
Logical Operators for Ontological
Modeling

Stefano BORGO 1, Daniele PORELLO 2, and Nicolas TROQUARD 3

Laboratory for Applied Ontology, ISTC CNR, Trento, Italy.

Abstract. We show that logic has more to offer to ontologists than standard first or-
der and modal operators. We first describe some operators of linear logic which we
believe are particularly suitable for ontological modeling, and suggest how to in-
terpret them within an ontological framework. After showing how they can coexist
with those of classical logic, we analyze three notions of artifact from the literature
to conclude that these linear operators allow for reducing the ontological commit-
ment needed for their formalization, and even simplify their logical formulation.

Keywords. Logical operator, Ontological modeling, Linear logic, Artefact

1. The Logical Language in Ontology

If we look at the formalisations of ontologies, even of foundational ontologies, we notice
that they usually embrace a standard logical system, like OWL 2 [22] and first-order logic
[9], and stick to it, e.g. BFO [22], DOLCE [21] and GFO [14]. Note that the ontologies
may be developed in more than one logical framework, for instance BFO has an OWL
version and is developing a first-order version; DOLCE has both a first-order and an
OWL-DL version. Nonetheless, these formalisms are disconnected in the sense that the
user has to choose in which logic framework, among those made available, she wants to
operate. The only considerable exception to this situation is the use of modal logic within
first-order logic, see for instance the use of the necessity operator in DOLCE.

In this paper we put ourselves in the shoes of the ontologists that, after having carried
out the study of the domain and set the ontological framework, is facing the challenge
of formalizing the overall system. Her goal is to capture as faithfully as possible the
identified notions and their interactions. We claim that if she is not aware of the different
effects of modeling a constraint in one or another logical language, she cannot make an
optimal choice and may be driven to develop unnecessarily complex systems in terms of
(1) the number of axioms; (2) the types of entities that she needs to include; and even (3)
the number of ontological choices she has to make. The result is a formalization that is
harder to understand, and that could even obfuscate the truly ontological consequences
of her original analysis.

1stefano.borgo@cnr.it
2daniele.porello@loa.istc.cnr.it
3nicolas.troquard@loa.istc.cnr.it

Today, when addressing formal languages, most ontologists have two issues in mind:
the balance of expressivity and deduction properties, and the selection of the most appro-
priate non-logical primitives. This, we claim, is not enough. If the ontologist is unaware
of the variety of the available logical operators, her choice of the language may easily
fall short of being optimal leading to poor ontological formalizations as we will see.

Structure of the paper. Section 2 reports three definitions of artifacts that have been
presented in the literature and that we will use to exemplify our logical proposal. Sec-
tion 3 presents the logical framework of linear logic and describes its operators. The fol-
lowing section, Section 4, introduces a linear logic based language suitable for modeling
the artifact definitions and, together with Sections 5 and 6, show how to distinguish these
definitions with simple logical formulas. Section 7 concludes the paper.

2. Distinguishing technical artefacts

There is more than one way of being a technical artefact, and this diversity makes it a
fitting class to illustrate our claims. We will do so by taking the three notions of artefact
presented in [4] and showing that a choice of sub-structural logical operators can simplify
their characterisations. We will work specifically with Linear Logic [10]. In this logical
framework, we will argue that by using a logic that encompasses first-order logic as well
as the operators of linear implication and non-commutative conjunction, we will be able
to simplify the ontological characterization of the three notions. In this context, what will
make a characterization “satisfactory” will essentially be its combined succinctness and
intelligibility.

In [4] the authors discuss three definitions that aim to capture different uses and
understandings of the notion of technical artefact. The definitions were developed by
studying different communities: formal ontology, engineering design and philosophy of
technology. The authors labeled these definitions ontological, engineering and techno-
logical, respectively. While there is no claim that these definitions are representative of
the communities, it is argued that the elements they take at the core of each definition are
essential for the understanding of the notion in those areas.

The first definition, called ontological artefact, is a specialization of the general no-
tion of artefact introduced in [3]: “A[n ontological] technical artifact a is a physical ob-
ject which an agent (or group of agents) creates by two, possibly concurrent, intentional
acts: the selection of a material entity (as the only constituent of a) and the attribution to
a of a technical quality or capacity.” [4, p.5] The second definition, called engineering
artefact, emerges from studies in the area of engineering design [17]: “A[n engineering]
technical artifact a is a physical object created by an intentionally performed produc-
tion process. The process is intentionally performed by one or more agents with the goal
of producing the object a which is expected to realize intended behavior in some given
generic technical situation.” [4, p. 7] At about the same period, a definition of techni-
cal artefact was proposed by philosophers studying technology [15]. “A [technological]
technical artifact a is a physical object created by the carrying out by an agent (or by
agents) of a make plan for an object with a physical description.” [4, p. 9].

Our goal is to show that a suitable choice of logic operators highly simplifies the
formalization of these notions. However, we do not aim to model all their aspects and
for this reason we rephrase them in a simplified format. The reader can find in [4] a

presentation of their motivations, their analysis and their comparison, and even verify
that our rephrasing captures the core of the definitions.

