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Introductory Remarks

In this text®, we build on the works of PETER HINST and GEO SIEGWART on the pragmati-
sation of natural deduction calculi? and develop a (classical) speech act calculus® of natu-
ral deduction that has the following properties: (i) Every sentence sequence $), which here
means: every sequence of assumption- and inference-sentences, is not a derivation of a
proposition (i.e. a closed formula) from a set of propositions or there is exactly one

proposition T" and exactly one set of propositions X such that § is a derivation of I" from

X, this being determinable for every sentence sequence without recourse to any meta-

theoretical means of commentary.* (ii) The classical first-order model-theoretic conse-
guence relation is equivalent to the consequence relation for the calculus.

Developing the calculus, we presuppose the grammatical framework of pragmatised
first-order languages, which has been developed by PETER HINST and GEO SIEGWART, and
supplement it with some additional concepts (1). Then the concept of the availability of
propositions is established: In contrast to the calculi developed by HINST and SIEGWART,
the formulation of the speech act rules for this calculus does not take recourse to a de-

1 This text is basically a translation of our German paper: Ein Redehandlungskalkiil. Ein pragmatisierter

Kalkill des natirlichen Schliefens nebst Metatheorie. Version 2.0. Online available at
http://hal.archives-ouvertes.fr/hal-00532643/en/.

Pragmatised natural deduction calculi are natural deduction calculi that incorporate illocutionary
operators at the formal level: For each speech act governed by the calculus (i.e. making an assumption
or drawing an inference) there is a specific type of illocutionary operator, called performator, whose
application to a proposition yields a sentence (i.e. an assumption or an inference sentence). These
performators and the sentences that result from their application to propositions are part of the language
of the respective calculus and their use in speech acts is governed by the rules of the respective calculus.
Pragmatised calculi thus allow for the formal treatment of the linguistic practice of uttering derivations.
More generally, the framework of pragmatised languages developed by HINST and SIEGWART allows for
a formal treatment of all kinds of speech acts and linguistic practices. See HINST, P.: Pragmatische
Regeln, Logischer Grundkurs, Logik, and SIEGWART, G.: Vorfragen, Denkwerkzeuge and, in English
and most recent, Alethic Acts.

Our use of the expression 'speech act calculus' (German: Redehandlungskalkil) to designate
pragmatised natural deduction calculi follows SEBASTIAN PAASCH.

Note that we regulate the predicate '.. is a derivation of .. from .." in such a way that the set of
propositions mentioned at the third place is identical to the set of assumptions which actually occur in
the sentence sequence that is named at the first place and which are not eliminated in that sequence. If
one regulates the predicate so that the set of propositions named at the third place has to be a superset of
the set of assumptions that actually occur in the respective sentence sequence and are not eliminated
there, which is not unusual either, the calculus accordingly ensures that every sentence sequence §) is
either not a derivation of a proposition from a set of propositions or that there is a proposition I" and a
set of propositions X, such that for every proposition A and set of propositions Y one has: § is a
derivationof AfromY iff A=Tand X C Y.
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pendence relation between sets of propositions and propositions, but to an availability
relation between propositions, sequences of sentences and positions (natural numbers in
the domain of sequences). The concept of availability is inspired by the idea that all
propositions in a subproof except the conclusion of the subproof should not be available
after the subproof has been closed, which is implemented, for example, in the KALISH-
MONTAGUE calculus.® Here, however, only subproofs that aim at conditional introduction
(Cdl), negation introduction (NI) or particular-quantifier elimination (PE), are treated in
this way and the calculus is established in such a way that neither graphic means nor
meta-theoretical commentaries have to be used: Which propositions are available in a
given sentence sequence can be unambiguously determined without recourse to any kind
of commentary (2).

Next the Speech Act Calculus is established. As is usual for pragmatised natural deduc-
tion calculi, the calculus contains a rule of assumption, which allows one to assume any
proposition, and two rules for every logical operator, one regulating its introduction and
the other one its elimination. Except for the rule of identity introduction (I1), which allows
the premise-free inference of self-identity propositions, the introduction and elimination
rules always demand that suitable premises have already been gained, i.e. are available.
So, for example, the rule of conditional elimination (CdE) allows one to infer I" if one has
already gained A and "A — I'", i.e. if Aand "A — I are available. Propositions are
gained or made available by being inferred or assumed. One gains a proposition I" depart-
ing from an assumption if this assumption is the last one that has been made before gain-
ing I and that is still available.

Three of the rules, Cdl, NI and PE, allow one to discharge assumptions one has made: If
one has gained a proposition I" departing from the assumption of a proposition A, then
one may infer "A — I"" and thus discharge the assumption of A (Cdl); if one has gained
propositions I" and "—I"" departing from the assumption of a proposition A, then one may
infer "—A™ and thus discharge the assumption of A (NI), if a particular-quantification
"VEA™ is available and one has gained a proposition " departing from the representative

instance assumption [B, &, A], then one may infer " and thus discharge the representative

> See KALISH, D.; MONTAGUE, R.; MAR, G.: Logic. See also LINK, G.: Collegium Logicum, p. 299-363.
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instance assumption (PE). The discharge of the respective initial assumptions is achieved
as each application of Cdl, NI and PE closes the whole subproof beginning with the re-
spective assumption. One consequence of this is that the respective initial assumptions are
not any more available, but it also makes the intermediate conclusions drawn during the
subproof unavailable as premises — these intermediate conclusions only served the pur-
pose of preparing the application of the respective rule and have been gained under the
respective assumption. If the assumption is not any more available, then neither should
any propositions that one was only able to gain under this assumption be available. One
may reflect on this using the example of the pair I" and "I that has to be gained to pre-
pare the application of NI.

After the establishment of the calculus, a derivation and a consequence concept for the
calculus are established. A sequence of sentences $ will then be a derivation of a proposi-

tion I" from a set of propositions X if and only if § can be uttered in compliance with the

rules of the calculus, T is the proposition of the last member of $ and X is the set of the
assumptions available in $. Accordingly, a proposition T will then be a deductive conse-
quence of a set of propositions X if and only if there is a derivation of ' froma Y < X
(3).

The reflexivity, closure under introduction and elimination, transitivity as well as other
properties of the deductive consequence relation have to be shown in order to prepare the
proof of the adequacy of the then established concept of deductive consequence (4). Sub-
sequently, a version of the classical model-theoretic consequence concept that fits the
grammatical framework is established (5). Then the correctness and the completeness of
the deductive consequence concept relative to this model-theoretic concept of conse-
quence are shown (6). We conclude with some remarks on ways to elaborate on the ap-
proach taken here (7).

In the development of the calculus, we assume an established set or class-set theory,
such as ZF or NBG(U). Since we do not want to restrict our meta-theory to a purely set-
theoretical framework, we sometimes have to stipulate additional properties — such as, for

example, X e {X} - that are trivial within a pure set theory, but informative within a

class-set-theory. The development and meta-theoretical analysis of the Speech Act Calcu-
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lus employ common set-theoretical and meta-logical instruments and techniques, which
are presented in the works listed in the references.

A note concerning the use of this document: All entries in the table of contents link to
the respective chapters and are bookmarked. Moreover, all cross-references as well as all
mentions of postulates, definitions, theorems and speech-act rules link to the respective
item.

We would like to thank SEBASTIAN PAAsScH for pointing out various problems which
motivated the development of our calculus, for valuable hints and for his helpful criticism
of an earlier version of this text. Also, we would like to thank GEO SIEGWART for valuable

hints, patience and an open ear.









1 Grammatical Framework

The Speech Act Calculus and its meta-theory are developed for denumerable pragmatised
first-order languages.® To simplify the following presentation, we suppress any reference
to specific languages, or, more precisely, we assume an arbitrary but fixed language of
this kind with a denumerably infinite vocabulary, the language L. First, the vocabulary
and syntax of L are to be specified (1.1). Then the substitution operation is to be devel-

oped and some theorems on substitution are to be proved (1.2).

1.1 Vocabulary and Syntax

L is supposed to be an arbitrary, but fixed representative of languages of the desired kind
with a denumerably infinite non-logical vocabulary. However, the calculus also works for
languages with finitely many descriptive constants. Since L is not an actually constructed
language, it is now just stipulated that a suitable vocabulary and a suitable concatenation
operation for expressions exist. Which vocabulary is chosen in particular cases or how it
is constructed (and how it is set-theoretically modelled, e.g. with recourse to subsets of N
in NBG or ZF, or described, e.g. with recourse to axiomatically characterised (sets of)
urelements in NBGU) is left open. The same holds for the concatenation operation for
expressions: It is left open how this concatenation operation is established, e.g. with re-
course to finite sequences or in some other way. The first postulate demands the existence

of suitable sets of basic expressions for the vocabulary of L.:

Postulate 1-1. The vocabulary of L (CONST, PAR, VAR, FUNC, PRED, CON, QUANT,
PERF, AUX)
The following sets are well-defined, pairwise disjunct and do not have @ as an element:
(i)  The denumerably infinite set CONST = {c;| i € N}, where for all ¢, j € N with i # j: ¢;
#c;and ¢; € {c;}, (the set of individual constants; metavariables: a, o', a*, ...),
(i) The denumerably infinite set PAR = {x; | i € N}, where for all 4, j € N with ¢ £ j: X; #
x;and x; € {x;}, (the set of parameters; metavariables: 8, ', f*, ...),
(iii) ~ The denumerably infinite set VAR = {z;| ¢« € N}, where for all ¢, j € N with ¢ # 5. z; #
zjand z; € {x;}, (the set of variables; metavariables: &, C, o, &, (', o', &%, C*, 0%, ...),
(iv)  The denumerably infinite set FUNC = {f;; |« € N\{0} and j € N}, where for all ¢, k£ €
N\{0} and j, I € N with (3, 5) # (k, ): f,; # fr, and f,; € {f;;}, (the set of function con-

®  See the literature mentioned in footnote 2. For a rigorous development oft the grammatical framework

see especially HINST, P.: Logik, ch. 1.
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stants; metavariables: o, ¢', ¢*, ...),

(v)  The denumerably infinite set PRED = {=} u {P.; | € N\{0} and j € N}, where {=}
Z {P,; |7 e N\{0} and j € N} and for all 7, £ € N\{0} and 5, [ € N with (z, ) # (%, 0):
P.;# Pr.and P;; € {P. }, (the set of predicates; metavariables: @, @', ®*, ...),

(vi)  The 5-element set CON = {—, —, <>, A, v} (the set of connectives; metavariables: v,
AR}

(vii)  The 2-element set QUANT = {A, V} (the set of quantificators; metavariables: II, IT',
Im*, ...),

(viii) The 2-element set PERF = {Suppose, Therefore} (the set of performators; metavari-
ables: =, Z', E*, ...), and

(ix)  The 3-element set AUX = {(} v {)} v {.} (the set of auxiliary symbols).

The meta-theoretical expressions by which the elements of the sets PERF and AUX are
designated will also be used as meta-theoretical performators and auxiliary symbols, the
same holds for the identity predicate. To avoid confusion and to enhance intuitive read-
ability, we will therefore use quasi-quotation marks ('™, ™) if object-language expres-
sions are to be designated. , T, u', ', u*, t*, ... serve as general metavariables for object-
language expressions. The vocabulary of L is now simply defined as the set of the sets

postulated in Postulate 1-1:

Definition 1-1. The vocabulary of L (VOC)
VOC = {CONST, PAR, VAR, FUNC, PRED, CON, QUANT, PERF, AUX}.

The syntax of L contains the categories of terms, quantifiers, formulas and sentences ac-
cording to the definitions found below. First, however, the set of basic expressions is es-
tablished:

Definition 1-2. The set of basic expressions (BEXP)
BEXP = UVOC.

Now, we demand the existence of a suitable operation with which we can concatenate
expressions to form larger expressions. As already remarked above, the way in which this
operation is constructed in particular cases is left open. To do this, we first regulate the
concatenation of basic expressions, and then, after defining the set of expressions and the
expression length function, we regulate the general concatenation of arbitrary expres-

sions.
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Postulate 1-2. Concatenation of basic expressions’
The concatenation of expressions expressed by juxtaposition is well-defined and it holds that:
(i) Forall £, 7 € N\{O}: If {no, ..., w1} < BEXP and {', ..., u'1} < BEXP, then:
"Mo...Mk1" = "Wo...\'s iff j=Kkand forall i < k> p; = p,
(i)  If u € BEXP, then there is no k& € N\{0, 1} such that {uo, ..., w1} < BEXP and p =
"Wo.-- M1, and
(iii)  For all £ € N\{O}: If {uo, ..., wp1} < BEXP, then "po...pr' # @ and "po.. .y €
{"Bo- " ;-

The expression of the concatenation operation by juxtaposition already presupposes the
associativity of the concatenation operation. This property can thus be regarded as implic-
itly stipulated. Now, the set of all expressions, i.e. all concatenations of basic expressions,
will be defined. This set will be a superset of all grammatical categories that are to be

defined. Then a function that assigns each expression its length will be defined:

Definition 1-3. The set of expressions (EXP; metavariables: y, T, W', T, u*, *, ...)
EXP = {I—l.,L()...l.,l,]t-.l1 | ke [N\{O} and {uo, A uk-l} - BEXP}

Definition 1-4. Length of an expression (EXPL)
EXPL = {(i, k) | p € EXP, £ € N\{0} and there is {uo, ..., w1} < BEXP with p =
r].to...].tk_l-l}.

Theorem 1-1. EXPL is a function on EXP
() Dom(EXPL) =EXP and
(i) Forallpe EXP, kI e N:If(u, k), (n, 1) € EXPL, then k =[.

Proof: (i) follows directly from Definition 1-3 and Definition 1-4. Ad (ii): Let p € EXP,
k, 1 € N and (u, k), (u, [) € EXPL. Then there is {uo, ..., w1} < BEXP with p =
"Wo...1x-1' and there is {u'o, ..., W1} < BEXP with p = "wy...u'1". According to
Postulate 1-2-(i), it then holds that £ = /. m

" Here and in the following, we assume: If k € N\{0} and {aq, ..., @i} < X, where X e {X}, then for all

1<k a € {a, ..., 41}
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Theorem 1-2. Expressions are concatenations of basic expressions
If ue EXP, then there is {Ho, ceey “—EXPL(p)-l} < BEXP such that n= ruo...}lExpL(p).l—l.

Proof: Follows directly from Definition 1-3 and Definition 1-4. m

Theorem 1-3. Identification of concatenation members
If k£ e N\{0} and for all i < k: y;, € EXP, then for all s < Z?—’;lo EXPL(w)):

(i) s<EXPL(uo)
or
(i)  EXPL(po) < s and there are [, r such that

a) O0<lI<kandr<EXPL(w)ands= (X2, EXPL(w,))+r, and

by ForallI', 71 If0 <[ <kandr < EXPL(w) and s = (X1 EXPL(,))+r,
thenl'=land r' = r.

Proof: Suppose & € N\{0} and that for all ¢ < k. n; € EXP. Now, suppose s <
f;10 EXPL(u;). We have that s < EXPL(uo) or EXPL(po) < s. In the first case, the theo-
rem holds. Now, suppose EXPL (o) < s. Then we have that 1 < k, because otherwise we
would have 1 = k£ and thus EXPL(pp) = Z?;lo EXPL(y;) > s. Thus, there is at least one ¢,
namely 1, such that 0 <7 < kand Y2, EXPL(p,) < s. Now, let [ = max({i|0 <4< kand
Y-l EXPL(u,) < s}). Then we have 0 <[ < kand Y52, EXPL(u,) < s. Then there is an
r such that (X1=2, EXPL(w,))+r = s. Suppose for contradiction that EXPL () < r. We
have that / < k-1 or [ = k-1. Suppose [ < k-1. Then we have [+1 < k. Then we would have
Lo EXPL() = (Ei2o EXPL(1))*EXPL(W) < (E52 g EXPL(w,))+r = s, which con-
tradicts the maximality of /. Suppose [ = k-1. Then we would have [-1 = k-2. Thus we
would have Y521 EXPL(w,) = (X522, EXPL(w))+EXPL(py1) < (522 EXPL(p,))+r =
s, which contradicts the assumption about s. Thus, the assumption that EXPL(w;) < r leads
to a contradiction in both cases. Therefore we have » < EXPL(y,;). Hence we have 0 <[ <
kand r < EXPL(w) and s = (X522, EXPL(,))+r-.
Now, we still have to show b), i.e. that / and r are uniquely determined. For this, sup-
pose 0 < [' < k and 7 < EXPL(w;) and s = (XL, EXPL(w,))+r". Then it holds that
-1, EXPL(w,) < s. From the maximality of /, it then follows that [' < [. Now, suppose
for contradiction that /' < [. Then we would have [' < [-1. Thus we would have
(X020 EXPL(W)+EXPL(w) = Xh-o EXPL(n) < XiZoEXPL(w) < s =
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(Xh2, EXPL(p,))+r". But then we would have EXPL(u) < 7', which contradicts our as-
sumption about 7. Thus we have [' = [. With this, we then also have (3.2, EXPL(u,))+r'
= (X2, EXPL()+r = s= (X521, EXPL(w,))+rand hence ' =r. m

Postulate 1-3. Concatenation of expressions

If £ € N\{O} and if for all ¢ < k: w, € EXP and p; = "u... 0" expry1 ', Where {p'o, ...,
WiexpLy1y S BEXP, then there are m € N\{0} and {u*o, ..., p*,.1} < BEXP such that for all
1<k

"Ho.. Mp1

"Mo- - Mo .. MEXPL (u)-L M1 e - M

"W*o... %1, Where
a)  m=Y"Y EXPL(y), and

b) For all s < m:
p*, = ptoy, if s < EXPL(po), and
p*, = p*,. for the uniquely determined [, » for which 0 < [ < k and r <
EXPL(w) and s = (X522, EXPL(w,))+r, if EXPL (o) < s.

As an immediate consequence of Postulate 1-3, we have that every concatenation of ex-
pressions is identical to a concatenation of basic expressions and thus itself an expression.
Now, we will prove some general theorems on expressions and their concatenations
(Theorem 1-4 to Theorem 1-8). Then, we will define the arity of operators and subse-

quently the categories of terms, quantifiers and formulas.

Theorem 1-4. On the identity of concatenations of expressions (a)
Ifk e IN\{O}, forall i < k: W € EXP and W = r}l“io...}luiExpL(W)_l—l, where {}l“io, veey HHiEXPL(pi)—l}

< BEXP, then:

(D "Ho---pa

b u e W A
W% WOEXPL (o)1 -+ - U 0n o U EXPL ()1

(i)  EXPL(ho...tma") = X¥ZY EXPL(y,), and
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(iii)  I1fm e N\{0} and {Wo, ..., Wi} < BEXP, then:

mHo Ho -1 -1 L
L0 - W TEXPL(uo)-1+ - - b0 - U TTEXPL (1)1

'—H'o- - u'm-l—l
iff
m =¥l EXPL(w) and for all s < m: ', = po,, if s < EXPL(po), and

w', = ", for the uniquely determined /, » for which 0 </ < kand < EXPL(w) and s =
(X2 s EXPL(w))+r, if EXPL(ko) < s.

Proof: Suppose k£ € N\{0}, for all ¢ < k: w;, € EXP and w; = "u"o...w"expL)-1 ', Where
{1, ..., WMexpL)-1} © BEXP. Ad (i): First, we show, by induction on ¢, that for all 7 < £:

ruo- .. Mk—l_'

S i TS 1
W0 W OEXPL(ug)1-+ - W0+ W EXPL(u)-L M1+ - M

Then, this statement also holds for ¢ = k-1, and thus we have (i). Now, suppose the state-
ment holds for all / <. Suppose ¢ < k. Then we have that : = 0 or 0 < 4. Suppose 7 = 0. Be-

cause of po = "u%... w%expL()-1 ', We then have, with Postulate 1-3:

rllo- . Hk—l—l

"M%, P (ug)-1Ha - - - ket -

Now, suppose 0 < 4. Then it holds for all [ < ¢ that [ < £ and thus, according to the I.H.,
that

"Ho- - M1

R i n B A
W 0. W OEXPL(ug)-1+ - - IV 0+ + - UTEXPL(u)- LM+ 1 - - Mt -

Since i-1 < 4, we thus have

rllo- . Hk—l—l

Hi-1 Hi-1

"M%, %P (ug)-1- - 0 - - W EXPL ()1l - - k1 -

Because of p; = "u*%... uMexpLy)-1 ", We then have, with Postulate 1-3:

M1 M1

"M% .. W% xpL (o)1 - - 1 EXPL(it)-1Mi- - Mg

0-.-U

M1 M1

M i W ih 1
W%, .. W OEXPL (ug)-1- - EXPL(ni-1)-1H 0« -« W 'EXPL(u)-1-i+1 -+ « -1

0-.-U
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"M%, %P ug)-1- - - %0 - - - W EXPL ()1 i1 - - - ke -
Hence we have

ruo- .. Mk—l_'

S i THRS -
W0 WOEXPL(ug)-1-+ - W0+« W EXPL(u)-L M1+ - M

Ad (ii) and (iii): With Postulate 1-3, there are m* € N\{0} and {u*o, ..., W*,»1} < BEXP
such that "po...pe1" = "u¥o... %1 and m* = $42Y EXPL(w) and for all s < m*: p*, =
po, if s < EXPL(uo), and p*, = . for the uniquely determined [,  for whichO <[ <k, r

(Xt EXPL(p,))+r, if EXPL(ug) < s. Then we have
EXPL("u*o...u*1") = EXPL("wo... 1 '). Thus we have (ii).

< EXPL(w) and s
Yh2l EXPL(w) = m*
Now, for (iii), suppose m e N0} and {y%, ..., wmi1} < BEXP. (L-R): Suppose
"%, % xpL(u)-1- - - W 0 W e )T = TWoe W . With (i), we then have

"TWoer Wit = "How et = "W¥0. . W1 . With Postulate 1-2-(i), we then have m = m* =

’}7;10 EXPL(y;) and for all s < m: p's = p*,. Thus we have for all s <m: p'y = p', if s <
EXPL(uo), and p's = p*, for the uniquely determined [, » for which 0 <[ < k, » < EXPL (W)
and s = (X2, EXPL(w,))+r, if EXPL(pg) < s.

(R-L): Suppose m = Y¥*¥Z4 EXPL(y,) and that it hold for all s < m that p', = p*,, if s <
EXPL(uo), and p's = p*, for the uniquely determined [, » for which 0 <[ < k, » < EXPL (W)
and s = (X172, EXPL(w,))+r, if EXPL(uo) < s. Then it holds that m* = m and that for all s
<m: W's = p*,. With Postulate 1-2-(i), we then have "Wo... W 1" = "W*o... W 1. With (i),

a1 =

we then have r]J,uOo . HHOEXPL(uo)—l . upk'lo. .. uw‘d'lExpL(uk_l)_l-l = rlJ,o. ] u*o et H*m*—l-l =

"Woeo W1 . W

Theorem 1-5. On the identity of concatenations of expressions (b)
If £, ¥ € N\{0} and for all i < k: w;, € EXP and w; = "u"... 0" expr)1 ", Where {u'o, ...,

uuiEXPL(p,)—l} C BEXP, and for all 7 < £": },LIZ' e EXP and },ll7; = rulu'b...u‘“‘i’ExpL(”'i)_l—l, where {}l'”lio,
. I,L'”IjExpL(H‘i)_l} C BEXP, and if r},to...},tk_l—l = r}l'o...}l'k',l—l , then:

() "Moo’

rHo Ho H-1 H-1 a
L0 W TEXPL(ug)-1- - - V0 - U TTEXPL (1)1

r "o Wo L1 W1 I
L™ 0. U EXPL(up)-1- - 1 0.--l EXPL('%-1)-1
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0

Ho. --P-'k'»l—l )
(i) EXPL(Mo...1es™) = ¥ EXPL(w) = BEZH EXPL(W,) = EXPL("Wo...11"), and
(iii) Forall i<k, k' If EXPL(w) = EXPL(y,) for all j <1, then:

a) r},lo...},ll‘—l

oy o M Ky a
W%, W OEXPL(ug)-1- - - L0+« L EXPL(uy-1

(T W w; w; a
W%, T OEXpL(ig)-1e -+ U 0w U EXPL ()L

~

}J_‘o...},l',;—l, and
b) Forall j<up;=pw,

Proof: Suppose k, £ € N\{0} and for all ¢ < k: p; € EXP and pw; = "u"o... p"expL)1"

where {p"o, ..., WexeLu)y1} S BEXP, and for all 7 < £ p; € EXP and )
W 1 Py, Where {ut, ..., WMiexpLeya} © BEXP, and suppose Tpo...pp1t =
"Wo...1Wr-1". Then clauses (i) and (ii) follow with Theorem 1-4-(i) and -(ii).

Now, for (iii), suppose ¢ < k, k' and suppose EXPL(y;) = EXPL(u";) for all j <. First,
with Postulate 1-3, we have that there are m* € N\{0} and {u*o, ..., u*,.1} < BEXP
such that "wo... e = "W¥o...u*,0" and m = YA EXPL(u,) and for all s < m: p*, =
pto, if s < EXPL(up), and p*, = p*,. for the uniquely determined [, » for which0 <[ <k, r
< EXPL(w) and s = (X172, EXPL(w,))+r, if EXPL(uo) < s; and that there are m' € N\{0}
and {u*o, ..., uw*,1} < BEXP such that "wo...pw'p1’ = "W*o...u* and m' =

k-1 EXPL(w,) und for all s < m': w*, = u*o,, if s < EXPL(u'), and p'*, = w*",. for the
uniquely determined [, ' for which 0 < [' < k| » < EXPL(n}) and s =
(Xh2, EXPL(p'))+r, if EXPL(Wo) < s. With (ii), we then have m = m'. Furthermore, we
have, with (i):

% * b
Wo. . W pxa

™Mo Ho -1 -1 1
W0 W TEXPL(ng)-1- - - 700 - - WTEXPL (1)1

Mo "Wo Wi W 7
L 0. U TEXPL(g)-1- - 1 0---H EXPL(w'-1)-1

o '* x A
SRR
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With Postulate 1-2-(i), we then have for all s <m =m": p*, = p'*,. We have thati =0 or 0
< 4. First, suppose 7 = 0. By hypothesis, we have EXPL () = EXPL(u'p). Now, suppose s
< EXPL(uo). Then we have s < EXPL(u)o) and s < m = m'. Then we have p*; = p*%; and
w*, = u*o,. Then we have p*, = po,. Thus we have for all s < EXPL(po) = EXPL(w')
that p*o, = u*°,. Thus we have, with Postulate 1-2-(i), that po = "u"%... 0" expLg1’ =

W%, . M L1’ = Wo. Thus a) holds for 4 = 0. Also, if i = 0, we have for all j < i that
j =1=0and thus b) holds as well for 7 = 0.

Now, suppose 0 < i. By hypothesis, we have EXPL(u;) = EXPL(u'";) for all j <i. From
this, we get: ¥/ _, EXPL(w,) = X _ , EXPL(',). With Postulate 1-3, we have that there
are t € N\{0} and {u"o, ..., u'r1} < BEXP such that "uo...p;" = "u...u"1" and ¢ =
Y _o EXPL(u,) and for all s < t: p*, = p*o, if s < EXPL(pg), and p*, = p*,- for the
uniquely determined [°, r° for which 0 < [° < 4+1, r° < EXPL(wr) und s =
(P24 EXPL(p,))+re, if EXPL(pg) < s; and that there are ¢ € N\{0} and {u'"o, ..., p"r1}
< BEXP such that "p'o...p'" = uo...ne " and ¢ = X -, EXPL(',) and for all s < ¢
nt= o, if s < EXPL(WY), and p™, = p'*"",. for the uniquely determined '°, 7' for which
0 <[ <i+l, r'° < EXPL(u) and s = (X525 EXPL(W,))+r", if EXPL(w') < s. Then we
have t = Y _, EXPL(w,) = X' _o EXPL(n,) = t. Because of Y _, EXPL(u,) <
Y1, EXPL (), we also have t <m = m.

Now, suppose s < t. Then we have s < ¢' and s < m = m'. We have that s < EXPL(uo) or
EXPL(po) < s. Suppose s < EXPL(pp). Since 0 < ¢, we have, by hypothesis, that EXPL (i)
= EXPL(u'), and thus also that s < EXPL(u'). Then we have u*, = p*o, = u*, und p™*, =
who, = u*,. Because of p*, = u*,, we thus have u*, = n™*..

Now, suppose EXPL (i) = EXPL(i') < s. Then it holds that

u*, = p",. for the uniquely determined I, r for which 0 <[ < k, r < EXPL(w,) and s =
(2o EXPL(w)+r

and

w*, = p*r,. for the uniquely determined [, 7 for which 0 < I' < &', ' < EXPL(n";) and s =
(0o EXPL(W.)+r

and

n= Iz ", for the uniquely determined [°, r° for which 0 < [°® < 4+1, r* <EXPL(w-) and s
= (X0 2% EXPL(p)+r*

and

1+

w*, = p'r . for the uniquely determined I'°, r*° for which 0 < I'° < 4+1, 7'° < EXPL(W')
and s = (XL°25 EXPL(W,))+r".



10 1 Grammatical Framework

With [°, ['° < 4+1, we then have [°, I'° < i. By hypothesis, we thus have that EXPL () =
EXPL(u) and Y025 EXPL(w,) = X2°2% EXPL(u',). Then we have 0 < ['° < i+1 and r'° <
EXPL(w-) and s = (X424 EXPL(p,))+r"°. By Theorem 1-3, we then have I'° = [° und 7*°
= r°. Now, suppose for contradiction that ¢+1 < [. Then we would have i < [-1. But then
we would have t = Y _ ; EXPL(p,) < Y2, EXPL(y,) < s. Contradiction! Thus we have
[ <i+1. From this, we get [ =1°und r = r° In the same way, we get [' = [ and ' = r'°.
Thus we have [ = [° =" =["und r = r° = '° = 7. With this, we have u*, = p*. = u*, and
u =
that u*, = n™, and thus, with Postulate 1-2-(i), that "po...p;" = "wo...p " = 0. n™ g

ut = ut,. Since p*, = p*,, we thus have p*, = p,. Thus it holds for all s <t = ¢

= "wo...ui'. Moreover, we have, with Theorem 1-4-(i), that "po...n;' =
"%, .. 1 %expr (ug)-1- - - 0. iEXPL(pi)-l-I and "Wo... [ =
W Oeypr (gt 0. WM iExpLGey-1 - Hence a) also holds for 0 < .

Now, suppose, for b), that j <. For j = 0, we have already shown above that p; = p';.
Suppose 0 < j < 7. Now, suppose r < EXPL(n;) = EXPL(n';). Then we have
I EXPLu))+r = (U EXPL(W)+r < t = & < m = m. With s =
(X1, EXPL(w,))+r, it then holds that u*, = p%, and u'*, = w*’,. Since s < ¢ = #', we then
have, as we have just shown, that p*, = p'*, and thus that p*, = w*,.. Thus it holds for all r
< EXPL(w;) = EXPL(u';) that p*, = u*. Then it holds, with Postulate 1-2-(i), that p;

"W WexpLu)1 = 0. W iExpL(eya ! = 1. Hence b) also holds for 0 < 4. m

Theorem 1-6. On the identity of concatenations of expressions (c)
If £, s € N\{0} and {po, ..., m1} < EXP and {p’, ..., w1} < EXP and 5 < k and p;
"Wo...Wea, then: "po.. g™ = "o aPon e et e e -

Proof: Suppose k, s € N\{0} and {uo, ..., w1} < EXP and {y'o, ..., W's1} € EXPand j<
kand p; = "Wo...pw's1". With {o, ..., w's1} € EXP and Theorem 1-2, it then holds for all %
< s that there is {u", ..., W"expLy-1} © BEXP such that p';

TR Hlp‘iEXPL(p'i)—l-l :
With Theorem 1-4-(i), we  then have W = "Wow st =
W Oexpr gyt T L1t With  Postulate  1-3, we then have
"Ho...Mp1' = ruo...uj-lp'”l%...u'”'OExpL(p-o).l...u'“'ﬁ'lo...u'”'s'lExpL(p's_l).luﬁl...uk.l". Now, we
first show by induction on 7 that for all 7 < s:

. o o " " .
Ho---Hjalt" o W OEXPL(ug)1- - - U To e U S EXPL(upg) 1M1 - M
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r ' Vo ' W [T 9
Ho- -+ L bow o il ™o U el uian) - U 00 U EXPL (g a) 2 M1 M

Then, this also holds for i = s-1 and thus we get

ruo- .. Mk—l_'

r i W Wy 'y A
Uo. - st %0 U CExpL(uig)-e - - I 0 U S EXPL Q) -1 L e+ Mkt

r},lo. . },lj_ll.llo. .. l-lls—lllj+1- . I.Lk_l-l .

Then the theorem holds. Now, suppose the statement holds for all [ < 4. Suppose ¢ < s.
Then we have that 7 = 0 or 0 < 4. Suppose i = 0. Because of o = "u™%... " expr(rg-1", We

then have, with Postulate 1-3:

r W | W |p"_ 9
Ho- - 1yt ™ 0. U OEXPL(uig)-1- - T 0w L M EXPL (1) LML+

"Ho- - b o™ B0 - U MexpL e 1« 0 T Tep () 1t B
Now, suppose 0 < 4. Then it holds for all / < 7 that [ < s and thus, according to the I.H.:

W W

"Ho... Hj—ll-lluloo- .. M'”'OEXPL(H'O)-L S EXPL('s.1)-1Mj#1 - i1 |

0---U

r 1 o w W W A
Mo. .. Hj1llo... Ll Hoy.p Z+lExpL(”'l+1)_1. TR PO T lEXPL(p's-]_)-luj"'l- e lger .

Since with 0 < 4, we have -1 < ¢, we thus have

w

1Ty W W s
"Ho- . 1™ 0. . ™ Oexpr g1+ - - U 0w W EXpL () ML« et

r].lo. .. l.,l]'.llJ.'o s lyl'l'.ll.,lluio. .. lvlmiEXPL(p'j)-l v l.,l‘us'lo s H'H

SLEXPL (1)1 e - M -
Since W' = "W"... " ExpLye)1» We then have, with Postulate 1-3:

r i W Wy 'y A
Uo. - st O0u e U PExPL(uig)-e - - I 0 U S EXPL G ) -1 L e+ Mkt

"Ho...1jal'o.. . Wi ... M'”'iEXPL(H',;)-l- TR -H'Hls'lEXPL(H'S.l)-lHj+1- TP

r 1 Vo ' W W A
Uo. o it Woe s UL # o W ™ Ep (g1 U 00w U S EXPL(g)- 1L e o e

Hence the statement holds for all 7 < s and the theorem follows as indicated above. m
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Theorem 1-7. Unique initial and end expressions
If w, ', p*, u* e EXP, then:

(i) I Tt = TpeT, then: px =
(i) If Tu*p" = "p'y”, then: p* =, and
(iii) Ifyu, p' e BEXPand "up*™ = "u'n™, thenu=p'.

Proof: Suppose p, w', p*, u* € EXP. Then there are i € N\{0} such that {po, ..., pi1} S
BEXP and p = "po...pi1 ", and 5 € N\{0} such that {u*o, ..., p*;1} < BEXP and p* =
"W*o...pn*51", and k € N\{0} such that {u%, ..., px1} < BEXP and p* = "pho...u'ps”.
Now, suppose for (i) that "up** = "up™™. Then it holds, with Theorem 1-5-(i), that i+j =
i+k and hence j = k. With Theorem 1-5-(iii), we then have p* = p*. (ii) follows analo-
gously. Now, for (iii), suppose p, u' € BEXP and "up*" = "u'pn™. With EXPL(u) =1 =
EXPL(u') and Theorem 1-5-(iii), we then have p = p'. m

Theorem 1-8. No expression properly contains itself
If W', p*, u* e EXP, then:
(i) T,
(i) w# ™, and
(i) p# W
Proof: Suppose ', p*, u* € EXP. Then there are i € N\{0} such that {u, ..., p'i1} <
EXP and p' = "po...n'a", and j € N\{O} such that {u*o, ..., p*;4} < EXP and p* =
"W*o...u*:q ", and & € N\{0} such that {u", ..., W's1} < EXPand pu* = "u'...n 5. As-
sume for contradiction that p' = "p'p*” or p' = "p*p'n or p' = "pw*u”. With Theorem
1-5-(ii), we would then have ¢ = i+j or ¢ = j+i+k or i = j+i and, on the other hand, with i, j,
k € N\{0}: i #i+j and i # j+i+k and i # j+i. Contradiction! Therefore p' # "u'y*" and p' #
"W and W' T .
Now, all operators can be assigned an arity, where the category of the operators described
in Definition 1-5-(vi) will be defined as the category of quantifiers further below in
Definition 1-8. Following the definition of arity, we can also define the categories of
terms and formulas and subsequently prove the unique readability for the categories es-
tablished by then. Afterwards, we will introduce further grammatical concepts up to sen-

tence sequences.
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Definition 1-5. Arity
pis s-ary
iff
() pe FUNC and thereisj € N such that p= ;" or
(i) p e PRED andthereisj e Nsuchthatp="P;;" or
(i) p="="andi=2or
(iv) p="="andi=1or
(v) pneCONY{"="}and¢=2o0r
(vi) ThereareIT € QUANT and & e VAR and = "TI§" and ¢ =1 or
(vii) pePERFandi=1.

Definition 1-6. The set of terms (TERM; metavariables: 9, 6', 6%, ...)
TERM =N{R | R < EXP and
(i) CONST u PAR u VAR C R, and
@ii)  1f{By, ..., 0,1} < R and ¢ € FUNC n-ary, then "o(0q, ..., 0,.1)" € R}.

Note: Here and in the following, blanks only serve the purpose of easing readability,
blanks are not a part of the expressions. So, for example, "f31(Co, Co, C1)" stands for

"f3.1(Co,Co,C1) " -

Definition 1-7. Atomic and functional terms (ATERM and FTERM)
(i) ATERM =CONST u PAR u VAR,
(i) FTERM = TERM\ATERM.

Definition 1-8. The set of quantifiers (QUANTOR)
QUANTOR = {TIE" | IT € QUANT and & € VAR}.

Definition 1-9. The set of formulas (FORM; metavariables: A, B, T, A, A, B', T, A", A*, B*,
I'* A*, ..)
FORM =N{R |R < EXP and
(i If {6y, ..., 0,1} < TERM and ® € PRED n-ary, then "®(0y, ..., 0,1)" € R,
(i) IfA e R,then =A™ e R,
(iii)  If Ag, Ay € R and y € CON\{"—"}, then "(Ap w A;)" € R, and
(iv) IfAeRand§ e VAR and IT € QUANT, then TIEA™ € R}.
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Definition 1-10. Atomic, connective and quantificational formulas (AFORM, CONFORM,
QFORM)

(i) AFORM ={"®(0y, ..., 0,1)" | ® € PRED n-ary and {0, ..., 0,.} < TERM},

(i) CONFORM = {™—A" | A € FORM} u {"(Ao w A1)" | Ag, A; € FORM and y €
CON\{"—"}},

(iii) QFORM = {TIEA™ | A € FORM and IT € QUANT und & € VAR}.
The following theorem leads directly to the theorems on unique readability.

Theorem 1-9. Terms resp. formulas do not have terms resp. formulas as proper initial expres-
sions

(i) 1f6,0' e TERMand p € EXP, then0' # "0u", and
(i) IfA, A" e FORMand p € EXP, then A" = "Au".

Proof: Ad (i): Suppose 6, 8' € TERM and pu € EXP. The proof is carried out by induction
on EXPL(8"). For this, suppose the statement holds for all 6* € TERM with EXPL(6%*) <
EXPL(6"). For EXPL(8") = 1, and thus 6' € ATERM, the statement holds trivially, be-
cause, according to Postulate 1-2-(ii), there are no 6, u € EXP such that 6' = "0u". Now,
suppose 1 < EXPL(6"). Then 8' ¢ ATERM and therefore 8" € FTERM. Then there are »'
e N\{0} and ¢' € FUNC, ¢' n'-ary, and {6, ..., 0';-1} < TERM such that 6' = "¢'(8', ...,
0'-1)". Suppose for contradiction that 6' = "0u". Now, suppose for contradiction that 6 e
ATERM. Then, we would have 8 € CONST u PAR u VAR. According to Theorem
1-7-(iii) and with "¢'(0%, ..., 0'1)" = 0" = "Ou", we would then have that ¢' = 0 €
CONST u PAR u VAR. Contradiction! Therefore 6 € FTERM and there are thus n e
N\{0} and ¢ € FUNC, ¢ n-ary, and {6y, ..., 6,,} < TERM such that 6 = "o(y, ...,
0,.1)". Therefore "@'(0%, ..., 0%-1)" = "@(0o, ..., 0,.1)u’. Then it holds with Theorem
1-7-(iii) that @' = ¢ and thus, according to Definition 1-5 and Postulate 1-1-(iv), we have
n = n'. Therefore "(0'Y, ..., 0'.1)" = "e(0y, ..., 0,.1)u". Note that EXPL(0';), EXPL(6;) <
EXPL(0") for all 7 < n.

With {u} u TERM < EXP, it then holds that there are {u*o, ..., W expLq1} & BEXP
and {u%%, ..., WWoexpLgyi} U .o U {0, o, 0 e, 01} © BEXP and {u, ...,
ueOExpL(eo)_l} U...U {pe”'lo, ey ue"'lExpL(en_l)_l} < BEXP such that p = "p*o... 1 expr(y-1"
and for all i < n: 0 = "u¥%...1"expLey1” and 6; = ... ExpLeya". With Theorem
1-5-(i), it then holds that

o o o o
TO(W % [ %EXPL(0g)-1r <+ s B " R0n e U T EXPL(00)-1) |
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To(u™p.. -HeOEXPL(eo)-l, ey Wty -He’l’lExpL(ey,.l)-l) W*o. .. W EXPL()-1 |

and thus with Theorem 1-7-(i)

o 0 0, 0 -
W 0. . L OEXPL()-1s s B " L0ue U " EXPL(00)-1)

s 9 0 0, * * A
W%, W OEXPL(Og)-1r «+er 00w U EXPL(0,0)-1) W¥0- - - W EXPL()-1 -

Suppose for contradiction that EXPL(6';) = EXPL(8;) for all 7 < n. With Theorem 1-5-(iii)
and Theorem 1-7-(i), we would then have that ")" = ")u*o... W expL(w-1', Whereas, with
Postulate 1-2-(ii), we have that )" # ")p*o... W expL-1" . Contradiction! Thus there is an /
< n with EXPL(6) # EXPL(0,). Let ¢ be the smallest such [ and suppose first that
EXPL(6";) < EXPL(6;). Suppose ¢ = 0. It then follows, with Theorem 1-5-(iii), that for all ;
< EXPL(®0): p’; = p% and thus, with Postulate 1-2-(i), we have that 0, =
2%, .. 1 %xpL1” = 1. nPexpLg-1" . Because of EXPL(0') < EXPL(6y) it then fol-
lows, with Theorem 1-6, that 0o expL(0g)- - - W EXPL(O)-1 " =
%%, .. 1L 001 ExPLEY) - L ExPLO) 1 = 1. .. 1M ExpLg1" = B0, Which contradicts
the I.H. Suppose i > 0. Then it holds, with Theorem 1-5-(iii), that

s o 0. 0 1
W% W OEXPL(O'0)-1r -+ o1 M o U FEEXPL(O'0)-1s

r, .0 0 0, 0, q
W0, .. W OEXPL(B)-1r -+ B R0 - U EXPL(B0)-Ls -

Therefore with Theorem 1-7-(i):

r, 0 0'; 0. 0, Rl
W0 U EXPL©-1s -eer U " R0w e U EXPL(00)-1)

r 0, 0, 0, 0, * * hl
W0e e W EXPLEO)-1 «-s 00w o U EXPL(0,0)-1) W0+ - - W ¥ EXPL(u)-1 -

With Theorem 1-5-(iii), we then have that for all j < EXPL(") it holds that u%i; = u%; and
thus, with Postulate 1-2-(i), that 0’ = "u%%... 1" expLey1” = ... nYExpLey1" . Because of
EXPL(0';) < EXPL(6)) it then follows, with Theorem 1-6, that "0'u*expL (.. - W ExpL(o)1”
= "W WexeLegaExeLey- - WiexpLeyr' = Wo...WExpLey1’ = i, which also contra-
dicts the I.H. In case of EXPL(0;) < EXPL(6';), a contradiction follows analogously.
Hence the assumption that ' = "0u™ for a 6 € TERM leads to a contradiction.

Ad (ii): Now, suppose A, A" € FORM and pu € EXP. The proof is carried out by induc-
tion on EXPL(A"). For this, suppose the statement holds for all A* € FORM with
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EXPL(A*) < EXPL(A). With A' € FORM, we have A' € AFORM u {™—A*" | A* €
FORM} u {"(Ao v A1) | Ag, A1 € FORM and y € CON\{"—"}} u QFORM. These four
cases are now considered separately.

First: Suppose A" € AFORM. The proof is carried out analogously to the induction step
for (i) by applying (i). Suppose A' = "Au". With A" € AFORM there are n' € N\{0} and
®' € PRED and {0, ..., 01} < TERM such that A' = "®'(0", ..., 0',-1)". Suppose for
contradiction that A € CONFORM u QFORM. Then there would be p' € {"=", "("} v
QUANT and pu* € EXP such that A = "u'u*". Therefore, according to Theorem 1-6,
"®'(0%, ..., 0'1)" = A= "Ap’ = "w'p*u’ and thus, according to Theorem 1-7-(iii), @' =
w'. Thus we would have that @' € {"=", "("} u QUANT. Contradiction! Therefore A ¢
CONFORM u QFORM and thus A € AFORM. Thus there are n € N\{0} and ®
PRED, ® n-ary, and {6y, ..., 6,1} < TERM such that A = "®(6, ..., 6,.1)". Therefore
o'(0', ..., 01)" = "®(Oy, ..., 0,.1)1". Then it holds with Theorem 1-7-(iii) that @' = @
and thus we have according to Definition 1-5 and Postulate 1-1-(v) that n = n'. Therefore
"0, ..., 01)" = "D(0y, ..., 0,.1)u”. From here on, the proof for A' ¢ AFORM proceeds
analogously to the induction step for (i), while the contradiction resulting here is not with
the I.H., but with (i).

Second: Now, suppose A' € {™—A*" | A* € FORM}. Then there is A* € FORM such
that A' = "—A"", and also EXPL(A") < EXPL(A"). Suppose A' = "Au” and thus "Ap’ =
"—A*. Suppose for contradiction that A € AFORM u {"(A¢ v A1)? | Ag, A; € FORM
and y € CON\{"—"}} u QFORM. Then there would be u' € PRED u {"("} u QUANT
and p* e EXP such that A = "u'p*”. Therefore according to Theorem 1-6 "—A™ = Ay’
= "u'pw*u’ and thus according to Theorem 1-7-(iii) "—' = p'. Then we would have that
=" € PRED u {"("} u QUANT. Contradiction! Therefore A € {"=A*" | A* € FORM}
and there is A* € FORM such that A = "—A*". Therefore "—A"™ = "—A™u". With
Theorem 1-7-(i) one then has that A* = "A*u™, which contradicts the I.H.

Third: Now, suppose A" € {"(Ao y A1)" | Ao, Az € FORM and y € CON\{"—"}}. Then
there are A'g, Ay € FORM and y' € CON\{"—"} such that A" = "(A' y' A'})", and also
EXPL(A') < EXPL(A") and EXPL(A") < EXPL(A"). Suppose A' = "Au” and thus "Ap" =
(A9 y' A'1)". Suppose for contradiction A € AFORM u {"—A*" | A* ¢ FORM} u
QFORM. Then there would be u' € PRED u {"="} u QUANT and p* € EXP such that
A = "Tu'p*7, and therefore "(A'p y' A'1)T = A' = "Ap’ = "p'p*u’ and thus according to
Theorem 1-7-(iii) "(" = p'. Thus one would have that "(" € PRED u {"="} u QUANT.
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Contradiction! Therefore A € {"(Ao v A1)" | Ao, A1 € FORM and y € CON\{"—"}} and
there are Ao, A; € FORM and y € CON\{"—"} such that A = "(Ay v A;)", and also
EXPL(Ao), EXPL(A)) < EXPL(A). Therefore (A% w' A1) = (Ao y A)u’. With
Theorem 1-7-(i) it holds that "A'y y' A'1)" = "Ag v Ap)u”. With {u} u FORM < EXP it
also holds that there are {u*o, ..., W*expLgy-1} S BEXP and {u*%, ..., W*%expirg-1} U
{u%, ..., 1 expLian)1} S BEXP and {u, ..., n%%xpLiag-a} U {0, ...y WMExpLian1} S
BEXP such that p = "u*o...u*expLgy-1” and for all i < 2: A = ... 1 expLay1” and A,
= "u... 0 YexpL(a)1 - With Theorem 1-5-(i), we then have that

W%, 1 Oexpr (g W I o L et

"%. .. 1 MexpLag-1WH M. . W ExpLAD-D) I ¥0. - KEXPLG)-L -

Now, suppose for contradiction that EXPL(A'y) < EXPL(Ao). With Theorem 1-5-(iii), it
then it holds for all j < EXPL(A') that u*°; = u*;. With Postulate 1-2-(i), we then have
A = %, 1 %xpL a1’ = W%, . W ExpL(a)-1 - With Theorem 1-6, we then have that
"A' O XL (D) - - - L EXPL(AG)1 = 1%, W% (o)1 EXPL(AY) - - L EXPL(AG)1 =
u%. .. 1 %xpLag-1" = Ao, Which contradicts the 1.H. In case of EXPL(Ag) < EXPL(A'Y), a
contradiction follows analogously. Therefore one has that EXPL(A's) = EXPL(Ao). Thus
it holds, with Theorem 1-5-(iii), that "u“%... " %expraga¥” = 1%, .. W %ExpL(ag1y” and
thus,  with  Theorem  1-7-(i), also  that W%, expLana)’ =
Mo 1ML (ag)-1) M ¥0- - ¥ EXPL(-1 - AS We have just done for A', Ao, e can show that
EXPL(A';) = EXPL(A,). But then we have, with Theorem 1-5-(iii), that A'; = A; and thus,
with Theorem 1-7-(i), that )" = ")u*o... W expLw-1", Which contradicts Postulate 1-2-(ii).

Fourth: Now, suppose A' € QFORM. Then there are A* € FORM and IT' € QUANT
and & € VAR such that A' = TTI'E¢A™, and also EXPL(A*) < EXPL(A"). Suppose A' =
"Ap” and thus "Ap? = TITI'E'A*. Suppose for contradiction A € AFORM u CONFORM.
Then there would be ' € PRED u {"=", "("} and p* € EXP such that A = "p'p*".
Therefore according to Theorem 1-6 TI'€¢'A™ = "Ap" = "w'p*p” and thus IT' = p'. Thus
we would have that IT' € PRED u {"=", "("}. Contradiction! Therefore A € QFORM
and there are A* € FORM and IT e QUANT and & € VAR such that A = TIEA™. There-
fore TI'E'A™ = TIEA*W. With Theorem 1-7-(iii) and -(i), we then have first &A™ =
"EATWT and then A" = "A*u™, which contradicts the I.H.

Thus A" = "Ap" leads to a contradiction in all four cases. Therefore A" + "Ap". m
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Theorem 1-10. Unique readability without sentences (a — unique categories)
(i) CONST n (PAR u VAR u FTERM u QUANTOR u AFORM u {™=A" | A
FORM} u {"(Ao w A1)" | Ao, A1 € FORM and y € CON\{"™—"}} u QFORM) =0,
(i)  PAR n (CONST u VAR u FTERM u QUANTOR u AFORM u {™—A" | A
FORM} u {"(Ao v A1)" | Ag, Ay € FORM and y € CON\{"™—"}} u QFORM) =0,
(iii) VAR n (CONST u PAR u FTERM u QUANTOR u AFORM u {™=A" | A
FORM} U {"(Ao v A1) | Ao, A; € FORM and y € CON\{"—"}} u QFORM) =0,
(iv) FTERM n (CONST u PAR u VAR u QUANTOR u AFORM u {™—A" | A
FORM} u {"(Aoy A1)" | Ao, A1 € FORM and y € CON\{"—"}} u QFORM) =0,
(v) QUANTOR n (CONST u PAR u VAR u FTERM u AFORM u {™=A" | A
FORM} u {"(Ao v A1)" | Ag, Ay € FORM and yw € CON\{"™—"}} u QFORM) =0,
(vi) AFORM n (CONST u PAR u VAR u FTERM u QUANTOR u {"—A" | A
FORM} u {"(Ao w A1)" | Ao, A1 € FORM and y € CON\{"™—"}} u QFORM) =0,
(vii) {™—A" | A € FORM} n (CONST u PAR u VAR u FTERM u QUANTOR u
AFORM u {"(Ao v A1)" | Ao, A1 € FORM and y € CON\{"—"}} u QFORM) =0,
(viii) {"(Aoy A1) | Ag, Ay € FORM and y € CON\{"—"}} n (CONST u PAR u VAR u
FTERM u QUANTOR u AFORM u {™—A" | A € FORM} u QFORM) = @, and
(ixX) QFORM n (CONST u PAR u VAR u FTERM u QUANTOR u AFORM u {™—A"
| A € FORM} u {"(Agw A1)" | Ag, Ay € FORM and v € CON\{"™—"}}) = 0.

m

m

m

m

m

Mm

Proof: Suppose p € CONST. According to Postulate 1-1, we then have that p ¢ PAR u
VAR and, according to Definition 1-7, that u ¢ FTERM. Suppose for contradiction that p
€ QUANTOR u AFORM u {"™=A" | A € FORM} u {"(Ao v A1) | Ao, Ay € FORM and
v € CON\{"="}} u QFORM. Then, there would be u' € BEXP and u* € EXP such that
pw = "w'u*". This contradicts Postulate 1-2-(ii). Therefore u ¢ QUANTOR u AFORM u
{™=A" | A € FORM} u {"(Ao v A1)" | Ao, Ay € FORM and y € CON\{"—"}} u
QFORM.

For un € PAR and p € VAR, the proof is carried out analogously.

Now, suppose u € FTERM. According to Definition 1-7, we then have p ¢ CONST u
PAR u VAR and we have p € TERM. According to Definition 1-6, there are thus ¢ <
FUNC and p* e EXP such that p = "eu™. Suppose for contradiction that p e
QUANTOR u AFORM u {™—A" | A € FORM} U {"(Ao v A1) | Ao, Ay € FORM and
e CON\{"—"}} u QFORM. Then there would be p' € PRED u QUANT u {'—', '('} and
pu* € EXP such that = "uw'u*". According to Theorem 1-7-(iii), we would then have p' =
¢ and thus p' € FUNC. This contradicts Postulate 1-1. Therefore p ¢ QUANTOR u
AFORM u {™—=A" | A € FORM} u {"(Ao v A1)" | Ao, Ay € FORM and y €
CON\Y{"—"}} u QFORM.
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For u € QUANTOR, u € AFORM, n € {"—A™ | A € FORM}, u € {"(Ao v A1) | Ao,
A1 € FORM and vy € CONW{"—="}} and p € QFORM, the proof is carried out analo-

gously. m

Theorem 1-11. Unique readability without sentences (b — unique decomposability)
If u € TERM u QUANTOR u FORM, then:

(i) upeATERM or

(i) p e FTERM and there are n € N\{0}, ¢ € FUNC and {0, ..., 0,..} < TERM such
that p = (0, ..., 0,1)" and for all n' € N\{0}, ¢' € FUNC and {6, ..., 0'y1} <
TERM with p = "@'(0', ..., 0'1)" it holds that » = n"and ¢ = ¢' and for all i < n: 0, =
0, or

(ili) p e QUANTOR and there are IT € QUANT and & € VAR such that p = TIE" and for
all IT' € QUANT and &' € VAR with p = "II'¢" it holds that IT = IT" and & = &', or

(iv) p e AFORM and there are n € N\{0}, ® € PRED and {0, ..., 6,.1} < TERM such
that p = "®(0y, ..., 0,.1)" and for all »* € N\{0}, ®' € PRED and {0, ..., 0'y1} <
TERM with = "®'(8', ..., 0';1)" itholds that n = n' and ® = ®'and for all i < n: 9, =
0';, or

(V) pe{—A"|A e FORM}and thereis A € FORM such that p = "—A™ and for all A' €
FORM with u = "—A" it holds that A = A', or

(vi) p e {(Aowy A" | Ao, Ay € FORM and y € CON\{"—"}} and there are Ao, A; €
FORM and vy € CON\{"—"} such that u = "(Ag v Ay)" and for all A'g, A’y € FORM
and y' € CON\{"—"} with p = "(A'g y' A';)" it holds that A = A'yand A; = A’y and y =
y', or

(vii) p e QFORM and there are IT € QUANT, £ € VAR and A € FORM such that p =
TIEA™ and for all IT' € QUANT, &' € VAR and A' € FORM with p = "TT'E'A™ it holds
thatIT=IT"and { =& and A = A"

Proof: Suppose p € TERM u QUANTOR u FORM. Therefore p €¢ ATERM u FTERM
u QUANTOR u AFORM u {"™=A" | A € FORM} u {"(Ao v A1) | Ao, Ay € FORM and
vy € CON\{"—="}} u QFORM. These seven cases will be treated separately. First: Sup-
pose u € ATERM. Then (i) is satisfied trivially.

Second: Suppose u € FTERM. According to Definition 1-6 and Definition 1-7, there
are then n € N\{0}, ¢ € FUNC and {6y, ..., 0,1} < TERM such that p = "@(0o, ...,
0,-1)". Now, let also n' € N\{0}, ¢' € FUNC and {6, ..., 6',.1} < TERM be such that p
= "9'(0%, ..., 0'-1)". @ = @' follows from Theorem 1-7-(iii). With Theorem 1-7-(i), we
thus have "0, ..., 0,.1)" = "0, ..., 8':-1)". By induction on 7 we will now show that for all
i € N: If i <n, then i <n'and 6, = 0'.. For this, suppose that the statement holds for all £ <

i. Suppose i < n. Suppose ¢ = 0. We have that 0 < n'. We also have that there are {uy, ...,
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UexpLg-1t Y {0 ...y WexpL@o-1y S BEXP such that 6 = "po...pexpiL(e)-1 and 0o =
"Wo...WexpL@o-1 and thus, with Theorem 1-6, po...Hexpi(og)1s ---» On1)' =
"Wo...WeXPL@o)1s ---» 0%-1)". Now, suppose EXPL(6g) < EXPL(6). With Theorem
1-5-(iii), it would then hold for all [ < EXPL(6o) that w; = p’. With Postulate 1-2-(i), we
would thus have 6y = "po...texpLg-1' = "Ho..-H'EXPL()-1 - BUt then we would have, with
Theorem 1-6, that "Oop'exeL(o)---HEXPL@OG)-1' = "Wo-.. WEXPL(@0)-1H'EXPL(O)- - - LEXPL(OG)-L' =
0'0, which contradicts Theorem 1-9-(i). In the same way, a contradiction follows for
EXPL(0') < EXPL(6p). Therefore we have that EXPL(60) = EXPL(0'0) and thus, with
Theorem 1-5-(iii), also 6, = 0'.

