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Abstract. We propose an ontological theory that is powerful enough to describe
both complex spatio-temporal processes and the enduring entities that participate
in such processes. For this purpose we distinguish between ontologies and meta-
ontology.

Ontologies are based on very simple directly depicting languages and fall into two
major categories: ontologies of type SPAN and ontologies of type SNAP. These
represent two complementary perspectives on reality and result in distinct though
compatible systems of categories. In a SNAP (snapshot) ontology we have the
enduring entities in a given domain as they exist to be inventoried at some given
moment of time. In a SPAN ontology we have perduring entities such as processes
and their parts and aggregates.

We argue that both kinds of ontology are required, together with the meta-ontology
which joins them together. On the level of meta-ontology we are able to impose
constraints on ontologies of a sort which can support efficient processing of large
amounts of data.

1 Introduction

Ontologies have been recognized to be of importance in almost all parts of computer
science and engineering. They are critical at least for the Semantic Web [FvHH*00],
for data exchange among information systems [Gua98], and for communication be-
tween software agents [MIG00]. An important aspect of the use of ontologies in such
contexts is that they need to be represented by means of formalisms that guarantee cer-
tain nice computability properties. Usually description logics are used as representation
formalisms, since they are held to provide the optimal compromise between expressive
power and efficiency of the underlying reasoning [BHSO03].

However, given the vast amount of information on the web one might argue that
even more efficient reasoning techniques are required, i.e., that even more sacrifices at
the level of expressive power should be made, for example by representing ontologies as
simple diagrams or lists of things that exist or as simple finite trees. That such simplified
representations can be useful is shown by the wide-spread use of maps in geography
or of simple category trees in philosophy and biology. More recent representation of
similar kind are simple relational databases.



A map is a specific, simplified and therefore highly efficient representation of the
ontology of a certain part of geographic space. It is an ontology because it is an inven-
tory of things that exist in a certain part of the world and of some of the properties and
relations between them. From a logical perspective a map can be considered as a vast
conjunction of sentences in a language that gives us the facilities to express proposi-
tions. Such a language is directly depicting [Deg78,SM82,Smi92]. This means that all
the terms in such a language correspond to entities and the sentences depict, in effect,
arrangements of such entities.

Obviously, directly depicting languages are, due to their limited expressiveness, not
suitable for the expression of complex statements about ontological structures. We argue
here that for this purpose we need to distinguish

— ontologies, which are formulated in conformity with the principles of a directly
depicting language, and

— meta- ontology, which draws on greater expressive resources and expresses prop-
erties of and relationships between (directly depicting) ontologies.

We hereby draw on ideas first set out in [Gre03].

Ontologies themselves, because they use only directly depicting languages and are
very simple and efficient. Meta ontologies are more complex. They provide contexts
for ontologies and establish relationships between them. Consider, again, the case of a
map. Here meta-level information is attached in the form of scale, legend, and method
of projection. If you use the map then you pay attention to these matters (which might
be rather complex) only perishably. You are focussed rather on what is depicted on the
map itself, on estimating distances, making decisions as to which path to take, and so
on.

All phenomena in reality are in one or other respect dynamic in nature. They are
processes or are subject to change. Moreover, most phenomena in reality fall into one
or the other of two disjoint classes: endurants, on the one hand, and perdurants, on
the other. Endurants are entities which exist in full in every instant at which they exist
at all. Perdurants unfold themselves over time in successive temporal parts or phases.
This dichotomy needs to be reflected in our treatment of ontology. In this paper we
distinguish two different kinds of ontologies:

— SNAP - for snapshot — ontologies which represent enduring entities as they exist at
a certain moment of time;

— SPAN ontologies which represent perduring entities (such as processes) from what
we can think of as a a god’s-eye perspective.

In both cases we have ontologies employing very simple directly depicting languages.

Obviously, there are relationships between processes and the enduring entities which
participate in them. Consider the process of John kissing Mary. The lips of John and
Mary move towards each other and eventually meet before becoming once more sep-
arated. This process depends on the enduring entities John and Mary. To establish and
characterize these kinds of relationship and to give a formal characterization is the job
of meta ontology.

It is the purpose of this paper to formally define what we mean by ontologies and to
show how they are related to each other when viewed on the meta-level.



