framework

2.1. Towards a Type-Theoretical Framework

From the perspective of facilitating large-scale knowledge integration, there is a need to constrain the
language primitives of conceptual models. These primitives have a (subjective) cognitive interpretation
and for that purpose, require an ontological approach in order to restrict their semantics, as advocated
e.g., in Guizzardi (2004). The term ontology here refers to aformal ontology in Computer Science under-
stood as the general theory of being. A formal ontology is precisely concerned with semantics, the actual
meaning of different notions or beings and deals with concepts such as whole, part, event, process, etc.
Alternatively, logic defines predicates and functions establishing relations between objects of the domain
without any assumption on the nature of these relations. Assuming a layered structure including a logical
level subsumed by an ontological level, the meaning of basicontological categories in the domain (i.e.,
the number of possible interpretations) is restricted in the ontological level.

One has to be aware of the dual nature of a dependent type theory (the so-called Curry-Howard isomor-
phism) leading to consider the theory both as a (constructive) logic and a type system Coquand (1988);
Luo (1994). As a consequence, we have the benefit to exploit a logic that is neutral from an ontological
perspective together with (names of) types whose meaning will be constrained in the ontological level.
This last aspect is particularly appealing for restrictingthe terms of the language. All these aspects are
embedded in K-DTT which extends the underlying type theory with structures expressed by appropriate
data types giving rise to what is known as a computational theory Luo (1994). It relies on a dependent
type theory, the proof-irrelevant Extended Calculus of Constructions Luo (1994); Werner (2008) which
has been complemented at the ontological level (more details about this aspect are given in the next sec-
tion) with some features well suited for Knowledge Representation. As a consequence, all the ontological
classes introduced in the following must have corresponding structures satisfying typing mechanisms pro-
vided at the logical level. In summary, the basic idea of the present theory is to supplement the so-called
Curry-Howard isomorphism with ontological classes.

We will now explain in an informal way how the present type-theoretical framework: (i) exploits the
Curry-Howard isomorphism to replace natural deduction with typing reductions and relates typing to
ontological categories, (ii) is able to express basic modalassertions, (iii) adopts an intermediary position
between the closed-world and open-world assumptions in order to remain consistent with both knowledge
bases and data bases and (iv) uses stratified type universes to formalize e.g., meta-properties seen as
properties of properties with distinct levels of representation as in a metalanguage.

2.2. Using the Curry-Howard Isomorphism

Type theory is known to be both a type system Whitehead (1997)and a constructive logic. Let us clarify
these two central paradigms.

First, let us recall that a typedλ-calculus has been shown to be appropriate for representingknowledge
and more especially, ontological knowledge Uschold (1996). Among the numerous versions about the
description of what a concept is, the Fregean perspective considers a concept as a function whose input
value is an object and whose output value is always a truth value. Concepts are proved if and only if the
object falls under the concept. For example the meaning of "John drinks" can be represented by a function
argument expressionA(x) whereA denotes a function ("drinks") andx an argument to that function with
a possible valuea which stands for "John". It is well known that one way to make this syntax computa-
tional is by means of lambda notation. The function expression of this example is then written as the usual
β-reduction2 (λx . A)a = A[a/x], in whichA[a/x] is the term that results fromA by substituting terma
for the free occurrences of the variablex in A. Therefore, it is worth considering concepts as the result of

2The process of substituting a bound variable in the body of a lambda-abstraction by the argument passed to the function
whenever it is applied.

4 P. Barlatier et al. / Applied Ontology

a lambda calculus. We follow that line for concepts and relations and argue that the theoretical framework
should be supported by a functional language because it natively supports the primitives of a lambda-
calculus (e.g., Lisp, ML, etc.). While the idea of using a lambda calculus is of interest for representing
knowledge, it is not sufficiently expressive and must be complemented with a typing mechanism. The idea
of typing, which first appears in thePrincipia Mathematicaof Whitehead (1997), has been followed by a
typed version of the lambda calculus proposed in Church’s type theory, a formal logical language includ-
ing First-Order Logic (FOL), but which is more expressive ina practical sense. Many typed versions have
been proposed so far, such as the polymorphic second-order typed lambda calculusλ2 known as "system
F" Girard (1971) orλP with types depending on terms (see the AUTOMATH project de Bruijn (1987)).
These theories have been followed by more expressive systems known as higher-order polymorphic De-
pendent Type Theories, e.g., the Calculus of ConstructionsCoquand (1988) and the Extended Calculus of
Constructions Luo (1994) including more powerful features(e.g., cumulativity and/or sum-types).

Second, a type theory is not restricted to support knowledgerepresentation but also provides a (construc-
tive) higher-order logic able to reason about knowledge structures. In the classical (denotational) Tarskian
approach, any proposition is either true or false. Then, thetruth of a formula results from a computation
of all truth values for each term that appears in this formula. Conversely, the underlying logic of most type
theories is constructive in the Heyting sense3. The Heyting view considers that the truth of a formula is
proved iff we have a means (function or constructor) able to prove it. Furthermore, it has been shown that
a typedλ-calculus is "equivalent" to a proof system in intuitionistic (i.e., constructive) logic according to
the so-called Curry-Howard isomorphism Howard (1980). It states a correspondence between (i) a formal-
ism for expressing effective functions (theλ-calculus) and (ii) a formalism for expressing proofs (natural
deduction for intuitionistic logic). Type theories make use of this isomorphism viewing propositions as
types while proofs are seen as objects. In other words they establish an "equivalence" between a compu-
tation system (i.e., a lambda-calculus) and a logical theory. They also have explicit proof objects which
are terms in an extension of the typed lambda-calculus whileat the same time, provability corresponds to
type inhabitation4. Proofs in a computational setting can be the result of a database lookup, the existence
of a function performing a given action or the output of a theorem prover, given assumptions about enti-
ties, properties or constraints. If we exhibit a proof for a proposition, then the proposition is proved and it
follows that the proposition is said to be true. However, a proof is built up of premises, and using different
environments, the same assertion can have different meanings. As a result, a proposition is identified with
the set of its proofs rather than verifying worlds like in FOL.

Since there is an equivalence between a logic and a typing mechanism, the use of type theory replaces
logical derivations with (computational) typing reductions, i.e., typing is proving. While type theories
have been extensively used in program verification and mathematics, in the area of knowledge represen-
tation, they have been mainly used in Natural Language Processing Montague (1970); Muskens (1996);
Cimiano (2003); Asher (2008), and in a more expressive way with Ranta (2004); Boldini (2000); Cooper
(2005). The limitation in the development of these theoriesis first the lack of researchers having both
type-theoretical and ontology-based knowledge and second, the lack of tools allowing non familiar users
of type theory to take advantage of its benefits. In the present work, it is to address the first limitation that
we (i) propose a type-theoretical framework for representing knowledge under ontological assumptions
(ii) use this theory to address in a unified framework currentproblems in role representation and (iii) test
the theoretical assumptions with a well-known theorem prover.

To reach these objectives, type theory is used as a uniform computational language for programming,
specification and reasoning where basic ontological structures are introduced in the language as data types.
In such a way, the type theory can be used as a programming language due to its computational features.
Furthermore, the rich type structure together with the higher-order internal logic allow one to consider
(meta) reasoning about structured ontological specifications.

3Also called the Brouwer-Heyting-Kolmogorov (BHK) semantics.
4A proposition is true iff its set of proofs is non empty.

P. Barlatier et al. / Applied Ontology 5

2.3. Expressing Modality

Whether K-DTT addresses modal capabilities is a crucial question which must be clarified. These capa-
bilities appear first in modal logic which extends classicalpredicate logic to include operators expressing
modality in order to qualify the truth of a judgment. There isa family of modal logics (e.g.,K, S4, S5)
constructed from basic modal operators including "necessarily" as in �φ (read as "it is necessary thatφ")
and "possibly" as in♦φ ("It is possible thatφ"). Furthermore, to prove both soundness and completeness
of a modal logic, a formal semantics is required to define its validity and to characterize the truth behav-
ior for all the sentences of its related language. The standard semantics for modal logics is the "possible
worlds" semantics also known as Kripke semantics Kripke (1963). A valuation ascribes a truth value to
each propositional variable for each of the possible worldsin a set of possible worlds. A possible state-
ment in modal logic is said to be true in at least one possible world while a necessary statement is said
to be true in all possible worlds. There is a close relation between propositions and possible worlds since
every proposition is either true or false in any given possible world. In the language of possible-world
semantics, a statement is (i) logically indeterminate (contingent) if and only if it is true in some possible
worlds and false in others, (ii) logically true if and only ifit is true in all possible worlds and (iii) logically
false (contradictory) if and only if it is false in all possible worlds.

The possible worlds semantics is implicitly taken into account in the type-theoretical layer of K-DTT
when considering the precise meaning for the terms truth, proposition and hypothetical judgment.

Truth Since K-DTT relies on Intuitionistic Logic (IL), it followsthat the fundamental (intuitionistic)
notion of truth is formulated as ’the propositional contentP is true if and only ifP is proved’ andP
is proved if we can construct a proof for it. In other words, ILrelies on a strengthening of the concept
of truth, by translating truth-conditions into proof-conditions, and hence can be seen as a logic of
explicit justification. Notice that if a type is not proved inIL that does not mean that it is false (it
corresponds to contingent statements of possible world semantics). We would acceptP in IL if P
is provable, therefore ifP is provable, it should be true:Provable(P) ⊃ P . By using the standard
interpretation of the modal operator� a basic axiom of the modal logicS4 is: �P ⊃ P (axiom
(T)). Since we expect to prove only formulas that are actually true, then provability is identified with
�.

Proposition In possible world semantics a proposition is viewed as the set of possible worlds in which it
is true whereas in K-DTT a proposition is regarded as a type whose last component is of typeProp5

(e.g.,T1 → T2 → . . . → Prop). This type is instantiated by a proof (here the proof is unique) that
it is true. Here, proofs must be constructed for every proposition and this is a major difference with
possible world semantics.

Hypothetical judgment Broadly speaking, a judgment is something that is knowable.The type-
theoretical layer of K-DTT does not only express reasons forknowledge contents as terms in its lan-
guage, but it distinguishes betweencategorical judgmentsandhypothetical judgmentsby means of
syntactically different justification terms in the language. Each typing judgment is a truth assertion
p : P (read "p is of typeP ") for the propositional content "P is true" withP : Prop. In the lower
layer of K-DTT, an environment is composed of a sequence of variables(x1, x2, . . . , xn), each term
being assigned to a variable.Categorical judgmentsrepresent a propositional content ascribed to
proofs in the empty environment, i.e., they require no assumption for their validity (non-dependent
case). Alternatively,hypothetical judgmentsassert that a judgmentp : P depends on hypotheses or
assumptions(x1, x2, . . . , xn). The semantic content of these hypotheses reflects in the upper layer
the content of an ontology such as concepts, relations and possibly the content of a database, while
the semantics ofP may denote rules such as the transitivity of part-of relations. The use of depen-
dent justifications expresses potential (or implicit) knowledge in the sense where (i) all the needed
conditions(x1, x2, . . . , xn) make the truth ofP assertable and (ii)p is true if the truth ofP has been
proved, that is a constructionp of P is known (constructive principle). The former is a necessary

5The typeProp is the type of propositions.

6 P. Barlatier et al. / Applied Ontology

but not a sufficient condition. It follows that if the environment is valid (there exists a proof for
each variable), we get the potential knowledge that there isan assertionp : P . It is only when a
constructionp of P is known that the judgment becomes valid (proved).

An explicit way to give an account of the logical structure ofpossibility and necessity talk is to observe
that IL gives us a possible-world semantics for free, thanksto the embedding of IL intoS4, proved in
Gödel (1933). We refer here to the Heyting’s version Heyting(1930) of Brouwer’s intuitionistic proposi-
tional logic in terms of the modality ’it is provable’ (see above). However, modal logic, inside which in-
tuitionistic connectives can be faithfully translated, isnon-constructive. It has been shown that the various
logics which have been considered so far present themselvesin the best case as "impoverishments of intu-
itionism" Girard (2006). Therefore, the intuitionistic basis of the K-DTT lower layer appears sufficiently
expressive to take in account the modal aspects inherent in ontological structures.

2.4. Supporting the Regular World Assumption

On the one hand, databases describe a closed world, that is, only those entities together with their related
properties which are represented in the system exist. Any facts that have unknown truth values cannot
be represented and the closed-world assumption assumes that anything which is not contained within
the data base is assumed to be false (i.e., unknown is equivalent to false). On the other hand, ontologies
rather support the open-world assumption and related languages such as Description Logics also face such
a difficulty. So, the question arises of what can be the impactof the closed world assumption in type
theory. First, the closed world assumption in type theory would require that arguments of functions must
be closed, i.e., functions could not be defined on free parameters. Second, it is well known in logic that
open world assumption is typical of languages with embeddedimplication and universal quantification.
Third, the universe construction renders the theory strictly open-world. Fourth, from the perspective of
constructive logic, the domain is open since new proof objects can be added at each occurrence of a type
checking on the knowledge base. For predicates (i.e., typesin Prop), unknown facts are not proved and
this does not imply that they are false (this is a property of IL). As stated before, adding a database for
proving types in K-DTT requires the closed-world assumption for type-inhabitation on the database (at a
given time). With regard to these constraints, the adopted solution is to restrict the set of proof objects we
deem inhabited so as to enforce a Regular Word Assumption (RWA) Schürmann (2001). For that purpose,
we define a class of proof objects whose dynamic assumptions extend the current database in a specific
regular way. It results that the set of proof objects in the database is a subset of the possible proof objects
for K-DTT.

2.5. Using a Hierarchical Structure

The type-theoretical language should represent and reason(with a higher-order logic that is internal to
the language) about knowledge structures in a formal way with a type hierarchy. The idea of a type hierar-
chy originates with Russell in thePrincipia Mathematicawhich thought it necessary to introduce a kind
of hierarchy, the so-called "ramified hierarchy"Russell (1986). One should make a distinction between
the first-order properties, that do not refer to the totalityof properties and consider that the second-order
properties refer only to the totality of first-order properties. This clearly eliminates all circularities con-
nected to impredicative6 definitions (e.g.,Type : Type). While any term has a type in a type theoretical
framework, one can wonder if a type can itself have a type. Theanswer is yes, and leads naturally to what
is called a universe (a collection of types). These universes can be partially ordered and are organized into
a (non finite) hierarchy of universes called the universe hierarchy. The universe hierarchy may rely on the
notion of impredicativity because impredicative systems integrate an important idea of polymorphic type
which allows quantification over all propositions or types to form a new proposition or type. For example,
the output of∀P : Prop.P is a proposition (of typeProp) which is impredicative since it is formed by

6Impredicativity is a kind of conceptual circularity.

P. Barlatier et al. / Applied Ontology 7

quantifying over all propositions including itself. The use of impredicative universes gives the system both
a strong logical power Barendregt (1992) (i.e., the expressiveness of the intuitionistic higher-order logic)
and a strong computational power (see Girard (1973)). If we assume that both universes for types and the
universe for propositions are impredicative, then using propositions to represent data types would result
in a non-conservative extension of higher-order intuitionistic logic (see Luo (1990) for more details). Fol-
lowing Luo (1992), a possible solution to this problem is to state that there is a formal distinction between
the notions of logical formula and data type in the type-theoretical layer. It yields a conceptual universe of
types which consists in two parts, an impredicative universeProp for propositions and a predicative hier-
archy of data types (in the spirit of Russell). The resultingtype theory Luo (1992, 1994); Werner (2008)
at the basis of the lower layer in K-DTT is (globally)7 impredicative.

The theory comprises an infinite hierarchy of predicative type universes denotedType0, Type1, . . .
and an impredicative universe notedProp. The universesTypei are the universes for data types while
Prop is the universe for logic. The hierarchy is cumulative, thatis, Typei is contained inTypei+1 for
everyi. A universe is seen as a type that is closed under the type-forming operations of the calculus. Since
impredicativity exists only forProp8, Typei may contain only types from universesProp, Type0, . . .,
Typei−1 while Prop may be constructed with types fromProp, Type0, . . ., Typei, etc. Viewing types
as sets, we have intuitivelyProp ⊆ Type0 ⊆ Type1 ⊆ The hierarchy of universes is partially ordered
by a cumulativity relation4 also called subtyping in the following part of the paper.

Lemma 1. Luo (1994) The cumulativity relation4 is the smallest partial order over terms such that
Prop 4 Type0 4 Type1 4 ... 4 Typei....

wherei ∈ IN andTypei are type universes. Since a term within a universe may quantify over terms in
the lower universe, stratification has a natural capabilityfor representing meta-reasoning.