Restatement 1 (Ontological Artifact). A technical artifact a is a physical object which
an agent creates by means of two intentional events: the selection of a material entity
and the attribution to a of a technical property.

Restatement 2 (Engineering Artifact). A technical artifact a is a physical object which
an agent creates by an intentional event consisting in: the transformation of a physical
object into an object a that is expected to manifest some technical property.

Restatement 3 (Technological Artifact). A technical artifact a is a physical object which
an agent creates by an intentional event consisting in the execution of a make plan,
terminating with a verification step, to obtain a physical object a that satisfies a given
description.

A general definition pattern. One common element in these definitions is that every
notion exclusively depends on an acting entity bringing about a specific intentional event:
the artefact is the product of this specific event. The specificity of the event marks the
specificity of the resulting technical artefact. Take CreaO(e,a) (resp. CreaE(e,a) and
CreaT (e,a)) to mean that “e is an event that produces the ontological (resp. engineering
and technological) artefact a”.

We thus can see a pattern emerging

ArtO(a) ≡ ∃e. CreaO(e,a)
ArtE(a) ≡ ∃e. CreaE(e,a)
ArtT (a) ≡ ∃e. CreaT (e,a)

It now suffices to define the three versions of being an event producing a technical arte-
fact.

The simple case of ontological artefacts The case of ontological artefacts is formally
developed within the DOLCE foundational ontology in [3] but is stated not to be onto-
logically dependent on it; it is then a normative notion justified by ontological consid-
erations. As such, we can directly import the ontology. The central predicate for inten-
tional selection (IntentionalSel) provides the conceptual handle needed to capture the
event that is at work in the creation of ontological artefacts. IntentionalSel(e,a,a,y,q) is
read in [3] as “e is the event of a obtaining the artefact a by intentionally selecting y and
attributing to it capacity q.” Hence,

CreaO(e,a)≡ ∃a,y,q. IntentionalSel(e,a,a,y,q)

We obtain effortlessly the exact same characterization of ArtO(a) as given in [3].
An important aspect from the ontology in [3] is that the selected object and the object

to which a quality is attributed coexist. There is no consumption, nor creation. Thus,
a naive attempt at characterizing ontological artefacts with FOL is rather satisfactory.
Things will be different for engineering artefacts and for technological artefacts. Physical
change as in transformations and make plans demand much care to capture their dynamic
aspect.

3. Linear Logic

As said, we are not advocating new logical approaches to knowledge representation and
ontology design; rather we are suggesting to take into account the possibilities that logic
already provides us to better cope with a number of modeling needs and possibly re-
duce the ontological commitments. The formal ontologist is somehow familiar with this
approach when she extends first-order logic with tools like modal operators and sorts.
Since logical operators are much richer than is generally thought, we want to push their
use in ontological theories a little further. We illustrate this by analyzing Girard’s Linear
Logic [10]. Linear logic is capable of classical reasoning, and its language (LLL) provides
more fine-grained operators. Linear logic, besides providing a well-behaved resource-
sensitive reasoning method, allows indeed for reconstructing classical logic, a feature we
will make extensive use of.

Since our goal is to extend the ontologist’s toolkit, not to substitute it, our first aim
is to show how classical and linear logics can coexist in the same logical framework.
The simplest way to present this relationship is to argue in terms of proof-theory. We
introduce some elements of the sequent calculus for classical and linear logic and use
these to also present the different commitments and strengths of classical and linear
operators. Moreover, sequent calculus can be viewed as the abstract theory that leads to
developing logic programming, thus it gives the further advantage of defining, at least
theoretically, a query answering system.

The reader interested in formal yet more familiar definitions of the set of theorems
of Linear Logic can refer to the Hilbert axiomatization given in [25]. Also, semantics
for Linear Logic exist in terms of phase semantics [10] and relational semantics [5]. The
former is the original semantics designed by Girard; the latter is a recent approach that
further supports modular extensions.

3.1. A constructive analysis of reasoning

The main motivation for employing non-classical, sub-structural, relevant, or linear logic
operators [10,2,20] is typically to capture a form of resource-sensitive reasoning and cope
with the paradoxes of material implication. In particular, classical implication A→ B
is not apt to model processes, transformations, causal entailments, etc. For example, if
formula E→C is used to formalize the behavior of a coffee machine “before I have one
euro (E), after I have one coffee (C)”, we would like to distinguish this from formula
E→ E ∧C (“before I have one euro, after I have one euro and one coffee”) but classical
implication does not. For another example, chemical reactions such as H2 +O→ H2O
are transformations that are found in nature [12] and should not be modelled as a material
implication. Moreover, modeling by means of classical implication the transformation of
a piece of clay into the statue that the artist is shaping, we would like to be free to assume
whether the clay is still present alongside the statue or not depending on our ontological
commitment and not on the type of logic we are using. This feature of classical logic
follows from the fact that A→ A∧A is a tautology in the system and it basically amounts
to assuming that any formula is equivalent to the conjunction of an arbitrary number of
its copies. Symmetrically, once we accept the classical logical entailment A→ B, this
operator holds regardless of the context of application so that, e.g., A∧C→ B holds for
any C. This is a consequence of the monotonicity of the entailment of classical logic.