Now, suppose 0 < 4. Then it holds for all £ < i that £ < n. With the 1.H., we thus have for
all k< ithat k£ <n' and 0; = 0'.. With Theorem 1-5-(iii), we then have that "8, ..., 0,1 =
0, ..., 0'.1". We also have that -1 < n' and thus that ¢ < n'. Suppose for contradiction
that 7 = n". Then we would have that "0y, ..., 6,1 = "0, ..., 01" . With Theorem 1-7-(i),
we would then have that 7, 6,, ..., 6,.1)" = "), which contradicts Postulate 1-2-(ii). Thus
we have ¢ < n'. Again with Theorem 1-7-(i), we then have that "0, ..., 0,.1)" = "0, ...,
0';-1)". From this, we can derive 0; = 6'; in the same way as 6, = 'y for 7 = 0. Therefore it
holds for all i < n that i < n' and 6, = 8';. Analogously, we can show that for all i < n' we
have that i < n and 0'; = 8,. Taken together, we thus have that n = n' and that for all i < n:
0, =0

Third: Suppose u € QUANTOR. According to Definition 1-8, there are then IT €
QUANT and & € VAR such that p = TIE". Now, let also IT' € QUANT, &' € VAR such
that p = "TI'§". From Theorem 1-7-(iii) and -(i) follows immediately IT=1IT"and £ = £'.

Fourth: Suppose u € AFORM. According to Definition 1-10-(i), there are then n e
N\{0}, ® € PRED and {0y, ..., 6,1} < TERM such that pu = "®(0q, ..., 0,.1)". Let now
also n' € N\{0}, ®' € PRED and {0, ..., 6';1} < TERM such that p = "®'(8", ...,
0',1)". ® = @' follows from Theorem 1-7-(iii). With Theorem 1-7-(i), we then get that
00, ..., 0,.1)" = "0, ..., 0-1)". In the same way as in the second case, we can then show
that n = n' and that for all t < n: 6, =9'";.

Fifth: Suppose u € {"=A" | A € FORM}. Then there is A € FORM such that u =
'—A™. Now, suppose A' € FORM and p = "—A"™. From Theorem 1-7-(i) follows immedi-
ately A = A'.

Sixth: Suppose p € {"(Ao v A1)" | Ag, A1 € FORM and y € CON\{"—"}}. Then there
are Ao, A; € FORM and y € CON\{"—"} such that u = "(Ao w A;)". Let now also A'y, A"y
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€ FORM and y' € CON\{"—"} be such that p = "(A'y y' A'1)". With Theorem 1-7-(i), we
then have "Ay y Ay)" = "A'y y' A'1)". Also, there is {po, ..., HexeLag-1} YV {Mo, ...,
WexpL(ag-1p S BEXP such that Ag = "no...HexpL(ag-1' and A'g = "Wo...WexpLiag-1' - SUp-
pose for contradiction that EXPL(A;) < EXPL(A'). WithTheorem 1-5-(iii), we would
then have p,; = p'; for all + < EXPL(Ap). But then we would have, with Postulate 1-2-(i),
that Ag = "Wo...MexpLag-1’ = "Wo..-WExpL(ag-1 - With Theorem 1-6, we would then have
TAOW'EXPL(AG) - - WEXPL(A D)1 = W0+t WEXPL(AG)-IL'EXPL(AG) -+ - WEXPL(AG)}1 = "Wo-.. WEXPL(AG)1L
= A'g, which contradicts Theorem 1-9-(ii). Analogously, a contradiction follows from
EXPL(A0) < EXPL(Ao). Therefore EXPL(Ag) = EXPL(A,) and thus A, =
"Ho...HEXPL(A)-1| = "Mo...HExpL(ag)-1 = A'o. With Theorem 1-7, it then follows first that
"y A1)" = "y A'y)7, then that w = ', then that "A;)" = "A';)" and finally that A; = A";.

Seventh: Suppose u € QFORM. According to Definition 1-10-(iii), there are then IT e
QUANT, & € VAR and A € FORM such that u = TIEA™. Let now also IT' € QUANT, &'
e VAR, A' € FORM such that p = TTI'E&'A™. From Theorem 1-7-(iii) and -(i) follows im-
mediately [T=IT"and £ =& and A=A". m

With Theorem 1-10 and Theorem 1-11, one can now define functions on the sets TERM,

FORM and their union by recursion on the complexity of terms and formulas. The fol-

lowing definitions of the degree of a term and the degree of a formula (Definition 1-11

and Definition 1-12), allow us to prove properties of terms and formulas by induction on

the natural numbers more conveniently then this can be done by using EXPL.

8

Definition 1-11. Degree of a term® (TDEG)
TDEG is a function on TERM and
(i) If6 e ATERM, then TDEG(0) =0,
(i) If "o(0, ..., 0,1)" € FTERM, then
TDEG( (6o, ..., 0,.1)") = max({TDEG(6), ..., TDEG(6,.1)})+1.

Let 'min(..)" be defined as usual for non-empty subsets of N and 'max(..)" as usual for non-empty and
finite subsets of N. If X is not a non-empty subset of N, let min(X) = 0, and if X is not a non-empty
finite subset of N, also let max(X) = 0.
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Definition 1-12. Degree of a formula (FDEG)
FDEG is a function on FORM and
(i) If A e AFORM, then FDEG(A) =0,
(i) If "SA" € CONFORM, then FDEG("—A") = FDEG(A)+1,
(iii)  If (Ao y A1)" € CONFORM, then
FDEG( (Ao v A1)") = max({FDEG(Ao), FDEG(A1)})+1,
(iv) If TIEA" € QFORM, then FDEG(TIEA™) = FDEG(A)+1.

We will henceforth use the usual infix notation without parentheses for identity formulas,
e.g. "0 = 06*" for "=(0, 6*)". Furthermore, we will often omit the outermost parentheses,
e.g. "A y B for "(A y B)". With Definition 1-13, we can now characterise the free vari-

ables of terms and formulas.

Definition 1-13. Assignment of the set of variables that occur free in a term 6 or in a formula
I (FV)
FV is a function on TERM u FORM and
(i) Ifa € CONST, then FV(a) = 0,
(i)  IfB € PAR, then FV(B) = 0,
(iii)  If & e VAR, then FV(§) = {&},
(iv) If "o(6y, ..., 0,1)" € FTERM, then
FV("o(0o, ..., 0,1)") = U{FV(6) | i < n},
(v) If "®(6, ..., 0,.1)" € AFORM, then
FV(®(0Oy, ..., 0,.1)") = U{FV(B)) | i < n},
(vi) If "SA™ € CONFORM, then FV(™—A") = FV(A),
(vii) If "(Agy A1)" € CONFORM, then FV("(Ao w A1)") = FV(Ag) u FV(Ay),
and
(viii) If TIEA" € QFORM and, then FV(TIEA™) = FV(A)\{&}-

Definition 1-14. The set of closed terms (CTERM)
CTERM ={6|6 € TERM and FV(0) = 0}.

Note that, according to Definition 1-14, parameters are closed terms.
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Definition 1-15. The set of closed formulas (CFORM)
CFORM ={A | A € FORM and FV(A) = 0}.

Closed formulas are also called propositions. Note that closed formulas can have parame-
ters among their subexpression (see Definition 1-20). Sentences are now defined as the

result of applying a performator to a closed formula.

Definition 1-16. The set of sentences (SENT; metavariables: X, &', T*, ...)
SENT ={"2[" | Z € PERF and I' ¢ CFORM}.

Definition 1-17. Assumption- and inference-sentences (ASENT and ISENT)
(i) ASENT ={"Suppose I'"" |T € CFORM},
(i)  ISENT ={"ThereforeI"" |T" € CFORM}.

Theorem 1-12. Unique category and unique decomposability for sentences
If £ € SENT, then £ ¢ TERM u QUANTOR u FORM and

(i) X e ASENT and X ¢ ISENT and there isT" € CFORM such that £ = "Suppose I'"" and
forall T" € CFORM with £ = "Suppose I'"™" holds: T'=T", or

(i) X € ISENT and £ ¢ ASENT and there isT" ¢ CFORM such that £ = "Therefore T
and for all T" € CFORM with £ = "Therefore I holds: T =T".

Proof: Suppose ¥ € SENT. Then there are = € PERF and I' € CFORM such that X =
'EI7. If £ € TERM u QUANTOR u FORM, then we would have that ¥ € ATERM or
¥ € FTERM u QUANTOR u FORM. In the first case, we would have £ € BEXP, which
contradicts Postulate 1-2-(ii). In the second case, there would be p € FUNC u QUANT v
PRED v {"—", "("} and pn' € EXP such that £ = "upu"™. Thus we would have Z = p and
therefore 2 € FUNC u QUANT u PRED u {"™=", "("}, which contradicts Postulate 1-1.
Therefore £ ¢ TERM u QUANTOR u FORM.

If now £ € SENT, then by Postulate 1-1-(viii) X € ASENT or ¥ € ISENT. The two
cases will be treated separately. First: Suppose ¥ € ASENT. Then there isI' € CFORM
such that £ = "Suppose I'". If ¥ € ISENT, then there would be I'* such that ¥ = "There-
fore I'*" and thus, according to Theorem 1-7-(iii), "Suppose” = "Therefore™. Then
{"Suppose”, "Therefore™} would not be a 2-element set, which contradicts Postulate
1-1-(viii). Therefore £ ¢ ISENT. Now, suppose I" € CFORM and X = "Suppose I'".
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Then we have "Suppose I'" = "Suppose I'"". With Theorem 1-7-(i), it follows immedi-
ately thatI' =T".

Second: Suppose £ € ISENT. Then there is I' € CFORM such that £ = "Therefore I"".
For ¥ € ASENT we would again have a contradiction to Postulate 1-1-(viii). Therefore
¢ ASENT. Now, suppose I'" € CFORM and X = "Therefore I'"". Then we have "There-
fore I'" = "Therefore I'"'. With Theorem 1-7-(i), it follows immediately that T =T". m

With Theorem 1-12, we can now define functions on the set TERM u FORM u SENT by

recursion on the complexity of terms, formulas and sentences.

Definition 1-18. Assignment of the proposition of a sentence (P)
P={("EI",T) | E € PERF and I' € CFORM}.

Note: With Definition 1-16 and Theorem 1-12, it follows immediately that P is a function
on SENT. Because of this, we use function notation: P("ZI"") = I'. We now define the set
of proper expressions as the union of the set of basic expressions and the grammatical

categories.

Definition 1-19. The set of proper expressions (PEXP)
PEXP = BEXP u QUANTOR u TERM u FORM u SENT.

Definition 1-20. The subexpression function (SE)
SE is a function on PEXP and
(i) Ift € BEXP, then SE(t) = {1},
@ity  If (B, ..., 0,.1)" € FTERM, then
SE("9(00, ---, 0,.1)") = { 900, ..., 0,.1)", 0} U U{SE(0)) | i < n},
(i)  If TIE" € QUANTOR, then SE(TIE") = {TIE", I, &},
(iv) If "®(By, ..., 0,.1)" € AFORM, then
SE("®(By, ..., 0,.1)") ={"®(0y, ..., 0,1)", P} u U{SE(D)) | i < n},
(v) If "=A" € CONFORM, then SE("—A") ={"™=A", "—'} u SE(A),
(vi) If "(Aow A1)" € CONFORM, then
SE("(Ao v A1)") ={"(Ao v A1), y} U SE(Ao) U SE(Ay),
(vii) If TIEA" € QFORM, then
SE(TTIEA™) = {'TIEA"} u SE('TIE") u SE(A), and
(viii) If "EA" e SENT, then SE("EA™) ={"ZEA", E} u SE(A).
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Definition 1-21. The subterm function (ST)
ST is a function on TERM u FORM u SENT and for all t e TERM u FORM u SENT: ST(t)
= SE(t) n TERM.

Definition 1-22. The subformula function (SF)
SF is a function on FORM u SENT and for all t ¢ FORM u SENT: SF(t) = SE(t) n FORM.

The following definitions describe the syntax of L insofar as it goes beyond the sentence
level. As before, we suppress explicit references to L. Definition 1-23 characterises sen-

tence sequences as finite sequences of inference- and assumption-sentences:

Definition 1-23. Sentence sequence (metavariables: §, $', $*, ...)
£ is a sentence sequence

iff

$ is a finite sequence and for all - € Dom($)) holds: $; € SENT.

Definition 1-24. The set of sentence sequences (SEQ)
SEQ ={$ | $ is a sentence sequence}.

Definition 1-25. Conclusion assignment (C)
C={(®,1) |9 e SEQ{0} and I' = P(HHpom(s)-1)}-

Note: From this definition it follows directly that C is a function on SEQ\{0}.

Definition 1-26. Assignment of the subset of a sequence $) whose members are the assump-
tion-sentences of § (AS)

AS ={(%, X)| 9 e SEQand X ={(i, %)) | i € Dom(f) and $, € ASENT}}.

Definition 1-27. Assignment of the set of assumptions (AP)
AP ={($, X) | $ € SEQ and X = {I"| There is an i € Dom(AS($)) such that I" = P(£,)}}.

Definition 1-28. Assignment of the subset of a sequence $) whose members are the inference-
sentences of $ (IS)

IS={($, X)| % e SEQand X ={(i, $;) | i € Dom($)) and $; € ISENT}}.

Note: From these definitions it follows directly that AS, AP and IS are functions on SEQ.
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Definition 1-29. Assignment of the set of subterms of the members of a sequence $ (STSEQ)
STSEQ ={($, X) | $ € SEQ and X = U{ST($,) | i € Dom($)}}.

Note: From this definition it follows directly that STSEQ a function on SEQ.

Definition 1-30. Assignment of the set of subterms of the elements of a set of formulas X
(STSF)

STSF={(X,Y)| X < FORMand Y = U{ST(A) | A € X}}.

Note: From this definition, it follows directly that STSF is a function on Pot(FORM).
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1.2 Substitution

Now the substitution concept is to be established. In this, we restrict the usual substitution

concept: Only atomic terms are substituenda and only closed terms are substituentia. This

makes it superfluous to rename bound variables in order to avoid variable clashes. The

tasks that are fulfilled by free variables in many calculi and usually in model-theory are

fulfilled by parameters , which are closed terms (see Definition 1-14), in the Speech Act

Calculus as well as in the model-theory developed here. Furthermore, also sentences and

sentence sequences are substitution bases and not just terms and formulas (clauses (ix)
and (x) of Definition 1-31).

Definition 1-31. Substitution of closed terms for atomic terms in terms, formulas, sentences
and sentence sequences’

Substitution is a 3-ary function on {((0', ..., 0'x.1), B0, ..., 0r.1), W | & € N\{0}, (6, ..., 0'%1) €
]"CTERM, O, ..., Or1) € 'ATERM and uw e TERM u FORM v SENT v SEQ}. .., .., ..]' is
used as substitution operator. Values are assigned as follows:

()
(i)
(iii)

(iv)

v)

(vi)

(vii)

(viii)

If 0" € ATERM and 0" = 0,4, then [(0', ..., 0'x.2), (B, ..., O.1), 0] = 0'4.1,
If 0" € ATERM, 0" # 0,1 and k = 1, then [{0', ..., 0'x.1), Oy, ..., 0.1), 0] =0,
If 0" €« ATERM, 0" £ 0,1 and k # 1, then
[O'0, ..., 0%k2), (Boy ..., Bpa), 67T =[O, ..., 0'%2), (B0, ..., O12), 071,
If "p(8%, ..., 0*.1)" € FTERM, then
[0, ..., 0'%.1), B0, ..., Op1), "@(0%, ..., 0%11)"]
= "o([(0', ..., 0'11), (Oo, ..., Ox1), 0%c], ..., [0, ..., 0's1), (Bo, ..., Op1), O%14])7,
If "®(0y, ..., 0,.1)" € AFORM, then
[(e'O’ LEEN] e‘k—l>v <90! ey ek—l>y r@(e*O, ey 6.kl—l)—l]
= "O([(O, ..., 0':1), B0, ..., Op1), 0%0], ..., [O'0, ..., 0%1), B0, ..., Op1), O%1a])7,
If "—A" € CONFORM, then
[©'0, ..., 0'%1), B0, --vy Opa), =AT] = "= [O, ..., 0%0), B0, -, Ora), A]T,
If (Ao y A1) € CONFORM, then
[©, ..., 0'%1), B0, «..y Or1), (Ao w A1)7]
= ([B'o, ..., O'k2), B0y +-., Or1)y Ao] W [(B, ..., 0'%1), B, ..., Ora), A1])”,
If TIEA™ € QFORM, then let (%, ..., %..1) be such that s = |{j | j < kand 6, # &}| and for
alll<siye{jlj<kand6; # &} and forall k <[ <s: 4, <7, and let
[, ..., 0'%1), (Bq, ..., O.1), TIEA™] = TIE[(O, ..., 0%c1), Big, ..., Bic1), A", iF|{j|
<kand6; # &} #0, [0, ..., 0%1), B, ..., Or.1), TIEA™] = TIEA™ otherwise,

S Let'y = {f|f e Pot(X x Y)and fis function on X and Ran(f) < Y} and let {ay, ..., az.1) ={(4, @) | i <
k}. In the following we will designate 1-tuples by their values if we write down substitution results. So,
for example, [0', 6o, A] for [(0's), (o), A
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(ix) If "EA" € SENT, then
[®', ..., 0'%1), B0, ..., Or.1), "EAT] = "E[(O, ..., 0'%1), Bo, ..., Or1), A]", and

(x) If 9 e SEQ, then [0, ..., 0'1), (B0, ..., Op1), $H]
={0, [®, ..., 0'%1), B, ..., 01-1), H;]) | 7 € Dom(9H)}.

Clause (viii) regulates the substitution in quantificational formulas. In this case, the sub-
stituion is to be carried out for and only for those members of the substituendum sequence
that are not identical to the variable bound by the respective quantifier (if such members
exist). Accordingly, the desired members of the substituendum sequence and the corre-
sponding members of the substituens sequence have to be singled out. This is achieved by
the (in each case uniquely determined) number sequence (i, ..., is.1), Which picks exactly
those indices whose values in the substituendum sequence are different from the bound
variable. The new substituendum resp. substituens sequences, which have the desired
properties, are then simply the result of the composition of the original substituendum
resp. substituens sequences with (i, ..., is.1). If, however, all members of the substituen-
dum sequence are identical to the bound variable, then the substitution result is to be iden-
tical to the substitution basis, i.e. the respective quantificational formula.

Now, some theorems are to be established which are needed for the meta-theory of the
Speech Act Calculus — especially from ch. 4 onwards. We recommend that more impa-
tient readers skip these theorems for now and return here if the need arises. The first theo-
rem eases proofs by induction on the degree of a formula. It is proved by induction on the

complexity of a formula.

Theorem 1-13. Conservation of the degree of a formula as substitution basis
If 6 € CTERM, 6' € ATERM and A € FORM, then FDEG(A) = FDEG([6, 6", A]).

Proof: Suppose 6 € CTERM, 6' € ATERM and A € FORM. The proof is carried out by
induction on the complexity of A. Suppose A = "®(0q, ..., 0,.1)" € AFORM. According
to Definition 1-12, we then have FDEG(A) = 0. Then we have that [0, 0', A] = [0, 0/,
"®(0o, ..., 0,.1)"] = ([0, 0", 0], ..., [0, 0, 0,.1])" € AFORM. Therefore also FDEG([6,
0', A]) = 0. Suppose the statement holds for Ao, A; € FORM. That is: FDEG(Aq) =
FDEG([, 0', Ag]) and FDEG(A;) = FDEG([6, 0', A1]).

Ad CONFORM: Now, suppose A = "=Ap'. Then we have that FDEG(A)
FDEG(™Aq") = FDEG(Ag)+1 = FDEG([0, 6, Ag])+1 = FDEG(™—[6, ', Ac]")
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FDEG([6, 6", "—Aq']) = FDEG([6, 6', A]). Now, suppose A = "(Ag v A;)" for some vy e
CON\{"—"}. Then we have that FDEG(A) = FDEG("(Ao v A1)") = max({FDEG(Ay),
FDEG(A1)})+1 = max({FDEG([6, 6, Ao]), FDEG([6, 0', A1])})+1 = FDEG("([0, 0', A¢] w
[0, 6", A1])") = FDEG([6, 6", "(Ao w A1)"]) = FDEG([6, 6, A)).

Ad QFORM: Now, suppose A = TTIEA". First, let & = 6. Then we have that FDEG(A)
= FDEG('TIEA,") = FDEG(Ag)+1 = FDEG([6, 0", Ag])+1 = FDEG('TIE[B, 0", Ao]") =
FDEG([6, 0", TTIEAo']) = FDEG([0, 6', A]). Now, suppose & = 6. Then we have that
FDEG(A) = FDEG(TIEAG") = FDEG([6, 6", TIEAG']) = FDEG([6, 6", A]). m

Theorem 1-14. For all substituenda and substitution bases it holds that either all closed terms
are subterms of the respective substitution result or that the respective substitution result is
identical to the respective substitution basis for all closed terms

If ' € ATERM, 0* € TERM, A e FORM, then:
(i) 0 e ST([0,0,0%]) forall 0 e CTERM or [0, 0", 0*] = 0* for all © €« CTERM, and
(i) 0 e ST(0,0,A])foralld e CTERM or [0, 0', A] = A for all € CTERM.

Proof: Suppose 6' € ATERM, 6* € TERM, A € FORM. Ad (i): The proof is carried out
by induction on the complexity of 6*. Suppose 6* € ATERM. If 6" = 6*, then we have
that [0, 0', 6*] = 6 and thus that 8 € ST([6, 0', 6*]) for all 6 € CTERM. If 6' = 6*, then
we have that [0, 0', 6*] = 6* for all 6 € CTERM. Suppose the statement holds for 6%, ...,
0*.., € TERM and let 6* = "p(0*, ..., 0*,.1)" € FTERM. Then we have that [0, 6", 6*] =
[0, 0", "@(0%, ..., 0%,.1)"] = "o([6, 0", 6%¢], ..., [0, 6', 6*,.1])" for all ® € CTERM. Accord-
ing to the I.H., we have that for all i < r: 6 € ST([0, 6', 6*]) for all 6 € CTERM or [6, 0,
0*;] = 0%, for all 6 € CTERM. Suppose there is an 7 < r such that 6 € ST([0, 0', 6*]) for
all © € CTERM. Then we have that 6 € ST( ([0, 0', 0%(], ..., [0, 0", 0*,.1])") = ST([6, ©",
0*]) for all 8 € CTERM. Suppose there is no i < r such that 6 e ST([6, 6", 6*;]) for all 6 €
CTERM. According to the I.H., we then have that [0, 6, 6*;] = 6*, for all 6 € CTERM
and all i < r. Therefore [0, 0", 6*] = "o([0, 0', 6%¢], ..., [0, 8", 0*%,.1])" = "p(6%y, ..., 6%,.1)
= 0* for all 8 € CTERM.

Ad (ii): Suppose A € FORM. The proof is carried out by induction on the complexity of
A. Suppose A = "®(0y, ..., 6,.1)" € AFORM. This case is proved in the same way as the
FTERM-case by applying (i).

Suppose the statement holds for Ao, A; € FORM and let A = "—A;" € CONFORM.
Then we have that [0, 6', A] = [0, 0, "=Aq'] = ™[0, 6", Ao]" for all 6 € CTERM. Accord-
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ing to the 1.H., we have that 6 € ST([0, 6, A]) for all 8 € CTERM or [0, 6", Ag] = A, for
all 6 € CTERM. In the first case, we thus have that 6 € ST("—[6, 6", Ag]™) = ST([6, 0', A])
for all 6 € CTERM. In the second case, we have that [0, 6', A] = [0, 0", Ao]" = "=Ag" =
A for all 6 € CTERM. Suppose A = "(Ag w A1)™. This case is proved in the same way as
the negation-case.

Suppose A = TIEA,". First, suppose & = 0. Then we have that [0, 6', A] = [0, ',
MIEA,'] = TIEA," = A for all 6 € CTERM. Now, suppose & # 6. Then we have that [0,
0, A] = [0, 0, TIEA,'] = TIE[6, 0", Ao]" for all 6 € CTERM. According to the I.H., we
then have that 6 € ST([6, 0', A¢]) for all 6 € CTERM or [0, 6', Ag] = A, for all 6 €
CTERM. In the first case, we thus have that 6 € ST('TIE[O, 0", Ag]") = ST([6, 6", A]) for
all 8 € CTERM. In the second case, we have that [0, 0, A] = TIE[6, 6, Aog]" = TIEAy' =
Aforall® e CTERM. m

Theorem 1-15. Bases for the substitution of closed terms in terms

If 0 € TERM, k € N\{0}, {0o, ..., 0,23 = CTERM and {&, ..., &1} < VAR\ST(0), where &
+ &, for all 4, j < k with i # j, then there is a 0 € TERM, where FV(0") < {&, ..., &4} U
FV(0) and ST(0%) n {00, ..., 0,1} = @ such that 0 = [0, ..., Oua), o, ..., Ert), 7.

Proof: By induction on the complexity of 6. Suppose 6 € ATERM. Now, suppose k£ €
N\{0}, {60, ..., 61} < CTERM and {&, ..., &1} < VAR\ST(0), where & # &; for all ¢, j
< k with 7 # j. Then we have that 6 € CONST u PAR u VAR. First, suppose 6 € PAR u
CONST. Then there is no ¢ < k such that 6 = 6, or there is an ¢ < k such that 6 = 0;. In the
first case, it follows that 6 = [(Oq, ..., 0.1, (o, ..., &), 0] and we have that FV(0) < {&,
ey &1} U FV(0) and ST(0) n {0, ..., B2} = @. In the second case, there is an i < k such
that © = [(Bg, ..., 0, (o, ..., &), &]. Because of & # &; for all ¢, j < k with ¢ # j, we then
also have that 6 = [(0g, ..., 0, o, ..., &), &] = [Oo, ..., Or1), o, --., Ei-1), &] and we have
that FV(§) < {&, ..., &1} v FV(0) and ST(&) n {00, ..., 051} = @. Now, suppose 6 e
VAR. Because of {&, ..., &1} < VAR\ST(0), we then have that 6 = [(0o, ..., 05-1), (o,
ooy 1)y 0] and FV(0) < {&, ..., &1} u FV(0) and because of ST(0) n {0, ..., 0.1} <
VAR n CTERM = @ we also have that ST(0) n {6, ..., 0,1} = 0.

Suppose the statement holds for 0%, ..., 6., € TERM and let 6 = "@(0', ... 0'.1)" €
FTERM. Now, suppose k£ € N\{0}, {6, ..., 01} < CTERM and {&, ..., &1} <
VAR\ST(0), where & # &; for all 4, j < k with ¢ # j. With U{ST(0) | ¢ < r} < ST(0), it
then holds for all 7 < r that {&, ..., &1} < VAR\ST(8'). According to the I.H., we then



1.2 Substitution 31

have that for every 0'; (i < r) there is a 0%, € TERM such that 0'; = [(0o, ..., 0,.1), &1, ...,
Era), 07] and FV(0%) < {&, ..., Ea} U FV(0") and ST(0") n {00, ..., 6,4} = 0. Then
there is no ¢ < k such that "@(0'%, ... 0'.1)" = 0,, or there is an ¢ < k such that "@(0', ...
0',.1)" = 0,. In the first case, we have that "e(0', ... 6'.1)" = "o([{Bo, ---, Op-1), o, -+, Ek1)s
6%], ..., [Bo, -..r B2, (Cor vorr Ern)y 05a])” = [0, ooy Br2)s Eov v G1)s TQ(0%0, .,
0",.1)"]. We also have that FV("e(0%, ..., 0".1)") = U{FV(0") | i < r} and hence, with the
I.H., that FV("p(0%, ..., 07,.1)") < U{FV(©") | i <1} u {&, ..., &1} = FV(To(0Y, ...,
0'-1)") u {& ..., &-1}- According to the case assumption and the I.H., we also have that
ST("p(0%, ..., 0%1)") n {00, ..., 01} = {"@(0%, ..., 071)"F U U{ST(0%) | i < }) n {00,
ey 01} = ({7087, .., 85:0)"} 0 {60, ..., Bp1}) U (U{ST(6%) | i <7} n {60, ..., B41}) =
0 u U{ST(0%) n {00, ..., 0,1} | 7 <} = 0. In the second case there is an 4 < k such that
o0, ... 051)" =[O0, ..., 0, &o, ..., &), &]. Because of & # &; for all 4, j < k with 7 # 7,
we then also have that "@(6'%, ... 0'-1)" = [(6o, ..., 8, (o, ..., &), &] = [0, ..., Or-1), (o,
o Epa), &] and FV(E) < {&o, ..., Era} U FV(T@(0Y, ... 0'-1)") and because of & ¢
CTERM also ST(E) n {60, ..., 0,1} =0. m

Theorem 1-16. Bases for the substitution of closed terms in formulas

If A € FORM, k € N\{0},{00, ..., 0;..} = CTERM and {&, ..., £..} < VAR\ST(A), where &
+ &, for all 4, j < k with i # 4, then there is a A* € FORM, where FV(A") < {&, ..., &} U
FV(A) and ST(A+) N {60, . E)k_l} =@ such that A = [<60, . Ok_1>, <(&‘;0, . {;k_1>, A+]

Proof: By induction on the complexity of A. Suppose A = "®(0', ... 0'.1)" € AFORM.
Now, suppose k£ € N\{0}, {0, ..., 0x1} < CTERM and {&, ..., &1} < VAR\ST("®(0',
.. 050)7), where & # &; for all 4, j < k with ¢ # 7. With U{ST(0") | i < 7} = ST("®(0", ...
0'..1)"), it then holds for all 7 < r that {&, ..., &1} < VAR\ST(0"). According to Theorem
1-15, we then have that for every 0'; (i < r) there is a 0", € TERM such that 0'; = [(0q, ...,
0-2), (Eor ..., Exr), 07] and FV(0%) < {&, ..., Ea} U FV(0') and ST(0) n {60, ..., 01} =
0. Then we also have that "®(0', ... 0',.1)" = "®([(0o, ..., Ox-1), o, ..., Ex-1)y 070], ..., [(Oo,
coey Op2), Eoy vony Epn)y 074])T =[O0, ...y Okr)y Eov ey Eir)y "@(O70, ..., 07,1)7]. We also
have that FV("®(0, ..., 07,.1)") = U{FV(0%) | i < r} and thus FV("®(0", ..., 6",.1)") <
ULFV(0") | i <7} u {&o, .., &1} = FV(TO(0', ..., 0'1)") U {&o, ..., &1} We then also
have that ST("®(0", ..., 071)") n {00, ..., 041} = U{ST(O%) | i < 7} n {00, ..., Op1} =
U{ST(®O") n {00, ..., Or1} | i< 71} =0.
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Now, suppose that the statement holds for Ao, A; € FORM and let A = "—Aq" €
CONFORM. Now, suppose k£ € N\{0}, {00, ..., 0x1} < CTERM and {&, ..., &1} <
VAR\ST("™—Ao"), where & # &; for all 4, j < k with 7 # 5. With ST(Ao) = ST("—Ag"), we
then have {&, ..., &1}  VAR\ST(Ao). According to the I.H. for A, there is thena A’y €
FORM such that Ag = [{0g, .., 0x-1), €o, ..., Err)y ATl and FV(A"y) < FV(Ag) u {&, ...,
&1} and ST(A%) n {0o, ..., 0,1} = 0. Then we also have that —A" = "=[(0o, ..., Or.1),
Eoy wour &)y A" =[O0, ..., 0p0), &1y ..., Et), "—A'G"]. Furthermore, we have that
FV(™—A%") = FV(A) and thus, with the I.H., that FV("™—A%") < FV(Ao) u {&, ...,
Er1} = FV(™=A0") u {&, ..., &1} According to the I.H., we also have that ST("™—A","
n {00, ..., 01} = ST(A%) n {0, ..., 0,1} = 0.

Now, let A = "(Ao y A;)" € CONFORM. Now, suppose k£ € N\{0}, {6y, ..., 031} <
CTERM and {&, ..., &1} < VAR\ST("(Ao v A1)"), where & # &; for all ¢, j < k with ¢ #
J. With ST(Ao) u ST(A1) = ST("(Ao w A1)™), we then have {&, ..., &1}  VAR\(ST(Ag)
u ST(A1)). According to the I.H. for Ay, Ay, there are then A%, A*; € FORM such that for
1< 20 A = [0, .... 001, Eo ..., Et), AT] and FV(AT) < {&, ..., Ea} U FV(A) and
ST(A™) n {0y, ..., 0.1} = 0. We then have that "(Ag y A1)" = "([{0o, ..., 041, oy -.., Er1),
A%l v [Bo, .., Or1), €1 ooy &)y AT =[O0 ooy Br2)y Eov -eny Err)y (AT W AT)T]
Also, we have that FV("(A y A™1)") = FV(A%y) u FV(A™) and thus FV(" (A% v A™)")
< FV(Ag) u FV(A1) u {&, ..., &1} = FV("(Ao v A1)") U {&o, ..., &1} We also have that
ST("(A% y A™)") n {00, ..., 01} = (ST(A%) n {00, ..., 0x1}) U (ST(A™L) n {0y, ...,
05-1}) = 0.

Now, let A = TICAg" € QFORM and suppose £ € N\{0}, {0, ..., 01} < CTERM and
{&o, ..., &1} < VAR\ST(TICAG"), where &; # &; for all 7, j < k with ¢ # 5. Then, we have
in particular ¢ ¢ {&, ..., &-1}. With ST(Ag) < ST(TICAo"), we have that {&, ..., &1} <
VAR\ST(A). According to the I.H. for Ao, there is then a A"y € FORM such that Ay =
[0, ..., Op1), (o, .., Era), ATo] and FV(AT) < {&, ..., &1} U FV(Ap) and ST(A%) n
{60, ..., 0r1} = 0. Since ¢ {&, ..., &1}, we then have TICAq" = TIC[(Bo, ..., O)-1), (o,
ey Epa)y A" =[O0, ..., Or1), o, ...y Err), TICA™S"]. We then have FV(TICAT,) =
FV(A" MG} = (FV(AMCY) U {&o, ..., &ra} = FV(TICAG") U {Eo, ..., &1} With VAR n
CTERM = ¢ we then also have ST(TIA™") n {0o, ..., 0x1} = (ST(A%) u {&}) n {00, ...,
0p1}=0.m
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Theorem 1-17. Alternative bases for the substitution of closed terms for variables in terms
If {&, } u X < VAR, where {&, (} n X =0, and 6 € TERM, where FV(0) < {&} u X, then

there is a 6* € TERM, where FV(6*) < {(} u X, such that for all 6' € CTERM it holds that
[0, & 6] =1[0', G, 6~].
Proof: Suppose {§, (} u X < VAR, where {&, (} n X =0, and 8 € TERM, where FV(0)
< {&} u X. For & =, the statement follows immediately with 6* = 6. Now, suppose & +
C. The proof is now carried out by induction on the complexity of 6. Suppose 6 € CONST
u PAR. Then it holds with 6* = 6 that FV(0*) = 0 < {{} v X and that for all 6' €
CTERM: [0, &, 0] = [0, C, 6*]. Now, suppose 6 € VAR. Suppose 0 = & Then it holds
with 6* = { that FV(6*) < {¢} u X and that for all 8' € CTERM: [6', &, 6] = 0' = [6', (,
0*]. Suppose 6 # & Then we have 6 € X and thus 6 ¢ {&, (}. Then it holds with 6* = 6
that FV(6*) = {6} < {C} u X and that for all 8' € CTERM: [6', €, 6] = 6 = 6* = [0', (, 6*].
Now, suppose the statement holds for 6y, ..., 6,.; € TERM and suppose 6 = "o(6y, ...
0,.1)" € FTERM. Then we have for all 7 < r: FV(0;) < {&£} v X. According to the I.H.,
we then have that for all 7 < r there is a 6*; € TERM, with FV(6*,) < {C} u X, such that
for all 6' € CTERM it holds that [0, &, 6,] = [0/, ¢, 6%]. With 6* = "p(6%, ... 6*,.1)" it
then holds that FV(6*) < {C} u X and that for all ' € CTERM: [6', &, 6] = [0, &, "o(0o,

-+ 0.0)7] = To([0', & O], ... [0, & 0,4])" = To([0, § 6%, ... [0, C 0%4])" = [0, G
"p(0%0, ... 0%.1)"1=1[6',(, 6*]. m

Theorem 1-18. Alternative bases for the substitution of closed terms for variables in formulas
If{& C} u X < VAR, where {§, (} n X =0, and A € FORM, where FV(A) < {€&} u X and ¢

¢ ST(A), then there is a A* € FORM, where FV(A*) < {C} v X, such that for all 0" €
CTERM it holds that [6", &, A] = [6', {, A*].
Proof: The proof is carried out by induction on the complexity of A. Suppose A = "®(0,,
.. 0,.1)" € AFORM. Let {&, (} u X < VAR, where {&, (3} n X =0, and FV(A) < {&} u
X and { ¢ ST(A). Then we have for all « < r: FV(8;) < {&} v X. According to Theorem
1-17, there is then for all i < r a 6*; € TERM, where FV(6*;) < {C} u X such that for all
0' e CTERM holds: [0', &, 0] = [0', £, 6%,]. Then it holds with A* = "®(0%, ... 0*,,)" that
FV(A*) < {C} v X and that for all 6" € CTERM holds: [0, &, "®(0o, ... 6,.1)"] = "O([6,
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& o], ... [0, & 0,a])" = "O([6", §, 0%, ... [0, C, 6%,.0])" = [0, C, "®(6%, ... 6%,.1)"] = [0,
G, A*].

Now, suppose the statement holds for Ay, A; € FORM and let A € CONFORM. Let {¢,
(} u X < VAR, where {&, (} n X =0, and FV(A) < {&} u X and { ¢ ST(A). First, sup-
pose A = "—=Aq"'. Then we have FV(Ao) = FV(A) < {&} u X and { ¢ ST(Ap). According
to the 1.H., we have a A*y € FORM, where FV(A*;) < {C} u X, such that for all 6" €
CTERM holds: [6', &, Ag] = [0, , A*o]. With A* = "—A*,", it then holds that FV(A*) <
{C} v X and that for all ' € CTERM: [0, &, "—Aq"'] = ™[0, &, Ao]” = ™[6', , A%]" =
[0, C "=A%"] = [0, G, A*].

Now, suppose A = "(Ag v A1)" € CONFORM. Then we have FV(Ay) < FV(A) < {&}
u X and ¢ ¢ ST(Ag) and FV(A;) < FV(A) < {&} v X and { ¢ ST(A;). According to the
I.H., there are then A*j, A*; € FORM, where FV(A*y) < {(} u X and FV(A*;) < {} v
X, such that for all 6" € CTERM holds: [0, &, Ao] = [0, {, A*¢] and [0, &, A1] = [0, C,
A*1]. With A* = "(A*, y A*;)", it then holds that FV(A*) < {{} v X and that for all 0" €
CTERM: [0, &, "(Ao y A1) = ([6", &, Ao] w [0, &, As])" = T([6", G, A%o] y [0, G, AX1])" =
[0, C "(A% y A*)"] = [6', G, A*].

Now, suppose A = TIE'A;" € QFORM. Let {&, (} v X < VAR, where {&, (} n X =0,
and FV(A) < {&} u X and C ¢ ST(A). Then we have in particular { # &'. First, suppose &
= &'. Then we have [0', &, TTIE'Aq'] = TIE'A" for all ' € CTERM and FV(A) < X. Let
A* = A = TIEA,". Since { ¢ ST(A), we also have [0, ¢, TIEA'] = TIE'Ay" for all 0" €
CTERM and FV(A*) = FV(A) < X < {{} u X. Now, suppose & + &'. Then we have
FV(Ag) < FV(A) u {€F < {&} u X u {&} and £ ¢ ST(Ao). According to the I.H., there
is then A*, € FORM, where FV(A*y) < {C} u X u {&}, such that for all ' € CTERM it
holds that [0, &, Ao] = [0, {, A*o]. With A* = TIE'A*,", it then holds that FV(A*) < {(}
u X and that for all ' € CTERM it holds that [6', & TIE'A."] = TTEO', & A" = TIETS,
A% = [0, ¢, TIEA*" ] = [0, C, A*]. m
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Theorem 1-19. Unique substitution bases (a) for terms
If 6, 0" € TERM, 0* € CTERM\(ST(0) u ST(6") and 6% € ATERM and if [0*, 6%, 6] = [0,
0%, 0], then 6 = 0",

Proof: By induction on the complexity of 0. Suppose 6 € ATERM. Now, suppose 0" e
TERM, 6* € CTERM\(ST(0) u ST(6%)) and 6° € ATERM and suppose [0%, 65, 8] = [0,
0%, 0']. Now, suppose 6% = 0. Then we have [0*, 6%, 0] = 6*. Then we also have 6* = [0*,
0, 0%]. Since, according to the hypothesis, 0* ¢ ST(0") and thus 8" # 6*, we then have 0 =
0*. Now, suppose 6° # 0. Then we have [0, 6%, 0] = 6. Then we have 6 = [0*, 6%, 0"]. Be-
cause of 0* ¢ ST(0) and Theorem 1-14-(i), we then also have 6 = 0",

Now, suppose the statement holds for {0, ..., 6,..} < TERM and let "o(0y, ... 0,.1)" €
FTERM. Now, suppose 0" € TERM, 0* € CTERM\(ST("¢(0y, ... 0,.1)") u ST(6")) and
0% € ATERM and suppose [0*, 6%, "¢(0o, ..., 0,.1)"] = [0*, 6%, 0°]. Therefore [6*, 6%, 0*] =
"o([0*, 0%, 0], ..., [0*, 0% 60,.])" € FTERM. Suppose for contradiction that 8% e
ATERM. We have 6% + 0" or 6% = 0*. Suppose 6° = 6*. Then we have 6" = [0*, 6%, 0] =
"o([6%, 0%, 8o, ..., [0*, 6%, 0,1])" € FTERM. Contradiction! Suppose 6° = 6*. Then we
have 0* = [0%, 0%, 0] = "o([0*, 6%, Oc], ..., [0*, 6%, 0,.1])". With Theorem 1-14-(i), it then
follows that for all 4 < r: [0*, 6%, 6] = 6, or there is an i < r such that 6* e ST([0*, 6%, 6,]).
If [0*, 6%, 0,] = 6, for all i < r, then 6* = "([0%, 6%, O¢], ..., [06*, 0%, 0,14])" = "o(6o, ...,
0,.1)" and thus, in contradiction to the hypothesis, 6* € ST("@(0o, ... 6,.1)"). If, on the
other hand, there was an i < - such that 6* e ST([0%, 6%, 0.]), then 6* would be a proper
subterm of "p([0*, 0%, o], ..., [0%, 6% 6,.1])" and therefore a proper subterm of itself,
which contradicts Theorem 1-8. Therefore 6° ¢ ATERM, but 8° € FTERM. Therefore
there are {0, ..., 0.1} < TERM and ¢' € FUNC such that 6" = "¢'(0', ..., 0'%.1)". Thus
we have "@'([0%, 0%, 0'], ..., [0*, 0%, 0':.1])" = [0%, 0%, "@'(0', ..., 0'1)"] = [0*, 6%, 0] =
"o([0*, 0%, 8o, ..., [6*, 6%, 0,.1])". With Theorem 1-11-(ii), it then follows that & = r and
0 = ¢ and [0*, 0%, 0] = [6*, 6%, 0] for all i < . With the I.H., it follows that 0, = 6'; for all
i <. Thus we then have "o(6q, ..., 0,1)" = @', ..., 0'1)" =0". m
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Theorem 1-20. Unique substitution bases (a) for formulas
If A, A" € FORM, 6* € CTERM\(ST(A) u ST(A") and 6° € ATERM and if [0*, 6%, A] = [0,
0%, A*], then A= A",

Proof: Suppose A, A* € FORM, 6* € CTERM\(ST(A) u ST(A") and 6° € ATERM and
[0*, 0%, A] = [6%, 6%, A*]. In the same way as we did in the inductive step of the preceding
proof for functional terms, one can show for all formulas that substitution bases (A and
A") belong to the same category and have the same main operator (predicate, connective
or quantifier) as the respective substitution results ([0*, 6, A] and [6*, 6%, A*]). The proof
is carried out by induction on the complexity of A. Suppose A = "®(6y, ... 0,1)" €
AFORM. Then we also have [0*, 0%, A] = "®([0*, 0, 6q], ..., [6*, 6%, 0,.1])" € AFORM
and there are {0, ..., 0.1} < TERM with "®(0', ... 0'.1)" = A". Therefore also "®([0*,
0%, 0q], ..., [0%, 0%, 0,.1])" = [6%, 05, A] = [0*, 0%, A*] = [0*, 05, "D(0'y, ... 0'..1)"] = "D([6*,
0%, 0], ..., [6*, 0% 0'.1])" € AFORM. With Theorem 1-11-(iv), it then follows that [0*,
0%, 0,] = [0*, 6%, 0'] for all i < . With Theorem 1-19, it then follows that 6; = 6'; for all i <
r. Thus we have "®(0q, ... 0,.1)" = "®(0', ... 0',.1)" = A",

Now, suppose the statement holds for Ay, A; € FORM and let A = "—Ay' €
CONFORM. Then we also have [6%, 6%, A] = —[6*, 6%, Ag]" € CONFORM and there is
A'g € FORM with "—A's" = A™. Therefore also ™—[0*, 0%, Ao]" = [0*, 68, A] = [6%, 6%, A*]
= [0*, 0%, —A',"] = —[0*, 0%, A" € CONFORM. With Theorem 1-11-(v), it then fol-
lows that [0%, 0%, Ag] = [0*, 0%, A']. With the I.H., it follows that Ag = Ay and thus A =
"—Ag' = "=A's" = A", Suppose A = "(Ag v A1) € CONFORM. Then we also have [0*,
0%, A] = T([0%, 6%, Ag] w [0%, 6%, A1])" € CONFORM and there are A'y, A'; € FORM with
(Ao w A1) = A", Therefore also "([0*, 6%, Ag] w [0%, 0%, AL])" = [0%, 6%, A] = [0%, 65, A*]
= [0%, 0%, (A% w A'1)"] = ([0, 6%, A'g] v [0%, 6%, A1])" € CONFORM. With Theorem
1-11-(vi), it then follows that [0*, 6%, A¢] = [0%, 6%, A'g] and [0, 6, A;] = [6*, 6%, A'4].
With the I.H., it follows that Ao = A'p and A; = A"y and thus that A = "(Ao y A1)" = "(A' v
AY)T = A

Suppose A = TIEA," € QFORM. Then we also have [0%, 6%, A] € QFORM and there is
A, € FORM with TIEA," = A*. Suppose & = 6%. Then we have A = TIEA," = [0*, 65,
TIEAG'] = [0%, 05, A] = [0%, 0°, A] = [0*, 0%, TIEA',"] = TTIEA'," = A", Suppose & + 6°.
Then we have TIE[0%, 65, Ag]” = [6%, 0%, A] = [6%, 65, A*] = [0, 0%, TTIEA',"] = TIE[0™,
0%, A']" € QFORM. With Theorem 1-11-(vii), it then follows that [0*, 6%, Ao] = [6*, 65,
A'o]. With the I.H., it follows that Ag = A'g and thus that A = TIEA," = TIEAY =A™ m
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Theorem 1-21. Unique substitution bases (a) for sentences
If £, =" € SENT, 6* € CTERM\(ST(Z) u ST(Z")) and 6° € ATERM and if [6%, 6%, ] = [0*,
0%, 2, thenz = x*.

Proof: The theorem is proved analogously to the negation-case in the proof of Theorem
1-20 by applying Theorem 1-20 and Theorem 1-12. m

Theorem 1-22. Unique substitution bases (b) for terms
If 0, 0" € TERM, 0* € CTERM\(ST(0) u ST(0")), & € VAR, B € PAR and [0%, &, 0] = [0*, B,
0], then 0" = [B, &, 0].

Proof: By induction on the complexity of 0. Suppose 6 € ATERM. Now, suppose 0" €
TERM, 6* ¢ CTERM\(ST(0) u ST(6%)), & € VAR, B € PAR and [0*, &, 6] = [0*, B, 6"].
Then we have 6 € CONST u PAR u VAR. Now, suppose 6 € CONST. Then we have
[0%, &, 6] = 6. Then we have 0 = [0*, B, 07]. Because of 0* ¢ ST(0) and Theorem 1-14-(i),
we then have that 6 = 0" and because of 0 # £ we have 6" = 0 = [B, &, 6]. Now, suppose 0
e PAR. Then we have [0*, & 0] = 0. Then we have 0 = [0*, B, 07]. Because of 6* ¢ ST(0)
and Theorem 1-14-(i), we then have again 6 = 0" and because of £ # 0: 0" = 0 = [B, &, 0].
Now, suppose 6 € VAR. Suppose 6 = &. Then we have [0%, &, 6] = 06*. Then we have 6* =
[6*, B, 07]. Because of 0* # 0, we then have B € ST(0"). Thus we have 0* e ST([0*, B,
0']). If 0" # B, we would have, with 6* = [0*, B, 07], that 0* is a proper subterm of itself,
which contradicts Theorem 1-8. Therefore we have 0" = B = [B, &, 6]. Now, suppose 0 # &.
Then we have 0 = [0*, &, 0]. Then we have 6 = [0*, B, 0']. Because of 0* ¢ ST(0) and
Theorem 1-14-(i), we then have 0 = 0" and, because of 0 # &, we thus have 0" = 0 = [B, &,
0].

Now, suppose the statement holds for {6y, ..., 6,.1} < TERM and suppose "¢(0y, ...,
0.1)" € FTERM. Now, suppose 6* € TERM, 6* € TERM\(ST("¢(0o, ..., 6,-1)") U
ST(6%)), & € VAR, B € PAR and [0*, &, "¢(0p, ..., 0,.1)"] = [0%, B, 67]. Therefore [0*, B,
0'] = ([0, &, 0], ..., [0%, &, 0,.1])" € FTERM. Suppose for contradiction that 6" e
ATERM. We have B = 0" or B = 0". Suppose B + 0°. Then we have 0" = [0*, B, 0] =
"o([0%, E, 0], ..., [0%, & 0,4])" € FTERM. Contradiction! Suppose p = 0*. Then we have
0* = [0%, B, 0] = "o([0%, &, 00), ..., [0%, &, 0,.1])". With Theorem 1-14-(i), it then follows
that for all - < r: [06*, &, 6,] = 0, or there is an ¢ < r such that 6* € ST([0*, &, 6,]). If [6%, &,
0,] = 6, for all ¢ < r, then we would have 6* = "o([0*, &, 0¢], ..., [6%, &, 6,.1])" = "0(Bq, ...,
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0,.1)" and thus 6* € ST("p(0o, ... 6,-1)"), which contradicts the hypothesis. If, on the other
hand, there was an ¢ < r such that 6* € ST([0*, &, 6,]), then 6* would be a proper subterm
of "o([0*, &, o], ..., [6%, &, 0,.1])" and therefore a proper subterm of itself, which contra-
dicts Theorem 1-8. Therefore 6" ¢ ATERM, but 6© € FTERM. Therefore there are {0',
..., 024} < TERM and ¢' € FUNC such that 8" = "9'(0%, ..., 0'.1)". Thus we have
"0'([6%, B, 0'0], ..., [6*, B, 0%1])" = [6%, B, ¢'(®'s, ..., 0'1)"] = [6%, B, 07] = "o([0*, &, 6],
oy [0%, &, 0,.4])7 . With Theorem 1-11-(ii), it then follows that £ = r and ¢' = ¢ and [6*, B,
0] = [0*, &, 0;] for all 7 < r. With the I.H., it follows that 6", = [B, &, 6,] for all 7 < r. Thus
we have 6" = "¢'(0', ..., 0%1)" = "¢([B, & 60, ..., [B, & 0,4])" = [B, & "@(0o, ..., 0,1)"]. m

Theorem 1-23. Unique substitution bases (b) for formulas
If A, A" € FORM, 6* € TERM\(ST(A) u ST(A")), £ € VAR, B € PAR and [0%*, &, A] = [0*, B,
A'], then A" = [B, &, Al.

Proof: Let A, A" € FORM, 6* € CTERM\(ST(A) u ST(A")) and £ € VAR, B € PAR and
[0%, &, A] = [0*, B, A"]. In the same way as we did in the inductive step of the preceding
proof for functional terms, one can show for all formulas that substitution bases (A and
A") belong to the same category and have the same main operator (predicate, connective
or quantifier) as the respective substitution results ([0*, &, A] and [0*, B, A']). The proof is
carried out by induction on the complexity of A. Suppose A = "®(0y, ... 0,1)" €
AFORM. Then we also have [0*, §, A] = "®([6%*, &, O¢], ..., [6%, &, 0,.1])" € AFORM and
there are {0, ..., 0,1} < TERM with "®(0', ..., 0'.1)" = A". Therefore we also have
"O([6%, & O], ..., [0%, & 0.1])" = [0%, & A] = [0%, B, A] = [0%, B, "0, ..., 0/1)"] =
"o([0*, B, 0%], ..., [0*, B, 0'1])" € AFORM. With Theorem 1-11-(iv), it then follows
that [0*, &, 0,] = [0%, B, 0] for all < < r. With Theorem 1-22, it follows that 0'; = [B, &, 6,]
for all ¢ < 7. Thus we then have A* = "®(0', ... 0',.1)" = "®([B, &, Oq], ..., [B, &, 0,4])" =
[B,& "0, ..., 0,1)"]1=[B, & Al.

Now, suppose the statement holds for Ag, A; € FORM and let A = "SAy" €
CONFORM. Then we also have [0*, & A] = "=[0%, &, A¢]' € CONFORM and there is
A'g € FORM with "—A'y" = A", Therefore we also have ™—[0%*, &, Ao]" = [0%, B, A™] = [0%,
B, —AG'] = "=[0%, B, A')]" € CONFORM. With Theorem 1-11-(v), it then follows that
[0%, &, Ag] = [0%, B, A'g]. With the I.H., it follows that A’y = [B, &, Aq] and thus that A™ =
=AY = =B, & A" = [B & A0l = [B, & Al Suppose A = (Ao y A" €
CONFORM. Then we also have [0*, & A] = ([0%, & Ao] v [0%, & A1])" € CONFORM
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and there are A'y, A'y € FORM with "(A'y y A'1))" = A*. Therefore we also have ([0, &,
Aol w [0%, & A4])" = [0%, B, A"] = [0%, B, (Ao w A')'] = "([6%, B, A'o] w [6%, B, A4])" €
CONFORM. With Theorem 1-11-(vi), it then follows that [6*, &, Ao] = [0*, B, A'] and
[0%, &, A1] = [6*, B, A'1]. With the I.H., it follows that A’y = [B, &, Ao] and A"y = [B, &, A1]
and thus we have A" = (A9 w A1)" = ([B, & Aol w [B, & A1) =B, & (Ao v A))'] = [B,
& Al

Suppose A = TIE'A;" € QFORM. Suppose &' = & Then we have A = TIE'A," = [0%, &,
TIE'A'] = [0%, &, A] = [0%, B, A']. With Theorem 1-14-(ii), we then have 6* e ST([0*,
B, A™]) = ST(A) or [6%, B, A"] = A". This first case is excluded by the hypothesis. In the
second case, we have that A* = TIE'Ay" = [B, & TIEA'] = [P, &, A]. Suppose &' =+ &.
Then we have [0%, & A] = TIE[6%, & Ao]" € QFORM and there is Ay € FORM with
TIE'A'y" = A", Therefore we also have TIE[0*, &, Ao]" = [0%, B, A™] = [0%, B, TIEAY'] =
TIE[6*, B, A']" € QFORM. With Theorem 1-11-(vii), it then follows that [0*, &, Ao] =
[0*, B, A'g]. With the I.H., it follows that A’y = [B, &, Ao] and thus A" = TIE'A'y" = TIE'[B,
& A" = [B, & TIEA'] = [B, & Al m

Theorem 1-24. Cancellation of parameters in substitution results
If 0 € TERM, A € FORM, £ e SENT, 6* € CTERM, B € PAR\(ST(0) u ST(A) u ST()) and
0" € ATERM, then:

(i) [6* 07, 01=1[0% B, [B, 0, 6]l
(i) [06%, 0%, A]=[06%B, B, 6", A]], and
(ii) [0*, 0%, =] = [0*, B, [B, 6", Z]].

Proof: Let & € TERM, A € FORM, T e SENT, 6* € CTERM, B e PAR\(ST(6) u ST(A)
u ST(Z)) and 0" € ATERM. Ad (i): The proof is carried out by induction on the complex-
ity of 0. Suppose 6 € ATERM. Then we have 6 = 0" or 6 + 0". First, suppose 0 = 0".
Then we have [B, 07, 6] = B and [0*, 67, 6] = 0*. Then we have [0*, 67, 6] = 0* = [0*, B, B]
=[6%, B, [B, 0%, 06]]. Now, suppose 6 + 0*. Then we have [B, 0%, 0] = 0 and [0*, 6", 6] = 0.
Because of B ¢ ST(0), we have B + 0 and thus 0 = [0*, B, 0]. Therefore we have [0*, 6,
0]=0=[0*, B, 6] =[0%, B, [, 0", ]].

Now, suppose the statement holds for {6, ..., 6,.1} < TERM and suppose 6 = "¢(0o, ...
0,.1)" € FTERM. Because of B ¢ ST(0), we also have that § ¢ ST(0;) for all ¢ < . With
the I.H., it then holds that [6*, 07, 0] = [0*, B, [B, 07, 0,]] for all i < r. Then we have [0*,
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0%, "p(0o, .. 6,-1)"1 = "p([6*, 07, Bo], ..., [6*, 6%, 0,4])" = "o([6*, B, [B, 67, o], ..., [6*, B,
[B, 07, 0,-1])" = [06%, B, "o([B, 6%, 6a, ..., [B, 07, 0,.11)"] = [6*, B, [B, 0", "@(Bo, ... 6,-1)"]].

Ad (ii): The proof is carried out by induction on the complexity of A. Suppose A =
"®(0p, ... 0,1)" € AFORM. Then we have B ¢ ST(0,) for all i < r and [0*, 6", A] = [0%*,
0%, "®(0y, ... 0,1)"] = "®([6*, 07, Og], ... [0*, 07, 0,.1])". With (i), it holds that [0*, 0", 0,]
=[0*, B, [B, 0%, 6]]] for all 7 < . Therefore we have [6*, 0%, A] = "®([0*, B, [B, 0%, 0c]], ...,
[6%, B, [B, 67, 6,.1])" = [0%, B, "®([B, 6", Oc], ..., [B, 07, 0,.4])" = [6%, B, [B, 67, "®(B, ...
0,.)"11 = [0%, B, [B, 0", A].

Now, suppose the statement holds for Ay, A; € FORM. First, let A = Ay €
CONFORM. Then we have B ¢ ST(Ag) and [0%*, 0%, A] = [0%, 0", "—Ag'] = "—[0%, 07,
Ao]. With the I.H., it holds that [6*, 8, Ag] = [0, B, [B, 6%, A¢]]. Therefore [6*, 6, A] =
—[6%, B, [B, 6", Aoll" = [6%, B, [B, 6", "=A¢"]] = [6*, B, [B, 67, A]]. Suppose A = (Ao
A;)" € CONFORM. This case is proved analogously to the negation-case.

Suppose A = TIEA;" € QFORM. Suppose & = 0°. Then we have [0*, 6%, A] = [0*, 0,
TIEA,"] = TIEAG = [B, 6%, TTIEAG™] = [B, 0, A]. Then we have B ¢ ST([B, 6%, A]) =
ST(A). Therefore [0%, 07, A] = [B, 07, A] = [0*, B, [B, 07, A]]. Suppose & = 0. This case is
proved analogously to the negation-case.

Ad (iii): This case is proved analogously to the negation-case. m

Theorem 1-25. A sufficient condition for the commutativity of a substitution in terms and for-
mulas

If 0%, 6%, € CTERM, 65, 61 € ATERM, 0o % 0y, 6, ¢ ST(6%) and 6, ¢ ST(6*1), then:
(l) If 9+ € TERM, then [9*1, 61, [6*0, 90, 6+]] = [9*0, 60, [6*1, 91, 6+]], and
(i) If A € FORM, then [6%1, 01, [0%, 06, AJ] = [0*0, 6o, [0*1, O, A]].