2 Formal ontology of endurants and perdurants

In this section we provide that part of the meta-ontology which deals with spatial and
spatio-temporal particulars. Here we focus only on specific aspects. More comprehen-
sive approaches can be found in [ANC™] and [Grept].

2.1 Mereology

Basic tool for formalizing meta ontology is Mereology [Sim87]. We assume a first order
logic with identity. We use = < y in order to signify that z is a part of . In terms of
parthood we can define the relations proper part <, overlap O, and underlap U, where
x is a proper part of y iff (if and only if) it is a part of y but not identical to y (D<).
x and y overlap iff they share a part (Do) and they underlap iff there exists a z which
contains both as parts (Dy).

The part-of relation is governed by the axioms of reflexivity (M1), antisymmetry
(M2), transitivity (M3), and the strong supplementation principle (M4) which says that
if 2 is not a part of y then there exists a z which is part of z and which does not overlap
y. Here and in all that follows we omit leading universal quantifiers.

MD)z<z
M2)z<yAy<z—z=y
MYyz<yAy<z—Puzxz

(M4) =z <y — (F2)(z <z A-0yz)

Dz<y=z<yA-(z=y)
(Do) Ozy = (Fz)(z <z Az<y)
Dy)Ozy= )z <zAy<2)

(M1-M3) make the part-of relation a partial ordering. The role of M4 is twofold: (i)
it ensures that every entity has at least two non-overlapping proper parts (T1); (ii) it
ensures that entities which overlap the same entities are identical (T2). This is the so
called extensional principle.

T1 z<y— (F2)(z <y A -0 zz)
T2 z=y ¢ (2)(0 zz < O 2y)

The theory formed by M1-M4 is somewhat non-standard in the sense that there is
no axiom that ensures that for any collection of entities there is an entity that is the
sum formed by these entities. We omit this axiom since we need to deal with categories
of entities which do not form joint sums. For an extended version of the present paper
which uses a form of layered mereology [Don03] see [BS03a].

2.2 Entities and regions

We distinguish two disjoint categories of things: entities and regions. Both have a mere-
ological structure. This means that in both domains we have a part-of relation satisfying
M1-M4. At the formal level we now distinguish variables z,y, 2, ¢, g,d, z1, 2, . . . for
entities and variables r, s, 71,72, ... for regions. Which part-of relation is referred to
will be obvious from the type of variables.



The relationship between entities and regions is characterized by the relation of lo-
cation. L zr holds if and only if the entity x is exactly located in region r. For example,
you are exactly located, at any given moment of your life, in a certain region of space.
Your life, on the other hand, is exactly located in a certain region of space-time. We
state that if an entity is exactly located in some region then it is exactly located in a
single region (L1) and we demand that if the entity x is a part of the entity y and z is
exactly located in r and y is exactly located in s and r and s underlap then r is a part of
s (L2). This ensures that parthood is monotonic with respect to location. (The need for
the underlap in the antecedent of L2 will become clear in the next subsection.) For an
extended discussion of the notion of location and its axiomatization see [CV95].

DC’E CEx= (ElT‘)L xr
(L) (Lar ALxs) v xz=y Dug AExz=-CEz
L)z <yALxzrANLysANUrs—>r<s (T3) “(AEz ACE x)

We now introduce definitions to capture the distinction between abstract and con-
crete entities: A concrete entity (D¢ g) is an entity that is located at some region. Exam-
ples of concrete entities are you, your dog, a table, your life, World War 11. An abstract
entity (D 4g) is an entity that is not located at some region . Examples are numbers,
propositions, ontologies. It follows that no entity can be abstract as well as concrete
(T3).

2.3 Space, time, and spacetime

We now introduce the primitive constants S;, Ss, - - ., S, Which are interpreted as three
dimensional space at different time indexes, and the constant S7 which is interpreted
as four dimensional spacetime. We demand that spaces with different time indexes do
not underlap (ST1) and that non of the spaces underlaps spacetime (ST2). It follows
immediately from the definitions of overlap and underlap that spaces with different time
indexes do not have parts in common — they do not overlap (T4). They form disjoint
layers in spacetime in the sense of [Don03]. It also follows that spacetime does not
overlap any of the the time-indexed spaces (T5). Again spacetime and time-indexed
spaces form different layers. It goes beyond the scope of the current paper to go into the
details of this layered structure. We refer the reader to [BS03a].