These observations show that by representing knowledge via classical logic, we
are abstracting away from use, context, quantities of formulas occurring when reason-
ing. Namely, we are committed to view propositions as abstract, objective, and eternal
thoughts in the Fregean sense [8], and not as actual contextual dependent information.
Of course, one can represent temporal transformations, causal relationships and so on in
classical logic and most ontological theories do so within this framework. However, in
order to do it, one needs to introduce a number of non-logical elements, like time stamps
or indexing of proposition occurrences, and ad hoc constraints to control them. In order
to clarify the commitments of classical logic and to propose a more general treatment,
e.g. to allow resource sensitive reasoning, below we recall some ideas from proof-theory,
namely from Gentzen sequent calculus. Classical formulas remain compatible with this
system; they can be even captured in it by means of a number of rules.

A sequent is an expression Γ ` ∆ where Γ and ∆ are sets of occurrences of formu-
las, the ` symbol is the entailment relation: the semantic reading of a sequent is “the
conjunction of the formulas in Γ entails the disjunction of the formulas in ∆”. Sequents
and rules of inferences model classical logic in the sense that sequent calculus is sound
and complete wrt. the standard classical logic semantics. A crucial feature of classical
logic sequent calculus is the presence of the so called structural rules of weakening (W),
contraction (C) and exchange (E).

Γ ` ∆ W
Γ,A ` ∆

Γ ` ∆ W
Γ ` ∆,A

Γ,A,A,` ∆
C

Γ,A ` ∆

Γ ` ∆,A,A
C

Γ ` ∆,A

Γ,A,B,Γ′ ` ∆
E

Γ,B,A,Γ′ ` ∆

Γ ` ∆,A,B,∆′
E

Γ ` ∆,B,A,∆′

Intuitively, the structural rules encode three important forms of abstraction from ac-
tual situated information: Weakening is responsible of the monotonicity and thus im-
plies the context independence of the classical reasoning; Contraction is responsible of
abstracting from the quantity of available resources; and Exchange amounts to abstract-
ing from the order in which information is provided, exchange forces the commutativity
of logical operators and abstracts away from any ordering, and in particular temporal
ordering, of information.

Alternative approaches to classical logic that aim to define logical operators capable
of capturing, for example, causal implications, context dependent reasoning etc., often
place themselves in the so-called realm of the sub-structural logics, namely logics that
reject the validity of (at least some) structural rules. This is motivated by the fact that
structural rules determine the definition of logical operators; an important observation
due to Jean-Yves Girard [10] and that grounds the analysis of inferences provided by
linear logic. Take, for instance, the following two rules that together define the classical
conjunction in the sequent calculus lingo

Γ ` A,∆ Γ′ ` B,∆′
∧

Γ,Γ′ ` A∧B,∆,∆′
Γ ` A,∆ Γ ` B,∆

∧
Γ ` A∧B,∆

On inspection, the difference between the two formulations lies in the context of the
entailments. The first one allows one to use different contexts (Γ and Γ′ and ∆ and ∆′)

whereas the second formulation to be applied requires the same context in both premises.
In the presence of the structural rules, the two formulations can be proved equivalent. By
rejecting the structural rules of weakening and contraction, these are no longer equiva-
lent. At this point we have a choice between two conjunctions with two different behav-
iors: one is called the multiplicative conjunction and is formally written ⊗ (read “ten-
sor”), and the other the additive conjunction, written & (“with”). The rejection of these
structural rules does not affect only conjunction. We can repeat the argument for the
disjunction as well ending up with two different operators: a multiplicative disjunction
` (“parallel”), and an additive disjunction ⊕ (“plus”). The rejection of exchange has a
different consequence. In this case a sequence of propositions behaves like an ordered
lists of formulas, whereas the rejection of contraction and weakening leads a sequence
to behave as a multiset of occurrences of formulas. By rejecting exchange, we are led to
define a non-commutative multiplicative conjunction � (“next”) and a non-commutative
multiplicative disjunction ∇ (“sequential”) [7,1].

We have seen that sub-structural logic is a logical system obtained by rejecting some
of the structural rules. Linear logic is not simply a sub-structural logic as the full fragment
contains two more operators, namely, the exponential operators ! and ?. These operators
locally license the structural rules and allow for retrieving the full expressive power of
classical logic. Informally, formulas !A and ?A are relieved from their linear resource
sensitive status and the “quantity of A” no longer matters. We shall come back to the
exponential operators later in order to present how classical logic can be retrieved from
within linear logic.

3.2. Semantics of a fragment of LL

Here we present the intuitive meaning of a number of linear logic operators. For their
proof-theoretic definition and for a precise presentation of linear logic see [25,13].

Firstly, it is important to note that atomic formulas of linear logic do not represent,
strictly speaking, states of affairs; that is, they are not abstract and eternal truths (eternal
thoughts in Fregean terminology). If they were abstract truths, it would not make much
sense to argue whether the truth that two plus two makes four is equivalent or not to the
truth that “two plus two makes four and two plus two makes four”. The meaning of linear
logic propositions can be better understood in terms of events, actions and processes
performed or occurring in an environment and that depend on an amount of resources. In
this sense, A and A⊗A are not equivalent as one thing is the occurrence of an instance
of A, where A is an event, another thing is the occurrence of A⊗A, i.e. the occurrence of
two instances of A (perhaps at different times). It is this feature of linear logic that leads
to see this framework as a further formal tool for the ontologist.