Proof: Let 0%, 0*; € CTERM, g, 0, € ATERM, 0o # 01, 0, ¢ ST(6%) and 0 & ST(6*1).
Ad (i): Suppose 6" € TERM. The proof is carried out by induction on the complexity of
0". Suppose 6 € ATERM. Suppose 0* = 0,. Then we have 0" # 0; and [0*1, 01, [0%o, 0o,
07]] = [0*1, 01, 0%;]. Because of 0; ¢ ST(0%;), we have [0*1, 01, 0%9] = 6*,. On the other
hand, we have [0%, 0o, [0*1, 01, 07]] = [0%0, 00, 07] = 0%;. Therefore [0*1, 01, [0%0, 0o, 071]
= [0%o, 0o, [0*1, 01, 07]]. Now, suppose 0" # 0. Suppose 0" = 0;. Then we have [0*1, 0,
[0%0, 8o, 07T] = [0%1, 01, 0] = 0*1. Because of 0y ¢ ST(0*1), we have [0%,, 0g, 0%1] = 0*;.
Thus we have [0%g, 0o, [0%1, 01, 07T] = [0%0, 00, 0*1] = 0*1. Therefore [0*1, 01, [0%¢, 0o, 071]
= [0%0, 00, [0*1, 01, 07]]. Suppose 0" # 01. Then we have [0*1, 01, [0%¢, 00, 07]] = [6%1, 01,
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0%] = 0" and [0%, 0o, [0*1, 01, 07]] = [6%0, 00, 07] = 0. Therefore we have again that [0*;,
01, [0%0, 00, 07]] = [0%0, 00, [0*1, 01, 071].

Now, suppose the statement holds for {0', ..., 0',.1} < TERM and suppose 0" = "p(0',
..., 0'.1)" € FTERM. Then we have [0%1, 04, [6%0, 80, 0*T] = [0*1, 01, [6%0, 80, "@(0%, ..,
0'-1)" 1] = "o([6%*1, 01, [0%0, B0, O']], ..., [6%1, 01, [0%0, B0, 0'--1]])". With the I.H., it holds
that [0%*1, 01, [0%0, 0o, 0']] = [0%0, 00, [0*1, 01, 6']] for all 7 < r. Therefore we have [6%*;, 04,
[6%0, 60, 671] = "@([0%0, 00, [0%1, 01, 0%]], .., [6%0, B0, [0*1, 01, 6',-1]])" = [0%0, O, [0%1, 01,
"0(0', ... 0'-1)"1] = [6%0, 00, [0*1, 01, O7T].

Ad (ii): Suppose A € FORM. The proof is carried out by induction on the complexity of
A. Suppose A = "®(0', ... 0'.1)" € AFORM. Then we have [0*1, 61, [6%0, 00, A]] = [0%1,
01, [6%0, B0, "@(0'0, ..., 0'.2)"]] = "O([6%*1, 01, [6%0, B0, O']], ..., [0*1, 01, [0%0, 60, 0'-1]])" "
With (i), we have that [0%*1, 01, [6%0, 80, 0']] = [0%0, 00, [6%1, 01, 6']] for all 7 < 7. Therefore
we have [0%1, 01, [0%0, 60, A]] = "®([06%*0, B0, [6*1, 81, 0']], ..., [6%0, B0, [6*1, 01, 0',4]])" =
[6%0, 60, [6%1, 61, "O(0', ... 0'.2)" 1] = [6%0, 00, [6%1, 01, A]].

Now, suppose the statement holds for Ay, A; € FORM and suppose A = "—Aqy' €
CONFORM. Then we have [0*1, 01, [0%0, 00, A]] = [0%1, 01, [0%0, 60, "—A¢"]] = "—[0%1,
01, [0%0, 60, Ao]]". With the L.H., it holds that [6*y, 61, [6%0, 60, Ao]] = [0%0, 60, [6*1, 01,
Ao]]. Therefore we have [0%*y, 01, [0, 00, A]] = "—[6%0, 00, [0%1, 01, Ao]]" = [6%0, B0, [0%1,
01, "=A0']] = [0%0, 00, [0%1, 01, A]]. Suppose A = "(Ag y A;)" € CONFORM. This case is
proved analogously to the negation-case.

Suppose A = TIEA," € QFORM. Suppose & = 8y. Then we have & # 06, and [0*y, 64,
[0%0, B0, A]] = [6%1, 01, [0%0, B0, TIEAG']] = [06%1, 61, TIEAG'] = TIE[6%1, 01, Ao]" = [0%,
0o, TIE[O*1, 01, Ao]™] = [06%0, 60, [0%1, 01, TIEAG']] = [0%0, B0, [6%1, 61, A]]. Suppose & =
0;. Then we have & # 0y and [0*1, 01, [0%0, 80, A]] = [0%1, 01, [0%0, 00, TIEAG']] = [0%1, 01,
TIE[6%0, 60, Ao]"] = TIE[0%0, 00, Ao]" = [0%0, 00, TIEAG'] = [0%0, 00, [6%1, 01, TIEAG']] =
[0%0, B0, [0*1, 01, A]]. Suppose 6, # & # 0;. This case is proved analogously to the nega-

tion-case. m
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Theorem 1-26. Substitution in substitution results

If{ € VAR, 0", 0* ¢ CTERM and 6" € CONST u PAR, then:
(i) 1f0 e TERM, then [0, 0%, [0%, ¢, 0]] = [[0", 0%, 6*], ¢, [0, 67, 0]], and
(i) If A e FORM, then [0", 07, [0%, , A]] = [[0", 67, 6*], ¢, [0', 67, A]].

Proof: Suppose { € VAR, 0', 0* ¢ CTERM and 6 € CONST u PAR. Ad (i): Suppose 0
e TERM. The proof is carried out by induction on the complexity of 6. Suppose 6 €
ATERM. First, suppose 6 € CONST u PAR. Suppose 0 = 0*. Then we have [0', 6%, [0*,
¢, 0]]1 = [0, 07, 0] = 6. We have { ¢ ST(0") € CTERM and thus [0', 07, [6%, (, 6]] = 6" =
[[6", 6%, 6*], ¢, 0] = [[0", 6%, 0*], {, [6", 6, 6]]. Suppose 6 = 6°. Then we have [0", 6%, [0*,
¢, 0]] = 1[0, 067,01 =0=[[0, 6%, 0*], ¢, 6] = [[0', 0%, 6*], ¢, [0, 07, 6]]. Now, suppose 0
VAR. Suppose 0 = {. Then we have [0', 6%, [0*, {, 6]] = [0, 07, 6*] = [[0", 6%, 6*], (, 0] =
[0, 6, 0*], ¢, [0, 6%, 8]]. Suppose 6 # {. Then we have [0', 6%, [6*, (, 0]] = [0, 67, 0] =6
= [[0, 6%, 6], &, 6] = [[0", 6%, 6*], €, [0", 67, 6]].

Now, suppose the statement holds for {6, ..., 6,.1} < TERM and suppose 6 = "¢(8y,
..., 0,1)" € FTERM. Then we have [0', 6%, [6*, ¢, 0]] = [0', 07, [0*, {, "o(0y, ..., 0,.1)"]] =
"o([0", 07, [6%, G 0o]], ..., [0', 07, [6%, ¢, 6,4]])". With the I.H., it holds that [6", 6%, [6*, (,
0,11 = [[0', 0%, 6%], ¢, [0, 0%, 6]] for all i < r. Therefore we have [0', 07, [0*, {, 0]] =
"o([[0', 6", 6*], G, [0', 0%, 6c]l, ..., [[0", 6%, 6*], &, [0', 6%, 6,.1])" = [[0", 6%, 6*], , [0, 67,
"0 (0o, ..., 0,.1) 11 = [[0", 67, 6*], €, [0", 67, 6]].

Ad (ii): Suppose A € FORM. The proof is carried out by induction on the complexity of
A. Suppose A = "®(0p, ... 0,1)" € AFORM. This case is proved analogously to the
FTERM-case by applying (i).

Now, suppose the statement holds for Ay, A; € FORM and suppose A = "—Aqy' €
CONFORM. Then we have [0, 07, [0*%, {, A]] = [0', 0%, [0%, {, —A¢']] = [0, 07, [0%, ¢,
Ao]]™. With the I.H., it holds that [0', 8%, [6*, ¢, Ao]] = [[0', 6%, 6*], ¢, [0', 6", Ao]]. There-
fore [0', 6%, [6*, C, A]] = "[[0, 07, 6*], &, [0, 0%, Ao]]” = [[6', 6%, 0*], , [0', 67, —A0"]] =
[[0', 0%, 6%], ¢, [0", O, A]]. Suppose A = "(A¢ v A1)" € CONFORM. This case is proved
analogously to the negation-case.

Suppose A = TIEA;' € QFORM. Suppose & = {. Then we have [0', 0%, [0%, {, A]] = [0,
0", [0%, ¢, TIEAQ"]] = [0", 6%, TTIEAQ"] = "TIE[0', 67, Ao]” = [[0, 0%, 0*], ¢, "TIE[6', 07, Ao]"]
= [[0, 6%, 0%, ¢, [0", 0%, TTIEA™]] = [[0", 07, 6*], ¢, [0', 0%, A]]. Suppose & + (. This case is
proved analogously to the negation-case. m
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Theorem 1-27. Multiple substitution of new and pairwise different parameters for pairwise
different parameters in terms, formulas, sentences and sequences

If 0 € TERM, A ¢ FORM, T e SENT, $ e SEQ, k ¢ N\{0} and {B*o, ..., B} <
PAR\(ST(6) U ST(A) u ST(Z) u STSEQ($)) and {Bo, ..., Bi} = PAR[B*, ..., B}, where
B*;# p*;and B; # B, for all 4, j < k+1 with ¢ # j, then:

(1) [B* Br [B*0, -y B*r2)s Bos --os Brea)s 011 = [B*0, -+, B*ms Bos -+, By O],

(i) [B*% Br [B*0s ---s B*r-1), Boy - Br)y All = [B*0, -, B Bos -+, Bo)y Al

(i) - [B*% B [KB* 0, -y B*s)s Boy -y Br-)s 211 = (B0, -, B* Boy -, B, Z], and

(iv)  [B*% Br [B* 0, -y B*r-1)s Boy - Br)y O] = [B*0, -, B*0 Bos ---s By H]-

Proof: Suppose 6 € TERM, A € FORM, X € SENT, $ € SEQ, £ € N\{0} and {B*o, ...,
B*:} < PAR\(ST(0) u ST(A)) and {Bo, ..., P} = PAR\{P*o, ..., B*i}, where B*; # B*;
and B; # B, for all ¢, j < k+1 with ¢ # 5. Ad (i): The proof is carried out by induction on the
complexity of 6. Suppose 6 € ATERM. Then we have 6 € CONST u PAR u VAR.
Now, suppose 8 € CONST u VAR u (PAR\{Bo, ..., Bi}). Then we have 6 = [(B*o, ...,
B*i-1), PBo, ---» Pr-1), 0] and we have 6 = [(B*o, ..., B*r, Po, ---» Br, 0] and thus [B*x, Br,
[B*o, ..., B*-), PBo, -y Brw)y 011 = [B*k, Br, 0] = 6 = [(B*0, ..., B*), Bo, ..., B, 6]

Now, suppose 6 € {Bo, ..., Br}. Then we have 6 = 3, for an 7 < k+1. According to the
hypothesis, we then have that for all j < k+1 with j # ¢ it holds that 6 # B,. Thus we have
[B*o, ...\ B*1s Bo, ---, Pry, 0] = P*i. Now, suppose i < k. Then we have [{f*o, ..., P*r1),
Bo, -1 Bra), 61 = B and thus [B*%, Br, [B*o, ..., B*r-0)s Bov -+ Brer) 611 = [B*x: Bro B*il-
By hypothesis, we have that 3 # p*; and thus that [B*, Br, B*;] = B*;. Now, suppose i = k.
Then we have [{B*o, ..., B*i-1), PBo, ---» Br1), 0] = 0 = B and hence [B*k, Br [P*0, .-,
B*r1)s Boy +-y Br-)s 011 = [B*ks Brs Brl = B*1 = B*s.

Now, suppose the statement holds for {8, ..., 6,1} < TERM and suppose 6 = "¢(6,,

.., 0,1)" € FTERM. Then we have [B*L, Br [(B*o, ..., P*t-1)» Bov ---» Br-)s 011 = [B*% Brs
[B*o, ---» B*:-0), Bos -1 Br)y @O0, ---s 0:0)"1] = "0([B*k B, [B*0s ---s B*r1)s Boy -,
Br-1) Oolls -+ [B* % Brs [B%0s --vs P¥r-1)s PBoy ---» Pr)y 0,1]])7. With the L.H., it holds that
[B*k Br [B*0, s B*ka)s Boy --vs Bra)y 0] = [B*0, -, B*, Bo, ..., B, 0] forall e < 7.
Therefore we have [B*:, Br, [{B*0, ---» B*r-1)s PBoy ---» Pr-1)s 011 = "0([{B*0, ..., P*1)» Poy ---,
Bo, Ol - B0, -y B Bov vy By 0a])" = [B*0s -y B0 Bov s B2 "0(o, ...,
0,-0)"1 = [B*o, -, B*), Boy ---, Br), 0]

Ad (ii): The proof is carried out by induction on the complexity of A. Suppose A =
"®(0o, ... 0,.1)" € AFORM. This case is proved analogously to the FTERM-case by ap-

plying (i).
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Now, suppose the statement holds for Ay, A; € FORM and suppose A = "—Aq' €
CONFORM. Then we have [B*;, B [(B*o, ..., B*r1) Bov .- Br) Al = [B*w Br [P0,
coor B*r0)s Bov - By "=A Tl = =[BFk Bre [B*0, -y BFR1), Bos -ees Pra)s Ao]]T. With
the I.H., it holds that [B*y, Bx, [(B*o, ---» B*4-1), Bos ---» Br-1)s Aoll = [B*o, ---5 B*w), {Bos -+
Br), Ao]- Therefore we have [B*x, Br [{B*0s -.-» B*k1), Boy ---y Br1)y A]l = —[B%0, ..., P*w),
Boy s Brdy Ao]™ = [B*0, --vs B Boy v Brdy A1 = [(B*0, -y B*) Boy -oos By Al
Suppose A = "(Ag y A1) € CONFORM. This case is proved analogously to the negation-
case. Suppose A = TIEA;" € QFORM. This case is also proved analogously to the nega-
tion-case.

Ad (iii) and (iv): (iii) follows analogously to the negation-case by applying (ii), and (iv)
follows analogously to the FTERM-case by applying (iii). m

Note: For sets of formulas, a theorem that is analogous to Theorem 1-27 can be proved.

Theorem 1-28. Multiple substitution of closed terms for pairwise different variables in terms
and formulas (a)

If £ € N\{0}, {6%, ..., 0%} < CTERM and {&, ..., &} < VAR, where & # &, for all ¢, j <
k+1 with ¢ £ 4, then:
(i) 10 e TERM, then
[0%5 & [(0%0, ..., 0%%0), G0y --vy Epn), O]] = [(O%, ..., 0%, (&, ..., &, 0], and
(i) 1fA e FORM, then
[0k & [(0%0, ...y 0%%0), G0y --vy En)y A]] = [(0%, ..., 0%D), (Goy ---y &), Al

Proof: Let k& € N\{0}, {6%, ..., 6%} < CTERM and {&, ..., &} < VAR, where & # &;
for all 4, j < k+1 with ¢ # 7. Ad (i): Suppose 6 € TERM. The proof is carried out by induc-
tion on the complexity of 6. Suppose 6 € ATERM. Suppose &; # 0 for all < < k+1. Then
we have [0%, &, [(0%, ..., 011, o, ..., &k, O]] = [6%%, & 0] = 0 = [(0%0, ..., 0%, (&,
..., &, 0]. Suppose & = 6 for an i < k. Then we have &; # 0 for all i< j < k+1. Then we
have [(0%, ..., 0%p), (G0, ..., &), 6] = [0, ..., 0%11), oy ..y Er-1)y O] = [0, ..., 6%, (&,
..., &), 0] = 0%, € CTERM. Therefore [06*;, &, [(0%0, ..., 0%1), (o, ..., Ex1), O]] = [0%4, &,
0%:] = 6% = [(0%0, ..., 0%4.1), (G0, ..., &)y O] = [(O%0, ..., 0%D), (G0, ..., &), 6] Suppose & =
0. Then we have & = 0 for all < kand [(0%, ..., 0%.1), o, ..., k1), 0] = 6. Therefore
[0%%, &k [0%0, --.y 6%50), oy -ovs Gin)y O] = [0%, &k 6] = 6% = [(0%, ..., 0%p), (o, -, Ep
0].
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Now, suppose the statement holds for {8, ..., 6,1} < TERM and suppose 6 = "¢(6o,
.., 0,.1)" € FTERM. Then we have [0*, &, [(6%0, ..., 0%11), o, ..., &)y O]] = [0%%, &k,

[6%0, ..., 6%%1), (G0, ---, Ek1)y "@(O0, ...y 0,1) 1] = T@([0% &, [0, ..., 0%%1), (o, --.) Epa),
0oll, -, [0%% &k [(O%0, ..., 0%, o, ...y Ep), 0,1]])7. With the 1LH., it holds that [6%;, &,
[(6%o, ..., 0%11), (o, ..., &)y 0:]] = [(0%0, ..., 0%, (&0, ..., &, 0] TOr all ¢ < r. Therefore
we have [0%, &, [(0%0, ..., 011, €0, ...y Er)y O]] = "@([(O%0, ..., %), (&0, ..., &R, B0, ...,
[0%0, ..., 6%, Eos +vvs &)y 0r1])" = [0%0s ..ns 0%, (Eoy .oy E)y "@(O0, ..., 0,1)7] = [(0%0,
ooy 070, oy -ony Ep, O]

Ad (ii): Suppose A € FORM. The proof is carried out by induction on the complexity of
A. Suppose A = "®(0p, ... 0,1)" € AFORM. This case is proved analogously to the
FTERM-case by applying (i).

Now, suppose the theorem holds for Ag, A; € FORM. Suppose A = "—Aq' €
CONFORM. Then we have [0*;, &, [(0%, ..., 0%1.1), o, ..., &t Al = [0%% & [0%, ..,
0%, (Goy -y &)y ATl = TH[0%, &k [(0%0, ... 0%%1), oy -ery Ea)y Aol With the
ILH., it holds that [6%, &, [(0%0, ..., 0%12), Eor ..., Ext), Add] = [(0%0, ..., 0%, Co, ..., R,
Ao]. Therefore [0%, &, [(0%0, ..., 0%11), o, .-, Epr)y A]] = ™=[(0%0, ..., 6%, &0y ...y &R,
Ao = [(0%0, ... 0%, Cor -y &) —A0"] = [(0%, ..., 0%, (o, ..., &, A]. Suppose A =
"(Ao v A;)" € CONFORM. This case is proved analogously to the negation-case.

Suppose A = TICA;" € QFORM. Suppose &; =  for one ¢ < k. Then we have &; # ¢ for
all 7 < k+1 with ¢ # 5. Then we have [0%y, &, [(0%0, ..., 0%11), o, ..., 1)y A]] = [0%% &,
[0%0, ..., 0%40), Co, ..., &ra)y TICAQ™]] = [0%%, & TTIE[O%0, ..., 0%it, 0%isa, ..., 6%p0), (o,
ooy &ty ity ooy Epr)y Ao]] = TTIC[0%, Eky [0%0, -.vy %01, %541, oy 0%50), o, -ovy Eity Eina,y
oy &)y Ao]]™ . With the 1LH., it holds that [0%, &, [(6%0, ..., 0%i1, 0%41, ..., 0%%1), o, -,
Eity Einy oony Ent)y Ao]] = [(0%, .., 0%i1, 0%, ..y 0%, o -y Eit, Eina, -y E), Ag]. There-
fore we have [0*;, &, [(0%0, ..., 0%k1), o, ..., Epr)y A]] = TIC[(O%, ..., 0%1, 0%, ...,
0%, (G0, ++vs Girty Girty wees &y Ao]™ = [(0%0, ..., 0%, (G0, --es &)y TICAQT] = [(0%0, ..., 0%,
&oy -y &y A]. Suppose &, = C. Then we have & #  for all < < k and [0%, &, [(6%, ...,
0%e1, oy - Ge)y Al = [6%% & [0%0, .. 6%00), G0y i Gen)y TICAG']] = [0 &
TIC[O%, ..., 0%%1), (Eo, -y &1y Ao]"] = TIC[O%, ..., 0%41), (Eo, --vy Ep-1)y Ao]" = [(0%,
e 0%, (o, oy &)y TTICAGT] = [(0%, ..., 0%, (Co, -, &), AL

Suppose &; # ¢ for all 7 < k+1. Then we have [6%}, &, [(0%0, ..., 0%%1), o, ..., &)y A]] =
[0%% & [0%0, - 0%, ov -y &)y TICAQT]] = [0%%, & TTIC[(O%, ..., 0%%1), (&0, ---,
Er1)y Ao]'] = TTIL[0%, &k [0%, ..., 0%%1), oy ...y Er-1)y Ao]]". With the I.H., it holds that
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[0%% & [O%0, ...y 0%%1), Cos +vvs &ien)y Ad]] = [0%0, ..., 6%, (G0, ..., &), Ao]. Therefore
[0%% &k [0%0s «vvy 0%k)s oy +vvs Epa)y A]] = TIC[O%, ..., 6%, o, .oy E)y Ao]" = [(0%0,
cees 0%, oy -1y Gy TTICAG'] = [(0%0, -, 0%p), (Eoy ---s &)y Al m

Theorem 1-29. Multiple substitution of closed terms for pairwise different variables in terms
and formulas (b)
If £ € N\{0}, {6%, ..., 0%} < CTERM and {&, ..., &} < VAR, where & # &; for all 4, j <
k+1 with ¢ # 4, then:
(i) If6 e TERM, then
[(6%0, ..., 0%11), o ---y Epr), [0%K Ery B]] = [(0%0, ..., 0%, (&0, --., &), 0], and
(i) If A € FORM, then
[0%o, ..., 0%%0), os ---s Gt)s [0%hs &y Al] = [0%0, -, 0%, (o -y &)y A

Proof: Suppose £ € N\{0}, {6*, ..., 6*,} < CTERM and {&,, ..., &} < VAR, where &;
# &; forall 4, j < k+1 with 7 # j. Ad (i): Suppose 8 € TERM. The proof is carried out by
induction on k. Suppose k& = 1. With Theorem 1-25-(i) and Theorem 1-28-(i), we then
have [6%o, &, [0%1, &1, 8]] = [0%1, &1, [6%0, &o, 0]] = [(0*0, 6*1), (Eo, &1, B]. Now, suppose 1
< k. Applying the I.H., Theorem 1-25-(i), the I.H., Theorem 1-28-(i), the I.H. and
Theorem 1-28-(i) (in this order) yields [(8%, ..., 6*1.1), o, .-, Er1)y [0%% & 0]] = [(0%0,
ey 0%42), oy woes Ep2)y [0%%e1, Gy [0 Eky O]1] = [0%0, ..y 0%%2), (G0, ---y Ek2)y [0%%, &k
[e*k-L &k-la O]]] = [<e*0’ ey e*k-Z, e*k>’ <§O; ey &k-z; ék>, [e*k-l; ék-ly e]] = [e*ka E_,k! [<e*01 ey
0%1-2), (€0, +++» Ek-2)y [0%41, Epty OT1] = [0%%, &k [0, -, 010, (Eoy ---s Eia)y O] = [(0%0, -,
0%, o, ..., &, 0]

(it) follows analogously from Theorem 1-25-(ii) and Theorem 1-28-(ii). m









2 The Availability of Propositions

In this chapter, the availability concepts that are needed for the calculus are established.
Our course of action can be sketched as follows: First, preliminary concepts concerning
segments and segment sequences are to be established, where a segment in a sentence
sequence $ will be a non-empty, uninterrupted subset of $ (2.1). Second, closed seg-
ments will be characterised as certain Cdl-, NI- and RA-like segments, i.e. certain seg-
ments of the kinds that are connected to inferences by conditional introduction (Cdl), ne-
gation introduction (NI) and particular-quantifier elimination (PE) (2.2). The availability
concepts themselves will then be established with recourse to closed segments. This will
be done in such a way that exactly those propositions are available in a sentence sequence
at a position that do not lie within a proper initial segment of a closed segment in this sen-
tence sequence at this position (2.3). With the theorems that are established in this chap-
ter, we can later show that Cdl, NI and PE and only Cdl, NI and PE can discharge as-

sumptions.

2.1 Segments and Segment Sequences

First, segments in a non-empty sequence $) will be characterised as non-empty and unin-
terrupted subsets of §). Second, some theorems on segments will be proved. Then, some
concepts and theorems concerning segment sequences for sentence sequences will be
established, where a segment sequence for a sentence sequence $) is a finite sequence that
enumerates disjunct segments in §). Then, AS-comprising segment sequences for seg-
ments in sentence sequences will be defined with recourse to segment sequences. An AS-
comprising segment sequence for a segment 2( in $ will be a segment sequence for $) for
which it holds that all values of the sequence are disjunct subsegments of 2 and that all
assumption-sentences in 2 lie in one of the values of the sequence. These AS-comprising
segment sequences will later play a crucial role in the inductive generation of closed seg-
ments. The end of the chapter contains the proofs of theorems about AS-comprising seg-
ment sequences that are needed for the establishment of closed segments and of theorems

on these. We start with the segment definition:
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Definition 2-1. Segment in a sequence (metavariables: 2, 9B, &, ', B', &', A*, B*, ¢*, ..))

20 is a segment in
iff

$H e SEQ, A#0,A < $and A ={(%, H,) | min(Dom(2A)) <i < max(Dom(2())}.
Definition 2-2. Assignment of the set of segments of £ (SG)
SG={(H,X)| 9 € SEQand X = { |2 is a segment in H}}.

Definition 2-3, Definition 2-4 and Definition 2-5 introduce some useful expressions.

Definition 2-3. Segment
2 is a segment iff there is an $ such that 2L is a segment in $.

Definition 2-4. Subsegment
20 is a subsegment of " iff A, A" are segments and A < A'.

Definition 2-5. Proper subsegment
2U is a proper subsegment of A" iff 2 is a subsegment of 2" and A £ 2A'.

Theorem 2-1. A sentence sequence $) is non-empty if and only if SG($) is non-empty
If $ € SEQ, then:  # 0 iff SG($) # 0.

Proof: Suppose $H € SEQ. Suppose $ # 0. Then $) is a segment in § and thus $ e
SG($). Now, suppose SG($) # @. Then there is an 2( such that 2 is a segment in $). Then
wehave A Z0and A < Handthus H#0. m

Theorem 2-2. The segment predicate is monotone relative to inclusion between sequences
If 9, H' € SEQ, H < H'and A is a segment in £, then A is a segment in H'.

Proof: Suppose $, $' € SEQ, H < ' and 2 is a segment in . Then we have 2 # 0 and
A < 9 < H'. Moreover, we have $ = H'TDom($)). Thus we have

A = {7, 9;) | min(Dom(A)) < i< max(Dom(2())}
E(i, $') | min(Dom(A)) <7 < max(Dom())}

and hence we have that 2 is a segment in $'. m
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Remark 2-1. All of the segment predicates defined in the following are monotone relative to
inclusion between sequences. The respective instances of this result are used in the further
account without being proven individually

If F is one of the segment predicates defined in the following, then: If ), $' € SEQ, $H < 9’
and 2L is an F-segment in §, then 2L is an F-segment in §'.

Comment: All following definitions of segment predicates have one of the following two

forms:

20 is an F-segment in § iff § € SEQ, A € SG($H) and H (X, 5).
or

20 is an F-segment in § iff 2 is a segment in $ and H(, 9).

In each case, H is the variable part of the definiens, which distinguishes the different
definitions. For H it holds in each case that if §, $' € SEQ, $ < ' and 2 € SG($) (or,
equivalently: 21 is a segment in $) and H(2, $), then H(2, $'). With Theorem 2-2 and

the respective definition it then follows in each case that if §), $' are sequences, $ < $'

and 2l is an F-segment in §, then 2 is an F-segment in $)'".

From this, it also follows that if §, ' are sequences and 2( is an F-segment in $), then 2
is also an F-segment in $H7$'.1° Note, however, that for many of the sequence predicates
defined in the following, it does not hold that if §, $' are sequences, and 2 is an F-

segment in ), then 2L is also an F-segment in ). m

Theorem 2-3. Segments in restrictions™
If § e SEQ, then: 2( is a segment in § iff 2 is a segment in Hmax(Dom(2())+1.

Proof: Suppose $ € SEQ. (L-R): Suppose 2l is a segment in £. Then we have 2L # 0, 2 <
$ and thus: $HImax(Dom(2())+1 € SEQ. We also have that 2 < $HImax(Dom(2())+1 <
and hence that $Hfmax(Dom(R())+1 € SEQ\{0} and also that

0 Let fog = f u {(Dom(f)+i, g) | i € Dom(g)} if f is a finite sequence and g is a sequence, else f~g = 0.
We omit parentheses and assume that they are nested from left to right, i.e., "ag"a, @™ .... a1 =
"(-.-((@"a) @)™ ... ) a,1).

M LetRIX={(a,b)](a,b) e Randa € X}.
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A = {(4, ;) | min(Dom(2l)) < i < max(Dom(2A())}

{(@@, ($HTmax(Dom(2())+1),) | min(Dom(2A)) < i< max(Dom(2())}.

Thus, 20 is a segment in $HImax(Dom(A))+1. (R-L): Suppose 2 is a segment in
$HImax(Dom(2A))+1. Then we have Hmax(Dom(2A))+1 € SEQ. According to the initial
assumption, we also have $ € SEQ. With $max(Dom(2())+1 < $) and Theorem 2-2, we
then have that 2( is a segment in §). m

Remark 2-2. F-segments in restrictions

If F is one of the segment predicates defined in the following, then: If $ € SEQ, then 2 is an
F-segment in ) iff 2 is an F-segment in $H[ max(Dom(2())+1.

Comment: All of the following definitions of segment predicates have one of the two
forms noted in Remark 2-1, where for H it holds that if $ € SEQ, 2 € SG($)) (or, equiva-

lently: 21 is a segment in $) and H (2L, $), then H(2(, $HImax(Dom(2A))+1). The reason for

this is in each case that the respective definientia only refer to conditions in
$HImax(Dom(RA))+1. With Theorem 2-3 and the respective definitions it thus follows in
each case that if § is a sentence sequence and 2( is an F-segment in $) ist, then 2( is an F-

segment in $HImax(Dom(R())+1. For the right-left-direction see Remark 2-1. m

Theorem 2-4. Segments with identical beginning and end are identical
If § € SEQ, %A, A' € SG(H), min(Dom(A)) = min(Dom(A)) and max(Dom(2A)) =
max(Dom(2(")), then A = 2",

Proof: Suppose $ € SEQ, %A, A" € SG($), min(Dom(2A)) = min(Dom(A’)) and
max(Dom(2()) = max(Dom(2(")). Then we have for all (i, $.): (z, $;) € 2 iff min(Dom(2A))
< i< max(Dom(%)) iff min(Dom(2(")) < i < max(Dom(2(")) iff (z, ;) € A'. m

Theorem 2-5. Inclusion between segments

If $ € SEQ and 2, A" € SG(%), then:
(i)  min(Dom(2A)) < min(Dom(A")) and max(Dom(2(')) < max(Dom(2()) iff A' < A, and
@it)  If min(Dom(2()) = min(Dom(A")), then A < A" or A" < 2.

Proof: Suppose $ € SEQ and &, 2A' € SG($). Then we have

2A = {(l, $;) | min(Dom(21)) < < max(Dom(2())}
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and
2A'={(, 9;) | min(Dom(A")) << max(Dom(2('))}.

Ad (i): Suppose min(Dom(2)) < min(Dom(2(’)) and max(Dom(2(')) < max(Dom(%)).
Suppose (I, $;) € A'. Then we have min(Dom(2(")) < I < max(Dom(2(')) and thus accord-
ing to the hypothesis min(Dom(2)) < min(Dom(2A")) < [ < max(Dom(2A")) <
max(Dom(%()). Therefore we have (I, ;) € 2.

Now, suppose ' < 2. Then we have that min(Dom(2(')), max(Dom(2(')) € Dom(2()
and hence min(Dom(2()) < min(Dom(2(")) and max(Dom(2(")) < max(Dom(2)).
Ad (ii): Suppose min(Dom(2()) = min(Dom(2’)). Then we have max(Dom(2)) <
max(Dom(2L")) or max(Dom(2(")) < max(Dom(%2()). In the first case, it follows with (i) that

20 < 2. In the second case, it follows with (i) that (' < 2. m

Theorem 2-6. Non-empty restrictions of segments are segments
If $§ € SEQ and 2 € SG(9), then for all £ € Dom(2(): 2A[k+1 € SG(9).

Proof: Suppose $ € SEQ and 2l € SG($) and suppose £ € Dom(2(). Then we have that
min(Dom(R()) < k+1 < max(Dom(2A))+1. Thus we have that AMk+1 = {(i, $)) |
min(Dom(2()) < i < max(DomR))HE+1 = {(3, $;) | min(Dom(A)) < i < k} = {(i, $)) |
min(Dom(2(} k+1)) < ¢ < max(Dom(Alk+1))} and also that 2AMk+1 < A < §. We also
have k € Dom(2A k+1) and thus that AT k+1 # 0. Hence we have 21} k+1 € SG($)). m

Theorem 2-7. Restrictions of segments that are segments themselves have the same beginning
as the restricted segment

If 2 is a segment in §, then for all k¥ € Dom(R): If Atk is a segment in §, then
min(Dom([ k)) = min(Dom(%()).

Proof: Suppose 2( is a segment in $). Now, suppose & € Dom(2() and suppose 21k is a
segment in $ and hence Ak + 0. Then we have 2tk = {(i, ;) | min(Dom(XA)) < i <
max(Dom®R0))}H k& = {(@G, $H;) | min(Dom(RA)) < i < k-1} and hence with ATk + @ that
min(Dom(2(£)) = min(Dom(%()). =
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Theorem 2-8. Two segments are disjunct if and only if one of them lies before the other
If $ € SEQ and 2, A" € SG(%), then:
AnA'=0
iff
(i)  min(Dom(2()) < min(Dom(2')) and max(Dom(2()) < min(Dom(%(")), or
or
(i)  min(Dom(A")) < min(Dom(2()) and max(Dom(2')) < min(Dom(%)).

Proof: Suppose ) € SEQ and 2, A" € SG($). (L-R): Suppose 2 n ' = @. Then we have

min(Dom(2)) < min(Dom(A"))
or
min(Dom(2()) = min(Dom(2"))
or
min(Dom(2l")) < min(Dom(%A)).

The second case, i.e. min(Dom(2()) = min(Dom(2(")), is impossible because otherwise we
would have that (min(Dom(%)), Hminoomey) € A and (min(Dom(2()), Hminomy)) € A'
and thus that 24 n A" # 0.

Suppose min(Dom(2()) < min(Dom(2A")). If min(Dom(2(")) < max(Dom(%)), then we
would have (min(Dom(2()), Himinoomery) € A and (min(Dom(2A")), Hminomey) € A'.
Thus we would have A n ' # 0, which contradicts the hypothesis. In the first case, we
thus have min(Dom(2()) < min(Dom(2A")) and max(Dom(2()) < min(Dom(2")).

Suppose min(Dom(2)) < min(Dom(%A)). If min(Dom(2()) < max(Dom(2l")), then we
would have (min(Dom(2()), Hminpomey) € A" and (min(Dom(2A)), Hminpomey) € A. Thus
we would again have 20 n ' # @. In the third case, we thus have min(Dom(2(")) <
min(Dom(2()) and max(Dom(2")) < min(Dom(%()).

(R-L): Now, suppose min(Dom()) < min(Dom(A')) and max(Dom(2A)) <
min(Dom(2(")) or min(Dom(2A")) < min(Dom(2()) and max(Dom(2")) < min(Dom(2()).
Now, suppose for contradiction that 24 n (' # @. Then there would be an i such that (i, £;)
€ A n A'. Then we would have min(Dom(2()) < ¢ < max(Dom(%()) and min(Dom(')) <
< max(Dom(21")). Thus we would have min(Dom(2(')) < min(Dom(2(")) or min(Dom(%2())

< min(Dom(%A)). Contradiction! Therefore we have A n A'=0. m
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Theorem 2-9. Two segments have a common element if and only if the beginning of one of
them lies within the other

If $ € SEQ and A, A' € SG(%), then:

AN A'#0
iff

(i)  min(Dom(2A)) € Dom(') or
or

(i)  min(Dom(2A")) € Dom(2L).

Proof: Suppose $ € SEQ and 2, ' € SG($). (L-R): Suppose 2l n 2A' # @. Then there is
an < € Dom($) such that (i, $;) € A n 2A'. Then we have
min(Dom(2()) <4 < max(Dom(2()) and min(Dom(2")) <7 < max(Dom(2"))

and
min(Dom(21")) < min(Dom(2()) or min(Dom(2()) < min(Dom(2(")).

Thus we then have

min(Dom(2A")) < min(Dom(2A)) < ¢ < max(Dom("))
or
min(Dom(2A)) < min(Dom(2")) < i < max(Dom(%()).

Thus we have eventually that
min(Dom(()) € Dom(2(") or min(Dom(2(')) € Dom(2L).

(R-L): If min(Dom(A)) € Dom(A') or min(Dom(A’)) € Dom(2A), then we have
(min(Dom(2A)), Himinomey) € A n A" or (Min(Dom(A')), Hminomery) € A n A" and thus
inboth cases A n A' #0. m

Definition 2-6. Suitable sequences of natural numbers for subsets of sentence sequences

g is a suitable sequence of natural numbers for A

iff

There is an $ e SEQ such that 2l < $ and g is a strictly monotone increasing sequence of
natural numbers with Ran(g) = Dom(%l).

The immediate purpose of the definition is to enable us to enumerate the elements (of the
domain) of a subset of a sequence in a way that preserves their natural order. Moreover,

suitable sequences can be used to turn segments of sequences into sequences by compos-
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ing the respective segments with a suitable sequence of natural numbers. Such a proce-

dure could be considered as an inverse operation to the concatenation of sequences.

Theorem 2-10. Existence of suitable sequences of natural numbers

If § € SEQ and 24 < §, then there is a g such that g is a suitable sequence of natural numbers
for 2.

Proof: Suppose $H € SEQ and 2 < $. The proof is carried out by induction on [|. Sup-
pose || = 0. Let g = @. Then g is trivially a strictly monotone increasing sequence of natu-
ral numbers with Ran(g) = Dom(2(). Now, suppose || = k+1. Then we have k£ =0 or k£ >
0. In the first case, {(0, max(Dom(%()))} is a suitable sequence of natural numbers for 2.
Now, suppose k£ > 0. Since 2( is a finite function, we have that |[20\{(max(Dom(%()),
Amaxoomey) } = k. Furthermore, we have 2\{(max(Dom(%)), Amaxoomey))} S $H. Accord-
ing to the 1.H., we thus have a g such that ¢ is a suitable sequence of natural numbers for
20\{(max(Dom(2A)), Amaxoomey)}- Now, let g = g u {(Dom(g), max(Dom(2()))}. Obvi-
ously it holds that Ran(¢') = Dom((). Because of

g(max(Dom(g))) = max(Ran(g)) = max(Dom(2\{(max(Dom(2)), 2Araxpom(z0))}))
< max(Dom(2)) = max(Ran(g’)) = g'(Dom(g)) = g'(max(Dom(y’))),
the strict monotony of g carries over to ¢'. Therefore we have that ¢' is a suitable sequence

of natural numbers for . m

Theorem 2-11. Bijectivity of suitable sequences of natural numbers

If § € SEQ, % < 9, and g is a suitable sequence of natural numbers for 2L, then g is a bijection
between Dom(g) and Dom(%().

Proof: Suppose $ € SEQ, 2 < $ and suppose g is a suitable sequence of natural num-
bers for 2A. Then we have Ran(g) = Dom(2() and hence that g is a surjection of Dom(g)
onto Dom(2(). Furthermore, because ¢ is a strictly monotone sequence of natural num-
bers, we have that g is an injection of Dom(g) into Dom(2(). Hence ¢ is a bijection be-

tween Dom(g) and Dom(2(). m
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Theorem 2-12. Uniqueness of suitable sequences of natural numbers
If H e SEQ, A < 9, and g, ¢' are suitable sequences of natural numbers for 2, then: g =g¢'.

Proof: Suppose $H € SEQ, 2 < $ and suppose g, g are suitable sequences of natural
numbers for 2. Then we have Ran(g) = Dom(2l) = Ran(g"). With Theorem 2-11, we also
have that Dom(g) = |[Ran(g)| = |Ran(g")| = Dom(g"). Now, it holds that strictly monotone
increasing sequences of natural numbers with identical domains and identical ranges are

identical. Therefore we have g =g¢'. m

Theorem 2-13. Non-recursive characterisation of the suitable sequence for a segment

If 2 is a segment in §, then {(I, min(Dom(2A())+]) | [ < |Dom(2A)|} is a suitable sequence of
natural numbers for 2.

Proof: Suppose $ € SEQ and 2 is a segment in $. Then we have 2 # 0. The proof is car-
ried out by induction on |Dom(2()|. Suppose |[Dom(2A)| = 1. Then we have Dom(l) =
{min(Dom(2())} and {(0, min(Dom(%()))} is a suitable sequence of natural numbers for 2
and {(0, min(Dom(2()))} = {(, min(Dom(A))+l) | [ < 1} = {(l, min(Dom(A))+l) | [ <
IDom(2A)[}.

Now, suppose the statement holds for £ > 1 and suppose |Dom(2()| = k+1. Since 2L is a
finite function, we have that [20\{(max(Dom()), Amaxoomey)} = k. Furthermore, we
have that 2* = 20\{(max(Dom(2()), Amaxomy))} IS @ segment in §H. According to the I.H.,
we therefore have that g = {(/, min(Dom(2(*))+{) | I < |Dom(2(*)|} = {({, min(Dom(())+I)
| I < |Dom(2A)|-1} is a suitable sequences of natural numbers for 2A*. Let ¢' = g u
{(IDom(2()|]-1, max(Dom(2()))}. Then we have Ran(g) = Dom(2(*) u {max(Dom(())} =
Dom(2() and we have Dom(g") = Dom(g) u {Dom(g)} = Dom(g)+1 = |Dom(*)[+1
|[Dom(A)|. Since A is a segment in £, it also holds that max(Dom(2(*))+1
max(Dom(2()). Thus we have ¢'(|Dom(2()|-1) = max(Dom(2(*))+1 = g(|Dom()|-2)+1 =
(min(Dom(2(*))+|Dom(2()|-2)+1 = (min(Dom(2())+|Dom(2()|-2)+1 =
min(Dom(2())+|Dom(2A)|-1. Hence we then have ¢ = {(I, min(Dom))+l) | [ <
|[Dom(20)]-1} u {(|Dom(2()|-1, min(Dom(2())+|Dom(2()|-1)} = {(/, min(Dom(A))+I) | [ <

|Dom(2()[}. Thus we have that ¢' is also a strictly monotone increasing sequence of natu-

ral numbers and hence we have that ¢' is a suitable sequence of natural numbers for 2(. m
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Definition 2-7. Segment sequences for sentence sequences

G is a segment seqguence for $

iff

$ € SEQ and G is a sequence with Ran(G) < SG($) and for all 4, j € Dom(G): If i < j, then
min(Dom(G(3))) < min(Dom(G(5))) and max(Dom(G(2))) < min(Dom(G(5))).

Definition 2-8. Assignment of the set of segment sequences for § (SGS)
SGS={(5H, X) | € SEQand X = {G | G is a segment sequence for $H}}

Theorem 2-14. A sentence sequence $) is non-empty if and only if there is a non-empty seg-
ment sequence for $

If 5 € SEQ, then: $) £ @ iff there isa G € SGS($H) with G # @.

Proof: Suppose $ € SEQ. (L-R): Suppose $ # 0. Then we have @ # {(i, {(z, H)}) | i €
Dom($)} € SGS($). (R-L): Now, suppose there is a G € SGS($) such that G # @. Then
there is an i € Dom(G). Also, we have Ran(G) < SG($) and thus G(i) € SG($). With
Theorem 2-1, we then have $H # 0. m

Theorem 2-15. @ is a segment sequence for all sequences
If $ € SEQ, then 0 € SGS(%).

Proof: Suppose $ € SEQ. Then we have that @ is a sequence with Ran(@) = @ < SG($)
and for all 7, ;7 € Dom(@) = @ we trivially have: If i < j, then min(Dom(@(z))) <
min(Dom(@(5))) and max(Dom(@(z))) < min(Dom(@(5))). m

Theorem 2-16. Properties of segment sequences
If $ € SEQ and G € SGS(9), then:
(i) G isaninjection of Dom(G) into Ran(G),
(i) G is abijection between Dom(G) and Ran(G),
(i)  Dom(G) = |Ran(G)|, and
(iv) G is afinite sequence.

Proof: Suppose $ € SEQ and G € SGS($). Then we have that G is a sequence with
Ran(G) < SG(9) and for all i, j € Dom(G): If i < j, then min(Dom(G(3))) <
min(Dom(G(5))) and max(Dom(G(z))) < min(Dom(G(5))).
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Ad (i): Now, suppose i, 7 € Dom(G) and suppose G(z) = G(j). Then we have
min(Dom(G(3))) = min(Dom(G(5))). Suppose for contradiction that ¢ # j. Then we would
have i < j or j < ¢ and thus we would have min(Dom(G(z))) < min(Dom(G(j))) or
min(Dom(G(5))) < min(Dom(G(3))), which both contradict min(Dom(G (7)) =
min(Dom(G(j))). Therefore we have for 7, j € Dom(G) with G (i) = G(j) that i = j. Hence
G is an injection of Dom(G) in Ran(G).

Ad (ii): G is a surjection of Dom(G) onto Ran(G) and with (i) G is then a bijection be-
tween Dom(G) and Ran(G).

Ad (iii): Since G is a sequence, it holds with (ii): Dom(G) = |Ran(G)|

Ad (iv): G is a sequence and with (iii) G is then a finite sequence, because we have
Ran(G) < SG($) < POT($€) and hence (because with $) € SEQ it holds that || € N):
Dom(G) = |Ran(G)| < |SG($)| < [POT(H)| =2 ¢ N. m

Theorem 2-17. Existence of segment sequences that enumerate all elements of a set of disjunct
segments

If § € SEQ and X < SG($) and for all 2, A' € X it holds that if 2 # 2, then 2 n A' = 7,
then: Thereisa G € SGS($) such that Ran(G) = X.

Proof: Suppose $ € SEQ and X < SG($) and suppose for all 2(, A" € X: If A # ', then
A n A'=0. We have B = {(I, $H,) | There isan 2l € X and [ = min(Dom(X())} < 9. Ac-
cording to Theorem 2-10, there is thus a suitable sequence of natural numbers g for 8.
With Theorem 2-11, we then have that g is a bijection between Dom(g) and Dom(*8). Ac-
cording to the definition of 2B, we then have for all 2{ € X: min(Dom(()) = g(z) foran i
Dom(g). Because g is strictly monotone increasing we also have: If i, j € Dom(g) and ¢ <
7, then ¢(7) < g(y).

We then have for all ¢ € Dom(g): There is exactly one 20 € X such that ¢g(z) =
min(Dom(()). To see this, suppose that : € Dom(g). Then we have g(:) = min(Dom(2())
foran 20 € X. Now, suppose 2' € X and ¢(7) = min(Dom(2(")). According to the hypothe-
sis, we have X < SG($) and hence, with Theorem 2-9, we have 2 n ' # . By hypothe-

sis, we have that 20 = 2(".
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Now, let G = {(, /) | i € Dom(g) and & € X and g¢(7) = min(Dom(2())}. First, we have
that G is a sequence with Ran(G) < X < SG($). Also, we have for all 4, j € Dom(G): If
i < j, then min(Dom(G(7))) < min(Dom(G(5))) and max(Dom(G(7))) < min(Dom(G(y)))-
To see this, suppose 7, j € Dom(G) and suppose i < 5. Then we have min(Dom(G(z))) =
9(7) < g(7) = min(Dom(G(5)). Then we have G (i) # G(j) and hence, by hypothesis, G(i) n
G(y) = 0. Furthermore, we have G(i), G(j) € SG($). Because of min(Dom(G(7))) <
min(Dom(G(j))), it then follows with Theorem 2-8 that max(Dom(G(z)) <
min(Dom(G()))).

Last, we have Ran(G) = X. We already have Ran(G) < X. Now, suppose 2 € X. Then
we have min(Dom(2l)) = ¢(3) for an i € Dom(g). Then we have (i, ) € G and hence 2

Ran(G). m

Theorem 2-18. Sufficient conditions for the identity of arguments of a segment sequence
If § € SEQ and G € SGS($), then for all 4, ; € Dom(G):

(i)  If min(Dom(G(3))) = min(Dom(G(y))), then i = 4, and
(i)  If max(Dom(G(2))) = max(Dom(G(5))), then i = 3.

Proof: Suppose $ € SEQ and G € SGS($) and suppose 7, 7 € Dom(G). Now, suppose
min(Dom(G(7))) = min(Dom(G(y)). With Definition 2-7, it follows that if ¢ < 7, then
min(Dom((G(7))) < min(Dom(G(j))), and if j < ¢ then min(Dom((G(y))) <
min(Dom(G(7))). Both cases contradict the assumption. Therefore we have i = j.

Now, suppose max(Dom(G(z))) = max(Dom(G(y))). If i < j or j < i, then we would have
max(Dom(G(7))) < min(Dom(G(5))) or max(Dom(G(7))) < min(Dom(G(7))). Therefore
we would have max(Dom(G(:)) < min(Dom(G(j))) < max(Dom(G(y))) or
max(Dom(G(j))) < min(Dom(G(7))) < max(Dom(G(z))). Both cases contradict the as-

sumption. Therefore we have i = j. m
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Theorem 2-19. Different members of a segment sequence are disjunct

If § € SEQ and G € SGS(9), then for all 4, j € Dom(G): If G(i) # G(j), then G() n G(j) =
.

Proof: Suppose $) € SEQ and G € SGS($€). Then G is a sequence with Ran(G) < SG($))
and for all 4, j € Dom(G): If i < j, then min(Dom(G(:))) < min(Dom(G(j))) and
max(Dom(G (7)) < min(Dom(G(5))). Let ¢, 7 € Dom(G). Then it holds that G(7), G(j) €
SG($). Now, suppose G(z) # G(j). With Theorem 2-16-(i) it then holds that 7 # ;5. Then

we have i < jor j <. Thus we have

min(Dom(G (7)) < min(Dom(G(5))) and max(Dom(G (7)) < min(Dom(G(5)))
or
min(Dom(G(5))) < min(Dom(G(z))) and max(Dom(G(5))) < min(Dom(G(4))).

With Theorem 2-8, we thus have G(1) n G(j) = 0. m

Definition 2-9. AS-comprising segment sequence for a segment in

G is an AS-comprising segment sequence for 2 in $

iff
(i) 9 e SEQ,
(i) 2 e SG(H),

(i) G e SGS(H)\{0}, and
a)  min(Dom(2A)) < min(Dom(G(0))),
b)  max(Dom(G(max(Dom(())))) < max(Dom(2l)), and
c) foralll € Dom(AS($)) n Dom(%) it holds that there is an i € Dom(G) such
that [ € Dom(G(7)).

Definition 2-10. Assignment of the set of AS-comprising segment sequences in $) (ASCS)

ASCS={(9, X)|$H € SEQand X ={G | Thereisan 2l € SG($) and G is an
AS-comprising segment sequence for 2( in $}}

Theorem 2-20. Existence of AS-comprising segment sequences for all segments
If € SEQ and 2 € SG(9), then there is an AS-comprising segment sequence G for [ in §.

Proof: Suppose $ € SEQ and 2 € SG($€). Then we have that {(0, 20)} is an AS-
comprising segment sequence for 2L in $). m
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Theorem 2-21. A sentence sequence $) is hon-empty if and only if ASCS($)) is non-empty
If $ e SEQ, then: § # @ iff ASCS($) # 0.

Proof: Suppose ) € SEQ. Suppose § # @. Then there is with Theorem 2-1 an 2l such that
A € SG($). With Theorem 2-20, we then have ASCS($)) # 0. Now, suppose ASCS($)) #
@. According to Definition 2-10 there is then an 21 € SG($)). From this it follows with
Theorem 2-1that H # 0. m

Theorem 2-22. Properties of AS-comprising segment sequences
If $H € SEQ and G € ASCS(%), then:

(i) G isaninjection of Dom(G) into Ran(G),

(i) G is abijection between Dom(G) and Ran(G),

(iii)  Dom(G) = |Ran(G)|, and

(iv) G is afinite sequence.

Proof: Suppose $ € SEQ and G € ASCS($). With Definition 2-9, we have that G <
SGS(9)\{0}. From this, the statement follows with Theorem 2-16. m

Theorem 2-23. All members of an AS-comprising segment sequence lie within the respective
segment

If G is an AS-comprising segment sequence for 21 in $), then for all ¢ € Dom(G):
min(Dom(()) < min(Dom(G(z))) and max(Dom(G(z))) < max(Dom(2L)).

Proof: Suppose G is an AS-comprising segment sequence for 2 in $) and suppose i €
Dom(G). Then we have 0 <4 < max(Dom(G)). According to Definition 2-9, we have that
G € SGS($)\{0}. With Definition 2-7 we then have that for all £, j € Dom(G): If k < j,
then min(Dom(G(k))) < min(Dom(G(5))) and max(Dom(G(k))) < min(Dom(G(5))).
Therefore we have that min(Dom(G(0))) < min(Dom(G(3))) and max(Dom(G (7)) <
max(Dom(G (max(Dom(G))))). It also follows from the assumption and Definition 2-9
that min(Dom(2A)) < min(Dom(G(0)) and max(Dom(G(max(Dom(())))) <

max(Dom(2()). Thus it then follows that: min(Dom(2)) < min(Dom(G(3))) and
max(Dom(G (7)) < max(Dom(2)). m
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Theorem 2-24. All members of an AS-comprising segment sequence are subsets of the respec-
tive segment

If G is an AS-comprising segment sequence for 2( in ), then for all i € Dom(G): G(i) < 2.

Proof: Suppose G is an AS-comprising segment sequence for 24 in $ and suppose i e
Dom(G). With Definition 2-9 and Definition 2-7 we then have Ran(G) < SG($) and
thus that G(z) is a segment in $). With Theorem 2-23 we also have that min(Dom(2()) <
min(Dom(G(4))) and max(Dom(G (7)) < max(Dom(2()). It then follows with Theorem 2-5
that G(7)) < 2. m

Theorem 2-25. Non-empty restrictions of AS-comprising segment sequences are AS-
comprising segment sequences

If G is an AS-comprising segment sequence for 21 in §, then for all j € Dom(G): GI(j+1) is
an AS-comprising segment sequence for Al (max(Dom(G(j)))+1).

Proof: Suppose G is an AS-comprising segment sequence for 2( in § and suppose j e
Dom(G). According to Definition 2-9 we then have that $ € SEQ and 2 € SG($)) and G
e SGS(H)\{0} and min(Dom(2A)) < min(Dom(G(0)) and max(Dom(G(max(Dom(G)))))
< max(Dom(%()) and that it holds for all I € Dom(AS($))) n Dom(%() that there isan i
Dom(G) such that I € Dom(G(z)). With Definition 2-7, we can easiliy show that G (j+1)

e SGS(H)\{0}. With Theorem 2-23, we have that min(Dom(2)) < min(Dom(G(5))) <
max(Dom(G(5))) < max(Dom(2()) and thus that max(Dom(G(j))) € Dom(R(). With
Theorem 2-6, we thus have that ([ (max(Dom(G(5)))+1) € SG($).

Now, the three sub-clauses of clause (iii) of Definition 2-9 have to be shown. Ad a): First,

we have 0 < j+1. Thus we have 0 € Dom(GT(5+1)) and hence (G (5+1))(0) = G(0) and
thus  min(Dom(2Af (max(Dom(G(j)))+1))) = min(Dom(2A)) < min(Dom(G(0)))
min(Dom((G1(5+1))(0))). Ad b): max(Dom((G!(5+1))(max(Dom(Gl(j+1))))))
max(Dom(G(j))) = max(Dom(2Af(max(Dom(G(5)))+1))). Ad c): Now, suppose [ €

IA

Dom(AS($)) n Dom(2[ (max(Dom(G(5)))+1)). Then there is an i € Dom(G) such that [
e Dom(G(z)). Suppose for contradiction that j+1 <i. With G € SGS($)) and Definition
2-7, we would then have that max(Dom(G(j))) < min(Dom(G(z))) <1 < max(Dom(G(7)))
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and, at the same time, we would have that [ < max(Dom(G(j))). Contradiction! Therefore
we have i < j+1 and thus G(z) = (GI(j+1))(7). Therefore we have that for all [ €
Dom(AS(9)) n Dom(RIf (max(Dom(G(5)))+1)) it holds that there is an i € Dom(GT (j+1))
such that [ € Dom((GT(5+1))(z)). According to Definition 2-9, we thus have that G[(j+1)

is an AS-comprising segment sequence for Al (max(Dom(G(7)))+1). m

Theorem 2-26. Sufficient conditions for the identity of arguments of an AS-comprising seg-
ment sequence

If § € SEQ and G € ASCS($), then for all 4, j € Dom(G):

(i)  If min(Dom(G(3))) = min(Dom(G(y))), then i = 4, and

(i) If max(Dom(G(2))) = max(Dom(G())), then i = j.

Proof: Suppose $ € SEQ and G € ASCS($)). It then follows with Definition 2-9 and
Definition 2-10 that G € SGS($H)\{0} and thus the theorem follows with Theorem 2-18.

Theorem 2-27. Different members of an AS-comprising segment sequence are disjunct
If H € SEQ and G € ASCS(9), then for all 4, j € Dom(G): If G(3) # G(j), then G(2) n G(j) =

.
Proof: Suppose $ € SEQ and G € ASCS($)). It then follows with Definition 2-9 and
Definition 2-10 that G € SGS($H)\{0} and thus the theorem follows with Theorem 2-19.
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2.2 Closed Segments

In the following section, we introduce Cdl-, NI- and RA-like segments. These kinds of
segments show forms that are connected to inferences by conditional introduction (Cdl-
like), negation introduction (NI-like) and particular-quantifier elimination (RA-like), re-
spectively. Among these segments, we will then distinguish so called minimal CdlI-, NI,
and PE-closed segments, which will form the minimal closed segments. Then, we will
define the generation relation GEN, with which we can generate further non-redundant
Cdl-, NI- and RA-like segments from minimal closed segments. Then, we will define the
set of GEN-inductive relations. The intersection of the set of GEN-inductive relations will
then be singled out as that relation which assigns a sentence sequence all and only those
segments that are closed in this sentence sequence. Thus, closed segments in a sentence
sequence will be exactly those CdlI-, NI- and RA-like segments in this sequence that are
either minimal closed segments or that can be generated by the generation relation from
minimal closed segments.

