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Abstract

The concept of the receptive field, first articulated by Hartline, is central to visual 
neuroscience.  The  receptive  field  of  a  neuron  encompasses  the  spatial  and 
temporal properties of stimuli that activate the neuron, and, as Hubel and Wiesel 
conceived of it, a neuron’s receptive field is static. This makes it possible to build 
models of neural circuits and to build up more complex receptive fields out of 
simpler ones. Recent work in visual neurophysiology is providing evidence that 
the classical receptive field is an inaccurate picture. The receptive field seems to 
be a dynamic feature of the neuron. In particular, the receptive field of neurons in 
V1 seems to be dependent on the properties of the stimulus. In this paper, we 
review the history of the concept of the receptive field and the problematic data. 
We then consider a number of possible theoretical responses to these data.

1. Introduction

One role for the philosopher of neuroscience is to examine issues raised by the 
central  concepts  of  neuroscience  (Gold  &  Roskies  forthcoming)  just  as 
philosophy of biology does for biology and philosophy of physics for physics. In 
this paper we make an attempt to explore one issue around the concept of the 
receptive  field (RF)  of  visual  neurons.  Fundamentally,  the  RF  of  a  neuron 
represents “how a cell responds when a point of light falls in a position of space 
(or time)” (Rapela, Mendel & Grzywacz 2006, p. 464). It also describes the kind 
of stimulus that activates a neuron—a moving bar, a red patch, or whatever. The 
phrase “receptive field” was coined by the American neurophysiologist and Nobel 



laureate,  Haldan  K.  Hartline  (1903-1983),  in  1938  (Hartline  1938)  and  has 
become  the  central  way  of  characterizing  neurons  in  the  visual  system  and 
elsewhere. Barlow (1953; see Lettvin, Maturana, McCulloch & Pitts 1968) and, in 
particular, Hubel and Weisel (e.g., Hubel & Wiesel 1959) developed the concept. 
Currently, as Rapela, Mendel, & Grzywacz (2006, p. 464) say, “[r]eceptive fields 
are the main theoretical  framework to represent functional properties of visual 
cells.” 

However,  recent findings in the neurophysiology of neurons in primary visual 
cortex (V1) are at odds with the “classical” conception of the RF  (Albright & 
Stoner 2002), and it is possible that the concept of the visual RF is in transition. 
Our aim in this paper, therefore, is to examine the concept of the RF and explore 
the possible consequences for the concept of these data for neurophysiology and 
computational vision. We are not concerned to argue for a particular view about 
the status of the concept but rather to begin to articulate some of the options. We 
make some anodyne remarks at the end of the paper about which of the options 
we think are most promising, but our purpose here is merely to contribute to the 
beginning of a discussion about the issues.

We introduce the concept of visual RFs by discussing the classical picture of V1 
physiology, most associated with the work of Hubel and Wiesel (section 2). We 
then  turn  to  the  psychophysics  and  computational  vision  of  contrast 
discrimination in order to place the visual neurophysiology in context (section 3). 
We next  review the  recent  data  that  have raised questions  about  the classical 
conception of the RF (section 4). We turn then to consider some of the options 
available for absorbing the data into visual theory (section 5). We conclude with 
some remarks on the relevance of these data for thinking about the role of the 
environment in visual theory (section 6).

2. The Classical Receptive Field 

The  simplest  picture  or  model  of  visual  processing  is  of  a  one-way  flow  of 
information from the photoreceptors of the eye, via successively more complex 
information transformations in the retina, thalamus and the visual cortex towards 
integration with other functions in the higher cortical areas. Most likely owing to 
its simplicity, it has long been the picture most appealing to scientists confronted 
with the daunting complexity of the visual brain. Indeed, this “bottom-up” picture 
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has  held  sway even though neuroanatomy has  shown,  for  example,  that  “top-
down”  neuronal  connections  from  visual  cortex  to  the  thalamus  outnumber 
bottom-up connections  from the  retina  (see Sherman and Guillery 2002).  The 
hierarchical scheme is illustrated in Figure 1a which shows the key anatomical 
loci of the human visual system up to and including primary visual cortex. These 
brain structures are shared by higher mammals, and for this reason studies on cat, 
ferret and other mammals aside from primates, have been considered important 
steps toward an understanding human vision. 

Figures 1b-c illustrate Hubel and Wiesel’s famous hierarchical model of RFs in 
primary visual cortex, where the elongated RFs of V1 simple and complex cells 
are taken to be the result of the arrangement of cells lower down in the visual 
pathway which synapse onto them.  The modern era of study of the RF begins 
with the work of Hubel and Wiesel, and we will, for the purposes of this paper, 
take theirs to be the standard conception of the RF. However, we note that the 
work of many other scientists is of equal importance.  In particular,  Hubel and 
Wiesel’s studies were of a largely qualitative nature, so almost all quantitative 
measurement  understanding  of  RF  properties  is  due  to  the  efforts  of  other 
laboratories. 

Much of the basic understanding of the visual neurons that inspired the traditional 
picture  came  from  extracellular  electrode  recordings  in  the  cat.  In  such 
experiments,  various  stimuli  would  be  presented  to  the  eyes  of anaesthetised 
animals while electrodes measured neuronal responses in the cortex in terms of 
spikes per second. A crucial finding of Hubel & Wiesel (1959) was that neurons 
in the cat visual cortex respond well to moving or flashing bars of a particular 
orientation,  width  and  location  (see  Hubel  &  Wiesel  1998  for  a  historical 
overview of their work, including the “accidental” discovery of elongated RFs). 
This suggested that in contrast to the neurons of the retina and lateral geniculate 
nucleus (LGN) which had been found to have circular RFs (Kuffler 1953), V1 
RFs were elongated and orientation specific. Hubel and Wiesel mapped these RFs 
by flashing small spots of light in the visual field. As in earlier studies, any area in 
space in which flashing a light elicited an increase in neuronal firing rate was 
defined as part of the ON portion of the RF, and any adjacent area in which a 
black spot (i.e. a decrease in luminance relative to the background) elicited firing 
was taken to constitute part of the OFF area. Figure 2a illustrates a receptive field 
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mapped in this way by Hubel and Wiesel (1959). Hubel & Wiesel (1962) also 
made a distinction between  simple and  complex cells,  the first type apparently 
exhibiting predictable linear spatial summation and the second type not. In effect, 
only  simple  cell  RFs  had  clearly  defined  ON and OFF regions  and could  be 
mapped  with  localised  spots  of  light.1 In  contrast,  complex  cells  showed 
unpredictable nonlinear spatial summation and were indifferent to the phase of a 
bar or grating stimulus (see Figure 3). In the absence of defined ON and OFF 
regions,  the  complex  cell  response  would  be  the  same  whatever  the  precise 
position of the white and dark portions of the stimulus with respect to the RF. 
These findings  motivated  the hierarchical  model  represented in  Figure 1b.  An 
obvious explanation for the structure of the simple cell RF is that a small number 
of LGN cells  whose RFs occur in a row in visual space all  synapse onto one 
simple cell. Likewise, an obvious explanation for phase invariance of the complex 
cells  is  that  these neurons  receive  input  from a small  number  of  simple  cells 
whose RFs overlap but are of different ON-OFF polarity in space. 