3. K-DTT: the Type-Theoretical Layer

3.1. Syntactic Sugar

The terms of the Type-Theoretical layer are generated by thefollowing grammar Luo (1994):

T ::= V | Prop | Typei |ΠV : T .T | λV : T .T | (T T) | ΣV : T .T | 〈T ,T 〉T | π1(T) | π2(T)

in which,V is a set of variables,Prop andTypei (i > 0), are type universes as described above,〈T ,T 〉T
stands for pairs in which the subscript denotes the type of the pair. A pair of elementsM andN is
written as〈M,N〉T , the typeT of the resulting pair has to be added for reasons of type inference, but
when no confusion occurs we will abbreviate〈M,N〉T as 〈M,N〉. In what follows, we denote byΓ
an environment to avoid confusions with the notion of context. Each typing assertion is made with first
checking its environment. The environment is a finite sequence9 of expressions of the formxi : Ti where
xi is a variable andTi a term. The fundamental notion of typing judgmentΓ ` M : T whereM andT are
terms is read as "M has typeT in Γ".

Definition 1. LetΓ be a valid environment.
A termT is called a type inΓ if Γ ` T : U for some universeU .
A termM is called an object inΓ if Γ ` M : T for some typeT .

A concise system of rules govern the behavior of the type-theoretical layer. They can be broadly di-
vided into three categories, type formation rules, introduction rules and elimination rules. Type formation
rules define how elements of the type universesProp andTypei can be constructed. Introduction rules,
describing how canonical elements of the respective dependent types are formed. The elimination rules
define how elements of dependent types can be applied.

7Since a part of the system is impredicative, the whole systemremains impredicative.
8Prop is seen as an object ofType0.
9The sequence is ordered because any type in the sequence may depend on the previous variables.

8 P. Barlatier et al. / Applied Ontology

Definition 2. A termM is well-typed if for some environmentΓ we haveΓ ` M : T for someT .

Definition 3. A typeT is inhabited in the environmentΓ if Γ ` M : T for someM .

To show thatM : T holds in a given environmentΓ, one has to show that eitherΓ contains that
expression or that it can be obtained from the expressions inΓ with the help of type deduction rules.
Notice that a term has a single type (up to subtyping) while a proof can be related to several terms.

While types can be as simple as e.g., the type "int" which stands for integers, more interesting types
are dependent types, i.e., dependent sums (also calledΣ-types or sum types) and dependent products
(also referred to asΠ-types or product types). The characteristic feature of dependent type theories is
precisely that they allow a type to be predicated on a value. This property makes them much more flexible
and expressive than conventional type systems McKinna (2006). A core notion is that a family of types
is indexed by a term (having itself a type). Product types arefunctions whose result type depends on
the argument while sum types denote pairs, where the first element determines the type of the second
element. The non-dependent versions of these types are respectively denoted by→ (functions) and by×
(non-dependent pair).

The product type has functions as objects. The intuitive mapfrom x to M [x] is writtenλx . M [x]. For
a typeA and any family of typesB[x] indexed by arbitrary objectsx of typeA,

Πx : A . B[x]

is the type of functionsf such that for any objecta of typeA, applyingf to a yields an object of type
B[a]. Intuitively it represents the set of (dependent) functions fromA to B[x]:

{f | fa : B[a], ∀a : A}

ThusB[M/x] is a type wheneverM is a term of typeA. As a consequence, product types express the
universal quantification∀.

Sum types are types of pairs of objects. For any typeA and any family of typesB[x] indexed by arbitrary
objectsx of typeA,

Σx : A . B[x]

is the type of pairs〈a, b〉 wherea is an object of typeA andb is of typeB[a]. Intuitively it represents the
set of (dependent) pairs of elements ofA andB[x]:

{〈a, b〉 | a : A, b : B[a]}

WhenB is a predicate overA, it expresses the subset of all objects of typeA satisfying the predicateB10.
In each pairs, π-elimination rules extract the first and the second component with the respective functions
π1(s) andπ2(s). In the following part of the paper we drop the parentheses for the sake of simplicity. As
a consequence, we can express a subset with a dependent sum type:Σx : S . P [x] which corresponds to
the set-based expression:{x ∈ S | P [x]}.

The type forming rules for dependent types, and more precisely for sum types allow to compute the
resulting universe of a dependent type as follows.

Lemma 2. Luo (1994); Coq Development Team (2010) LetA,B, two types defined in the current envi-
ronmentΓ such thatΓ ` s : (Σx : A . B[x]), then the universe ofΣx : A . B[x] is the maximum universe
among the universes ofA andB w.r.t. the subtyping relation.

Equality between types is understood in terms of propositional equality (Leibniz equality). It is intro-
duced such that it complies to the Leibniz principle, i.e., two objectsa anda′ of the same typeA are
propositionally equal if and only if they are indistinguishable from each other with respect to all logical
properties.

10Unlike Martin Löf type theory, sum types are not logical propositions and cannot represent the logical existential quantifier.

P. Barlatier et al. / Applied Ontology 9

3.2. Subtyping

Subtyping (or cumulativity) formalizes a subset relation between type universes, function spaces and
Cartesian products built on top of universes. The rule(Sub) is the basic subtyping relation over terms.
Notice that according to this rule, a given term may have several types. However, it can be shown that
whenever a term is typeable, it has a uniquely determined principal type (see, e.g., Luo (1994) for more
details). This principal type is the minimum type of the termwith respect to the(Sub) rule and relatively
to a given context. As a particular case of the(Sub) rule, a(Conv) rule says that two terms are convertible
if their corresponding types are equal.

Γ ` M : A Γ ` A′ : Type A 4 A′

Γ ` M : A′
(Sub)

Γ ` M : A Γ ` A′ : Type A ' A′

Γ ` M : A′
(Conv)

The (Conv) rule has an intensional nature and reflects what is called thecomputationalequality. How-
ever, this result does not rule out its (implicit) extensional meaning, i.e., the fact that if two types are
computationally equal, then they have the same objects.

Lemma 3. Luo (1994) The subtyping relation is a partial order over terms with respect to conversion.

The following meta-theoretic property from Luo (1994), introduced as a corollary, will be useful for
our purpose:

Corollary 1. Luo (1994) The relation4 is the smallest partial order over terms with respect to conversion
such that:

1. if A ' A′ andB 4 B′, thenΠx : A . B 4 Πx : A′ . B′

2. if A 4 A′ andB 4 B′, thenΣx : A . B 4 Σx : A′ . B′

The logical consistency11 of the core theory has been demonstrated and the decidability property has
been deduced as a corollary Luo (1994); Werner (2008). In theK-DTT type theoretical layer, the usual
logical operators follow the syntax of higher order logic Prawitz (1965); Coquand (1985) and can be
expressed using the (dependent) product. For example, the logical implicationA ⊃ B is expressed with
the non-dependent productA → B12 while the logical connectives, i.e., the conjunctionA & B, the
disjunctionA ∨ B and the negation¬A are respectively defined withΠR : Prop . (A → B → R) → R,
ΠR : Prop . (A → R) → (B → R) → R andA → ⊥.

4. K-DTT: the Ontological Layer

To build the ontological layer of K-DTT, we have considered the DOLCE ontology of particulars
Masolo-et-al (2003); Gangemi-et-al (2002) because (i) it adopts both a descriptive and multiplicative13

approach which does not classify universals leaving room for conceptual choices about universal struc-
tures, (ii) it is designed to be minimal, in that it includes only the most reusable and widely applicable
upper-level categories and (iii) it remains neutral about the spatio-temporal properties (see Masolo-et-
al (2003) for more details) and thus, provides a significant level of interoperability. The logical part of
DOLCE is replaced here with a core type theory with the consequence that all relations defined in DOLCE
are expressed in K-DTT using this core (for example, the hierarchical relationis_a is derived from the
subtyping rule). The hierarchical taxonomy of particular categories will serve as a backbone, referred to
as DOLCE backbone, for defining the stratification which allows more fine grain categories in the final
domain ontology. Finally, the DOLCE backbone plus ontological commitments on appropriate structures

11For a type theory, the logical consistency is identified withtermination.
12The "equivalence" between the logical reading⊃ and the computational reading→ is a consequence of the Curry-Howard

isomorphism.
13Different entities can be co-located in the same spatio-temporal location.

10 P. Barlatier et al. / Applied Ontology

expressed within type theory will form the ontological layer of the K-DTT theory. It can be used to express
knowledge as long as the added features respect the core structures together with their logical constraints
(see e.g., Dapoigny (2010a)).

4.1. Expressing Knowledge with K-DTT

Most formal ontologies refer to universals and particularswhich are further refined in subcategories
(e.g., relations). Universals behave like general invariant patterns while types correspond to the result of a
categorization procedure, hence types have a natural adequacy with universals. However, it is worth notic-
ing that the term "type" denotes here type in the sense of typetheory, that is, it covers a broader spectrum
that its usual meaning in philosophy as well as in object-oriented languages. K-DTT objects are equipped
with meanings using the Curry-Howard isomorphism in such a way that any type expressing some knowl-
edge corresponds to a logical formula, therefore it behavesas a theory of reasoning and knowledge. The
constructive semantics asserts that a type gains meaning (i.e., justification) from its constructor. In other
words, a type in the K-DTT lower layer becomes a category in the upper layer. Then, deciding a category
for a proof object corresponds to assigning ontological meaning to the object. We assume that categories
are intensional entities and that ontological classes are expressed by categories representing universals as
well as sets of particulars. Notice that we can go further theusual notion of type with dependent types in
which we can mix instance-level and type-level information.

In the K-DTT theory the abstract entities become represented by certain symbol configurations called
terms. The concept of universe is replaced with the concept of ontological category and the cumulativity
is related to the so-called subsumption (see subsection 4.7). What is termed category here refers to what
is called concept in Description Logics, the main difference being that a category is expressible by a
(dependent) type with all the capabilities that such a conceptual choice offers.

Definition 4. Terms of the K-DTT upper layer are built up from a setV of variables together with a set of
categoriesCat including a subset of primitive categoriesDB = {Prop, Thing, PT,AB,R, TR, T, PR,
. . . , STV, ST, PRO} (where the sequencePT, ..., PRO refers to the DOLCE set of basic classes), and
the following category forming sets:

− PR ::= ΠV : T . P with T ∈ Cat∪Rel for rigid property types,
− PAR ::= ΣV : T . CAR with T ∈ Cat∪Rel for anti-rigid property types,
− Rel ::= ΣV1 : T1 ΣVn : Tn . P for n-ary relation types,
− C ::= ΣV1 : T1 ΣVn : Tn . P for context types and,
− Rol ::= ΣV : T . C with T ∈ DB ∪Rol for role types,
− Sortal ::= ΣV : T . IC with T ∈ DB ∪Rol for sortal types.

whereT , Ti stand for terms,CAR for an anti-rigidity criterion,IC for an identity criterion andP
denotes some predicate depending on appropriate arguments. Any domain ontology can be derived from
this ontology by adding sub-categories of some categoriesK ∈ Cat.

Definition 5. A termT is well-formed if for some foundational ontologyO providing the environment, we
haveO ` T : K for some categoryK ∈ Cat.

For example, the judgmentLegalPerson : SAG ` x : LegalPerson asserts that the variablex
belongs to the categoryLegalPerson provided that it is a well-formed term, i.e.,LegalPerson : SAG
(Social AGent). In the following, we often forget the environment for the sake of clarity, however it must
be kept in mind that any assertion is relative to an explicit environment constituted by the foundational
ontology and involving all the arguments of the new defined type.

All ontological structures are defined and checked within the Coq proof-assistant Coq Development
Team (2010). Already used for proving e.g., reliable knowledge-based system design Calegari-et-al
(2010), relational database management systems Malecha-et-al (2010) and software certification Bruni-et-
al (2007), the Coq proof assistant will serve as a platform for proving the ontological assertions. The Coq

P. Barlatier et al. / Applied Ontology 11

system results of over ten years of research at the INRIA and provides a proof assistant whose underlying
metalanguage is the Calculus of Inductive Constructions that has been extended with an infinite hierarchy
of universes (CCω). The core of the system is a proof-checker allowing the declaration of axioms and
parameters, the definition of any types and objects and the explicit construction of proof-objects repre-
sented as lambda-terms. The interactive theorem prover executes tactics written in Caml14 and proofs can
be built progressively by means of this tool in a top-down style that generates subgoals and backtracking
as needed.

4.2. Representing Ontological Classes

The two basic entities of ontologies, i.e., particulars anduniversals are respectively understood in terms
of proof objects and categories in K-DTT. Universals are described (i) with primitive categories, (ii) with
property types and (iii) with relation types. Primitive categories are in line with the existence of "natural
types", i.e., they can be identified as types in isolation (see e.g., Sowa (1988)). What is called a property
type here, is close to the relational moment type Guizzardi (2005) which is existentially dependent on other
particulars. Let us consider how a moment universal can be accounted for in K-DTT. We only consider
here (for the sake of simplicity) an intrinsic moment which uniquely depends on a single particular. The
inherence relation is isomorphic with type dependence on values. An electric charge is an example of a
moment universal since this charge only exists if there is a conductor which supports it. It follows that a
moment universal can be described with a sum type where the dependent family, i.e., the electric charge
depends on a value having the categoryConductor. The example is summarized in figure 1 in the context
of the so-called Aristotelian Square. Property types are divided into mandatory properties (rigid properties)

Fig. 1. Revisiting the ontological square in K-DTT.

and possible properties (anti-rigid properties). Two important subcategories of anti-rigid properties are
role types and sortal types. A role type includes a context type itself arranged with relation types. Role
types will be discussed in detail in section 6. All K-DTT structures and their corresponding classes in a
foundational ontology are reported on figure 2. The DOLCE backbone classifies categories of particulars
such asAPO (which stands for Agentive Physical Object) and describes the category of these particulars.
The categories of particulars which belong to the DOLCE backbone are described with a K-DTT primitive
category where each position of the category in the backboneis computed automatically by the Coq
theorem prover. We assume that a category is never subordinate to more than one higher category within
the backbone. Even if in some cases there are counterexamples of this, it is however always possible to
remove these overlapping categories Guarino (2002). Each time we are interested in a certain collection
of categories that share some common properties, then universes can be introduced. Every category that
belongs to a universe is considered as an object of upper universes. For example, in the Coq proof assistant,
the compiler generates for each new category which is an instance of "Type" a new index for the universe
and checks that the constraints between these indexes can besolved. In summary, primitive categories of
particulars are the basic components from which all typed structures are built. The following fragment of
Coq code describes an excerpt of the DOLCE backbone.

14see the site http://caml.inria.fr/index.en.html.

12 P. Barlatier et al. / Applied Ontology

Definition Thing := Type.
Definition PT : Thing := Type.
Definition ED : PT := Type.
Definition PD : PT := Type.
Definition Q : PT := Type.
Definition AB : PT := Type.

. . .
Definition SAG : ASO := Type.
Definition SC : ASO := Type.
Definition Person : APO := Type.

Fig. 2. Ontological categories in K-DTT.

These definitions will be implicitly included in further code fragments. The highest level is assumed for
the categoryThing which covers all categories whilePT stands for the type of primitive categories for
particulars. Then all other types are ordered according to their place in the DOLCE backbone. Since it has
only a type affectation, the ontological class "person" is described by the primitive categoryPerson in
Person : APO ` x : Person and may correspond e.g., to the proof (instance):x = JohnDoe while
Person : APO asserts thatPerson is well-typed. The relation of instantiation (:) between a universal and
its instance corresponds here to type inhabitation. UnlikeFOL-based ontologies, it describes in a natural
and simple way the relation between universals and particulars without the need to introduce specialized ad
hoc formulations. For example, in Smith (2004), the author suggest a formal theory ofIs_a andPart_of
based on a relation of instantiation between an instance anda class. This relation needs axioms governing
its use while in K-DTT, the relation of instantiation is already part of the theory and does not require any
further axioms.

The equality between terms in the ontological layer is ascribed to be coherent w.r.t. the Leibniz equality
of the lower layer. It relates to the usual definition of the identity condition for an arbitrary propertyP , i.e.,
P (x) ∧ P (y) → (R(x, y) ↔ x = y) with a relationR satisfying this formula. This definition is carried
out for any type in K-DTT since equality between types requires the Leibniz equality (see subsection 4.1).
The major reason is that identity can be uniquely characterized if the language is an higher-order language
in which quantification over all properties is possible Noonan (2011). This higher-order property yields

P. Barlatier et al. / Applied Ontology 13

that Leibniz’s Law, which is at the basis of identity in the lower layer of K-DTT is expressible in this
language.