Then, we will prove some general theorems on closed segments. Subsequently, we will
define Cdl-, NI- and PE-closed segments. This will be done in such a way that Cdl-, NI-
and PE-closed segments will be closed segments that are Cdl-, NI- and RA-like, respec-
tively, and that all closed segements will be CdI- or NI- or PE-closed. At the end of the
chapter, we will prove theorems (Theorem 2-66, Theorem 2-67, Theorem 2-68, Theorem
2-69), with which we can later show that Cdl-, NI-, PE-closed segments (and thus any
closed segments) can be generated by (and only by) Cdl, NI and PE, respectively. In the
next chapter (2.3), the availability conception will be established with direct recourse to
this chapter: A proposition I" will be available in a sequence $) at a position 7 if and only if
I" is the proposition of $, and (i, $,) lies in all closed segments in §) at most at the end.
We will then have that assumptions can be discharged by and only by Cdl, NI and PE.

The first three definitions introduce Cdl-, NI- and RA-like segments. Then, following
some theorems, we will define minimal (CdlI- resp. NI- resp. PE-)closed segments.
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Definition 2-11. CdI-like segment

2 is a Cdl-like segment in $

iff

$ € SEQ, A € SG($) and there are A, T" € CFORM such that

(1) Hminoomey = "Suppose A™,
(i) P(Hmeaxoomey-1) =T, and

Definition 2-12. NI-like segment
2 is an NI-like segment in £
iff
$H e SEQ, A € SG($H) and there are A, T' € CFORM and i € Dom($) such that
(i)  min(Dom(2()) <7 < max(Dom(%)),
(i) Hminoomey = "Suppose A™,
(iii)  P($:) =T and P(Hmaxomey-1) = —I"
oder
P($:) = "=I'" and P(Himaxpom@y-2) =T, and
(iV)  $Hmaxoom@y = "Therefore —A™.

In clause (iii) of Definition 2-12, two contradictory propositions, such as one needs for
negation introduction, are localised in the respective sentence sequence. Either the nega-
tive ("—I™) or the positive (I') part of the contradiction is the proposition of the penulti-
mate member of the respective segment 2[. The position of the other part of the contradic-
tion is left open. It is only required that this other part occurs at some position (z) between
the first and the penultimate member of the segment. This is unproblematic in the case of
minimal NI-closed segments (Definition 2-15). However, if we want to generate not-
minimal closed segments from closed segments, we have to take care that the part of the
contradiction whose exact position is not specified does not lie in a proper subsegment of
2 that is already closed. This we have to keep in mind when we construct the generation

relation (cf. especially Definition 2-18).



2.2 Closed Segments 67

Definition 2-13. RA-like segment
2 is an RA-like segment in $
iff
$H € SEQ, A € SG(H) and there is & € VAR, A € FORM, where FV(A) < {&}, B € PAR, T €
CFORM and B € SG($) such that
(i) P(Hminoomemy) = "VEAT,
(i) Hminpomemy+1 = "Suppose [B, &, A",
(i) P(9maxomesy-1) =T,
(iv)  Hmaxomesy) = "Therefore I,
(v) P ¢ STSF({A, T}),
(vi)  There is no j such that 7 < min(Dom(8)) and B € ST($,), and
(vii) 2 =B\{(min(Dom(B)), Hminwom(zn)}-

Note: 'RA' stands for representative instance assumption, that is, for the representative
instance assumption one has to make before one can carry out a particular-quantifier

elimination.

Theorem 2-28. No segment is at the same time a Cdl- and an NI- or a Cdl- and an RA-like
segment

(i)  There are no 2, $ such that 2L is a Cdl- and an NI-like segment in $),
(i)  There are no 2, $ such that 2 is a Cdl- and an RA-like segment in $).

Proof: Follows from the definitions and the theorems on unique readability (Theorem
1-10 to Theorem 1-12). m

Note that it is possible that an 2( is an NI- and RA-like segment in $). This is for example
the case if the assumption for an indirect proof does not contain parameters and provides
one part of the contradiction, while the (empty) particular-quantification of the indirect

assumption has been gained immediately before this assumption.

Theorem 2-29. The last member of a Cdl- or NI- or RA-like segment is not an assumption-
sentence

If 20 is a Cdl- or NI- or RA-like segment in ), then max(Dom(2()) ¢ Dom(AS($)).

Proof: Follows from Definition 2-11-(iii), Definition 2-12-(iv), Definition 2-13-(iv) and
the theorem on the unique readability of sentences (Theorem 1-12). m
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Theorem 2-30. All assumption-sentences in a Cdl- or NI- or RA-like segment lie in a proper
subsegment that does not include the last member of the respective segment

If 20 is a Cdl- or NI- or RA-like segment in $, and i € Dom(2) n Dom(AS($)), then
min(Dom(%A)) < ¢ < max(Dom()).

Proof: Follows from Theorem 2-29. m

Theorem 2-31. Cardinality of Cdl-, NI-, and RA-like segments
Q) If 20 is a Cdl- or RA-like segment in $), then 2 <|2(|, and
(i) IfAis an Nl-like segment in $), then 3 < ||.

Proof: The theorem follows with the theorems on unique readability (Theorem 1-10 to
Theorem 1-12) directly from Definition 2-11, Definition 2-12 and Definition 2-13. m

Definition 2-14. Minimal Cdl-closed segment
2l is a minimal CdI-closed segment in $
iff
2 is a Cdl-like segment in $ and
(D) AS(9) n A= {(min(Dom(2A)), Hrminwomen)}, and
(i)  Forall i € Dom(2() it holds that 2(} is not a Cdl- or NI- or RA-like segment in $.

Definition 2-15. Minimal NI-closed segment
20 is a minimal NI-closed segment in
iff
20 is an NI-like segment in § and
(i) AS(9H) n A= {(min(Dom(2A)), Hminoomey)}, and
(i)  Forall ; € Dom(2() it holds that 2A[7 is not a Cdl- or NI- or RA-like segment in £.

Definition 2-16. Minimal PE-closed segment
21 is a minimal PE-closed segment in $
iff
2 is a RA-like segment in $) and
(i) AS(9H) n A= {(min(Dom(2A)), Hminoomey)}, and
(i)  Forall e Dom(2() holds that ([ is not a Cdl- or NI- or RA-like segment in £).
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Definition 2-17. Minimal closed segment

20 is a minimal closed segment in )

iff

20 is a minimal Cdl- or a minimal NI- or a minimal PE-closed segment in §.

Theorem 2-32. Cdl-, NI- and RA-like segments with just one assumption-sentence have a
minimal closed segment as an initial segment

If 2 is a Cdl- or NI- or RA-like segment in § and |AS($)) n 2| = 1, then 2( is a minimal closed
segment in $ or there is an i € Dom(2A) such that 21 is a minimal closed segment in $).

Proof: Suppose 2( is a Cdl- or NI- or RA-like segment in $ and |AS($)) n 2| = 1. With
Definition 2-11, Definition 2-12 and Definition 2-13, we then have AS($) n A =
{(min(Dom(A)), Hminomy))}- Suppose 2 is not a minimal closed segment in §). By hy-
pothesis, we then have, with Definition 2-17 and Definition 2-14, Definition 2-15 and
Definition 2-16, that there is a ; € Dom(2() such that 2A[j is a Cdl- or NI- or RA-like
segment in $. Now, let i = min({j | j € Dom(2() and 2ATj is a Cdl-, NI- or RA-like seg-
ment in $}). Then we have AS(9) n A7 < AS(H) n 2 and, with Theorem 2-7, we have
min(Dom(2(z)) = min(Dom(2A)) and thus AS($H) n Al = {(min(Dom(2l7)),
Hminomti))}- Because of the minimality of 4, we also have that for all [ € Dom(2([7) it
holds that (2(4)I7 = 2([] is not a Cdl-, NI- or RA-like segment in §. Thus we have that 21

is a minimal Cdl- or NI- or PE-closed segment and thus a minimal closed segment in §). m

Theorem 2-33. Ratio of inference- and assumption-sentences in minimal closed segments
If 20 is a minimal closed segment in §, then |AS($) n 2| <[IS(H) n 2.

Proof: Suppose 2 is a minimal closed segment and thus a minimal Cdl- or NI- or PE-
closed segment in $). Then it holds with the definitions and Theorem 2-29 that |AS($)) n
A =1<IS(H) N A|. m

Now, we will define a generation relation for segments with which we can generate fur-
ther non-redundant Cdl-, NI-, and RA-like segments from minimal closed segments,
where all assumption-sentences of the generated segments are first members of a non-
redundant Cdl-, NI- or RA-like subsegment. To do this, we first define the following

proto-generation relation:
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Definition 2-18. Proto-generation relation for non-redundant CdlI-, NI- and RA-like segments
in sequences (PGEN)

PGEN = {((9, G), X) | $ € SEQand G € ASCS(£)) and X = { |2 € SG(H) and
there is a8 € SG($) such that

(i) G isan AS-comprising segment sequence for 95 in 9,
(i)  AS(9) n B £0,
(iii))  min(Dom(A))+1 = min(Dom(23)) and max(Dom(2()) = max(Dom($8))+1,
(iv) 20is a Cdl- or NI- or RA-like segment in $ and if 2 is an NI-like segment
in 9, then there are A, T' € CFORM and i € Dom($) such that
a)  min(Dom(%)) << max(Dom(%)),
D) Hminomy = "Suppose A,
c) P($) =T and P(Hmax@om@y-1) = —I"
or
P($;) = "I and P($maxom@ny)-1) =T,
d) Forall » € Dom(G): i < min(Dom(G(r))) or max(Dom(G(r))) <1,
)  Hmaxomany = "Therefore —A7, and

(v)  Forall i e Dom(2(): l7 is not a minimal closed segment in $}}.

In clause (iv) of Definition 2-18, a special requirement is made for NI-like segments. The
reason is that the values of the AS-comprising segment sequence G are to be the >mate-

rial« when we construct further closed segments from closed segments. In the NI-case, we
have to make sure that only such segments 2( are generated as NI-closed in which both
parts of the required contradiction actually lie in 2fmax(Dom(2()) and are both not in-
cluded in any closed subsegment of 2(fmax(Dom(2()). For the first part of the contradic-

tion, this is ensured by (iv-d) (cf. the proof of Theorem 2-68).

Theorem 2-34. Some properties of PGEN
If § € SEQand G € ASCS($) and 2 € PGEN(($), G)), then:

(i) Thereis B € SG(H) such that G is an AS-comprising segment sequence for %8 in $
and AS(H) n B # 0, min(Dom(2A))+1 = min(Dom(*B)) and max(Dom()) =
max(Dom($8))+1,

(i) A e SG(H) is a Cdl- or NI- or RA-like segment in §,

(ili)  Forall i € Dom(%(): 2(}7 is not a minimal closed segment in £,

(iv)  Thereisan i e Dom(2() such that min(Dom(2()) < i and : € Dom(AS(%)),

(v)  2isnotaminimal closed segment in §,
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(vi) G+#0,and
(vii) Forall € € PGEN((9, ()) it holds that min(Dom(&)) = min(Dom(%A)).

Proof: Suppose $ € SEQ and G € ASCS($) and A € PGEN({($, G)). Then clauses
(i)-(iii) follow directly from Definition 2-18. Now, suppose 95 satisfies clause (i). Then
we have AS($)) n B # 0 and hence there is an i € Dom(AS($)) n Dom(B) <
Dom(AS($)) n Dom(2() where, because of min(Dom(2())+1 = min(Dom(®8)), we have
that min(Dom(2()) < i. It then follows that clause (iv) holds. From this follows with
Definition 2-14, Definition 2-15, Definition 2-16 and Definition 2-17 that clause (v) also
holds. With AS($) n B # 0 and Definition 2-9, we also have that there is an i e
Dom(G), and hence that G # @. Therefore we have (vi).

According to Definition 2-9, we have that min(Dom(28)) < min(Dom(G(0))) <
max(Dom(®8)) and thus that min(Dom(2)) < min(Dom(G(0))). Now, suppose ¢ e
PGEN(($), G)). Then there is a B' € SG($) such that G is an AS-comprising segment se-
quence for %' in $H and min(Dom(¢))+1 = min(Dom(28')) and max(Dom(<)) =
max(Dom(®8"))+1 and € is a Cdl- or NI- or RA-like segment in §. Then we have
min(Dom(2()), min(Dom(¢)) € Dom(AS($))). According to Definition 2-9, we have that
min(Dom(B")) < min(Dom(G(0))) < max(Dom(*B")) and thus min(Dom(¢)) <
min(Dom(G(0))). It thus follows that min(Dom(%2()), min(Dom(¢)) < min(Dom(G(0))) <
max(Dom(®8)), max(Dom($5")).

Now, suppose for contradiction that min(Dom(¢€)) < min(Dom(2()). Then we would
have that min(Dom(8')) < min(Dom(2A)) < max(Dom(®8")). Then we would also have
that min(Dom(2()) € Dom(AS($))) n Dom(®8"). Now, G is an AS-comprising segment
sequence for B' in $. With Definition 2-9, we would thus have that min(Dom(2()) e
Dom(G (7)) for an I € Dom(G). Since G is an AS-comprising segment sequence for B in
$, we would have, with Theorem 2-24, that min(Dom(2))+1 = min(Dom(8)) <
min(Dom(%()). Contradiction! Now, suppose for contradiction that min(Dom(2()) <
min(Dom(€)). Then we would have that min(Dom($8)) < min(Dom(¢)) < max(Dom(:8)).
Thus we would now have min(Dom(¢€)) € Dom(AS($)) n Dom(®B) and thus
min(Dom(¢)) € Dom(G(l')) for an [I' € Dom(G) and thus min(Dom(¢))+1 =
min(Dom(®8')) < min(Dom(¢)). Contradiction! Therefore we have min(Dom(¢)) =

min(Dom(%()) and hence that clause (vii) holds. m
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For given §, G, the desired generation relation singles out the non-redundant segments

from PGEN(($, G)):

Definition 2-19. Generation relation for non-redundant Cdl-, NI- and RA-like segments in
sequences (GEN)

GEN ={((9, G), X) | $ € SEQ, G € ASCS($) and X = {2 | A € PGEN({(H, G)) and
there is no : € Dom(2() and j € Dom(G) such that 2(i € PGEN(($), Gl (+1)))}}-

GEN is a 2-ary function that assigns each sentence sequence $ and AS-comprising seg-
ment sequence G for a segment 95 in $ a subset X of the set of Cdl-, NI- or RA-like
segments in $) that have the members of G as proper subsegments. This subset is then
either empty or it is the singleton of the shortest segment that can be generated with
PGEN for $ and restrictions of G on j+1 with j € Dom(G). This ensures later that not

only minimal, but also GEN-generated and thus all closed segments are uniquely deter-

mined by their beginning (cf. Theorem 2-50). The following theorem sums up some

properties of GEN for GEN(($), G)) # 0.

Theorem 2-35. Some consequences of Definition 2-19
If § € SEQ and G € ASCS($) and A € GEN(($), G)), then:

(i) Thereis B e SG(H) such that G is an AS-comprising segment sequence for 95 in $
and AS(9) n B # 0, min(Dom(A))+1 = min(Dom(B)) and max(Dom(2A)) =
max(Dom($8))+1,

(i) A e SG(H) is a Cdl- or NI- or RA-like segment in 9,

(iii)  Forall : € Dom(%(): Al is not a minimal closed segment in §),

(iv)  Thereisan i e Dom(2() such that min(Dom(2()) < i and : € Dom(AS(%)),

(v) 2 isnotaminimal closed segment in ),

(vi) Thereisnoi e Dom(2) and j € Dom(G) such that A7 € PGEN(($, G| (j+1))), and

(vii)  GEN((9, G)) = {}.
Proof: Suppose $ € SEQ and G € ASCS($) and 2l € GEN(($, G)). Then clauses (i)-(v)

follow directly from Definition 2-19 and Theorem 2-34. Clause (vi) follows directly from

Definition 2-19. Now, suppose € € GEN(($), G)). With Definition 2-19, we then have
with 2, ¢ € GEN((), G)), that also 2, ¢ € PGEN((H), G)) and thus with Theorem

2-34-(vii) that min(Dom(2()) = min(Dom(<)). Now, suppose for contradiction that
max(Dom(2)) < max(Dom(¢)). Then we would have that min(Dom(¢)) <



2.2 Closed Segments 73

max(Dom(2())+1 < max(Dom(¢)) and thus max(Dom(2())+1 € Dom(¢). At the same time
we would have that ¢Imax(Dom(2))+1 = A e PGEN(($, G)) = PGEN((%,
G1(max(Dom(G))+1))). With Definition 2-19, we would thus have € ¢ GEN(($), G)).

Contradiction! For max(Dom(¢)) < max(Dom(()), a contradiction follows analogously.
Therefore we have that also max(Dom(¢€)) = max(Dom(2()) and thus, with Theorem 2-4,
that ¢ = 2 € {A}. Therefore we have GEN(($, G)) < {}. Also, we have by hypothesis

{2} < GEN(($), G)) and hence: GEN(($, G)) = {2} and thus (vii). m

Theorem 2-36. GEN-generated segments are greater than the members of the respective AS-
comprising segment sequence

If § € SEQ and G € ASCS($), then for all € € Ran(G) and 2 € GEN(($), ()): |€] < ||.

Proof: Suppose $ € SEQ and G € ASCS($)). Now, suppose € e Ran(G) and 2 e
GEN({($, G)). Then there is a B € SG($) such that G is an AS-comprising segment se-
quence for 9B in $ and min(Dom(2A))+1 = min(Dom(B)) and max(Dom()) =
max(Dom(®8))+1 and 2 is a CdI- or NI- or RA-like segment in §. Then we have |®B| <
|2(]. Because of € € Ran(G), we also have, with Theorem 2-24, that |€] < |8| and hence

that |€] < |2A|. m

Theorem 2-37. Preparatory theorem for Theorem 2-39 (a)
{($, A) | A is a minimal closed segment in H} < SEQ x {2 | 2 is a segment}.

Proof: Suppose (£, 2A) € {($, &) | A is a minimal closed segment in $}. It then follows
from Definition 2-14, Definition 2-15 and Definition 2-16 that 2( is a segment in $) and
thus that $ € SEQ. Thus: (£, () € SEQ x {2 | 20 is a segment}. m

Theorem 2-38. Preparatory for Theorem 2-39 (b)
For all § € SEQ and G € ASCS(#) it holds that {H} x GEN(($, G)) < SEQ x {2 | is a

segment}.
Proof: Suppose $ € SEQ and G € ASCS($)). Now, suppose (9, ) € {H} x GEN((9,
G)). It then follows by hypothesis and Theorem 2-35-(ii) that 2 € SG($)) and thus fol-

lows the whole statement. m
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Now, we can define the set of GEN-inductive relations:

Definition 2-20. The set of GEN-inductive relations (CSR)
CSR={R|R < SEQ x {2 |2l is a segment} and
(i) {(%H, 2A)|Aisaminimal closed segment in $H} < R, and
(i) Forall H € SEQ and G € ASCS(9) with {$H} x Ran(G) < R it holds that
{9} x GEN((%, G)) = R}.

Definition 2-20 is essentially a supporting definition for Definition 2-21, in which we
define the relation that relates a sentence sequence to all and only the segments that are

closed in this sequence. Informally, we can say that CSR consists of all relations R that

relate a given sentence sequence $) to all minimal closed segments in $) (if such segments

exist) and further to all segments 2 in § that can be generated by GEN from segments
530, ceey %n-l with {(57), %0), veny (f_), 5371-1)} c R.

Theorem 2-39. Preparatory theorem for Theorem 2-40
SEQ x {2 | 2 is a segment} € CSR.

Proof: First, we have SEQ x {2 | 2 is a segment} < SEQ x {2 | 2( is a segment}. With
Theorem 2-37, we also have that {($), ) | 2 is a minimal closed segment in $} < SEQ
x {21 | 2 is a segment}. With Theorem 2-38, we also have that for all $ € SEQ and G €

ASCS($) with {9} x Ran(G) < SEQ x {2 | & is a segment} it holds that {$H} x
GEN(($, G)) < SEQ x {2 |2 is asegment}. m

Now, we define the relation that relates a given sentence sequence $) to all and only the
segments that are minimal closed segments in $ or that can be generated from minimal

closed segments in $) by successive applications of GEN:

Definition 2-21. The smallest GEN-inductive relation (CS)
CS =NCSR.

The following theorem assures us that CS is, first, indeed a relation, that relates a given
sentence sequence $) to all and only the segments that are minimal closed segments in $)
or that can be generated from minimal closed segments in ) by successive applications of
GEN, and, second, that CS is a subset of all such relations and hence the smallest such
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relation. Thus, we have that CS relates a given sentence sequence only to segments of the
kind indicated.

Theorem 2-40. CS is the smallest GEN-inductive relation
(i) CSeCSRand
(i) IfR € CSR, then CS < R.

Proof: (ii) follows from Definition 2-21. Ad (i): We have to show that a) CS < SEQ x {2
| 2 is a segment}, b) {(5, &) | A is a minimal closed segment in $} < CS and c) for all $
e SEQ and G € ASCS($) with {$} x Ran(G) < CS it holds that {$} x GEN({($), G))

c CS.
a), i.e. CS < SEQ x {2 | A is a segment}, follows with Theorem 2-39 and (ii). Since
for all R € CSR we have that {(), ) | 2 is a minimal closed segment in H} < R, we

have, with Definition 2-21, also b), i.e. {($), () | & is a minimal closed segment in H} <
CS.
We still have to show that c), i.e. that for all $ € SEQ and G € ASCS($)) with {$} x

Ran(G) < CS it holds holds that {$} x GEN(($), G)) < CS. For this, suppose first that $
e SEQ and G € ASCS(9) and {$} x Ran(G) < CS. According to Definition 2-21, what
we have to show in order to prove that {$} x GEN(($), G)) < CS s that for all R € CSR
it holds that {$} x GEN((9, G)) < R. Now, suppose R € CSR. It then follows from {$}
x Ran(G) < CS (from our first hypothesis) and (ii) that {$} x Ran(G) < R. By hy-
pothesis, we have R € CSR. With Definition 2-20, we thus have {$} x GEN((H, G)) <
R. Therefore we have for all R € CSR that {$} x GEN({($), G)) < R and thus we have
that {$H} x GEN(($), G)) < CS. Therefore we have for all $ € SEQ and G € ASCS($)
with {3} x Ran(G) < CS: {H} x GEN({($, G)) < CS. m

With the preceding theorem, we can informally say that the following definition charac-
terises exactly those segments in a sentence sequence as segments that are closed in this
sequence that are minimal closed segments in this sequence or that can be generated from

these minimal segments by successive application of GEN.
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Definition 2-22. Closed segments
2l is a closed segment in $) iff ($, A) € CS.

Theorem 2-41. Closed segments are minimal or GEN-generated

(9, 2) e CS
iff
(i)  2Aisaminimal closed segment in £
or
(i) $H e SEQ and there isa G € ASCS($) with {$} x Ran(G) < CS and 2 € GEN((9,

G)).

Proof: The right-left-direction follows with Theorem 2-40-(i) and Definition 2-20. Now,

for the left-right-direction, suppose X = {($, &) | 2 is a minimal closed segment in §j or
$H e SEQ and there is a G € ASCS($) with {$} x Ran(G) < CS and 2l € GEN((%,
G))} n CS. To prove the theorem, it suffices to show that X € CSR, then the statement

follows with Theorem 2-40-(ii).
With Theorem 2-40-(i), we have CS € CSR. According to Definition 2-20 and the defi-
nition of X, we then have X < CS < SEQ x {2 2 is a segment} and {($, A) |A is a

minimal closed segment in $H} < X.

We still have to show that for all $§ € SEQ and G € ASCS($)) with {$H} x Ran(G) <
X it holds that {$} x GEN(($), G)) < X. First, suppose $ € SEQ and G € ASCS(9)
and {H} x Ran(G) < X. Then we have that {$} x Ran(G) < CS and thus, with
Theorem 2-40-(i) and Definition 2-20, that also {$} x GEN(($, G)) < CS. Now, sup-
pose (9, A) € {H} x GEN(($H, G)). Then we have 2A € GEN(($, G)). Thus there isa G
e ASCS(9) with {$} x Ran(G) < CS and 2 € GEN(($), G)) and we also have (£, 2()
CS. Therefore we have (5, 2) € X. Hence we have X € CSR. m

Theorem 2-42. Closed segments are Cdl- or NI- or RA-like segments
If (9, 2A) € CS, then 2 is a Cdl-, NI- or RA-like segment in §.

Proof: Suppose (£, 2) € CS. Then it holds with Theorem 2-41 and Theorem 2-37 that $
e SEQ and that 2 is a minimal closed segment in §) or that there isa G € ASCS($) with
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{9} x Ran(G) < CS and 2 € GEN((9, G)). The statement then follows immediately

with Definition 2-14, Definition 2-15, Definition 2-16, Definition 2-17 and Theorem
2-35-(ii). m

Theorem 2-43. @ is neither in Dom(CS) nor in Ran(CS)
If (9, 2A) € CS, then $ £ @ and A # 2.

Proof: Suppose (), 2) € CS. It then holds with Theorem 2-42 that 2 is a CdI- or an NI-
or an RA-like segment in $. It then holds with Definition 2-11, Definition 2-12 and
Definition 2-13 that $ € SEQ und 2( € SG($)). With Theorem 2-1 and Definition 2-1, we
thenhave HZQund A £ 0. m

Theorem 2-42 shows that CS only contains pairs of sentence sequences and Cdl- or NI-

or RA-like segments in these sequences. So, the first and last members of the segments

give them the form that is known from the corresponding patterns of inference (for NE

with the contradictory statements included in a proper intial segment of the respective

segment and for PE with the particular-quantification before the respective RA-like seg-

ment). However, not every pair of a sentence sequence and a segment in this sentence

sequence that shows such a form is in CS. This can be shown using Theorem 2-41 and

Theorem 2-42. Here an example for a sentence sequence and a Cdl-like segment in this

sequence for which the ordered pair of both is not an element of CS:

Example [2.1] Let $%" be the following sequence:
0 Suppose  Pyi(cy)

1 Suppose  Pyi(cy)

2 Therefore Pyi(ci) — P11(Cy)

Comment: Suppose (2%, 1) e CS. According to Theorem 2-41, we would then have

that $*Y is a minimal closed segment in $*Y or that there would be a G € ASCS(*Y)
with {H?} x Ran(G) < CS and H%Y e GEN((H?Y, GY). Since |AS(HM)] = 2, H?Y is
not a minimal closed segment in $!>Y). Therefore there has to be a G € ASCS($?") with
{521 x Ran(G) < CS and H* € GEN((H?Y, G)).

Then we have $H1 € GEN((H?Y, G)). Then there is a B e SG(H*Y) such that G is an

AS-comprising segment sequence for B in 9P and min(Dom(HFM))+1 =
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min(Dom(2B)) and max(Dom($*)) = max(Dom(B))+1. Then we have B = {(1, "Sup-
pose P11(cy)")}. Since G is an AS-comprising segment sequence for 8 in H? | we then
have Ran(G) = {{(1, "Suppose P11(c1)")}}.

Yet, {(1, "Suppose P11(c1)")} is not a CdI- or NI- or RA-like segment in $*4. By hy-
pothesis, however, we have {$#*"} x Ran(G) < CS and thus (%%, {(1, "Suppose

P11(c1)")}) e CS. According to Theorem 2-42, we would then have that {(1, "Suppose
P11(cy)™")} is a Cdl- or NI- or RA-like segment in $!*Y. Thus, the assumption that (£,
%1 e CS leads to a contradiction. Therefore (52, H%Y) ¢ CS. m

Theorem 2-44. Closed segments have at least two elements
If (9, A) € CS, then 2 < [2.

Proof: With Theorem 2-31 it holds for all CdlI- or NI- or RA-like segments 2( in § that 2
< |A|. From this the theorem follows with Theorem 2-42. m

Theorem 2-45. Every closed segment has a minimal closed segment as subsegment
If (9, A) € CS, then there is a minimal closed segment B in § such that B < 2.

Proof: Let X = {($, &) | There is a minimal closed segment B in $ such that B < 2} n
CS. To prove the theorem, it suffices to show that X € CSR, then the statement follows
with Theorem 2-40-(ii).

First, we have X < CS < SEQ x {2 | « is a segment} and {($), A) | & is a minimal
closed segment in $} < X.

We still have to show that it holds for all $§ € SEQ and G € ASCS($)) with {$} x
Ran(G) < X that {9} x GEN(($, G)) < X. First, suppose $ € SEQ and G € ASCS(%))
and {$H} x Ran(G) < X. Then we have {$} x Ran(G) < CS. Now, suppose (5, 2A) €
{9} x GEN(($, G)). Then we have ($, ) e CS. Because of 2l € GEN({(9, G)) there is
then, with Theorem 2-35, a 8 e SG($) such that G is an AS-comprising segment se-
quence for B in $H, AS(H) n B # @ and min(Dom(A))+1 = min(Dom(B)) and
max(Dom(A)) = max(Dom(®8))+1 and 2 is a Cdl- or NI- or RA-like segment in $.

Then there is an i« € Dom(AS($)) n Dom(8). We have that G is an AS-comprising
segment sequence for 8. With Definition 2-9, it thus holds for all » € Dom(AS($))) n
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Dom(®8) that there is an s € Dom(G) such that » € Dom(G(s)). Therefore there is such
an s for 7. By hypothesis, we have {$i} x Ran(G) < X and hence ($), G(s)) € X and thus
there is a minimal closed segment € in $ such that € < G(s). With Theorem 2-24, we
have G(s) < B and hence € < B and thus, because of 6 < 2, we have € < 2. Hence

we have (9, 2A) € X. m

Theorem 2-46. Ratio of inference- and assumption-sentences in closed segments
If (5, 2A) € CS, then |AS(H) n A <[IS(H) n .

Proof: Let X = {(£), ) | If 2 is a Cdl- or NI- or RA-like segment in §), then |AS($)) n |
<|1IS(9) n A} n CS. To prove the theorem, it suffices to show that X € CSR, then the

statement follows with Theorem 2-40-(ii) and Theorem 2-42.

First, we have X < CS < SEQ x {2 | 2 is a segment}. With Theorem 2-33, we also
have {($9, ) | 2 is a minimal closed segment in H} < X.

We have to show that for all $ € SEQ and G € ASCS($) with {$} x Ran(G) < X it
holds that {$} x GEN(($, G)) < X. First, suppose ) € SEQ and G € ASCS($)) and
{H} x Ran(G) < X. Then we have {$} x Ran(G) < CS. Now, suppose (5, ) € {H} x
GEN(($, G)). Then we have (9, 2) e CS. Because of 2 € GEN(($), G)), there is then,
with Theorem 2-35, a B € SG($)) such that G is an AS-comprising segment sequence for
B in $H and min(Dom(2A))+1 = min(Dom(8)) and max(Dom(2()) = max(Dom(®8))+1 and
20 is a Cdl- or NI- or RA-like segment in $. With Theorem 2-29, we then have |AS($)) n
A < 1+AS(H) n B and 1+I1S(H) n B| < [IS(H) n A|. With Definition 2-9-(iii-c), we
have for all [ € Dom(AS($)) n Dom(8): There is an ¢ € Dom(G) such that | e
Dom(G (7)) and with Theorem 2-24 it holds for all i € Dom(G) that G(:) < 2B. Thus we
have U{AS($) n G(i) | 1 € Dom(G)} = AS(H) n B. Also, we have U{IS(H) n G(?) |i e
Dom(G)} < IS($) n *B.

Because of {$} x Ran(G) < X, we have that for all i € Dom(G) it holds that (9, G (7))
e X and thus that |JAS($) n G(@)] < |IS($H) n G (7). With Theorem 2-22-(i) and Theorem
2-27, it holds for all 7, j € Dom(G) that if 7 # 7, then G(1) n G(j) = @. Thus we have for
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all 4, 7 € Dom(G): If i # j, then (AS(%) n G(®)) n (AS(H) n G(5)) =@ and (IS(H) n G(i))
n (IS(9) n G()) = 0.

Hence we have

U{AS(5) n G(5) | j € Dom(G)} = 27257 |AS(H) n G
and

UL1S(5) n G() | j € Dom(G)H = ;257 1S(9) 0 GO,
Because of |AS(9) n G(H)| < [IS($H) n G(j)| for all 7 € Dom(G), we also have:

TP AS() 0 GO < ZPH T IS(9) n GO

7=0
Thus we have
AS(5) n A < 1+AS(H) n B| = 1+X700 7 |AS(9) n G <

132007 IS(5) n GO)I < 1+IS(5) n Bl <[1S(5) n Al

Therefore we have (5, 2) € X. m

Theorem 2-47. Every assumption-sentence in a closed segment 2l lies at the beginning of 2 or
at the beginning of a proper closed subsegment of 2

If (5, /) € CS, then for all i € Dom(AS($))) n Dom(%):
(i)  i=min(Dom(2A))
or
(i)  Thereis a B with (5, B) € CS such that
a) <=min(Dom(8)) and
b)  min(Dom(2()) < min(Dom(B)) < max(Dom(B)) < max(Dom()).

Proof: Let X = {($, ) | For all € Dom(AS($))) n Dom(2(): s = min(Dom(%2()) or there
is a B with (£, B) e CS such that i = min(Dom(28)) and min(Dom(2()) < min(Dom(B))
< max(Dom(®8)) < max(Dom(2())} n CS. To prove the theorem, it suffices to show that
X € CSR, then the statement follows with Theorem 2-40-(ii).

First, we have X < CS < SEQ x {2 | 2 is segment} and with Definition 2-17,
Definition 2-14-(i), Definition 2-15-(i), Definition 2-16-(i) and Theorem 2-41 it holds that
{($, 2) | A is a minimal closed segment in $} < X.
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We still have to show that for all $§ € SEQ and G € ASCS($) with {$} x Ran(G) <
X it holds that {©} x GEN((9, G)) < X. First, suppose $ € SEQ and G € ASCS($)
and {$H} x Ran(G) < X. Then we have {$} x Ran(G) < CS. Now, suppose (5, ) €
{9} x GEN(($, G)). Then we have (§, ) € CS. With 2 € GEN(($), G)), there is then a
B e SG($H) such that G is an AS-comprising segment sequence for 9B in §), AS(H) n B
# 0 and min(Dom(2())+1 = min(Dom(8)) and max(Dom(2()) = max(Dom(®8))+1 and A
is a Cdl- or NI- or RA-like segment in $.

Now, suppose i € Dom(AS($))) n Dom(2l) and 7 # min(Dom(%2()). With Theorem 2-30,
we then have min(Dom(2()) < ¢ < max(Dom(2()). Then we have min(Dom(*B)) < i <

max(Dom(8)). Then we have i € Dom(AS($))) n Dom(8). We have that G is an AS-

comprising segment sequence for 8. With Definition 2-9, we therefore have that for all

e Dom(AS(9)) n Dom(®8) there is an s € Dom(G) such that » € Dom(G(s)). Therefore
there is such an s for . Then we have i € Dom(AS($)) n Dom(G(s)) and according to
Theorem 2-24 we have G(s) < 9B < 2. By hypothesis, we have {} x Ran(G) < X and
hence (5, G(s)) € X. Therefore we have that for all » € Dom(AS($))) n Dom(G(s)) it
holds that » = min(Dom(G(s))) or that there is a € with ($, €) € CS such that r =
min(Dom(¢)) and min(Dom(G(s))) < min(Dom(¢)) < max(Dom(<)) < max(Dom(G(s))).
Therefore we have i = min(Dom(G(s))) or there is a suitable €. In the first case, G(s)) it-
self is the desired segment, because with (£, G(s)) € X we also have (9, G(s)) € CS.
Moreover, it then follows by hypothesis that min(Dom(2()) < ¢ = min(Dom(G(s))) and
max(Dom(G(s))) < max(Dom(8)) < max(Dom(®8))+1 = max(Dom(%())). With Theorem
2-44, we also have min(Dom(G(s))) < max(Dom(G(s))). Suppose for the second case that
¢ is as required. Then we have min(Dom()) < i = min(Dom(<)) < max(Dom(¢)) <
max(Dom(G(s))) < max(Dom(8)) < max(Dom(%()) and hence € is the desired segment.

Therefore we have for all i € Dom(AS($))) n Dom(2(): < = min(Dom(%()) or there is a
B with ($, B) € CS such that i« = min(Dom(23)) and min(Dom(2()) < min(Dom($8)) <
max(Dom(8)) < max(Dom(%()). Hence we have (9, ) € X. m
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Theorem 2-48. Every closed segment is a minimal closed segment or a Cdl- or NI- or RA-like
segment whose assumption-sentences lie at the beginning or in a proper closed subsegment

If (9, A) € CS, then:
(i)  2Ais aminimal closed segment in £
or

(i) A is a Cdl- or NI- or RA-like segment §, where for all i € Dom(AS($)) n Dom(2()
with min(Dom(2()) < ¢ it holds that there is a 98 such that

a) (i, %) e B,

b) (9, %) eCS,

c) i=min(Dom(B)) and

d) min(Dom(%)) < min(Dom(B)) < max(Dom(B)) < max(Dom(()).

Proof: Suppose (£, 2) € CS. Now, suppose 2 is not a minimal closed segment in $.
Then it holds with Theorem 2-42 that 2 is a Cdl- or NI- or RA-like segment in § and,
with Theorem 2-47, that for all i € Dom(AS($)) n Dom(2() with min(Dom(%()) < ¢ there

is a suitable B. m

Theorem 2-49. Closed segments are non-redundant, i.e. proper initial segments of closed
segments are not closed segments

If (5, 2) e CS, then for all i € Dom(%): (5, 2l7) ¢ CS.

Proof: Suppose X = {(), A) | (5, A) € CS and for all i € Dom(2): (H, A1) ¢ CS }. To
prove the theorem, it suffices to show that X € CSR, then the statement follows with
Theorem 2-40-(ii).

First, we have X < CS < SEQ x {2 | 2 is a segment} and with Definition 2-17,
Definition 2-14-(ii), Definition 2-15-(ii), Definition 2-16-(ii), Theorem 2-41 and Theorem
2-42 it holds that {($, 2) | 2 is a minimal closed segment in $} < X.

We have to show that for all $ € SEQ and G € ASCS($) with {$} x Ran(G) < X it
holds that {$} x GEN(($, G)) < X. First, suppose ) € SEQ and G € ASCS($)) and
{H} x Ran(G) < X. Then we have {$} x Ran(G) < CS. Now, suppose (5, ) € {H} x
GEN((%, )). Then we have 2 € GEN(($, )) and thus (£, ) € CS. Also, there is then
a ‘B e SG($) such that G is an AS-comprising segment sequence for 95 in $ and AS($)
n B # 0 and min(Dom(2A))+1 = min(Dom(28)) and max(Dom(2()) = max(Dom(8))+1
and 2 is a Cdl- or NI- or RA-like segment in $). Now, suppose for contradiction that ($),
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A7) € CS for an i € Dom(2(). Then we have that 2([7 is a segment in $). With Theorem
2-7, we then have min(Dom(244)) = min(Dom(%()) and thus with Theorem 2-23 that for
all j € Dom(G) it holds that min(Dom(%([4)) < min(Dom(8)) < min(Dom(G(y)).

With Theorem 2-35-(iii), we then have that 2([ is not a minimal closed segment in £).
Then it holds with Theorem 2-41 that there is a G* € ASCS($)) with {$} x Ran(G*) <
CS and A7 € GEN(($, G*)). With Theorem 2-35, we then have that there is a B' €
SG($) such that min(Dom(2())+1 = min(Dom(2A7))+1 = min(Dom(B")) and
max(Dom(27)) = -1 = max(Dom(2")+1. We will now show that there is an s e
Dom(G) such that i € PGEN({($), G([s+1))), which, according to Theorem 2-35-(vi),
contradicts 2f € GEN((§, G)).

It holds with Theorem 2-35-(iv) that there is an [ € Dom(AS($))) n Dom(2A[7) such that
min(Dom(2(l4)) = min(Dom(2A)) < I. Now, suppose lp = max({l | [ € Dom(AS(9)) n
Dom(2([4) and min(Dom(2(f)) < {}. It then follows with 7 < max(Dom(2()) and Dom(%([ i)
< Dom(2l) that min(Dom(2()) = min(Dom(2([7)) < Iy < max(Dom(%()). Then we have
min(Dom(®B)) < lp < max(Dom(*8)). Then we have I, € Dom(AS($)) n Dom(B). We

have that G is an AS-comprising segment sequence for 2B. With Definition 2-9, it there-
fore holds that there is an s € Dom(G) such that [, € Dom(G(s)). Then we have that [y €
Dom(AS($)) n Dom(G(s)) and hence, because of {$} x Ran(G) < X < CS and with
Theorem 2-47, that min(Dom(G(s))) < lo < max(Dom(G(s))). We also have that (£, 2(l4)
e CS and thus, with Theorem 2-47, that [, < 4-1. Hence, we have that min(Dom(2(}7)) <
min(Dom(G(s))) < i-1.

Now, suppose k < s. Since G is an AS-comprising segment sequence for B in §, it then
follows with Definition 2-9 and Definition 2-7 that min(Dom(2(}7)) < min(Dom(G(k))) <
min(Dom(G(s))) < ¢-1 and thus min(Dom(G(k))) € Dom(8"). Since {$} x Ran(G) < X
< CS, it then holds with Theorem 2-42 that min(Dom(G(k))) € Dom(AS(H)) n
Dom(®8"). Since G* is an AS-comprising segment sequence for 8" in §, there is then an r
e Dom(G*) such that min(Dom(G(k))) € Dom(G*(r)). Then we have min(Dom(G(k)))
e Dom(AS($)) n Dom(G*(r)). Suppose min(Dom(G*(r))) = min(Dom(G(k))). Then it
holds with {$} x Ran(G) < X and {$} x Ran(G*) < CS that max(Dom(G(k))) <
max(Dom(G*(r))). Suppose min(Dom(G*(r))) # min(Dom(G(k))). Then it holds with
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{$H} x Ran(G*) < CS and Theorem 2-47 that there is a € such that (£, ¢) € CS and
min(Dom(G(k))) = min(Dom(€)) and min(Dom(G*(r))) < min(Dom(¢)) < max(Dom(¢))
< max(Dom(G*(r))). Then it holds with {$} x Ran(G) < X that max(Dom(G(k))) <
max(Dom(¢)). Thus holds with Theorem 2-5-(i) in both cases G(k) < G*(r). Therefore
we have for all £ < s that there is an 7 € Dom(G¥*) such that G(k) < G*(r).

Since G* is an AS-comprising segment sequence for B' and max(Dom(8")) = i-2 we
thus have in particular that max(Dom(G(s))) < i-2. We also have that if 7 is an Nl-like
segment in $), then there is j € Dom(2I[7) such that P($),) = I" and P($),.2) = "—I" or P(),)
= "—I"" and P($),2) = T and for all » € Dom(G*) it holds that ; < min(Dom(G*(r))) or
max(Dom(G*(r))) < j. If there was a k < s such that min(Dom(G(k))) < j <
max(Dom(G(k))), then there would be, as we have just shown, an » € Dom(G*) such that
G(k) < G*(r) and thus min(Dom(G*(r))) < j < max(Dom(G*(r))). Therefore, if 2Al7 is
an NI-like segment in $), then there is j € Dom(2(l7) such that P(£),) = I and P(9.2) =
"I or P($);) = "—I"" and P($:2) =T and for all £ < s it holds that j < min(Dom(G(k)))
or max(Dom(G(k))) < j. Also, we have for all [ € Dom(AS($)) n Dom(8") that there is a
k < ssuch that [ € Dom(G(k)). First, we have 8" < B and thus there is for every such [ a
k € Dom(G) such that I € Dom(G(k)). Also, if s < k, we would have, with Definition 2-9
and Definition 2-7, that I, < max(Dom(G(s))) < min(Dom(G(k))) < I, while, on the other
hand, we have [ <.

With Definition 2-9 and Definition 2-7, we can easily show that G[(s+1) € SGS($).
Hence, we have that G[(s+1) is an AS-comprising segment sequence for 8" and thus also
that Gl (s+1) € ASCS($) and hence that A7 € PGEN(($), G[(s+1))). This, however con-

tradicts Theorem 2-35-(vi). Therefore there is no i« € Dom(2l) such that ($, 2(7) € CS
and, because (9, 2A) € CS, we have (9, ) € X. m

Theorem 2-50. Closed segments are uniquely determined by their beginnings
If 2, 2" are closed segments in $) and min(Dom(2()) = min(Dom(2A")), then A = 2A".

Proof: Let 2, ' be closed segments in $ and min(Dom(2()) = min(Dom(2(')). Suppose
for contradiction that max(Dom(2()) < max(Dom(2(')). Then we would have have
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min(Dom(2")) = min(Dom(2A)) < max(Dom(2())+1 < max(Dom(2(")). Since 2" is a seg-
ment, we would thus have max(Dom(2))+1 e Dom(2) and thus that
2A'T(max(Dom(2A))+1) = 2L is a closed segment in $. Together with Theorem 2-49 this
contradicts our assumption that 2(' is a closed segment in . In the same way, it follows
for max(Dom(2l")) < max(Dom(%()) that 2 would not be a closed segment in . Therefore
we have max(Dom(2()) = max(Dom(2(")) and thus A = 2(". m

Theorem 2-51. AS-comprising segment sequences for one and the same segment for which all
values are closed segments are identical.

If 2 is a segment in § and G, G* are AS-comprising segment sequences for 2L in $ and {H} x
Ran(G) < CSand {$} x Ran(G*) < CS, then G = G*.

Proof: Suppose 2l is a segment in $) and suppose G, G* are AS-comprising segment se-
quences for 2 in $ and {$H} x Ran(G) < CS and {H} x Ran(G*) < CS. With Definition
2-9, we then have G, G* € SGS(H)\{0} and with Theorem 2-24 it holds for all i €
Dom(G) that G(z) < 2, and for all j € Dom(G*) that G*(j) < 2. Also, we have Ran(G)
< Ran(G¥*). To see this, suppose i € Dom(G). Then we have (9, G(z)) € CS and thus we
have that min(Dom(G(7))) € Dom(AS($))) n Dom(R(). Thus there is a j € Dom(G*) such
that min(Dom(G(7))) € Dom(G*(y)). With (£, G*(j)) € CS and Theorem 2-47 and
Theorem 2-49, we then have G (i) < G*(j). Analogously, it follows that there is an i* €
Dom(G) such that G*(j) < G(i*). Then we have G(7)) < G(i*). Since we have, with
Theorem 2-43, that G(7) # @ and thus G(i) n G(i*) # 0, it then follows with Theorem
2-27 that G (i) = G(*) and thus that G*(j) < G(z). Hence we have G*(j) = G (7). There-
fore we have G (i) € Ran(G*). Hence, we have Ran(G) < Ran(G*). Analogously, it fol-
lows that Ran(G*) < Ran(G). Hence, we have Ran(G) = Ran(G*). With Theorem
2-22-(iii), it then follows that Dom(G) = Dom(G*).

Now, we show by induction on i that it holds for all i € Dom(G) = Dom(G*) that G (7)
= G*(i) and thus that G = G*. For this, suppose that for all [ < i it holds that if [
Dom(G), then G(I) = G*(I). Now, suppose 7 € Dom(G). Suppose for contradiction that
G(7) # G*(3). With (9, G(2)) € CS and (9, G*(37)) € CS and with Theorem 2-50, we then
have  min(Dom(G(z))) # min(Dom(G*(z))). Suppose min(Dom(G(3))) <
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min(Dom(G*(z))). It holds with ($), G(7)) € CS that min(Dom(G(7))) € Dom(AS($)) n
Dom(2(). Thus there is a j € Dom(G*) such that min(Dom(G(3))) € Dom(G*(5)). In the
same way as above, it then follows that G*(j) = G(i). Since, by hypothesis, G(z) # G*(3),
we then have G*(j) # G*(3) and thus j # i. Since G, G* € SGS(9), it then follows with
Definition 2-7 and min(Dom(G*(5))) = min(Dom(G(7))) < min(Dom(G*(4))) that j < 4.
According to the I.H., it then follows that G(j) = G*(j) = G (i), whereas it holds with
Theorem 2-22-(i) and j < i that G(j) # G (7). Contradiction! Using the I.H., we can show a
contradiction for min(Dom(G*(z))) < min(Dom(G(z))) in the same way. Hence we have

min(Dom(G(2))) = min(Dom(G*(4))) and thus we have G(7) = G*(7). m

Theorem 2-52. If the beginning of a closed segments 2’ lies in a closed segment A, then ' is
a subsegment of A

If 2, 2" are closed segments in $ and min(Dom(2A')) € Dom(Rl), then ' < 2.

Proof: Let 2, 2" be closed segments in $ and suppose min(Dom(2A")) € Dom(2(). Then
we have min(Dom(2(')) € Dom(AS($)) n Dom(2(). With Theorem 2-47, there is then a
B < 2 such that B is a closed segment in $ and min(Dom(2(')) = min(Dom($8)). It then
follows with Theorem 2-50 that ' = 95 and therefore that 2(' < 2. m

Theorem 2-53. Closed segments are uniquely determined by their end
If 2, 2" are closed segments in § and max(Dom(2()) = max(Dom(2(")), then A = A",

Proof: Let 2, 2" be closed segments in § and max(Dom(2()) = max(Dom(2(")). Suppose
min(Dom(A)) < min(Dom(2A')). Then we have min(Dom(A)) < min(Dom(2")) <
max(Dom(2A")) = max(Dom(2()). Then we have min(Dom(2)) € Dom(AS(9)) n
Dom(2()) and min(Dom(2()) < min(Dom(2A")). With Theorem 2-48 there is thus a closed
segment B in $ such that min(Dom(2")) = min(Dom(B)) and min(Dom(XA)) <
min(Dom(8)) < max(Dom(8)) < max(Dom(2()). It then holds with Theorem 2-50 that '
= 3. But then we have max(Dom(')) = max(Dom(*8)) < max(Dom(()), which contra-
dicts the hypothesis. Therefore we have min(Dom(2(")) < min(Dom(%()). In the same way,
we can show that for min(Dom(2(")) < min(Dom(2()) we would have max(Dom(2()) <

max(Dom(2l")), which also contradicts the assumption. Hence we have min(Dom(2(")) <
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min(Dom(2")). From this, it follows with Theorem 2-50 that 2 = '. m

min(Dom(2A)) and min(Dom(A)) < min(Dom(2A’)) and thus min(Dom(2A)) =

Theorem 2-54. Proper subsegment relation between closed segments

If A, A" are closed segments in §, then:
min(Dom(2A")) € Dom(2)\{min(Dom(2())}
iff

A < 2.

Proof: Let %A, 2A' be closed segments in $). (L-R): Suppose min(Dom()) e
Dom(20))\{min(Dom(2A))}. Hence min(Dom(2')) #= min(Dom(2()) and therefore A" + 2.
Furthermore min(Dom(2(")) € Dom(2() and hence by Theorem 2-52 (' < 2. Thus ' <
2.

(R-L): Now, suppose ' < 2. Then we have min(Dom(')) € Dom(2(). We also have
min(Dom(2(")) # min(Dom(%A)), because otherwise it would hold with Theorem 2-50 that
2" = 2A. Hence we have min(Dom(2(')) € Dom(2)\{min(Dom(2())}. m

Theorem 2-55. Proper and improper subsegment relations between closed segments
If 2, 2" are closed segments in $) and min(Dom(2(')) € Dom(%), then A" < A or A' = A.

Proof: Let 2, ' be closed segments in $ and suppose min(Dom(2')) € Dom(%(). Sup-
pose min(Dom(2A")) € Dom())\{min(Dom(2())}. With Theorem 2-54, we then have 2'
c 2. Suppose min(Dom(2A")) = min(Dom(()). With Theorem 2-50, we then have ' = 2.

Theorem 2-56. Inclusion relations between non-disjunct closed segments
If 2, 2" are closed segments in $ and A n A" £ @, then:
(i)  min(Dom(2A)) < min(Dom(2A")) iff A' < 2,
(i)  min(Dom(2A)) = min(Dom(2(")) iff A' = A,
(iii))  min(Dom(21)) < min(Dom(21")) iff max(Dom(2L")) < max(Dom(2L)),
(iv)  min(Dom(2()) = min(Dom(")) iff max(Dom(2()) = max(Dom(2(")).

Proof: Let 2 and 2" be closed segments in § and let 2l n A" # 0.

Ad (i): (L-R): Suppose min(Dom(2()) < min(Dom(%A")). Since 2 and 2" are segments and
A n A" £ 0, it holds with Theorem 2-9 that min(Dom(2()) € Dom(2(") or min(Dom(2l")) e
Dom(2). With the hypothesis, it then holds that min(Dom(')) e
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Dom(2)\{min(Dom(2())}. With Theorem 2-54, we thus have ' < 2. (R-L): Suppose '
c A Again with Theorem 2-54, we then have min(Dom(2’)) €
Dom(20))\{min(Dom(A))} and therefore: min(Dom(2()) < min(Dom(2(")).

Ad (ii): Follows with Theorem 2-50

Ad (iii): (L-R): Suppose min(Dom(2()) < min(Dom(%A')). Then we have with (i) that '
< 2. With Theorem 2-5-(i) we then have max(Dom(2(")) < max(Dom(2()). With ' < 2
and Theorem 2-53, we then have max(Dom(2(")) # max(Dom(2()). Hence we have
max(Dom(2')) < max(Dom(()). (R-L): Suppose max(Dom(2(')) < max(Dom(%()). It then
holds with Theorem 2-5-(i) that 24 < 2A'. With (i) and (ii) we then have that neither
min(Dom(2")) < min(Dom(2()) nor min(Dom(2A")) = min(Dom(%A)). Therefore we have
min(Dom(2()) < min(Dom(2()).

Ad (iv): Follows with (ii) and Theorem 2-53. m

Theorem 2-57. Closed segments are either disjunct or one is a subsegment of the other.
If 2L and 2" are closed segments in $, then: A n A' =@ or A < A" or A" < 2.

Proof: Let 2 and 2A' be closed segments in §). Suppose 2 n A" # @. Then we have
min(Dom(2A")) < min(Dom(2A()) or min(Dom(2()) < min(Dom(%A")). With Theorem 2-56-(i)
and -(ii), it then follows that A < A" or A' < 2. =

Theorem 2-58. A minimal closed segment 21" is either disjunct from a closed segment 2l or it is
a subsegment of 2

If 2 is a closed segment in $ and ' is @ minimal closed segment in §, then: A n A" =@ or A’
c 2

Proof: Let 2 be a closed segment in $ and suppose 2(' is a minimal closed segment in £.
Then 24" is also a closed segment in §). Suppose 2 n A’ # @. Then we have min(Dom(2())
< min(Dom(%A")). For if min(Dom(2A')) < min(Dom(2A)), we would have with Theorem
2-56-(i) that A < 2A'. Then we would have with Theorem 2-54 min(Dom(2()) e
Dom(2")\{min(Dom(A"))}. Thus we would have min(Dom(2()) # min(Dom(2(")). Since
20 is a closed segment, we would also have that min(Dom(2()) € Dom(2") n Dom(AS(%))
and thus, according to Definition 2-17, Definition 2-14, Definition 2-15 and Definition
2-16, that min(Dom(2()) = min(Dom(2(")). Contradiction! Therefore min(Dom(2()) <
min(Dom(2(")). With 2 n ' # @ and Theorem 2-56-(i) and -(ii), it then follows that ' <
A m
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The next theorem tells us that for every segment 2 that contains at least one assumption-
sentence and in which for every assumption-sentence there is a closed subsegment of A

that contains this assumption-sentence there is an AS-comprising segment sequence G for

2 that enumerates the greatest closed disjunct subsegments of 2 in such a way that all
closed subsegments of 2 are covered

Theorem 2-59 will play an important role in the proofs of Theorem 2-67, Theorem 2-68,
Theorem 2-69, which are crucial for arriving at a proof of the correctness and complete-
ness of the Speech Act Calculus: With these theorems we can later show that assumptions
can be discharged by Cdl, NI and PE and only by Cdl, NI and PE. Theorem 2-59 itself is
essential for showing that Cdl, NI and PE can discharge assumptions and thus for the

proof of completeness.

Theorem 2-59. GEN-material-provision theorem

If 2 is a segment in $H, AS($H) n A # @, and for every : € Dom(2() n Dom(AS(%))) there is a
closed segment 25 in $ such that (3, ;) € B and B < 2, then:
There isa G € ASCS($)) such that

(i) G isan AS-comprising segment sequence for 2L in 9,
(i)  URan(G) =U{B | B < Aisaclosed segment in $H}, and
@iii) {9} x Ran(G) < {H} x {B | B < A isaclosed segmentin H} < CS.

Proof: Suppose 2 is a segment in §, AS(9) n A # 0, and for every i € Dom(2() n
Dom(AS($)) there is a closed segment B in $ such that (¢, ;) € B and B < . It fol-
lows with Definition 2-1 that $ € SEQ.

Suppose X = {5 |B < A and (£, B) € CS and for all € < A: If (H, €) € CS and B
C ¢, then B = ¢}. Then it holds that X < SG($)). To apply Theorem 2-17 we show that
for all 20*, ' € X with A* # 2" it holds, that (* n ' = @. To that end suppose 2*, ' €
X and 2* £ 2A". From 2*, A" € X it follows that (9, A*), (9, &) € CS. Theorem 2-57
yields 4* n A" =@ or A* < A" or A' < A*. The second and the third alternative lead to a
contradiction: Assume 24* < '. Since 2A* € X we have that for all € < 2A: If (9, €) €
CS and 2* < €&, then * = €. Since ' € X we have ' < 2 and (5, ') € CS. From the

last assumption we can derive 2(* = 2(', which contradicts an earlier assumption. From the

assumption of &' < A* we can analogously derive a contradiction. Hence A* n ' = 0



90 2 The Availability of Propositions

must be the case. So we have for all A*, A' € X with 2A* £ 2(', that A* n A" = 0. With
Theorem 2-17 it holds that there is a G € SGS($) such that Ran(G) = X.
Now we can show that G satisfies conditions (i) to (iii). From (i) it follows that G €

ASCS($€). Ad (i): We have to show that

a) G =0,

b) min(Dom(2l)) < min(Dom(G(0))),

c) max(Dom(G(max(Dom(())))) < max(Dom(2()), and

d) forall [ € Dom(AS($)) n Dom(%l) it holds that there is an i € Dom(G) such that [ e

Dom(G(z)).

By Definition 2-9 it then follows that G is an AS-comprising segment sequence for 2( in

$. Since AS($) n A # @ and thus Dom(AS(5))) n Dom(2L) # @, we get a) from d). Fur-
thermore since for every i € Dom(2() n Dom(AS($))) there is a closed segment 5 in
such that (7, ,) € B and B < 2, both d) and a) follow from

e) forall B < A with (£, B) € CS: There is an i € Dom(G), such that B < G(3).

Ad e): Suppose B < A with (5, B) e CS, such that there is no i € Dom(G) with 8 <
G (7). Suppose £ =min({j | There isa € < 2 with (§, €) € CS, such that there isno i
Dom(G) with € < G(3), and j = min(Dom(€))}). Then there is a € < 2 with ($, €) €
CS, such that there is no i € Dom(G) with € < G(z), and £ = min(Dom(¢)). Now sup-

pose €' < A and (9, €') € CSand ¢ < ¢'. Then we have min(Dom(¢")) < k. From that it
follows that there is no i € Dom(G), such that €' < G(3), else it would also hold that € <

G (7) for the same . Since & is minimal, we get min(Dom(¢")) = k. With Theorem 2-50 we

can derive that € = ¢'. Hence for all ' < 2 with (£, ¢) e CSand € < ¢'we get € =",
Therefore € € X and by that there is an i € Dom(G), such that € = G (). Contradiction!