We define a spatial region, SR r, as a region which is part of some time-indexed
space (DSR) and a spatio-temporal region ST R s, as a part of space (DSTR). It imme-
diately follows that time-indexed spaces are spatial regions (T6) and that spacetime is
a spatio-temporal region (T7). We then can prove that no region can be a spatial and a
spatio-temporal region (T8), that every part of a spatial region is a spatial region (T9),
and that every part of a spatio-temporal region is a spatio-temporal regions (T10).

(STl) U S,S] — S,' = Sj
(8T2) Vicicn U STS;
(T4) (8 =S)) = ~0SiS;
(TS Vicicn O STS;
(DSR) SRr =V, cic,7 <Si
(DSTR) STRr =r < ST

(T6) /\1gi§n SR S;

(T7) STRST

(T8) —(STRT A SRT)

(T9) (SRrAs<r)—SRs
(T10) (STRr As<r)—> STRs



T8 might be slightly controversial since it implies that a spatial slice of four dimen-
sional space is a spatio-temporal region in the sense of (DSTR) rather then a spatial
region in the sense of (DSR). This, however, is a consequence of the layered structure
in which regions can coincide without sharing parts. T8 tells us that being a spatio-
temporal region is not a matter of dimensions. Again, for details see [BS03a].

2.4 Endurants and Perdurants

We say that z is a spatial part of y if and only if z is a part of y and both are located
at underlapping spatial regions r and s (DSP). The underlap of » and s here ensures
that z and y are located at spatial regions which belong to spaces with identical time
indexes. For example, your arm is a spatial part of you, Montana is a spatial part of the
United States. These examples show that in our common use of language the fact that
the parameters of the spatial-part-of relation are parts of the same time-indexed space
is taken for granted.

Similarly we say that « is a temporal part of y if and only if z is a part of y and both
are located at spatio-temporal regions (DTP)!. Your youth is a temporal part of your
life, a soccer game has the first and the second half as parts.

(DSP) SPzy=x<yA((3r)3s)(SRrASRsAUrsALaxrALys)
(DTP) TPxy=xz<yA(3Ir)3s)(STRr ANSTRs A Lzxr ALys)
(T11) —(SPxy AN TP zz)

We then can prove that nothing can be a spatial part as well as a spatio-temporal part of
some whole (T11).

We now define an endurant z as an entity which is a spatial part of itself (DEnd).
Prototypical endurants are substances like you and me, your computer, planet Earth, etc.
A perdurant is an entity x is a temporal part of itself (DPerd). Prototypical perdurants
are processes like the process of your life, the flow of air in and out your lungs, the
process of global warming, etc.

(DEnNd) Endx = SP zx
(DPerd) Perdx =TP zx

It follows trivially that no entity can be an endurant and a perdurant. Consider your-
self and your life. You are an enduring entity and you located at a certain region within
some time-indexed space at every moment in time. Your life, on the other hand is lo-
cated at a region of spacetime.

There exist complex relations between endurants and perdurants: The process of
your life depends on you — the endurant. On the other hand you participate in the
process of your life. See [SG,PSng] for an extended discussion.

! Temporal parts are parts located in spacetime. From this perspective it would be more appro-
priate to call them spatio-temporal parts. In order to be consistent with the literature we call
them temporal parts.



3 Ontologies

We now consider ontologies as subjects of study from a meta-ontological perspective.
We write O w in order to signify that w is an ontology. As already mentioned, spe-
cific representations of ontologies include maps, figures, lists of names, category trees,
partonomies, etc. In this section however we abstract from specific forms of represen-
tation.

3.1 Ontologies as abstract entities

An ontology is an abstract entity (O1) and so are all its parts (O2). Therefore ontolo-
gies are disjoint from the domain of concrete entities. We introduce the notion of a
constituent of an ontology, signified by the binary predicate C'o. We also introduce the
notion of ontological projection IT xy in order to signify that the constituent z projects
(ontologically) onto the entity y. Hereby the relation of ontological projection between
a constituent x and target y is similar to the relation between the name ‘Mount Ever-
est’ and the corresponding mountain. A constituent of an ontology w is a part of w
which projects upon or refers to something (DCo) that is not itself a constituent of this
ontology (O3). We require, finally, that no ontology is empty (04).