We provide some hints to the semantics of linear logic by focusing in particular on
the commutative multiplicative conjunction ⊗, the non-commutative conjunction �, the
linear implication (, and the additive conjunction & and disjunction ⊕. The reason for
this restriction is that such a fragment of linear logic allows for an adequate simplified
semantics that is informative enough for the purpose of this paper4. The semantics for
full linear logic is presented in [10,25]. The structure that we propose here is adapted
from Urquhart semantics for relevant logics [26] and is known as Kripke resource frame,

4This simplified class of models is not adequate for full linear logic. In particular, an adequate semantic
treatment of exponentials requires some algebraic constructions as in [10] or [5].

as it is a resource-sensitive version of Kripke frames. The resource sensitivity is given
by viewing the set of worlds as a set of resources M that is structured by means of two
operations of composition of resources: one commutative, the other non-commutative.
Formulas are then evaluated wrt. resources, e.g. for m ∈M, m |= A means that resource
m are relevant to make the process A occur. Moreover, resources are ordered by means
of ≥ that represents a relevance order, i.e. n≥ m, n is more relevant than m. A valuation
has to satisfy the heredity condition: if m ∈V (A) and n≥ m then n ∈V (A).

A Kripke resource frame is a structure M = (M,e,◦,•,≥), where (M,e,◦) is a
commutative monoid5 with neutral element e, (M,e,•) is a non-commutative monoid,
and≥ is a pre-order on M. The neutral element e represents the null resource and is used
to model the independence of a process from the actual use of resources: a formula A
holds in a model, written e |= A, if A does not depend on a specific amount of resources.

To obtain a Kripke resource model, a valuation on atoms V : Atom →P(M) is
added. The satisfaction conditions are thus defined as follows.

m |=M p iff m ∈V (p).
m |=M A⊗B iff there exist m1 and m2 such that m≥m1 ◦m2 and m1 |=M A, m2 |=M B.
m |=M A (B iff for all n ∈M, if n |=M A, then n◦m |=M B.
m |=M A�B iff there exist m1 and m2 such that m≥m1 •m2 and m1 |=M A, m2 |=M B.
m |=M A & B iff m |=M A and m |=M B.
m |=M A⊕B iff m |=M A or m |=M B.

Entailment in linear logic can be understood as a check of whether a process of
performing an action or reaching a particular event is achievable. For example, if A is a
formula expressing an action, the axiom ` A (A expresses the truism that action A can
be achieved by doing A. By definition of linear implication, e |= A (A iff for all m ∈M,
if m |= A then e◦m = m |= A.

The multiplicative (commutative) conjunction in formula A⊗B means that A occurs
and B occurs, no more, no less. A bundle of resources makes A⊗B hold when m can
be split into two bundles m1 and m2 that are relevant for A and B respectively. Thus, for
example, we have A⊗A 0 A, that intuitively means that if I spend two euro, I cannot infer
that I have spent just one euro, the resources that make A⊗A hold may not be relevant
for making A hold, as there may be too many of them. Moreover, A 0 A⊗A, since, for
instance, doing A twice is not the same as doing A once (compare getting a coffee once
and getting a coffee twice).

Linear implications6 A (B can be read “reacting to A, B happens” and models
our initial coffee machine example E (C that can now be translated as “by consuming
one euro, a coffee is produced”. Thus, by means of the rules of linear logic (i.e. modus
ponens) we can infer that we get a coffee from the hypothesis of spending one euro:
E,E (C ` C. Accordingly with our interpretation of occurrences of events, from the
same assumption (E) we cannot infer that we get one coffee and one euro: E,E (C 0
E⊗C. Informally, the euro used to “produce” the coffee is “destroyed” in the deduction.

Operator � is the non-commutative conjunction, i.e., the non-commutative version
of the tensor operator, accordingly A�B 0 B�A. Non-commutativity allows for model-

5A monoid is an algebraic structure, namely a set equipped with a binary operation that satisfies associativity
and has a neutral element.

6Implications are defined by means of (multiplicative) disjunction: A (B≡ A⊥`B.

ing in purely logical way time sequentiality. For instance, in order to access a messages
Me, one has to enter her login Lo and password Pa, in whatever order, and then she has to
hit the enter button Bu, this is formalized by: ((Lo⊗Pa)�Bu)(Me. Clearly, we cannot
conclude, or achieve, Me by first hitting enter and then entering log in and password.

The additive conjunction A&B represent an agent’s exclusive choice between A and
B, so for example, A & B ` A, however A & B 0 A⊗B since only one between A and B
is performed. Dually, the additive disjunction A⊕B represent the environment’s choice
between A and B.

In [13], an informal example to suggest the meaning of the linear logic operators is
presented in terms of a menu of a restaurant.