4.3. Representing Propositions, Facts and Predicates

At the ontological level, a proposition is a sentence expressing that something has/can have a truth
value, expressing whatever it expresses. Let us consider the sentence "this ball is red". If this sentence is
true, then it is in virtue of the being red (the redness) of this ball, and if no such redness exists, then "this
ball is red" is false. The redness we are speaking of here is a particular which depends on the ball, and not
a universal redness shared by all red things. Dependent types easily address this kind of subtlety with the
dependent familyRed[a] with a a particular such thata : Ball: Red[a] is a (dependent) category which
denotes here the redness indexed by the particular balla. In set theoretic frameworks, a proposition is the
set of possible worlds in which it is true. Type theory treatspropositions as primitives rather than treating
them as sets of worlds (the so-called possible-worlds semantics) since the notion of truth in a possible
world is replaced by the notion of proof. Therefore, each proposition is represented with a type, the type
of its proofs.

Definition 6. Every typeP of the categoryProp is called a proposition. If a termp1 is of the typeP , then
p1 is called a proof15 for P .

As a consequence, propositions are seen as categories (types of proofs) and the semantic value of a
predicate is roughly the set of individuals (i.e., proofs) that bear it. For instance, we can find a proof
(e.g., resulting from a sensor measurement) for the variable p that proves it is raining with the judgment
raining : Prop ` p : raining. Furthermore, we assume in the following part of the paper that the
categoryProp is interpreted as the category of proof-irrelevant types, i.e., we cannot distinguish the
different proofs of a given proposition.

Facts are akin to states of affairs in the world. According toRussell (1986) p. 163, a fact is "[. . .] the
kind of thing that makes a proposition true or false". A constructive reading will change this assumption
in "a fact is the kind of thing that proves a proposition". Therefore, in the ontological layer of K-DTT they
are concrete entities of the world which we can speak about and they refer to an instantiation of universals.
In the lower layer, they are proof objects which instantiatetypes.

The other kind of primitive in language aren-place predicates (withn = 1, 2, ...), which correspond to
relations. A predicate is the result of combiningn names with ann-place predicate. They can represent
n-ary relations at the ontological level while at the logical level, predicates are relations whose output is
theProp category.

4.4. Representing Relations

The strength of dependent types in type theory allows to express relations as primitives of the language.
The first consequence is that they are terms of the logic and can be involved in complex predicates. At the
ontological level, relations are hierarchical (e.g., subsumption or part-of relations16) or non-hierarchical
(e.g., domain relations). They denote tuples involving particulars (the last type of the rightest term of the
tuple is generallyProp). Tuples correspond to sum type structures having more thana single argument.
While binary relations require two arguments, relation types can generally offer as many arguments as
needed. For example, the relation type:

Σx : Person . Σy : Car . Own[x, y]

where Person and Car denote sortals andOwn : Person → Car → Prop stands for
the relation in which a persons owns a car. Proof objects for such a relation type could be17

15The term proof object is restricted to proofs for categories.
16We refer her to the part-of relation which is transitive by contrast with the partonomic relation which is usually not (see

Dapoigny (2010a) for more explanations).
17Proof objects for the variable of typeCar are license registration numbers as extracted from a database.

14 P. Barlatier et al. / Applied Ontology

〈JohnDoe, 〈AZ787EK, q1〉〉, 〈MikeThumb, 〈BC125AB, q2〉〉, etc. withq1, q2, ... the respective proofs
for Own[JohnDoe,AZ787EK], Own[MikeThumb,BC125AB], etc. In this example, withs ,
〈JohnDoe, 〈AZ787EK, q1〉〉, we can easily access the components of the proofs withπ1s = JohnDoe
andπ1π2s = AZ787EK18.

A generic n-ary relation type can be constructed according to the following definition.

Definition 7. (N-ary relation) A n-ary relation typeRel betweenn categories is expressed with a sum
type having these categories as arguments and whose extension consists of all the proofs for that relation.

Rel , Σ xi : Ti Σxi+n : Ti+n . R[xi, . . . , xi+n] (1)

withR : Ti → . . . → Ti+n → Prop and Rel : max(Ti, . . . , Ti+n).

in which Ti denote terms of the K-DTT language as described in subsection 4. This definition is general
and applies at different levels of abstraction w.r.t. subtyping. For example, let us mention the binary rela-
tion "ParticipateIn" described in Keet (2008). In the relation type, the termParticipateIn (which belongs
to theProp category) relates a first argument that must be an endurant (ED in DOLCE) together with a
perdurant (PD). As explained in subsection 2.5, these arguments belong todifferent category levels, then
according to basic rules of subtyping (Luo (1994) and Coq Development Team (2010)), the type of the
whole relation must be at least in the highest level among components of the relation type.

(Σx : ED . Σy : PD . ParticipatesIn[x, y]) : PT

sinceED andPD are subcategories ofPT .
Some particular relations such as the so-calledis_a andpart_Of relations have established themselves

as foundational to domain ontologies as well as to foundational ontologies (e.g., DOLCE). While it is
commonly assumed in the literature of knowledge representation that the relationis_a can be seen as the
set inclusion relation, we depart from this assumption and rather consider an intensional approach (this
aspect will be developed for role types in section 7). Thepart_Of relation can be generalized through the
notion of parameterized type (see Dapoigny (2010a) for moredetails).

4.5. Representing Properties

Properties are entities that can be attributed to things or predicated of them and then it can be said that
objects exemplify properties. In K-DTT, properties correspond to moment universals since their existence
depends on some external entity. We first introduce rigid properties which are expressed with product types
whose argument is a relation type taking itself categories as arguments. It yields a type which belongs to
Prop. For instance, to represent the fact that any apple is colored, one may introduce:

Πu : (Σx : Apple . Color[x]) . HasColor[π1u]

in which Color is a dependent type (i.e., a functionApple → Color) which for each instancex (e.g.,
ThisApple) of the typeApple yields a type (e.g.,Color[ThisApple]) whose proof objects range over
the color domain, e.g.,yellow. Conversely,HasColor is a predicate having the typeApple → Prop
whose proof is a truth value. In other words, it means that allapples have a color (universal quantification).
Another interesting benefit of considering properties as (dependent) products is that variables can range
over them allowing to quantify over properties.

More complex and contingent properties can be described by considering a sum type as argument. A
generic complex structure may require an argument of type relation (possibly nested)R:

RigidProp , Πu : R . Pr[~γ1u, . . . , ~γnu]

wheren ≥ 1 andP r, of the typeT1 → . . . Tn → Prop with ~γiu : Ti. The relation typeR can be nested
up to a finite number of levels and each~γi stands for a sequence ofπ1 or π2 relative either to variableu

18Notice thatπ2 is first applied tos, thenπ1 is applied to this result.

P. Barlatier et al. / Applied Ontology 15

for nested sum types or to an empty sequence for categories. One can e.g., express the fact that patients
which suffer of Alzheimer disease lack autonomy:

Πu : (Σx : Patient . Σy : AlzheimerDisease . SufferFrom[x, y]) . NotAutnomous[π1u]

Alternatively, anti-rigid properties are possible properties relating an entity (who has the property) with
an anti-rigidity criterion. An anti-rigid property typeAntiRigidProp is expressed as a relation type hav-
ing as left term a type, either a category or a relation, called the subjectS of the property and as right term,
a typeCAR which defines the criterion to be a type having this property:

AntiRigidProp , Σx : S . CAR[x] with: CAR[x] an anti-rigidity criterion type

Let us consider the example of a student within a university.One of the basic characteristics of the
anti-rigid criterion is the fact that any student must be registered with the corresponding definition:

Student , Σx : LegalPerson . Σu : Univ . RegisteredIn[x, u]

andRegisteredIn : LegalPerson → Univ → Prop With the DOLCE categoriesSC for Society and
SAG for Social Agent, the environmentΓ assumes thatUniv : SC and thatLegalPerson : SAG since
we are interested here in a social anti-rigid property. Notice that rigid properties are automatically applied
to non-dependent types (using the Leibniz law for types) while anti-rigid properties require sum types to
formalize the subset relation over types.

4.6. Representing Meta-properties

In K-DTT any term (i.e., anything) can possess properties. As a consequence, a property may have
properties. A meta-property which is the property of a classin foundational ontologies, is described in a
uniform way i.e., the same syntax as for properties of particulars. For example, as shown in subsection
4.5, distinct meta properties can be described with appropriate types. For example, rigid properties are
described with product types since they require a∀ quantifier while anti-rigid properties rather involve
sum types which approximate subset types (i.e., the proof objects for the category which is concerned by
the anti-rigid property is a subset of the proof objects for the category). Let us consider the sortal property
based on the presence of one or more IC (Identity Criterion) Guarino (2000). To state that a particular
x : PT is an instance of a sortal type, we assume that not every subtype of the categoryPT may be of
the (meta)type sortal and to fulfill this constraint, we haveto consider the categorySortal as an anti-rigid
property:

Sortal , Σx : PT . IC[x]

where IC is a dependent property which formalizes an identity criterion. Any sortals should be
subsumed (i.e., a subtype-of) by this definition while its instances are pairs〈pt, id〉 where id is a
proof object forIC[pt]. It follows that in all its (proved) instances,pt necessarily satisfies the cri-
terion IC[pt]. It is the type-theoretical translation of the assumption "a propertyP carries an iden-
tity condition C if all its instances necessarily satisfyC". We can assert for example that a person is
identified with its National Registration Identity Card (NRIC). This can be captured by the property
Citizen , Σx : Person . (Σn : NRIC .SignatureOf [n, x]) in K-DTT. A proof for this sortal could be
〈JohnDoe, 〈32270005187T, p1〉〉 with p1 a proof forSignatureOf [32270005187T, JohnDoe]. If we
know that the considered person is JohnDoe and that the NRIC is what can be read on its card, we prove
respectivelyPerson andNRIC but if we obtain the information that the card is a fake, then there is no
proof for SignatureOf [32270005187T, JohnDoe] and the identity criterion fails. Then, only a subset
of all particulars will also have the type sortal (those for which an identity criterion exists) and the iden-
tity criterion will propagate in the subsumption only if every term of the relation type is in the subtyping
relation. Let us illustrate these aspects with an example extracted from Guarino (2002). If we consider
the categoryT imeDuration whose proof objects are e.g.,two hours and a categoryT imeInterval
defining particular intervals of time, such as4 : 00−6 : 00, 2012/17/2. One can think ofT imeInterval
as a subclass ofT imeDuration, since all time intervals can be considered as time durations. What about

16 P. Barlatier et al. / Applied Ontology

the identity criteria for such sortals? Assuming that two durations are identical iff they have the same
length and that two intervals are the same iff they have the same length and they occur at the same time
t : StartT ime, the respective properties for the identity criterion havethe form:

T imeDuration , Σt : TemporalRegion . Length[t]

T imeInterval , Σt : TemporalRegion . (Σx : StartT ime . LengthAt[t, x])

These two sortals describing particular time durations andintervals are not related by subtyping w.r.t.
corollary 1 while their left terms are. It follows that the subsumption does not hold since their identity
criteria are obviously incompatible.

4.7. Expressing Subsumption

Subsumption consists in deciding whether one category is "more general than" another one and the
subsumption relationA subsumesB says that being aB logically implies being anA. The notion of
subsumption has several readings whose the more important ones are extensional and intensional Woods
(1991); Napoli (1992). There are some drawbacks to the extensional interpretation of subsumption because
(i) determining whether the extension of one concept is included in the extension of another one is often
undecidable and (ii) observing that two concepts have the same extension does not mean that they are
identical. Furthermore, in the intensional reading, a concept subsumes another concept only if this result
can be inferred from the examination of the internal structure of this concept involving more domain
dependent inferences.

In the (intensional) theory K-DTT, we assume that the identity of two categories holds iff their proof
objects cannot be distinguished by any property expressed by a predicate over the category of these objects.
This ontological assumption complies with many approachesin formalizing ontologies and is a direct
translation of the Leibniz law (see subsection 3).

Definition 8. Two categories are identical iff they have the same properties.

Unlike relation types described with sum types, in K-DTT, the subsumption relies on the subtyping
which is explicitly described in the type-theoretical layer by the(Sub) rule (see 3.2). Notice that this def-
inition of the subsumption yields a limitation restrictingthe possibilities of K-DTT to single inheritance.
Subsumption-based hierarchies take advantage of the simple mechanism of the cumulative hierarchy of
type universes. Every type that belongs to a category is considered as an object of upper categories. For
example, for the categoriesSensor andDevice, we can assert thatSensor 4 Device and thatDevice
subsumesSensor since a sensor has, at least, all the properties of a device and then, contains more precise
information than a device. In that precise case, propertiesare implicit, but they can be explicit having the
form of product types using lemma 4. This characteristics refers to the subsumption oris_a hierarchy in
ontologies and relates to the subtyping relation as follows.

Lemma 4. Given two categoriesT andT ′, such thatT subsumesT ′, i.e.,T ′ 4 T , then any property that
holds forT also holds forT ′:

λP : T → Prop . ∀x : T . ∀y : T ′ . (Px) = (Py)

with the corresponding Coq code:

Definition Cat1 := Type.
Definition Cat2 : Cat1 := Type.
Hypothesis Property : forall x : Cat1, Prop.
Lemma subsume : (forall (x : Cat1) (y : Cat2), Prop).
Proof.
exact ((fun (x:Cat1) (y:Cat2) => Property x = Property y)).
Qed.

P. Barlatier et al. / Applied Ontology 17

The is_a hierarchy of DOLCE is represented by a cumulative hierarchyof categories where each node
in the tree is assigned a universe (see subsection 4.2), the highest universe beingThing the category of
all categories. It follows that the DOLCE backbone is included in a core hierarchy of universes whose
upper universe is alwaysThing while the lowest universe depends on the user’s choices. Forinstance, let
us consider some basic categories such asEating, Reading, ChemicalReaction, etc. that we expect to
relate to the DOLCE backbone of type universes. The categoriesEating, Reading, ChemicalReaction
are specialized types of perdurants. Then, the smallest level is assumed to be a universe including (at least)
Eating, Reading andChemicalReaction whereas this universe is referred to asPRO (processes). At
the same timePRO is a subtype of stative perdurants (STV) themselves subtypes of perdurant typesPD.
It follows that:

Eating 4 PRO 4 STV 4 PD

The same relations hold forReading andChemicalReaction. In other words,Eating represents all
processes consisting in eating something,PRO denotes all processes,STV focuses on all stative perdu-
rants whilePD addresses all categories of perdurants. However, each new type insertion within this clas-
sification preserves the original order but will automatically increment each universe index for the upper
levels. For example, if one supposes thatEating belongs to the universeTypei and that there exist differ-
ent kinds ofEating, like StuffOneself ,Devour, NibbleAt, etc., then the insertion of these categories
(which are subsumed byEating) will assign them in the universeTypei, Eating to Typei+1, etc. One
will write:

StuffOneself 4 Eating
Devour 4 Eating
NibbleAt 4 Eating

It results that the previous hierarchy of universes is shifted one level higher with the introduction of this
new level and preserves the previous classification of DOLCEcategories. Notice that subsumption in FOL
can be directly expressed by a logical implication, which isillustrated in the translation of the following
fragment. The logical formula∀x : (Devour[x] → Eating[x]) where the variablex ranges over all
domain objects will express that everyone which is devouring is also eating. In K-DTT, subsumption
operates at the level of types (and therefore, of categories), that is types are considered as objects which
can be more easily manipulated and reasoned about. For example if a type represents a complex relation
instead of a simple category likeEating, then generic rules can be applied and enhance the accuracy of
the reasoner accordingly.

Subtyping (4) must not be confused with typing (:). In the subtypingB 4 A, the categoryA details
the necessary conditions to be aB whereas category definition (i.e.,A , ...) refers to the necessary and
sufficient conditions to be anA. For exampleLegalPerson : SAG considers that a (legal) person has
all the properties of the category social agent (SAG). The DOLCE backbone asserts that categories may
be in the subtyping relation like inSAG 4 ASO (ASO stands for the "agentive social object" category)
meaning thatSAG hasat leastall the properties ofASO. These considerations are extended to relation
types. Let us consider the description of a necessary and sufficient condition in K-DTT. It would require a
relation depending on a single argument.