(01) Ow— AEw

(02) OQwAzr<w)—>AEz

(DCo) Cozw=(OwAz<wA (FyII zy)
(03) (Cozw A Il zy) — —Co yw

(04) Ow— (Iz)Co zw

If an ontology is represented as a map, then the constituents of the ontology are
represented as features on the map. Consider the map in the left part of Figure 1. Con-
stituents of this ontology are abstract entities which project onto China, Australia, North
America, South America, the Pacific Ocean, the relevant body of water, and the trade
winds represented by the arrow.

Fig.1. The El Nifio phenomenon: Due to the weakening of the trade winds (blue arrows) the
warm waters of the western Pacific (red regions) migrate eastward to the South American coast.
(From the University of lllinois WW2010 Project.)

We now continue to consider ontologies as collections of abstract entities, their con-
stituents, that have a particular projective relationship to external entities. We postpone
the question about the exact nature of the projective relationship and the question about



the structure of ontologies until Section 4. For the moment it will be sufficient to as-
sume that such a projective relationship exists and that the constituents of ontologies
are structured in an appropriate manner.

An ontology w acknowledges an entity z if and only if there is some constituent of
the ontology which projects onto « (DAckn).

(DOACckn) Acknwz = (Fy)(Coyw A IT yx)

Consider again the map in the left part of Figure 1. The ontology represented by
this map acknowledges: China, Australia, North America, South America, the Pacific
ocean, a certain body of water, and the trade winds. In the case of maps the ontology
does not merely acknowledge the existence of these objects — it also represents their
location.

3.2 SNAP and SPAN ontologies

A SNAP ontology is such that its constituents project onto entities which are located
at parts of some time-indexed space (DSnap). Consequently, every SNAP ontology has
a unique temporal index. A SPAN ontology is such that its constituents project onto
things which are located at parts of spacetime (DSpan). It follows that no ontology is
both of type SNAP and of type SPAN (T13).

(DSnap) SNAP wS; = Ow A (Vz)(Vy)((Co zw A IT zy) — (38)(s < S; A L ys))
(DSpan) SPAN w=0w A (V2)(Vy)((Co zw A IT zy) — (3s)(s < ST A L ys))
(T13) —(SNAP wS; A SPAN w)

Consider Figure 1. Each map represents a SNAP ontology with a specific time in-
dex. A SPAN ontology corresponding to this sequence of snapshots acknowledges pro-
cesses like the weakening of the trade winds and the migration of the warm waters of
the western Pacific eastward.

A SNAP entity is an entity which is acknowledged by some SNAP ontology (DSnapEnt)
and a SPAN entity is an entity which is acknowledged by a SPAN ontology (DSpanEnt).
We then can prove that SNAP entities are endurants (T15) and that SPAN entities are
perdurants(T16). It also follows that SNAP entities and SPAN entities form disjoint
domains (T14).

(DSnapEnt) SnapEnt x = (3w)((V<;j<p SNAP wS;) A Ackn wz)
(DSpanEnt) SpanEnt x = (3w)(SPAN w A Acknwz)

(T14) —(SnapEnt x A SpanEnt )
(T15) SnapEnt x — End x
(T16) SpanEnt x — Perd x

Relationships between endurants and perdurants are mirrored by cross-ontological
relationships between SNAP and SPAN entities. For example: (a) the process of weak-
ening (a SPAN entity) depends of certain air masses moving in a certain uniform way
in a certain direction. Those air masses are SNAP entities which themselves depend on



a certain process of movement: (b) the process of migration (a SPAN entity) depends
on a body of water (a SNAP entity) with certain qualities such as temperature (also a
SNAP entity).

It is important to see that these cross-ontological relations belong to the meta-level
and are thus outside the scope of ontologies themselves. This means that their complex-
ity does not add to the complexity of the ontologies.

4 Directly depicting ontologies and their hierarchical structure

In the previous section we characterized constituents of an ontology as abstract entities
which project onto something that is not a constituent of this ontology. In this section we
concentrate on the structures formed by constituents of ontologies together with their
projective relation to the entities in their target domains. We will show that ontologies
form granular partitions in the sense of [BS03b].