Mo (((P⊗M)⊕ (P⊗F))� (S & G)⊗!W

The formula above encodes the instruction contained in a menu. It states that, for a given
amount of money (Mo), we can get: one of two alternatives, namely prosciutto (P) and
melon (M), or prosciutto (P) and figs (F), next we can choose between Spaghetti (S)
and Gnocchi (G), and we can get as much water as we like (!W). To formalize the same
information in classical logic, we would have to add constraints on the fact that the money
is consumed and it is no longer available, that any dish is available to the customer as a
single unit, that the water is available in multiple units and so on.

3.3. Exponential operators and classical reasoning

Informally, the ontological presupposition of classical logic is that the content of propo-
sitions is available arbitrarily, whereas the ontological presupposition of linear logic is
the opposite, namely, that such contents are available in single units. The standard log-
ical perspective views linear logic as an alternative to classical logic, namely as a non-
classical logic. From the ontological perspective, it is useful to view linear logic as a
constructive analysis of classical (or intuitionistic) logical reasoning. In this section we
present the main ideas of the analysis of the translation of classical logic into linear
logic. This material will allow us to see how linear and classical operators can co-exist
in the same logical system, and thus can be exploited together to capture rich ontological
distinctions while simplifying the complexity of the axiomatization.

The exponential operators, “!” and “?”, are important components of the language
of full linear logic since they allow to retrieve the power of structural rules. Indeed, struc-
tural rules hold on exponentially marked formulas. Informally, the difference between
“!” and “?” is that the first licenses structural rules on premises (the left hand side of
the sequent) whereas the latter does so on the consequent (the right hand side). This
means that on exponential formulas we can reason classically. In particular, the classical
meaning of conjunction can be reconstructed in linear logic as follows.

!A⊗!B≡!A�!B≡!(A & B)≡ A∧B

The same holds for disjunctions, and for the other operators of classical logic. In partic-
ular, classical implication can be defined in linear logic by A→ B ≡!A (?B. This def-
inition shows that the classical implication presupposes that arbitrarily many instances
of the antecedent can be used to obtain arbitrarily many instances of the consequent. In

[25], Chapter 5, a translation of the formulas of classical logic into the language of linear
logic, preserving provability and non-provability, is given.7

• t(p) = p, for p atomic.
• t(¬A) =!t(A)(⊥
• t(A∧B) =!t(A)&!t(B)

• t(A∨B) =!t(A)⊕!t(B)
• t(∀x.A(x)) = ∀x.t(A(x))
• t(∃x.A(x)) = ∃x.t(A(x))

Henceforth, we can view linear logic as an extension of classical logic where clas-
sical formulas cohabit and coherently interact with linear resource-sensitive formulas.
This means that an ontology that is written in classical first order logic, such as DOLCE,
can be translated into linear logic and we can apply the reasoner for linear logic (e.g.
the sequent calculus) in order to reason about DOLCE. Note that full linear logic is un-
decidable [19], but so is full classical first order logic. Moreover, by using linear logic
the ontologist can represent situated truth as well as eternal truth. A formula A of LLL
that is provably equivalent to a formula of classical logic can typically be thought of as
the representation of an eternal truth as it behaves classically. For atomic formulas, it is
chiefly up to the modeller to decide what constitutes an eternal truth and what consti-
tutes a “consumable” one. We shall exemplify and make use of this in the next section
by focusing on a decidable fragment of linear logic. As we have seen, it is possible to
design systems in which classical and linear formulas, suitably coded, coexist and freely
interact, see for instance [11] and [13]. Although we do not have space for an exhaus-
tive presentation, the discussion in this section gives an idea of how the logical system
is structured: any definition or constraint given in classical logic is reformulated in the
wider system based on linear logic as a specific subsystem or module. This means that
the ontologist can write her definitions and constraints in classical logic when she wants
or prefers to do so; these definitions and constraints are automatically added to the wider
system via the mentioned translation(s) into linear logic.

4. A language for events, transformations and make plans

Let LNELL be the system of non-exponential linear logic, i.e., the fragment of linear logic
defined by means of atomic formulas, negations, and binary operators ⊗, (, �, &, ⊕,
plus the first-order quantifiers. Let LEV be the subset of the LNELL formulas that refer
to events, plans and transformation.8 Note that here we are excluding exponentials since
events are here seen as instances (particulars à la DOLCE) so it does not make sense to
talk of an event that occurs twice: e.g. the very event ‘The killing of Caesar by Brutus’
can happen only once.

In order to separate the atomic formulas of LEV from other atomic formulas in the
ontology, let us assume that the atomic event formulas are given by means of a distin-
guished set of predicates, the “situated predicates”. We decorate the situated predicates

7More precisely, this defines the translation from intuitionistic logic into linear logic. For classical logic, it
suffices to apply the well known translations of intuitionistic logic into classical logic like Gödel’s or double
negation translation. Note that, by translating intutionistic logic into LL, our treatment can in principle include
the ontology modeling based on intuitionistic logic and type theory developed by [6].