Thus for all B < A with (£, B) e CS there is an i« € Dom(G), such that 8 < G(4). Ad
b): For all 8 € Ran(G) = X it holds that % < 2. Because of G # @ we get G(0) e
Ran(G) = X and thereby G(0) < 2. Hence min(Dom(2()) < min(Dom(G(0))). Ad c):
With G + 0 we get max(Dom(G)) € Dom(G) and thereby G(max(Dom(G))) € Ran(G)
= X. Hence max(Dom(G(max(Dom(())))) < max(Dom(%)).
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Ad (ii): Suppose (i, ;) € URan(G). Therefore (i, $,) € UX. Hence we have a B € X
with (7, $;) € 2. From that we can infer 8 < 2( and ($), B) € CS. Thus B € {8 | B <
20 is a closed segment in $} and (i, ;) € U{B | B < A is a closed segment in $H}. From
e) we get vice versa U{%5B | B < 2 is a closed segment in H} < URan(G).

Ad (iii): (iii) follows from the definition of X and Ran(G) = X. m

Theorem 2-60. If all members of an AS-comprising segment sequence for 2( are closed seg-
ments, then every closed subsegment of 2( is a subsegment of a sequence member

If 5 € SEQ, A € SG($H) and G € ASCS($) is an AS-comprising segment sequence for 2 in $
and {9} x Ran(G) < CS, then for all €: If € < 2 is a closed segment in ), then there is an i
e Dom(G) such that € < G ().

Proof: Suppose $ € SEQ, 2 € SG($) and G € ASCS($)) is an AS-comprising segment

sequence for 2 in $ and {$H} x Ran(G) < CS. Now, suppose € < 2 is a closed segment
in $. With Definition 2-11 to Definition 2-13 and Theorem 2-42, we then have
min(Dom(¢)) € Dom(AS($) n ). According to Definition 2-9-(iii-c), there is thus an i
e Dom(G) such that min(Dom(€)) € Dom(G(z)). By hypothesis, we have ($), G(i) €
CS. It then follows with Theorem 2-52 that € < G (7). m

Up to now, we have primarily proved theorems that hold for all closed segments. Later,

we will also and mostly be interested in those properties of closed segments that depend

on whether they are the result of the application of conditional introduction (Cdl-closed)

or negation introduction (NI-closed) or particular-quantifier elimination (PE-closed). Ac-

cordingly, we will now define different predicates for these kinds of closed segments. We

will then have that every closed segment belongs to one of these kinds (Theorem 2-61).

Definition 2-23. Cdl-closed segment

2 is a Cdl-closed segment in )

iff

2A is a closed segment and a CdlI-like segment in $).
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Definition 2-24. NI-closed segment

20 is an NI-closed segment in

iff

20 is a closed segment and an NI-like segment in $.

Definition 2-25. PE-closed segment

20 is a PE-closed segment in $

iff

20 is a closed segment and an RA-like segment in $).

Theorem 2-61. Cdl-, NI- and PE-closed segments and only these are closed segments
2 is a closed segment in $

iff

20 is a Cdl- or NI- or PE-closed segment in $.

Proof: Follows from Definition 2-22, Definition 2-23, Definition 2-24, Definition 2-25
and Theorem 2-42. m

Theorem 2-62. Monotony of '(F-)closed segment’-predicates
If9H, H € SEQand $H < &', then:
Q) If 21 is a Cdl-closed segment in §, then 2( is a Cdl-closed segment in $',
(i)  IfAisan Nl-closed segment in $), then 2 is an NI-closed segment in £',
(iii)  If2Ais a PE-closed segment in $), then 2L is a PE-closed segment in §',
(iv) If20isaminimal Cdl-closed segment in $), then %A is a minimal Cdl-closed segment in
9,
(v) If2Aisaminimal NI-closed segment in £, then 2( a minimal NI-closed segment in §’,
(vi) If 2 is a minimal PE-closed segment in ), then 2( is a minimal PE-closed segment in
9,
(vii) If 2 is a minimal closed segment in §, then 2 is a minimal closed segment in §', and
(viii) If2Ais a closed segment in ), then 2L is a closed segment in §'.

Proof: See Remark 2-1. m
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Theorem 2-63. Closed segments in the first sequence of a concatenation remain closed
If ', H e SEQ, then:
(i If 2 is a Cdl-closed segment in §, then 2 is a Cdl-closed segment in $~§',
(i)  IfAisan Nl-closed segment in §), then 2 is an NI-closed segment in $H5',
(iii)  1f2Ais a PE-closed segment in ), then 2l is a PE-closed segment in $~$', and
(iv) If2lisaclosed segment in §, then 2 is a closed segment in H~6'".

Proof: Follows with $ < $~9' and Theorem 2-62-(i), -(ii), -(iii) and -(viii). m

Theorem 2-64. (F-)closed segments in restrictions

If $ is a sequence, then:
(i) AisaCdl-closed segment in § iff 2 is a Cdl-closed segment in $HI max(Dom(())+1,
(i)  2lis an Nl-closed segment in § iff 2( is an NI-closed segment in $ max(Dom(2())+1,
(iii) A is a PE-closed segment in ) iff 2 is a PE-closed segment in $I'max(Dom(2A))+1,
(iv) 20 is a minimal Cdl-closed segment in $) iff 2 is a minimal Cdl-closed segment in

$HImax(Dom(A))+1,

(v) 2 is a minimal NI-closed segment in § iff 2 is a minimal NI-closed segment in
$HImax(Dom(A))+1,

(vi) 20 is a minimal PE-closed segment in § iff 2 is a minimal PE-closed segment in
$Hmax(Dom(2A))+1,

(vii) A is a minimal closed segment in $ iff 2 is a minimal closed segment in
HImax(Dom(A))+1, and
(viii) 2fisaclosed segment in § iff 2( is a closed segment in $HI max(Dom(())+1.

Proof: See Remark 2-2. m

Theorem 2-65. Preparatory theorem for Theorem 2-67, Theorem 2-68 and Theorem 2-69
If 2 is a segment in $ and if it holds for all closed segments B in $Imax(Dom(2()) that
min(Dom(2()) < min(Dom(®8)) or max(Dom(28)) < min(Dom(%A)), then for all 7 € Dom(2():

(i)  Afiis not a closed segment in $, and

(i)  Thereisno G € ASCS($) such that {$H} x Ran(G) < CS and Al € PGEN(($), G)).

Proof: Suppose 2( is a segment in $ and suppose it holds for all closed segments B in
$HImax(Dom(2A)) that min(Dom(2()) < min(Dom($8)) or max(Dom(B)) < min(Dom(%L)).
Next, suppose i € Dom(l). First, we have $ € SEQ. Ad (i): Suppose for contradiction
that Al is a closed segment in $. With Theorem 2-64-(viii), we would then have that Al
is a closed segment in $li. Furthermore, we have i < max(Dom(%2()) and hence $Hli <
$HImax(Dom(R()) and thus it holds with Theorem 2-62-(viii) that ([ is a closed segment
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in HImax(Dom(2A)). With Theorem 2-7, we have that min(Dom(2(}7)) = min(Dom(%())
and hence, with Theorem 2-31, that neither min(Dom(2()) < min(Dom(%(4)) nor
max(Dom(2[7)) < min(Dom(%()), which contradicts the hypothesis.

Ad (ii): Suppose for contradiction that there isa G € ASCS($) such that {$} x Ran(G)

C CSand 2l € PGEN(($), G)). Now, suppose j = min({i | i € Dom(2() and there is G €
ASCS($) such that {$} x Ran(G) < CS and 27 € PGEN(($, G))}). Then there isa G*
e ASCS(9) such that {$H} x Ran(G*) < CS and 2(; € PGEN(($), G*)). Now, suppose
for contradiction that there are a £ € Dom(2(l) and an [ € Dom(G*) such that 2% e
PGEN(($), G*[(I+1))). According to Theorem 2-25, G*[(/+1) is then an AS-comprising
segment sequence for 2Atmax(Dom(G*(()))+1. According to Definition 2-10, we then
have that G*[(I+1) € ASCS($) and, by hypothesis, that [k € PGEN({($), G*[(I+1))). On

the other hand, we also have k < j. Thus, we have a contradiction to the minimality of ;.

Therefore there are no £k € Dom(2(l) and [ € Dom(G*) such that Ak € PGEN(($,
G*I(I+1))). According to Definition 2-19, we then have that 2j € GEN({($), G*)) and
thus, with {$} x Ran(G*) < CS and Theorem 2-41, that ($), 2(j) € CS and therefore

that 21l is a closed segment in $), which contradicts (i). m

We close ch. 2.2 with four theorems that provide the basis for the proof of the correctness

and the completeness of the Speech Act Calculus. With these theorems we can later show
that Cdl, NI and PE and only Cdl, NI and PE can generate Cdl-, NI- and PE-closed seg-

ments and thus any closed segments.
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Theorem 2-66. Every closed segment is a minimal closed segment or a Cdl- or NI- or PE-
closed segment whose assumption-sentences lie at the beginning or in a proper closed sub-
segment

If 2 is a closed segment in §, then:
(i) Aisaminimal closed segment in
or

(i) A is a Cdl- or NI- or PE-closed segment in §, where for all : € Dom(AS(9)) n
Dom(2() with min(Dom(2()) < 7 it holds that there is a 8 such that

a) (i %) €’B,

b) 2B isaclosed segmentin ),

c) ¢=min(Dom(8)), and

d)  min(Dom(2()) < min(Dom(*B)) < max(Dom($3)) < max(Dom(%)).

Proof: Follows from Definition 2-22, Definition 2-23, Definition 2-24, Definition 2-25
and Theorem 2-48. m

Theorem 2-67. Lemma for Theorem 2-91
2 is a segment in $ and there are A, ' € CFORM such that

(1) Hminom@y = "Suppose A7,
(i)  For all closed segments 9B in $HImax(Dom(2A)): min(Dom(2A)) < min(Dom(B)) or
max(Dom($8)) < min(Dom(()),

(i) P(Hmaxoomey-1) =T,
(iv) For every r € Dom(AS($)) n Dom(2() with min(Dom(2()) < r < max(Dom(%())-1
there is a closed segment B in HI'max(Dom(2l)) such that (r, $,) € 9B, and
(V) $Hmaxoomey = "Therefore A -1,
iff
2L is a Cdl-closed segment in £.
Proof: (L-R): Let $ and 2 satsify the requirements and let A and I" be as demanded. First,
we have ) € SEQ. With Definition 2-11, we have that 2 is a Cdl-like segment in $).
Also, from clause (ii) of our hypothesis and Theorem 2-65-(i), it follows for all £ €
Dom(R() that 2AT'% is not a closed segment in $.
We have that AS(H) n A = {(min(Dom(2A)), Hminoomey)} OF that there is an ¢ €
Dom(AS(H)) n Dom() with min(Dom(()) < < < max(Dom(%())-1.
Now, suppose AS($)) n 2 = {(min(Dom(A)), Hminom(y))}- Because we have for all £
e Dom(%l) that Al % is not a closed segment in §), we have, with Theorem 2-32, that 2( is a
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minimal closed and thus a closed segment in §. Since 2( is a CdlI-like segment in $, 2 is
thus a Cdl-closed segment in $).

Now, suppose there is an i € Dom(AS($)) n Dom() with min(Dom(2)) < @ <
max(Dom(2())-1. Now, let € = {(I, £;) | min(Dom(2())+1 < [ < max(Dom(%())-1}. Then &
is a segment in $ and : € Dom(AS(H)) n Dom(€). Also, for every » € Dom(AS($))) n
Dom(€) there is a closed segment 9B in $ such that (r, $,) € B and B < ¢. To see this,
suppose r € Dom(AS($))) n Dom(€). Then we have min(Dom(2()) < r <
max(Dom(%())-1. According to clause (iv) of our hypothesis, there is thus a closed seg-
ment B in HImax(Dom(2()) such that (r, $,) € B. Then we have min(Dom(¢)) <
min(Dom(®8)), because otherwise we would have min(Dom(5)) < min(Dom(%()) < r <
max(Dom(®8)), which contradicts clause (ii). From ‘B being a segment in
$HImax(Dom(l)), we then have max(Dom(B)) < max(Dom(2())-1 = max(Dom(¢)). With
Theorem 2-5, we hence have B < ¢.

Thus € satisfies the requirements of Theorem 2-59. Therefore there is a G € ASCS($))

such that G is an AS-comprising segment sequence for € in $ and {$} x Ran(G) < CS.

According to the definition of €, we have ¢ e SG($)) and min(Dom(2))+1 =
min(Dom(¢)) and max(Dom(2)) = max(Dom(€))+1 and AS($)) n € # 0. We also have
that 21 is a Cdl-like segment in . It thus holds with Theorem 2-28 that 2 is not an NI-
like segment in $. Furthermore, we have that it holds for all i € Dom(2() that 24l is not a
closed segment in $. Thus we also have for all i € Dom(%() that 4 is not a minimal
closed segment in $).

According to Definition 2-18, we thus have 2 € PGEN(($, G)). Now, suppose for con-
tradiction that there are £ € Dom(2() and | € Dom(G) such that ATk € PGEN(($,
GI(I+1))). According to Theorem 2-25, GI((+1) is an AS-comprising segment sequence
for Armax(Dom(G(()))+1, and thus, with Definition 2-10, we have G[(i+1) € ASCS(5)).
By hypothesis, we have Ak € PGEN(($), GI(I+1))) and we have $ € SEQ and {$H} x
Ran(Gl(I+1)) < {9} x Ran(G) < CS. Altogether, we would thus have a contradiction to
Theorem 2-65-(ii). Therefore there are no £ € Dom(2() and [ € Dom(G) such that ATk e
PGEN(($), GI(+1))). According to Definition 2-19, we thus have 2 € GEN({($), G)).
Since {$H} x Ran(G) < CS, it thus follows with Theorem 2-41 that ($), 2) € CS. Hence
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20 is a closed segment in $) and a CdlI-like segment in $ and thus a Cdl-closed segment in
9.

(R-L): Now, suppose 2l is a Cdl-closed segment in §. Then 2( is a closed segment and a
CdlI-like segment in $). From 2( being a Cdl-like segment in § it then follows that there
are A, I' € CFORM such that (i), (iii) and (v) are satisfied. With Theorem 2-48, we also
have that (iv) holds. (If 2( is a minimal closed segment, (iv) holds trivially.)

Now, suppose B is a closed segment in $max(Dom(()). Suppose min(Dom(B)) <
min(Dom(2A)) and min(Dom(2A)) < max(Dom(®8)). Then we would have min(Dom(2())
Dom(28) and hence 2 n 9B # @ and min(Dom(8B)) < min(Dom(()). With Theorem
2-56-(i) and -(ii), we would thus have 21 < 9. But then we would have 2l < B <
$Himax(Dom(2A)) and hence max(Dom(2()) ¢ Dom(2() # @. Contradiction! Therefore we
have min(Dom(2()) < min(Dom(B)) or max(Dom(28)) < min(Dom(2()). Therefore we

also have (iii). m

Theorem 2-68. Lemma for Theorem 2-92
2l is a segment in $ and there are A, T' e CFORM and ¢ € Dom($)) such that
(i)  min(Dom(2A)) <4 < max(Dom(%)),
(i) Hminoomey) = "Suppose A™,
(iii)  For all closed segments B in $Hmax(Dom(2()): min(Dom(2()) < min(Dom(*B)) or
max(Dom($8)) < min(Dom(%()),

(lV) P(f)z) =TI and P(f)max(Dom(Ql))-l) = I
or

P($:) = "=I"" and P(Hmaxpom@y-1) =T,
(v)  For all closed segments 9B in HImax(Dom(l)): i < min(Dom(B)) or max(Dom(8)) <
1,
(vi) For every r € Dom(AS($)) n Dom(2() with min(Dom(2()) < r < max(Dom(2())-1
there is a closed segment B in $Hmax(Dom(%l)) such that (r, $,) € 9B, and
(Vi) $Hmaxoomey = "Therefore —A™
iff
2 is an NI-closed segment in $.

Proof: (L-R): Let $ and 2 satsify the requirements and let A, I" and ¢ be as demanded.
First, we have $ € SEQ. With Definition 2-12, we have that 2 is an NI-like segment in
$. Also, from clause (iii) of our hypothesis and Theorem 2-65-(i), it follows for all £ €
Dom(R() that 2% is not a closed segment in $.
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We have that AS(H) n A = {(min(Dom(2A)), Hminoomey)} OF that there is an ¢ €
Dom(AS(9)) n Dom(l) with min(Dom(2()) < < < max(Dom(%())-1.

Now, suppose AS($) n A = {(min(Dom(2()), Hminoomey))}-Because we have for all k
Dom(2() that A% is not a closed segment in §, we have, with Theorem 2-32, that 2 is a
minimal closed and thus a closed segment in $). Since 2 is an NI-like segment in §, 2 is
thus an NI-closed segment in ).

Now, suppose ther is an s € Dom(AS($)) n Dom() with min(Dom(A)) < s <
max(Dom(2())-1. Now, let € = {({, $;) | min(Dom(2A))+1 <[ < max(Dom(2())-1}. Then we
have that € is a segment in $) and s € Dom(AS($))) n Dom(¢). Also, there is for every r
e Dom(AS($))) n Dom(€) a closed segment B in $) such that (r, $,) € 6 and B < ¢.
To see this, suppose » € Dom(AS($)) n Dom(¢). Then we have min(Dom(A)) < r <
max(Dom(2())-1 and hence there is, according to clause (vi), a closed segment 9B in
Himax(Dom(2l)) such that (r, $,) € B. Then we have min(Dom(¢)) < min(Dom(B)),
because otherwise we would have min(Dom(®8)) < min(Dom(%()) < r < max(Dom(®8)),
which contradicts clause (iii). It also follows from 98 being a segment in $ max(Dom(2l))
that max(Dom($8)) < max(Dom(2())-1 = max(Dom(¢)). With Theorem 2-5, we therefore
have B < €.

Thus € satisfies the conditions of Theorem 2-59. Therefore there is a G € ASCS(9)
such that G is an AS-comprising segment sequence for € in $ and {$} x Ran(G) < {$}
x {€* | €* < Cisaclosed segmentin H} < {H} x {&€* | €* < A is a closed segment in
$H} < CS. According to the definition of &, we have that € € SG($)) and that
min(Dom(2())+1 = min(Dom(¢)) and max(Dom(2()) = max(Dom(&))+1 and we have that
20 is an NI-like segment in ). Also, we have for all » € Dom(G): ¢ < min(Dom(G(r))) or
max(Dom(G(r))) < 4. To see this, suppose » € Dom(G). Then we have G(r) < € is a
closed segment in $Hfmax(Dom(%()). By clause (v), we then have ¢ < min(Dom(G(r))) or
max(Dom(G(r))) < i. Furthermore, because for all i € Dom(2) it holds that 2} is not a

closed segment in £, we also have that for all ; € Dom(2() it holds that 2(} is not a mini-
mal closed segment in $).

Thus, according to Definition 2-18, we have 20 € PGEN(($), G)). Now, suppose for
contradiction that there are a £ € Dom(2() and an [ € Dom(G) such that 2(tk € PGEN(($),

GI1(l+1))). According to Theorem 2-25, G[(I+1) is an AS-comprising segment sequence
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for Amax(Dom(G(1)))+1 and thus we have, according to Definition 2-10, that G[(/+1) €
ASCS($). By hypothesis, we have 24k € PGEN(($, G[(i+1))). On the other hand, we
have € SEQ and {9} x Ran(Gl(I+1)) < {$H} x Ran(G) < CS. Altogether, we would
thus have a contradiction to Theorem 2-65-(ii). Therefore there are no £k € Dom(2() and [
e Dom(G) such that ATk € PGEN(($, GI(+1))). According to Definition 2-19, we thus

have 2 € GEN(($, G)) and thus with {$} x Ran(G) < CS and Theorem 2-41 (), 2A) €

CS. Hence we have that 2l is a closed segment in $) and an NI-like segment in $) and thus
an Nl-closed segment in $).

(R-L): Now, suppose 2 is an NI-closed segment in $). Then 2l is a closed segment and
an Nl-like segment in §. We have AS($)) n A = {(min(Dom(2A)), Hminwoom(y))} OF there is
a j € Dom(AS($)) n Dom(2() with min(Dom(2()) < j < max(Dom(2())-1.

First case: Suppose AS($)) n A = {(min(Dom(A)), Hminomey)}- Then it holds, with
Theorem 2-35-(iv) and Theorem 2-41, that 2( is a minimal closed segment in ). Since
is an NI-like segment in §), we then have that 2( is a minimal NI-closed segment in $).
From this it follows that there are A, I' € CFORM and < € Dom($)) such that (i), (ii), (iv)
and (vii) hold. Also, we have trivially that (vi) holds. Let now A, T" and 7 be as demanded
in clauses (i), (ii), (iv) and (vii).

Then we also have (iii) and (v). To see this, suppose B is a closed segment in
$Hmax(Dom(2A)). Then we have for [ = min(Dom(2()) or [ = i that [ < min(Dom(8)) or
max(Dom(®8)) < [. Since 2 is a minimal NI-closed segment and thus a minimal closed
segment in 9, it holds with Theorem 2-58 that B n [ = @ or 2 < *B. Since, by hypothe-
sis, we have B < HImax(Dom(2l)), it follows that {(max(Dom(2()), Himaxoomey)} € 2\B
and hence that 2l < 9B and thus that 8 n 20 = @. On the other hand, for / = min(Dom(%())
or [ =+ and min(Dom(*8)) <! < max(Dom(8)) we would have B n 2 # @ and thus a con-
tradiction.

Second case: Now, suppose there is a j € Dom(AS($))) n Dom(2() with min(Dom(%())
< 7 < max(Dom(2())-1. Then 2 is not a minimal closed segment in . With Theorem

2-41, there is then a G € ASCS($) with {$} x Ran(G) < CS and 2l € GEN(($), G)).
Then G is an AS-comprising segment sequence for € = {(/, ;) | min(Dom(2A))+1 <[ <

max(Dom(2())-1} in $). We have that 2( is an NI-like segment in $ and thus, according to
Definition 2-18 and Definition 2-19:
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Thereis A, T € CFORM and i € Dom($) such that
a) min(Dom(%)) < i< max(Dom(2L)),
D)  Hminomey) = "Suppose A,
c) P($,) =T and P(Himaxoomey-1) = I
or
P($:) = "I and P($Himaxpomey-1) =T,
d) Forall r € Dom(G): i < min(Dom(G(r))) or max(Dom(G(r))) <1,
€)  Hmaxoom@y = " Therefore —A™.

Then clauses (i), (ii), (iv) and (vii) are satisfied. With Theorem 2-48, we also have (vi).

Also, we have (iii) and (v). To see this, suppose B is a closed segment in
$Himax(Dom(A)). Then it holds that B < $Hrmax(Dom(A)) and hence that
{(max(Dom(%A)), Hmaxomy)} € A\B and hence that A < B. It also follows that
max(Dom(®8)) < max(Dom(2()). Thus we have that B n 2 =0 or B < €. To see this,
suppose B n A # @. Because of A < B, we then have, with Theorem 2-57, that B < A
and hence, with Theorem 2-56, that min(Dom(2()) < min(Dom(B)). Altogether, we thus
have min(Dom(¢)) = min(Dom(A))+1 < min(Dom(B)) < max(Dom(B)) <
max(Dom(%())-1 = max(Dom(¢)) and hence, with Theorem 2-5, B < €.

With Theorem 2-52 it then follows immediately that (iii) holds, i.e. that min(Dom(%()) <
min(Dom(8)) or max(Dom(®8)) < min(Dom(%A)). Furthermore, we also have (v), i.e. that
i < min(Dom(8)) or max(Dom(*8)) < i. To see this, suppose for contradiction that
min(Dom(B)) < < max(Dom(®8)). Then we would have (i, £);) € B. We have that 6 <

2 is a closed segment in $ and thus, with Theorem 2-60, that there is an » € Dom(G)
such that 8 < G(r). Then we would have min(Dom(G(r))) < min(Dom(B)) < i <
max(Dom(8B)) < max(Dom(G(r))). But, because of d) we would also have that i <
min(Dom(G(r))) or max(Dom(G(r))) < i Contradiction! Therefore we have i <

min(Dom(B)) or max(Dom(*B)) <i. m
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Theorem 2-69. Lemma for Theorem 2-93

20 is a segment in $ and there are & € VAR, B € PAR, A € FORM, where FV(A) c {&}, T €
CFORM and B € SG($) such that

(1)) P(Hminoomemy) = "VEAT,
(i)  For all closed segments € in $max(Dom(2()): min(Dom(2B)) < min(Dom(¢)) or
max(Dom(¢)) < min(Dom(B)),

(“') 33min(Dom(%))+1 = '—SUppOSE [B’ iv A]—Ia
(iv)  For all closed segments € in $Hmax(Dom(2()): min(Dom(B))+1 < min(Dom(<)) or
max(Dom(¢)) < min(Dom(‘8))+1,

(V) P(Hmax@omee)-1) =T,

(Vi) Hmaxpomemy) = "Therefore I,

(vii) P e STSF({A, T}),

(viii)  There is no 7 < min(Dom(8)) such that B € ST(9,),

(ix) 2 =B\{(min(Dom(B)), Himinoomes))}: and

(x)  For every r € Dom(AS($)) n Dom(2) with min(Dom(2()) < r < max(Dom(2())-1

there is a closed segment € in $fmax(Dom(2()) such that (r, $,) € €

iff
2 is a PE-closed segment in $).

Proof: (L-R): Let 2 be a segment in $ and let &, B, A, T and 25 be as demanded. Then we
have $ € SEQ. With Definition 2-13, we have that 2 is an RA-like segment in § and we
have min(Dom(2()) = min(Dom(®B))+1. With clause (iv) of our hypothesis and Theorem
2-65-(i), we have that for all £ € Dom(2() it holds that 2([ % is not a closed segment in §.

We have that AS(H) n A = {(min(Dom(2A)), Hminomeay)} OF that there is an ¢ €
Dom(AS(H)) n Dom() with min(Dom(2()) < < < max(Dom(%())-1.

Suppose AS(H) n A = {(min(Dom(A)), Hminoomey)}- Since it holds for all k e
Dom(2() that A% is not a closed segment in ), we have, with Theorem 2-32, that [ is a
minimal closed and thus a closed segment in §. Since 2 is an RA-like segment in §, A is
thus a PE-closed segment in $.

Now, suppose there is an i € Dom(AS($)) n Dom() with min(Dom(2)) < ¢ <
max(Dom(2))-1. Now, let €* = {({, ;) | min(Dom(A))+1 < [ < max(Dom(2())-1}. Then
we have that €* is a segment in $ and : € Dom(AS($))) n Dom(¢*). We also have that
for every r € Dom(AS($))) n Dom(€*) there is a closed segment € in § such that (r, 9,)
e Cand € < ¢€* To see this, suppose » € Dom(AS($)) n Dom(€*). Then we have
min(Dom(2l)) < » < max(Dom(%2())-1 and hence there, is according to clause (x), a closed
segment € in Hmax(Dom(2()) such that (r, $,) € €. Then we have min(Dom(¢*)) <
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min(Dom(¢)), because otherwise we would have min(Dom(¢)) < min(Dom(2()) < r <
max(Dom(¢)), which contradicts clause (iv). On the other hand, it follows from ¢ being a
segment in $Himax(Dom(2l)) that max(Dom(€)) < max(Dom(2l))-1 = max(Dom(€*)).
With Theorem 2-5, we therefore have ¢ < ¢*.

Thus ¢* satisfies the requirements of Theorem 2-59. Therefore there isa G € ASCS($))

such that G is an AS-comprising segment sequence for €* in $ and {$} x Ran(G) <
CS. According to the definition of €*, we have that €* € SG($) and min(Dom(2())+1 =
min(Dom(¢*)) and max(Dom(2()) = max(Dom(€*))+1 and that 2( is an RA-like segment
in 9. Suppose, A is an Nl-like segment in $. Then we have I' = "S[B, & A]" and
P($Ominomey) = [P, & A] and P(Hmaxoomeay-1) = I[P, & A]". Also, we have that for all r
e Dom(G) it holds that min(Dom(2()) < min(Dom(€*)) < min(Dom(G(r)). Furthermore,
since it holds for all i € Dom(2() that Al is not a closed segment in $, we also have that
for all i € Dom(%() it holds that 2A['7 is not a minimal closed segment in ).

According to Definition 2-18, we thus have 2l € PGEN(($), G)). Now, suppose for con-
tradiction that there are a k£ € Dom(2() and an [ € Dom(G) such that Ak € PGEN(($,
Gl (I+1))). According to Theorem 2-25, GI(/+1) is an AS-comprising segment sequence
for Almax(Dom(G()))+1 and thus, according to Definition 2-10, we have G[(I+1) €
ASCS($). By hypothesis, we have Ark € PGEN(($, GI(I+1))). On the other hand, we
have $ € SEQ and {$H} x Ran(G[(I+1)) < {$} x Ran(G) < CS. Altogether, we thus
have a contradiction to Theorem 2-65-(ii). Therefore there are no £ € Dom(2() and [ e
Dom(G) such that Ik € PGEN(($, GI(I+1))). According to Definition 2-19, we hence
have that 2 € GEN({($), G)) and thus, with {$} x Ran(G) < CS and Theorem 2-41, that
(5, A) € CS. Hence 2l is a closed segment in $ and an RA-like segment in $) and thus a

PE-closed segment in $).

(R-L): Now, suppose 2( is a PE-closed segment in $). Then we have that 2l is a closed
segment and an RA-like segment in §. From 2( being an RA-like segment in §) it follows
that there are § € VAR, p € PAR, A € FORM, where FV(A) < {&}, T € CFORM and a
B e SG($) for which clauses (i), (iii), and (v)-(ix) are satisfied. We also have with
Theorem 2-48 that (x) holds (if 2( is a minimal closed segment, (x) holds trivially). Also,
we have that min(Dom(2()) = min(Dom(8))+1.
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Now, we still have to show that clauses (ii) and (iv) hold. For this, we first show (iv).
Suppose € is a closed segment in $Hmax(Dom(2l)). Suppose for contradiction that
min(Dom(¢)) < min(Dom(2A)) < max(Dom(¢)). Then we would have min(Dom()) e
Dom(€) and hence 2 n € # @. With Theorem 2-56, we would then have 2l < . Thus we
would have 2l < € < HImax(Dom(2()) and hence max(Dom(2()) ¢ Dom(2() # @. Contra-
diction! Therefore we have min(Dom(2()) < min(Dom(¢)) or max(Dom(¢)) <
min(Dom(21)).

We still have to show (ii). Suppose again that ¢ is a closed segment in
$Hmax(Dom(2A)). Suppose min(Dom(€)) < min(Dom(B)) < max(Dom(<)). Then we
would have min(Dom(¢€)) < min(Dom(2()) < max(Dom(¢)). As we have just shown, it
holds with (iv) that min(Dom(()) < min(Dom(¢)) or max(Dom(¢)) < min(Dom()).
Since the first case is exluded, it follows that max(Dom(¢)) < min(Dom(%!)) and thus that
max(Dom(€)) = min(Dom(%()). Then we would have max(Dom(€)) € Dom(AS($))). But
with Theorem 2-42, € is a CdlI- or NI- or RA-like segment in § and thus we have, with
Theorem 2-29, that max(Dom(€)) ¢ Dom(AS($))). Contradiction! Thus we have

min(Dom(8)) < min(Dom(<)) or max(Dom(€)) < min(Dom(®8)). Therefore we also have

(ii). m
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2.3 AVS, AVAS, AVP and AVAP

Now, the availability conception is established with recourse to ch. 2.2. This is done in
such a way that a proposition is available in a sentence sequence $) at an : € Dom(9) if
and only if (i, $,) does not lie within a proper initial segment of any closed segment in $)
(Definition 2-26). Of all the propositions of the members of a closed segment 2( in § it is
thus at most the proposition of the last member of 2l that is available in $ at any ¢ €
Dom(2(), namely at max(Dom(2()). The function AVS then assigns exactly that subset of
£ to a sentence sequence $ for whose elements (¢, $;) it holds that the proposition of §; is
available in $ at 7 (Definition 2-28). The propositions of the sentences from AVS($)) are
then collected by the function AVP to form AVP($)), the set of the propositions that are
available in $ at some position (Definition 2-30). The function AVAS assigns a sentence
sequence $ that subset of $) for whose elements (7, $;) it holds that ), is an assumption-
sentence and that the proposition of §; is available in $ at 7 (Definition 2-29). The propo-
sitions of the assumption-sentences from AVAS($)) are then collected by the function
AVAP to form AVAP($)), the set of propositions that have been assumed in §) at some
position and are still available at that position, i.e. the set of available assumptions of
(Definition 2-31).

Then, we will prove some theorems which will, on the one hand, establish connections
between AVS, AVAS, AVP and AVAP and, on the other hand, show connections be-
tween the extension of a sentence sequence and changes of availability. The most impor-
tant theorems for the understanding of the calculus and for the further development are
Theorem 2-82, Theorem 2-83, Theorem 2-91, Theorem 2-92 and Theorem 2-93. With this
chapter, we will finish our preparations so that we can then develop and analyse the

Speech Act Calculus in the next chapters.

Definition 2-26. Availability of a proposition in a sentence sequence at a position
I' is available in $ at 4
iff
I' e CFORM and $ € SEQ and
(i) e Dom(%),
(i) T =P(H,), and
(iii) ~ There is no closed segment 2L in $) such that min(Dom(2()) <7 < max(Dom(%)).



2.3 AVS, AVAS, AVP and AVAP 105

Definition 2-27. Availability of a proposition in a sentence sequence
I"is available in $

iff

There is an 7 € Dom($)) such that T" is available in $) at 7.

Note: If it is obvious to which sentence sequence we are referring, we will also use the

shorter formulations T is available at 7' or 'T is available'.

Definition 2-28. Assignment of the set of available sentences (AVS)
AVS = {($, X) | H € SEQ and X = {(¢, $:) | € Dom($)) and P(5);) is available in $ at }}.

Definition 2-29. Assignment of the set of available assumption-sentences (AVAS)
AVAS = {(9, X) | $ € SEQ and X = AVS($) n AS(H)}.

Note: The titles 'assignment of the set of ... sentences' are misleading insofar AVS and
AVAS do not assign sets of sentences to sentence sequences but subsets of these se-
guences, thus sets of ordered pairs, whose second projections are then the respective sen-

tences.

Theorem 2-70. Relation of AVAS, AVS and respective sentence sequence
If $ e SEQ, then:

(i) AVAS(H) = AVS(H) n AS($H) and

(i) AVAS($) < AVS(H) < 9.

Proof: Follows directly from the definitions. m

Definition 2-30. Assignment of the set of available propositions (AVP)
AVP = {($, X) | 9 € SEQand X ={T"| There is an i € Dom(AVS($)) and I" = P($,)}}.

Definition 2-31. Assignment of the set of available assumptions (AVAP)
AVAP = {(9, X) | $ € SEQ and X = {I'| There is an i € Dom(AVAS($)) and I = P(9,)}}.

Theorem 2-71. Relation of AVAP and AVP
If 5 € SEQ, then AVAP($) < AVP(9).

Proof: Follows with Theorem 2-70 directly from the definitions. m
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Theorem 2-72. AVS-inclusion implies AVAS-inclusion
If 9, H' € SEQ and AVS($H) < AVS($), then AVAS($HH) < AVAS(H).

Proof: Suppose $, ' € SEQ and suppose AVS($H) < AVS($'). Now, suppose (i, $,) €
AVAS($). Then we have (i, $;) € AVS($) n AS($). Then we have (i, $;) € AVS(H)
and $; € ASENT. By hypothesis, we then have (i, $;) € AVS($)') and hence also (i, $,) €
$'. Since $; € ASENT, we then also have (i, $;) € AS($") and thus (z, $;) € AVS(H') n
AS(5)) = AVAS(5)). m

Theorem 2-73. AVAS-reduction implies AVS-reduction
If 9, H' € SEQ and AVAS(H)\AVAS(H") # 0, then AVS(H)\AVS($') # 0.

Proof: Suppose 9, $' € SEQ and suppose AVAS(H)\AVAS(5") # 0. Hence AVAS($)) <
AVAS($') and with Theorem 2-72 we get AVS(H) < AVS(H). It follows immediately
that AVS(H)\AVS(H) #0. m

Theorem 2-74. AVS-inclusion implies AVP-inclusion
If $, $' € SEQ and AVS(H) < AVS(5'), then AVP($) < AVP(H').

Proof: Suppose §, $' € SEQ and suppose AVS($) < AVS($'). Now, suppose I' e
AVP($). Then there is an 1 € Dom(AVS($)) such that I" = P($);). Then we have (7, $,) €
AVS(9). By hypothesis, we then have (i, ;) € AVS($H'). We have AVS($') < $' and
hence (i, $;) € $' and therefore , = $'.. Hence we have I = P($);) = P(9",). Therefore we
have : € Dom(AVS($)')) and I' = P(£",). Therefore we have I' € AVP($)"). m

Theorem 2-75. AVAS-inclusion implies AVAP-inclusion
If 9, H' € SEQ and AVAS($) < AVAS(5)"), then AVAP($HH) < AVAP(H).

Proof: Suppose $, H'e SEQ and suppose AVAS($H) < AVAS(H'). Now, suppose I' e
AVAP($). Then there is an i € Dom(AVAS(%)) such that T = P($),). Then we have (i, )
€ AVAS($). By hypothesis, we then have (i, $;) € AVAS($)'). We have AVAS($H') < '
and hence (i, ;) € $' and therefore $; = $'. Hence we then have I' = P(9,) = P(9").
Therefore we have ¢ € Dom(AVAS($')) and T' = P($)"). Therefore we have T' e
AVAP(5)). m
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Theorem 2-76. AVAP is at most as great as AVAS
For all $ € SEQ: |AVAP(9H)| < |AVAS($)|.

Proof: Suppose $ € SEQ. According to Definition 2-31, we then have that f : AVAP($)

— AVAS(9), f(I') = (min({z | © € Dom(AVAS($)) and P($:) = I'}), Hmin¢i|i < Dom(AVASS))
and P(5) =) IS an injection of AVAP($) into AVAS(5)). m

Theorem 2-77. AVAP is empty if and only if AVAS is empty
For all $H € SEQ: |AVAP($H)| = 0 iff AVAS(H)| = 0.

Proof: Suppose $ € SEQ. Suppose |AVAP($)| # 0. With Theorem 2-76, we then have
|AVAS($)| # 0. Now, suppose |AVAS($)| # 0. Then there is (z, ;) € AVAS($). With
Definition 2-31, we then have P(),) € AVAP($) and thus |AVAP($)| # 0. Thus we have
|AVAP($)| # 0 iff [AVAS($)| # 0, from which the statement follows immediately. m

Theorem 2-78. If AVAS is non-redundant, every assumption is available as an assumption at
exactly one position

If § € SEQ and |[AVAP($)| = |AVAS(H)|, then it holds for all T € AVAP($)) that there is
exactly one j € Dom(AVAS($)) such that I" = P($))).

Proof: Suppose $ € SEQ and |AVAP(H)| = |JAVAS($)|. With Theorem 2-70-(ii), we have
AVAS($) < $ and thus, with $ € SEQ and Definition 1-24 and Definition 1-23, that
|AVAP($)| = |AVAS($)| = k for a k € N. Now, suppose I' € AVAP($). Then we have k
> 0. According to Definition 2-31, there is then a 7 € Dom(AVAS($)) such that T =
P($,). Now, suppose : € Dom(AVAS($)) and I" = P(£),). Suppose for contradiction that
# j. Then we would have |AVAS(H)\{(5, H,)} = k-1, while, on the other hand, f :
AVAP($) — AVASOHM(, 9,)}, f(B) = (min({l | I € Dom(AVAS(H){(j, 9,)}) and
P($:) = B}), Hmin{r |1 « DomAVASE)\(, 5,)3) and P(s) = BY)) Would be an injection of AVAP($))
into AVAS(H)M(J, 9,)}) and hence £k = |AVAP(H)| < k-1. Contradiction! m
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Theorem 2-79. AVS, AVAS, AVP and AVAP in concatenations with one-member sentence
sequences
If 9, H' € SEQ and Dom($") = 1, then:

() AVS(H™H) = AVS(H) u {(Dom(9), H'0)},

(i)  AVAS(H™9H) = AVAS(H) u {(Dom(), H70)},

(iii)  AVP(H™9H) < AVP(H) u {C(H)},

(iv)  AVAP(H™H") < AVAP(H) u {C(H"}.

Proof: Suppose 9, $' € SEQ and suppose Dom($)") = 1.

Ad (i): Suppose (7, ($79"),) € AVS(H™$H'). Then we have that i € Dom(H™$'") and
P((9%™9"),) is available in H~$' at <. We have i € Dom($)) or : = Dom($)).

Suppose 7 € Dom($)). Then we have ($~"); = $,. Suppose for contradiction that P(5);)
= P((H™9H"),) is not available in $ at 7. According to Definition 2-26, there would then be
an 2 such that 2 is a closed segment in $ and min(Dom(2()) < ¢ < max(Dom(2l)). Be-
cause of H < H~9H', we would then, with Theorem 2-62-(viii), have that 2 is also a
closed segment in H~$H" and min(Dom(2()) < i < max(Dom(2()). But then P(($~$").,)
would not be in 6" at 7. Therefore we have : € Dom($) and P(($H™$"),) is available in
$ at 7 and hence (¢, (H79");) € AVS(9).

Now, suppose ¢ = Dom($)). Then we have (79 = (9”9 )oome) = H'o and thus (7,
(%H79):) = (Dom($), ') € {(Dom(%), H70)}-

Ad (ii): Suppose (z, ($79"):) € AVAS(H™$H'). With Theorem 2-70, we then have (i,
(5H79Y) € AVS(H™H") and (9™ 9H"); € ASENT. With (i), we then have (i, (H79"),) €
AVS(9) u {(Dom($), H'0)}. Suppose (i, (H™9H)) ¢ {(Dom(H), H')} and thus (i,
(H79)) € AVS(H). Then we have (z, (H™9H")) € AVS(H) and (H™$H"); € ASENT and
thus we have that (4, ($79"),) € AVAS(9).

Ad (iii): Suppose I' € AVP($H™$H'). Then there is an © € Dom($H~$") such that T" is
available in H™9' at <. Then we have I' = P(($™$"),) and (¢, (™ 9"):) € AVS($H™$H"). With
(i), we then have (7, (99", € AVS(H) u {(Dom($), H'0)}. Now, suppose (i, (H~9"),) €
AVS($). Then we have ¢ € Dom(AVS($)) and $; = (H~9'); and hence I' = P(H,) €
AVP($). Now, suppose (7, (59", € {(Dom($), H'0)}. Then we have i = Dom($)) and
(579" = 9o and hence I' = P(H') = C() € {C(H)}.

Ad (iv): Suppose I' € AVAP($H™$H"). Then there is an : € Dom(AVAS($H™$H")) and I' =
P(($7$",). Then we have (i, (H9")) € AVAS(H™$'). With (ii), we then have (i,
(%79)) € AVAS($) u {(Dom($), $'0)}. Now, suppose (i, (H79)) € AVAS(S). Then
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we have : € Dom(AVAS($)) and $, = (9 9H"); and hence T = P($);) € AVAP($)). Now,
suppose (4, (59", € {(Dom($), $H'0)}. Then we have i = Dom($) and ($H~$"); = H' and
hence I' = P(9') = C(9H") € {C(H")} =

Theorem 2-80. AVS, AVAS, AVP and AVAP in concatenations with sentence sequences
If 9, H' e SEQ, then:

() AVS(H™H) = AVS(H) u {(Dom(H)+i, §75) | i € Dom($)},

(i) AVAS(H™H') < AVAS($H) u {(Dom($)+i, H') | i € Dom(H")}.

Proof: By induction on Dom($)"). For Dom($)") = 0, the induction basis follows with $H~ '
= $. Now, suppose, the statement holds for all H* € SEQ with Dom($*) = 5. For (i), we
thus have AVS($H™$H*) < AVS($H) u {(Dom(H)+i, H*) | i« € Dom(H*)} for all H* e
SEQ with Dom($H*) = j. Now, suppose Dom($) = j+1. Then we have
Dom($'TDom($")-1) = j. According to the I.H., we thus have AVS($H™($'TDom($")-1))
< AVS(9) u {(Dom($H)+i, (H'TDom($H")-1)) | i € Dom(H'TDom($")-1)} = AVS(H) u
{(Dom(H)+i, ) | + € Dom($H)-1}. We have AVS(H H) =
AVS(H™(H'TDom(9")-1)"{(0, $H'bom)-1)})- According to Theorem 2-79, we have
AVS(H(HTDOM(H)-1) {0,  Hoomsa)}) S AVSH(HTDom(H)-1) U
{Dom(H~(H1DoM(H)-1)),  Homma)} = AVS(H(HTDom(H)-1) U
{(Dom($)+(Dom(H)-1), H'boms)-1)}- Altogether, we thus have AVS(H™H') < AVS(H)
u {(Dom(H)+i, H) | i € Dom($H')-1} u {(Dom($H)+(Dom($')-1), $H'bom(s)-1)} and thus
AVS(H™9H") < AVS($H) u {(Dom(H)+:, H) | « € Dom($")}. The proof of (ii) is carried
out analogously. m

Theorem 2-81. AVS, AVAS, AVP and AVAP in restrictions on Dom($))-1
If $ € SEQ, then:
(i)  AVS($H) < AVS(HIDom(H)-1) u {(Dom($)-1, Hooms)-1)}
(i)  AVAS(S) = AVAS(HIDom($)-1) u {(Dom($)-1, Hooms))}h
(iii)  AVP(H) = AVP(HIDom($)-1) U {P(Hooms)2)}.
(iv)  AVAP($) = AVAP(HIDom($)-1) u {P(Hpom(s)-1)}-

Proof: Suppose $ € SEQ. For $ = @, we have that AVS($H) u AVAS($) u AVP(H) u
AVAP($) = 0 and thus the theorem holds. Now, suppose $ # 0. Then we have § =
(HIDom(9)-1)"{(0, Hoom(s)-1)} and the theorem follows with Theorem 2-79. m
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Theorem 2-82. The conclusion is always available
If $ € SEQ\{0}, then C($) is available in $ at Dom($)-1.

Proof: Suppose $ € SEQ\{0@}. Then it holds for all closed segments 2 in § that
max(Dom(2()) < Dom($))-1 and therefore there is no closed segment 2l in $ such that
min(Dom(2A)) < Dom($))-1 < max(Dom(%)). Therefore P($pom(s)-1) = C($) is available in
$H at Dom(H)-1. m

Theorem 2-83. Connections between non-availability and the emergence of a closed segment
in the transition from $HDom($)-1to $H

If $ € SEQ and AVS($)I Dom($)-1)\AVS($) # 0, then:
There is a 98B such that ®8 is a closed segment in § and
(i)  min(Dom(*B)) < Dom($)-2 and max(Dom(8)) = Dom($)-1,
(i)  For all closed segments € in $HfDom($)-1 it holds that BIDom($)-1 n € = @ or
min(Dom(®28)) < min(Dom(¢)) and max(Dom(¢&)) < Dom($))-1,
(iii)  For all closed segments €* in $: If €* is not a closed segment in HIDom($)-1, then
¢* =18,
(iv)  AVS®IDom(9)-1\AVS($H) < {(, H,) | min(Dom(B)) < j < Dom($)-1},
(V)  AVS($) = (AVS(HIDom(H)-1)\{(, H,) | min(Dom(B)) < j < Dom($)-1}) u
{(Dom(9)-1, Hooms)-1)}
(vi)  AVAS(HIDom($)-1)\AVAS(H) = {(min(Dom(B)), Hminoomez))}
(vii)  AVAS(HIDom($)-1) = AVAS($) u {(min(Dom(B)), Hminom(z))}:
(viii)  AVP(HIDom(9)-I\AVP($H) < {P(H,) | min(Dom(B)) < j < Dom($)-1},
(ix) AVP®IDom($)-1) < {P($,) | j € Dom(AVS($H)IDom($)-1)} u
{P(%,) | min(Dom(B)) < j < Dom(%)-1},
(x)  AVAP($Dom($)-1N\AVAP($) = {P(Hminpom(z))}: and
(xi)  AVAP(HIDom(£)-1) = AVAP($) U {P(Hminpomez))}-

Proof: Suppose $ € SEQ and suppose AVS(HIDom($)-1\AVS($) # 0. According to
Definition 2-28, there is then an ¢ € Dom($)-1 such that (i, $;) €
AVS(HIDom(H)-1)\AVS($H). Then we have $HIDom($)-1 # @ and thus $ # 0.

According to Definition 2-28 and Definition 2-26, there is then no 2B’ such that 98" is a
closed segment in HIDom($)-1 and min(Dom($8")) < i < max(Dom(8")), and that there is
a B such that 95 is a closed segment in £ and min(Dom(8B)) < i < max(Dom(B)).

Ad (i): We have max(Dom(8)) < Dom($))-1. Suppose for contradiction that Dom($))-2
< min(Dom(B)). With Theorem 2-44, we would then have Dom($)-1 < min(Dom(8)) <
max(Dom(®B)) < Dom($)-1. Contradiction! Therefore we have min(Dom(28)) <
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Dom($)-2. Now, suppose for contradiction that max(Dom(25)) < Dom($))-1. Then we
would have min(Dom(®8)) < max(Dom(*8)) < Dom($))-1. With Theorem 2-64-(viii) and
Theorem 2-62-(viii), we would then have that 98 is a closed segment in $IDom($)-1 and
that min(Dom(B)) < ¢ < max(Dom(B)). But then we would have (i, $;) ¢
AVS(HIDom($)-1). Therefore we have that max(Dom(28)) = Dom($))-1 and hence that
min(Dom(B)) < Dom($))-2 and max(Dom(8)) = Dom($))-1.

Ad (ii): Suppose ¢ is a closed segment in $HfDom($))-1. Now, suppose BDom(£)-1 n
¢ # 0. Then we have B n € # @. With Theorem 2-57, it then holds that 86 < € or € <
B. Since € < HlDom($)-1 and (Dom($)-1, Hoom(s)-1) € B, we have B < €. Thus we
have ¢ < B. With Theorem 2-56-(i) and -(iii), we thus have min(Dom(*8)) <
min(Dom(¢)) and max(Dom(¢)) < max(Dom(8)) = Dom($))-1.

Ad (iii): Suppose €* is a closed segment in $), but not a closed segment in
$HIDom($)-1. Then we have max(Dom(€*)) = Dom($))-1. First, we have max(Dom(¢*))
< Dom($)-1. If max(Dom(€*)) < Dom($)-1, then we would have, with Theorem
2-64-(viii) and Theorem 2-62-(viii), that €* is a closed segment in $HDom($)-1, which
contradicts the hypothesis. Therefore we have Dom($)-1 < max(Dom(¢*)) and hence
max(Dom(¢*)) = Dom($)-1 = max(Dom(®8)). With Theorem 2-53, it then follows that
¢* =%,

Ad (iv): Suppose (i, $;) € AVS(HIDom($)-1)\AVS($)). Then there is a closed segment
¢ in $ such that min(Dom(€)) < i < max(Dom(¢)) and € is not a closed segment in
$HIDom($)-1. Then it holds with (iii) that € = 9B and hence that min(Dom(28)) < i <
max(Dom(8)) = Dom($))-1. It then follows that (7, ;) € {(j, H,) | min(Dom(*B)) < j <
Dom($)-1}.

Ad (v): First, suppose (z, ;) € AVS($). With Theorem 2-81-(i), we then have (i, $;) €
AVS(HIDom($)-1) u {(Dom($)-1, Hooms)-1)}- Also, we have that there is no closed
segment € in $ such that min(Dom(¢)) < i < max(Dom(¢)). Since B is a closed segment
in $, it then follows with (i) that (z, ;) ¢ {(j, ;) | min(Dom(B)) < j < Dom($)-1}.
Hence we have (i, ;) € (AVS($HIDom($)-1)\{(j, ;) | min(Dom(B)) < j < Dom($)-1})
v {(Dom($)-1, Hoom(s)-1)}-

Now, suppose (i, $:) € (AVS(HIDom($)-D)\{(j, $,) | min(Dom(B)) < j < Dom($)-1})
u {(Dom($)-1, Hooms)-1)}- First, suppose (i, ;) € AVS(HIDom(H)-\{(H, 9, |
min(Dom(B)) < j < Dom(H)-1}. If (i, ;) ¢ AVS($H), we would have (i, 9;) €
AVS(HIDom($)-INAVS($H) and (i, ) ¢ {(, H,) | min(Dom(*B)) < j < Dom($)-1},
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which contradicts (iv). In the first case, we thus have (i, $;) € AVS($). Now, suppose (i,
$;) € {(Dom($)-1, Hooms)-1)}- Then we have : = Dom($)-1 and P(Hpoms)-1) = C($) and
thus, with Theorem 2-82, that in the second case it holds as well that (z, ;) € AVS($).

Ad (vi): First, suppose (i, $;) € AVAS(HIDom($)-1))\AVAS($). Then we have (i, $,)
e (AVS(HIDom(9H)-1) n  ASHIDom(H)-DIMAVS($H) n  AS($H)). Since
AS(HIDom($)-1) < AS(H), we have (i, ;) € AS($H) and thus (i, $H;) ¢ AVS($H) and
hence (i, ;) € AVS(HIDom(9)-1\AVS($). With (iv) and (i), it thus holds that (i, $,) €
B. Then we have (i, 9,) € AS($) n B and hence there is, with Theorem 2-47,a ¢ < B
such that ¢ is a closed segment in $ and i = min(Dom(<)). Because of (i, $;) €
AVS(HIDom($)-1), € is then not a closed segment in $HIDom($))-1. With (iii), we then
have € = B and thus ¢ = min(Dom(¢)) = min(Dom(®B)). Then we have (i, ;) =
(min(Dom(*8)), Hminom(s))-

Now, we have to show that {(min(Dom(B)), Hminoommy)} S
AVAS(HIDom(H)-1\AVAS(H). First, we have (min(Dom(B)), Hminwoomezy) € AS(H).
Suppose for contradiction that there is a closed segment ¢ in HIDom($)-1 such that
min(Dom(¢)) < min(Dom(28)) < max(Dom(<)). Then we would have € n BIDom($))-1
# 0. But with (ii), we would then have min(Dom(®8)) < min(Dom(¢)). Contradiction!
Therefore there is no such closed segment ¢ in $H[Dom($))-1 and hence we have
(min(Dom(8B)), Hminpom(zy) € AVAS($HIDom($)-1). On the other hand, we have with B
itself a closed segment B' in $ such that min(Dom(8")) < min(Dom(B)) <
max(Dom(%8")) and thus we have (min(Dom(B)), Hminpomez)) € AVAS($) and hence
(min(Dom(B)), Himinomesy) € AVAS(HDom($)-1)\AVAS(S).

Ad (vii): First, suppose (i, $;) € AVAS(HIDom($)-1). Then we have (i, 9,) €
AVAS($) or (i, $;) ¢ AVAS($). Now, suppose (i, 9;) ¢ AVAS(H). Then we have (i, ;)
e AVAS(HIDom($)-1)\AVAS($H) and thus, with (vi), (i, $,) e {(min(Dom(B)),
Hminomz)))}- Therefore we have in both cases (i, ;) € AVAS($) u {(min(Dom(:B)),
Hmin(om())}-

Now, suppose (z, $;) € AVAS($) u {(min(Dom(*B)), Himinwpome))}- First, suppose (z,
$i) € AVAS($). Then we have (z, ;) € AS($). With Theorem 2-81-(ii), we also have (i,
) € AVASHIDom(9)-1) u {(Dom($)-1, Hooms)-1)}- With (i), it holds that
max(Dom(®8)) = Dom($))-1. Since ‘B is a closed segment in $ and thus a Cdl- or NI- or
RA-like segment in $, we have, with Theorem 2-29, that (Dom(5))-1, Hoom(s)-1) & AS($)
and thus that (i, 9,) ¢ {(Dom(H)-1, $Hooms)1)}- Thus we have (i, 9;) e
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AVAS($HIDom($)-1). Now, suppose (i, $;) € {(min(Dom(B)), Hminpomeey)}- With (vi),
we then have again that (i, £);) € AVAS($HDom($)-1).

Ad (viii): Suppose T' e AVP($HIDom($)-1)\AVP($). Then there is an ¢ e
Dom(AVS($HIDom($)-1)) and " = P(£);). Then we have (i, $,) € AVS($HIDom($)-1) and
(1, $:) ¢ AVS(9), because otherwise we would have I' e AVP($). With (iv), it then
holds that (i, $:) € {(j, ;) | min(Dom(B)) < j < Dom($))-1}. Then we have I' € {P(),) |
min(Dom(*B)) < j < Dom($))-1}.

Ad (ix): Suppose T e AVP®HIDom($)-1). Then there is an i €
Dom(AVS($HIDom($)-1)) such that ' = P(£€,). Then we have (i, $,) e
AVS(HIDom($)-1) and thus also i < Dom($)-1. We have that I' € {P($),) |
min(Dom(®B)) < j < Dom($)-1} or I' ¢ {P($;) | min(Dom($8)) < j < Dom($))-1}. Now,
suppose I' ¢ {P(£),) | min(Dom(B)) < j < Dom($)-1}. Then we have (i, $) ¢ {(j, 9)) |
min(Dom(B)) < j < Dom(H)-1} and thus (i, $;) € AVS(HIDom($H)-D\(, 9)) |
min(Dom(*B)) < j < Dom($)-1}. With (v), we then have (i, ;) € AVS($) and, with ¢ <
Dom($)-1, it then holds that (i, $;) € AVS($H)IDom($)-1. Therefore we have i e
Dom(AVS(H)IDom($)-1) and thus T € {P(9),) | j € Dom(AVS($H)IDom(£)-1)}. There-
fore we have in both cases I' € {P(9,) | ; € Dom(AVS(H)IDom($H)-1)} v {P(9)) |
min(Dom(*B)) < j < Dom($))-1}.

Ad (x): Suppose T' e AVAP(HIDom(H)-1)\AVAP($). Then there is an i €
Dom(AVAS($HIDom($)-1)) and " = P($,). Then we have (i, ;) € AVAS($HIDom($)-1)
and (i, ;) ¢ AVAS($), because otherwise we would have I' € AVAP($). With (vi), it
then follows that (7, $;) = (min(Dom(*B)), Hminomezy)- Then we have I' = P($;) =
P(Hminmomesy) € {P(Hminmomzy)}-

And last, ad (xi): With (vii) it holds that AVAS($HIDom($)-1) = AVAS($) u
{(min(Dom(B)), Hminoomzy))}- We thus have: I' e AVAP(HIDom($)-1) iff there is an ¢
e Dom(AVAS(HIDom(9)-1)) and T' = P(9,) iff there is an i € Dom(AVAS($)) v
{min(Dom(®8))} and I = P(9,) iff ' € AVAP(H) u {P(Himinoom(s))}- Hence we have
AVAP($HIDom($)-1) = AVAP($) u {P(Hminmom(z))}- =
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Theorem 2-84. AVS-reduction in the transition from $IDom($)-1 to $ if and only if a new
closed segment emerges

If $ € SEQ, then:
AVS(HIDom($)-1)\AVS($) £ 0
iff

There is a B such that

(i) Bisaclosed segmentin §, and
(i)  min(Dom(®8)) < Dom($))-2 and max(Dom(8)) = Dom($))-1.

Proof: Suppose $H € SEQ. The left-right-direction follows immediately with Theorem
2-83. Now, for the right-left-direction, suppose there is a 8 such that B is a closed seg-
ment in $ and min(Dom(®8)) < Dom($))-2 and max(Dom($8)) = Dom($))-1. Then it holds
that (min(Dom(B)), Hminomz)) € AVS(HIDom(H)-1)\AVS($). First, we have
(min(Dom(B)), Himinomezy) € AVS(H), because with B itself there is a closed segment
B'in $ such that min(Dom(*B")) < min(Dom(*B)) < max(Dom($8")).

