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Take another little piece of my heart: 
a note on bridging cognition and emotions 

  
Giuseppe Boccignone 

 
 
 

Science urges philosophy to be more empirical and philosophy urges science to be 
more reflective. This markedly occurred along the “discovery of the artificial” 
(CORDESCHI 2002): in the early days of Cybernetics and Artificial Intelligence (AI) 
researchers aimed at making machines more cognizant while setting up a framework to 
better understand human intelligence.  

By and large, those genuine goals still hold today, whereas AI has become more 
concerned with specific aspects of intelligence, such as (machine) learning, reasoning, 
vision, and action. As a matter of fact, the field suffers from a chasm between two 
formerly integrated aspects. One is the engineering endeavour involving the 
development of tools, e.g., autonomous systems for driving cars as well as software for 
semantic information retrieval. The other is the philosophical debate that tries to answer 
questions concerning the nature of intelligence. Bridging these two levels can indeed be 
crucial in developing a deeper understanding of minds.  

An opportunity might be offered by the cogent theme of emotions. Traditionally, 
computer science, psychological and philosophical research have been compelled to 
investigate mental processes that do not involve mood, emotions and feelings, in spite of 
Simon’s early caveat (SIMON 1967) that a general theory of cognition must incorporate 
the influences of emotion.  

Given recent neurobiological findings and technological advances, the time is ripe to 
seriously weigh this promising, albeit controversial, opportunity.  

 
 

In the heart of cognition  
 

Affective neuroscience (DALGLEISH et al. 2009, pp. 355-368) is helping us 
understand the neural circuitry that underlies emotional experience. It integrates 
functional neuroimaging, behavioural experiments, electrophysiological recordings, 
animal and human lesion studies and behavioural experiments striving to understand 
emotion at the neurobiological and psychological levels. Conflicting explanations at the 
psychological level, e.g. basic emotions vs. appraisal theories, find a novel synthesis at 
the neurobiological level. One outstanding example is Damasio’s work (DAMASIO 1994, 
1999).  

Taking stock of such results, affective computing (PICARD 2000) is dealing with 
artificial agents that aim at instantiating the ability to 1) recognize emotion, 2) express 
emotion, 3) “have emotions”, the latter being the hardest task. So far, most current 
research focuses on 1) and 2), whereby machine learning based affect detection plays a 
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prominent role (CALVO, D’MELLO 2010).  In order to give a thorough discussion of 
these aspects, we make clear the modelling strategy we adopt from now on. 

Given a system (human observer) and its behaviour (e.g. facial expression, gaze 
shifts), together with available knowledge (psychological/neurobiological theories and 
descriptions, experiments and measurements), we set up a computational theory (MARR 
1982) formalized in terms of Bayesian theory (BOCCIGNONE, CORDESCHI 2007). More 
precisely,  we draw on the Bayesian framework of Probabilistic Graphical Models 
(PGM) (BISHOP 2006). In brief, by exploiting knowledge and constraints available both 
at the psychological and at the neurobiological description levels: 1) we identify the 
essential random variables (RVs) that ground the probabilistic model; 2) we encode the 
statistical dependencies between RVs  in the PGM structure. 

 
 

!
Fig. 1 - Modelling affective facial expression: a) the PGM models the dependency of the observed 
expression under the current affect state (discrete or continuous); b) the model represents a 
possible factorization of the joint probability P(F(t), E(t)).   

 
Coming back to the issue of dealing with the problem of affective expression 

generation/detection, one modelling example is presented in Fig. 1. The time-varying 
RVs, E(t) and F(t) stand for the latent affective state of an agent and the facial 
expression induced by such state at time t, respectively; such RV’s are represented by 
graph nodes. The structural dependency (arrow) E(t) → F(t) captures the statistical 
dependency of F(t) on E(t), quantified via the conditional probability P(F(t) | E(t)). The 
model is generative: P(F(t) | E(t)) specifies the likelihood of generating an expression 



3 
!

(by sampling) under a given affective state. The recognition problem (inferring the most 
plausible affective state given an observed facial expression), boils down to “inverting 
the arrows” by computing the posterior probability P(E(t) | F(t)) via Bayes’ rule. If E(t) 
spans a discrete affective state-space, the model can account for a large number of 
computational models based on discrete theories á la Ekman (EKMAN 1993, p. 384); if 
the space is continuous (e.g., specified via valence/arousal dimensions), it is suitable to 
cope with Russell’s core affect theory (RUSSELL 2003, p. 145).  

Yet, the actual challenge is designing artificial agents that “have emotion” and use it 
for making decisions. Indeed, neurological studies indicate that decision-making without 
emotion can be impaired. Damasio’s findings point to such an essential role (DAMASIO 
1994).  

It goes without saying, modelling emotion at the most general level is a mind-
blowing endeavour for current research. Thus, we will focus on the integration of 
emotion with cognitive behaviour (PESSOA 2008) by drawing on the minimalist case of 
active sensing.  