8For the interested reader, the proof-search complexity of the propositional LNELL is PSPACE complete.
Surprisingly, the first order version is decidable and it is NEXPTIME complete [19]

with a dot to mark their special meaning: e.g., Pred•. The choice of such predicates is
domain specific, for example, they may include predicates for actions like giving, get-
ting, spending and walking; and for physical or chemical properties like burning and
melting. Those predicates are to be contrasted with “reusable predicates” or “abstract
predicates” that are used for ontological definitions and express abstract information like
“a is a physical object”. Thus, LEV is a finite subset of “situated formulas” in LNELL such
that

LEV ⊂ φ ::= Pred•(t)|φ⊥|φ ?φ |∃x.φ |∀x.φ

where Pred• is a situated predicate, t is an n-tuple of terms, x is a term variable, and ? ∈
{⊗,(,�,&,⊕}. For example, LEV may contain atomic propositions such as G•(a,r)
for “a grabs a rock r”, that is situated and resource-sensitive: a cannot grab r more than
once at a time. We do not characterize the language of events further 9.

The language of linear logic can specify complex events and behaviors in a simple
way. For instance the following formula corresponds to a plan: (A⊗B (C)⊗ (C (D).
The plan says that by performing A and B, one gets C, then by getting C, one gets D. The
order of performing A and B is irrelevant in the formula above. If sequentiality matters,
say, A must be performed before B, we can use the non-commutative operators to write
the plan in this way: (A�B (C)⊗ (C (D).

To show how a formula in LEV can represent a transformation event, we provide
a simple illustration of the use and interaction of a few linear operators that we have
introduced earlier. Consider the formula:(
(A1 ((A2⊗A3))� ((A2 (A4)⊗ (A3 (A5))⊗ (A6 (A7)

)
� (A4⊗A5⊗A7 (A8).

and its graphical representation in the following graph:

A3

A4

A6 A7

A5

A8

A1

A2

This formula stands for an event that takes two resources A1 and A6, and processes
them in a few parallel and sequential steps to obtain the resource A8. We can see that the
‘left-upper side’ of the graph, the part of the graph with A1 as starting node and that cor-
responds to subformula (A1 ((A2⊗A3))�((A2 (A4)⊗(A3 (A5)), can be performed
in parallel with the ‘left-lower side’, corresponding to subformula A6 (A7. Within the
‘left-upper side’, however, the parts corresponding to subformulas A2 (A4 and A3 (A5
(that are independent and can occur in parallel) both need to “wait” for a subevent to be
completed, namely, the subevent corresponding to formula A1 ((A2⊗A3). This con-

9Note that our treatment of events differs from Situation Calculus or Event Calculus. Events are here mod-
eled as logical propositions (elements of LNELL) and not as non-logical terms.

straint is enforced by the first occurrence of the non-commutative operator �. Analo-
gously, the ‘right side’ of the graph, corresponding to subformula A4⊗A5⊗A7 (A8,
needs to “wait” for the initial subevent to be over (this is graphically represented by the
whole ‘left side’ of the graph up to A4,A5 and A7); this constraint is enforced by the
second occurrence of the operator � in the formula.

Let us assume that our ontology is written in the language of classical logic LCL
augmented with the dedicated set LEV to separate eternal from situated truths. Given any
formula φ in our ontology, for any sub formula φ ′ of φ , we can say (1) whether or not
φ ′ is in classical or linear logic and (2) whether or not φ ′ is in LEV . Let now LEV be a
category for propositions in LEV which we take to be obtained by reification of formulas
on events,10 and let us take LEV as the atomic propositions of the language LNELL.

We constrain the relationship between formulas in LEV and the category of events
EV in the ontology by means of a denotation relation Denot and the following principle:

` Denot(e,φ)→ EV(e)∧LEV(φ)

meaning that the event e is denoted by the formula φ ∈ LEV .11 The interpretation of the
denotation relation may also be subject to a number of choices, for instance, one may
decide that it should be a bijection, i.e. for every event there is a single formula that
denotes it. In particular, one may want that logically equivalent formulas denote the same
event. Again, we view these types of considerations as user specific and simply note that
the approach can deal with a large number of ontological choices.

In what follows, we shall specify the category of LEV by viewing descriptions of
transformations, TEV, and make plans, MP, as subsets of LEV. Note that by making
them subcategories of LEV we are not committing to saying that make plans and trans-
formations are ontologically distinct types of events. To indicate this we prefer to use
the term ‘transformation’ instead of ‘production’, where only the latter is used by the
authors in explaining their original definitions [4]. One could distinguish them from the
ontological viewpoint, e.g., by saying that elements of MP must be associated to a given
procedure, while those of TEV must not; or make the opposite assumption that make
plans form the subclass of the transformation events that follow an explicit pre-existing
description. These ontological characterizations are part of the underlying ontological
system and we do not need to take a position. We are simply assuming, for the sake of
the presentation, that they are described by specific subsets of formulas in LEV . What
we actually assume, instead, is that the user has introduced designated formulas to talk
about them: `MP(x)→ EV(x) and ` TEV(x)→ EV(x).

We now return to the definitions of technical artifact described in Section 2 to show
how our language can help the ontologist to capture the core distinctions with minimal
ontological commitments and a much simpler axiomatization.