The theory of granular partitions has two main components:

— Theory A governs the way constituents of ontologies (cells) are organized into nest-
ing structures (the nested boxes in Figure 2).

— Theory B governs the way these cell-structures project onto reality indicated by the
arrows connecting cells to portions of reality (the nested ellipses).

Food

Fruits
Vegetables

Fig. 2. Relationships between cells and entities (left)

We now focus on ontologies of individuals rather than on ontologies of classes
of things. As a first example we will use a SNAP ontology whose constituents target
parts of the body of some human being named Tom. Tom’s body is subdivided into
head, torso, and limbs, which are subdivided further into: arms, legs, and so on. The
representation of this ontology as a tree is given in the left part of Figure 3 (an alternative
way of representation is to use Venn-diagram like nested ovoids as in Figure 2). As
a second example for the representation of a SNAP ontology we use a map of the
subdivision of the United States into states, a part of which is shown in the right part of
Figure 3.
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Fig. 3. Hierarchical subdivision of the human body (left) and a map of parts of the United States
(right).

We now focus on two aspects of such ontologies: (a) the way their constituents form
hierarchical structures like the ones we know from partonomies and category trees; and
(b) the way their constituents project onto their target domains (i.e. onto the collection
of entities targeted by the constituents of an ontology).

4.1 Hierarchical structure

At the abstract level we enforce the tree structure by defining a specific partial order
among constituents of an ontology. Again, this corresponds to theory A in the frame-
work of granular partitions.

We introduce a subcell relation C which holds among constituents of a single ontol-
ogy (OAD0). Consider the left part of Figure 3. Here the constituents are the nodes of the
tree with their respective labels; the subcell relation holds wherever an edge connects
such nodes.

Using the primitive subcell relation C we define the relations proper subcell (D),
immediate proper subcell (D), cell-overlap (Doc) and predicates for the root cell
(Droot) and for atoms (D 4z):

Dc cCg=cCgA-(c=yg)

D= cCg=cC gA—(Fd)(cCdAdC g)
Doc OCcg=(Ad)(dCEecAdCyg)

Droot rOOt(C) = (Vg)(g E C)

D ¢ Ate=-Hg)(gC ¢)

The proper subcell relation ¢ C g holds if ¢ is a subcell of g but ¢ and g are distinct
entities. The constituent ¢ is an immediate subcell of g if and only if ¢ is a proper
subcell of g and there is no proper subcell between them. OC cg is the relation of
overlap between constituents. The predicates root and At hold if the entity to which
they are applied is the root of a tree structure or an atom, i.e., a constituent without
proper subcells.



The subcell relation C is governed by the following axioms:

(OA0) zCy— (Cozw A Coyw)
(OAY) cCec
(CA2) (c1CeaAeaCey) 2 =c
(CA3) (c1CeaAeaCeg) w1 Ces
(OA4) (3c)root(c)
(OA5) ocC C1Co2 — (Cl CeaVe E Cl)
(OAB) cCg— (3d)(d C g -0C cd) WSP
(OA7)  (g)(AtgAgCec)
(OA8) —Atd — (3er, - en)(Arcicn € Cd) A
(99 Ccd—= Vicicn9=ci))

Here OAO restricts the scope of C to constituents of a certain ontology w. OA1-3
ensure that C is a partial ordering. In OA4 we demand that there is a root cell which
has all constituents of a certain ontology as subcells. Using OA2 we can then prove
that there exists exactly one root in every ontology. OA5 rules out the possibility of
partial overlap of cells. From this it follows that there cannot occur any cycles and the
resulting structure is a tree. OAG rules out cases where a constituent has only a single
proper subcell. OS6 is known in the literature as the weak supplementation principle
and mirrors T1 on the mereological level. OA7 ensures that every cell has at least one
atom as subcell. Finally OAS8 is an axiom schema which ensures that every constituent
is either an atom or has finitely many subcells.

Using OA1L, OA5, and OA6 we then can prove that the strong supplementation
principle (SSP) holds (T16). From SSP then immediately follows the extensionallity of
overlap (T17).

(T16) =(cC g) = (3d)(d C ¢ A =OC dg)
(T17) c=g ¢ (w)(OC we + OC wyg)

It follows that the organizational structure of ontologies is simpler than the underlying
mereology of entities and regions — it is a finite tree structure — but it mirrors important
structural properties such as partial ordering, weak and strong supplementation, and
extensionallity.