Hepatitis , Σx : InflammatoryDisease . Liver[x] and:Hepatitis : HasLocation

Let us now consider a necessary condition. A relation type can be defined as the subtype (4) of a generic
one. It follows that the above expression could be written:

HL1 , Σx : Inflammation.Endocardium[x] with: HL1 : HasLocation
andEndoCarditis 4 HL1

Notice that the subtyping is only implicit in Coq and, in order to prove that this relation holds betweenA
andA′, it is first assumed that the hypothesisM : A holds and then it is checked whetherM : A′ is proved.
If it is the case, then the subtypingA 4 A′ holds. The Coq syntax reflects the above differences in the
following way. The definition statement e.g.,Definition PD : PT := Type. means that we are defining
a new universePD which is a subtype of the existing universePT , that is,PD 4 PT . Alternatively, if

18 P. Barlatier et al. / Applied Ontology

the Coq syntax states thatHypothesis x : LegalPerson., it means that the new variablex is of type
LegalPerson, i.e.,x : LegalPerson provided thatLegalPerson has already been defined (well-typed)
e.g.,LegalPerson 4 SAG.

4.8. Generic Rules

A generic rule uses a product type to infer a new relation fromone or more existing ones. Let us consider
for example the right distributivity introduced in Artale-et-al (1996). The right distributivity means that a
relation on a part may distribute its related predicate to the whole. Let us explain this rule by considering
first a generic parametric19 relation typehasLocation, saying that a process occurs in some Physical
EnDurant (PED). Second, we should introduce a generic part-whole relation PartOf expressing that
some physical endurant is part of some other physical endurant (the whole). However, to express that the
part in the first relation type refers to the same object than the one which occurs in the part-whole relation
type, we rather introduce an appropriate generic relation type20 HLPO which replace the dependence
on an arbitrary term of typePED with the output of theHasLocation relation type, i.e., a term whose
resulting type is alsoPED. This is required to be sure that we act on the same proof object.

HasLocation[x : PRO, y : PartPRO[x]] , Σx : PRO . PartPRO[x]

HLPO[u : HasLocation[], z : Whole[π2u]] , Σx : HasLocation[] . Whole[π2x]

with PartPRO : PRO → PED andWhole : PED → PED. For more clarity, we do not pro-
vide the explicit arguments of parametric types since they are given in the code below. If a part is right-
distributive, then the relation which holds for the whole isalso true for the parts, i.e., more formally, the
generic rule admits a proof object for the relation typeHLPO as input, and outputs a proof object for the
updated relation typeHasLocation:

Πz : HLPO[] . HasLocation[][π1π1z, π2z]

The Coq code looks like:

Definition PartPRO(p:PRO) : PED := Type.
Definition Whole(pa:PED) : PED := Type.
Definition HasLocation(x:PRO)(y:PartPRO x) := {x:PRO & (PartPRO x)}.
Definition HLPO(u:{x:PRO & (PartPRO x)})(z:Whole (projT2 u)) := {u:{x:PRO & (PartPRO x)}

& Whole (projT2 u)}.
Axiom RightDistrib : forall (z:{u:{x:PRO & (PartPRO x)} & Whole (projT2 u)})(v:PartPRO

(projT1 (projT1 z)))(w:Whole v), HasLocation (projT1 (projT1 z)) w.

Notice that with the intermediary variablev, the variablew stands forπ2z. Substituting variableπ1π1z
in HLPO with Activity, PartPRO[π1π1z] with Room andπ2z, i.e.,Whole[PartPRO[π1π1z]] with
Building, it follows that the corresponding proof object forHLPO expresses that an activity is located
in a room itself located in a building. Applying the generic rule yields thatHasLocation()[Activity,
Building], proving that the activity is also located in the building. When similar generic rule types are
defined they can be applied for all relations types as far as they are in the subsumption relation with each
generic rule type.

5. Modeling Roles with Dependent Types

5.1. Related Works

While the first part of the paper has presented a more expressive language for expressing ontological
knowledge, this part will focus on the formalization of roles. They are also of interest in closely related

19Unlike usual dependence, the dependence in the parametric type is on external variables to the environment.
20These types are parametric for more flexibility.

P. Barlatier et al. / Applied Ontology 19

domains such as knowledge engineering, object-oriented and conceptual modeling, multi-agent systems,
philosophy, cognitive semantics and linguistics since they may introduce relevant issues or solutions for
a role model. More precisely, the concept of role has received much attention in the conceptual modeling
and object-oriented modeling literature Steimann (2000);Wieringa-et-al (1995), in knowledge represen-
tation Guarino (1992); Sowa (2000); Welty (2001); Masolo-et-al (2005); Guizzardi (2005), in knowledge
engineering van Heijst-et-al (1997) and (semi-)formal languages such as the Unified Modified Language
(UML) Rumbaugh-et-al (1999) or Description Logics (DL) Baader-et-al (2003). There has been extensive
theoretical research about roles but no consensus on its understanding appears so far. Even a widely used
ontology language like OWL does not consider roles as a primitive. Furthermore, it is clear that an im-
proper modeling of roles would have a great impact on truth maintenance alongis-a hierarchies Guarino
(1998). Despite these difficulties, some basic considerations appear to be admitted, such as the special
relationship of roles to other objects (or roles) which are said to play the role Masolo-et-al (2005); Loebe
(2007); Mizoguchi (2007). In such a fundamental scheme, players are entities playing a role within a given
context. This general characterization could be captured by the first-order axiom Loebe (2007):

∀x (Role(x) ↔ ∃yz (plays(y, x) ∧ roleOf(x, z))) (2)

whereroleOf denotes the relation between roles and contexts. Let us recall the well-known student
example in which the roleStudent is associated with players of typePerson in the role specification
under the context, e.g., of a university.

Recently, Boella-et-al (2007) has isolated a small number of consensual role characteristics which cover
the fields of knowledge representation, conceptual modeling and object-oriented modeling. First, roles
have a relational and interactional nature. This aspect is pointed out in Noble (2010) which claims that a
role makes sense only in the context of a relationship when the object is playing that role. Second, roles
are associated to a social context within an organizational-centric perspective and third behavior appears
as a main feature of roles, e.g., through the temporal aspect. Such a characterization is not sufficient and
in order to provide a better understanding of theplays androleOf relations, there are two problems to
address (i) a review of the common theoretical issues to be solved and (ii) the expected characteristics that
the concept of role must offer from a conceptual modeling (and ontological) perspective.

In Sowa (1988), the author first distinguishes between "natural concepts", i.e., concepts that can stand
on their own, and "role concepts", i.e., dependent concepts, and second, asserts that role concepts are
subsumed by natural concepts. Since a role concept is more specific than the natural concept and cor-
responds to a smaller extension, then this view seems appealing but yields subtle problems due to the
dynamic nature of roles (see, e.g., Steimann (2000) for moredetails). This work has been developed in
Guarino (1992) which adds the meta property of rigidity and the notion of founded concept. A concept is
founded if all its individuals are related to another individual, excluding the part-of relation. For example,
the conceptStudent is necessarily related to the conceptcourse. A concept is rigid if it contributes to
the very identity of its instances. Conversely, a concept isanti-rigid if its properties are non-essential for
all its instances. Above these assumptions, a concept is a role if it is founded and anti-rigid. According to
this definition,Student is a role since it is both founded (see above) and anti-rigid (e.g., if the individual
Johan is an instance ofStudent, Johan can move in and out of theStudent role without loosing his
identity). The introduction of founded types argues for a context-based framework for the role whereas
the anti-rigidity has clearly a modal flavor.

The work of Masolo-et-al (2004) (in first-order logic) considers roles as properties that can themselves
have properties while being linked to a context. The proposed formalism is based on reification and pre-
defined primitives such asDS(x) (x is a description),DF (x, y) (conceptx is defined by descriptiony),
etc. Embedding these primitives within the DOLCE ontology Masolo-et-al (2003), the basic categories of
the ontology are in the ground level while social concepts and descriptions are in the (reified) conceptual
level. While this approach appears as a significant contribution to understanding the ontological nature
of roles, it suffers from some drawbacks. First, the use of reification is subject to discussion (viewed as
a philosophically suspect mechanism Galton (1991); Akinkunmi (2000)) and second, the proposed for-
malism introduces a plethora of axioms making its assessment complex. This approach deserves credit

20 P. Barlatier et al. / Applied Ontology

for improving the expressiveness of roles by introducing a meta-level of roles (e.g., predicates on social
concepts). However, the price to be paid is an increasing complexity due to the first-order framework.

Alternatively, Loebe (2007) characterizes three kinds of role, i.e., relational roles, processual roles and
social roles. Relational roles are roles that depend on other properties or roles while processual roles
depend on processes supplied by the context. All these assumptions are translated in the syntax with first-
order rules in which some constants refer to universals whereas others refer to individuals. Social roles
require to adapt the relation between roles and contexts from "X plays the role Y in roleOf C" to "X
counts as Y in context C". However, due to the use of first-order logic, some difficulties emerge with the
player-role-context approach such as i) a definition of the context which requires further elaboration, ii) a
clear separation between representations of universals (e.g., with types) and individuals (e.g., with proof
objects) and iii) the inability of classical approaches to exploit the meta-level status of roles.

In object-oriented and conceptual modeling, the focus is rather to find constructs able to represent roles
in the context of classes and inheritance. Most works eitherconcentrate on representational issues of roles
Steimann (2000) or on object-oriented role models Wieringa-et-al (1995); Dahchour-et-al (2004). With
respect to this perspective, various modeling issues are ofinterest, such as multiple inheritance, dynamic
classification, object migration, etc. Most common ways of representing roles include named places Chen
(1976), specification/generalization Van Paesschen-et-al (2005) or aggregates relating an object with its
roles Steimann (2000). Difficulties arise in the specification/generalization approach with thesubtype-
super typeparadox (see Steimann (2000) for more details). More precisely, viewing roles as Object-
Oriented (OO) classes and assuming two classesX andY , the state of objects ofX is more general than
the state of objects ofY , while at the same time the behavior ofX is more specific thanY ’s behavior.
As a consequence, roles can be super types (statically) and subtypes (dynamically), which is in contrast
with the OO notion of inheritance where states and behavior are both inherited by subtypes. However,
more recent works have addressed most of the problems which were inherent to OO programming (see
for example, Herrmann (2007); Baldoni-et-al (2006)).

5.2. Towards Common Requirements

From the analysis of the role-based literature, a small number of common discussed features can be
extracted, as already suggested in Steimann (2000); Loebe (2007). They can provide the basis for a suitable
role representation.

1. The nature of roles, i.e., as universals or as particulars. As underlined in Loebe (2007), many ap-
proaches accept both role individuals and role universals.

2. The relation between roles and behavior. For that purpose, it seems appropriate to distinguish be-
tween properties which are required for having the role (context) with the properties which result
(for the player) when the role is acquired. The behavior (of the player) will precisely depend on these
resulting properties.

3. Role and identity, i.e., whether the identity of roles is different from their players.
4. Roles are modeled in terms of non-essential properties, and more precisely, of anti-rigid21 unary

predicates Welty (2001). For example, if we consider theStudent role, we can think of an entity
moving in and out of theStudent role while being the same individual.

5. Roles are relationally dependent Masolo-et-al (2005), i.e., they require the existence of another en-
tity. Furthermore, it is claimed that a role is specified w.r.t the nature of this entity within a context
Mizoguchi (2007). For example, the role of student depends on the university in which he (she) is
registered. This university is supposed to be a part of the current context. Furthermore, an entity
can play a role concept only within a context Masolo-et-al (2004); Loebe (2007); Mizoguchi (2007)
that is composed of external concepts whose ontological status is heterogeneous. This constraint can
be formally addressed if the concept of context receives itself a formal definition. For example, in

21All objects having such a property can lose it without losingtheir identity.

P. Barlatier et al. / Applied Ontology 21

Masolo-et-al (2004) argue for a cognitive context (i.e., a system of constitutive rules) while Guarino
and Sowa associate roles to patterns of relationships.

6. Different entities can play the same role at the same time.This assumption results from the position
of Sowa (2000) viewing role as properties. This aspect complies with the OO perspective but requires
second-order relationships between types Steimann (2000).

7. An entity can play multiple roles during a specific time interval.
8. An entity can acquire and abandon a role (dynamic aspect).As a consequence, players can lose

their membership in relations or social roles. This property clearly relates to the meta-property of
anti-rigidity which is an extension of dynamicity towards modality Loebe (2007).

9. An entity can play the same role several times simultaneously Steimann (2000); Masolo-et-al (2004).
In the latter, the author distinguishes between two levels,the ground level dealing with the basic
classes of a ground ontology and the conceptual level dealing with (reified) social concepts and their
descriptions. A structure embedding roles is a possible wayto solve this difficult issue. However, if
role types are assumed Mizoguchi (2007), then it depends strongly on the ontological nature of the
type of role definition.

10. A role can play another role Steimann (2000). This open issue depends on the nature of the role
definition. For example, in an OO framework it requires rolesto have instances. For social roles
(e.g., a given human playing an employee role which plays itself a project leader role), Masolo-et-al
(2004) explains this situation by considering two roles on the same abstraction level. One social role
playing another role is the idea addressed in Searle (1995) where the author uses iterated applications
of the formula "X counts as Y". In spite of some rare solutionsto this problem (e.g., Mizoguchi
(2007)), it can be considered so far as an unsolved issue.

As underlined in Welty (2001), most features of a role model can be formally defined with meta-properties
whereas some of the above features (e.g., 7, 8) also require different abstraction levels. Other works relate
role universals with types Steimann (2000); Guizzardi-et-al (2004) but do not exploit thoroughly the type
concept. None of the previous approaches has defined a clear separation between universals and particulars
resulting in numerous problems of identity. Finally, the requirement for role hierarchies advocate for a
subsumption mechanism able to address all the subtleties inherent to the multiplicity of role constraints.
As a consequence, the interest in roles has led to the search for a common ground on which the different
views of role (see above) can be judged and reconciled Masolo-et-al (2005); Mizoguchi (2007). With
regard to this assumption, we propose a general modeling of role with the help of dependent types, that is,
with a dependent type theory.

6. Roles as Dependent Types

6.1. Definition

In the ER model, roles are reduced to labels of types and make it impossible to construct role type gen-
eralization/specialization hierarchies which would provide better organized conceptual models. Among
the role-based literature, some works adhere to the position of "roles as types" Steimann (2000); Guiz-
zardi (2005). However, this very concept of type corresponds to the definition in use in object-oriented
languages with a limited expressiveness. For example, the role data model suggested by Bachman (1980)
has introduced role types as super types of entity types, which has led to difficulties (e.g., when regard-
ing Student as a super type of Person it accounts for the fact that all persons can appear in this role and
contradicts the dynamic viewpoint, namely that at any pointin time only some of all persons existing at
that time are students Steimann (2000)). Because of the position defended by Sowa (2000) and Guarino
(1992) (among others), assuming that different entities can play the same role, a mere assignment of a
role to a category would seem sufficient. However, it is claimed by many researchers that roles have a
relational nature. According to Sowa, roles depend on additional properties via patterns of relationships.
Alternatively, Guarino & Welty (Welty (2001)) rather claimthat we need a kind of dependence based on

22 P. Barlatier et al. / Applied Ontology

Husserl’s concept of foundation, i.e., based on a generic existential dependence on external properties.
This aspect can be expressed by means of what is known as dependent types. The last argument deals
with the introduction of contexts. On one side, some works such as Searle (1995); Loebe (2007) refer to
explicit contexts while on the other side, others consider patterns of relationships Guarino (1992); Sowa
(2000). Since an explicit context is able to encapsulate heterogeneous types in which any of them can (i)
express a relation or a sortal denoting a type of particulars, e.g.,University and (ii) depend on previous
terms within the context structure, therefore the explicitintroduction of context subsumes all approaches.
In addition, the concept of context has been formally expressed in a variant of dependent type theory
Dapoigny (2010b) with nested sum types arranged in a partonomic hierarchy. Since each context type is
indexed on a player, their aggregation (for a given player) into wider context types automatically intro-
duces several possible role types for that player. In summary, a formal representation of roles should (i)
support a categorization mechanism, (ii) exploit dependent types, (iii) involve an explicit context defini-
tion and (iv) explain the connection between all kinds of roles and relation. The role structure proposed
in K-DTT complies with all these constraints. We consider a role as a specific anti-rigid property type in
which the context type depends on categories and related constraints introduced in its environment. The
environmentΓ provides the terms that are required for the context and thatare used to constrain the type
of the player in the following role structure:

Definition 9. Given a categoryK ∈ Cat and a context typeC ∈ C, a role typeRol is an anti-rigid
property type having as left term a typeP : K called the player of the role and as right term, a context
typeC in which the player acts with:

Γ, x : P ` C : P → . . . → Prop, then: Rol , Σx : P . C[x]

where the type ofRole is the maximum universe among all types occurring in the roleexpression.