Other researchers went on to make more detailed studies of simple and complex 
cells in order to quantify, for example, the linearity of spatial summation. These 
studies often used sinusoidal grating stimuli rather than spots of light or bars (see 
Figure 3a). One important reason for using sinusoids was that physiologists were 
engaged in performing a systems analysis of primary visual cortex (see Albrecht, 
Geisler & Crane 2003). On the assumption that V1 neurons are linear analysers, 
these methods, borrowed from the physical sciences and engineering, show how 
the response of such linear neurons to sinusoids can then be used to predict the 
responses to any image. Recordings were made both in the cat (see, e.g., Henry 
1977, Movshon, Thompson & Tolhurst 1978 a,b,c; Jones et al.  1987; Jones & 
Palmer 1987; Li, Peterson & Freeman 2003) and monkey (e.g., Hubel & Wiesel 
1968; Hawken & Parker 1987; Parker & Hawken 1988; Ringach 2002). Figures 
2b and c show further examples of simple cell receptive field maps, similar to 
those  presented  by  Jones,  Stepnowski  and  Palmer  (1987)  and  De  Angelis, 
Ohzawa and Freeman (1993a), respectively. These studies revealed properties of 
V1 neurons that significantly challenge the classical picture. Indeed, Hubel and 
Wiesel’s  original  hierarchical  model  was  soon  found  to  be  inconsistent  with 
quantitative measurement of simple and complex cell responses implicating some 
1 See Mechler  and  Ringach  (2002)  for  the  case  against  the  simple-complex  dichotomy.  The 
classification has faced severe scrutiny but is still in play in the physiology literature. Since this 
debate is not crucial to our discussion of receptive fields it will not be discussed further here.
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role for top-down or lateral connections in shaping RF properties. Discussion of 
these  later  studies,  and  the  extent  to  which  they  undermine  the  classical 
conception  of  the RF,  is  the  subject  of  sections  4 and 5.  In  the  next  section, 
however,  we  examine  the  influence  of  the  classical  conception  in  the  other 
disciplines of visual neuroscience, notably psychophysics and computation.

3. Psychophysics, Computational Modelling and the Classical RF

3.1. Psychophysics

Psychophysics  is  a  sub-discipline  of  visual  neuroscience  in  which  detailed, 
quantitative  measurements  are  made  of  assumed  basic  visual  responses  or 
percepts.  For  example,  classic  psychophysical  studies  measured  absolute 
detection thresholds for dim spots of light,  and also for sinusoidal  gratings of 
different  spatial  frequencies.  Historically,  much  research on the  physiology of 
vision  has  been  motivated  by  psychophysical  findings.2 A  major  subject  of 
psychophysical  investigation  has  been  the  supposed  properties  of  spatial  
frequency  and  orientation  channels  (Campbell  & Robson 1968;  Blakemore  & 
Campbell  1969).  A corresponding  target  for  physiologists  has  been  to  find  a 
neural  explanation  for  these  results  (e.g.  Campbell,  Cooper  &  Enroth-Cugell 
1969;  Maffei  & Fiorentini  1973).  The idea of a channel  is  basically  that  of a 
spatial frequency or orientation selective filter (Braddick, Campbell & Atkinson 
1978; Graham 1989), such a filter being the result of the operation of one or more 
structures in the visual system. Just as any continuous, intensity-varying signal, 
such as a sound wave, can be described as a set of sinusoidal Fourier components 
of different amplitudes, frequencies, and phases with respect to one another, any 
visual image can be analysed as a two-dimensional Fourier transform (Robson 
1980;  Westheimer  2001).  The  channel  theory  of  vision  was,  therefore,  the 
working hypothesis that the visual system itself breaks down images roughly into 
its Fourier components, by way of its channels, and that, for each channel, there is 
a sinusoidal stimulus of a particular spatial frequency and orientation to which the 
channel gives its optimal response (Campbell & Robson 1968). 

On Hubel and Wiesel’s description of visual cortex, neuronal response properties 
are  fixed,  and  dependent  solely  on  the  response  properties  of  the  upstream 

2 Though this is more true of the British than the American school of visual neuroscience (Lennie 
& Movshon 2005)
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neurons  which  provide  their  input.  A  number  of  authors  (e.g.  Blakemore  & 
Campbell 1969, Campbell et al. 1969, Maffei & Fiorentini 1973) were therefore 
prompted  to  equate  these  cortical  properties  with  the  properties  of  the 
psychophysical channels. However, as Marr & Hildreth (1980) pointed out, these 
physiological  and  psychophysical  theories  of  cortical  processing  are  rather 
different in that the psychophysical channels are said to perform something akin 
to  a  Fourier  transform  of  the  visual  image  which  is  a  non-local  analysis  of 
frequency; the simple cells of Hubel and Wiesel, on the other hand, operate as 
detectors  of  localised  contrast  features,  such  as  edges.  Still,  the  channel 
hypothesis is now established, in so far as it is generally accepted that the key 
mechanisms in the visual system revealed by psychophysics are spatial frequency 
and  orientation  selective,  rather  than  broadband  (Majaj,  Pelli,  Kurshan  & 
Palomares 2002).

At the same time, channel models have evolved. Originally, it was not thought 
that the response of one channel should alter the output of another channel (but 
see Tolhurst 1972). But in response to more recent neurophysiological work (see 
section  4.1)  and  in  order  to  better  account  for  psychophysical  data,  some 
psychophysicists have rejected the  independent-channels hypothesis, developing 
models  in  which channels  are  dynamically  effected  by the  responses  of  other 
channels  (e.g.  Foley  1994).  The  convergence  of  psychophysics  and 
neurophysiology has  also  been  given  a  helping  hand in  recent  years  with  the 
advancement  of  scanning  techniques.  In  particular,  with  functional  magnetic 
resonance  imaging  (fMRI)  it  is  possible  for  experimenters  to  track  areas  of 
increased  neural  activity  whilst  observers  perform  traditional  psychophysical 
tasks. Boynton,  Demb,  Glover & Heeger (1999) argue that observers’  contrast 
discrimination functions (detection of an increase in grating contrast as a function 
of  background  contrast)  can  be  predicted  by  fMRI  signals  in  V1  and  V2, 
implicating these areas as critical for setting thresholds in this task. This result 
gave new support to psychophysicists’ attempts to account for their data in terms 
of V1 physiology (Foley 1994, Chirimuuta and Tolhurst 2005).