Consider the right part of Figure 2. Here the hierarchy is rather flat. We have one
root constituent — projecting onto the United States — and one constituent for every state.
But still — it satisfies (OA1-8).

4.2 Projection onto reality

The projective relationship between constituents of an ontology and the entities in its
target domain is complex. In the context of this paper we focus on ontologies with
particularly well-defined projection relations. For a more general approach and an ex-
tensive discussion of the axioms below see [BS03b].

Intuitively, we can compare an ontology, w, with a rig of spotlights projecting down
onto an orchestra during the performance of a symphony. Each constituent of w cor-
responds to some spotlight in the rig. Some constituents (spotlights) will project upon



single players, others onto whole sections of the orchestra (string, wind, percussion, and
so forth). One constituent (spotlight) will project upon the orchestra as a whole. Note
that the spotlights do not hereby create the objects which they cast into relief. When
once the rig has been set, and the members of the orchestra have taken their places,
then it will be an entirely objective matter which objects (individuals and groups of
individuals) are located in which illuminated cells.

Consider the left part of Figure 3. Here the projection is given by the obvious inter-
pretation of the labels as depicting body parts. Consider the right part of Figure 2. Here
the projection is such that the constituent labeled ‘Montana’ projects onto the state of
Montana, and so on.

From axiom (O3) we know that every constituent of an ontology projects onto some-
thing that is not a constituent of this ontology. We then demand that the projection re-
lation II is a mapping (OB1) which is one-one (OB2), i.e., every constituent projects
onto one entity in the target domain and each entity in the target domain is targeted by
at most one constituent. (OB1) rules out that an ontology has a single constituent pro-
jecting at the same time onto the Republic of China and the People’s Republic of China
as if they were one single object. (OB2) rules out ontologies with distinct constituents
projecting on the same entity (for example one projecting onto the morning star another
projecting on the evening star). One can easily verify that (OB1) and (OB2) are satisfied
in the case of map representations of ontologies.

Corresponding to IT there is a converse relation IT holding between entities and
constituents (OB3). [BS03b] call this relation location. Here we just call it the converse
of the relation of projection in order to keep it separate from the notion of spatial lo-
cation (L1-2). Based on OB1-3 we can define the functional counterparts of 7 and T
(D, and D). (OB4) makes 7 a total function and (OB5) ensures that 7 preserves the
ordering structure.

D, r=nc=IHczx OB2) ([TzyAIzy)—x=2
Dz c=7x =1 xc (OB4) (Jx)(II cx)
(OBl) ([TaxzyAMHdzz)—>y=2z (OB5) ¢1 C e ¢ (mey) < (me)

Consider Figure 4 and let the z; range over constituents and the o; range over tar-
geted entities. Configuration (a) satisfies (OB5). However configuration (c) is ruled out
by the left-to-right direction of (OB5) and configuration (b) is ruled out by the right-to-
left direction of (OB5).

From D, D5, and (OB1-4) then immediately follows that = and 7 behave like
inverse functions wherever 7 is defined (T18 and T19). Using OB3, OB5, D, D+, and
T18 we then can prove (T20) which tells us that 7 indeed is an order homomorphism.
We then prove (T21) and (T22) using T16, OB5, and T20. This tells us that both 7 and
7 preserve the tree structure.

T18 ¢ =T7(7 c)
T19 (3e)(ITzc) = = = n(T x)
T20 ((Fe)(IT cx1) A (Fe)(IT cx2)) — (1 < x2 © T2y CT X2)
T21 —e; Cee = (F2)(z < (7 er) A =0 2(m e3))
T22 ((Fe)(IT cxz1) A (Fe)(IT cxa)) —
{".231 < Ty — (E'd)(d C (f 56'1) A -0 d(f .732))}
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Fig. 4. Ontologies preserve mereological structure: (OB5) rules out configuration (b) and (c).

It follows that if the left part of Figure 3 represents an ontology then we can trust
that the partonomic structure of the human body is indeed the way it is depicted in the
tree.