We observed in Section 2 that the definition of ontological technical artifacts is al-
ready ontologically minimal: it relies on the existence of two events which are ontologi-
cally classified as selection and attribution. In [3] an explicit axiomatization in the foun-
dational ontology DOLCE has been proposed with the detailed relationships between the

10For example, in an ontology like DOLCE, LEV can be seen as a subcategory of the category ABSTRACT

which collects the abstract entities.
11From the language definition circular formulas like Denot(e,Denot(e,φ)), cannot be generated.

different participants to these events. Some of these constraints can be modeled in a sim-
pler way with our language but the discussion of the full system and its rewriting would
take too much space to carry it out here. For a simple example, assume that an ontolo-
gist adopts this definition and wants to explicitly impose that the attribution act eA, with
Denot(eA,φA), occurs not before the selection act eS, with Denot(eS,φS). This is usually
formalized in first-order logic via reference to the temporal extensions of these acts. To
do this the ontology needs to make some (perhaps minimal) choice in terms of temporal
extensions and to quantify over these properties. In our language, this is not necessary as
the result is obtained by the following formula ¬(φS�φA), where ¬ is classical negation,
or its rendering in linear logic: !(φS� φA) (⊥. The formula states that it is never the
case that eS comes before eA.12

5. Transformations and engineering artefacts

Regarding the definition of engineering technical artifact in Section 2, with linear im-
plication at disposal it is easy to represent the requested process of transformation. Let
AGO(x) mean that x is an agentive object, attr(x) that x is an attribute, PC(x,e) that ob-
ject x participates in event e, and Has(x,q) that object x has attribute q. These notions
are already referred to in the definition so we do not add further assumptions here nor
require specific commitments regarding these predicates and relations. Of course, the
logical formula depends on the ontology: if the underlying ontology models agency as,
say, a role, we would have to use that role relation instead of AGO.

CreaE(e,a) ≡ ∃a,q,φ . Denot(e,φ)∧T EV (e)∧AGO(a)∧attr(q)∧
PC(a,e)∧PC(a,e)∧
(φ (Has(a,q))

Let us explain it in English. First notice that there is a part of the formula expressed in
classical logic; this formalizes the mere ontological characteristics of the elements in-
volved: event e is a transformation event (named φ in LEV), x an agent and so on. In par-
ticular, the formula tells us that an event that creates an engineering artifact is a transfor-
mation event with some further constraints. The definition involves some agentive object
a and some attribute q. The agent a and the artefact a participate to the event e. Finally,
the occurrence of the event e has the effect of causing the artefact a to have the attribute
q. Of course, the formula can be enriched with further constraints but it is clear that it
already models a lot of information within a very simple formula structure. Furthermore,
only the ontological elements (the predicates and relations like T EV,AGO,attr,Has, and
PC) require ad hoc constraints. These constraints, however, should already be part of the
underlying ontology to which the definition is being added via the CreaE(e,a) relation.

6. Make plans and technological artefacts

Let us assume that the language of the ontology for the definition of technological arti-
facts, definition 3 of [4], includes a ternary relation Check(e,a,q). We take Check(e,a,q)

12If we really aim to give a temporal connotation to the formula, we can use two further operators available
in linear logic: the “non-commutative” implications called pre-implication “ \ ” and post-implication “ / ”.
Because of space limitations we have not introduced them in Section 3.2.

to mean that the event e is a checking procedure (by some means, or agent) that the entity
a possesses the property q. Also, we take P(x,y) to mean that x is part of y.

To formalize the definition of technological artifacts the ontologist can now use the
following formula for the creation relation

CreaT (e,a) ≡ ∃e1,e2,a,q,φ .
Denot(e1,φ)∧MP(e1)∧EV (e2)∧AGO(a)∧attr(q)∧
P(e1,e)∧P(e2,e)∧PC(a,e1)∧PC(a,e1)∧PC(a,e2)∧PC(a,e2)∧
((φ (Has(a,q))�Check(e2,a,q))

As before, there is a first subformula which is classical and that ontologically classifies
the elements; the remaining subformula is characteristically linear. This time the creation
event has at least two subevents: e1 and e2. The latter, e2, is just a generic event while e1
needs to be a make plan. Proposition φ in LEV denotes this make plan. There is also an
agentive object a and an attribute q involved. We also have that both the agent a and the
artefact a participate to e1 and e2. Finally, the occurrence of the make plan φ has the effect
that the artefact a has the attribute q, followed by the checking step, event e2, aimed to
verify whether a has the attribute q. The atom Check(e2,a,q) deserves some comments.
Clearly, the event e2 is different from the event of creation which we can identify with e1.
It is assumed that there is no creation in e2, and it can be thought to be an achievement
event. Practically, it is in an epistemic action necessary for the produced entity to be
officially dubbed as artifact. The check must happen after the creation through the make
plan: hence the non-commutative operator.13

7. Conclusions

Formal logic furnishes several operators that are interesting for ontological modeling al-
though still today researchers exploit almost exclusively only the classical and modal
ones. This paper makes clear that other operators can simplify the activity of the ontolo-
gist, improve the quality of formal ontologies, reduce the ontological commitment of the
systems, and highlight the true ontological consequences of a formal ontology.

Notwithstanding these observations, today we lack a systematic study of these oper-
ators from the ontological viewpoint. We also have no development of methodologies for
their use within the same ontological system. This paper is the first result of this new line
of research. In the future, we plan to expand the list of logical operators that can have on-
tological interest, and to study their coexistence within the same logical system. Overall,
we aim to develop methodologies for the ontological exploitation of these logical tools.