 
 
Where to look next?  

 
Among the variety of active sensing behaviours, oculomotor behaviour (saccades, 

pursuit, fixational movements) is the least energy process. Though minimal, from a 
theoretical standpoint, a gaze shift action can be considered as the result of a decision-
making process (conscious or unconscious) (YANG et al. 2016).  

Such process can be modelled through the perception-action loop as a dynamic PGM 
(unfolded in time, top of Fig. 2): I(t) denotes the stimulus, e.g. a time varying scene, and 
rF (t) is the point of gaze (center of the fovea) at time t; A(t) is the ensemble of RVs 
defining the oculomotor action setting (e.g., maintain current fixation or saccade in a 
certain direction); W(t) stands for the ensemble of RVs (e.g., features, objects) 
characterising the scene as actively perceived by gazing the stimulus at point rF ; G 
summarizes the given goal (e.g, search for a kid). The action setting dynamics A(t) → 
A(t + 1) and the scene perception dynamics W(t) → W(t + 1) are intertwined with one 
another through the gaze shift rF (t) → rF (t + 1). The actual shift is recovered as the 
statistical decision of selecting a particular gaze location with probability P(rF (t + 1) | 
A(t),W(t), rF (t)), so to maximize the expected payoff under G, the current goal.1 

Perceptual decision-making calls for the notions of value and reward (YANG et al. 
2016) that, in turn, pave the way to bringing emotions into the loop (BOCCIGNONE 2016). 
At the neurobiological level, it has been made clear that, crucially, cognitive (perceptual) 
and emotional contributions cannot be separated (PESSOA 2008), as outlined in Fig. 2 
(centre). 

Indeed, there is a large body of evidence that responses from visual cortex reflecting 
stimulus significance are the result of simultaneous top-down modulation from fronto-
parietal attentional regions and emotional modulation from the amygdala and the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 For different instantiations of the model, see CLAVELLI et al. 2014, and NAPOLETANO et al. 2015. 



4 
!

posterior orbitofrontal cortex (OFC). The affective value attributed to a stimulus – either 
consciously or unconsciously - drives attention  and enhances the processing of 
emotionally modulated information (much like the physical salience of the stimulus), 
while exogenously driven attention influences the outcome of affectively significant 
stimuli (PESSOA 2008). At the same time, the cognitive control system (lateral prefrontal 
cortex, LPFC, anterior cingulate cortex, ACC) guides behaviour while handling goal-
related information; action strategies incorporate value through the mediation of the 
nucleus accumbens, the amygdala, and the OFC. Basal forebrain cholinergic neurons 
provide regulation of arousal and attention while dopamine neurons located in the 
ventral tegmental area (vTA) modulate the prediction and expectation of future rewards 
(PESSOA 2008).!
 

It is worth noting that neurobiological evidence is relevant for modelling purposes, if 
we surmise a certain degree of association between the neurobiological and the 
behavioral levels. We will further comment on this point in the final section of this note, 
but briefly, we assume that processes that support behavior are implemented by the 
interaction of multiple areas, (networks), which are dynamically recruited into multi-
region assemblies (no “necessary and sufficient” brain regions).  In this perspective, we 
draw on Damasio’s cleavage between emotions and feelings, which are the first person 
experience of the corresponding emotion (DAMASIO 1994). An emotion is a neural 
reaction to a certain stimulus, realised by a complex ensemble of neural activations in 
the brain (internal emotional state). The latter often are preparations for (muscular, 
visceral) actions (facial expressions, heart rate increase, etc.), as a consequence the body 
will be modified into an “observable” emotional body state. Thus, we introduce the RV 
F(t) standing for visceral responses (e.g., heart rate, dermal response) that can be gauged  
via physiological measurement (ECG, skin conductance, etc.). Note in Fig. 2 (centre 
panel) the central role of the amygdala and the OFC. Their tight interaction provides a 
suitable ground (SALZMAN, FUSI 2010, p. 173) for representing, at the psychological 
level, the core affect dimensions (RUSSELL 2003). Core affect can then be functionally 
modelled as a latent space (VITALE et al. 2014) - see Fig. 1 - spanned by E(t). In 
addition, C(t) indexes a higher cognitive level of interest. As a result, the original PGM 
is modified in the PGM shown at the bottom of the same figure.  

Due to limitation of space, we are not entering details about software / hardware 
implementations. As to algorithms, a viable solution to provide a simulation of the 
model is that of exploiting the huge number of state-of-the-art machine learning 
algorithms (BISHOP 2006). Learning and inference on PGMs can then be accomplished 
either through approximate optimization-based techniques (e.g., Variational Bayes) or 
stochastic techniques (Monte Carlo). Eventually, notice that, in the last decade, the 
number of public repositories has grown larger, where behavioral data gathered in 
realistic, natural setting experiments have been recorded by multiple modalities (CALVO, 
D’MELLO 2010). Such data can be readily employed for model learning and validation. 
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Fig. 2 - Top: the dynamic PGM of an active sensing loop. Centre: structural/functional constraints 
implied by circuits for visual processing and executive control. Bottom: the perception-emotion-action 
PGM. 
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Caveats on methodology 

  
Though minimal, would the implemented version of the model meet the requirement 

of making decisions by virtue of “having emotions”? Such question entails a number of 
hindrances.  