5 Meta-level relations between ontologies

In the previous sections we have seen that at the meta level we have a powerful language
at our disposal in order to describe ontologies and the ways in which they relate to their
targets in reality. This allowed us to formalize constraints on the structure of ontologies
which support their representations using very simple and directly depicting languages.
This means that all the terms (constituents) in such a language correspond (project onto)
to entities, and that the sentences depict arrangements of such entities. Arrangement
hereby is characterized in terms of conjunctions of statements involving the subcell
relation.

The discussion in the previous section (in particular the axioms OA0-8, OB1-5 and
the theorems T16-22) has shown that at the meta-level ontologies can be represented or
modeled as (finite) tree-structure preserving mappings. In the remainder of this section
we will use this fact and talk about ontologies in terms of the mathematical language of
(finite) tree-structure preserving functions.

Above we have also seen that we can distinguish ontologies of type SNAP and
SPAN, depending on whether the targeted entities are endurants which exist at a certain
instant of time or perdurants. At the meta-level now the question about relations be-
tween distinct ontologies and their targeted entities arises. At a very coarse level we can
distinguish relations that hold between ontologies of the same kind and relations be-
tween ontologies of different kind, i.e., relations of signature SNAP x SNAP, SPAN x
SPAN, SNAP x SPAN, and SPAN x SNAP. At a finer level we can relations between
SNAP ontologies with identical and with different time indexes, i.e., relations of sig-
nature SNAPs, x SNAPs; and SNAPs, x SNAPs;. An analysis of relations between
ontologies will be related to relations between entities acknowledged by those entities.
For an analysis of the latter kinds of relations see [SG,PSng,PSng].

In the remainder of this paper we focus on a specific class of relations of signature
SNAPs, x SNAPg, and SPAN x SPAN. The relations in focus are based the selective



and granular character of ontologies. Our examples will focus on relations between
SNAP ontologies but can be extended easily to relations between SPAN ontologies.

5.1 Refinement relations

Consider the SNAP ontologies w; (left) and w- (right) in Figure 5. Both project onto the
individual Fred in the middle and one can see that the corresponding ontologies stand
in a kind of refinement relation to each other. We will use the symbol < to refer to this
relation and write w; < wy to express the fact that the ontology w; is a refined by the
ontology ws.

Fred

Fred
=

Limbs Limbs

e ] (] [] [

Fig. 5. Refinement relations between the ontologies w1 (left) and w2 (right).

We give a formal account of the relation < as follows. First of all we represent
ontologies on the meta-level as mappings of signature 7 : 2 — A. Here = is the pro-
jection mapping introduced in (D). £2 is the collection of constituents of the ontology
w considered as a set and A is the set of entities targeted by the elements of 2. The
set {2 is structured by the relation C for which the axioms OA1-8 hold. The set A is
structured by the relation < for which the axioms M1 — 4 hold.

We then say that w is refined by ws, wy; < wo, if and only if there exists a one-one
and into mapping f : 2, — {25 such that

(a) fisorder-preserving, i.e., z; C z; iff f(z;) C f(z;),
(b) fistarget-preserving, i.e., m1 (2) = ma(f(2)).

The existence of the mapping f with its particular properties ensures that we can map
constituents in w; to constituents in w, in such a way that: (a) If two constituents in
zi,z; € (21 are subcells of each other then so are their counterparts in f(z1), f(22) €
2, and vice versa; (b) The target 7 (2) of the constituent z € (2 is identical to the
target w2 (f(2)) of its counterpart f(z) € (22. In other words we demand that there
exists an order and target-preserving mapping f such that the left diagram in Figure 6
commutes. From (a) and (b) it follows that A; C As,.
We can show that the relation refined-by, <, is reflexive (ref) and transitive (tr):

(ref) We have w =< w since there exists an identity map, defined by z = id(z), such that
id is order-, and target-preserving.



Wy — W2 w1 > W2 > W3

Fig. 6. Commutative diagram illustration for: (Left) the definition of <; and (Right) the proof of
transitivity of <.

(tr) For transitivity we have to show that if f : £2; — (25 and g : {2, — (25 are order-,
and target-preserving then so is their composition go s : {2y — (23. That this is the
case can be seen in the right diagram in Figure 6.

5.2 Equivalence

We now continue by defining an equivalence relation on ontologies w; and w, as fol-
lows:
D. w1~w25wljw2/\ngw1.