Syntactically, the role context typeC can range from a simple context type to complex nested context
types. Proof objects of the typeP are the players of the role andC is the context type which constrainsP .
Concrete rolesr : Rol are pairs〈M,N〉 where eachM is a proof object for a player (of the role) andN the
related proof that the context exists (i.e., a predicate depending on the player). Semantically, the context
does not merely represent the physical environment of an entity, but rather the way the entity perceives its
environment. It follows that several entities can have different views on the same physical environment. If
we consider for example, a student within the context of a university we assume that any student must be
registered (at least once). With the DOLCE categoriesSC for Society andSAG for Social Agent, if the
environmentΓ incorporates the typing assumptionsUniv : SC andLegalPerson : SAG, then terms are
well-formed. The following role definition:

Student , Σx : LegalPerson . C[x] (3)

introduces the context typeC[x : LegalPerson] , Σu : Univ . RegisteredIn[x, u] with the predicate
RegisteredIn : LegalPerson → Univ → Prop.

The context type in the role typeStudent (3) constrains the set of proof objects forLegalPerson
to a set of players for this particular role. Among all proof objects for the player of the role, only
those for which both the categoryUniv and the predicateRegisteredIn are proved will be validated.
As a consequence, the set of proof objects for the player of the role is a subset of the set of proofs
for LegalPerson. This definition of a student role type complies with the presupposition (i.e., regis-
tered) provided in the role context. In the constructive setting, we first have to prove the relation. Let
x : Univ having the valueUS, whereUS is a proof object for the University of Savoie. The predi-
cateRegisteredIn represents the type of proof witnessing for the status "registered", i.e., a truth value
whenever the person is a student. For instance, the list of proof objects forStudent will look like e.g.,
{. . . 〈UF14553, 〈US, p12〉〉, 〈UF14554, 〈US, p13〉〉, 〈UF14557, 〈US, p14〉〉, . . .} wherep12 is a proof for
RegisteredIn (UF14553, US) andUF14553 represents a person through its registration number. Ac-
cording to that list, the first term of the nested pair supplies the instances of the player, e.g.,UF14553,

P. Barlatier et al. / Applied Ontology 23

UF14554, etc. If some time after having checked these values we checkagain the proof objects and ob-
serve that the proof objectUF14553 does not occur, then we can conclude that the related person is no
longer a student within this university (the player has leftthe role). Two aspects are worth noticing about
the player of the role, (i) it has the typeLegalPerson in this context and (ii) its proof objects provide
the set of players for that role (not only are we able to prove the roleStudent, but we can list all its cor-
responding instances). The Coq code for such a role definition requires the definition of a category (i.e.,
LegalPerson),

Definition LegalPerson : SAG := Type.
Definition Univ : SC := Type.
Variable RegisteredIn : forall (x:LegalPerson),(forall (y:Univ), Prop).
Definition C(x:LegalPerson) := { u : Univ & (RegisteredIn x u)}.
Definition Student := { x : LegalPerson & (C x)}.
Hypothesis tuple1 : Student.
Check Student.
Check (projT1 tuple1).

When checking the type of the roleStudent, the Coq answer is22:

Student : Type (∗ max(role_student.9, role_student.8) ∗)
projT1 tuple1 : LegalPerson

It means that the resulting universe of the typeStudent is assumed to be the maximum universe between
those ofLegalPerson andUniv as stated in section 2.5. Proofs for the role player which areextracted
with the first projection (i.e.,π1) are of the typeLegalPerson as expected.

6.2. Discussion

With this definition of a role structure, several aspects areworth to be detailed. First, the concept of anti-
rigidity for a role inherited from anti-rigid property types refers to the possible existence of a proof object
for the player of the role (at a given time). As explained in subsection 2.3, each hypothetical judgment is
the K-DTT translation of the modal possibility. For example, in an environmentΓ assuming the existence
of aRol type, the judgmentΓ ` r : Rol introduces a potential roler without providing any proof for it.
Second, the existence of a role instance requires simultaneously the existence of a player and a context
detailing the conditions that the player has to fulfill in order to be able to play the role. In K-DTT, a role
ceases to exist if the player and the context does not exist. This aspect relates to the ontological nature
of the context which inherits this property from the encapsulating role, itself subsumed by the property
type seen as a moment universal (see subsection 4.2). This view contrasts with the view of Baldoni-et-al
(2006) where a role ceases to exist, even if both its player and the context which interacts with him exist.
The major reason for this divergence is the dependence of a context on something like an activity since
we cannot speak of a context in isolation but always in reference to something Dourish (2001). Third,
in contrast with the Object-Oriented framework in which objects are built by the properties of a class, in
K-DTT roles are dynamically checked by an algorithm of type inhabitation and are proved (or not) at a
given iteration of the algorithm. The position defended in Baldoni-et-al (2006) is along this line with a
context in which objects interact only via the roles played with the help of the affordances offered by their
roles. Fourth, role players correspond to a restricted version of the typeP , i.e., the subset ofP ’s for which
the role contextC is valid. This definition also agrees with the view of Loebe (2007) where roles are
existentially dependent on their players (each proof for the role is a pair which requires both a proof for
the context and a proof for the player type). Fifth, with sucha definition role types appear as a particular
(a restricted) version of anti-rigid property types, an assumption which is in line with the approach of
Baldoni-et-al (2007) but contrasting the view of Steimann (2007). This last property of roles provides a
possible answer to the open question concerning the relation between roles and relationships Boella-et-al
(2007).

22In the Coq syntax,role_student.n refers to the nth variable in the program calledrole_student.v.

24 P. Barlatier et al. / Applied Ontology

While social roles capture some individual objects on a social ontological level, one may wonder
whether the above definition also applies for other kinds of roles such as processual roles as they are in-
troduced in Loebe (2007), i.e., processual roles are parts of processes. A particular property of processual
roles is that they are two entities which are part of the process, i.e. the actor and the subject of the process.
Therefore there can be two context types according to the perspective that is adopted, either from the actor
or from the subject. As a consequence, two role types can be defined and related. Let us explain these
aspects on the example given in Loebe (2007). In the process of John’s moving a pen, there is an actor
(John) and a subject (the pen). The player John belongs to thecategoryLegalPerson while its context
involves both the subject and process from which the processual role is part-of and the predicateMoves()
as follows:

C[x : LegalPerson] , Σs : Pen . Moves[x, s]

Mover , Σx : LegalPerson . C[x]

with Moves : LegalPerson → Pen → Prop. Here,Mover describes a process in which a person
moves a pen. Alternatively, from the perspective of the pen,there is a context in which the pen is moved
by John. A context typeC ′ and its corresponding role typeMoved will capture these assumptions with:

C ′[x : Pen] , Σl : LegalPerson . Moves[l, x]

Moved , Σx : Pen . C ′[x]

These two role expressions where the player is either the actor or the subject can be seen as parts of the
situation type:S , Σx : LegalPerson .Σy : Pen.Moves[x, y]. It is worth noticing that they also reflect
the dual nature of processual roles. The author also introduces relational roles describing the way in which
an argument participates in some relation. The K-DTT also complies with this role type with the player as
argument and the context as the remaining part of the relation. Then, the view of roles as categorized in
three categories (i.e., social, processual and relational) can be easily expressed in a single structure with
the K-DTT theory which provides a uniform approach to the concept of role.

For some applications of roles such as RBAC (Role-Based Access Control) Sandhu-et-al (1996) and
the OO approach Baldoni-et-al (2005), the definition of a role has to specify both what is required to
play the role and which capabilities (also called affordances) the players will have when playing the role.
We argue that such a position can be accounted for with role preconditions and role postconditions. The
preconditions stand for what we have called so far "context type". By postconditions, we mean that a role
can represent e.g., competency to do specific tasks or may embody authority and responsibility. These
postconditions can be treated as properties of a given role type. Then we can separate mandatory properties
and possible properties with the respective rigid and anti-rigid properties introduced in subsection 4.5.
The structure is similar, however the major distinction holds in the fact that preconditions are put inside a
role (context type) whereas postconditions depend on the role and are external to the role. It follows that
objects may behave differently when participating in different roles. For example, being a student entails
that (s)he may pass some examination. It could be represented as the following anti-rigid property:

PassExam , Σx : Student . Σy : Examination . Pass[π1x, y]

The properties of the role does not include the properties from its player since the relation between a
role type and a player type is not a subsumptive relation but rather a subset relation (see e.g., subsection
7.3). The postconditions of a proof object playing a role arethe postconditions which are valid for the role
itself.

The role type fully captures the notion of founded universalGuarino (1992) since it depends on a value
of another (external) category. Here, the roleStudent depends on the objectUS having the categoryUniv
which is part of a relation supplied by the role context. Eachof the identifiers in the list corresponds to a
student, i.e., a player for the role student and is "founded"on the proof for the predicateRegisteredIn.
All the required knowledge for the notion of role as described in subsection 5.2 and summarized by rule
(2) is coherent with the syntactic structure of a role type through its salient properties:

– a role is expressed with a sum type,
– dependencies appear in the notion of parameterized contextand

P. Barlatier et al. / Applied Ontology 25

– players (of the role) are proof objects for the argument of the role.

Contrasting with some approaches, e.g., Sowa (1988), the player of the role is not a subtype of a category
(natural type) but rather, we argue that the set of proofs forthe player is a subset of the set of proofs of the
natural type. Role types are declared statically but acquired dynamically. In other words, although the role
types have to be declared during the design step (with their contexts), proof objects can populate roles at
run-time depending on the content of the related database.

6.3. Properties of Role Players

In any role pair, as explained in subsection 6.1, the player of the role expresses a constrained version
of the category described byP . This result can be easily generalized by induction on the set of proofs for
any player typeP .

Lemma 5. (Proof inclusion) Given a set of proof objects for the roler : Rol and a player categoryP
such thatRol , Σx : P .C(x) whereC denotes a role context type, then the set of proof objects forπ1(r)
is a subset of the set of proof objects forP .

Proof. Let ΘΓ(B) the set of all proof objects for the typeB in Γ, that is,ΘΓ(B) , {b | Γ ` b : B}.
Assuming a role (i.e., a proof object)〈p, c〉 : Rol whereRol , Σx : P . C[x] andC describes a family
of context types, letp1 a given proof object andΘΓ(C[p1/x]), the corresponding set of proof objects. By
summing on then valid proofsp1, . . . , pn for x, the set of proof objects for the roleR is the cardinal of
the unionΘΓ(C[p1/x]) ∪ . . . ∪ ΘΓ(C[pn/x]). Then using theπ1 elimination rule Luo (1994), we get
a single proof for each valuepk, 1 6 k 6 n since a given player can only appear at most once in each set
of proofs forπ1〈pk, ck〉. It follows thatn is an upper bound for the cardinal of the set of proof objects for
〈p, c〉. Observing that the set of proof objects for the playerπ1〈p, c〉 is a constrained version of the typep,
we get the final resultn 6 |ΘΓ(P) |. �

If we consider the two roles forStudent, e.g.,〈JohnD, 〈US, p13〉〉 and〈JohnD, 〈UJF, p51〉〉 stating
thatJohnD is both registered at the University of Savoie (US) and at the University of Grenoble (UJF),
then it follows that (i) the two roles are distinct and (ii) theπ1 elimination rule extracts a single term, i.e.,
JohnD proving that it is the common player for the two roles.

6.4. Role Types and Time

The notion of anti-rigidity captures the intrinsic potentiality in being an instance of a role and conveys
(implicitly) a temporal aspect. The relation between timing information and the notion of anti-rigidity
can be defined in the following way. A concept is anti-rigid if, assuming a discrete timet, a role type is
proved for some values oft while it is not proved at other time instants. Role types can be annotated with
temporal information for all applications that need time information. The type oft can be extracted from
standards (e.g., the XML-supported date format ISO-8601) in which standard time zones and leap years
are taken into account. Qualitative points, metric points and intervals may be either dates and times like
"2005-02-10" or periodic like "day". The data type DateTimeis intended to specify points while the data
type TimeDuration is intended to specify intervals. Above these assumptions, it appears that type checking
approaches including subtyping are well-suited to relate different time-based types Bry-et-al (2005).

In K-DTT, it is possible to consider time just as another variable. For example, endurants are in time and
they have a temporal extension. The theory provides a set of type constructors to define time-based types
like "day", "week", or "working day". Such types are declared by defining predicates. Dependent types
easily put constraints on different parts of a date. Let us cite an example extracted from Jacobs (1999) for
representing in a concise and precise way the Gregorian date.

GregorianDate , Σy : N . Σm : Nat[12] . Nat[length of month m in year y]

whereNat[n] is the type of natural numbers ranging from 1 ton andNat[length of month m in year y]
is defined by cases. In such a way a (Gregorian) date is a dependent tuple, e.g.,〈2011, 〈8, 17〉〉. Notice that,

26 P. Barlatier et al. / Applied Ontology

due to the Curry-Howard isomorphism, correctness of a date representation becomes a well-typedness
issue.

The role definition can be extended by adding a variable (e.g., t) having a time-based type to the list of
arguments of the constraint. In the student example, the constraintC(x) becomes:

C[x : LegalPerson] , Σu : Univ . Σt : T imeDuration . RegisteredIn[x, u, t]

with RegisteredIn : LegalPerson → Univ → T imeDuration → Prop. On June 2011 we
can extract the list of proof objects from the university database e.g.,{. . . 〈UF14553, 〈US, 〈2010 −
2011, p12〉〉〉, 〈UF14554, 〈US, 〈2010 − 2011, p13〉〉〉, 〈UF14557, 〈US, 〈2010 − 2011, p14〉〉〉, . . .} (since
the time type for high-schools is covering two years). Now, if we consider the role type in September 2011,
we get a new list of proof objects in which students have disappeared while others are added for the role
typeStudent. It means that the disappeared players with corresponding identifiers are no longer proofs
for the roleStudent. In other words, the role type (through its constraint) is indexed on time values, while
its players (i.e., proof objects) can change accordingly.

The type inhabitation process extract proofs (data) from a database and values are submitted to the same
constraints as for the temporal databases with explicit time models (see e.g., MacKenzie (1991)). The
process of type inhabitation needs a minimum time interval to complete and processes whose execution
time limits are above this time interval cannot be accountedfor. This is a limitation of K-DTT but whose
target framework impacts essentially real time based systems.

7. Subsumption with Roles

One major interest of role types relies on the possibility toextend them in order to cope with more
subtle representations such as complex roles or the role of arole. There are in general two conceptual
ways to extend knowledge about a structure, i.e., intensionally by adding properties or extensionally by
adding data to the structure. These two notions will be respectively fulfilled by the subsumption and the
partonomic relations23 and we focus here on the intensional view, i.e., subsumption. The subsumption
between categories has been introduced in section 4.7. The subsumption of role types and its properties
requires first to discuss how relation types are handled withsubsumption since role types involve context
types themselves made of relation types.

7.1. Subsumption between Relation Types

For the subsumption of relation types, we consider nested sum-types in which any argument of the sum
type can itself refer to a sum type. For any argumentxi : Ti, if the typeTi refers to a sum-type, then it can
be nested up to a finite number of levels and we introduce~γi with the same meaning as in subsection 4.5.
Thus, an n-ary relation type would be expressed with the dependent sum:ρ , Σx1 : T1 Σxn :
Tn[x1, ..., xn−1] . P [~γ1x1, . . . , ~γnxn], where thexi are bound variables denoting categoriesTi, ~γn stand
for finite sequences ofπ1 or π2 andP is a predicate having the typeτ1 → τ2 → . . . → τn → Prop
with ~γ1x1 : τ1, ..., ~γnxn : τn. In the case wherexi does not refer to a nested sum type, we have obviously
τi = Ti. From here on, we only consider relation types without nested sum-types because (i) simpler
expressions enhance the readability, (ii) the introduction of nested argument typesτi does not interfere
with the lemma below and (iii) people interested in the nested version can refer to Dapoigny (2010b)
where nested structures are detailed in context modeling.

Definition 10. Given two relation typesρ andρ′ such thatρ , Σx1 : T1 Σxn : Tn . P [x1, . . . , xn]
andρ′ , Σx1 : T

′
1 Σxn : T ′

n . P ′[x1, . . . , xn], thenρ subsumesρ′ if:

23Also called part-whole relations.

P. Barlatier et al. / Applied Ontology 27

(i) for non dependent categories, all the properties of eachtypeTi also hold inT ′
i ,

(ii) for dependent categories, all the properties of each family typeTj also hold inT ′
j , that is, the

familyTj is a subfamily ofT ′
j,

(iii) the predicateP ′ is a sub-predicate ofP (i.e., it is more precise).