First, we have assumed, based on Damasio’s distinction between emotions and 
feelings, to rule out the latter. Under such disentanglement, emotions are likely to be 
amenable to third person description (and thus modelled), whilst feelings would 
necessarily involve first person experience (opening to the conundrum of consciousness) 
(TRAUTTEUR 2016).  

Second, we have set up a  computational theory (MARR 1982) in the Bayesian 
framework of Probabilistic Graphical Models, where the RVs capturing essential 
behavioral properties are shaped in the PGM structure by using structural constraints 
suggested at the neurobiological level. Once implemented, the model is in principle 
suitable to simulate attentive behavior conditioned by emotion.  How things stand, 
putting the simulation of the model into work2 is nothing but an instance of the synthetic 
method (CORDESCHI 2002), i.e. the building of artefacts as explanatory models of living 
organisms. The synthetic method, per se, entails a variety of problems (CORDESCHI 
2008).  

In particular, the “underdetermination” problem involves the choice of “the right 
grain of analysis for models”. To handle the computational explanation at different 
grains/levels (figure 3), we have adopted a revised form of Marr’s framework (MARR 
1982). In a Bayesian formalism (BOCCIGNONE, CORDESCHI 2007), Marr’s three-fold 
hierarchy can be re-organized into two levels (KNILL et al. 1996):  the computational 
theory level, which can be formalized precisely in terms of Bayesian theory, and the 
implementation theory level embedding both algorithmic and realization levels.  

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 For a nice discussion of simulation in cognition, see SANTUCCI et al. 2016. 
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Fig. 3 - The synthetic method loop embedding different levels of explanation. 

 
Differently from Marr (BOCCIGNONE, CORDESCHI 2007), the notion of architecture 

becomes crucial: the PGM embodies constraints assumed by the scientist for his own 
purpose at the chosen level of explanation. The algorithmic level does not so far provide 
an autonomous level, rather one encompassing simulations of different grains (a coarse-
grained simulation of Bayesian inference at the behavioural level, a fine-grained 
simulation at the neural level, see Fig. 3).  

As to the realization level, it is a current practice to choose some formal neuronal 
model to the end (e.g., integrate-and-fire neurons, stochastic differential equations. 
simple binary, on/off models). This justifies the term “implementation theory”: the 
realization level is but another kind of theoretical model (ABBOTT, KEPLER 1990). Yet, 
further levels of reduction, and further theoretical models too, could be achieved 
(ibidem) going down in the hierarchy.  

In summary, the Bayesian approach provides a sound formalization of Marr’s 
functionalist intuition of a computational theory level. However, a deceptively simple 
question arises (SPREVAK 2016, p. 92): how should we interpret Bayesian models? One 
option is instrumentalism, where Bayesian machinery should be understood as a formal 
device (ibidem) to describe human behavioural patterns concisely and to make 
predictions. The alternative is realism: models pick out real entities and processes in the 
human brain (“Bayesian brain hypothesis”. See KNILL, POUGET 2004).  

The Bayesian approach is advocated for handling uncertainty, stemming from lack of 
knowledge and from randomness. Going down in the explanation hierarchy, basic 
sources of randomness are classical dynamics unpredictability and quantum processes, 
which in living systems are likely to take place simultaneously and affect each other. 
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Further, different levels of organization make things worse: multi-level interactions 
induce subsequent forms of randomness (BUIATTI, LONGO 2013). If one assumes a 
realistic stance, these “living matter” effects pose serious challenges to the functionalism 
captured by the computationalist account (CORDESCHI, FRIXIONE 2007). Indeed, there is 
severe criticism (LONGO 2009) in the ability of digital computation to fully reproduce 
(not just mimicking) this dynamics even in simple cases (deterministic unpredictability).  

A viable shortcut (CORDESCHI, FRIXIONE 2007) is the “encapsulation” of any critical 
level dealing with a non-Turing computable function, in an embedded subsystem so to 
consider only the computable outputs that might be relevant for higher embedding 
levels. However, even the “encapsulation” practice is not, at least in principle, 
unquestionable. Since minor changes in one level might be amplified by the exchanges 
with another level, such approach might rule out underpinning properties at the 
biological level, crucial for the overall behaviour of the system, especially in the case of 
emotions. Even discarding the conundrum of feelings, yet emotions use both neural and 
humoral routes, so that the resulting emotional state involves continuous, analogue 
changes within the body proper, e.g., viscera, internal milieu, etc.  

All the above issues let us surmise that there is much work left for scientists. And 
even more for philosophers.  
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