3.2. Computational Models of V1 RFs 

As noted  in  section  2,  Hubel  and  Wiesel’s  work  was  largely  qualitative,  but 
scientists  following  them aimed  to  get  a  mathematically  precise  grasp  of  V1 
physiology.  A powerful tool here was the computational  modelling of RFs.  A 
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computational  model  of  an  RF  is  supposed  to  capture  the  key  functional 
properties of the RF, such that it can be used to predict how a neuron will respond 
to any hypothetical stimulus. With the intense research on V1 following Hubel 
and Wiesel, there soon grew to be a large body of data on response properties, and 
some  of  these  data  sets  gave  conflicting  evidence  on  key  questions  such  as 
whether or not there really are two classes of simple and complex cells. One way 
of usefully integrating this large amount of data was to develop computational 
models of cortical  receptive fields and to measure the goodness of fit with the 
data:  if  the  fit  is  good,  it  may  be  inferred  that  the  mathematical  principle 
operational in the model (e.g. linear versus nonlinear contrast response) captures 
the key properties of the neuron. 

A large number of simple cell models have been developed since the 1980s. One 
which has achieved notable popularity is the Gabor model. The Gabor function is 
the product of a sinusoid and a Gaussian envelope, giving a localised sinusoidal 
modulation. The one-dimensional Gabor function was first developed by Dennis 
Gabor  (1946)  for  use  in  communications  engineering,  and  it  is  a  particularly 
useful  coding  function  because  it  minimises  joint  uncertainty  about  time  and 
temporal frequency (Gabor-Heisenberg-Weyl uncertainty).  In the case of visual 
analysis,  the  function  minimises  joint  uncertainty  about  location  and  spatial 
frequency, enabling one to perform local Fourier analysis (see section 3.1 above). 
The function was introduced to vision science by Marcelja (1980).

With  the Gabor  model  comes  the implication  that  simple  cells  are  essentially 
linear fixed filters whose job it is to analyse any given visual scene into simple 
bar or blob like components. Thus the Gabor model shares a common fate with a 
particular conception of the RF. Over the past two decades the appropriateness of 
the Gabor as a model for V1 neurons has been researched intensively and, given 
the significant nonlinearities reported, it seems a fair summary of the findings to 
say that the Gabor model can account for roughly half of the response behaviour 
of simple cells in anaesthetized animals (DJ Tolhurst, personal communication; 
see Carandini et al 2005 for a recent assessment of the standard RF models). In 
section 4 we will discuss some of these reported nonlinearities, and in section 5 
we will discuss neuroscientists’ responses to the reported discrepancies between 
the data and the linear model.
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3.3. Computer Vision

The field of computer vision, as opposed to the development of computational 
techniques  in neurophysiology,  attempts  to reproduce useful visual function in 
computers  or  robots.  Perhaps  the most  influential  figure in computer  vision is 
David Marr. His project was to develop mechanisms that were equivalent to the 
biological ones, and that could operate in artificial systems (Marr 1982). Crucial 
to his methodology was the distinction between algorithm and implementation, or 
“software” and “hardware”. This distinction allowed him to argue that a process 
in the visual system, for example, making a selective response to vertical edges, 
could be exactly equivalent to a computational process such as convolution with 
vertical filters, even though the processes are realised in very different physical 
substrates. Marr hoped to find algorithms which could carry out processes useful 
to machine vision, such as edge extraction for the purpose of object recognition 
(Marr  &  Hildreth  1980).  Still,  what  is  shared  by  computer  vision  and  the 
computational  modelling  discussed  in  section  3.2  is  the  assumption  that  the 
processing that takes place in the visual system can also be implemented in a 
digital  computer.  David  Marr’s  work  was  not  especially  inspired  by  detailed 
physiology, but later researchers have taken this line further. For example, John 
Daugman’s algorithm for iris scanning is a convergeance of ideas from computer 
vision,  statistics,  V1  physiology  and  computational  modelling  of  V1  (see 
Daugman 2003).

4. Recent Findings in V1 Physiology 

Hubel and Wiesel’s conception of the RF is known as the “classical RF” because 
further investigation of V1 physiology revealed that a given neuron’s response 
could  be  modified  by stimulation  of  the  neuron in  visual  field  regions  which 
would not in themselves elicit a response, or by presentation of stimuli to which 
the neuron was apparently unresponsive. Such findings challenged the picture of 
the visual system as feedforward and hierarchical, with little or no modulation of 
responses due to interaction between neurons at the same level of the hierarchy, or 
from higher levels. Another assumption of the classical picture was that RFs are 
fixed properties of neurons. This has also been challenged by recent work. This 
section reviews some key findings in the extensive literature on the visual cortex.

In passing, it is worth asking to what extent these discoveries have been made 
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possible with new techniques unavailable in the 1950s and 1960s. For example, 
the  advent  of  intracellular  recording  allowed  researchers  to  record  directly 
inhibitory input to V1 neurons, now taken to be a critical factor behind RF tuning 
properties. It has also been argued that recordings from awake-behaving animals 
have  revealed  nonlinearities  not  apparent  in  the  traditional  anaesthetised 
preparation (Lamme, 2004). On the other hand, it is worth considering the idea 
that  complex  nonlinear  behaviour  is  receiving  more  attention  now  because 
scientists’ conception of V1 function and RFs has altered, making more salient 
complex behaviours which might previously have been put down to noise in the 
system (see section 4.4). 

4.1. Inhibitory Networks and Surround Effects in V1 

Later neurophysiological investigation did not bear out the conjecture of Hubel & 
Wiesel’s  (1962)  hierarchical  model  according  to  which  response  properties  of 
cortical  neurons can be explained in terms of summation of upstream neurons 
which  have  simpler  RFs.  For  example,  the  intracellular  recordings  of  Hirsch, 
Alonso, Reid & Martinez (1998) found that cortical neurons receive a significant 
amount of inhibitory and excitatory input from within the cortex, as well as the 
excitatory  geniculate  input  mentioned  by the  hierarchical  model.  Furthermore, 
computational  studies  (Troyer,  Krukowski,  Priebe  &  Miller  1998,  Lauritzen, 
Krukowski & Miller 2001, Wielaard, Shelley, McLaughlin & Shapley 2001) have 
shown  that  the  inhibitory  input  is  necessary  for  keeping  tuning  bandwidth 
invariant  with  stimulus  contrast,  as  is  approximately  the  case  in  V1 (Sclar  & 
Freeman 1982, Skottun, Bradley, Sclar, Ohzawa & Freeman 1987).