Lemma 6. (Relation type subsumption) Given two relation typesρ and ρ′ such thatρ , Σx1 :
T1 Σxn : Tn . P [x1, . . . , xn] andρ′ , Σx1 : T ′

1 Σxn : T ′
n . P ′[x1, . . . , xn], if T ′

1 4 T1,
. . ., T ′

n 4 Tn, andP ′ 4 P , thenρ′ 4 ρ.

Proof. First, let us consider a binary relation type where we have two cases w.r.t. the dependence of
arguments:

In the first case, the two arguments are non dependent. Then, rule 2 of the corollary 1 can be easily
extended for a binary relation typeΣx1 : T1 . Σx2 : T2 . P [x1, x2], then the property holds for sum
types with multiple arguments. Since relation types are expressed with sum types, the result also holds for
relation types.

In the second case, we haveΣx1 : T1 . Σx2 : T2[x1] . P [x1, x2]. SinceT ′
1 4 T1 andT ′

2 is a subfamily
of T2 (i.e.,T ′

2 4 T2), applying the rule 2 of corollary 1 yields thatΣx1 : T1 . T2[x1] 4 Σx1 : T
′
1 . T

′
2[x1].

Then applying again the corollary withΣ x1 : T1 . Σx2 : T2[x1] andP standing respectively forA and
B, one gets the final result.

Finally, the case of n-ary relation types is easily proved byinduction over the structure of sum types.�

Let us consider, for example the relationParticipateIn described in Keet (2008). Individual qualities
are elements of the DOLCE backbone so that one can refer to them directly in formal expressions. In the
relation type, the predicateParticipateIn relates a first argument that must be an endurant (ED) together
with a perdurant (PD). In K-DTT, a relation typeParticipate requires the appropriate arguments within
a sum type as follows:

Participate , Σx : ED . Σy : PD . ParticipateIn[x, y]

Now, let us consider the enzyme (endurant) that participates in a catalytic reaction (process). This is
expressed as the relation type:

Σx : Enzyme . Σy : CatalyticReaction . ParticipateIn[x, y]

with ParticipateIn : Enzyme → CatalyticReaction → Prop. According to lemma 6, this re-
lation type is also of typeΣx : ED . Σy : PD . ParticipateIn[x, y] sinceEnzyme 4 ED,
CatalyticReaction 4 PD andParticipateIn : ED → PD → Prop.

7.2. Subsumption between Roles

The subsumption between role types looks very similar to thesubsumption between relation types.
This is not surprising, since in K-DTT context types that arepart of role types are subsumed by relation
types, as stated before (see subsection 4.2). Thus, we focuson the social and processual roles through a
comprehensive example. For that purpose, let us revisit theexample provided in Loebe (2007) where a
medical unit forms a social context and creates its own patient role individuals. A patient in the clinical
trial is treated within the medical unit by a physician. Thisexample demonstrates the two aspects of the
role structure (i) a social role (physician) where the player operates in the context of a medical unit and (ii)
a processual role (patient) arranged with a clinical process defines the context initiated by the physician
in which a person participates. The first role type is the social role involving a player whose category is
LegalPerson:

C1[x : LegalPerson] , Σm : MedicalUnit . T ryOutIn[x, m]

Physician , Σx : LegalPerson . C1[x]

with LegalPerson 4 SAG, MedicalUnit 4 NAPO and TryOutIn : LegalPerson →
MedicalUnit → Prop (the DOLCE backbone is assumed to be already included in the basic context).

28 P. Barlatier et al. / Applied Ontology

Then, the clinical process type is introduced as a process:

ClinicalProcess , Σx : Physician . Σy : ClinicalT rial . Perform[π1x, y]

from which the processual role type can be defined:

C2[x : HumanPerson] , Σp : ClinicalProcess . ParticipateIn[x, π1π2p]

Patient , Σx : HumanPerson . C2[x]

with ClinicalT rial 4 Trial, Trial 4 PRO, Perform : LegalPerson → ClinicalT rial →
Prop, HumanPerson 4 APO andParticipateIn : HumanPerson → ClinicalT rial → Prop.
The term patient is understood here as a processual role universal. This modeling decision is based on the
fact that the patient is seen as a participant of a process (a clinical trial).

These definitions may be described at a higher level taking into account the previous subtyping relations.

C ′1[x : SAG] , Σz : NAPO . ActIn[x, z]

SocialRole , Σx : SAG . C ′1[x]

TrialProcess , Σx : SocialRole . Σy : Trial . Make[π1x, y]

C ′2[x : APO] , Σp : TrialProcess . InvolvedIn[x, π1π2p]

ProcessRole , Σx : APO . C ′2[x]

with ActIn : SAG → NAPO → Prop, Make : SAG → PRO → Prop and InvolvedIn :
APO → Trial → Prop24. According to lemma 2 of subsection 3.1, the universe of eachrole type
is computed as the maximum of its composing universes and provided thatTryOutIn, Perform and
ParticipateIn are the respective sub-predicates ofActIn, Make andInvolvedIn, then lemma 6 can be
applied with the results:

Patient 4 ProcessRole and Physician 4 SocialRole

The following fragment of Coq code proves all these aspects (contexts are implicit in order to simplify
the writing).

Definition MedicalUnit : NAPO := Type.
Definition HumanPerson : APO := Type.
Definition LegalPerson : SAG := Type.
Definition Trial : PRO := Type.
Definition ClinicalTrial : Trial := Type.

Hypothesis TryOutIn : forall (x:LegalPerson),(forall (y:MedicalUnit), Prop).
Definition Physician : SAG := {x:LegalPerson & C1(x)}.
Hypothesis Perform : forall (x:LegalPerson),(forall (y:ClinicalTrial), Prop).
Definition ClinicalProcess: Trial := {x:Physician & ({y:ClinicalTrial &

(Perform (projT1 x) y)})}.
Hypothesis ParticipateIn : forall (x:HumanPerson),(forall (y:ClinicalTrial), Prop).
Definition Patient : Trial := {x:HumanPerson & C2(x)}.
Hypothesis ActIn : forall (x:SAG),(forall (y:NAPO), Prop).
Definition SocialRole : SOB := {x: SAG & C’1(x)}.
Hypothesis Make : forall (x:SAG),(forall (y:PRO), Prop).
Definition TrialProcess : PRO := {x:SocialRole & ({y:Trial & (Make (projT1 x) y)})}.
Hypothesis InvolvedIn : forall (x:APO),(forall (y:Trial), Prop).
Definition ProcessRole : PRO := {x:APO & C’2(x)}.

Hypothesis test1 : POB->Prop.
Check (test1 ProcessRole).
Check (test1 Patient).
Hypothesis test2 : SOB->Prop.
Check (test2 SocialRole).
Check (test2 Physician).

24Notice that the predicate names may be more carefully selected on the basis of terminological analysis.

P. Barlatier et al. / Applied Ontology 29

and whose results are:

test1 ProcessRole : Prop
test1 Patient : Prop
test2 SocialRole : Prop
test2 Physician : Prop

As it can be noticed, it proves that the subtyping rule(Sub) holds between the complex role typesPatient
andProcessRole since the type (Patient) can be used instead of its parent type (ProcessRole). The
same arguments hold forPhysician andSocialRole.

Corollary 2. (Proof inference) Given two relation typesρ and ρ′ such thatρ′ 4 ρ, then any proof that
holds forρ′ also holds forρ.

Proof. Sinceρ′ 4 ρ, it is obvious to see that any proof of typeρ′ is also of typeρ up to the subtyping
relation. �

Turning back to the role typePhysician, assume that a database provides a proof objectMU1 for
MedicalUnit and a list of proof objects for the term of typeLegalPerson, e.g.,P0247,HT155, P0801,
HP243, . . . ,HP122, In this list which collects all persons standing inMU1 (within a given time
interval), persons having aPxxxx identifier are patients, persons having aHPxxx identifier denote
physicians operating inMU1 and persons corresponding toHTxxx identifiers belong to the technical
staff. Then, the constructor of the last termTryOutIn will filter the previous list and provide a typeProp
that is only proved forHPxxx identifiers. For example, some proof objects for the rolePhysician could
be 〈HP122, 〈MU1, p1〉〉, 〈HP243, 〈MU1, p2〉〉, . . . wherep1, p2 denote the respective proofs for the
typesTryOutIn[HP122,MU1] andTryOutIn[HP243,MU1].

From corollary (2), it follows that〈HP122, 〈MU1, p1〉〉, 〈HP243, 〈MU1, p2〉〉, . . . are also valid
proofs forΣx : SAG . Σy : NAPO . ActIn[x, y]. In other words, it means that we have proofs saying
that someSAG are working within someNAPO.

7.3. Addressing the Generalization Hierarchies Problem

In Steimann (2000), the author has pointed out that some difficulties arise in specifying admissible types
for roles that can be filled by instances of disjoint types. Then, he argues that the solution to this problem
lies in the separation of role and type hierarchies. However, as underlined in Guizzardi (2005), this solution
would result in a significant (and counterintuitive) revision of the UML meta-model. A running example
starts from the fact that attempts to relate customer, person and organization within a single hierarchy is
problematic. To solve this problem, Guizzardi has suggested an "ontologically correct" solution with the
introduction of what is called "role mixins", i.e., abstract classes with disjoint subclasses (only subclasses
can have instances). Two roles are defined, i.e., the roles "Individual customer" and "Corporate customer"
are respectively subsumed by the kinds "Person" and "Organization" whereas a role mixin "Customer"
subsumes both "Individual customer" and "Corporate customer". This solution appears more interesting
since it explicitly states that role mixins are relationally dependent (thus, giving the so-called context).
Furthermore, it can be incorporated in a conceptual modeling design pattern without difficulties. What is
lacking is the theoretical part making these conceptual choices effective and provable. For that purpose
we suggest to express these choices in K-DTT.

Instead of an abstract class we introduce first a generic roleCustomer involving the categoryASO.
Then, we have here two modeling choices for defining the predicate which will appear in each context
type. On the one hand, it seems interesting to define a unique predicate at the highest abstraction level (i.e.,
BuyTo : ASO → ASO → Prop) and then to use polymorphism for all subsumed contexts. Themain
advantage of this solution holds in a significant code simplification. This is the solution adopted below
for the theoretical description. On the other hand, in a morecomplex approach, each context uses its own
predicate closely related to the type of its built in data. Its main benefit is a conceptually clearer model
for the (conceptual) name which is used since each differentpredicate definition becomes independent

30 P. Barlatier et al. / Applied Ontology

from data types, its name reflecting a different level. For example the highest level predicate is denoted
AskServiceTo and relates arguments of the categoryASO instead ofBuyTo (with the same arguments)
for the previous approach (BuyTo should be conceptually restricted to a subset ofASO objects and
lacks generality). This is the approach that has been explored in the code fragment given at the end of the
subsection. The generic role typeCustomer and its context is defined as:

C[x : ASO] , Σy : ASO . BuyTo[x, y]

Customer , Σx : ASO . C[x]

Then, we introduce the categoriesLegalPerson andOrganization which can be easily related to the
DOLCE hierarchy observing thatLegalPerson is a Social Agent (SAG) andOrganization is a society
(SC). Using the subtyping relationsOrganization 4 SC, LegalPerson 4 SAG, SC 4 ASO and
SAG 4 ASO together with the transitivity of subtyping, it follows that LegalPerson 4 ASO and
Organization 4 ASO. The two roles "Individual customer" and "Corporate customer" are respectively
denotedIC andCC and require the dedicated context typesC1 andC2. These contexts share the common
categoryCorporation which the respective categoriesLegalPerson andOrganization are customers
of. Using corollary 1, the subtyping holds between these role types and their generic typeCustomer w.r.t.
the DOLCE hierarchy. The two roles typesIC andCC subsumed by the generic role typeCustomer are
such that:

C1[x : LegalPerson] , Σy : Corporation . BuyTo[x, y]

IC , Σx : LegalPerson . C1[x]

C2[x : Organization] , Σy : Corporation . BuyTo[x, y]

CC , Σx : Organization . C2[x]

With BuyTo : ASO → ASO → Prop, the IC role tells us that if one obtains proof objects for
some corporation able to sell products e.g.,Co1 and some person e.g.,JohnDoe, using polymorphism
we get the proofq1 for the predicateBuyTo[JohnDoe,Co1]. TheCC role is defined in a similar way.
In other words,IC are constrained persons (customers of a given corporation)while CC are constrained
organizations which are also customers of a given corporation. On the one hand, subsumption yields that
IC 4 Customer andCC 4 Customer whereCustomer is constrained by the common generic context
typeC(ASO). On the other hand, the set of proof objects for the respective role playerπ1x in x : IC
andπ1y in y : CC are the respective subsets of the proof objects for the categoriesLegalPerson and
Organization according to lemma 5. At the same time, the set of proof objects for the role playerπ1z
in z : Customer is a subset of the categoryASO. It follows that we have two parallel hierarchies, a role
and a player hierarchies (see figure 3).

Fig. 3. Subsumption with roles in K-DTT.

With the same DOLCE categories, the role definitions are now described using the second approach
with the following Coq code (contexts are not explicitly described for the sake of clarity):

P. Barlatier et al. / Applied Ontology 31

Definition LegalPerson : SAG := Type.
Definition Corporation : SC := Type.
Definition Organization : SC := Type.
Hypothesis AskServiceTo : forall (x:ASO),(forall (y:ASO), Prop).
Hypothesis IndivBuyTo : forall (x:LegalPerson),(forall (y:Corporation), Prop).
Hypothesis CollecBuyTo : forall (x:Organization),(forall (y:Corporation), Prop).
Definition Customer : SOB := { x:ASO & { u:ASO & (AskServiceTo x u)}}.
Definition IC : SAG := { x:LegalPerson & { u:Corporation & (IndivBuyTo x u)}}.
Definition CC : SC := { x:Organization & { u:Corporation & (CollecBuyTo x u)}}.
Hypothesis Test : SOB->Prop.
Check (Test Customer).
Check (Test IC).
Check (Test CC).

whose output is:

Test Customer : Prop
Test IC : Prop
Test CC : Prop

This simple test proves that the subtypesIC andCC can be used instead of their parent typeCustomer.
The dependent types make the difference with standard classes (types) of OO programming since we
are able to treat simultaneously the two constraints without any extra programming technique or without
separating hierarchies between classes as suggested in Steimann (2000). Furthermore, this solution avoids
the introduction of mixins Guizzardi (2005); Loebe (2007) by using a more formal and elegant mechanism
based on subtyping at the type-theoretical level.

8. Roles Properties

8.1. Identity Criteria for Roles

Another debate in role modeling is whether or not roles couldbe assigned an identity. We focus here
on material roles, that is roles which have an identity. The issue whether roles carry their own identity has
been addressed in many works and several authors Albano-et-al (1993); Kristensen (1995) claim that the
identity of a role instance is inherited from a universal subsuming the role type whereas some others do
not share this view (see e.g., Wieringa-et-al (1995); Steimann (2000)). Since the role has an IC, it follows
that a role cannot subsume a property having no IC as pointed out in Welty (2001). In K-DTT, all proof
objects can be distinguished and thus have an identity. Proof objects for the role type are distinguishable
and their respective values count as an identification. It isclear that, for instance, as a studentMike has
a student ID and as soon as he ceases to be a student, then he loses that ID while always holding his own
social insurance number (i.e., being a person). More precisely, one can get a proof object for the argument
of typeLegalPerson in the example given in subsection 6.1 while there are no proofs for the predicate
RegisteredIn and as a consequence for the typeStudent. It follows that advocating dependent role types
yields the acceptance of identity for players in line with the view of Guizzardi (2005). Notice that the
player of a role has an identity only when playing the role.

8.2. Simultaneous Roles

Let us examine the case where an entity can play different roles simultaneously. For that purpose, one
can introduce two different roles, a student and a worker with an additional constraint, i.e., a student in that
case is also a worker. The second role depends on the first since we are interested in "simultaneous" roles,
then, it is advised to first introduce a constraintC(x) in which we restrict the student role (see subsection
6.1)

32 P. Barlatier et al. / Applied Ontology

C[x : LegalPerson] , Σu : Univ . RegisteredIn[x, u]

and then introduce the student role whose constraint forms the basis for the constraint of the worker role:

Student, Σx : LegalPerson . C[x]

WorkStud, Σx : LegalPerson . C ′[x]

We have introduced the nested constraint typeC ′[x : LegalPerson] , Σy : C[x] . Σz :
Corporation . HiredAt[x, z] such that it requires the student context typeC[x]. The result, i.e., the set
of proof objects will enumerate all the students having a jobconcurrently to their studies.