Now, suppose € is a closed segment in $HfDom($)-1. Because of ¢ < $HIDom($)-1 and
(Dom(9)-1, Hoome)-1) € B, we then have B < ¢. With Theorem 2-52, we then have
min(Dom(®B)) ¢ Dom(€). Thus there is no closed segment € in $) such that min(Dom(<))
< min(Dom(®8)) < max(Dom(¢)) and thus it holds that (min(Dom(*B)), Hminoom(s)) €
AVS(HIDom($)-1). Hence we have  (min(Dom(B)),  Hminoomemy) €
AVS($HIDom($)-1)\AVS($). m

Theorem 2-85. AVAS-reduction in the transition from $fDom($)-1 to $ if and only if this
involves the emergence of a new closed segment whose first member is exactly the now un-
available assumption-sentence and the maximal member in AVAS($I Dom($))-1)

If $ € SEQ, then:
AVAS($IDom($)-1\AVAS($) # 0
iff

There is a B such that

(i) Bisaclosed segmentin $,

(i)  min(Dom(*8)) < Dom($)-2 and max(Dom(*8)) = Dom($)-1, and

(iii)  AVAS(HIDom($)-1)\AVAS($) = {(min(Dom(B)), Hminwom(s))} =
{(max(Dom(AVAS($IDom(£)-1))), Himaxom(avas(sioom(s)-1y)}-

Proof: Suppose $) € SEQ. (L-R): Suppose AVAS(HIDom(H)-1)\AVAS($) # 0. With
Theorem 2-73, we then have that also AVS($HIDom($)-1)\AVS($) # 0. With Theorem
2-83, there is then a 9B such that B is a closed segment in $ and min(Dom(B)) <
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Dom($)-2 and max(Dom()) = Dom($)-1 and AVAS($HIDom(H)-I\AVAS($H) =
{(min(Dom(%B)), Himinoom(s))}-

Then we have min(Dom(%)) = max(Dom(AVAS($HDom($)-1))). First, we have
(Min(Dom(B)), Hminpomery) € AVAS(HIDom($)-1) and thus min(Dom(B)) e
Dom(AVAS($HIDom($)-1)). Now, suppose k£ € Dom(AVAS($HIDom($)-1)) and suppose
min(Dom(B)) < k. Then we have (k, $;) € AVAS(HIDom($)-1) and thus (k, ;)
AS(HIDom($)-1) and thus also (k, Hr) € AS(H). Also, we have min(Dom(B)) < k <
Dom($)-1 = max(Dom(®B)). Thus we have k € AS($H) n Dom(B). With Theorem 2-66,
we then have k£ = min(Dom(®8)) or there is a € such that £ = min(Dom(¢)) and
min(Dom(8)) < min(Dom(¢)) < max(Dom(¢)) < max(Dom(28)) = Dom($)-1. The sec-
ond case is, however, exluded, because otherwise there would be, with Theorem
2-64-(viii) and Theorem 2-62-(viii), a closed segment € in $HIDom($)-1 with
min(Dom(¢)) < k£ < max(Dom(¢)), and we would thus have (k, $,) ¢
AVAS(HIDom($)-1). Therefore we have k£ = min(Dom(%)). Hence we have
min(Dom(B)) = max(Dom(AVAS($HIDom($)-1))) and thus {(min(Dom(B)),
Hminomsy)} = {(Max(Dom(AVAS($HIDom($))-1))), Hmax@omavAs(siDom(s)-1))}-

(R-L): Now, suppose there is a closed segment B in $ such that
AVAS(HIDom(H)-1)NAVAS($H) = {(min(Dom(B)), Hminoomez))}- Then we have
AVAS($!Dom($)-1))\AVAS($) # 0. m

Theorem 2-86. If the last member of a closed segment 93 in § is identical to the last member
of $, then the first member of B is the maximal member of AVAS($IDom($))-1) and is not
any more available in

If B is a closed segment in $ and max(Dom(8)) = Dom($)-1, then it holds:
AVAS(HIDom($)-1)\AVAS($) = {(min(Dom(B)), Hminom(s))} =
{(max(Dom(AVAS($Dom($)-1))), Hmaxoom(avas(sibom(s)1))}-

Proof: Suppose %5 is a closed segment in $ and max(Dom(28)) = Dom($))-1. Then B is a
Cdl- or NI- or RA-like segment in $ and $ € SEQ. With Theorem 2-31, we thus have
min(Dom(®B)) < max(Dom(B)) = Dom($)-1 and hence min(Dom(®8)) < Dom($))-2.
With Theorem 2-84, we then have AVS($HDom($H))\AVS($H) # @. From this, we get with
Theorem 2-83-(vi) that there is a ¢ such that ¢ is a closed segment in § and
AVAS($HIDom(H)-INAVAS($) = {(min(Dom(<)), Hminpom(ey))}- We have that B is a

closed segment in $ and, because of max(Dom(®8)) = Dom($))-1, B is not a segment and
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thus not a closed segment in HfDom($)-1. With Theorem 2-83-(iii), we then have B = ¢
and thus AVAS(HIDom($)-INAVAS(H) = {(min(Dom(B)), Hminoomes))}- With
Theorem 2-85, it follows that AVAS($HIDom($)-I\AVAS($H) = {(min(Dom(8)),
Hminomz))} = {(Max(Dom(AVAS(HIDom($)-1))), Hmaxom(AvAs(siDom(s)-1)))}- B

Theorem 2-87. In the transition from $HDom($)-1 to §, the number of available assumption-
sentences is reduced at most by one.

If $ e SEQ, then |JAVAS($! Dom($)-INAVAS($)| < 1.

Proof: Suppose $ e SEQ. Then we have AVAS($HDom($)-1)\AVAS($) = 0 or
AVAS(HIDom($)-INAVAS(H) # @. In  the first case, we have
[(AVAS($HTDom($)-1)\AVAS($H)| = 0. Now, suppose AVAS($HIDom($H)-1))\AVAS(9H) #
@. With Theorem 2-85, there is then a closed segment B in & such that
AVAS(HIDom(H)-1)NAVAS($H) = {(min(Dom(B)), Hminoomez))}- Then we have
JAVAS($HIDom($)-1)\AVAS(H) = 1. =

Theorem 2-88. In the transition from $HDom($)-1 to $ proper AVAP-inclusion implies
proper AVAS-inclusion

If § € SEQ and AVAP($)) = AVAP(HIDom(£)-1), then AVAS(H) = AVAS($HIDom($)-1).

Proof: Suppose $ € SEQ and suppose AVAP($) < AVAP($HIDom($)-1). Then there is
a ' € CFORM such that I' € AVAP($HIDom($)-1)\AVAP($). Then there is an i e
Dom(AVAS($HIDom($)-1)) such that I' = P($);). Then we have i ¢ Dom(AVAS($))), be-
cause otherwise we would have TI' € AVAP($). Thus we have
AVAS($HIDom($)-1)\AVAS($) # 0. With Theorem 2-85, there is then a closed segment
B in $ such that max(Dom(®8)) = Dom($))-1. Then B is a CdlI- or NI- or RA-like seg-
ment in §. It then follows, with Theorem 2-29, that (Dom($))-1, Hoom)-1) € AS(H) and
thus (Dom($)-1, Hoom)}-1) € AVAS($). With Theorem 2-81, we have AVAS($)) <
AVAS(HIDom(H)-1) u {(Dom($H)-1, Hooms)}1)}- Then we have AVAS(H) <
AVAS($HIDom($)-1), and, with (z, $;) € AVAS(HIDom($)-1)\AVAS($), it follows that
AVAS($) = AVAS(HIDom(H)-1). m



2.3 AVS, AVAS, AVP and AVAP 117

Theorem 2-89. Preparatory theorem (a) for Theorem 2-91, Theorem 2-92 and Theorem 2-93
If 2 is a segment in $ and [ € Dom($HImax(Dom(%))), then:

(I, 9)) € AVS(HI'max(Dom(2L)))

iff

For all closed segments € in $Hmax(Dom(%()) : I < min(Dom(¢)) or max(Dom(¢)) <.

Proof: Suppose 2 is a segment in $ and [ € Dom($HImax(Dom(R())). (L-R): First, suppose
(¢, ) e AVS(HImax(Dom(2A))). Now, suppose € is a closed segment in
HImax(Dom(2L)). If min(Dom(<)) < I < max(Dom(¢)), then we would have (I, ;) ¢
AVS(HImax(Dom(2())), which contradicts the hypothesis. Therefore we have [ <
min(Dom(¢)) or max(Dom(¢)) < I. (R-L): Now, suppose for all closed segments € in
$Himax(Dom(2A)): I < min(Dom(¢)) or max(Dom(&)) < I. Then it holds for all closed
segments € in $Hmax(Dom(2A)) that it is not the case that min(Dom(¢)) < [ <
max(Dom(¢)). By hypothesis, we have | € Dom($imax(Dom(2())) and thus P($);) is
available in $fmax(Dom(%()) at I. Hence we have (I, ;) € AVS($Hmax(Dom(2())). m

Theorem 2-90. Preparatory theorem (b) for Theorem 2-91, Theorem 2-92 and Theorem 2-93
If 2L is a segment in $) and [ € Dom($HImax(Dom(%))), then:
(1, 1)) € AVAS(HImax(Dom(2L)))
iff
(1, $) € AS(9) and for all closed segments € in $HImax(Dom(L)): I < min(Dom(<))
or max(Dom(¢)) <.

Proof: Suppose 2( is a segment in §) and [ € Dom($)Imax(Dom(%())). (L-R): First, suppose
(I, $) € AVAS(HImax(Dom(2())). Then we have (I, ;) € AVS($HImax(Dom(2))) n
AS($HI'max(Dom(2))). Because of AS($HImax(Dom(R())) < AS($), we thus have (I, $)
e AS($). With (1, ;) € AVS(HImax(Dom(2())) and Theorem 2-89, it follows that for all
closed segments € in Hfmax(Dom(2l)): I < min(Dom(€)) or max(Dom(¢)) < [. (R-L):
Now, suppose (I, $;) € AS($) and suppose for all closed segments € in $H[ max(Dom(2A)):
[ < min(Dom(¢)) or max(Dom(¢)) < [. By hypothesis, we have [ €
Dom($HImax(Dom(%1))) and thus we have (I, ;) € AS(HImax(Dom(2l))). With Theorem
2-89, it follows that (I, $;) € AVS($HImax(Dom(2())) and hence we have (I, ) €
AVAS($HImax(Dom(2())). m
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Theorem 2-91. Cdl-closes!-Theorem
2l is a segment in $ and there are A, T' € CFORM such that
(i) P(Hminomeay) = A and (min(Dom(2L)), Himinomey) € AVAS($HImax(Dom(2l))),
(i) P(Hmaxomy-1) =T,
(iii)  There is no r such that min(Dom(A)) < r < max(Dom(2))-1 and (r, $,) €
AVAS($HImax(Dom(2())), and
(iv)  Hmaxom@y = "Therefore A — I
iff
2L is a Cdl-closed segment in £.

Proof: Follows directly from Theorem 2-67, Theorem 2-89 and Theorem 2-90. m

Theorem 2-92. NI-closes!-Theorem
2 is a segment in $ and there are A, T' € CFORM and : e Dom($)) such that
(i)  min(Dom(2A)) < i< max(Dom()),
(i) P(Hminomeay) = A and (min(Dom(A()), Himinoomeay)) € AVAS(HI max(Dom(A))),
(i) P(®:) =T and P(Hmax@ome@y-1) = —I"
or
P($;) = "=I"" and P(Hmaxpomen)-1) =T,
@iv) (4 $;) € AVS(HImax(Dom(2L))),
(v) There is no r such that min(Dom(2()) < r < max(Dom())-1 and (r, $,) €
AVAS($HImax(Dom(2())), and
(Vi)  $Hmaxom@y = "Therefore —A™
iff
2 is an NI-closed segment in §.

Proof: Follows directly from Theorem 2-68, Theorem 2-89 and Theorem 2-90. m
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Theorem 2-93. PE-closes!-Theorem

20 is a segment in $ and there are & € VAR, B € PAR, A € FORM, where FV(A) c {&}, T €
CFORM and B € SG($) such that

() P(Sminonsy) = VEA™ and (Min(DOM(B)), Himinomy) € AVS(H max(Dom(20),
(i) P(Dminomzy+1) = [B, & Aland (min(Dom(B))+1, Hiinonzy+1) €
AVAS($I max(Dom(%))),
@ity P(Hmaxoomemy-1) =T,
(iv)  Hmaxoomemy = "Therefore I,
(v) B eSTSF({A,TI}),
(vi)  There is no j < min(Dom(B)) such that € ST($,),
(vii) 2 = B{(Min(Dom(B)), Hrminomzy)} and
(viii) There is no r such that min(Dom(2A)) < r < max(Dom(2))-1 and (r, 9,) €
AVAS(HImax(Dom()))
iff
2l is a PE-closed segment in $).

Proof: Follows directly from Theorem 2-69, Theorem 2-89 and Theorem 2-90. m






3 The Speech Act Calculus

The meta-theory of the calculus is now sufficiently developed, so that the calculus can be
established (3.1). Then, we will provide a derivation and a consequence concept for the
calculus (3.2). The chapter closes with the proof of theorems that describe the working of

the calculus and are useful for the further development (3.3).

3.1 The Calculus

With the Speech Act Calculus, the rules for assuming and inferring are established, which
ultimately serve to govern the derivation of propositions from sets of propositions. In
preparation, we note: An author assumes a proposition I" by uttering the sentence "Sup-
pose I'", and an author infers a proposition I' by uttering the sentence "Therefore I'". An
author utters the empty sentence sequence by not uttering anything. An author utters a
non-empty sentence sequence $) by successively uttering $); for every i € Dom($)). An
author extends a sentence sequence $) to a sentence sequence $H* if he has uttered $ and
now utters a sentence sequence $)' such that $* = $~". An author thus extends an ut-
tered sentence sequence $) to the sentence sequence $ u {(Dom($)), "Suppose )}, by
assuming T, i.e. by uttering "Suppose I'", and an author extends an uttered sentence se-
guence $) to the sentence sequence $H u {(Dom($), "Therefore I)} by inferring T, i.e.
by uttering "Therefore ™. *2

The rules of the calculus — and only these — are to allow one to extend an already uttered
sentence sequence $) to a sentence sequence $' with Dom($") = Dom($))+1. After the
establishment of the rules, a derivation and a consequence concept can be established,
according to which derivations will be exactly those non-empty sentence sequences that
can in principle be uttered in accordance with the rules of the calculus (1 3.2).

As is usual for pragmatised natural deduction calculi, there is a rule of assumption
(Speech-act rule 3-1) and 16 inference rules (Speech-act rule 3-2 to Speech-act rule 3-17).
Additionally, the calculus contains an interdiction clause (IDC, Speech-act rule 3-18),

12 For the relation between the performance of speech acts and sequences of speech acts and the uttering of
sentences and sequences of sentences, see HINST, P.: Logischer Grundkurs, p. 58-71, SIEGWART, G.:
Vorfragen, p. 25-32, Denkwerkzeuge, p. 39-52, and, most recent and in English, Alethic Acts. Here, we
obviously assume that the expressions and concatenations thereof stipulated by Postulate 1-1 to
Postulate 1-3 are utterable entities.
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which forbids all extensions that are not permitted by one of the rules from Speech-act
rule 3-1 to Speech-act rule 3-17. Among the rules of inference, there are two for each of
the connectives, quantificators (resp. quantifiers) and for the identity predicate. One of the
rules regulates the introduction of the respective operator and the other rule regulates its
elimination.

A shorthand version of the availability conception may facilitate an easier understand-
ing of the presentation of the calculus: If $ is a sentence sequence, then (i, $;) is in
AVS($) if and only if the proposition of $); is available in $) at . Furthermore, (i, $,) is in
AVAS(9) if and only if the proposition of $); is available in $ at 7 and $); is an assump-
tion-sentence. I' is an element of AVP($) if and only if there is (i, $;) € AVS($) such
that T is the proposition of §;, and I' is an element of AVAP($)) if and only if there is (z,
$:) € AVAS($) such that T is the proposition of $);.

In order to give an intuitively accessible short version of the rules, we stipulate: If one
has uttered a sentence sequence $ and I" is available in § at 7, then one has gained I" in $
at 7. If A is the last assumption made in uttering $ that is still available, and if one has
gained I" in $ after or with the assumption of A, then one has gained I' in $) departing
from the assumption of A. If one extends $ to $ u {(Dom($), £)} and A = P(,) is an
assumption that is available in $ at ¢ but that is not any more available in $ u {(Dom($),
¥)} at 4, then one has discharged the assumption of A at s.

Now the short version of the rules, in which all reference to sentence sequences, posi-
tions and all grammatical specifications are neglected: One may assume any proposition
I' (AR); if one has last gained I" departing from the assumption of A, then one may infer
"A — T and thus discharge the assumption of A (Cdl); if one has gained A and "A —
I'", then one may infer I (CdE); if one has gained A and I', then one may infer "A A T
(CD); if one has gained "A AT or gained T A A7, then one may infer I" (CE); if one has
gained "A —- I and T — A", then one may infer "A < I"" (BI); if one has gained A and
A I orgained A and T < A", then one may infer I (BE); if one has gained I" or
gained A, then one may infer "A v I"" (DI); if one has gained "B v A", "B —» I and "A
— I, then one may infer I (DE); if one has gained either I" and last "—I"" or "—I"" and
last I" departing from the assumption of A, then one may infer =A™ and thus discharge

the assumption of A (NI); if one has gained "——I"", then one may infer I" (NE); if one has
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gained [B, & A], where B is not a subterm of A or of any available assumption, then one
may infer "AEA™ (UI), if one has gained "AEA™, then one may infer [0, &, A] (UE); if one
has gained [0, &, A], then one may infer "VEA™ (PI); if one has gained "VEA™, next as-
sumed [B, &, A], where B is a new parameter and not a subterm of A, and then, departing
from the assumption of [B, &, A], last gained I', where 3 is not a subterm of I", then one
may infer I" and thus discharge the assumption of [B, &, A] (PE); one may infer "6 = 6"
(11); if one has gained "6y = 6, and [0y, &, A], then one may infer [01, &, A] (IE); that is all
one is allowed to do (IDC).

Now follow the rules of the Speech Act Calculus in their authoritative formulation:

Speech-act rule 3-1. Rule of Assumption (AR)

If one has uttered $ € SEQ and if ' € CFORM, then one may extend $ to  u {(Dom($)),
"Suppose I'")}.

Speech-act rule 3-2. Rule of Conditional Introduction (Cdl)
If one has uttered $ € SEQ and if A, T' e CFORM and : € Dom($)), and
() P(%)=Aand (s ) € AVAS(S),
(i) P($Hoom)2) =T, and
(ilf)  Thereis no [ such that i << Dom($)-1 and (I, $;)) € AVAS(9),
then one may extend $ to $ u {(Dom($)), "Therefore A —T7)}.

Note that applying the rule of conditional introduction generates Cdl-closed segments
according to Definition 2-23 (cf. Theorem 2-91). If one extends $ to $ u {(Dom($),
"Therefore A — I'")} by Cdl, then none of the propositions that one inferred or assumed
by uttering § after (and including) the i member is available in § u {(Dom($), "There-
fore A — I'")}, except for propositions that were available in $ before the i member (cf.
Definition 2-26). Of course, this does not apply to the newly available conditional "A —
[, as it is the proposition of the new last member and thus available in the resulting sen-
tence sequence in any case (cf. Theorem 2-82). Since the proposition of the last member
of a sentence sequence $) is always available in $ at Dom($))-1, it also suffices in clause
(ii) of the rule to demand solely that the consequent of the conditional one wants to infer
is the proposition of the last member of §, without additionally demanding that that
proposition is also available there. Similar remarks apply to Speech-act rule 3-10 (NI) and
Speech-act rule 3-15 (PE).
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Speech-act rule 3-3. Rule of Conditional Elimination (CdE)

If one has uttered ) € SEQ and if A, T' e CFORM and {A, "A — T} < AVP($), then one
may extend $ to $ u {(Dom($)), "Therefore )}

Speech-act rule 3-4. Rule of Conjunction Introduction (CI)

If one has uttered $ € SEQ and if A, I" € AVP($), then one may extend $) to  u {(Dom($)),
"Therefore AAT™)}.

Speech-act rule 3-5. Rule of Conjunction Elimination (CE)

If one has uttered $ € SEQ and if A, T € CFORM and {"TAAT™, T A A"} n AVP(9) # 0,
then one may extend $ to $ u {(Dom($)), "Therefore I'")}.

Speech-act rule 3-6. Rule of Biconditional Introduction (BI)

If one has uttered $) € SEQ and if A, T ¢ CFORM and {"A - T, T — A"} < AVP(%), then
one may extend $ to $H u {(Dom($), "Therefore A < I')}.

Here, the meta-logical requirement of separability, according to which each rule is to
regulate only one operator, is violated, because the rule-antecedent demands that certain
conditionals are available. The rule of biconditional introduction is thus at the same time

a rule for the elimination of conditionals in certain contexts.

Speech-act rule 3-7. Rule of Biconditional Elimination (BE)

If one has uttered $ € SEQ and if A € AVP(9),T € CFORM, und {'"A-T"7, T A"} n
AVP($) # @, then one may extend $ to $H u {(Dom($), "Therefore IT™)}.

Speech-act rule 3-8. Rule of Disjunction Introduction (DI)

If one has uttered $) € SEQ and if A, ' € CFORM and {A, I'} n AVP($)) # @, then one may
extend $ to $ u {(Dom($), "Therefore AvI7)}.

Speech-act rule 3-9. Rule of Disjunction Elimination (DE)

If one has uttered $ € SEQ and if B, A, T e CFORMand{' BVvA'", B—>TI","A—>1"}C
AVP(9), then one may extend $ to $ u {(Dom($)), "Therefore T")}.

Here, the meta-logical requirement of separability is violated a second time, as the rule-

antecedent demands that certain conditionals are available. The rule of disjunction elimi-
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nation is thus at the same time a rule for the elimination of conditionals in certain con-

texts.

Speech-act rule 3-10. Rule of Negation Introduction (NI)
If one has uttered $ € SEQ and if A, T' e CFORM and i, j € Dom($) and
() i<y,
(i) P($) =Aand (. ;) € AVAS(9),
(iii)  P($;) =T and P(Hpom(s)-1) = —I"
or
P(®;) = "=I"" and P(Hpom(s)-1) = T,
(iv) (, 9H) € AVS(9), and
(v)  Thereisnol such thati<!<Dom($)-1and (I, ;) € AVAS(H),
then one may extend $ to $ u {(Dom($), "Therefore —A™)}.

Applying the rule of negation introduction generates NI-closed segments according to
Definition 2-24 (cf. Theorem 2-92). Thus, if one extends $ to $ u {(Dom($)), "Therefore
—A™)} by NI, then none of the propositions that one inferred or assumed by uttering £
after (and including) the " member is available in $ u {(Dom(s)), "Therefore —=A™)},
except for propositions that were available in $ before the ™ member (cf. Definition
2-26). Of course, this does not apply to the newly available negation "—A™. Since the
proposition of the last member of a sentence sequence § is always available in §) at
Dom($)-1 (cf. Theorem 2-82), it also suffices in clause (iii) of the rule to demand that
one of he two contradictory statements is available at j and that the second part of the

contradiction is the proposition of the last sentence of .

Speech-act rule 3-11. Rule of Negation Elimination (NE)

If one has uttered $ € SEQ and if ' € CFORM and "——I"" € AVP($), then one may extend
HtoH u {(Dom(H), "Therefore T)}.

Speech-act rule 3-12. Rule of Universal-quantifier Introduction (Ul)
If one has uttered ) € SEQ and if B € PAR, § € VAR, A € FORM, where FV(A) < {&}, [B,

&, Al € AVP($) and B ¢ STSF({A} u AVAP(%)), then one may extend ) to $ u {(Dom($)),
"Therefore AEA™)}.
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Speech-act rule 3-13. Rule of Universal-quantifier Elimination (UE)

If one has uttered ) € SEQ and if 6 € CTERM, & € VAR, A € FORM, where FV(A) < {&},
and "AEA™ e AVP($), then one may extend $ to $ u {(Dom($), "Therefore [0, &, A]")}.

Speech-act rule 3-14. Rule of Particular-quantifier Introduction (PI)

If one has uttered $ € SEQ and if 6 € CTERM, & € VAR, A € FORM, where FV(A) < {&},
and [0, &, A] € AVP($), then one may extend $ to $ u {(Dom($), "Therefore VEA™)}.

Speech-act rule 3-15. Rule of Particular-quantifier Elimination (PE)

If one has uttered $ € SEQ and if B € PAR, £ € VAR, A € FORM, where FV(A) < {&},T €
CFORM and i € Dom($)), and

()  P($)="VEA" and (i, ;) € AVS(%),

(i) P(9ina) = [B, & Al and (i+1, His1) € AVAS(H),

(i) P(Hpom(s)1) =T,

(iv) B e STSF({A, T},

(v)  Thereisno j<qsuchthat p € ST(9)),

(vi)  There is no m such that i+1 < m < Dom($)-1 and (m, $.,) € AVAS($)),
then one may extend $ to $ u {(Dom($)), "Therefore I'")}.

Applying the rule of particular-quantifier elimination generates PE-closed segments ac-
cording to Definition 2-25 (cf. Theorem 2-93). Thus, if one extends $ to $ u {(Dom($),
"Therefore T™)} by PE, then none of the propositions that one inferred or assumed by
uttering $ after the " member is available in § u {(Dom($), Therefore ")}, except for
propositions that were available in § before the i+1™ member (cf. Definition 2-26). Of
course, this does not apply to the last inferred proposition, i.e. T', which is in any case
available in the resulting sentence sequence. Since the proposition of the last member of a
sentence sequence $) is always available in §5 at Dom($))-1 (cf. Theorem 2-82), it also
sufficises in clause (iii) of the rule, to demand solely that I" is the proposition of the last

member of §.

Speech-act rule 3-16. Rule of Identity Introduction (I1)

If one has uttered $ € SEQ and if 6 € CTERM, then one may extend $) to $ u {(Dom($)),
"Therefore 6 = 67)}.
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Speech-act rule 3-17. Rule of Identity Elimination (IE)

If one has uttered § e SEQ and if & € VAR, A € FORM, where FV(A) < {&}, 0o, 6, €
CTERM and {6, = 0817, [00, & A]} < AVP($), then one may extend $ to $H u {(Dom($),
"Therefore [64, &, A]")}.

Last, we formulate a prohibition that makes the interdictory status of the rules explicit.

For this, all 17 rule-antecedents for the extension of $) to $' are required to be unsatisfied.

This condition is then sufficient for one not being allowed to extend $ to H'.

Speech-act rule 3-18. Interdiction Clause (IDC)

If § ¢ SEQ or if one has not uttered $ or if there are no B, I', A ¢ CFORM and 0, 0; €
CTERM and B € PAR and £ € VAR and A' € FORM, where FV(A") < {&}, and 4, j €
Dom($)) such that

(i)
(i)

(iii)
(iv)
v)
(vi)
(vii)

(viii)
(iX)

(x)

(xi)

(xii)
(xiii)

(xiv)
(xv)

(xvi)

H'=9H v {(Dom($H), "Suppose I)} or

P($) = A, (¢, 9) € AVAS(H), P(Hoomm)-1) = T, there is no [ such that < [ <
Dom($)-1 and (I, ;) € AVAS($), and H'=$ u {(Dom($)), "Therefore A —T7)} or
{A, "A —->T"} < AVP($) and $H' = H u {(Dom($), "Therefore I'")} or

{A, T} € AVP($H) and $' = H u {(Dom($), "Therefore AAT™)} or

{"AAT, TAA}nAVP(H)#0and H' = H u {(Dom($), "Therefore I'")} or
{'A->T", T —>A"}<AVP($H) and ' =9 u {(Dom($), "Therefore A —-T")} or
A e AVP(H), {’'A-T", T A"} n AVP($H) #0,and H' = H u {(Dom($), "There-
foreI"")} or

{A, T} n AVP($H) # 0 and H' = $H u {(Dom($)), "Therefore Av ™)} or

{BVvA', B->TI","A—->TI"} < AVP($H) and ' =9 u {(Dom($)), "Therefore I"")}
or

i1 <7, P(9) = A, (4, $H;) € AVAS(9), P(H;) =T and P(Hpoms)-1) = I or P(H) =
—I"™ and P(Hpomes)-1) = I, (4, H;) € AVS($), there is no [ such that ; < [ < Dom($))-1
and (I, ;) € AVAS(9), and $H' = 9 u {(Dom($), "Therefore —A™)} or

"—I" € AVP($) and ' = $H u {(Dom($), "Therefore I'")} or

[B, & Al € AVP($), B ¢ STSF({A} u AVAP($)) and ' = $ u {(Dom($), "There-
fore AEA™)} or

"AEA™ € AVP(9) and $' = $H u {(Dom($)), "Therefore [0y, &, AT")} or

[00, &, Al € AVP($H) and ' = $ u {(Dom($), "Therefore VEA™)} or

P(9) = "VEAT, (i, ) € AVS(9), P(H:) = [B, & AT, (i1, Hi1) € AVAS(H),
P($poms)1) =T, B ¢ STSF({A', I'}), there is no [ < i such that B € ST($);), there is no
m such that +1 < m < Dom($)-1 and (m, $,,) € AVAS($), and $H' = $H u {(Dom($),
"Therefore ")} or

' =9 u {(Dom($), "Therefore 6, =0¢")} or
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(xvii) {00 =017, [00, & A} < AVP($H) and H' = H u {(Dom($), "Therefore [0y, &, A])},
then one may not extend ) to §'.

Informally, Speech-act rule 3-18 says: If none of the rules from Speech-act rule 3-1 to
Speech-act rule 3-17 allows the extension of § to $', then one may not extend $ to '.

By setting the 18 rules, the calculus has now been established and can already be used.
If one wants to add further rules later, e.g. rules for adducing-as-reason, stating, the posit-
ing-as-axiom or defining, one has to adapt Speech-act rule 3-18 accordingly. In the next
section, we will now establish a derivation concept and a consequence concept for the
calculus (3.2). Then, we will prove some theorems that shed some light on the way in

which the calculus works (3.3).



3.2 Derivations and Deductive Consequence Relation 129

3.2 Derivations and Deductive Consequence Relation

Having established the calculus, we now have to provide a derivation and a consequence
concept and to prove the adequacy of the latter. Since the derivation and consequence
relations are not to be tied to the actual utterance of sentence sequences, but only to their
utterability in accordance with the rules, the derivation concept is not to be established
with recourse to the full rules of the calculus — which always demand the utterance of a
certain sentence sequence — but only with recourse to those parts of the rules that are spe-
cific to sentence sequences and indepedent of actual utterances.

To do this, we will first define a function for every rule of the calculus that assigns a
sentence sequence $) the set of sentence sequences to which an author that has uttered $)
may extend $) in compliance with the respective rule (Definition 3-1 to Definition 3-17).
Based on these functions, we will then define the function RCE, which assigns a sentence
sequence $) the set of rule-compliant extensions of $), i.e. the set of sentence sequences to
which an author who has uttered £ might extend $ in accordance with one of the rules of
the calculus (Definition 3-18). Then, we will define the set of rule-compliant sentence
sequences, RCS, as the set of sentence sequences for which all non-empty restrictions are
rule-compliant extensions of the immediately preceding restriction (Definition 3-19). A

derivation of a proposition I" from a set of propositions X will then be a non-empty RCS-
element for which it holds that C($)) = I" and AVAP($) = X (Definition 3-20). Then, we
will introduce the concept of deductive consequence and related concepts, where a propo-
sition I" will be a deductive consequence of a set of propositions X if and only if there is a
derivation of I froma Y < X (Definition 3-21).
As announced, we will first define functions analogous to the rules in 3.1:
Definition 3-1. Assumption Function (AF)

AF = {($, X) | $ e SEQand X = {§'| There is " € CFORM such that
9'=9 v {(Dom($), "Suppose I'"")}}}.

Cf. Speech-act rule 3-1. Since the set of closed formulas is not empty, we have as a corol-

lary that AF($)) is not empty for any sentence sequence ).
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Definition 3-2. Conditional Introduction Function (CdIF)
CdIF={(9, X) | $ € SEQand X ={$'| There are A, ' € CFORM and : € Dom($)) such that
()  P(»)=Aand (i, H) € AVAS(SH),
(i) P(Hoomey1) =T,
(iif)  Thereis no [ such that i <[ < Dom($)-1 and (/, $;)) € AVAS($)), and
(iv) $' =9 u {(Dom($), "Therefore A —T1")}}}.

Cf. Speech-act rule 3-2.

Definition 3-3. Conditional Elimination Function (CdEF)

CdEF = {(9, X) | $» € SEQand X ={§'| There are A, T € CFORM such that {A, "A - T}
C AVP(H) and ' = $H u {(Dom($H), "Therefore I"")}}}.

Cf. Speech-act rule 3-3.

Definition 3-4. Conjunction Introduction Function (CIF)

CIF={($, X)| § e SEQand X = {$' | There are A, I' e AVP(S3) such that
H'=9 u {(Dom($), Therefore A AT7)}}}.

Cf. Speech-act rule 3-4.

Definition 3-5. Conjunction Elimination Function (CEF)

CEF={(®, X)|$ € SEQand X = {$'| There are A, ' ¢ CFORM such that {"A AT",
TAA}NAVP(H)£Band ' =6 u {(Dom($), "Therefore T7)}}}.

Cf. Speech-act rule 3-5.

Definition 3-6. Biconditional Introduction Function (BIF)

BIF={(9, X)| 9 € SEQand X ={$'| There are A,T' € CFORM such that {"A - T,
T - A"} < AVP(H) and ' = $H u {(Dom($), "Therefore A < I)}}}.

Cf. Speech-act rule 3-6.

Definition 3-7. Biconditional Elimination Function (BEF)

BEF={(9, X)| 9 € SEQand X ={$'| There are A ¢ AVP(H) and T" € CFORM such that
{T AT, T A AVP(H) £#0and ' =6 u {(Dom($), "Therefore I)}}}.

Cf. Speech-act rule 3-7.
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Definition 3-8. Disjunction Introduction Function (DIF)
DIF={($, X) | $H € SEQand X = {$'| There are A,T' ¢ CFORM such that
{A, T} n AVP(9) #0 and ' =6 u {(Dom($), "Therefore A vI™)}}}

Cf. Speech-act rule 3-8.

Definition 3-9. Disjunction Elimination Function (DEF)
DEF={($, X)| 9 € SEQand X ={$'| There are B, A, ' €« CFORM such that {"B v A",
B—-I","A—>T"}C AVP(H) and H' =$H u {(Dom($), "Therefore I"")}}}.

Cf. Speech-act rule 3-9.

Definition 3-10. Negation Introduction Function (NIF)
NIF={(%, X)| 9 € SEQand X ={$'| There are A, T"' € CFORM and i, j € Dom(%)
such that
() i<y
(i) P(%)=Aand (i, 9) € AVAS(H),
(iii)  P(H,) =T and P(Hpom()-1) = I
or
P($,) = "=I"" and P(Hpom(s)-1) =T,
(iv) (. 9)) € AVS(9),
(v) Thereisnolsuch that i <!<Dom($)-1and ([, ;) € AVAS($), and
(vi) $H'=9 u {(Dom(H), "Therefore =A™)}}}.

Cf. Speech-act rule 3-10.

Definition 3-11. Negation Elimination Function (NEF)
NEF={(9, X) | $H € SEQ and X ={$'| There isT" ¢ CFORM such that "——I" € AVP($),
and 9' =9 u {(Dom($), "Therefore I'"")}}}.

Cf. Speech-act rule 3-11.

Definition 3-12. Universal-quantifier Introduction Function (UIF)
UIF={(H, X) | $H € SEQand X = {$'| There are € PAR, £ € VAR and A € FORM, where
FV(A) < {&}, such that
() [B. & Al € AVP(%),
(i) P e STSF{A} u AVAP(9)), and
(ii) 9 =9 v {(Dom($), Therefore AEA™)}}}.

Cf. Speech-act rule 3-12.
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Definition 3-13. Universal-quantifier Elimination Function (UEF)

UEF={(9, X) |9 € SEQand X = {§'| There are 6 € CTERM, & € VAR, A € FORM,
where FV(A) < {&}, such that "AEA™ € AVP($H) and H' = © u {(Dom($),
"Therefore [0, &, A]")}}}.

Cf. Speech-act rule 3-13.

Definition 3-14. Particular-quantifier Introduction Function (PIF)

PIF={(9, X)| 9 € SEQand X = {$'| There are { € VAR, A € FORM, where FV(A) < {&},
and 6 € CTERM such that [0, & A] € AVP(9) and ' = © u {(Dom($),
"Therefore VEA™)}}}.

Cf. Speech-act rule 3-14.

Definition 3-15. Particular-quantifier Elimination Function (PEF)

PEF ={($, X) | $H € SEQand X = {$)'| There are B € PAR, §{ € VAR, A € FORM, where
FV(A) < {&}, T € CFORM and i« € Dom($)) such that

(i)  P(£)="VEA" and (i, £;) € AVS(H),

(i) P(9in) = [B, & Aland (i+1, Hi1) € AVAS(S),

(i) P(9ooms)-1) =T,

(iv) P e STSF({A,I}),

(v)  Thereisno j<isuchthat B e ST($),

(vi)  There is no m such that i+1 < m < Dom($))-1 and (m, $,,) € AVAS($), and
(vii)  9'=9 u {(Dom($), "Therefore I'")}}}.

Cf. Speech-act rule 3-15.

Definition 3-16. ldentity Introduction Function (I1F)

HF ={($H, X)| $ € SEQand X = {§' | There is € CTERM such that
H'=9H v {(Dom(9H), "Therefore 6 =67)}}}.

Cf. Speech-act rule 3-16. Since the set of closed terms is not empty, it follows as a corol-
lary that, like AF($)), IIF($) is not empty for any sentence sequence $. This state of af-

fairs is reflected in Theorem 3-2.
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Definition 3-17. Identity Elimination Function (IEF)

IEF ={(%, X) | < SEQand X = {&'| There are 6y, 0, « CTERM, § € VAR and A €
FORM, where FV(A) < {&}, such that {70 = 0,, [0, &, AT} < AVP(§) and
§'= 9 u {(Dom(%), Therefore [0y, &, A]")}}}-

Cf. Speech-act rule 3-17.

In the following, we will define the set of rule-compliant sentence sequences, RCS
(Definition 3-19), and then the derivation predicate: '.. is a derivation of .. from ..
(Definition 3-20). We will do this in such a way that RCS will contain the empty sentence
sequence and all and only those sentence sequences to which one can in principle extend
the empty sentence sequence in compliance with the rules of the calculus. Based on the
assumption function and the introduction and elimination functions we have just defined,
RCS will thus be definined in such a way that RCS is the set of sentence sequences for
which all non-empty restrictions are rule-compliant extensions of the immediately preced-

ing restriction. To do this, we first definie the function RCE:

Definition 3-18. Assignment of the set of rule-compliant assumption- and inference-extensions

of a sentence sequence (RCE)

RCE = {(, X) | $ € SEQ and X = U{AF(), CdIF($), CAEF($), CIF($), CEF(£), BIF(),
BEF($), DIF(%), DEF(9), NIF($), NEF(9), UIF($), UEF(), PIF(),
PEF(%), IIF($), IEF(9)}}.

RCE is defined in such a way that an author who has uttered $) € SEQ may extend $ to
$H'if and only if ' € RCE($)). Before we defined the set of rule-compliant sentence se-

quences, RCS, we will prove some theorems about RCE.

Theorem 3-1. RCE-extensions of sentence sequences are non-empty sentence sequences
If $ € SEQ, then RCE($) < SEQ\{0}.

Proof: Suppose $ € SEQ. Suppose $H' € RCE($). Then we have ' € AF(9) or ' e
CdIF($) or ©' € CAEF($) or ' € CIF($) or ' € CEF(9) or ' € BIF(H) or ' €
BEF($) or $' € DIF($) or $' € DEF($) or $' € NIF(9) or H' € NEF($) or ' € UIF($)
or ' € UEF($) or $' € PIF(9) or ' € PEF(H) or ' € IIF($H) or $H' € IEF($H). It then
follows from Definition 3-1 to Definition 3-17 that ' = $ u {(Dom($), X)} for a X €
SENT. In all cases, it then holds with Definition 1-23 and Definition 1-24 that ' e
SEQ\{0}. m
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Next, we want to show that RCE($) is not empty for any sentence sequence $) and that

therefore every sentence sequence can be extended in some way.

Theorem 3-2. RCE is not empty for any sentence sequence
If § € SEQ, then RCE(9) # 0.

Proof: Suppose $) € SEQ. We have that "x,' € CTERM. According to Definition 3-16,
we thus have  u {(Dom($)), "Therefore X, = Xo')} € HF($). Hence we have $ u
{(Dom($), "Therefore Xo=Xo')} € RCE(9) #0. m

Theorem 3-3. The elements of RCE($)) are extensions of §) by exactly one sentence

If § € SEQ and $' € RCE($), then there are £ € PERF and I' € CFORM such that ' = $ u
{(Dom($), "'ET)}.

Proof: Suppose $ € SEQ and ' € RCE($). Then we have $' € AF($) or $H' € CdIF($)
or ' € CAEF($) or ' € CIF($) or ' € CEF($) or ' € BIF($H) or ' € BEF($) or &'
e DIF($) or ' € DEF(9) or $' € NIF($) or ' € NEF($) or ' € UIF(H) or ' €
UEF($) or ' € PIF($H) or ' € PEF($) or $H' € IIF($H) or ' € IEF(9H).

Suppose ' € AF($)). According to Definition 3-1, there is then I' € CFORM such that
$H' =9H v {(Dom(%), "Suppose I'"")}. Then we have $H'pomm) = "Suppose I'" and thus
there are E € PERF and I' € CFORM such that ' = $ u {(Dom($)), "ET7)}.

Suppose $H' € CdIF(H) or ' € CAEF($) or ' € CIF($) or $H' € CEF($) or ' €
BIF($) or $' € BEF($) or ' € DIF($) or ' € DEF($) or $' € NIF($) or ' € NEF($))
or ' € UIF(H) or $H' € UEF(H) or H' € PIF(H) or H' € PEF(H) or $H' € IIF(H) or ' €
IEF($). According to Definition 3-2 to Definition 3-17, there is in each case a I' €
CFORM such that ' = $ u {(Dom($)), "Therefore I'")}. Then we have $'pomi) =
"Therefore I and thus there are again = € PERF and I' € CFORM such that ' = $ u
{(Dom(%), 'EI")}. m

Theorem 3-4. RCE-extensions of sentence sequences are greater by exactly one than the ini-
tial sentence sequences

If § € SEQ and $' € RCE($), then Dom($') = Dom($)+1.

Proof: Suppose $ € SEQ and $' € RCE($). With Theorem 3-3, there are = € PERF and
I' € CFORM such that ' = $ u {(Dom($), "E I"")} and thus we have Dom($)") =
Dom($H)+1. m
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Theorem 3-5. Unique RCE-predecessors
If § € SEQ and ©' € RCE($), then $'IDom($")-1 = $.

Proof: Follows immediately from Theorem 3-3 and Theorem 3-4. m

Definition 3-19. The set of rule-compliant sentence sequences (RCS)
RCS={$| 9 e SEQ and for all j < Dom($) it holds that $HIj+1 € RCE($!/)}.

Theorem 3-6. A sentence sequence $ is in RCS if and only if £ is empty or if § is a rule-
compliant extension of HDom($)-1 and $HIDom($H)-1 is an RCS-element

9 € RCS

iff
$H=0or$H e RCE(HIDom($)-1) and HIDom(H)-1 € RCS.

Proof: (L-R): Suppose $H € RCS and $ + @. Then we have $ € SEQ\{0}. We also have
HIDom(H)-1 e SEQ. It also holds that $HIDom(H)-1 < § and that for all j < Dom($):
(HIDom($H)-1)I7 = Hiy. Because of $ € RCS, we have with Definition 3-19 that for all ;
< Dom($) it holds that 3} j+1 € RCE($!4). Thus we have, first, that $ = $}Dom($)-1+1
e RCE($HIDom($)-1). Second, it then follows that for all j < Dom($)-1
Dom($IDom($)-1) it holds that (H'Dom(H)-1)I+1 = Hlj+1 e RCE(H!))
RCE(($HIDom($)-1)I'j). According to Definition 3-19, we hence have $IDom($))-1
RCS.

(R-L): Suppose $ = 0 or $ € RCE($HIDom($)-1) and $HrDom($)-1 € RCS. If $H = 0,
then $ e SEQ and it holds trivially that $H[j+1 € RCE($[) for all ; < Dom($)) and thus
we have $) € RCS. Now, suppose $ # @ and $ € RCE($HIDom($)-1) and $HIDom($)-1
e RCS. According to Definition 3-19, we then have $[Dom($)-1 ¢ SEQ and
(HIDom(H)-1Ij+1 € RCE((HIDom($)-1)I7) for all j < Dom($HIDom($)-1), and, more-
over, $ € RCE($HIDom($)-1). According to Theorem 3-1, we then have $ € SEQ and
thus, with $ # @, Dom($)) = Dom($)-1+1 = Dom($fDom($)-1)+1. Then we have for all
j < Dom(9): olj = (HIDom(H)-1)Ij. Thus we have HIj+1 = (HIDom($H)-1)Ij+1 e
RCE(($HIDom(9)-1)I'j) = RCE(HI) for all < Dom($)-1. If j = Dom($)-1, then we have
Hl+l = HIDom(H)-1+1 = $H € RCE(HIDom($H)-1) = RCE(HI5). Altogether we then
have fo all < Dom($) that $HIj+1 € RCE(H[) and hence we have $§ € RCS. m

m
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The following theorem will often be used in the following chapters, without always being

explicitly adduced as a reason:

Theorem 3-7. The rule-compliant extension of a RCS-element results in a non-empty RCS-
element

If 9§ € RCS and ' € AF($) u CdIF($) u CAEF($H) u CIF($H) v CEF($) u BIF($) u
BEF($) u DIF($) u DEF($) u NIF($) u NEF(9) u UIF($) u UEF(9) u PIF($) u PEF($)
u lIF(9) u IEF($), then ' € RCS\{0}.

Proof: Suppose $ € RCS and ' € AF($H) u CdIF($H) u CAEF($) u CIF(H) u CEF($)
u BIF(§) u BEF($)) u DIF($) u DEF($) u NIF($) u NEF($) u UIF($) u UEF($) u
PIF($) u PEF($) u lIF($H) u IEF($). According to Definition 3-18, we then have $'
RCE($). With Theorem 3-5, we have $ = $'IDom($")-1. Because of § € RCS and with
Theorem 3-6, we then have $' € RCS. With Theorem 3-1, we then have $' # @ and thus
$H' € RCS\{0}. m

Theorem 3-8. § is a non-empty RCS-element if and only if $ is a non-empty sentence se-
guence and all non-empty initial segments of §) are non-empty RCS-elements

5 € RCS\{0} iff $H € SEQ\{0} and for all i € Dom(9): Hli+1 € RCS\{0}.

Proof: (L-R): Suppose $H) € RCS\{0}. According to Definition 3-19, we then have ) e
SEQ and for all : € Dom($)) that $[(i+1) € RCE($14). With our hypothesis, we then have
$ e SEQ\{0}. Suppose 0 € Dom($)). Then we have $H[1 € RCE($HI0) = RCE(d). With
Theorem 3-6, we have 0 € RCS and thus we have, with 1 € RCE(@) and with Theorem
3-6, that $HI'1 € RCS. With 0 e Dom($I1) we then have 1 € RCS\{@}. Now, suppose
for 4 it holds that if : € Dom($)), then Hli+1 € RCS\{0}. Now, suppose i+1 € Dom($)).
Then we have i e Dom($)) and thus, according to the I.H., also $Hli+1 € RCS\{@}. Also,
we have Hli+2 € RCE($[i+1). Because of § € SEQ and i+1 € Dom($)), we have $Hli+1
= (91 (+2)) Dom($H| (i+2))-1. With Theorem 3-6 and Theorem 3-1, we then have $Hli+2
RCS\{0}.

(R-L): Now, suppose $ € SEQ\{0} for all i € Dom($): Hli+1 € RCS\{0}. With e
SEQ\{0}, we then have Dom($)-1 € Dom($)) and hence $HIDom($H)-1+1 = § €
RCS\{0}. m
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Based on Definition 3-19, we will now introduce a derivation concept. Subsequently,
after having proved some theorems and considered an example concerning the derivation

concept, we will establish a corresponding consequence concept.

Definition 3-20. Derivation
£ is a derivation of T from X
iff

(i) $H e RCS\{0},

(i) T'=C(H)and

(iii) X = AVAP(9).

If we take into account Definition 3-19, we now have characterised exatly those non-
empty sentence sequences as derivations of a proposition from a set of propositions that

can in principle be uttered by successively applying the rules of the Speech Act Calculus.

Theorem 3-9. Properties of derivations
If $ is a derivation of I" from X, then:

() 9 e SEQ\{0},
(i) I € CFORM and
(iii) X < CFORM and |X]| € N.

Proof: Suppose ) is a derivation of I from X. Then we have $) € RCS\{0} and C($) =T
and X = AVAP($). With Definition 3-19, we have $ e SEQ\{0}. According to
Definition 1-25, Definition 1-24, Definition 1-23, Definition 1-18 and Definition 1-16, we
have that C($) = I' € CFORM. According to Definition 1-23 and Definition 1-24, we
have Dom($)) € IN. With Definition 2-31, Definition 2-29, Definition 2-28 and Definition
2-26, we thus also have X = AVAP($)) < CFORM and | X| = |[AVAP($)| € N. m

Theorem 3-10. In non-empty RCS-elements all non-empty initial segments are derivations of
their respective conclusions

If § € RCS\{0}, then it holds for all € Dom($)) that $Hli+1 is a derivation of P(),) from
AVAP($li+1).

Proof: Suppose $ € RCS\{0}. With Theorem 3-8, it then holds for all : € Dom($)) that
Hli+l € RCS\{0}. Also, we have for all i € Dom($): P($H) = C($Hli+l) and
AVAP(HIi+1) = AVAP(HIi+1). m
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Theorem 3-11. Uniqueness-theorem for the Speech Act Calculus™
If $ € SEQ, then:
(i)  ThereisnoT and no X such that § is a derivation of T" from X
or
(i)  There is exactly one I" and exactly one X such that $ is a derivation of I" from X.

Proof: Suppose $ € SEQ. Then there is no I and no X such that § is a derivation of I"
from X or there are a I" and an X such that ) is a derivation of I" from X. In the first case,
the statement holds. Now, for the second case, suppose there are a I" and an X such that
is a derivation of I" from X. According to Definition 3-20, we then have ) € RCS\{0}, "
= C(9) and AVAP($) = X. We still have to show uniqueness. For this, supoose $) is a
derivation of I from X". Thenwe have I"=C($) =T'and X' = AVAP(H) = X. =

Now, let us illutsrate this result with an example. Suppose & € VAR, A € FORM, where
FV(A) < {&}, and suppose B € PAR\ST(A). Now, let P be the following sentence

sequence:

Example [3.1]

Suppose  AE—A
Suppose  VEA
Suppose  [B, &, A]
Suppose  VEA
Therefore VEA A [B, &, A]
Therefore [B, &, A]
Therefore —[B, &, A]
Therefore —VEA
Therefore —VEA
Therefore —VEA

© 00 N O o1 A W N -, O

Commentary: According to Theorem 3-11, there should either be no I and no X such that

$P is a derivation of I from X or we should be able to find unique I" and X such that

B3 For the formulation of a corresponding theorem for a regulation of the predicate ".. is a derivation of ..
from .." according to which the set of propositions named at the third place has to be a superset of the set
of assumptions that actually occur in the respective sentence sequence and are not eliminated there, see
footnote 4.
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HBY is a derivation of T from X. This is actually the case as $H is a derivation of
"—VEA™ from {"AE—A"}, where both are uniquely determined. This can be made clearer
by an informal inspection of the sentence sequence. To do this, we first furnish the sen-

tence sequence with comments that will then be explained.

Example [3.2] available

0  Suppose AE-A (AR) 0

1  Suppose VEA (AR) 0,1

2 Suppose  [B, &, A] (AR) 0,12

3 Suppose  VEA (AR) 0,123

4 Therefore VEA A [B, &, A] (Cn;2,3 01,234

5  Therefore [B, &, A] (CE); 4 0,1,23,4,5
6 Therefore —[B, &, A] (UE); 1 0,1,23,4,5,6
7 Therefore —VEA (NI);5,6 0,1,2,7

8 Therefore —VEA (PE); 1,7 0,1,8

9  Therefore —VEA (NI);1,8 0,9

Explanation: In the second column from the right, the rules by which one may extend an
already uttered sequence and the respective premise lines are given (cf. ch. 3.1). The ut-
termost right column displays the line numbers of those lines whose propositions are
available in the restriction of Y on the successor of the current line number. Note that
the propositions and assumptions that are available in B (1 < i < 10) are always
uniquely determined.

Also, we have that, for example, the inference in line 8 may only be carried out by PE
and the inference in line 9 may only be carried out by NI, in both cases with uniquely
determined premise lines. In line 8, NI is not an option, because, on the one hand, the
proposition assumed in line 2 is still available in $!*118 so that 1 cannot serve as an ini-
tial assumption for NI, while, on the other hand, 3 cannot serve as an initial assumption
for NI, because the proposition assumed there is not any more available in '8 at this
position. Obversly, PE may not be carried out in line 9 (and NI may be carried out), be-
cause the representative instance assumption in line 2 is not any more available in 59
at this position (and at all).

If one checks all other lines, one can easily convince oneself that $2* ¢ RCS\{0}. The
set of the assumptions that are available in £ is uniquely determined and determinable,
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because, with Definition 2-26, Definition 2-28, Definition 2-29 and Definition 2-31, one
can check for every proposition A that has been assumed in $HPY whether A e
AVAP(HBM). As desired, one can easily convince oneself that AVAP(5PY) =
{"Ae—A"}. Obviously, we have $PYpom@iemns = Therefore —VEA™ so that Theorem
3-11 is confirmed.

Note that the comments in the right columns do not serve to disambiguate from which
set of propositions the proposition in the last line has been derived, but only serve to fa-
cilitate an easier traceability and understanding. Note that the rule-commentary to $2* is
uniquely determined by coincidence and that there are other sentence sequences for which
different rule-commentaries may be produced: There are circumstances under which a
transition may be carried out in accordance with different rules, e.g. UE and PE. How-
ever, it is not the case that the possibility of alternative rule-commentaries has any effects
on the uniqueness of the availability-commentary. Available propositions (or lines) are
not determined with recourse to the rule-commentary, but according to the definition of
availability and thus, eventually, according to the definition of closed segments. The
separate definition of availability excludes that we arrive at different availabilities for one
and the same transition, even if that transisition can be carried out in accordance with
more than one rule. Thus, it is always uniquely determined and determinable if a given
sentence sequence is a derivation of a certain proposition from a certain set of proposi-
tions.

Closed segments emerge if and only if one may apply Cdl, NI or PE (cf. Theorem 3-23
and Theorem 3-24). Thus, if a transition is covered by more than one rule, e.g. UE and
PE, availabilities change as they do in a transition by PE. Thus, a user of the Speech Act
Calculus is restriced in the preformance of certain inferences: For example, one is not free
to carry out an assumption-discharging inference by PE as a not assumption-discharging
inference by UE.

One may deem that this makes the Speech Act Calculus a bit unhandy, however, this
shortcoming, if it is one, comes with the advantage that for every utterance of a sentence
sequence by an author, we can uniquely determine if that author has uttered a derivation
of a certain proposition from a certain set of propositions: The possibility to describe the

utterance of one and the same sentence sequence in different ways so that, for example
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the utterance of a sentence sequence $ can be described as an utterance of a derivation of

I from X and can also described as the utterance of a sentence sequence that is not a
derivation of I" from X, which exists for some calculi, does not exist for the Speech Act

Calculus. If one utters derivations in accordance with the rules of the Speech Act Calcu-
lus, one does not have to use graphical means for the marking of subderivations nor meta-
theoretical rule- or dependence-commentaries: In the framework of the Speech Act Cal-
culus utterances of sentence sequences are not up for interpretation.

Now, we will introduce the deductive consequence concept and some other usual meta-
logical concepts. In ch. 4, we will then prove some properties of the deductive conse-
quence relation, such as reflexivity, transitivity and closure under introduction and elimi-
nation. Subsequently, in ch. 6, we will then provide an adequacy proof for the calculus
relative to the classical model-theoretic consequence relation. This relation itself will be
established in ch. 5. Now, for the definition of the consequence relation:

Definition 3-21. Deductive consequence relation
XET

iff

X < CFORM and there is an $ such that

(i) $isaderivation of I' from AVAP(%), and

(i) AVAP($H) C X.
With Theorem 3-9-(iii), it then follows, as usual, that for X < CFORM it holds that X
[ if and only if there is a finite Y < X such that Y  I'. From this and Definition 3-23, it
then follows that X is consistent if and only if all finite Y < X are consistent, and, with
Definition 3-24, that X < CFORM is inconsistent if and only if there is a finite Y < X
such that Y is inconsistent. Under Definition 3-20, the following theorem is equivalent to

Definition 3-21:

Theorem 3-12. T is a deductive consequence of a set of propositions X if and only if there is a
non-empty RCS-element § such that I" is the conclusion of $ and AVAP($) < X

X =T iff X < CFORM and there is $ € RCS\{0} such that I = C($)) and AVAP($) < X.

Proof: Follows directly from Definition 3-20 and Definition 3-21. m
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Definition 3-22. Logical provability
FTiffo-T.

Definition 3-23. Consistency

X is consistent
iff
X < CFORM and thereisnoT’ e CFORM suchthat X —T and X — I,

Definition 3-24. Inconsistency

X is inconsistent
iff
X < CFORM and thereisal’ € CFORM suchthat X —T"and X — ™I .

Theorem 3-13. Sets of propositions are inconsistent if and only if they are not consistent
If X < CFORM, then: X is inconsistent iff X is not consistent.

Proof: Follows directly from Definition 3-23 and Definition 3-24. m

Definition 3-25. Deductive consequence for sets
Xu—Yiff X uY € CFORM and for all A € Y it holds that X - A.

Definition 3-26. Logical provability for sets
v X iff @ y— X.

Definition 3-27. The closure of a set of propositions under deductive consequence
X" ={A|A e CFORM and X - A}.

Before proving the usual properties for the deductive consequence relation in ch. 4 and
ch. 6, we will prove some theorems that illustrate the working of the calculus in the fol-

lowing ch. 3.3.
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3.3 AVS, AVAS, AVP and AVAP in Derivations and in In-

dividual Transitions

Now, we will establish some theorems for the rules (cf. ch. 3.1) and operations (cf. ch.
3.2) respectively that describe the working of the Speech Act Calculus. More exactly, we
will prove theorems that provide an account of the connections between changes in avail-
abilities (AVS, AVAS, AVP, AVAP) in rule-compliant transitions from a sentence se-
guence $ to a sentence sequence $)' and the respective rule or operation. At the same
time, these theorems provide the basis for the theorems about the deductive consequence
relation that are proved in ch. 4 and for the proof of the correctness and the completeness
of the Speech Act Calculus in ch. 6. At the end of the chapter, Theorem 3-30 offers an
overview of the form of derivations and the availability conditions in derivations in the

Speech Act Calculus.

Theorem 3-14. AVS, AVAS, AVP, AVAP and RCE

If $ € SEQ and $H' € RCE(%), then:
(i)  AVS($) < AVS($) u {(DoM(8H), H o)}
(i)  AVAS() = AVAS($) u {(Dom($), H'vom(e)},
(i)  AVP($") < AVP(H) u {C(©H"}, and
(iv)  AVAP($H) < AVAP(H) u {C(H"}.