8. Acknowledgments

Borgo is supported by the Pro2Evo project funded by the “Progetto Bandiera la Fabbrica
del Futuro”; Porello is supported by the VisCoSo project funded by the Autonomous
Province of Trento (“Team 2011” funding programme); Troquard is supported by a Marie
Curie fellowship (project “LASTS”) under grant PCOFUND-GA-2008-226070.

13Depending on the notion of make plan one takes, one could as well reformulate the definition so to identify
the creation event with the make plan, thus e1 is e itself, and take e2 to be the final part of the event.

References

[1] V. M. Abrusci. Non commutative logic: A survey. In Proc. Automated Reasoning with Analytic Tableaux
and Related Methods, International Conference, TABLEAUX 2003, page 1. LNCS 2796, Springer, 2003.

[2] A. Ross Anderson and N. D. Jr. Belnap. Entailment: The Logic of Relevance and Necessity. Princeton
University Press, 1975.

[3] S. Borgo and L. Vieu. Artifacts in Formal Ontology. In Anthonie Meijers, ed., Handbook of the Philos-
ophy of the Technological Sciences. Technology and Engineering Sciences, vol. 9, pp. 273–307, 2009.

[4] S. Borgo, M. Franssen, P. Garbacz, Y. Kitamura, R. Mizoguchi, and P. E. Vermaas. Technical artifact:
An integrated perspective. In Formal Ontologies Meet Industry, FAIA 229, pp. 3–15. IOS Press, 2011.

[5] D. Coumans, M. Gehrke, and L. van Rooijen. Relational semantics for full linear logic. Journal of
Applied Logic, 12(1):50 – 66, 2014. Logic Categories Semantics.

[6] R. Dapoigny and P. Barlatier. Modeling ontological structures with type classes in coq. In Conceptual
Structures for STEM Research and Education, pp. 135–152. Springer, 2013.

[7] P. De Groote. Partially commutative linear logic: sequent calculus and phase semantics. In Proofs and
Linguistics Categories–Applications of Logic to the analysis and implementation of Natural Language,
pp. 199–208, 1996.

[8] M. Dummett. Frege: Philosophy of Language. Harvard University Press, 1981. 2nd edition.
[9] M. Fitting and R. L. Mendelsohn (1998). First-Order Modal Logic. Synthese Library–Studies in Episte-

mology, Logic, Methodology, and Phil. of Sc. vol. 277. Kluwer Academic Publishers, Dordrecht, 1998.
[10] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50(1):1–101, 1987.
[11] J.-Y. Girard. On the unity of logic. Ann. Pure Appl. Logic, 59(3):201–217, 1993.
[12] J.-Y. Girard. Linear logic: Its syntax and semantics. In Advances in Linear Logic. Cambridge University

Press, 1995.
[13] J.-Y. Girard. Le point aveugle, cours de logique, tome 1 : vers l’imperfection. Editions Hermann,

collection, Visions des Sciences, 2006.
[14] H. Herre (2010). General formal ontology (GFO) : A foundational ontology for conceptual modelling.

In R. Poli and L. Obrst, eds, Theory and Applications of Ontology, vol. 2. Springer, Berlin, 2010.
[15] W. Houkes and P. E. Vermaas (2009). Produced to Use: Combining Two Key Intuitions on the Nature

of Artefacts, Techne, 13:123–136
[16] W. Houkes and P. E. Vermaas (2014). On What Is Made: Instruments, Products and Natural Kinds of

Artefacts. In Artefact Kinds: Ontology and the Human-Made World. Springer, 2014.
[17] Y. Kitamura and R. Mizoguchi. Characterizing functions based on ontological models from an engi-

neering point of view. In Formal Ontology in Information Systems, pages 301–314. IOS Press, 2010.
[18] P. A. Kroes and A. W. M. Meijers (2006). The dual nature of technical artifacts, Studies in History and

Philosophy of Science, 37(1): 1–4.
[19] P. Lincoln. Deciding provability of linear logic formulas. In Proc. Workshop on Advances in Linear

Logic. Cambridge University Press, 1995.
[20] E.D. Mares. Relevant Logic: A Philosophical Interpretation. Cambridge University Press, 2004.
[21] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and L. Schneider (2002). The wonderweb

library of foundational ontologies. Deliverable 17, WonderWeb European Project, 2002.
[22] W3C OWL Working Group (2012). OWL 2 Web Ontology Language. Document Overview - W3C. Rec-

ommendation 11 december 2012, 2012. http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
[23] B. Smith. Against fantology. In Johann C. Marek and Maria E. Reicher, editors, Experience and

Analysis, pages 153–170. HPT&ÖBV, 2005.
[24] B. Smith et al. (2012). Basic formal ontology 2.0 - draft specification and user’s guide.

http://purl.obolibrary.org/obo/bfo/2012-07-20/
[25] A. S. Troelstra. Lectures on Linear Logic. CSLI Publications, 1992.
[26] A. Urquhart. Semantics for relevant logics. J. Symb. Log., 37(1):159–169, 1972.