Definition 11. Two simultaneous roles are specified with first introducing arole type and then defining
a second role type having (i) as player the same player as the first and (ii) as context type, a sum type
depending on the first context w.r.t. the structure:

Rol , Σx : P . C[x]

SimRol , Σx : P . C ′[x] with C ′[x : P] , Σz : C[x] φ[z, . . .]

Major benefits of this definition are (i) the limitation of thesearch space by admitting only student ob-
jects in the new context, (ii) the flexibility allowing role types to be easily extended and (iii) the indepen-
dence of subsumption of multiple role players from the number of roles.

8.3. Role of Role

If we consider the example given in Masolo-et-al (2004) where an employee plays the role of a project
leader, the suggested solution solves the issue by considering that roles are in fact additive. Following
that argument, roles of roles can be solved by specializing roles. This aspect can be related to the notion
of complement for a role. In Loebe (2007), the author defines the notion of complement for a given role
universal which says that a (universal) context is assignedto a set of role universals through the notion of
"role base". In contrast with this relation-centered view,we rather consider a player-centered view where
the player is the central part of the role. In this alternate strategy, a given context typeC can be extended
either by adding properties toC (the intensional perspective) or by extending its data structure with new
information (the extensional perspective). Furthermore,different players may have different views on their
environment and then, they may be related to different context types. This player-centered view is coherent
with the assumption that context types describe moment universals.

More precisely, in K-DTT, we follow the view already explained in Dapoigny (2010b) which assumes
(i) that a context type is related to a single intention (here, a role type) and (ii) that a context type is
extensible either to the aggregation of disjoint context types or to a partonomic hierarchy of nested context
types (see definition 4). It follows that each time a context is extended with new information then it is
related to a distinct role type. Let us explain these assumptions on the example given in Loebe (2007), i.e.,
John is a student of mathematics at the University of Leipzig. Using theStudent role of definition (3), a
new roleStudentInField is introduced as a specialization of theStudent role:

C ′[x : Student] , Σc : CourseOfStudy[π1π2x] . StudiesIn[π1x, c]

StudentInField , Σx : Student . C ′[x]

Notice thatCourseOfStudy depends onπ1π2x, that is a value which belongs to the categoryUniv. In
other words we restrict the categoryCourseOfStudy to be the course of study in the precise university
where the student is registered. Then using the definition ofStudent, theπ-elimination rules and variable
renaming, we get the expression:

StudentInField , Σl : LegalPerson . Σz : C[l] . Σc : CourseOfStudy[π1z] . StudiesIn[l, c]

The interesting result is that, with:

C”[l : LegalPerson] , Σz : C[l] . Σc : CourseOfStudy[π1z] . StudiesIn[l, c],

P. Barlatier et al. / Applied Ontology 33

the resulting expression preserves the player and extends the context w.r.t. definition (3) fromC[l] to
C”[l]. This result can be generalized from the equivalence between the two expressions: following the
view of Masolo-et-al (2004), a role of a role seen as a specialization preserves the player and extends its
initial context.

8.4. Revisiting the Counting Problem

The identity criteria have also a strong impact on the so-called counting problem, a recurrent prob-
lem involving role individuals with multiple instantiation Gupta (1980) which can be formulated in the
following way:

- KLM served four thousand passengers in 2010.
- Every passenger is a person.
- Ergo, KLM served four thousand persons in 2010.

The assertions state that if a given person is registered in several flights of KLM in 2010, which is
more than likely, the conclusion is false Wieringa-et-al (1995); Guizzardi (2005). This example has been
throughly discussed, focusing on the relationships between the identity criteria (or coincidences) for pas-
sengers and persons. The basic problem is that counting passengers does not reduce to count persons, then
a clear understanding of the relation person-role is required. Many solutions are given but what is needed
is a comprehensive theory able to take into account all aspects of a role modeling.

Since they are passengers that can register more than once toseveral flights, counting persons cannot
reduce to count passengers. This problem clearly refers to the issue whether roles carry their own identity
and has been addressed in many works in which no consensus hasemerged. However, it can be solved
rigorously in K-DTT by using the following definitions:

C[p : LegalPerson] , Σt : Date . Σf : Flight[t] . BookedAt[p, t, f]

Passenger , Σp : LegalPerson . C[p]

with BookedAt : LegalPerson → Flight → Date → Prop. This role type describes a situation
in which a reservation has been made on a given flight at a givendate. For each proof of this type of
situation there is a corresponding playerJohnD, such that〈JohnD, 〈KL312, 〈Apr7 : 6PM, q1〉〉〉 is a
proof object forPassenger whereq1 is a proof forBookedAt[JohnD,KL312, Apr7 : 6PM]. Using
lemma 5, it is straightforward to deduce that the set of proofobjects which occurs for the left argument
of Passenger is a subset of the set of proof objects forLegalPerson and then, one can no longer say
that KLM served four thousand passengers in 2010. Differentproof objects forPassenger correspond
to different pairs but this does not exclude the first term (i.e., the player) to be identical. The conclusion,
sharing the view of Guizzardi (2005), is that the principle of identity of passengers is supplied by a unique
universal described by a free variablex : LegalPerson such that the player described by the bound
variablex : LegalPerson within Passenger, is a subset of it.

8.5. Discussion

In order to summarize what can be exactly covered by the concept of role, we suggest to draw some
distinctions between OO representations, FOL-based and the K-DTT view. For that purpose let us focus
on some items that have been enumerated in subsection 5.2.

1. Many approaches consider roles are universals. For example, within an ontological perspective, roles
are seen as specific classes Loebe (2007), in the OO domain they are bound to classes with relations
Herrmann (2007) or collections of properties Kristensen (1995) while using FOL, roles are either
manipulated through predicates acting on entities Masolo-et-al (2004) or considered as sorts in an
order-sorted logic Steimann (2000). In Loebe (2007), the author has advocated for a categorization of
roles into relational roles, processual roles and social roles. Assuming this view, we suggest to relate
a role category with the category that its player belongs to.In such a way, the role definition (see

34 P. Barlatier et al. / Applied Ontology

Definition 9) could be extended to express category-based roles subsumed by the general definition:
Role , Σx : PT . C[x].

SocialRole , Σx : ASO . C[x]

ProcessualRole , Σx : ED . C[x]

We assume that players of processual roles are endurants.
2. Roles can be related to one or more behaviors. In K-DTT, behaviors can be introduced as role prop-

erties. However this possibility has not been investigatedand is left for a future paper.
3. The problem of identity in a model supporting roles as distinguishable instances provides greater

flexibility, because such a model admits dynamic structuresthat cannot be captured otherwise. We
assume that roles have an identity different from their players since we define an identity for the role
while maintaining the identity of the entity playing the role. Our approach is consistent both with the
OO view, which clearly separates the role definition from theplayer’s definition, and the FOL-based
perspective using the so-called "qua-individuals"25.

4. Roles are anti-rigid, that is role is not a permanent feature of an entity. A (realist) view would assume
that a role exists iff there is (at least) a player together with an existing context. As underlined in
Mizoguchi (2007), this assumption would lead to reject a model in which an instance of a role exists
without being played by anything. The K-DTT theory solves this problem in the following way. A
role type intensionally exists if we have a means to construct that type (e.g., having a structure relat-
ing this type with other types). This last aspect is in line with the view of Boella-et-al (2007) where
the existence of a role type depends on the existence of a context type. A role type extensionally
exists if we can collect proof objects for it (type inhabitation). Furthermore, the constructive view
only argues for the existence of a means and not for the results of achieving this means, i.e., with
proof objects.

5. As in most approaches, role types are relationally dependent, that is they require some external
concepts to define them. The definition of roles types in K-DTT, embeds external concepts within the
context of the role while the relation is arranged between a player and its context. By contrast with
the OO approaches, in K-DTT the role is not an integral part ofthe object, it is a specific relation,
or more generally, a specific interaction that can be proved for some existing objects. An entity can
play a role concept only within a context. This property is a logical consequence of Definition (9)
in which a context can range from a simple sortal to a complex set of relation types. The context
type describes explicitly the requirements that a particular must fulfill to be a player for that role
according to Husserl’s notion of foundation Guarino (1992). Since a theory of context types has
already been investigated (see Dapoigny (2010b) for more details), the definition of context types in
K-DTT can take advantage of this study.

6. Different entities can play the same role at the same time.These entities are those accounted for in
the list of proof objects corresponding to the player of the role and result from the existence of proof
objects at a given time.

7. An entity can play multiple roles during a specific time interval. In K-DTT the proof objects for the
player category are marked by the fact that they share a common role type (i.e., they are part of the
tuple proving the role type) but nothing prevents some of these proof objects to occur in other role
types provided that the category of the player is the same.

8. An entity can acquire and abandon roles (dynamic aspect).Proof objects can be involved in different
role types, that is, in different interactions which are defined and then manipulated as types. The
time is explicitly taken in account inside temporally characterized structures in which the temporal
argument only constrains the validity of the structure withthe usual ordering. Proof objects for
all these types are quantified at each iteration of the type checking algorithm, with the intuitive
consequence that K-DTT can hardly satisfy strong real-timeconstraints. However the dynamicity

25They refer here to the set of proof objects for the player of the role.

P. Barlatier et al. / Applied Ontology 35

relies on the ability of proof objects to populate the different categories at each iteration of the type
checker. In such a way any proof object is susceptible to shift from a typed structure to another one.

9. An entity can play the same role several times simultaneously. According to the interpretation given
in Masolo-et-al (2004) a player is involved in several rolesthat are all specializations of a more
general one. It can be considered as a particular case of the multiple roles issue which is easily
represented in K-DTT.

10. A role can play another role. In the general definition (Definition 9), it is possible to define the player
as a role type, but what is the expected meaning of such an assumption? As a consequence, we limit
the semantics of K-DTT to additive roles as in Masolo-et-al (2004).

In OO programming languages, the status of role has been thoroughly investigated, e.g., in Bachman
(1980); Steimann (2000); Herrmann (2007); Steimann (2007)where a great expressiveness for knowledge
representation is highlighted. Among role-oriented approaches in software modeling, the programming
language ObjectTeams/Java Herrmann (2007) is a significantone. While it technically supports the fact
that roles come with their own behavior, this property appears more dedicated to OO programming and
weakly addresses ontology modeling problems.

An alternative approach in OO programming considers roles as sets of affordances (see Baldoni-et-
al (2006)). However, explaining roles in such a way, we have to collect all items of these sets for each
role. A different perspective that is suggested here, consists in first expressing types of roles and then
relating a minimal set of power (authority relationships) for each proved role. Types have a natural fit with
observation since a type is inhabited if we collect in a database some proof objects having this type. Then,
perceiving what objects afford boils down in K-DTT to populate the types which represent the affordances.

The first-order model of Masolo-et-al (2004) characterizesroles as the properties and relations reified
at the object level for which it is possible to explicitly describe some aspects of the social contexts. Such
a formalism could be easily translated in K-DTT with specifications but we do not follow this road here
since we can support all the requirements for roles using higher-order capabilities. For example, the "Spe-
cialization" of roles is treated with subsumption while "requirements" generally correspond to the fact that
roles can play roles (see subsection 8.3). Furthermore, unlike the first-order model, the K-DTT solution
addressing the counting problem allows such a property to bederived from the modeling constructs used
in representing knowledge (see lemma 5).

9. Conclusion

The obstacles standing in the way of the extension of a foundational ontology using expressive primi-
tives are the lack of a unifying theory both sufficiently expressive and logically founded together with a
logic which supports different abstraction levels. Due to its natural abstract character, it is a natural choice
to describe an ontology in a high-level language. For that purpose, we have introduced the theory K-DTT
which uses dependent types for their ability to support highexpressiveness and powerful reasoning.

In a first part, we have shown how a type theory can be used to provide a highly-expressive language
for ontologies. It is demonstrated that dependent types canmodel several non-trivial aspects of classes
such as meta-level properties (rigidity, identity criterion, etc.). On the one hand, the present theory is more
expressive than usual predicate logic in which it is neitherpossible to apply a function symbol to a propo-
sition, nor to bind a variable except with a quantifier. In addition, the language of K-DTT is richer than
the language of usual FOL-based systems in allowing proofs to appear as parts of the propositions so that
the propositions can express properties of proofs (and not only of individuals like in FOL). This makes
it possible to strengthen the axioms for existence, disjunction, absurdity and identity. On the other hand,
the relation between OO programming and type theory relies on the ability of their representative compu-
tational structures to correctly express the semantics of ontological components. While their expressive-
ness is comparable, many aspects of object-oriented programming can be preserved in type theory since it
unifies functional programming, component based programming, meta-programming (MDA), and logical
verification (see Setzer (2007) for more details).

36 P. Barlatier et al. / Applied Ontology

The second part aims at proposing a formalization of role with dependent types. The objective was to
maintain an interdisciplinary character of roles by unifying ideas from prior research models within the
logical framework and to give a more practical view of the abstract theory with (i) a significant number
of examples and (ii) code fragments which detail the corresponding implementation with the Coq proof
assistant. The role modeling is kept simple partly due to thefact that contexts are first class citizens of
the theory (i.e., contexts as types). Notice that OO approaches provide solutions to role modeling that
technically overlap K-DTT while lacking formal foundations and support for reasoning. This last aspect is
very appealing for ontologies and is fully supported by K-DTT but it has not been developed here due to
lack of place. However, the interested reader could find someexamples on reasoning with dependent types
e.g., for the correct specification of part-of relations in ontologies Dapoigny (2010a). The contribution
includes a first formal solution for generalization hierarchies, identity criteria for roles, roles of roles and
the counting problem.

We think that this paper can shed new light (i) on the ability of a type-theoretical language to support
expressive ontologies and (ii) on a highly expressive contribution to role formalization. Some important
problems have been left aside (e.g., role and behavior, reasoning about role types) due to the lack of space,
but the K-DTT theory has the power to address them and it is planned for a future work.

References

Abadi, M. and Cardelli, L. (1998). A Theory of Objects,Monographs in Computer Science, Springer Verlag.
Akinkunmi, B. (2000). On the expressive limits of reified theories,Journal of Logic and Computation, 10(2), 297–313.
Albano, A. and Bergamini, R. and Ghelli, G. and Orsini, R. (1993), An Object Data Model with Roles,Proceedings of the 19th

International Conference on Very Large Data Bases, VLDB’93, 39–51.
Andrews, P. (1986). An Introduction to Mathematical Logic and Type Theory: to Truth through Proof,Academic Press.
Armstrong, J. (2009). InCoders at Work: Reflections on the Craft of Programming, 205–241, Peter Seibel, ed.
Artale A. and Franconi E. and Guarino N. and Pazzi L. (1996). Part-whole relations in object-centered systems: An overview.

Data & Knowledge Engineering, 20, 347–383.
Asher, N. (2008). A Type Driven Theory of Predication with Complex Types,Fundamenta Informaticae, 84(2), 151–183.
Baader, F. and Calvanese, D. and McGuinness, D. and Nardi, D.and Patel-Schneider, P. (2003).The Description Logic Handbook,

Cambridge University Press.
Bachman, C.W. (1980). The role data model approach to data structures,Procs. of the International Conference on Data Bases,

S. M. Deen and P. Hammersley eds., 1–18.
Baldoni, M., Boella, G. and van der Torre, L.W.N. (2005). Social roles, from agents back to objects,Workshop From Objects to

Agents (WOA), 164–170.
Baldoni, M., Boella, G. and van der Torre, L. (2006). Modelling the Interaction between Objects: Roles as Affordances,In Proc.

of Knowledge Science, Engineering and Management, KSEM’06, LNCS4092, 42–54, Springer.
Baldoni, M., Boella, G. and van der Torre, L. (2007). Relationships meet their roles in object oriented programming,In Proc. of

the 2nd International Symposium on Fundamentals of Software Engineering Theory and Practice (FSEN’07), LNCS4767,
440–448, Springer.

Barendregt, H. (1992). Handbook of Logic in Computer Science,Lambda Calculi with Types, 2, Oxford University Press, 117–
309.

Barendregt, H. (1997). The impact of the lambda calculus in logic and computer science,Bulletin of Symbolic Logic, 3(2),
181–215.

Barendregt, H. and Geuvers, H. (2001). Handbook of Automated Reasoning,Proof-Assistants Using Dependent Type Systems,
Elsevier and MIT Press, 1149–1238.

Barlatier, P. (2009). Conception et implantation d’un modèle de raisonnement sur les contextes basé sur une théorie destypes et
utilisant une ontologie de domaine,Phd Thesis (in french), University of Savoie.