It  follows  from  these  findings  that  cortical  response  properties  cannot  be 
independent of the activity of neighbouring neurons (Blakemore & Tobin 1972). 
An  important  example  is  the  work  of  Bonds  (1989),  which  showed  that 
simultaneous stimulation with an optimal stimulus and a superimposed mask at a 
different  orientation  or spatial  frequency,  will  cause the neuron’s responses to 
drop below its response level to the optimal stimulus alone. Since the neuron is 
not thought to be directly (i.e. by way of excitatory geniculate input) affected by 
the mask to which it is poorly tuned, the implication is that the neuron is receiving 
inhibition from neurons which do respond to the mask. 

Another  line  of  research  which  has  challenged  the  “discrete”  receptive  fields 
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picture is the investigation of the effects of stimulating beyond the spatial extent 
of the “classical receptive field”. Hubel and Wiesel (1962) defined the receptive 
field as the area over which a neuron responds to small spots of light.3 However, it 
has  been  shown  that  V1  neurons  will  often  produce  a  greater  response  if  a 
stimulus is extended beyond this area, even if stimulation in this area alone is not 
able  to  drive  the  neuron.  The  maximum  extent  of  the  area  which  causes 
progressive excitation is known as the “summation field”. Stimulation beyond the 
“summation field” often causes a decline in response and the area over which one 
observes  this  inhibition  is  known as  the  “suppressive  surround”.  Examples  of 
different surround effects can be found in the work of, amongst others, Blakemore 
& Tobin (1972), Maffei & Fiorentini (1976), Nelson & Frost (1978), Gilbert & 
Wiesel (1990), De Angelis, Freeman & Ohzawa (1994), Jones, Grieve, Wang & 
Sillito  (2001),  Cavanaugh,  Bair  &  Movshon  (2002a),  Cavanaugh,  Bair  & 
Movshon (2002b) and Levitt & Lund (2002); see Albright & Stoner (2002) and 
Tucker & Fitzpatrick (2003) for reviews. 

The existence of a suppressive surround means that neurons are affected by parts 
of the image adjacent to their receptive fields and so, in an ecological context 
where there will be complex image structure around the receptive field (rather 
than  blank  grey  screen),  it  will  be  difficult  to  predict  the  responses  to  any 
particular  stimulus.  There  has  been  much  speculation  over  the  purpose  of  the 
surround  in  ecological  vision.  Marcus  &  van  Essen  (2002)  suggest  that  the 
surround may aid scene segmentation  in  primate  V1 and V2;  similarly,  Li  & 
Gilbert  (2002)  and  Sugita  (1999)  suggest  a  role  in  contour  integration  and 
grouping problems  (see  Lamme (2004)  for  a  review).  Following  such results, 
another  new  concept  that  has  been  added  to  that  of  the  RF,  is  that  of  the 
“association  field” (Kapadia,  Westheimer  & Gilbert  2000).  It  was a term first 
introduced in psychophysics (Field, Hayes & Hess 1993), but in neurophysiology 
the association field maps the amount of modulation that is invoked by different 
stimuli surrounding an optimal stimulus for any given RF. 

3 C.f. Barlow et al (1967). This, however, is just one way of measuring the size of the classical 
RF; it measures the “minimum response field” (MRF). Another method is to stimulate the neuron 
with an grating of increasing size to find the optimal stimulus dimensions for its RF, measuring 
the  “grating  summation  field”  (GSF)  (DeAngelis  et  al.  1994;  Sceniak  et  al.  1999).  The  first 
method tends to give smaller estimates of RF size than the other; see Cavanaugh et al. 2002a.
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To conclude this subsection, we note that the finding of the interdependence of 
neurons’  RF properties  raises  questions  about  what  level  of  analysis  –  single 
neuron or population – is best for experimental work in the visual cortex, an issue 
we will raise again in section 5.

4.2. The Dynamic RF 

As noted above, the traditional concept of a RF is of a fixed filter – that is, of a 
unit that signals the presence of its preferred stimulus, its preference unaffected 
by recent history of stimulation or by the activity of other units. This notion is tied 
up  with  the  idea  that  visual  neurons  represent  the  features  to  which  they  are 
responsive,  or  that  they  perform  pattern  recognition  (Craik  1966).  The 
physiological  findings  that  we  will  review  in  this  section  cast  doubt  on  the 
assumption that RF properties are fixed. As Tucker and Fitzpatrick (2003) have 
recently put it,  “[t]he cortical  RF has become a dynamic entity,  one in which 
context and history play significant roles in shaping its boundaries and altering its 
properties.” 

The  question  we will  address  in  section  5 is  how revisionary or  conservative 
neuroscientists  could  now  be  about  the  concept  of  RF  in  the  light  of  these 
findings, and in section 6 we will ask if the dynamic V1 neuron points to new 
ways of thinking about perception in general. But we begin a discussion of this 
literature with one of the most robust reports on how RF size is readily modified 
by stimulus contrast. A number of different research groups at around the same 
time all reported that the CRF is found to be larger if the neuron is stimulated with 
low contrast gratings (Levitt & Lund 1997, Polat, Mizobe, Pettet, Kasamatsu & 
Norcia  1998,  Kapadia,  Westheimer  and  Gilbert  1999  and  Sceniak,  Ringach, 
Hawken & Shapley 1999). Explanations for this phenomenon suggest that it is a 
means of increasing sensitivity at low contrasts, analogous to the way in which 
photoreceptors  and other  cells  in  the retina  show increased  pooling of  signals 
between neighbouring neurons in dim light conditions. The conceptual interest of 
this result is simply that it means one cannot speak of an RF as  having a fixed 
size; size must always be given relative to the contrast at which the neurons was 
tested, and this complicates the traditional model of the RF.  

A comparable result to this is the finding that RF size is also dependent on the 
neuron’s recent history of stimulation. “Artificial scotoma” is the term given to a 
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blank stimulus  presented  in  the RF centre  which suppresses  response activity. 
Gilbert and Wiesel (1992), Kapadia, Gilbert and Westheimer (1994) and Pettet 
and Gilbert  (1992) have shown that presentation of an artificial  scotoma for a 
number of minutes causes the RF of cortical neurons to grow to several times 
their original size. The effect is reversible by subsequent presentation of stimuli to 
which  the  neuron  is  responsive  and  is  thought  to  be  mediated  by  horizontal 
connections between neurons in the same cortical layer (Tucker and Fitzpatrick 
2003).  Indeed,  fast  plasticity  of  horizontal  connections,  and  also  of  top-down 
connections  from  higher  cortical  areas,  are  commonly  put  forward  as  the 
physiological  explanation  of  RF  dynamism,  and  of  the  surround  and  cross 
stimulus effects discussed above, though the details of such mechanisms remain 
an area of contention. 