In other words, two ontologies are equivalent if and only if they stand in the refinement
relation < to each other, i.e., there exist order and target preserving mappings f and f’
with f'(f(c)) = ¢ between them.

The relation ~ is an equivalence relation, i.e., reflexive, symmetric, and transitive.
The reflexivity of ~ follows immediately from the reflexivity of <. The symmetry of
~ follows from the commutativity of the conjunction in its definition. To see the tran-
sitivity of ~ assume wy ~ w9 and wy ~ ws. Therefore we have w; < wy and we < wy
and similarly ws < w3 and w3 < wy. From the transitivity of < it follows that we have
w1 < wsz and w3 < w; and hence w; ~ ws. The corresponding set of equivalence
classes is defined as

Dpj W] = {w1 | w1 ~w}

Consider Figure 7. Our intuition tells us that all three figures are distinct represen-
tations of the same ontology of type SNAP. All three are pairwise refinements of each
other, i.e., equivalent in the sense of D..

V- ey

! |
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Fig. 7. Distinct representations of the same ontology.



D~ and Dy, help us to distinguish between an ontology and its (many) represen-
tations. As stated in (O1) an ontology is an abstract entity and is therefore not located
in space and time (D 4 ). Representations of ontologies like maps or lists are concrete
entities and are therefore located in space and time (D¢g). However the underlying
ontology and all representations are equivalent in the sense of D... Consequently, every
ontology has a corresponding equivalence classes of representations. Examples of such
equivalence classes are: The set of all current maps of the federal states of the United
States — each representing the ontology of the US at a given point in time; and the set
of periodic tables of the elements given in the different textbooks of chemistry — each
representing the ontology of chemical elements at a given point in time.

5.3 The refinement ordering of ontologies

Given that ontologies are characterized by the equivalence classes of their representa-
tions then we can define a partial ordering, the refinement ordering between ontologies,
in terms of these equivalence classes.

Consider equivalence classes [w;] and [w2]. The relation < now induces a partial
ordering < as follows:

D<< [wl] < [(.dz] =w; Xwy

To show that < is well defined, suppose w; < w9 and z € [w;] and y € [w2]. Then
T < wi, wr =X ws, and we < y and by transitivity x < y.

The relation < is a partial ordering. The reflexivity and transitivity of < imme-
diately follow from the reflexivity and transitivity of <. It remains to show that < is
antisymmetric, i.e., that if [w1] < [w2] and [we] < [wi] then [wi] = [w2]. Assume
[wi] < [w2] and [ws] <K [w1] holds. Assume z € [w1]. Then 2 < wy and wy < w- and
by transitivity z < w, and similarly ws < w; and w; < z and by transitivity ws < z.
Therefore ws < xz and z < wy that is z € [w]. The other direction from z € [ws] to
x € [wi] is similar and omitted here. Together this yields [w;] = [w2].

It follows that the relation < is the refinement relation between ontologies. It ab-
stracts from particular representations. D then tells us that in order to determine
whether or not one ontology is a refinement of another it is sufficent to look at one
of their representations.

6 Conclusions

The theory outlined above contains the resources to describe both complex spatio-
temporal processes and the enduring entities which participate therein. We argued that
to deal with such phenomena we need a plurality of ontologies together with a meta-
ontological framework to deal with the relations between them. Ontologies are based
on directly depicting languages which are very simple and are therefore quite efficient
from a computational point of view. From the constraints imposed on the structure of
ontologies it follows that computation within ontologies can be reduced to computation
in finite tree structures and there exists a wide variety of efficient algorithms for per-
forming operations on such structures [BHS03]. Meta ontology is more complex and



requires more expressive power. It provides the context for ontologies and for establish-
ing relations between them.

We distinguished two major categories of ontologies: ontologies of type SPAN and
ontologies of type SNAP. These ontologies represent orthogonal inventories of reality
— one (SNAP) acknowledging enduring entities, and the other (SPAN) acknowledging
perduring entities. We showed that the distinction between perduring and enduring en-
tities itself needs to be established on the meta-level since it is outside the scope of
ontologies themselves.

We also showed that the constraints on ontologies allow us to talk in a very efficient
way on the meta-level about relations between ontologies. Thus we were able to use
very simple mathematics in order to formalize refinement relations between ontologies
of the same kinds.
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