Bittner, T. and Donnelly, M. and Smith, B. (2004). Individuals, Universals, Collections: On the Foundational Relations of Ontol-
ogy, In Procs. of the International Conference on Formal Ontology in Information Systems (FOIS04), 37–48, IOS Press.

Boella, G. and van der Torre, L. and Verhagen, H. (2007). Roles, an interdisciplinary perspective,Applied Ontology, 2(2), 81–88.
Boldini, P. (2000). Formalizing Context in IntuitionisticType theory,Fundamenta Informaticae, 42(2), 1–23.
Bruni, R. and Lluch Lafuente, A. and Montanari, U. and Tuosto, E. (2007). Service Oriented Architectural Design,Procs. of the

3rd International Symposium on Trustworthy Global Computing, LNCS4912, Springer, 186–203.
Bry, F. and Lorenz, B. and Spranger, S. (2005). Calendars andTopologies as Types,Knowledge-Based Intelligent Information

and Engineering Systems, LNCS3684.
Calegari, D. and Luna C. and Szasz, N. and Tasistro, A. (2010). Representation of metamodels using inductive types in a Type-

Theoretic Framework for MDE,Instituto de Computación Facultad de Ingeniería Universidad de la República Montevideo,
Uruguay, tech. report RT 10-01.

Chen, P.P. (1976). The entity-relationship model: Towardsa unified view of data,ACM Trans. on Database Systems, 1(1), 9–36.
Cimiano, P. (2003). Translating Wh-Questions into F-LogicQueries,Procs. of the 2nd CoLogNET-ElsNET Symposium, 130–137.

P. Barlatier et al. / Applied Ontology 37

Cirstea, H. and Coquery, E. and Drabent, W. and Fages, F. and Kirchner, C. and Maluszynski, J. and Wack, B. (2004). Types for
Web Rule Languages: a preliminary study,technical report A04-R-560, PROTHEO - INRIA Lorraine - LORIA.

Cooper, R. (2005). Records and Record Types in Semantic Theory, J. of Logic and Computation, 15(2), 99–112.
Coq Development Team (2010). The Coq Reference Manual,Version 8.3., INRIA, France.
Coquand, T. and Huet, G. (1985). Constructions: A Higher Order Proof System for Mechanizing Mathematics, EUROCAL’85:

Invited Lectures from the European Conference on Computer Algebra-Volume I, Springer-Verlag, 151–184.
Coquand, T. and Huet, G. (1988). The calculus of constructions,Information and Computation, 76(2–3), 95–120.
Constable, R. L. (1991). Theoretical Aspects of Computer Software,Type theory as a foundation for computer science, LNCS

526, Springer, 226–243.
Costa, P.D. and Guizzardi, G. and Almeida, J.P.A. and Pires,L.F. and van Sinderen, M. (2006). Situations in Conceptual Modeling

of Context,Procs. of the 10th IEEE on International Enterprise Distributed Object Computing Conference Workshops, 6–,
IEEE Computer Society.

Dahchour, M. and Pirotte, A. and Zimányi, E. (2004). A role model and its metaclass implementation,Inf. Syst., 29(3), 235–270.
Dapoigny, R. and Barlatier, P. (2010a). Towards Ontological Correctness of Part-whole Relations with Dependent Types, Procs.

of the Sixth International Conference (FOIS 2010), 45–58.
Dapoigny, R. and Barlatier, P. (2010b). Modeling Contexts with Dependent Types,Fundamenta Informaticae, 104(4), 293–327.
Dapoigny, R. and Barlatier, P. (2012). Formal Foundations for Situation Awareness based on Dependent Type Theory,Information

Fusion, (accepted for publication), doi 10.1016/j.inffus.2012.02.006.
de Bruijn, N. (1987). Generalizing Automath by means of a lambda-typed lambda calculus, in D. Kueker, E. Lopez-Escobar and

C. Smith (eds), Mathematical Logic and Theoretical Computer Science, Lecture Notes in Pure and Appl. Math.,106, Marcel
Dekker, New York, 71–92.

Dourish, P. (2001). Seeking a foundation for context-awarecomputing,Human-Computer Interaction, 16(2-3), 229–241.
Enache, R. and Angelov, K. (2011). Typeful Ontologies with Direct Multilingual Verbalization,Procs. of the Controlled Natural

Languages Workshop (CNL 2010).
Gangemi, A. and Guarino, N. and Masolo, C. and Oltramari, A. and Schneider, L. (2002). Sweetening ontologies with DOLCE,

Procs. of the 13th International Conference Knowledge Engineering and Knowledge Management (EKAW2002), A. Gomez-
Perez and V.R. Benjamins eds., LNCS2473, Springer, 166–181.

Galton, A. (1991). Reified Temporal Theories and How To Unreify Them,Proceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI’91), 1177–1182.

Girard J.Y. (1971). Une Extension de l’Interprétation de Gödel à l’Analyse, et son Application à l’Elimination des Coupures dans
l’Analyse et la Théorie des Types Procs. of the Second Scandinavian Logic Symposium, Amsterdam, 63–92.

Girard J.Y. (1973). Quelques résultats sur les interprétations fonctionnelles,Lecture Notes in Mathematics, 337, Springer.
Girard, J.-Y. (2006). The Blind Spot,http://iml.univ-mrs.fr/ girard/coursang/coursang.html.
Girard J.Y. and Lafont Y. and Taylor P. (1988). Proofs and Types,Cambridge University Press, 7, Cambridge Tracts in Theoretical

Computer Science.
Gödel, K. (1933). Eine Interpretation des intuitionistischen Aussagenkalküls,Ergebnisse eines mathematischen Kolloquiums, 4,

39–40.
Guarino, N. (1992). Concepts, attributes and arbitrary relations,Data & Knowledge Engineering, 83, 249–261.
Guarino, N. (1994). The Ontological Level, In R. Casati, B. Smith and G. White (eds.),Philosophy and the Cognitive Science,

Holder-Pivhler-Tempsky, 443–456.
Guarino, N. (1995). Formal ontology, conceptual analysis and knowledge representation,Int. J. Human-Computer Studies, 43(5–

6), 625–640.
Guarino, N. (1998). Some Ontological Principles for Designing Upper Level Lexical Resources,CoRR, cmp-lg/9809002.
Guarino, N. and Welty, C. (2000). A Formal Ontology of Properties, Procs. of EKAW 2000, R. Dieng and O. Corby eds., LNAI

1937, Springer, 97–112.
Guarino, N. and Welty, C. (2002). Evaluating Ontological Decisions with OntoClean,Communications of the ACM, 45(2), 61–65.

ACM Press.
Guizzardi, G. and Herre, H. and Wagner, G. (2002). On the General Ontological Foundations of Conceptual Modeling,Procs. of

the 21th International Conference on Conceptual Modeling (ER2002), Springer-Verlag, 65–78.
Guizzardi, G. and Wagner, G. and Guarino, N. and Van Sinderen, M. (2004). An Ontologically well-Founded Profile for UML

Conceptual Models,In Procs. of the 16th Int. Conf. on Advanced Information Systems Engineering (CAiSE’04), Springer,
112–126.

Guizzardi, G. and Wagner, G. (2004). Towards Ontological Foundations for Agent Modelling Concepts Using the Unified Fun-
dational Ontology (UFO),AOIS, 110-124.

Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models,University of Twente (Centre for Telematics
and Information Technology).

Guizzardi, G. (2005). Agent Roles, Qua Individuals and the Counting Problem,SELMAS, 143–160.
Guizzardi, G. and Masolo, C. and Borgo, S. (2006). In Defenseof a Trope-Based Ontology for Conceptual Modeling: An

Example with the Foundations of Attributes, Weak Entities and Datatypes,Procs. of ER’2006, LNCS4215, 112–125.
Gupta, A. (1980).The Logic of Common Nouns: an investigation in quantified modal logic, PhD, Yale University.
Hancock, P. and Setzer, A. (2000). Interactive Programs in Dependent Type Theory,CSL, 317–331.
van Heijst, G. and Schreiber, A. Th. and Wielinga, B. J. (1997). Roles are not classes: a reply to Nicola Guarino,Int. J. of

Human-Computer Studies, 46(2), 311–318.
Herrmann, S. (2007). A precise model for contextual roles: The programming language ObjectTeams/Java.Applied Ontology,

2(2), 181–207.
Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik,Sitzungsberichte der Preussischen Akademie der Wis-

senschaften, 42–56.

38 P. Barlatier et al. / Applied Ontology

Hickey, R. (2009). keynote atJVM Languages Summit.
Horrocks, I. and Patel-Schneider, F. (2004). A proposal foran OWL Rules Language,Procs. of the Thirteenth International

World Wide Web Conference (WWW 2004), 723–731.
Howard, W. A. (1980). To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,The formulae-as-types

notion of construction, Academic Press, 479–490.
Jacobs, B. (1999). Categorical Logic and Type Theory,Studies in Logic the Foundations of Mathematics, 141, Elsevier.
Keet, C.M. and Artale, A. (2008). Representing and reasoning over a taxonomy of part-whole relations,Applied Ontology, 3(1–2),

91–110.
Kripke, S. (1963). Semantical Considerations on Modal Logic, Acta Philosophica Fennica, 16, 83–94.
Kristensen, B. B. (1995). Object-Oriented Modeling with Roles,Procs. of the 2nd International Conference on Object-Oriented

Information Systems, 57–71.
Krohs, U. (2011). Functions and fixed types: Biological and other functions in the post-adaptationist era,Applied Ontology 6(2),

125–139.
Loebe, F. (2007). Abstract vs. social roles - Towards a general theoretical account of roles,Applied Ontology, 2(2), 127–158.
Luo, Z. (1990). A problem of adequacy: conservativity of calculus of constructions over higher-order logic,Technical report

ECS-LFCS-90-121), Department of Computer Science, University of Edinburgh.
Luo, Z. (1992). A Unifying Theory of Dependent Types: The Schematic Approach,Procs. of Logical Foundations of Computer

Science (LFCS’92), 293–304.
Luo, Z. (1994). Computation and Reasoning,Oxford Science Publications, 11, International Series of Monographs on Computer

Science.
Malecha, G. and Morrisett, G. and Shinnar, A. and Wisnesky, R. (2010). Toward a Verified Relational Database Management

System,37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, 237–248.
Martin-Löf, P. (1982). Constructive Mathematics and Computer Programming,Logic, Methodology and Philosophy of Sciences,

6, 153–175.
Masolo, C. and Borgo, S. and Gangemi, A. and Guarino, N. and Oltramari, A. (2003). Ontology Library (D18),Laboratory for

Applied Ontology-ISTC-CNR.
Masolo, C. and Vieu, L. and Bottazzi, E. and Catenacci, C. andFerrario, R. and Gangemi, A. and Guarino, N. (2004). Social roles

and their descriptions,In Proc. of the Conference on the Principles of Knowledge Representation and Reasoning, AAAI
Press, 267–277.

Masolo, C. and Guizzardi, G. and Vieu, L. and Bottazzi, E. andFerrario, R. (2005). Relational Roles and Qua-individuals, AAAI
Fall Symposium on Roles, an Interdisciplinary Perspective: Ontologies, Programming Languages, and Multiagent Systems,
AAAI Press, 103–112.

McKenzie, E. and Snodgrass, R. (1991). An evaluation of relational algebras incorporating the time dimension in databases,
ACM Computing Surveys, 23, 501–543.

McKinna, J. (2006). Why dependent types matter,Procs. of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 41(1), 1–1.

Mizoguchi, R. Ikeda, M. and Sinitsa, K. (1997). Roles of Shared Ontology in AI-ED Research – Intelligence, Conceptualization,
Standardization, and Reusability,Proc. of AIED-97, 537–544.

Mizoguchi, R. (2007).The model of roles within an ontology development tool: Hozo, Applied Ontology, 2(2), 159–179.
Montague, R. (1970). Pragmatics and intensional logic,Synthèse, 22, 68–94.
Munn, K. Smith, B. (2008). Applied Ontology. An Introduction, Metaphysical Research, 9, Ontos Verlag.
Muskens, R. A. (1996). Combining Montague Semantics and Discourse Representation,Linguistic and Philosophy, 19, 143–186.
Napoli, A. (1992). Subsumption and classification-based reasoning in object-based representations,Procs. of the 10th European

Conference on Artificial Intelligence (ECAI92), 425–429, John Wiley & Sons Ltd.
Noble, J.R. (2010). Roles and Relationships, Procs. of the Dagstuhl Workshop on Relationships, Objects, Roles, and Queries in

Modern Programming Languages.
Noonan, H. (2011). Identity, The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.),

<http://plato.stanford.edu/archives/win2011/entries/identity/>.
Van Paesschen, E. and De Meuter, W. and D’Hondt, M. (2005). Role modelling in SelfSync with warped hierarchies,In Procs.

of the AAAI Fall Symposium on Roles, 149–155.
Poli, R. (2010). Philosophical Perspectives, Poli, R.; Seibt, J.; Healy, M.; Kameas, A. eds.,Theory and Applications of Ontology,

1, Springer.
Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study, Almquist & Wiksell eds., Dover Publications.
Oury, N. and Swierstra, W. (2008). The power of Pi,SIGPLAN Notices, 43(9), ACM, 39–50.
Ranta, A. (2004). Grammatical Framework: A Type-Theoretical Grammar Formalism,Journal of Functional Programming,

14(2), 145–189.
Reus, B. and Streicher, T. (1993). Verifying Properties of Module Construction in Type Theory,In Proc. MFCS’93, LNCS711,

Springer, 660–670.
Reynolds, J. (1983). Types, Abstraction and Parametric Polymorphism,IFIP Congress, Paris, 513–523.
Reynolds, J. (1984). Polymorphism is not set-theoretic. Semantics of data types, LNCS173, Springer, 145–156.
Rumbaugh, J. and Jacobson, I. and Booch, G. (1999).The Unified Modeling Language Reference Manual, Addison Wesley.
Russell, B. (1986) The Philosophy of Logical Atomism and Other Essays, 1914–19, John G. Slater ed., London: George Allen

& Unwin.
Schürmann, C. (2001). Recursion for Higher-Order Encodings, Procs. of the 15th International Workshop on Computer Science

Logic (CSL’01), 585–599.
Sandhu, R. and Coyne, E.J. and Feinstein, H.L. and Youman, C.E. (1996). Role-Based Access Control Models.IEEE Computer,

29(2), 38–47, IEEE Press.

P. Barlatier et al. / Applied Ontology 39

Searle, J. R. (1995). The Construction of Social Reality,New York: Free Press.
Setzer, Anton (2007). Object-Oriented Programming in Dependent Type Theory,Trends in Functional Programming, 7, Intellect,

91–108.
Smith, B. and Rosse, C. (2004). The Role of Foundational Relations in the Alignment of Biomedical Ontologies,MEDINFO

2004, M. Fieschi et al. (Eds), Amsterdam, IOS Press.
Smith, B. and Ceusters, W. and Klagges, B. and Köhler, J. and Kumar, A. and Lomax, J. and Mungall, C. and Neuhaus, F. and

Rector, A. L. and Rosse, C. (2005). Relations in biomedical ontologies,Genome Biology, 6(5), R46.
Sowa, J. F. (1988). Using a lexicon of canonical graphs in a semantic interpreter,Relational models of the lexicon, Cambridge

University Press, 113–137.
Sowa, J. F. (2000). Knowledge representation: logical, philosophical and computational foundations,Brooks/Cole Publishing

Co., Pacific Grove, CA, USA.
Steimann, F. (2000). On the representation of roles in object-oriented and conceptual modeling,Data & Knowledge Engineering,

35(1), 83–106.
Steimann, F. (2007). The role data model revisited,Applied Ontology, 2(2), 89–103.
Uschold, M. (1996). The use of the typed lambda calculus for guiding naive users in the representation and acquisition ofpart-

whole knowledge,Data & Knowledge Engineering, 20, 385–404.
Welty, C.A. and Guarino, N. (2001). Supporting ontologicalanalysis of taxonomic relationships,Data & Knowledge Engineering,

39(1), 51–74.
Werner, Benjamin (2008). On the strength of proof-irrelevant type theories,Logical Methods in Computer Science, 4(3).
Whitehead, A.N. and Russell, B. (1997). Principia Mathematica, re-printed version.
Wieringa, R.J. and de Jonge, W. and Spruit, P.A. (1995). Using dynamic classes and role classes to model object migration,

Theory & Practice of Object Systems, 1(1), 61–83.
Woods, W.A. (1991). Understanding Subsumption and Taxonomy: a Framework for progress, in:Principles of Semantic Net-

works, J. Sowa Ed., Morgan Kaufmann, 45–94.