One striking demonstration of the dynamism of visual neuronal properties can be 
seen in the work of Bair and Movshon (2004) on direction-selective (DS) neurons 
in V1 and motion area MT/V5 of the macaque monkey. Such neurons have been 
modelled  extensively  as  linear  filters  which  are  oriented  in  spacetime  to  give 
directional sensitivity, and in such models RFs are taken to be stable. However, 
these authors note many psychophysical reports showing that at a perceptual level 
the temporal profile of motion integration – the time course or pattern of motion 
analysis undertaken by the visual system – is variable with stimulus speed, spatial 
frequency and contrast.  So the aim of the investigation was to find out if  this 
variability is a property which arises at a population level, while the profiles of 
individual neurons are fixed, or if the basis of the variability can be shown at the 
level of individual neurons whose RFs are dependent on stimulus properties.

Bair and Movshon showed convincingly that the latter is the case. For example, 
neurons extend their integration time (i.e. the time window in which a spiking 
response signifies the presence of a stimulus moving in the preferred direction) 
for slowly moving gratings. They term this “adaptive temporal integration”, since 
such a stimulus dependent shift  is advantageous,  improving the signal-to-noise 
ratio of the response to slowly moving objects. They conclude that “[i]t is possible 
that  no single RF profile can be attributed to a cortical  cell.  This implies  that 
models relying on a fixed filter to endow component neurons with their tuning 
properties could be highly inaccurate, in general.”
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4.3. Natural Images 

All of the studies mentioned above have used artificial stimuli, but since the 1990s 
studies using natural  stimuli  – photographs or video clips taken in the outside 
world – have become increasingly central to vision science (see Figure 3b). The 
reason for this interest in natural stimuli is that the visual system evolved in the 
natural environment, and presumably many of its features are adaptations to the 
peculiarities of natural visual information. Of particular interest is the view that 
properties  of  simple  cell  receptive  fields  are  special  adaptations  to  the 
informational “redundancies” of natural images,4 in that they minimise both the 
correlations  between  neurons’  responses  and  level  of  activity  of  individual 
neurons; this is known as sparse coding (Baddeley & Hancock 1991, Olshausen 
&  Field  1997,  van  Hateren  &  van  der  Schaaf  1998,  Vinje  &  Gallant  2000, 
Willmore & Tolhurst 2001). 

A  key  question  is  whether  or  not  the  cortex  shows  radically  different 
physiological  properties  under  natural  and  artificial  stimulation.  Two  studies 
(Ringach,  Hawken  &  Shapley  2002,  Smyth,  Willmore,  Baker,  Thompson  & 
Tolhurst 2003) have shown that receptive field maps generated from responses to 
natural  images resemble the elongated,  oriented fields derived from the classic 
grating experiments. In contrast, David, Vinje and Gallant (2004) have made the 
case  that  RF  models  generated  by  stimulation  with  natural  stimuli  give 
significantly better predictions of responses to novel natural stimuli than do RF 
models  generated  by  stimulation  with  gratings.  Likewise,  the  predictions  of 
responses  to  novel  grating  stimuli  were  superior  if  the  RF  model  had  been 
constructed from the correlations of responses to gratings. If V1 neurons were 
linear filters, this would not be the case; RF models would generalise between 
classes of stimuli. So the stimulus specificity of RF predictions that David et al 
(2004) report, which seem to be due to crucial nonlinearities in V1, again points 
to a more dynamic notion of RF than was originally conceived.

4.4. Science and Simplicity
4 Attneave (1954) and Barlow (1960) introduced the idea of redundancy reduction as a design 
principle  of  sensory  systems.  Redundancy  reduction  may  explain  why  there  are  so  many 
nonlinearities  in  V1  responses:  “Linear  operations  can  only  partially  exploit  the  statistical 
redundancies of natural scenes, and nonlinear operations are ubiquitous in visual cortex. However, 
neither the detailed function of the nonlinearities nor the higher-order image statistics are yet fully 
understood” (Zetzsche & Nuding 2005). 
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The introduction to this section of the paper raised the question of whether the 
increase in attention physiologists now give to the complex nonlinear properties 
of RFs can be put down to the advent of new techniques to reveal such properties, 
or if a changing conception of the RF has made such properties now more salient 
to scientists.  The answer is probably both. Anecdotally,  it  is worth noting that 
Kuffler (1953) presented a messier picture of the responses of visual neurons than 
either Hartline before him or Hubel and Wiesel after him. In fact, his description 
of the physiology of the ganglion cells  in the cat  retina sounds more like the 
picture emerging from the recent results that we have discussed in this section. 
For  example,  he notes that  these neurons’  response patterns  vary with overall 
illumination changes; that “[t]he most outstanding feature in the present analysis 
is the flexibility and fluidity of the discharge patterns arising in each RF” (p. 61); 
and that “[t]here seems to exist a very great variability between individual RFs 
and therefore a detailed classification cannot be made at present” (p. 62). 

Thus, there may not be anything so new after all in the idea of the dynamic RF 
that has been presented in this section as the result of novel findings. Aside from 
data made accessible by new technologies, such observations were available to 
physiologists in the early days of visual neuroscience. This is not to condemn the 
scientists who put forward the simpler, so-called traditional picture of the RF, for 
it should be appreciated that the most promising route for any new science has 
always  been  to  seek  out  any  underlying  simplicity  in  what  appears  to  be  a 
formidably  complex  and  unpredictable  object  of  investigation.  Indeed,  one 
wonders if work on visual cortex would have expanded and flourished in the way 
that it did had Hubel and Wiesel not presented such an attractively neat picture of 
its physiology. The challenge raised by the recent work discussed in this section is 
whether  these  simplifying  assumptions  ultimately  defeated  the  aim  of 
understanding V1 function by disregarding as noise the very neuronal properties 
that make our visual system work in the real world as it does. 

5. Options

In this section we consider a number of ways the stimulus-dependence data could 
be integrated into visual neuroscience and cognitive theory. Our aim is to map out 
some theoretical strategies rather than to defend one in particular. It is premature 
to be defending one theoretical option when considerably more empirical work is 
necessary in order to confirm that the classical conception of the RF is in fact 
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untenable.  The job for the philosopher of neuroscience — at least at this stage 
— is to consider the pros and cons of various ideas as a way of beginning the 
debate. We consider six options below, in order of increasing radicalness.

5.1. First Option: Expanding the Classical RF

The data reviewed above show that the classical conception of the RF is no longer 
compelling, but that is not yet to say that the concept of the RF is dead. If the 
concept can be altered or expanded to accommodate the new data, then this might 
be the most appropriate strategy to adopt. Since the concept of the RF has proven 
so useful up to now, better to stretch the concept than to dispense with it. The 
central  issue to be decided is whether the data would require us to stretch the 
concept to the point where it would no longer be recognizable. Can we revise the 
concept of the RF or must we eliminate it?