Proof: Suppose $ € SEQ and ' € RCE($)). With Theorem 3-3, there are then = € PERF
and I' € CFORM such that ' = $ u {(Dom($), "E T7)} = H {0, "E I'")} and the
statement follows with Theorem 2-79. m

Theorem 3-15. AVS, AVAS, AVP, AVAP and AR

If $ € SEQ and $H' € AF(9), then:
(i)  AVS(H)NAVS(H) = {(Dom($), $H'vom(s)}:
(i) AVS(9) = AVS(H) u {(Dom(), $'bom(s)}
(iii)  AVAS(H)NAVAS(H) = {(Dom($)), $'pom(s))}
(iv)  AVAS($') = AVAS(H) u {(Dom($), 9'oom))}
(V) AVPONAVP(H) < {C(9)},
(vi) AVP($) = AVP(%) u {C(H)},
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(vii) AVAP(S)NAVAP(H) < {C(%")}, and
(viii) AVAP($') = AVAP($) u {C(%)}.

Proof: Suppose $ € SEQ and $' € AF($). With Definition 3-18, it then holds that '
RCE($). With Definition 3-1, we have that there is I' € CFORM such that $' = $ u
{(Dom($)), "Suppose I'")}. Thus we have $'TDom($")-1 = H'TDom(H) = §.

Ad (i): Suppose (i, ') € AVS(H)NAVS(H). With Theorem 3-14-(i), we then have (i,
$9) € {(Dom($), H'boms)}- With Theorem 2-82, we have (Dom($), $H'bom) €
AVS($'") and we have (Dom($), H'oomn) € AVS(H) < H. Hence we have (Dom($),
9'pom(s)) € AVS(H)NAVS(H).

Ad (ii): With Theorem 3-14-(i), it holds that AVS($") < AVS($) u {(Dom($),
$'bom(s)) }- Also, we have that (Dom($)), $H'oom(s)) = (Dom($)), "Suppose I'") € AS(H). It
then holds, with Theorem 2-30, that there is no CdlI- or NI- or RA-like and thus no closed
segment B in H' such that min(Dom(8)) < Dom($))-1 = Dom($)")-2 and max(Dom($8)) =
Dom($) = Dom($)")-1. With Theorem 2-84, we then have AVS($H)\AVS($') = @ and thus
AVS(H) < AVS(H'). With (i), we have (Dom($)), H'ooms)) € AVS($') and hence we
have AVS($) u {(Dom($), H'boms))} S AVS($').

Ad (iii): Suppose (i, $') € AVAS(H)NAVAS($). With Theorem 3-14-(ii), it then fol-
lows that (z, $') € {(Dom(£), H'oom(s))}- With (i), we also have (Dom($)), H'oom(s)) €
AVS($'). Also, we have (Dom($), $H'bom(s)) = (Dom($)), "Suppose I'") € AS($') and
thus we have (Dom($)), $'oomm)) € AVAS(H') and (Dom($), H'oom(s)) € AVAS($H) < 9.

Ad (iv): With (iii), we have (Dom($)), H'oomn) € AVAS(H) = AVS(H) n AS(H).
With (ii), we thus have AVAS($) u {(Dom(9), H'bom)} = (AVS(H) n AS($)) v
({(Dom(H), Hooms)} N AS(H)) = (AVS(H) u {(Dom(H), Hooms)}) n AS(S) =
AVS($) n AS(5') = AVAS($).

Ad (v), (vi), (vii), (viii): (v) follows with Theorem 3-14-(iii), and (vii) follows with
Theorem 3-14-(iv). (vi) follows with Definition 2-30 and (ii). (viii) follows with
Definition 2-31 and (iv). m
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Theorem 3-16. AVAS-increase only for AR

If $ € SEQ and $H' € RCE(%), then:
(i) If AVAS($H) < AVAS($"), then ' € AF(9), and
(i) If AVAP(HH) < AVAP(H'), then $' € AF(9).

Proof: Suppose $ € SEQ and $' € RCE($). Ad (i): Suppose AVAS($H) < AVAS($H").
Then there is (i, ') € AVAS(H)N\AVAS($). Then we have (i, $') € AS($)'). With
Theorem 3-14-(ii), we also have (z, $") = (Dom(£)), H'oom)) and hence (Dom($),
H'bom(s)) € AS($H'). With Definition 3-1, we then have ' € AF($). Ad (ii): Suppose
AVAP($) c AVAP($"). With Theorem 2-75, we then have AVAS($)") < AVAS($)) and
thus there is (z, $') € AVAS(H)NAVAS($). Then the statement follows in the same way

as (i). m

Theorem 3-17. AVS, AVAS, AVP and AVAP in transitions without AR
If $ € SEQ and $' € RCE(H)\AF($), then:

() AVS(H) = AVS($) u {(Dom($), H'vom(s)}

(i)  AVAS(H") < AVAS(9),

(iii)  AVP(®H") < AVP($H) u {C(H"}, and

(iv) AVAP(H") < AVAP(9).

Proof: Suppose $' € RCE(H)\AF($). (i) and (iii) follow with Theorem 3-14-(i) and -(iii).
Ad (ii): With $' € RCE(H)\AF($) and Definition 3-1 to Definition 3-18, we have that
(Dom($), H'bom(s)) = (Dom($), "Therefore P($'bom(s))’) € AS($H') and hence (Dom($),
H'bom(s)) € AVAS($'). With Theorem 3-14-(ii), we then have AVAS($') < AVAS(S).
Ad (iv): (iv) follows with Theorem 2-75 from (ii). m

Theorem 3-18. Non-empty AVAS is sufficient for Cdl
If § € SEQ and AVAS($) # 0, then H u {(Dom(%), "Therefore P(Hmaxwoomavass)) —
C($)")} € CdIF(5).

Proof: Suppose $ € SEQ and AVAS($) # 0. Then we have (max(Dom(AVAS($)))),
Hmaxomavasy) € AVAS(H) and P(Hoomi)1) = C(H) and there is no [ with
max(Dom(AVAS($))) < I < Dom($)-1 such that (I, $;) € AVAS($). With Definition
3-2, we then have § u {(Dom($), "Therefore P(Hmaxpomavasey) — C(H))} e
CdIF($). m
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Theorem 3-19. AVS, AVAS, AVP, AVAP and Cdl
If $ € SEQ and $H' € CdIF($)), then:
) {0, 9') | max(Dom(AVAS($))) <j < Dom($)} is a Cdl-closed segment in §',
(i) AVS(H)NAVS(9) < {0, 9') | max(Dom(AVAS(S))) < j < Dom(9)},
(i) AVS($) = (AVS(H)M [, 97) | max(Dom(AVAS(S))) < j < Dom(9)}) v
{(Dom($), £'bom(s)}
(iv)  AVAS(HNAVAS(H') = {(max(Dom(AVAS($))), $'maxoomavasemn s
(v)  AVAS(5) = AVAS($) U {(max(Dom(AVAS($))), 'max(oemavassm)
(vi)  AVPHONAVP(H) < {P(5") | max(Dom(AVAS(S))) < j < Dom($)},
(vii) AVP(9) < {P(9") | j € Dom(AVS($)Dom($))} v
{P(%')) | max(Dom(AVAS($))) < j < Dom($)},
(viii)  AVAP(HNAVAP($)') < {P($)' maxpomavasmm)}:
(ix)  AVAP($) = AVAP($) U {P($ maxpom(avase)}, and
(X)  C(H) = "P(H maxomeavase)y)) — C(H)".

Proof: Suppose $ € SEQ and $' € CdIF($). With Definition 3-18, it then holds that §' €
RCE($). With Definition 3-2, we have that there are A, ' € CFORM and ¢ € Dom($))
such that P();) = A and (z, $;) € AVAS($)) and P($pom(s)-1) = I and there is no [ such that
i <1< Dom($)-1 and (I, $H;) € AVAS(H), and ' = H u {(Dom(H), "Therefore A —
I'")}. Then we have $' € SEQ and $H'TDom($")-1 = $H'TDom($H) = .

We thus have that B = {(j, ")) | i < j < Dom($)} is a segment in ' and that P(") = A
and (4, $;) € AVAS($H'TDom($)) and P($'bom(s)-1) = I" and that there is no [ such that i </
< Dom($)-1 and (I, ") € AVAS(H'TDom($)), and P(H'oomi)) = "A — I7. With
Theorem 2-91, we then have that 95 is a Cdl-closed segment and thus a closed segment in
9.

Since max(Dom(8)) = Dom($)) = Dom($)')-1, it follows, with Theorem 2-86, that
AVAS($'TDom($")-1)\AVAS($) = {(min(Dom(B)), £ 'minom(z))} =
{(max(Dom(AVAS(HTDom($)-1))),  $'maxom(avas(ioom)-n))}-  Since  H =
$'TDom($")-1, we thus have AVAS(H)\AVAS($H") = {(min(Dom(B)), ' minom(s)))}
{(max(Dom(AVAS(5)))), 9'mamomavas@)))}.- Thus we have i = min(Dom(‘B))
max(Dom(AVAS(£$))) and it holds that B = {(j, $') | max(Dom(AVAS(9))) < j
Dom($)}. Thus we have (i). We then also have that P($)'maxpomavase)y)) = P(9:) = A. Be-
cause of C() = I and C($H) = "A — I7, it then follows that (x) holds. With
AVAS(H)\AVAS($') # 0 and Theorem 2-73, we also have AVS(H)\AVS(H') # 0. With
this and with $ = $H'TDom($")-1 and B = {(5, H) | max(Dom(AVAS($))) < j <

IA
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Dom($)}, the remaining clauses ((ii) to (ix)) follow with Theorem 2-83-(iv) to -(xi) and

with the fact that closed segments with the same end are identical (Theorem 2-53). m

Theorem 3-20. AVS, AVAS, AVP, AVAP and NI
If $ € SEQ and $' € NIF($), then:
i) {0, 9') | max(Dom(AVAS($))) <j < Dom($)} is an NI-closed segment in £3',
(i) AVS(H)NAVS() < {0, 9') | max(Dom(AVAS(S))) < j < Dom(9)},
(iii)  AVS($') = (AVS(OM (U, ') | max(Dom(AVAS($))) < j < Dom(£)}) v
{(Dom($), £'pom(s)}
(iv)  AVAS(HNAVAS($') = {(max(Dom(AVAS(S))), ' maxpom@avasi)}:
(V)  AVAS(H) = AVAS($) u {(max(Dom(AVAS($))), $'maxoomavasemnt:
(Vi)  AVPO)NAVP(H') < {P($') | max(Dom(AVAS($))) < j < Dom($)},

(vii)  AVP(9) = {P(9") | j € Dom(AVS(H')I Dom($))} u
{P(%’) | max(Dom(AVAS($))) < j < Dom($)},

(viii)  AVAP(HNAVAP($') < {P(H maxpomavase) b
(ix)  AVAP($) = AVAP(9') U {P($'maxom@avas))}: and
(X)  C(9") = "=P(H maxomavasyy) -

Proof: Suppose $) € SEQ and $' € NIF($)). With Definition 3-18, it then holds that $' €
RCE($). With Definition 3-10, we have that there are A, ' € CFORM and i, j € Dom($))
such that 7 < j, P($);) = A and (4, ;) € AVAS($), P($,) =T and P(Hoom(s)-1) = I or
P($,) = "=I" and P($Hpoms)-1) = I and (4, ;) € AVS($) and there is no [ such that i < <
Dom($)-1 and (I, ;) € AVAS($), and H' = $ u {(Dom($), "Therefore —A™)}. Then we
have $' € SEQ and $H'TDom(£")-1 = $'IDom($) = .

We thus have that B = {(j, $') | i <j < Dom($)} is a segment in ' and that P(£";) = A
and (i, $') € AVAS(H'TDom($)) and P(£') = T and P(H'bom(s)-1) = "= or P(9') =
"I and P(9'bom(s)-1) = T and (4, $')) € AVS($H'TDom($))) and that there is no [ such that
i <1 < Dom($)-1 and (I, ) € AVAS(H'TDom($)) and P(H'pomm) = —AT. With
Theorem 2-92, we then have that 5 is an NI-closed segment and thus a closed segment in
H'.

Since max(Dom(®8)) = Dom($)) = Dom($)")-1, it then follows, with Theorem 2-86, that
AVAS($'TDom($')-1\AVAS($) = {(min(Dom(B)), $'minom()))} =
{(max(Dom(AVAS(HTDom($H)-1))),  $'maxom(avas(ioom)-n))}-  Since  H =
$'TDom($")-1, we thus have AVAS(H)\AVAS($H') = {(min(Dom(B)), ' minom(s)))}
{(max(Dom(AVAS($))), $H'maxomavas))}- Thus we have ¢ = min(Dom(8))
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max(Dom(AVAS($))) and it holds that B = {(j, ') | max(Dom(AVAS($))) < j <
Dom($)}. Thus we have (i). We then also have that P($)'maxpomavase)y)) = P(9:) = A. Be-
cause of C($)') = =A™, it then follows that (x) holds. With AVAS(H)\AVAS($') # 0 and
Theorem 2-73, we also have AVS(H)\AVS(H') # 0. With this and with $ = $'TDom($")-1
and B = {(j, 9')) | max(Dom(AVAS(%))) < j < Dom(£)}, the remaining clauses ((ii) to
(ix)) follow with Theorem 2-83-(iv) to -(xi) and with the fact that closed segments with

the same end are identical (Theorem 2-53). m

Theorem 3-21. AVS, AVAS, AVP, AVAP and PE
If $ € SEQ and $H' € PEF($), then:
i) {0, 9') | max(Dom(AVAS($))) <j < Dom($)} is a PE-closed segment in $)',
(ii)  AVSONAVS(S) < {(: 97) | max(Dom(AVAS(%))) < j < Dom(H)},
(i) AVS($') = (AVS(HM (U, ) | max(Dom(AVAS(S))) < j < Dom(9)}) v
{(Dom($), 'pom(s))}
(iv)  AVASHNAVAS(H') = {(max(Dom(AVAS(S))), ' max@omavasi)}:
(V) AVAS(9) = AVAS($) u {(max(Dom(AVAS($))), ' maxpom@avas@n)}:
(vi)  AVP(H)NAVP($') < {P($") | max(Dom(AVAS($))) < j < Dom(£)},

(vii)  AVP(9) = {P(9") | j € Dom(AVS(H')I Dom())} u
{P(%’) | max(Dom(AVAS($))) < j < Dom($)},

(viii)  AVAP(HNAVAP(H) < {P($ max@omavase)}:
(ixX)  AVAP(9) = AVAP(9") u {P(9 maxpom(avass))} and
(x) C(%)=C(®).

Proof: Suppose $H € SEQ and ' € PEF($). With Definition 3-18, we then have $' e
RCE($). With Definition 3-15, we have that there are p € PAR, & € VAR, A € FORM,
where FV(A) < {€}, T € CFORM and ¢ € Dom($)) such that P($);) = "VEA™ and (3, $,) €
AVS(H), P(Hi1) = [B, & A] and (i+1, Hir1) € AVAS($H), and P(Hpomey1) = T, B ¢
STSF({A, I'}), and that there is no j << such that B € ST($);) and that there is no m such
that +1 < m < Dom($)-1 and (m, $,,) € AVAS($), and $H' = H u {(Dom($)), "Therefore
I'")}. Then we have $' € SEQ and $H'TDom($")-1 = $'IDom($H) = $.

We thus have that B = {(j, ) | +1 < j < Dom($))} is a segment in $' and that p €
PAR, £ € VAR, A € FORM, where FV(A) < {&}, T € CFORM and P(§') = "VEA™ and
(1, $%) € AVS(HTDom($)), P(H'1) = [B, € A] and (i+1, H's1) € AVAS($HTDom(£)-1),
and P(9'oomm)-1) = I', B & STSF({A, I'}) and that there is no j < such that € ST($";)
and that there is no m such that +1 < m < Dom($))-1 and (m, $',,) € AVAS($H'TDom(5))),
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and that P($)'pom(s)) = I'. With Theorem 2-93, it then holds that %8 is a PE-closed segment
and thus a closed segment in $)'.

Since max(Dom(B)) = Dom($)) = Dom(%')-1, it follows, with Theorem 2-86, that
AVAS($)1 Dom($))-1)\AVAS(’) = {(min(Dom(B)), Vmnwomzp)} =
{(max(Dom(AVAS($TDom(£)-1))),  H'maxpomavas(sioomm)-n))}-  Since  H =
H'TDom($")-1, we thus have AVAS(H)\AVAS($H") = {(min(Dom(B)), ' minom(s)))}
{(max(Dom(AVAS($))), H'maxomavas)))}- Thus we have ¢ = min(Dom(8))
max(Dom(AVAS($))) and it holds that B = {(j, $') | max(Dom(AVAS($))) < j
Dom($)}. Thus we have (i). We then also have that C($)) = P($'bom(s)-1) = I' = C($') and
thus we have (x). With AVAS(H)\AVAS(H') # 0 and Theorem 2-73, we also have
AVS(H)MNAVS(H) # 0. With this and with § = HTDom(H")-1 and B = {(j, 9)) |
max(Dom(AVAS($)))) < j < Dom(£)}, the remaining clauses ((ii) to (ix)) follow with
Theorem 2-83-(iv) to -(xi) and with the fact that closed segments with the same end are
identical (Theorem 2-53). m

IA

Theorem 3-22. If the proposition assumed last is only once available as an assumption, then it
is discharged by Cdl, NI and PE

If § € SEQ, A ¢ CFORM and for all ¢ € Dom(AVAS($)): If P(9,) = A, then ¢ =
max(Dom(AVAS(%))), then it holds for all ' € CdIF($) u NIF($) u PEF($)) that AVAP($")
< AVAP(H)\{A}.

Proof: Suppose $) € SEQ, A € CFORM and suppose it holds for all : € Dom(AVAS($)))
that if P($);) = A, then ¢ = max(Dom(AVAS($)))). Now, suppose $' € CdIF($) u NIF($)
u PEF($). With Theorem 3-19-(iv), -(v), Theorem 3-20-(iv), -(v) and Theorem 3-21-(iv),
-(v), we then have that AVASHNAVAS(H) = {(max(Dom(AVAS($))),
'max(pom(avass)))} and AVAS($') < AVAS($). With Theorem 2-75, we then have
AVAP($)") < AVAP(5)).

Then it holds that A ¢ AVAP($'). To see this, suppose for contradiction that A €
AVAP($"). According to Definition 2-31, there would then be an i € Dom(AVAS($)"))
such that A = P(9). With AVAS($)) < AVAS($), we would then have that : e
Dom(AVAS($)) and that A = P($,). Since, by hypothesis, it holds for all i e
Dom(AVAS($)) that if P(9,) = A, then ¢ = max(Dom(AVAS($))), we would thus have
max(Dom(AVAS($))) = ¢ € Dom(AVAS($")). But with AVAS(H)\AVAS($H') =
{(max(Dom(AVAS(9))), $H'max@omavase))}, We have max(Dom(AVAS($))) ¢
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Dom(AVAS($")). Contradiction! Therefore we have A ¢ AVAP(') and thus AVAP($)")
< AVAP(H)\{A}. =

Theorem 3-23. AVAS-reduction by and only by Cdl, NI and PE

If H € SEQ and ' € RCE($)), then:

AVAS($H") < AVAS(9H)

iff

AVAS(H)NAVAS($) = {(max(Dom(AVAS(S))), Himaxpomavasey)} and H' e CAIF($) u
NIF($) u PEF($)).

Proof: Suppose $ € SEQ and ' € RCE($). The right-left-direction follows with clauses
(iv) and (v) of Theorem 3-19, Theorem 3-20 and Theorem 3-21.

Now, for the left-right-direction, suppose AVAS($") < AVAS($). With ' € RCE(H)
and with Theorem 3-1, we have $' € SEQ. With Theorem 3-5, we have $'IDom($’)-1 =
$ and thus Dom($)) = Dom($')-1. Because of AVAS(H') < AVAS($) and with Theorem
2-85, we thus have that there is a closed segment 2 in $' such that min(Dom(%()) <
Dom($)-2 = Dom($)-1 and max(Dom(2A)) = Dom($)-1 = Dom($) and
AVAS(HNAVAS(H) = {(min(Dom(RA)), H'minwomeay)} = {(Max(Dom(AVAS(S))),
$'max@om(avas@))) - Now, we have to show that ' € CdIF($) u NIF($) u PEF($H). It
holds that

AVAS($'Tmax(Dom(21))) = AVAS($'TDom($)) = AVAS($).

With Theorem 2-61, we have that 2( is a Cdl- or NI- or PE-closed segment in $)'. Now,
suppose 2 is a Cdl-closed segment in §'. With Theorem 2-91, it then holds that

a)  (min(Dom(&L)), $'minomeay) = (MIN(DoM(A)), Himinomeay)) € AVAS($),

b)  P($H'bom(s)-1) = P(Hpoms)-2) = C(5),

c)  There is no r such that min(Dom(2()) < r» < Dom($)-1 and (r, ') = (r, 9,) €
AVAS($), and

d) fJ‘Dom(Y;) = Therefore P(mein(Dom(Ql))) - C(y))-I

According to Definition 3-2, we then have $' e CdIF($)). Now, suppose 2f is an NI-
closed segment in $'. With Theorem 2-92, it then holds that there are © € Dom($)") and I"
e CFORM such that

a)  min(Dom(2()) <i< Dom($),
b)  (min(Dom(A)), H'minomey)) = (MIN(DOM(A)), Hminomey) € AVAS(H),



d)
e)

f)
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P(ﬁli) = P(ﬁi) =T and P(ﬁ'Dom(ﬁ)—l) = P(S’_’)Dom(g).1) =I"

or

P($') =P($) = "= and P($'pom(s)-1) = P(Hpom(s)-1) =T,

(1. ) € AVS(9),

There is no r such that min(Dom(2()) < » < Dom($)-1 and (r, ') = (r, $,) €
AVAS($), and

b‘Dom(f)) = "Therefore ﬁp(ﬁlmin(Dom(m»)_' = "Therefore ﬁp(ﬁmin(Dom(m)))-l.

According to Definition 3-10, we then have ' € NIF($)). Now, suppose 2l is a PE-closed
segment in $'. With Theorem 2-93, it then holds that there are { € VAR, B € PAR, A €
FORM, where FV(A) < {&}, T € CFORM and B e SG($") such that:

a)
b)
c)
d)
€)
f)
9)
h)

P($)'minom(py) = "VEA™ and (min(Dom(B)), $'minom(s)) € AVS($),
P($)'minome)+1) = [B, & A and (min(Dom(B))+1, 'minomep)+1) € AVAS($),
P(9'max@omezy-1) =T,

$)'maxoomsy) = "Therefore I'",

B & STSF({A, T'}),

There is no j < min(Dom(®B)) such that € ST($"),

2 = B\{(min(Dom(*B)), H'minom(my))} and

There is no r such that min(Dom(2A)) < r < Dom($))-1 and (r, ;) € AVAS($).

With g), we have min(Dom(2()) = min(Dom(®8))+1 and Dom($)) = max(Dom(2()) =
max(Dom(®8)). It then follows that min(Dom(8)) < min(Dom(A)) < Dom($)-1 and
therefore we have min(Dom(28)), min(Dom(®8))+1 € Dom($)) and max(Dom(®5))-1 =
Dom($)-1. It then follows that

a)
b)
c)
d’)
€)
f)
h’)

P(Sminomezy) = "VEA™ and (min(Dom(B)), Himinoomesy) € AVS(H),
P(Ominomesy+1) = [B, & A] and (min(Dom(B))+1, Hminoomes)+1) € AVAS(S),
P(Hpom)1) =T,

$'pom(s) = "Therefore I',

B ¢ STSF{A, T}),

There is no j < min(Dom(*B)) such that € ST(%,),

There is no r such that min(Dom(28B))+1 < r < Dom($)-1 and (r, 9,) €
AVAS($).

According to Definition 3-15, we then have §y' € PEF($)). Hence we have in all three
cases that ' € CdIF($) u NIF($) u PEF(H). m
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Theorem 3-24. AVS-reduction by and only by Cdl, NI and PE

If H € SEQ and ' € RCE($)), then:

AVS($) < AVS($)

iff

{(, 9') | max(Dom(AVAS($))) < j < Dom($)} is a Cdl- or NI- or PE-closed segment in $'
and $' € CdIF($) u NIF(9) u PEF($).

Proof: Suppose $ € SEQ and $' € RCE($). The right-left-direction follows with clause
(iv) of Theorem 3-19, Theorem 3-20 and Theorem 3-21, and with Theorem 2-72. Now,
for the left-right-direction, suppose AVS($H) < AVS(H). Then we have
AVS(HNAVS(H') # 0. With $' € RCE($) and Theorem 3-1, we have $' € SEQ and,
with Theorem 3-5, $'IDom($")-1 = $). With Theorem 2-83-(vi) and -(vii), it then follows
that AVAS(H") < AVAS($). With Theorem 3-23, it then holds that $'e CdIF($)) v
NIF($) u PEF($). With Theorem 3-19-(i), Theorem 3-20-(i) and Theorem 3-21-(i), it
then follows that {(j, $") | max(Dom(AVAS($))) < j < Dom($)} is a Cdl- or NI- or PE-

closed segmentin $'. m

Theorem 3-25. AVS if Cdl, NI and PE are excluded
If § € SEQ and $' € RCE(H)\(CAIF($) u NIF(9) u PEF($)), then:
AVS(9') = AVS(9) u {(Dom($), H'bom(s))}-

Proof: Let $ € SEQ and ' € RCE(H)\(CAIF($) u NIF($) u PEF($)). Because of
Theorem 3-14-(i), we have AVS($)') < AVS($) u {(Dom($), $'bom(s))}- With Theorem
2-82, we have that C($') = P($'pom(s)-1) IS available in ' at Dom($")-1. With Theorem
3-4, we have Dom($')-1 = Dom($)). Therefore (Dom(£)), $H'bom)) € AVS(H). If
AVS($H) < AVS(9H'), then we would have, with Theorem 3-24, that $' € CdIF($) u
NIF($) u PEF($), which contradicts the hypothesis. Therefore we have AVS($) <
AVS($'). Hence we also have AVS($)) u {(Dom($)), H'oom))} S AVS(H'). m

Theorem 3-26. AVS, AVAS, AVP, AVAP and Cl, BI, DI, UL, PI, Il
If § € SEQand ' € CIF($) u BIF($) u DIF($) u UIF(§) u PIF() u IIF($), then:
()  AVS(®) = AVS(H) u {(DOM(H), H'oon)},
(i) AVAS(H) < AVAS($),
(i)  If AVAS($H) c AVAS($), then &' € PEF($),
(iv)  AVP(9) = AVP(9H) u {C(H)}
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(v)  AVAP($) € AVAP($), and
(vi) If AVAP(§') c AVAP($), then ' € PEF(%).

Proof: Suppose $ € SEQ and $' € CIF($) u BIF($H) u DIF($) u UIF($) u PIF(H) u
IIF($). With Definition 3-18, we then have $)' € RCE($)). With Definition 3-4, Definition
3-6, Definition 3-8, Definition 3-12, Definition 3-14 and Definition 3-16, we have that
there are A, B € CFORM and 6 € CTERM and B € PAR and §{ € VAR and A € FORM,
where FV(A) < {&} such that ' = $ u {(Dom($)), "Therefore AAB™)}or H' =$H v
{(Dom($)), "Therefore A < B )} or $' = H u {(Dom($)), "Therefore Av B )}orH' =9
u {(Dom($)), "Therefore AEA™)} or $' = u {(Dom($), "Therefore VEA )} or H'=$H u
{(Dom($)), "Therefore 6 = 67)}. With the theorems on unique readability (Theorem 1-10,
Theorem 1-11 and Theorem 1-12), we then have (Dom($)), $'oom(s)) € AS($') and thus,
with Definition 3-1, that $' ¢ AF($). Then (i), (ii), (iv) and (v) follow with Theorem
3-17-(i), -(ii), -(iii) and -(iv). With Theorem 3-19-(x), Theorem 3-20-(x) and unique read-
ability, it follows that $' ¢ CdIF($)) u NIF($). With Theorem 3-23, it then follows that if
AVAS(H") < AVAS(9), then $' € PEF(H) and hence we have (iii). Now, suppose for
(vi) that AVAP($") < AVAP($). Then we have AVAP($) < AVAP($") and thus, with
Theorem 2-75, AVAS($) < AVAS($'). With (ii), we then have AVAS($') < AVAS($)
and thus, with (iii), that ' € PEF($)). m

Theorem 3-27. AVS, AVAS, AVP, AVAP and CdE, CE, BE, DE, NE, UE, IE

If H € SEQ and ' € CAEF($) u CEF($) u BEF($) u DEF($) u NEF($) u UEF($) u
IEF($)), then:

()  AVS(®) = AVS(H) u {(DOM(H), H'oon)},
(i) AVAS(H) < AVAS(H),

(i)  IfAVAS($H) c AVAS($), then &' e CAIF(H) u NIF($) u PEF($),
(iv)  AVP(9) = AVP(9) v {C(%)},

(v)  AVAP($) < AVAP($), and

(vi) If AVAP($) c AVAP($), then §' e CAIF($) u NIF($) u PEF($).

Proof: Suppose ) € SEQ and $' € CdEF($)) u CEF($)) u BEF($) u DEF($) u NEF(%)
u UEF($) u IEF($). With Definition 3-18, we then have ' € RCE($)). With Definition
3-3, Definition 3-5, Definition 3-7, Definition 3-9, Definition 3-11, Definition 3-13 and
Definition 3-17, we have $' = § u {(Dom($)), "Therefore P('oom(s)) ")} Then we have
(Dom($)), H'bom(s)) & AS($') and thus (Dom($)), H'oom(s)) &€ AVAS($') and ' ¢ AF(5).
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Then, with Theorem 3-14-(i), -(ii) and -(iii), we have (i), (ii), (iv) and (v). Clause (iii) fol-
lows with Theorem 3-23. Now, suppose for (vi) that AVAP($") < AVAP($). Then we
have AVAP($)) < AVAP($') and thus, with Theorem 2-75, AVAS(H) < AVAS(H').
With (i), we then have AVAS(H") « AVAS($) and thus, with (iii), that ' € CdIF($)) v
NIF($) u PEF(). m

Theorem 3-28. Without AR, Cdl, NI or PE there is no AVAP-change

If 5 € RCS and © ¢ AF(HIDom($)-1) u CdIF(HIDom($)-1) u NIF(HIDom(H)-1) u
PEF($IDom($)-1), then AVAP($) = AVAP($H!Dom($)-1).

Proof: Suppose $ € RCS and $ ¢ AF($HIDom($)-1) u CdIF(HIDom($)-1) u
NIF($HIDom($)-1) u PEF($HIDom($)-1). We have $ = 0 or $ # @. In the first case, we
have $HIDom(H)-1 < $ = @ and the theorem holds. Now, suppose $ # @. According to
Theorem 3-6 and Definition 3-18, it then follows that first §) € CIF($Dom($))-1) or § e
BIF(HIDom($)-1) or $ e DIF(HIDom($H)-1) or H e UIF(HIDom(H)-1) or H €
PIF($IDom($)-1) or $ e IIF(HIDom($)-1) or second $ € CAEF($HIDom($)-1) or §H e
CEF(HIDom(9)-1) or $H € BEF(HIDom($)-1) or $H € DEF(HIDom($H)-1) or H €
NEF($HIDom($)-1) or ) € UEF($HIDom($)-1) or $H e IEF(HIDom($))-1). In the first six
cases, AVAP($) = AVAP($HIDom($)-1) follows from Theorem 3-26-(v) and -(vi). In the
remaining cases AVAP($) = AVAP($HIDom($)-1) follows from Theorem 3-27-(v) and

(Vi) m

Theorem 3-29. AVS, AVAS, AVP and AVAP of restrictions whose conclusion stays available
remain intact in the unrestricted sentence sequence.

If 9 € RCSand T is available in $ at i, then:
(i) AVS(Hli+1) < AVS(9),
(i)  AVAS($Hi+1) < AVAS(H),
(iii)  AVP($li+1) < AVP($), and
(iv)  AVAP($H!i+1l) < AVAP(9).

Proof: Suppose $H € RCS and T is available in $ at 7. According to Definition 2-26, we
then have i € Dom($)) and I = P($);) and there is no closed segment 2 in $) such that
min(Dom(2A)) < i < max(Dom()).

Ad (i): To show AVS($Hli+l) < AVS($), suppose (j, X) € AVS($Hli+1). With
Definition 2-28, we then have j € Dom($!i+1) and ($[i+1), = X and P(Z) is available in
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$Hli+l at j. According to Definition 2-26, there is thus no closed segment 2L in $[i+1 such
that min(Dom(2()) < j < max(Dom(2()). Now, suppose for contradiction, that (j, ) ¢
AVS(9). Then we would have j ¢ Dom($)) or $; # X or P(X) is not available in § at .
Since Hli+1 is a restriction of $ and j € Dom($Hli+1), the first two cases are excluded.
Thus, we would have j € Dom($)) and $, = X and P(Z) is not available in $ at 5. Accord-
ing to Definition 2-26, there is thus a closed segment 2L in $) such that min(Dom(2()) < j <
max(Dom(2()). According to Theorem 2-64-(viii), 20 is also a closed segment in
Himax(Dom(A))+1. If ¢ < max(Dom(2)), then we would have, because of j €
Dom($[i+1) and thus j < 4, that also min(Dom(2()) < ¢ < max(Dom(%()). Thus we would
have that P(£),) = T is not available in § at ¢, which contradicts the hypothesis. Therefore
we have max(Dom()) < ¢ and thus max(Dom())+1 < :+1. Therefore we have
Himax(Dom(A)+1 < Hl+1. With Theorem 2-62-(viii), 21 is then also a closed segment
in Hi+1. Therefore there is a closed segment 21 in $Hl4+1 such that min(Dom(2()) < j <
max(Dom(%()). Contradiction! Therefore (j, X) € AVS($).

Ad (i), (ii1) and (iv): With Theorem 2-72, (ii) follows from (i). With Theorem 2-74, (iii)

follows from (i). With Theorem 2-75, (iv) follows from (ii). m

Theorem 3-30. AVS, AVAS, AVP and AVAP in derivations
If $ € SEQ, then:
$H € RCS
iff
forall : € Dom($):
(i) Hli+l e AF($HI4) and
a)  AVS(HI+INAVS(HI) = {3, 9)}
b)  AVS(Hli+l) = AVS(H1i) v {( H)},
¢)  AVAS(HH+L)NAVAS(HI4) = {(i, H)},
d)  AVAS(Hli+l) = AVAS($H!) v {(, H)},
e) AVP®HI+I)M\AVP(HI) < {P(5)},
f)  AVP(®li+l) = AVP($14) u {P(9)},
g) AVAP(HI+1)\AVAP(HI) < {P(5,)}, and
h)  AVAP(Hli+1) = AVAP(H:) u {P(9.)}
or
(i) 9+l e CAIF(Hl7) and
a) {0, 9)) | max(Dom(AVAS($I))) < j <1} is a Cdl-closed segment in $li+1,
b)  AVS(HI)NAVS(HIi+1) < {(4, H;) | max(Dom(AVAS(HI4))) <j< i},
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or

(iii)

or

(iv)
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h)
i)
)

AVS(§]i+1) =

(AVS(HII(, 9,) | max(Dom(AVAS(H4))) < j <4}) v {(i 9},
AVAS(HI)\AVAS(HIi+1) = {(max(Dom(AVAS($11))), Hmaxpomavas@i)ts
AVAS(§) =

AVAS($H1i+1) u {(max(Dom(AVAS($14))), Hmaxom@avaseiy) b
AVP(HINAVP(91i+1) < {P(5),) | max(Dom(AVAS($1)) < j < i},
AVP(551) < {P(5,) | j € Dom(AVS($i+1)1)} u

{P(%);) | max(Dom(AVAS(§12))) < j < i},
AVAP(HI)\AVAP(§Ii+1) < {P(Hmaxpom@avassiin)}

AVAP($I7) = AVAP(HIi+1) U {P(Hmaxoomavasstiy)}: and

P($:) = "P(Hmaxmomavassryy) — P(9i1)’

@i+l e NIF($H14) and

a)
b)

c)

d)
e)

f)
9)

h)
i)
)

{(, 9)) | max(Dom(AVAS($[4))) < j <} is an Nl-closed segment in $li+1,
AVS(HINAVS(Hli+1) < {(j, H,) | max(Dom(AVAS($14))) < j < i},
AVS(§li+1) =

(AVS(HII(, 9)) | max(Dom(AVAS(H4))) < j <i}) v {(i, H9)},
AVAS(HINAVAS(HIi+1) = {(max(Dom(AVAS($1))), Hmaxomavassia)}s
AVAS($1i) =

AVAS(HIi+1) u {(max(Dom(AVAS($!))), Hmaxoom@avas@tan)ts
AVP($INAVP($1i+1) < {P($,) | max(Dom(AVAS($H11))) < j < i},
AVP($1i) < {P($),) | j € DOoM(AVS(Hi+1)Ii)} u

{P(%,) | max(Dom(AVAS($11))) < j < i},

AVAP(HINAVAP(Hi+1) < {P(Hmaxomavasstii)

AVAP($17) = AVAP(HIi+1) U {P(Hmaxpom@avasetiy)}, and

P($:) = "=P(Hmax@omavasstiy)

Hli+l e PEF($H!4) and

a)
b)

c)

d)
e)

f)
9)

{(J, 9,) | max(Dom(AVAS($[7))) < j <} is a PE-closed segment in $Hli+1,
AVS(HI)NAVS(Hli+l) < {(J, 9,) | max(Dom(AVAS($H[i))) < j <1},
AVS(Hli+1) =

(AVS(HI)M(J, $,) | max(Dom(AVAS($H14))) <j<i}) v {(Z, H,)},
AVAS(HIiINAVAS($H[i+1) = {(max(Dom(AVAS($14))), Hmax@omavassiin)}s
AVAS(H]1) =

AVAS(§li+1) u {(max(Dom(AVAS($14))), Hmaxpomavasstn
AVP(HI)\AVP($Hli+1) < {P(H,) | max(Dom(AVAS($H[))) <j < i},
AVP($14) < {P(%),) | j € Dom(AVS(Hli+1)1i)} u

{P($,) | max(Dom(AVAS($14))) < j < i},



h)

i)
)

or
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AVAP(HINAVAP(HIi+1) < {P(Hmaxom(avastin)}s
AVAP($I4) = AVAP(Hli+1) U {P(Hmaxpomavasriy)}, and
P(9:) = P($H:)"

(v) i+l e CIF(H4) u BIF($19) u DIF($14) u UIF($) u PIF($M) u IIF($H) and

a)
b)
c)
d)
e)
f)

or

AVS($1i+1) < AVS(H) u {(i, H)},

AVAS(§1i+1) € AVAS($1),

If AVAS(Hli+1) = AVAS($14), then Hli+1 € PEF($1),
AVP($li+1) < AVP(H14) u {P(H)},

AVAP($li+1) < AVAP($14), and

If AVAP(li+1) < AVAP(§14), then $li+1 e PEF($14)

(vi) $li+l e CAEF($Hl4) v CEF($l) u BEF(HI4) u DEF($H1) u NEF($H!7) u UEF(H114)
u IEF($7) and

a)
b)

c)

d)

AVS($1i+1) < AVS(H) u {0, H)},

AVAS(§1i+1) € AVAS($H1),

If AVAS(§li+1) = AVAS(H14), then Hli+l e CAIF(HM) u NIF($H) U
PEF($14),

AVP(§1i+1) € AVP($H1) u {P(H)}

AVAP(§1i+1) € AVAP($14), and

If AVAP(Si+1) < AVAP(H14), then $I(i+1) e CAIF(®Hli) u NIF(H) U
PEF($1).

Proof: Suppose $ € SEQ. (L-R): Suppose $ € RCS. Then it holds, with Definition 3-19,
for all i € Dom($): Hli+1l € RCE(H4). With Definition 3-18, it then holds for all i
Dom($) that $Hli+l e AF($H) u CAIF(H) u NIF(HT) u PEF(HIE) u CIF($H) u
BIF(H14) u DIF($Id) u UIF(H) u PIF($HM) u LIF($H19) u CAEF($HIE) u CEF(HIE) v
BEF(H!7) u DEF(H17) u NEF($17) u UEF($17) u IEF($[4). It then follows for $Hli+1 €
AF($I7), with Theorem 3-15, that (i) holds, for Hli+1 e CdIF($H[7), with Theorem 3-19,
that (ii) holds, for Hli+1 e NIF($H[), with Theorem 3-20. that (iii) holds, for Hli+1 e
PEF($7), with Theorem 3-21, that (iv) holds, for $li+1 € CIF($Hl7) u BIF($HIi) u
DIF(H17) u UIF($1:) u PIF($HT) u HF(HT7), with Theorem 3-26, that (v) holds, and, last,
for Hli+1 € CAEF(HI4) u CEF(H1) u BEF($HI4) u DEF($HI4) u NEF($HI4) u UEF($14)
u IEF($14), with Theorem 3-27, that (v) holds.
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(R-L): Now, suppose for all : € Dom($)) holds one of the cases (i) to (vi). With
Definition 3-18, it then holds for all i € Dom($) that $Hli+1 € RCE($!4). With Definition
3-19, we have $ € RCS. m









4 Theorems about the Deductive Consequence

Relation

In the following, we will prove theorems about the deductive consequence relation that
show that usual properties such as reflexivity, monotony, closure under introduction and
elimination of the logical operators and transitivity hold for this relation, and that serve at
the same time to prepare the proof of completeness in ch. 6.2. To do this, we first have to
do some preparatory work (4.1). Subsequently, we will show that the deductive conse-

quence relation has the desired properties (4.2).

4.1 Preparations

First, we will pave the way for showing that the deductive consequence relation is closed
under Cdl. To do this, we first show that for every derivation $) there is a derivation $H*
with AVAP(H*) < AVAP($) and C($H*) = C($) in which none of the assumed proposi-
tions is available at two positions (Theorem 4-1). Theorem 4-2 then shows that for every
derivation $ and every I' € CFORM there is a derivation $* with AVAP(H*) <
AVAP($) and C($H*) = C($) such that T" is available as an assumption only if it is avail-
able as the last assumption. This theorem provides the basis for the closure under Cdl.
The remaining theorems aim at the closure under introductions and eliminations for

which the antecedents of the closure clauses (cf. Theorem 4-18) have the form X, = Ao,

..y Xy = Apa. Here, we cannot simply concatenate derivations because the emergence

of closed segments or the violation of parameter conditions can cause problems. There-
fore, we have to show that derivations can be manipulated by adding blocking members,
substitution of parameters and the multiple application of Ul and UE, so that the desired
concatenations can be carried out.

To do this, we first show that derivations that do not have common parameters can be
concatenated (Theorem 4-4) if we interpose an assumption that blocks the emergence of
closed segments (Theorem 4-3) and that can then be eliminated (Theorem 4-7). Then, we
will show that the substitution of a new parameter for a parameter (that may already be
used) is RCS-preserving (Theorem 4-8). The proof of this theorem serves as a model for
the proof of the next theorem (Theorem 4-9), which on its part prepares the generalisation

theorem (Theorem 4-24). Then, we show that the simultanous substitution of several new
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and pairwise different parameters for pairwise different parameters is also RCS-
preserving (Theorem 4-10). Then, we establish some properties of Ul- and UE-extensions
of derivations, until, eventually, we prove Theorem 4-14, which assures us that two arbi-
trary derivations can be joined in such a way that, on the one hand, no further available
assumptions have to be added, and that, on the other hand, the conclusions of both deriva-

tions are still available.

Theorem 4-1. Non-redundant AVAS

If § € RCS\{0} then there is an H* € RCS\{0} such that
(i) AVAP(H*) < AVAP(H)
(ii)  C(H*) =C(%H), and
(iii)  JAVAS(H*)| = |JAVAP(H*)|.

Proof: Suppose $H € RCS\{@}. The proof is carried out by induction on |AVAS($)|. Sup-
pose |[AVAS($))| = 0. Obviously, we have AVAP($) < AVAP($) and C($) = C(H) and,
with Theorem 2-77, we also have |AVAP($))| = 0.

Now, suppose |AVAS($)| = k # 0. Suppose the statement holds for all ' € RCS\{0}
with |JAVAS($)")| < k. With Theorem 2-76, we then have |AVAP($)| < |AVAS($))|. Now,
suppose |[AVAP($H)| # |[AVAS($)|. Then we have |[AVAP($)| < |AVAS(H)|. Also, it holds
that AVAS($) # 0. With Theorem 3-18, we thus have $' = $ u {(Dom($)), "Therefore
P(Hmaxom(avasiy)) — C($)")} € CAIF($H). With Theorem 3-19-(ix), we then have
AVAP($') < AVAP($) and with Theorem 3-19-(iv) and -(v) follows |AVAS(HY)| < k.
According to the I.H., there is then $? € RCS\{0} such that AVAP($?) < AVAP($'),
C(9%) = C(HY and JAVAS(H?)| = |AVAP($?)|. Then we have AVAP($?) < AVAP(H%)
C AVAP($H) and C(H%) = C(HY) = "P(Hmxpomavassy) — C($)'. We have
P(Hmaxom(avassy)) € AVAP($H?) or P(Hmaxpom(avase)y) & AVAP(H?).

Suppose P(Hmaxpom(avasey) € AVAP($H?). Then we have $° = $?{(0, Therefore
C($)")} € CAEF($?) and, with Theorem 3-27-(v), it holds that AVAP($°) < AVAP(§?)
< AVAP(HY) < AVAP($), and we have C($%) = C($) and |AVAS($3)| = |AVAP(§°)|.
The latter one results as follows:

Suppose for contradiction that |JAVAS($%)| > |AVAP($®)]. Then there would be i, j
Dom($% with i # j and A € CFORM such that (i, "Suppose A*) € AVAS($°®) and (j,
"Suppose A7) e AVAS($®). Since, with Theorem 3-27-(ii), we have AVAS($°®) <
AVAS($?) there would thus be i, j € Dom($?) with i # j and A € CFORM such that (4,
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"Suppose A7) € AVAS(HH?) and (j, "Suppose A") € AVAS($H?). But then we would also
have |AVAS($?)| > |AVAP($?)|. Therefore we have |AVAS($®)| < |JAVAP($?)| and thus,
with Theorem 2-76, |AVAS($°)| = |AVAP($).

Now, suppose P(Hmaxpomavasey) € AVAP(H?). Now, let H* = $5*7{(0, "Suppose
P(Smaxpomavas)y) ')} Then we have $* € AF($?). With Theorem 3-15-(viii), we then
have AVAP($?) = AVAP($?) u {P(Hmaxpom(avassy)} S AVAP(S$), and we have C($*)
= P(Hmaxpom(avase))) and JAVAS(H*)] = |JAVAP($%)|. The latter is shown as follows:

First, we have |JAVAP($H?)| = JAVAS(H%)| and {P(Hmaxpomavasey)} = [{(Dom(H?),
"Suppose  P(Hmaxpomavasey)')}- Furthermore, we have AVAS(H?) n {(Dom(H°),
"Suppose P(Hmaomeavass) )} = 0 and AVAP($?) n {P(Hmaxpomavasey)} = 0. With
Theorem 3-15-(iv) and -(viii), we thus have:

IAVAS(§%)] = JAVAS(§?) u {(Dom($)?), "Suppose P(Hmax(pomavassy) )3}

= |AVAS(H?)[+{(Dom($7?), "Suppose P(Hmaxpomeavasey) ) H

= |AVAP($%) |+ {P(Hmaxomavas@m) H

= |AVAP(H?) U {P(Hmaxpomavase) 3

= |AVAP($).

With Theorem 3-15-(vi), we also have that {P(Hmaxpomavas))): "P(Hmaxpom(avass))) —
C(9)"} < AVP($%). Thus we have $° = H*~{(0, "Therefore C(£))")} € CAEF($*) and,
with Theorem 3-27-(v), we then have AVAP(§°) < AVAP($*) < AVAP($) and C(5°)
= C(9) and |JAVAS($°)| = JAVAP($°)|. The latter results from |JAVAS($)| = |AVAP(H")|
in the same way in which we have shown above that JAVAS($%)| = |JAVAP($°)]. m

The following theorem serves especially to prepare the closure under Cdl (Theorem
4-18-(i)).

Theorem 4-2. Cdl-preparation theorem
If $H € RCS\{0} and I" € CFORM, then there is an H* € RCS\{@} such that
(i) AVAP(H*) < AVAP(),
(i)  C(H*) =C(%H), and
(iii)  Forall : € Dom(AVAS($*)): If P(9*,) =T, then i = max(Dom(AVAS($%*))).

Proof: Suppose $H € RCS\{0} and I' € CFORM. Then we have I' ¢ AVAP($H)) or I e
AVAP(9). If T ¢ AVAP(), then § itself is an H* € RCS\{0} such that (i), (ii) and (iii)
hold trivially. Now, suppose I' € AVAP($)). The proof is carried out by induction on
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|AVAS($)|. Suppose |JAVAS($)| = 0. With Theorem 2-77, it follows that |JAVAP($)| = 0,
whereas, according to the hypothesis, |[AVAS($)| # 0. Thus the statement holds trivially
for AVAS($)| = 0.

Now, suppose |AVAS($)| = k£ # 0. Suppose the statement holds for all $' € RCS\{0}
with JAVAS($)")| < k. With Theorem 4-1, there is an ' € RCS\{0} such that AVAP($")
< AVAP(H), C(H") = C(9) and |AVAS(HY)| = [AVAP(H')| < [AVAP($)| < [AVAS($)|.
We also have, with |JAVAS($HY)| = |JAVAP(HY)|, that it holds for all B € AVAP($") that
there is exactly one i € Dom(AVAS($')) such that B = P($),). Suppose, for all i e
Dom(AVAS($HH): If P(H%) =T, then i = max(Dom(AVAS($Y)). Then we have that $? is
the desired element of RCS\{0}.

Now, suppose not for all i € Dom(AVAS(HY): If P(HY) = T, then i =
max(Dom(AVAS($))). Then there is an i € Dom(AVAS($%)) such that P($*) = T"and i
# max(Dom(AVAS($'))). Then we have AVAS($') #0 and T e AVAP($Y), and it holds
for all j € Dom(AVAS($Y)): If P(H) = T, then j = i and thus also j #
max(Dom(AVAS($Y)). Thus we have P($)'maxpom(avas@yy) # I'. We also have, with
AVAS($Y) # 0, Theorem 3-18 and C(H') = C(%H): H* = $H*{(0, Therefore
P($) maxom(avasy) — C(H))} € CAIF(H'). Then it holds, with Theorem 3-22, that
AVAP($H?) < AVAP(HIMP(H maxpomavassyy)} S AVAP($). With Theorem 3-19-(iv)
and -(v), it holds that |JAVAS($?)| < JAVAS($Y)] < JAVAS($)| and that |AVAS($H?)| =
|IAVAP($?)|. The latter is shown as follows:

Suppose for contradiction that |JAVAS($%)| > |AVAP($?)]. Then there would be i, j
Dom($?) with i # j and A € CFORM such that (i, "Suppose A") € AVAS($?) and (j,
rSuppose A7) € AVAS($H?). Since, with Theorem 3-19-(v), AVAS($?) = AVAS(5HY),
there would thus be 4, j € Dom($)") with i # j and A € CFORM such that (i, "Suppose
A7) € AVAS($') and (j, "Suppose A") € AVAS(HH'). But then we would also have
IAVAS(HY)| > |JAVAP($Y)]. Therefore we have [AVAS($?)| < JAVAP($?)| and thus, with
Theorem 2-76, that JAVAS($7)| = |JAVAP($?)].

We have |JAVAS($%)| < |JAVAS($Y)| < JAVAS($)| = k. According to the I.H., there is thus
an $° € RCS\{0} such that AVAP($%) < AVAP($?) and C(§°) = C(£?) and for all i €
Dom(AVAS($H): If P($%) = I, then i = max(Dom(AVAS($°%)). Then we have
AVAP(H’) < AVAP(H’) < AVAP(H') < AVAP(H), P(H'mxpomavassyy) &
AVAP($% and C(H%) = P(H maxpom(avasiyy) — C(H)'. With T € AVAP(H%) or T ¢
AVAP($%), we can then distinguish two cases.
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First case: ' € AVAP($°). Then we have I' = P($)*maxpomavas(sy) and for all i e
Dom(AVAS($H%): If T = P(§,), then i = max(Dom(AVAS($°))). With Theorem 3-18, we
then have that $§* = $*°{(0, Therefore I' — (P(H maxpom@avasey) — C(E))'} e
CdIF($%). With Theorem 3-22, it then follows that AVAP(H*) < AVAP(\{I'} <
AVAP($). Thus we have T' ¢ AVAP($* and thus that for all i ¢ Dom(AVAS($*):
P(9*%) #T.

Now, let $° = $*°{(0, "Suppose P() maxpom(avas@yy)’)s (1, "Suppose I™)}. Then we
have $° e AF($H*{(0, "Suppose P($H'maxmomavasemyy)’)}) and $H*~{(0, "Suppose
P($) maxom(avasiy) )} € AF(H%). Because of P($%) # T for all i € Dom(AVAS($?))
and T # P($'maxomavashy), We have, with Theorem 3-15-(iv), that for all i e
Dom(AVAS($°): P(6°) = T iff i = max(Dom(AVAS($°))). With Theorem 3-15-(viii),
we have AVAP($°) < AVAP(H*) u {T, P(9'maxpomavaseyy)} S AVAP($). With
Theorem 3-15-(vi), we have {I', P(§) maxomavas@yy)s T — (P(H maxpomavas(sty) —
C(9))'} < AVP($°), and with Theorem 3-15-(iv) we have that (Dom($*), "Suppose
P(" maxpom(avas(sy) ') € AVAS(°).

Then we have that $° = $°~{(0, Therefore P(H'maxpomavas@yy) — C(H))}
CdEF($°), and, with Theorem 3-27-(v), it holds that AVAP($®) < AVAP($°) <
AVAP(). Also, we have for all i € Dom(AVAS($%): If P($°) = T, then i =
max(Dom(AVAS($%)). The latter results as follows:

Suppose for contradiction that there is an i € Dom(AVAS($°)) such that P($3°) = T and i
# max(Dom(AVAS($®)). With Theorem 3-27-(ii), it then follows that i e
Dom(AVAS($°)). Then we have i = max(Dom(AVAS($°))) = Dom($H*)+1. However,
according to the construction of $°, we have max(Dom(AVAS($°))) < Dom(£*)+1 = i.
With i # max(Dom(AVAS($°))), we would thus have max(Dom(AVAS($%)) < i. But,
with i € Dom(AVAS($°)), we have i < max(Dom(AVAS($°%))). Contradiction!

We have P($) maxpomavassiy) — C(H)" = C(H°) € AVP(5°). Now, suppose for contra-
diction that P($) maxpomavas(sty) € AVP($°). Then we would have (Dom($*), "Suppose
P(H maxpomavasey)’) €  AVAS(H®)  and  thus  (Dom($H%),  "Suppose
P($) maxpom(avas@iy)’) € AVAS(H°N\AVAS($°®). With Theorem 2-85, we would then
have AVAS(HNAVAS(H?) = {(max(Dom(AVAS(°)), Hmaxoomavasen)} =
{(Dom($3*)+1, "Suppose I'"")} and therefore Dom($*) = Dom($*)+1. Contradiction!

Thus we have that $' = $°~{(0, "Therefore C())")} € CdAEF($°) and, with Theorem
3-27-(v), it holds that AVAP($') < AVAP(%%) < AVAP(f). We also have, with
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Theorem 3-27-(ii), for all i € Dom(AVAS($H’)): If P($H’) = T, then i =
max(Dom(AVAS($"))). Thus we have that $’ is the desired element of RCS\{@}.

Second case: I' ¢ AVAP(H®). Now, let $® = ©°{0, "Suppose
P($) maxpom(avasiy)’ )} Then we have $° e AF($%). With Theorem 3-15-(viii), we have
AVAP(H®) = AVAP(H®) U {P(H max@omavaseyy)} S AVAP(S). With Theorem
3-15-(vi), we have {P(H" maxpomavas@iy), P maxomavas@yy) — C(H)'} < AVP(HP).
With T' ¢ AVAP($?) and P(H ' maxpom(avaseyy) # I', we also have T' ¢ AVAP($®) and
thus for all i € Dom(AVAS($®): P($%) # I'. Then we have trivially for all i
Dom(AVAS($H®): If P($%) = T, then i = max(Dom(AVAS($®))). Then we have §° =
$H®{(0, "Therefore C(£)")} € CdEF($®) and, with Theorem 3-27-(v), it holds that
AVAP($°) < AVAP($®) < AVAP($). Furthermore, we have again trivially for all i e
Dom(AVAS($%): If P($°) =T, then i = max(Dom(AVAS($°)). Thus we have that $°
is the desired element of RCS\{0}. m

Theorem 4-3. Blocking assumptions
If 2 is a closed segment in §, « € Dom(2() n Dom(AS(%)), A = P($);) and PAR n ST(A) =0,
then there is a j € Dom($)) such that i # jand A € SE(9),).

Proof: Suppose 2l is a closed segment in §, i € Dom(() n Dom(AS($))), A = P($),) and
PAR n ST(A) = 0. With Theorem 2-47, it then follows that there is a closed segment B
in $ with B < 2 such that < = min(Dom(*B)). With Theorem 2-42, %5 is then a Cdl- or
NI- or RA-like segment in ). Suppose B is a CdlI- or an NI-like segment in §. Then it
holds, with Definition 2-11 and Definition 2-12, that max(Dom(8)) € Dom($)),
max(Dom(®B)) # i and A € SE(Hmaxpomez))). Now, suppose B is an RA-like segment in
$. With Definition 2-13, it then holds that min(Dom(8))-1 € Dom($)) and
min(Dom(8))-1 # 7. Moreover, there are then £ € VAR, A" € FORM, where FV(A") <
{&} and B € PAR such that P(minpomee)-1) = "VEA™ and A = P(Hminoomesy) = [B, & A'].
By hypothesis, we have PAR n ST(A) = 0, and thus we have B ¢ ST([B, &, A']). With
Theorem 1-14-(ii), we then have A = [B, & A"] = A™. Thus we have P($minoom(®)-1) =
"VEA™ and hence A € SE($minipom(s))-1) and the statement holds. m
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Theorem 4-4. Concatenation of RCS-elements that do not have any parameters in common,
where the concatenation includes an interposed blocking assumption

If 9,

§' € RCS, PAR n STSEQ() n STSEQ(H") = 0 and & € CONST\(STSEQ($) u

STSEQ($")), then there is an $* € RCS\{0} such that

(i)
(i)
(iii)
(iv)
(v)

(vi)

Dom($*) = Dom($)+1+Dom($"),

H*Dom($H) = 9,

$H*bom(s) = "Suppose a. = o',

For all ¢ € Dom($)") it holds that '; = H*pom(s)+1+i

Dom(AVS($H*)) =

Dom(AVS(H)) u {Dom($)} u {Dom(H)+1+l |l € Dom(AVS(H))},
AVP(H*) = AVP(H) u {"a=a"} u AVP($H", and

(Vi) AVAP($*) = AVAP($) u {"a = a"} u AVAP(%).

Proof: We show by induction on Dom($") that under the specified conditions there is al-

ways an $H* such that clauses (i) to (v) are satisified. (vi) and (vii) then follow from the

preceding clauses. First, we have from (i) to (v) and Definition 2-30:

B € AVP($H*)

iff

there is an i € Dom(AVS($*)) such that B = P(*))

iff

there is an i € Dom(AVS($))) u {Dom(H)} u {Dom(H)+1+l |l € Dom(AVS($"))} such
that B = P(H*))

iff

B e AVP(H) u {"a=0a"} u AVP(H".