Elegant  and conservative extensions of the classical  RF may be available.  An 
example is David Heeger’s normalisation model of visual neurons. Heeger (1992) 
notes that the linear model of V1 fails to account for all of the physiological data. 
Rather than rejecting the linear model outright, Heeger’s model incluces “divisive 
normalisation.” This is the idea that every neuron’s response is divided by a term 
reflecting the combined activity of all of its neighbours. Thus the local activity is 
accounted for in a model of the single neuron by means of an equation which 
summarizes  the  effects  of  the  circuit,  without  specifically  parametising  other 
neurons. The model does not include biological detail, though it has been noted 
that the division could be implemented in the brain by what is known as shunting 
inhibition  (Carandini,  Heeger  & Movshon 1997; but  see Carandini,  Heeger  & 
Senn 2002, Freeman, Durand, Kiper & Carandini 2002, Meier & Carandini 2002). 
The normalisation model preserves a linear conception of the RF and successfully 
predicts  a  good  deal  of  neurophysiological  data,  including  the  shape  of  the 
contrast response curve, especially response saturation (Maffei & Fiorentini 1973, 
Albrecht & Hamilton 1982, Sclar et al. 1990), cross-orientation masking (Bonds 
1989)  and  surround  suppression  (reviewed  in  Fitzpatrick  2000).  Heeger’s 
approach has been particularly influential in subsequent psychophysical models, 
an important example being Foley’s (1994) model of contrast discrimination. 

Despite  the  successes  of  Heeger’s  normalisation  model  in  accounting  for  a 
number  of  surround  inhibition  effects,  it  by  no  means  assimilates  all  of 
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problematic findings listed above. In particular,  the normalisation model cannot 
explain findings of surround enhancement  (Maffei & Fiorentini 1976, Gilbert & 
Wiesel 1990), an effect equivalent to the presence of a “summation field” beyond 
the “classical receptive field.

5.2. Second Option: Piecemeal Solutions

The  option  just  discussed  does  not  tackle  head  on  the  problem  of  stimulus 
dependence. It may be that a sophisticated extension of the classical RF model 
will  eventually  be  able  to  predict  that  an  individual  neuron  will  demonstrate 
different response properties under natural as opposed to artificial stimulation or 
as a result  of  different  surround input.  On the other  hand,  no such “universal 
model” may be forthcoming. Even if the RF changes with categories of stimulus 
and with visual tasks, it is nonetheless possible to produce models for particular 
stimulus-task pairs, or classes of pairs. One could give up on the idea of there 
being a single model of V1 suitable for all  stimuli  and visual tasks and focus 
attention on piecemeal solutions to visual problems. This option would allow one 
to  preserve  the  procedure  for  modelling  visual  circuits  by treating  neurons  as 
fixed (i.e., not stimulus-dependent) components, but the modelling would now be 
relativized to stimulus class, or visual task, or both.

This solution might be criticised as inelegant and ad hoc; but piecemeal solutions 
are, in a sense, the norm in visual neuroscience, where RF models are usually 
devised  to  account  for  specific  data  sets  (a  particular  animal  responding  to  a 
particular sort of stimulus). It is usually hoped that the model will generalise to 
novel data, but expectations are that the fit will worsen. 

A deeper worry is that by relativising RFs to stimulus classes or visual tasks, we 
are ignoring some of the significant dynamic features of neurons – precisely those 
features  that  are  responsive  to  stimulus  or  visual  task.  It  would  be  counter-
productive at best to retain the classical receptive field at the expense of ignoring 
the neuron’s dynamic properties.  

5.3. Third Option: Natural Stimuli

Another possible answer to the problem of the stimulus dependency of RFs might 
be  to  choose  a  canonical  stimulus.  In  this  case,  natural  stimuli  are  the  prime 
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candidate for two reasons: first, because our ultimate goal is to understand vision 
in the real world; and, second, there is evidence that richer neural responses are 
revealed by natural stimuli. The prospect of refiguring all of visual neuroscience 
using natural scenes as canonical stimuli,  however, is daunting to say the least 
because it would require that much of the work of the last forty years be repeated 
with natural stimuli instead of sinusoids and the like.

Moreover, the idea that RF properties can only be fully revealed by natural stimuli 
is a radical one. It is sometimes suggested (e.g. David et al 2004) that the RFs 
revealed by natural stimuli are so complex that a natural image derived model is 
only  good  at  predicting  responses  to  other  natural  stimuli.  Adopting  natural 
images as canonical stimuli thus entails giving up on the idea that once one fully 
characterises  a  neuron’s  RF,  the  characterization  can  then  be  used  to  predict 
responses to any stimuli. As Rust and Movshon (2005) put it,  “[u]ltimately, one 
hopes to integrate all these models into a single theory that can predict neuronal 
and population responses to any arbitrary stimulus.” Even the piecemeal option 
optimistically leaves open the possibility that all of the partially successful models 
might be integrated into a powerful general model. To choose natural scenes as 
canonical stimuli is to give up on this hope.

5.4. Fourth Option: The Primacy of Circuitry

The last two options were presented as only fairly radical. Yet there is a case to be 
made that the notion of generality is so crucial to the concept of the RF that to 
give up on it is to change the concept beyond recognition. If we are poised to do 
mortal damage to the idea of the RF, a natural question to consider is whether we 
could dispense with the concept  of the RF altogether.  One way of  doing this 
would be to attempt to model the circuitry of V1 as a whole and hope that the 
information contained in the RF will emerge or be replaced by something equally 
informative in the circuit model. The success of Hubel and Weisel’s model of V1 
was one  of  the  decisive  factors  that  moved  vision  science  in  the  direction  of 
single-unit,  rather  than  network,  analysis  (Churchland  &  Sejnowski  1992). 
Perhaps a return to the network level is the way forward. 

In particular, if we model V1 at the level of its circuitry, then it is possible that the 
uniformity that would be lost by relativizing RFs to stimulus and task would be 
recovered. This would be the case if the RF of a particular neuron was altered due 
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to predictable responses of other V1 neurons in response to the stimulus or task. 
In  other  words,  if  the dynamic  nature  of  the RF could  be explained  by static 
features of other V1 neurons and the connections among them, then it is plausible 
that a single model of V1 could be developed that would have dynamic RFs as a 
consequence.  Perhaps  this  is  what  Bair  (2005,  p.  463)  has  in  mind  when  he 
predicts that

The primacy of the RF as a concept for embodying the function of V1 
neurons will be replaced by a set of circuits and synaptic mechanisms as 
our computational models begin to explain ever more response properties. 
The RF can then be understood as an emergent property that changes with 
the statistics of the input. 

Whether this is the case, of course, is an empirical question. There is no guarantee 
that V1 circuitry will not itself be affected by feedback from other visual areas 
and, as a result, prove as dynamic as the RFs of V1 neurons. 

Even if we could produce a model of this kind, however, it is worth considering 
whether it might not be preferable to continue to analyse visual function at the 
level of individual neurons whose RFs are dynamic rather than to move up to the 
level of circuitry. Barlow (1972) adapted the phrase “neuron doctrine” (originally 
the name for the view that the brain is composed of discrete  cells  rather than 
being a single continuous structure) to express the view that brain function is best 
understood  at  the  level  of  individual  neural  activity.  And  one  motivation  for 
retaining the notion of a dynamic RF might be to hold on to the neuron doctrine as 
a general methodological principle of neuroscience. If we reject the notion of a 
dynamic RF in favour of network- or circuit-level explanation of function, then 
we must abandon the neuron doctrine in favour of a “higher” level of explanation. 
Although this might turn out to be a beneficial break from the past, it will require 
a dramatic rethinking of neural computation.  We turn to this  issue in the next 
section.

5.5. Fifth Option: Decoupling Computer Vision from Neurophysiology

The last option considered amounts to an elimination of the concept of the RF, so 
the question arises of what visual neuroscience would look like without it. We 
don’t know the answer to this question, but it seems certain that it would require a 
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significant shift in neurophysiological theory and would have consequences for 
computational approaches to vision. Analysis by fixed filters is a very natural way 
to think about vision, and it is straightforward to implement artificially. Without 
the  simplifying  assumptions  behind  traditional  V1 physiology,  the problem of 
vision begins to look intractable. 

In  addition,  even  if  one  could  model  a  dynamic  RF,  it  is  a  further  question 
whether it could easily be incorporated into robot vision. We have claimed that at 
least  in  some  branches  of  the  discipline  computational  vision  and  visual 
neurophysiology have been  developed with an  eye  to  linking  the  two (Teller, 
1984)  or  understanding  how  visual  computations  are  implemented  by 
neurophysiological  mechanisms.  One virtue  of  the  classical  RF is  that  it  is  a 
natural way to begin to see neurons as elements in these implementations. As we 
have seen, modelling of early visual processes and the neurophysiology of V1 
both conceive of vision as composed of a circuit composed of a small number of 
simple  feed-forward  mechanisms,  and  the  history  of  the  study  of  contrast 
perception provides ample evidence of the co-evolution of the two disciplines. 
However, the loss of a fixed RF might lead to a break between the theories of 
neuronal  and  artificial  vision.  One  might,  therefore,  be  concerned  by  the 
consequences  for  computational  vision  of  radically  altering  or  giving  up  the 
classical  conception  of  the  RF.  If  neurophysiology  does  not  provide 
computational modelling with the basic units needed, then it is more difficult to 
model  early  vision,  or,  at  any  rate,  to  model  it  with  confidence  in  producing 
realistic models. 
 
With this kind of worry in mind, one theoretical option would be to give up the 
idea of an isomorphism between the elements of computational modelling and 
neurophysiology.  On this view, the task of computational modeling remains to 
provide  a  theoretical  framework  for  early  vision,  and  the  task  of  visual 
neurophysiology remains to describe the properties of the neurons and circuits 
that  implement  this  computation.  However,  on  this  view,  it  is  no  longer  an 
assumption that the building blocks of the implementation are individual neurons. 
Although this may be a significant departure from current practice, the idea that 
individual  neurons  implement  the  basic  computational  processes  is  a 
methodological assumption rather than a substantiated doctrine – though it is an 
assumption which is supported by evidence and is not arbitrary. If we give up the 
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neuron doctrine, however, then we need not assume that the abstract organization 
of visual computation has to be implemented by individual neurons that behave as 
the  computational  components  do.  Linear  feed-forward  models  of  visual 
computation need not be implemented by linear feed-forward visual neurons.

5.6. Which Option?

Which  of  the  above  options  should  we  choose?  That  question  is  in  part  an 
empirical one but only in part. Some of these paths are likely to be less fruitful 
than  others,  so  it  is  worth  thinking  about  which  one  should  choose  prior  to 
investing a lot of time in any of them. We suspect that more than one option ought 
to be pursued and that others are worth setting to one side for the time being. In 
this section we make some remarks about how to choose among the options.

The first option — that of redescribing or expanding the concept of the RF so as 
to retain a large part of the classical conception — is also clearly worth pursuing. 
As  we  noted,  the  work  of  Heeger  (1992)  shows  that  there  are  mathematical 
techniques that might make this possible.  Heeger’s work cannot handle all  the 
data, and it is an empirical question whether a single model will do the job, but 
this is clearly an option that ought to be explored on the grounds of conservatism.

As we remarked with respect to the second option of piecemeal solutions to visual 
modelling, we think this is an option that is not only inelegant but would leave 
quite  a  bit  of  visual  functioning  unexplained.  We want  to  know  why neurons 
respond in different ways to different stimuli. If we know that, then it’s unlikely 
that  piecemeal  solutions  will  remain  piecemeal.  If  we  understand  how visual 
neurons change their state and why, then the models of function that are specific 
to different classes of stimuli will presumably form part of a single unified theory. 
Although  piecemeal  exploration  is  an  indispensable  dimension  of  scientific 
practice, it should not, on our view, be a methodological ideal.

It  would  be  hard  to  deny  that  more  work  with  natural  stimuli  is  a  crucial 
requirement of future experiments, and there is already a lot of work being done 
along these lines.  One important question for this work is whether there are a 
number  of  clearly  distinguishable  classes  of  natural  stimuli  that  produce 
categorically different neural responses and, if so, how these classes ought to be 
characterized.  We suggested  above  that  forty  years  of  visual  neurophysiology 
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might have to be repeated, but that is a worst-case scenario. It is possible that the 
use of natural stimuli would produce data that would lead to different ways of 
conceiving  of  V1  neurons  –  and  other  visual  neurons–  and  generate  rapid 
progress. Nonetheless, it seems quite likely that working with natural stimuli will 
still require that we think about how to understand the RF in a new way.

The fourth option of exploring circuitry is likely to be a fruitful one. We suspect 
that this option has not been more fully explored because it is both technically and 
mathematically complex.  It is also possible that a bias in favour of single unit 
explanations  has  also  influenced  the  course  of  research.  Dealing  with  the 
complexity  of  the  problem  is  an  empirical  one,  and  the  encouragement  of 
philosophy is neither necessary nor particularly helpful. In contrast, we think that 
philosophers can argue for calling the neuron doctrine into question and making 
room for the possibility of circuit-level explanations. Whether such explanations 
will be successful remains to be seen, but we should not allow the success of 
single unit neurophysiology to discourage visual neuroscience from thinking of 
the RF as a derivative (or, as Bair puts it, as an “emergent”) property. 

We are also in favour of disengaging computation from neurophysiology to some 
extent. It is a truism that one of essential features of a computational theory of any 
kind is that it is “implementable” by neurons. This constraint has become more 
important in modelling over the years in part (we suspect) as a result of a backlash 
against the sort of computational theory that saw the brain as an afterthought — as 
a matter of “mere” implementation. This is a positive development. However, at 
this  stage,  we  know so  little  about  how the  visual  system implements  visual 
computation  that  we  should  not  let  this  constraint  exert  too  much force  on 
computational  modelling.  By  trying  to  maintain  an  isomorphism  between 
computation and neurophysiology, computational theory is restricted. In turn, this 
restriction  reduces  the  ways  of  thinking  about  how  visual  neurons  might 
implement  the  computation.  Different  styles  of  computational  modeling  might 
suggest ways of thinking of circuits as the unit of implementation and this might 
lead to different ways of doing the neurophysiology. 

This suggests that the option of changing computational vision to mirror the new 
data coming from neurophysiology may be one best left to one side for the present 
as well. Visual modelling might get some ideas from neurophysiology,  but we 
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should not make an isomorphism between the two de rigeur. When we know more 
at both the physiological and modelling levels, the question of implementation 
can more fruitfully be pursued. 

6. Perception and Environment

We noted above that we do not yet know what the mechanism is that underlies 
stimulus dependence of V1 cells. One possibility is that changes in neural state or 
responsiveness is a kind of adaptation. It is well known that neurons change their 
behaviour when the visual stimulus changes substantially. When one moves from 
conditions of low light levels to bright sunshine, for example, a relatively quick 
process  of  adaptation  to  the  light  level  occurs  in  which  the  activity  of  visual 
neurons is dampened. The same sort of thing happens with colour. If you put on 
rose-colored  glasses,  the  world  looks  pink  for  a  while  but  soon  resumes  its 
chromatic range. Or again if you look at a waterfall, and then look at a stationary 
scene, the stationary scene seems to move as an after-effect of the adaptation of 
motion-sensitive neurons to the downward movement of the water. And so on. 

Adaptation is important in perception because by altering the state of the visual 
system, or some part of it, the system is able to function across a greater range of 
stimuli  than  would  otherwise  be  possible.  A  change  in  neural  state  or 
responsiveness to the statistics of the visual stimulus might represent a complex 
version  of  adaptation  (Grzywacz  &  Balboa  2002)  that  would  expand  the 
repertoire  of the visual system and allow it  to function effectively in different 
kinds of natural  environments.  If something like this  is correct,  then stimulus-
dependence, though surprising, may not be a qualitatively new phenomenon. It 
does,  however,  allow  us  to  think  somewhat  differently  about  the  role  of  the 
environment in modulating perception. 

There  is  a  longstanding  tension  between  two  traditions  in  the  philosophy  of 
perception.  One  tradition,  favoured  by  analytic  philosophy,  takes  mental 
representations as central to perception. The perceptual action is all in the mind of 
the  perceiver.  In  the  other  tradition,  favoured  by  continental  philosophy, 
perception is more a matter of action than of representation, and, for this reason, 
the  environment  in  which  perception  occurs  is  essential  to  understanding 
perception. Merleau-Ponty (1962) is perhaps the most important figure associated 
with this view. 
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In recent years, there has been a rapprochement between these traditions. Gareth 
Evans’s solution to the Molyneux problem (Evans, 1996) makes use of something 
much like  Merleau-Ponty’s  framework for perception.  And more  recent  work, 
such as that of Clark (1998), has emphasized the importance of the environment 
in  understanding  perception.  More  importantly,  neuroscience  may  be  in  the 
process  of resolving the debate.  The work of  Milner  and Goodale  (2006)  has 
provided evidence that there are two distinct, but interacting, visual systems, one 
responsible for representing the way the world looks and the other responsible for 
providing information about how to interact with the objects visually perceived. 
As Ennen (2003) notes in a different context, the difference between analytic and 
continental philosophy of perception may be a difference in subject matter (i.e. 
which of the two visual systems one is of greatest interest) and not in theory.

A recent attempt to reconcile the two traditions in the context of colour perception 
is due to Thompson, Palacios & Varela (1992). They emphasize the importance of 
environmental  features  in  developing  a  theory  of  colour  perception,  and  they 
develop an ontological theory of colour that takes colour to be a relation between 
perceiver and environment. Sumarizing Levins and Lewontin (1985) they say:

(1)  Organisms  determine  in  and  through their  interactions  what  in  the 
physical  environment  constitutes  their  relative  environments;  (2) 
organisms  alter  the world external  to them as they interact  with it;  (3) 
organisms  transduce  the  physical  signals  that  reach  them,  and  so  the 
significance of these signals depends on the structure of the organism; (4) 
organisms transform the statistical  pattern of environmental  variation in 
the world external to them; and (5) the organism-environment relationship 
defines the “traits” selected for in evolution (cf. Oyama 1985). (p. 21)

They go on to say:

We must encompass both the extradermal world conceived as the animal’s 
environment  and  the  sensory-motor  structure  of  the  animal  in  any 
adequate theory of perception. (p. 22)

This  view,  though  attractive,  is  rather  programmatic.  The  notion  of  stimulus-
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dependence as adaptation provides us with one concrete way of thinking about 
one narrow aspect of visual perception and its relation to the environment. If the 
mechanism of stimulus-dependence is a kind of adaptation, then the environment 
can modulate the visual system in a quite complex way by means of a familiar 
type of mechanism.  The statistics  of the visual stimulus can alter  the way the 
visual system processes the information it is receiving, and this shows that the 
statistical properties of the environment are an ineliminable part of a theory of 
visual perception. V1 neurons may thus give us the beginnings of a theory of the 
complex interactions between perceiver and environment.
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Figure Legends

Figure 1
(a) The main structures of the early mammalian visual system 
(b) From Hubel and Wiesel (1962), the explanation of simple cell elongated 
receptive fields in terms of the rectangular arrangement of LGN input cells which 
have circular RFs (left).  
(c) From Hubel and Wiesel (1962). Complex cells were classified as having 
responses indifferent to the phase (black or white polarity) of the stimulus. This 
property was explained by their having simple cell inputs with various phase 
tunings (left). 

Figure 2
Three  different  sorts  of  receptive  field  maps  of  a  V1  simple  cell.  (a)  is  a 
qualitative map of the type used by Hubel & Wiesel (1959). Triangles and crosses 
represent ON and OFF regions, respectively. (b) is a quantitative map, as used by 
Jones et al. (1987). The height of the surface at each point is proportional to the 
strength of the cell’s response to stimulation at that point,  with positive values 
indicating ON responses and negative values indicating OFF responses. (c) is a 
quantitative map of the type used by De Angelis et al. (1993a). The brightness at 
each point is proportional to the strength of the cell’s response at that point; mid-
grey indicates zero response, brighter shades indicate ON responses and darker 
shades indicate OFF responses. 

Figure 3
Examples of images used as stimuli in neurophysiological and psychophysical 
experiments.
(a) A standard sinusoidal grating. In neurophysiological work gratings are 
normally presented “drifting” across the phase of the sinusoid, rather than static
(b) Natural image. 
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