Second, (vii) results from (i) to (v) and Definition 2-31 as follows:

B € AVAP(H*)

iff

there is an i € Dom(AVAS($*)) such that B = P($*))

iff

there is an i € Dom(AVS($H*)) n Dom(AS($*)) such that B = P($*))

iff

there is an i € (Dom(AVS($)) u {Dom(9)} u {Dom($H)+1+l |l € Dom(AVS($H))}) n
Dom(AS($*)) such that B = P($H*,)

iff

there is an ¢ € (Dom(AVS($)) n Dom(AS(5H*))) u ({Dom($H)} n Dom(AS(H*))) u
{Dom(9H)+1+l |l € Dom(AVS(£)} n Dom(AS($*))) such that B = P($*))

iff
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there is an i € (DoM(AVS($)) n Dom(AS(9))) v ({Dom($H)} n Dom(AS($H*))) u

({Dom(9)+1+l | I € Dom(AVS($H))} n {Dom($)+1+l |1 € Dom(AS($")}) such that B

=P(9H*)

iff

there is an i € Dom(AVAS($)) u {Dom($)} v {Dom(H)+1+l |l € Dom(AVAS(H))}

such that B = P($*))

iff

B € AVAP($) u {"a = a'} u AVAP($).
Now for the proof by induction: Suppose the statement holds for £ < Dom($") and sup-
pose 9, $' are as required and suppose a € CONST\(STSEQ($) u STSEQ(%"). Suppose
Dom($") = 0. Then we have $' = @ and with $* = §~{(0, "Suppose o = ')} and
Theorem 3-15-(ii) the statement holds. Now, suppose Dom($)") > 0. Then we have §' €
RCS\{0}. With Theorem 3-6, we then have ' € RCE($'IDom($")-1) and $'Dom($")-1
e RCS. With PAR n STSEQ($)) n STSEQ($') = @, we also have PAR n STSEQ($) n
STSEQ($H'TDom($)-1) = @ and with o € CONST\(STSEQ($) u STSEQ($") it also
holds that o« € CONST\(STSEQ($) u STSEQ($H'TDom($")-1)). According to the I.H.,
there is then for §, HTDom($")-1 and a an H* € RCS for which (i) to (v) hold. Then it
holds that:

i) Dom($*) = Dom($)+1+Dom($’)-1 = Dom($))+Dom($)"),

ii") H*IDom(H) = 9,

iii") H*pom(m) = "Suppose o = o,

iv') For all i € Dom($')-1 it holds that $'; = ($'TDom($')-1); = $H*pom(s)+1+is

V') Dom(AVS(H*)) =

Dom(AVS($)) u {Dom($)} u {(Dom($H)+1+l |l € Dom(AVS(H'TDom($H")-1))}.

From §' e RCE($'TDom($')-1) it follows, with Definition 3-18, that &'
AF($H'TDom($")-1) or $H' € CdIF(H'TDom($")-1) or ' € CAEF($H'TDom($")-1) or H'
CIF($H'TDom(9")-1) or ' € CEF(HTDom($")-1) or ' € BIF(H'TDom($H")-1) or H'
BEF($H'TDom($")-1) or $' € DIF(H'TDom($")-1) or ' € DEF($'TDom(H)-1) or &'
NIF(H'TDom($")-1) or $H' € NEF($H'TDom(H)-1) or ' € UIF(H'TDom($")-1) or H'
UEF($H'TDom($")-1) or ' € PIF(H'TDom($H")-1) or ' € PEF(H'TDom($')-1) or '
IHF(H'TDom($")-1) or $H' € IEF(H'TDom($")-1). Now let

m

m

m

m

m

vi') 5" = 9* u {(Dom($H)+1+Dom(H')-1, H'bom(s)-1)}-
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Then we already have that $* # 0 and clauses (i) to (iv) hold for $*. Now, we will show
that for each of the cases AF ... IEF we have that $* € RCS\{0} and that (v) holds, with
which we have that $* is in each case the desired RCS-element. First, we note that, be-
cause of a € CONST\(STSEQ($)) u STSEQ($"), there is no [ € Dom($H*) < Dom(H")
such that [ # Dom($)) and "o = o € SE($"). With $*pom(s) = $ bom(s) = "Suppose a. =
o' and Theorem 4-3, it thus holds:

vii') There is no closed segment 2( in §* and there is no closed segment 2L in $* such that
min(Dom(2l)) < Dom($) < max(Dom(%()).

Thus it also follows that:

viii') Dom($)) e Dom(AVAS($')), Dom($H) € Dom(AVAS(£H*)) and Dom($)) <
max(Dom(AVAS($*))).

To simplifiy the treatment of CdEF, CIF, CEF, BIF, BEF, DIF, DEF, NEF, UIF, UEF,
PIF, IIF and IEF, we will now show in preparation of the main part of the proof that:

iX) If §* e CAIF(H*) u NIF($*) u PEF($*), then $' e CdIF($1Dom($)-1) u
NIF($'TDom($')-1) u PEF($'TDom($")-1).

Preparatory part: First, suppose $* € CdIF($H*). According to Definition 3-2, Theorem
3-19-(i) and vii') and viii"), there is then Dom($)+1+; € Dom(AVAS($*)) such that, with
I) and V'), P($*pom(ey+1+) = P(H") and C(H*) = P(H*pom(s)+1+pom(e)-2) = P(H'bom(sy)-2) =
C(H'TDom($")-1) and there is no [ such that Dom($)+1+i < [ < Dom($))+1+Dom(H")-2
and [ € Dom(AVAS($H*)), and ©* = H* u {(Dom($H)+1+Dom($)-1, "Therefore
P(H*bom)+1+) — C(H*)'} = H9* u {(Dom($H)+1+Dom($)-1, "Therefore P(H') —
C(5H'Thom($")-1)"}. Then it holds with i'), iv') and v'): © € Dom(AVAS($'TDom($")-1))
and there is no [ such that i < [ < Dom($)')-2 and [ € Dom(AVAS($'IDom($")-1)). Also,
with vi), we have §' = $HTDom(9H)-1 u {(Dom($")-1, Therefore P(H) —
C($H'TDom($")-1)"}. Hence we have $' e CdIF($'TDom($")-1). In the case that H*
NIF($*), one shows analogously that then also $' € NIF($'TDom($")-1).

Now, suppose $* € PEF($*). With Definition 3-15, Theorem 3-21-(i), P($*bom(s)) =
"o = o' and vii') and viii'), there are then B € PAR, £ € VAR, A € FORM, where FV(A)
c {&}, and Dom(9)+1+i € Dom(AVS($H*)) such that, with i) and iv'), "VEA" =
P($H*pom(s)+1+) = P(9") and [B, & A] = P(H*pom(m)+2+) = P('i+1), Where Dom($)+2+: €
Dom(AVAS($*)) and C($*) = P($H*pom(s)+1+0om(5)-2) = P($'pom(sy)-2) = C($H'TDom($")-1)
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and ©° = ©* u {(Dom($H)+1+Dom($')-1, "Therefore C(H*)'} = $H* v
{(Dom(9)+1+Dom($')-1, "Therefore C($H'TDom($")-1)"} and B ¢ STSF({A, C(£H™)})
and there is no j < Dom($))+1+: such that B € ST($*;) and there is no [ such that
Dom($)+2+: < [ < Dom($)+1+Dom(5)")-2 and [ € Dom(AVAS($*)). It then holds with
i, iv) and Vv'): i € Dom(AVS($'TDom($")-1)) and i+1 € Dom(AVAS($H'TDom($")-1))
and B ¢ STSF({A, C(H'TDom($')-1)}) and there is no j < i such that B € ST('"), and
there is no [ such that i+1 < [ < Dom($)")-2 and | € Dom(AVAS($'TDom($)-1). Also,
with vi'), we have ' = H'TDom($H")-1 u {(Dom($H")-1, "Therefore C(H'TDom($H")-1)"}
and hence we have §' € PEF($)'Dom($")-1).

Main part: Now, we will show that for each of the cases AF ... IEF it holds that §* e
RCS\{0} and that v) holds:

(AF): Suppose $' € AF($H'TDom($")-1). According to Definition 3-1, we then have $' =
H'TDom(H')-1 u {(Dom($)-1, "Suppose P(H'boms)-1) ")} With Vi), we then have §* =
$H* u {(Dom($H)+1+Dom($H')-1, "Suppose P(H'poms)-1)")} € AF(H*) < RCS\{0}. With
Theorem 3-15-(ii), it then follows that AVS($') = AVS($H'TDom($")-1) u {(Dom($')-1,
"Suppose P(H'bom(ss)-1)' )} and AVS(H*) = AVS(H*) u {(Dom($)+1+Dom($’)-1, "Sup-
pose P($'pom(sn)-1)" )} With V'), it then follows that:

i € Dom(AVS(H"))

iff

1 € Dom(AVS(9H*)) u {Dom(H)+1+Dom(H")-1}

;ﬁe Dom(AVS($)) u {Dom($)} u {(Dom($)+1+l |l € Dom(AVS(H'TDom($')-1))} u
{Dom($)+1+Dom($’)-1}

iff
1 € Dom(AVS(9)) u {Dom($)} u {(Dom($H)+1+l |l € Dom(AVS(H"))}

and thus that Dom(AVS($")) = Dom(AVS($)) u {Dom(H)} u {(Dom(H)+1+l | [ e
Dom(AVS($")} and hence that (v) holds.

(CdIF, NIF): Now, suppose ' € CdIF($'TDom($")-1). According to Definition 3-2,
there is then an i € Dom($')-1 such that, with iv'), P(9") = P(H*bom(s)+1+) and ¢ €
Dom(AVAS($'TDom($')-1)) and C($'TDom($))-1) = P($*pom(s)+1+pom(sy)-2) = C(H*) and
there is no [ such that ¢ < [ < Dom($')-2 and [ € Dom(AVAS($H'TDom($")-1)) and §' =
$'TDom($H')-1 u {(Dom($")-1, "Therefore P($,;) — C($H*)")}. With vi'), we then have $*
= H* u {(Dom(H)+1+Dom($')-1, "Therefore P(9,) — C(H*)')}. With iv') and V'), we
then have Dom($))+1+i € Dom(AVAS($*)) and there is no [ such that Dom($)+1+i <[ <
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Dom($)+1+Dom($')-2 and | € Dom(AVAS($*)). Thus we then have $* € CdIF($H*) <
RCS\{0}. With Theorem 3-19-(iii), it then holds that AVS($H) =
(AVS(H'TDom(H)-D)M(j, £ | i < j < Dom($)-1}) u {(Dom($)-1, H'boms)-1)} and
AVS(H) = (AVS(HNM(r, $*) | Dom(H)+1+i < r < Dom($H)+1+Dom(H")-1}) u
{(Dom($)+1+Dom(H)-1, $'bom(s)-1)}- With V'), it then follows that:

k € Dom(AVS($")

iff

ke (DomAVS(H*)\{r | Dom($H)+1+i < r < Dom(H)+1+Dom(H)-1}) u
{Dom($)+1+Dom($’)-1}

iff

k € Dom(AVS($*)) and k < Dom($)+1+i or k = Dom($)+1+Dom($')-1

iff

ke Dom(AVS($H) u {Dom(®H)} o k£ e {(Dom®)+1+ | | €
Dom(AVS($'TDom($")-1))} and k < Dom($))+1+i or & = Dom($)+1+Dom(H’)-1

iff

k< Dom($)+1 and k € Dom(AVS($)) u {Dom($)} or £ > Dom($)+1 and k-Dom($))+1
e Dom(AVS($H'TDom($")-1)) and k-Dom($)+1 < i or k-Dom($)+1 = Dom($')-1

iff

k < Dom($)+1 and £ € Dom(AVS($))) v {Dom($)} or k> Dom($)+1 and k-Dom($)+1
e Dom(AVS($H'TDom(9H)-D))\{j | i < j < Dom($')-1} or k-Dom($)+1 = Dom($)')-1

iff

k< Dom($)+1 and k € Dom(AVS($)) u {Dom($)} or k> Dom($)+1 and k-Dom($))+1
e Dom(AVS(9"))

and thus that Dom(AVS($")) = Dom(AVS($)) u {Dom(H)} u {(Dom(H)+1+l | [ e
Dom(AVS($")} and thus v) holds. In the case that §)' € NIF($H'TDom($)")-1), one shows
analogously that then also " € NIF($*) < RCS\{0} and (V) holds.

(PEF): Now, suppose $' € PEF($'TDom($")-1). According to Definition 3-15, there are
then B € PAR, £ € VAR, A € FORM, where FV(A) < {&}, and i €
Dom(AVS($HH'TDom($')-1)) such that, with iv'), "VEA™ = P(9") = P(9*pom(s)+1+:) and [B, &,
Al = P®'w1) = P(®*pom)+2+), Where i e Dom(AVAS($H'TDom($’)-1)) and
C(H'TDomM($')-1) = P(£'bom(s)-2) = P(H*pom(s)+1+pom(s)-2) = C(H*) and ' = §'TDom($')-1
u {(Dom($')-1, "Therefore C($H'TDom($")-1)} and p ¢ STSF({A, C(H'TDom($")-1)})
and there is no j <7 such that B € ST($';), and there is no [ such that i+1 < [ < Dom($)’)-2
and [ € Dom(AVAS($H'TDom($")-1).

With iv') and V'), we then have: Dom($)+1+i € Dom(AVS($*)) and Dom($))+2+i e
Dom(AVAS($*)) and there is no [ such that Dom($))+2+: < [ < Dom($))+1+Dom($’)-2
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and I e Dom(AVAS($H*)). With vi), we also have that §* = ©* u
{(Dom($)+1+Dom(H)-1, "Therefore C(H'TDom($")-1)"} = H* U
{(Dom($)+1+Dom(H’)-1, "Therefore C($H*)"}.

We have that & € FV(A) or & ¢ FV(A). Suppose & € FV(A). Then we have B € ST([,
E& A]) < STSEQ($). Since, according to the hypothesis, PAR n STSEQ($) n
STSEQ(9') = 0, we thus have B ¢ STSEQ($). With i') to iv), B ¢ STSF({A,
C(H'TDhom($')-1)}) and that there is no j < such that p € ST($')), it then follows that 8
¢ STSF({A, C(5H*)}) and that there is no 7 < Dom($)+1+: such that B € ST($H*;). Thus
we have $° e PEF($*). Now, suppose & ¢ FV(A). Then we have B ¢ ST([B, & A]). We
have that there is a p* € PAR\(STSEQ($) u STSEQ($"). With Theorem 1-14-(ii), we
then have [B*, & A]l = A = [B, & A] = P(9'i+1) = P($9*pom(s)+2+i)- Also, we have that f* ¢
STSF({A, C($*)}) and that there is no j < Dom($)+1+: such that p* € ST($H*;). Thus we
then have again $* € PEF($*). Hence we have in both cases that §* € PEF($*) <
RCS\{0}. That (v) holds, then follows, with v') and Theorem 3-21-(iii), in the same way
as it did for CdIF and NIF.

(CdEF, CIF, CEF, BIF, BEF, DIF, DEF, NEF, UEF, PIF, IIF, IEF): Now, suppose '
e CdEF($'TDom($")-1). According to Definition 3-3, there are then A, ' € CFORM such
that A, "A - T € AVP(H'TDom($")-1) and $' = H'TDom($H")-1 u {(Dom($')-1, "There-
fore T)}. With vi'), it then holds that §* = $H* u {(Dom($H)+1+Dom($")-1, "Therefore
I} With A, "A - T e AVP($H'TDom($')-1), Definition 2-30 and iv'), we have that
there are i, j € Dom(AVS($'TDom($')-1)) such that A = P(£)";) = P(9*pom(s)+1+) and "A
— I = P(9")) = P(9*pom(e)+1+;)- With V'), we then have that Dom($))+1+:, Dom($))+1+;
e Dom(AVS($*)). Hence we have $* € CAEF($H*) < RCS\{0}.

We have $' € CAIF($H'TDom($H")-1) u NIF($'TDom($')-1) u PEF($H'TDom($")-1) or '
¢ CAdIF($H'TDom($")-1) u NIF($'TDom($)-1) u PEF($H'TDom($")-1). In the first case, v)
is shown in the same way as for the respective subcases. Now, suppose $' ¢
CdIF($H'TDom($")-1) u NIF($'TDom($")-1) u PEF($'TDom($")-1). With ix’), it then
holds that H* ¢ CdIF($H*) u NIF($H*) u PEF($*). With Theorem 3-25, it then holds that
AVS(H') = AVS(H'TDom($')-1) u {(Dom($)-1, "Therefore T7)} and AVS(H") =
AVS($H*) u {(Dom(H)+1+Dom($')-1, "Therefore I'")}. With V'), it then follows in the
same way as for AF that AVS($*) = Dom(AVS($)) u {Dom($)} u {(Dom(H)+1+ |
Dom(AVS($")} and thus that (v) holds.
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If 9 e CIF®TDom(9)-1) u CEF($TDom($)-1) u BIF($H'TDom($H')-1) u
BEF(H'TDom($)-1) v  DIF(®TDom($H)-1) v  DEF(®TDom(H)-1) u
NEF($H'TDom($")-1) u UEF($H'TDom(H")-1) u PIF($'TDom($")-1) u IIF($H'TDom($")-1)
u IEF($'TDom($")-1), one shows analogously that then also $* € CIF($*) u CEF($*)
u BIF($*) u BEF(*) u DIF($*) u DEF(H*) u NEF($*) u UEF($*) u PIF($*) u
HF($H*) u IEF(H*) < RCS\{0} and that v) holds in each case.

(UIF): Now, suppose $' € UIF($'TDom($)")-1). According to Definition 3-12, there are
then B € PAR, £ € VAR and A € FORM, where FV(A) < {&}, such that [B, & A] €
AVP($'1Dom($")-1), B ¢ STSF({A} u AVAP($'1Dom($")-1)) and ' = $'TDom($')-1 u
{(Dom($")-1, "Therefore AEA™)}. With vi'), we then have $H° = H* u
{(Dom($)+1+Dom($")-1, "Therefore AEA™)}. With [B, & A] € AVP($H'TDom(H)-1),
Definition 2-30 and iv'), we have that there is i € Dom(AVS($'TDom($)")-1)) such that [,
& Al = P(®') = P(H*pom)+1+). We then have with V') that Dom($)+1+i €
Dom(AVS($*)).

We have that & € FV(A) or & ¢ FV(A). Now, suppose & € FV(A). Then we have B e
ST([B, & A]) < STSEQ($"). Since, according to the hypothesis, PAR n STSEQ($) n
STSEQ($') = 0, we thus have B ¢ STSEQ(%). It thus follows with i) to V') and B ¢
STSF({A} u AVAP($'IDom($')-1)), that B ¢ STSF({A} u AVAP(5*)). Thus we have
$H" e UIF(H*). Now, suppose & ¢ FV(A). Then we have B ¢ ST([B, &, A]). Now, let B*
PAR\(STSEQ($) u STSEQ($')). With Theorem 1-14-(ii), we then have [B*, §, A] = A =
[B, & A] = P(9) = P(H*pom(s)+1+i)- Also, we have that B* ¢ STSF({A} u AVAP($%)).
Thus we have again $* e UIF($*). Hence we have that §* € UIF($*) < RCS\{0}. V)

follows in the same way as for CdEF ... IEF. m

Theorem 4-5. Successful CE-extension

If $ € RCS\{0} and "A A B™ € AVP($), then there is an $H* € RCS\{@} such that
()  AVAP(9*) = AVAP(%),
(i) A, B e AVP(H*), and
(iii) C(H*)=B.

Proof: Suppose $ € RCS\{@} and "A A B" € AVP($)). Then there is an i € Dom($))
such that P($,) = "A A B™ and (i, ;) € AVS($). Let the following sentence sequences
be defined, where 0. € CONST\STSEQ($):



174 4 Theorems about the Deductive Consequence Relation

,_‘
|

u  {(Dom($), "Therefore a = o)}
u  {(Dom($H'), Therefore A")}
u  {(Dom($?), Therefore a=o")}
u  {(Dom($*), Therefore B")}.

SN
|
R

N
|
w

With Theorem 1-10 and Theorem 1-11, we have that C($?) and C($°) are neither nega-
tions nor conditionals, and neither identical to C($) nor to C(£)?), because otherwise o e
STSEQ(H) or o e ST($:) = STSEQ(H). Therefore $* ¢ CAIF($H) u NIF($H) u PEF($)
and $° ¢ CAIF($%) u NIF($?) u PEF($?). If "a = a* € SF(A) u SF(B), then we would
have a € ST($);) < STSEQ($). Therefore we have "a = o' ¢ SF(A) and "a = o' ¢
SF(B) and thus $? ¢ CAIF($') u PEF(H') and H* ¢ CdIF($% u PEF($°). Suppose for
contradiction that $? € NIF($") or $* € NIF($%). Then there would be a j € Dom(§°)
such that P();) = "—a = o'. With Theorem 1-10 and Theorem 1-11, we have j ¢
{Dom($%)-1, Dom($%)-3}. Because of "a = o ¢ SF(A), we have j # Dom($)%)-2. There-
fore we would have j € Dom($*)\{Dom($°)-1, Dom($%-2, Dom($°)-3} = Dom($).
With o e ST($*) = ST(£,), we would then have a € STSEQ($). Contradiction! There-
fore 2 ¢ NIF(HY) and $* ¢ NIF(H°).

On the other hand, we have, first, with Definition 3-16, that $* € IIF(§), thus $'
RCS\{0}, and with Theorem 3-25, AVS($') = AVS($H) u {(Dom($)), "Therefore o =
o)} Thus we have AVAS($') = AVAS($) and "A A B™ € AVP(H) < AVP(§Y). There-
fore we have, second, with Definition 3-5, that $° € CEF($') < RCS\{0} and, with
Theorem 3-25, AVS($%) = AVS(HY) u {(Dom($?Y), "Therefore A™)}. Thus we have
AVAS($?) = AVAS(HY), "A A B € AVP(H') < AVP(H% and A € AVP($?). Third,
with Definition 3-16, we have $° e IIF(§?), $° € RCS\{0} and, with Theorem 3-25,
AVS(§®) = AVS(H?) u {(Dom($?), Therefore a = o)}. Thus we have AVAS($°) =
AVAS($?) and A, "A A B” € AVP($%) < AVP($®. Fourth, with Definition 3-5, we
then have $* € CEF($% < RCS\{0} and, with Theorem 3-25, AVS($*) = AVS(§®) u
{(Dom($7%), "Therefore B™)}. Thus we have AVAS(§?) = AVAS($%), A € AVP(H°) <
AVP($%) and B € AVP($*). Hence we have $* € RCS\{0}, AVAP($*) = AVAP(§®) =
AVAP($%) = AVAP(5Y) = AVAP($), A, B € AVP($*) and C($H*) =B. m
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Theorem 4-6. Available propositions as conclusions

If § € RCS\{0} and A € AVP(%)), then there is an $H* € RCS\{@} such that
(i) AVAP(H*) = AVAP(9),
(i)  AVP(H) < AVP($H*), and
(iii) C(H*) =A.

Proof: Suppose $ € RCS\{0} and A € AVP($). Then there is an i € Dom($)) such that
P(9:) = A and (i, ;) € AVS(9). Let the following sentence sequences be defined, where
a € CONST\STSEQ(%):

1

S u  {(Dom($), "Therefore a = a’)}
o' U {(Dom(H'), Therefore A A A)}
9

9

w
|
N

u  {(Dom($?),  Therefore a =a")}
® U {(Dom($®),  Therefore A™)}.

]
1

N

With Theorem 1-10 and Theorem 1-11, C(%), C(5%) and C($°) are neither negations nor
conditionals. Moreover, C($%) and C($°) are neither identical to C($) nor to C($%). With
Theorem 1-10-(vi) C($) is not identical to C($3"). Therefore $' ¢ CdIF($) u NIF($) u
PEF($), H% ¢ CdIF($H") u NIF(®') u PEF($Y), and $° ¢ CAIF($?) u NIF(H?) u
PEF($?). If "o = o e SF(A), then we would have a € ST($),) < STSEQ($). Therefore
we have "o = o ¢ SF(A) and thus $* ¢ CdIF($®) u PEF($*). Now, suppose for contra-
diction that $* € NIF($%). Then there would be a j € Dom($°) such that P($);) = ™—a =
o. With Theorem 1-10 and Theorem 1-11, we have j ¢ {Dom($%-1, Dom(§°-2,
Dom($%)-3}. Therefore j € Dom($*\{Dom(H%)-1, Dom($*)-2, Dom($%)-3} = Dom($)).
With a e ST($*) = ST($,), we would then have a € STSEQ($)). Contradiction! There-
fore ©§* ¢ NIF(5°).

On the other hand, we have, first, with Definition 3-16, that $* € IIF(§), thus $'
RCS\{0} and, with Theorem 3-25, AVS(§') = AVS($) u {(Dom($), Therefore o =
o)} Thus we have AVAS($') = AVAS($) and A € AVP($) < AVP(H1). Therefore we
have, second, with Definition 3-4, $* € CIF($') < RCS\{@} and, with Theorem 3-25,
AVS($?) = AVS(§HY) u {(Dom($H?Y), Therefore A A A™)}. Thus we have AVAS(H?) =
AVAS($H), AVP(HY < AVP(H%) and "A A A7 e AVP($?). Then we have, third, with
Definition 3-16, $° € IIF($%) < RCS\{0} and, with Theorem 3-25, AVS(§°) = AVS($?)
u {(Dom(H?), Therefore o = a™)}. Thus we have AVAS(H°) = AVAS($H?) and "A A A”
e AVP(9H?) < AVP(H%). Fourth, with Definition 3-5, we thus have $* € CEF(§°) <
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RCS\{0} and, with Theorem 3-25, AVS($?) = AVS(§?) u {(Dom($*), Therefore A™)}.
Thus we have AVAS(H*) = AVAS($°) and AVP($*) < AVP($?). Hence we have 9* €
RCS\{0}, AVAP($*) = AVAP($%) = AVAP($?) = AVAP(H') = AVAP($), AVP($) <
AVP(HM and C(H) =A. m

Theorem 4-7. Eliminability of an assumption of "o = o

If $ € RCS\{0}, a € CONST and A, B € AVP(%), then there is a H* € RCS\{0} such that
(i) AVAP(H*) < AVAPO)\{"a=a"},
(i) A, B e AVP($H*), and
(i) C(H*) =B.

Proof: Let $9 € RCS\{0}, o« € CONST and A, B € AVP($). Suppose "a = o' ¢
AVAP($). Then we have AVAP($) < AVAP(H)\{"a = o }. With Theorem 4-6, there is
then an H* € RCS\{0} such that AVAP(H*) = AVAP(H) < AVAP(H)\{'a=a'}, A, B
e AVP($) < AVP($H*) and C($H*) = B.

Now, suppose "a = o' € AVAP($). Then we have H' = § u {(Dom($), Therefore A
A B")} € CIF($). Then we have $' € RCS\{@} and "A A B” € AVP($") and, with
Theorem 3-26-(v), AVAP($Y) < AVAP($). According to Theorem 4-2, there is then an
$* e RCS\{0} such that AVAP($*) < AVAP(HY) < AVAP($), C(H") = C(HY) = "A A
B" and for all k¥ e Dom(AVAS(H")): If P(H") = "a = o', then k =
max(Dom(AVAS(5"))). Then we have "o = o € AVAP($) or "a =o' ¢ AVAP($").

First case: Suppose "a = a’ € AVAP($"). Then we have P($ maxoomavas@y)) = "
o' and for all & e Dom(AVAS(H)): If P(H%) = "a = o', then £
max(Dom(AVAS(5"))). Now, let the following sentence sequences be defined:

9 = 9" u {(Dom($*"), Therefore a=a— (A AB)")}
9 = 9 u  {(Dom(H>, Therefore a=a")}
9 = 6 u {(Dom(H®), Therefore A A B")}.

According to Definition 3-2, we have $? € CdIF("), thus $* € RCS\{0} and, with
Theorem 3-19-(ix), AVAP(§?) < AVAP($") < AVAP($). With Theorem 3-22, we have
that "o = o ¢ AVAP($?) and thus AVAP($?) < AVAP(H)\{ a = o }. We also have "a
=a— (A AB)' € AVP(H?).

With Theorem 1-10 and Theorem 1-11, C($°) and C($*) are neither negations nor con-
ditionals and also C($%) is not identical to C(55%) and C($*) is not identical to C(H°).
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Therefore we have $° ¢ CdIF($%) u NIF($%) u PEF($% and $* ¢ CAIF($%) u NIF($%)
u PEF($%). According to Definition 3-16, we have $° € IIF($Y) < RCS\{0} and, with
Theorem 3-25, AVS($°) = AVS($%) u {(Dom($?), Therefore a = o)}. Thus we have
AVAS(5% = AVAS(HY), "o = o — (A A B)! € AVP(H?) < AVP(H%) and "o = o €
AVP($%). According to Definition 3-3, we therefore have $* € CAEF($*) < RCS\{0}
and, with Theorem 3-25, AVS($*) = AVS(H°) u {(Dom($%), "Therefore A A B")}. Thus
we have AVAS($H*) = AVAS($%). Thus we have $* e RCS\{0}, AVAP(H*) =
AVAP($°) = AVAP(H?) < AVAP®H){ o = o'} and "A A B" e AVP($%. With
Theorem 4-5, there is then an $* € RCS\{0} such that AVAP($*) = AVAP(H*) <
AVAP(H)\{"a=a"}and A, B € AVP($H*) and C(H*) = B.

Second case: Suppose "o = o' ¢ AVAP($") and thus AVAP($H") < AVAP(H)\{a =
o'}. We have "A A B = C(9") € AVP(H"). With Theorem 4-5 there is then an H§* <
RCS\{0} such that AVAP($*) = AVAP($") < AVAP(HM "o = o'} and A, B e
AVP($*) and C($*) = B. m

Theorem 4-8. Substitution of a new parameter for a parameter is RCS-preserving

If § e RCS, and p* € PAR\STSEQ($) and B € PAR\{B*}, then [B*, B, H] e RCS and
Dom(AVS([B*, B, 1)) = DOm(AVS(s3)).

Proof: By induction on Dom($)). Suppose $ € RCS, and p* € PAR\STSEQ($) and B €
PAR\{p*} and that the statement holds for all £ < Dom($)). Suppose Dom($)) = 0. Then
we have $ = 0 = [B*, B, H] and thus [B*, B, H] € RCS and Dom(AVS([p*, B, H]) =0 =
Dom(AVS($))). Now, suppose 0 < Dom($)). Then we have $ € RCS\{@}. With Theorem
3-6, we then have $) € RCE($IDom($))-1). According to the I.H., we then have:

a) H* = [B*, B, HIDom(H)-1] € RCS and Dom(AVS(H*)) = Dom(AVS(HI Dom($))-1)).

With $ € RCE($HIDom($))-1) and Definition 3-18, we have that $ € AF($H[Dom($)-1)
or $ € CAIF(HIDom(H)-1) or $H € CAEF(HIDom($)-1) or $ e CIF(HIDom($)-1) or H
e CEF(HIDom(9)-1) or € BIF(HIDom($)-1) or $H € BEF(HIDom($)-1) or H
DIF(HIDom(9)-1) or $ e DEF(HIDom($)-1) or $H e NIF(HIDom($)-1) or ©
NEF($HIDom(H)-1) or © € UIF(HIDom(H)-1) or H e UEF(HIDom(H)-1) or ©
PIF(HIDom($)-1) or $H e PEF(HIDom(H)-1) or © e IIF(HIDom($)-1) or $
IEF($HIDom($))-1).
Since operators are not affected by substitution, we first have:

m

m

m

m
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b) For all : € Dom($)-1: P($H*)) = [B*, B, P(5:)] and H*; = "E [B*, B, P($,)]", where §, =
"2 P($;)" fora E € PERF.

With B* € PAR\STSEQ($) and B € PAR\{p*}, we have:
c) For every i € Dom($): p* ¢ ST(P(£,) and B & ST([*, B, P(9)]),

if not, we would have p* € STSEQ($) or B = B*, which both contradict the hypothesis.

Now, let:
d) H* = H* u {(Dom($)-1, [B*, B, Hoom(s)1])}-

Then we have that §* = [B*, B, H]. Now we will show that in each of the cases AF ... IEF
we have that H* € RCS and Dom(AVS($")) = Dom(AVS($)), with which we prove that
the statement holds for [B*, B, H].

To simplify the treatment of CdEF, CIF, CEF, BIF, BEF, DIF, DEF, NEF, UIF, UEF,
PIF, IIF and IEF, we will now show in preparation of the main part of the proof that

e) If ©° e CAIF(H*) u NIF(9*) u PEF($*), then ©§ e CdIF(HIDom($)-1) u
NIF(HDom($-1) u PEF($IDom($H-1).

Preparatory part: Suppose $* e CdIF($5*). According to Definition 3-2, there is then an ¢
e Dom(AVAS($*)) such that, with b) and d), P(£*;) = [B*, B, P($,)] and C(£H*) = [B*, B,
P($pom(s)-2)] and there is no [ such that 7 < [ < Dom($))-2 and | € Dom(AVAS($H*)), and
& = 5% u {(Dom($)-1, Therefore P(57*) — P(9*bomn)2)")} = 5* u {(Dom($)-1,
"Therefore [B*, B, P(£,)] — [B*, B, P(Hoom(s)-2)]")}- With d), we have "Therefore [B*, B,
P($)] — [B*, B, P(Dooms)2)]" = [B*, B, "Therefore P(;) — P(Hiooms)2)'] = [B*, B,
Hoom(m)-1]- With Theorem 1-21, we then have "Therefore P($);) — P($pom)-2)’ =
Hoom(m)-1 and thus H = HIDom($H)-1 u {(Dom(H)-1, "Therefore P($;) — P(Hoom(s)-2)")}-
We also have with a) and b): : € Dom(AVAS($HDom($)-1)) and there is no [ such that i
< | < Dom($)-2 and [ € Dom(AVAS(HIDom($)-1)). Hence we have § e
CdIF($IDom($)-1). In the case that H* e NIF(H*), one shows analogously that then also
$ e NIF($HIDom($)-1).

Now, suppose $* e PEF($H*). According to Definition 3-15 and with b) and d), there
are then B* € PAR, { € VAR, A € FORM, where FV(A) < {¢}, and i € Dom(AVS($*))
such that P(9*) = "VCA™ = [B*, B, P(%,)] and P(H*i1) = [B", ¢ Al = [B*, B, P(Hina)],
where i+1 e Dom(AVAS($*)), [B*, B, P(Hpomm)2)] = C(H*), B* ¢ STSF({A, [B*, B,
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P($pom(s)-2)1}), there is no j < i such that B* € ST(*;), there is no [ such that i+1 < [ <
Dom($)-2 and I € Dom(AVAS(H*)), and " = $H* u {(Dom($)-1, "Therefore C($H*)")}
= $* v {(Dom(9)-1, "Therefore [B*, B, P(Hooms)2)]")} = H* v {(Dom($)-1, [B*, B,
"Therefore P($pom(s)-2) " 1)}. With d), we have [p*, B, "Therefore P($poms)-2)"] = [B*, B.
$Hoom(n)-1]- With Theorem 1-21, we then have "Therefore P($pom)-2)" = $Hoom(m)-1 and
thus $ = HIDom($H)-1 u {(Dom($)-1, "Therefore P(Hoom(s)-2) ")}

Then we have, with a) and b): i € Dom(AVS(HIDom(H)-1)), i+l e
Dom(AVAS($HIDom($)-1)) and there is no [ such that i+1 < [ < Dom($))-2 such that [
Dom(AVAS($HIDom($)-1)). Now, we have to show that P(£,), P(£+1) and P($pom(s)-2)
satisfy the conditions for ) € PEF($IDom($))-1).

We have [B*, B, P(,)] = P(%*) = "VCA™ and [B*, B, P(9:+1)] = P(H*ix1) = [P, §, AL
Since operators are not affected by substitution, we thus have, because of [B*, B, P(9,)] =
"VCA™, that P($);) = "VCA™ for a A® € FORM, where B* ¢ ST(A") and FV(A") < {(}.
Thus we have "VCA™ = [B*, B, P(9.)] = [B*, B, "VCA™] = "V[B*, B, A'T" and hence A =
[B*, B, A"]. Thus we have: [B*, B, P(5.1)] = [B", & A] = [B", §, [B*, B, A']] and B ¢
ST([B*, B, A]). Also, we have B* = B* or B* £ B".

First case: Suppose B* = B*. Then we have B* ¢ ST([B*, B, A*]) and thus B ¢ ST(A").
Then we have A = [B*, B, A"] = A" and, because of p* = B*, we then have [B*, B, P(£:+1)]
=[B*, ¢, A] = [B*, {, A"]. We have p* ¢ ST(A") and B* ¢ ST(P(£:+1)). It thus holds with
Theorem 1-23, because of [B*, B, P($+1)] = [B*, ¢ A™], that P(§::1) = [B, {, A']. Now,
suppose for contradiction that B € STSF({A", P($pom(s)-2)}) O that there is a j < i such
that B e ST($,). Then we would have, with b) and B* = 87, that B* € STSF({[B*, B, A"],
[B*, B, P($pom(s)-2)1}) or that there is j < such that B* e ST(*;). Contradiction! Hence
we have P($);) = "VCA™ and P($i1) = [B, ¢ A'] and B ¢ STSF({A", P(pom(s)-2)}) and
there is no j <isuch that B € ST($),) and thus we have $) € PEF($IDom($))-1).

Second case: Suppose B* # B*. With B* e ST([p*, B, P($H+1)]) and B* ¢ ST([p*, B,
P($:1)]), we can distinguish two subcases. First subcase: Suppose B* e ST([B*, B.
P($i1)]). Then we have B* # B and thus B ¢ ST(B*). Then, with A = [B*, B, A*] and
Theorem 1-25-(ii): [B*, B, P(9::2)] = [B", ¢, Al = [B*, &, [B%, B, A'T] = [B*, B, [B", &, A"]l.
We also have B* ¢ ST(P(£:+1)) and, because of B* # B and p* ¢ ST(A"), we also have B*
¢ ST([B", ¢, A*]). With Theorem 1-20, we thus have P($)::1) = [B*, , A*]. Now, suppose
for contradiction that B* € STSF({A", P($pom(s)-2)}) Or that there is a j < i such that B* €
ST($),). Because of B* # B and with b), we would then also have B* € STSF({[B*, B, A"],
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[B*, B, P(Hpom(s)-2)1}) or there would be a j < i such that B* € ST($*;). Contradiction!
Hence the parameter condition for B* is satisified in HDom($)-1 and thus we have for
the first subcase again that $§ € PEF($I Dom($)-1).

Second subcase: Now, suppose B* ¢ ST([B*, B, P($:+1)]). Then it holds, with [B*, B,
P(9:)] = [B, ¢, [B*, B, A']], that ¢ ¢ FV([B*, B, A]). Then we have [B%, B, P(9:1)] =
[B*, ¢, [B*, B, A'T] = [B*, B, A'] and thus, with B* ¢ ST(P($i1)) u ST(A") and with
Theorem 1-20, P($),+1) = A", where, with { ¢ FV([B*, B, A']), also { ¢ FV(A™). Now, let
B € PAR\STSEQ($HIDom($)-1). Then it holds, with & FV(A"), that P(£,:1) = A" = [B®,
¢, A"l and we have that B ¢ STSF({A*, P($pom(s)2)}) and that there is no j < 7 such that
% e ST(%,). Thus we then also have § e PEF(HIDom($)-1). Hence we have in both
subcases and thus in both cases that $ € PEF($HDom($)-1).

Main part: Now we will show that for each of the cases AF ... IEF it holds that §* e
RCS and Dom(AVS($")) = Dom(AVS($)). First, we will deal with CdIF, NIF and PEF.
Then we can make an exclusion assumption that allows us to determine Dom(AVS($"))
for all other cases just with a), e) and Theorem 3-25.

(CdIF, NIF): Suppose $ € CdIF($HIDom($)-1). According to Definition 3-2, there is
then an i e Dom(AVAS(HIDom($)-1)) such that there is no [ «
Dom(AVAS($HIDom($)-1)) with ¢ < [ < Dom(9)-2, and $H = $HIDom(H)-1 u
{(Dom($)-1, "Therefore P($),) — C($HIDom($)-1)")}. Then it holds with a), b) and d): i
e Dom(AVAS($H*)) and there is no [ such that + < [ < Dom($)-2 and | €
Dom(AVAS($*)), and P(§*)) = [B*, B, P(9,)] and C(£*) = [B*, B, C(HIDom($))-1)] and
" = H* u {(Dom(H)-1, [B*, B, "Therefore P(H;) — C(HIDom($H)-1)"D}= H* u
{(Dom($)-1, TTherefore P($*;) — C(H*)")}. Thus we have $* € CdIF($H*) and thus $*
e RCS.

With Theorem 3-19-(iii), we then have AVS($)) = AVS(HIDom($H)-)M{(j, H,) | i< j <
Dom($)-1} u {(Dom($)-1, "Therefore P($;) — C(HIDom($)-1)")} and that AVS($H*) =
AVS(H*M(, H7) | i < j < Dom($)-1} u {(Dom($)-1, Therefore [*, B, P(9)] — [B*,
B, C(HIDom($)-1)]")}. With Dom(AVS($H*)) = Dom(AVS($HIDom($)-1)), it then fol-
lows that also Dom(AVS($")) = Dom(AVS($)). In the case that $ € NIF($HDom($)-1),
one shows analogously that then also $* € NIF($*) < RCS and Dom(AVS(H")) =
Dom(AVS($)).

(PEF): Now, suppose $) € PEF($IDom($)-1). According to Definition 3-15, there are
then B* € PAR, { € VAR, A e FORM, where FV(A) < {{}, and ¢ €
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Dom(AVS($HIDom($)-1)) such that P(5),) = VA", P($i+1) = [B*, ¢ A], where i+1 €
Dom(AVAS(HIDom($)-1)), B* ¢ STSF({A, P(Hpom(s)-2)}), there is no j < i such that B
€ ST(,), there is no [ such that ++1 < [ < Dom($)-2 and | € Dom(AVAS($fDom($)-1)),
and $ = HfDom($H)-1 u {(Dom(H)-1, "Therefore P(Hooms)-2)")}-

Then it follows, with a), b) and d), that « € Dom(AVS($*)) and P($H*,) = [B*, B, P($))]
= [B*, B, "VEAT] = TVC[B*, B, AT", i+1 € Dom(AVAS($*)) and P(§*:+1) = [B*, B, P(Hi+1)]
= [8%, B, [8", & All, C(5*) = P(5*0omey2) = [B% B, P(Soom(e2)] and H* = §* u
{(Dom(9)-1, [B*, B, "Therefore C(HIDom(H)-1)"]} = H* u {(Dom(H)-1, "Therefore
C(9™)]")} and there is no [ such that i+1 <[ < Dom($))-2 and [ € Dom(AVAS($*)). With
B* =B and B* # B, we can distinguish two cases.

First case: Suppose B* = B. Then we have P($:+11) = [B*, B, [B", C, All = [B*, B, [B, G, All
and, with B* ¢ ST(A), also B ¢ ST(A) and hence, with Theorem 1-24-(ii), P($:+1) = [B*,
B, [B, & Al = [B*, ¢, A]. With B ¢ ST(A), we then have [B*, B, A] = A and thus P($H*;) =
"VCIB*, B, A" = "VCA". With B = B* and B* ¢ STSEQ($), we also have B, p* ¢
STSF({A, P($Hoom(s)-2)}) and thus also p* ¢ STSF({A, [B*, B, P(Hoom(s)-2)1})- Now, sup-
pose for contradiction that there is a j < i such that p* € ST($*;). With b), we would then
have B* € ST(H*)) = [B*, B, H,]. With p* ¢ STSEQ($), it also holds that B* ¢ ST($;).
But then we have, with * € ST(9*)), that p € ST($);), while, on the other hand, we have,
by hypothesis, that B = B* ¢ ST($,). Contradiction! Therefore we have that there is no j <
i such that p* e ST($*,). Hence, altogether, we have $i* € PEF($*).

Second case: Now, suppose B* # B. With B* # B* and p* = B*, we can then distinguish
two subcases. First subcase: Suppose B* # p*. With Theorem 1-25-(ii) and B* # B, we
then have P(9*..1) = [B*, B, [B*, &, All = [B", ¢, [B*, B, A]]. We also have P($*;) = "V{[B*,
B, A]". If B* e STSF({[B*, B, Al, [B*, B, P(Hpom(s)-2)]}) or if there was a j < 4 such that
e ST(9*)), then it would hold, because of B* # B* and with b), that B* € STSF({A,
P($pom(s)-2)}) OF that there is a j < such that B* € ST($,), which contradicts the assump-
tion about B*. Therefore we have B* ¢ STSF({[B*, B, Al, [B*, B, P($pom(s)-2)1}) and there
isno j <isuchthat B* e ST($H*,) and hence we have again $* € PEF(H*).

Second subcase: Now, suppose B* = B*. Then we have { ¢ FV(A), because, if not, we
would have p* e ST([B", ¢, A]) < STSEQ($). We then have [B*, ¢, A] = A and thus
P(59%:2) = [B*, B, [B", C, All = [B*, B, Al and we have P(5*) = "VC[B*, B, AT". Now, let §°
e PAR\STSEQ($*). With ¢ FV(A), we also have { ¢ FV([B*, B, A]) and thus P($*.1)
= [B* B, Al = [B° ¢ [B*, B, All and it holds that B° & STSF({[B*, B, Al, [B*, B,
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P($bom(s)-2)]}) and there is no j < 4 such that B° e ST($*,). Thus we have again $*
PEF($*). Thus we have in both subcases and hence in both cases that $* € PEF($*) and
thus $* € RCS.

It then follows, with Theorem 3-21-(iii), that AVS($)) = AVS(HIDom($)-1)\{(j, 9)) |
i+1 < j < Dom(9)-1} u {(Dom($)-1, "Therefore P($poms)-2)')} and that AVS(H™) =
AVS(H*N(, H) | #+1 < j < Dom(H)-1} u {(Dom($)-1, Therefore [B*, B,
P(Hoom(s)-2)]")} With Dom(AVS($H*)) = Dom(AVS(HIDom($)-1)), it then follows that
Dom(AVS(H")) = Dom(AVS($)).

Exclusion assumption: For the remaining steps, suppose $ ¢ CdIF($H[Dom($)-1) u
NIF(H!Dom(9)-1) u PEF($HIDom($)-1). With e), we then have $§* ¢ CdIF(H*) u
NIF($*) u PEF($*). With Theorem 3-25, we then have for all of he following cases that
AVS($) = AVS(HIDom($)-1) u {(Dom($)-1, C(£))} and that AVS(H") = AVS(H*) u
{(Dom($)-1, C(H"))}. With Dom(AVS(£*)) = Dom(AVS($HIDom($))-1)), it then follows
that Dom(AVS($")) = Dom(AVS($)) for all remaining cases.

(AF): Suppose $ e AF(HIDom($)-1). With Definition 3-1, we then have § =
HIDom(H)-1 u {(Dom($)-1, "Suppose P(Hpoms)-1)" ). With d), we then have " = H* u
{(Dom($)-1, "Suppose [B*, B, P(Hiooms)1)]")} € AF(H*) and thus $H* € RCS.

(CdEF, CIF, CEF, BIF, BEF, DIF, DEF, NEF): Now, suppose $ €
CdEF($HIDom($)-1). With Definition 3-3, there are then A, B € CFORM such that A, "A
— B € AVP(HIDom($)-1) and $H = HIDom($H)-1 u {(Dom($)-1, "Therefore B™)}.
With d), it then follows that §* = §* u {(Dom($)-1, "Therefore [B*, B, B]")}. Since A,
A — B € AVP(HIDom($)-1), we then have, with Definition 2-30, that there are 4, j €
Dom(AVS(HHIDom($)-1)) such that P($),) = A and P($);) = "A — B™. With a) and b), it
then follows that 7, ; € Dom(AVS($*)) and P($*;) = [B*, B, A] and P($*;) = "[B*, B, A]
— [B*, B, B]". With d), we then have $* = $H* u {(Dom($)-1, "Therefore [p*, B, B]")}
e CAEF($*) and thus $* € RCS. For CIF, CEF, BIF, BEF, DIF, DEF and NEF the proof
is carried out analogously.

(UIF): Now, suppose $ e UIF($HIDom($)-1). According to Definition 3-12, there are
then B* € PAR, { € VAR, A € FORM, where FV(A) < {¢}, such that [B*, {, A] €
AVP($IDom($)-1), B* ¢ STSF({A} u AVAP($HIDom($)-1)), and $H = HIDom($H)-1 u
{(Dom($)-1, "Therefore ACA™)}. With d), we then have $* = §* u {(Dom($)-1, [B*, B,
"Therefore ALA™ ]} = ©$* u {(Dom($)-1, "Therefore AL[P*, B, A]")}. With [B*, ¢, A] €
AVP($HIDom(H)-1) and Definition 2-30, we then have that there is an i e
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Dom(AVS($HIDom($)-1) such that [B*, ¢, A] = P(£€;). With a) and b), it then follows that 4
e Dom(AVS(£*)) and P(H*)) = [B*, B, P(H)]1 = [B*, B, [B", & A]]l. With " = p and B # B
we can then distinguish two cases.

First case: Suppose B* = B. Then we have P(5*;) = [B*, B, [B", ¢, ATl = [B*, B, [B. ¢, All
and, with B* ¢ ST(A), we also have B ¢ ST(A) and thus we have, with Theorem 1-24-(ii),
that P(9*;) = [B*, B, [B, &, All = [B*, ¢, A]. With B ¢ ST(A), we then have [B*, B, A] = A
and thus C(9") = "A{[B*, B, A]" = "ACA™. With B* = B and B* ¢ STSEQ($)), we also have
B, B* ¢ STSF({A} u AVAP(HIDom($)-1)) and thus, with a) and b), also p* ¢
STSF({A} u AVAP($*)). To see this, suppose for contradiction that p* € STSF({A} u
AVAP($*)). Then we have p* ¢ ST(A), because, if not, we would have p* € ST(A) <
ST("ALA™) = ST(C(H)) < STSEQ($), which contradicts p* ¢ STSEQ($)). Therefore
there would be a B € AVAP($*) such that p* € ST(B). With Definition 2-31, there
would then be a j € Dom(AVAS($*)) such that p* € ST(P($*;)). With b), we then have
P($*,) = [B*, B, P(5,)]. Since p* ¢ STSEQ($), we also have p* ¢ ST(P($;)). But then
we have, with B* € ST(P(*;)) and P($*,) = [B*, B, P(9,)], that p € ST(P($),)). More-
over, with a) and b), it follows from j € Dom(AVAS($H*)) that ; €
Dom(AVAS($HDom($)-1)) and hence that P($);) € AVAP(HIDom(5))-1). But then we
would have B € STSF(AVAP($IDom($)-1)), whereas, by hypothesis, we have p = B* ¢
STSF(AVAP(HIDom($)-1)). Contradiction! Therefore we have p* ¢ STSF({A} u
AVAP($*)). Since we have P($*) = [B*, {, A], i € Dom(AVS(H*)) and C(H") = "ALA™,
we thus have $* € UIF(H%*).

Second case: Now, suppose B* # B. With B* # B* and B* = B*, we can then distinguish
two subcases. First subcase: Suppose B* # p*. With Theorem 1-25-(ii) and B* # B, we
then have P(9*)) = [B*, B, [B", &, Al = [B", & [B*, B, All. Also, we have C($") = "AL[B*,
B, A]". Now, suppose for contradiction that B* € STSF({[B*, B, A]} u AVAP($*)). Since
B* # p* and B* ¢ ST(A), we have B* ¢ ST([B*, B, A]). Therefore we would have B*
STSF(AVAP($H*)) and thus there would be, with Definition 2-31, a j €
Dom(AVAS($*)) such that B* € ST(P(£*;)). Since, with b), P($*,) = [B*, B, P($,)] and
since B* # B*, we would thus have that B* € ST(P(£),)). With a) and b), it follows from ;
e Dom(AVAS($*)) that j € Dom(AVAS($Dom($)-1)), and thus we would have P($);)
e AVAP(HIDom($)-1)) and thus B* e STSF(AVAP($HIDom($)-1)), wheras, by hy-
pothesis, we have B* ¢ STSF(AVAP($IDom($)-1)). Contradiction! Therefore we have
B* e STSF{[B*, B, Al} u AVAP($*)) and hence again $* € UIF(H*).
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Second subcase: Now, suppose B* = p*. Then we have { ¢ FV(A), because, if not, we
would have B* e ST([B", ¢, A]) < STSEQ($). Thus we then have [B*, {, A] = A and thus
P(5*) = [B*, B, [B*, ¢, Al = [B*, B, Al, and we have C($*) = "AL[B*, B, A]". Now, let B*
e PAR\STSEQ($™*). With { ¢ FV(A), we also have ¢ ¢ FV([B*, B, A]), and thus P($H*,) =
[B*, B, A] = [B®, ¢, [B*, B, All, and it holds that p® ¢ STSF({[B*, B, A} u AVAP(£%))
and thus again $§* e UIF($*). Thus we have in both subcases and hence in both cases
that * € UIF(H*) < RCS.

(UEF): Now, suppose $) € UEF($HIDom($)-1). According to Definition 3-13, there are
then 6 € CTERM, { € VAR, A € FORM, where FV(A) < {(}, such that "ACA" €
AVP(HIDom($)-1), and $H = HIDom($H)-1 u {(Dom($H)-1, "Therefore [0, {, A]")}. With
d), we then have H* = $H* u {(Dom($)-1, [p*, B, "Therefore [0, {, A]']D} = H* u
{(Dom($)-1, "Therefore [B*, B, [0, {, A]l")}. With "ACA" € AVP($HIDom($)-1) and
Definition 2-30, there is then an i € Dom(AVS($HIDom($))-1)) such that P($,) = "ACA™.
With a) and b), we then have i € Dom(AVS($*)) and P($*;) = [B*, B, "ALA™] = "AL[B*,
B, A]". With Theorem 1-26-(ii), we have C($") = [B*, B, [0, ¢, All = [[B*, B, 01, &, [B*, B,
A]], where, with 6 € CTERM, also [B*, B, 0] € CTERM, and, with FV(A) < {(}, also
FV([B*, B, A]) < {¢}. Hence we have $* € UEF($H*) < RCS.

(PIF): Now, suppose $ € PIF($HIDom($)-1). According to Definition 3-14, there are
then 6 € CTERM, { € VAR, A € FORM, where FV(A) < {(}, such that [0, {, A] €
AVP(HDom($)-1), and $ = HIDom($)-1 u {(Dom($)-1, "Therefore VCA™)}. With d),
we then have " = H* u {(Dom($)-1, [B*, B, "Therefore VCA™])} = $* u {(Dom($H)-1,
"Therefore V([B*, B, A]")}. With [0, ¢, A] € AVP(HIDom($))-1) and Definition 2-30,
there is an i € Dom(AVS($HDom($)-1)) such that P(£);) = [6, {, A]. With a) and b), we
then have ¢ € Dom(AVS($*)) and P($H*) = [B*, B, P($,)]. With Theorem 1-26-(ii), we
then have P($*)) = [B*, B, P(H:)] = [B*, B, [6, & All = [[B*, B, 6], & [B*, B, All, where,
with € CTERM, also [B*, B, 6] € CTERM, and, with FV(A) < {c}, also FV([B*, B, A])
< {C}. Hence we have $" € PIF($*) < RCS.

(IF): Now, suppose $ € IIF($HIDom($)-1). With Definition 3-16, there is then 6 <
CTERM such that $ = HIDom($)-1 u {(Dom($)-1, "Therefore 6 = 67)}. With d), we
then have " = $* u {(Dom(H)-1, [B*, B, "Therefore 6 = 7]} = H* u {(Dom(H)-1,
"Therefore [B*, B, 6] = [B*, B, 0]")}, where, with 6 € CTERM, also [B*, B, 0] € CTERM.
Hence we have $* € IIF($*) < RCS.
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(IEF): Now, suppose $) € IEF($HIDom($)-1). With Definition 3-17, there are then 6g, 6,
e CTERM, { € VAR and A € FORM, where FV(A) < {(}, such that "0y = 61", [00, {, A]
e AVP(HIDom($H)-1), and $H = HIDom(H)-1 u {(Dom($H)-1, "Therefore [0, {, A]")}.
With d), we then have $* = H* u {(Dom($)-1, [B*, B, "Therefore [01, {, A" ]} = H* u
{(Dom($)-1, "Therefore [B*, B, [01, C A]l")} With "0y = 0,7, [0, {, A] €
AVP($HIDom($)-1) and Definition 2-30, there are then 4, j € Dom(AVS($HIDom($)-1))
such that P($);) = "6o = 61" and P($);) = [0, {, A]. With a) and b), it then holds that ¢, j €
Dom(AVS($*)) and P(H*) = [B*, B, P(H)] = [B*, B, "60 = 627] = "[B*, B, 6] = [B*, B,
01]" and P($*,) = [B*, B, P(9,)]. With Theorem 1-26-(ii), we then have P(H*)) = [B*, B,
P(5)] = [B*, B, [00, &, Al = [[B*, B, Oc], & [B*, B, All and C(£7) = [B*, B, [01, & Al =
[[B*, B, 611, C, [B*, B, Al]l, where, with 8, 6; € CTERM, also [B*, B, 8], [B*, B, 61] €
CTERM, and, with FV(A) < {¢}, also FV([B*, B, A]) < {C}. Hence it follows that "
IEF($*) < RCS. m

The following theorem prepares the generalisation theorem (Theorem 4-24). The proof

resembles the proof of Theorem 4-8.

Theorem 4-9. Substitution of a new parameter for an individual constant is RCS-preserving
If $ € RCS, 0. € CONST and B € PAR\STSEQ($), then there is an $§* € RCS\{0} such that
(i) oe STSEQ(H),
(i)  STSEQ(%H') < STSEQ(H) v {B},
(iiiy  AVAP($) = {[a, B, B] | B € AVAP($")}, and
(iv) 1f$#0, then C(9) = [a, B, C(H)].

Proof: Suppose $ € RCS, a € CONST and B € PAR\STSEQ($). Let $* be defined as

follows:
a) " ={(0, "Therefore p = ")}"[B, o, H].

Then clauses (i) and (ii) already hold and we also have $* # 0. For $*, we will will now

show by induction on Dom($)) that $* € RCS and
b) Dom(AVS($")) = {(I+1 | € Dom(AVS($))} u {0}.

Clauses (iii) and (iv) then follow with a) and b). Ad (iii): Suppose A € AVAP($)). Then
there is an © € Dom(AVS($))) such that $; = "Suppose A". Therefore, with b), i+1 €
Dom(AVS($™)) and, with a), $":1 = "Suppose [B, a, A]". Therefore we have [B, a, A] €
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AVAP($H") and thus [a, B, [B, a, A]] € {[o, B, B] | B € AVAP($")}. We have B ¢
STSEQ(%) and thus B ¢ ST(A) and thus, with Theorem 1-24-(ii), [a, B, [B, o, A]] = [a, a,
A] = A. Therefore A € {[a, B, B] | B € AVAP($")}. Now, suppose A € {[a, B, B] | B
AVAP(5H"}. Then there is a A* € AVAP($") such that A = [o, B, A*]. Because of A* e
AVAP($"), there is then, with a), an i+1 € Dom(AVS($H")) with $*;+1 = "Suppose A*".
With b), we then have i € Dom(AVS($)) and, with a), $+1 = [B, o, $:]. Thus we have
[B, o, $:] = "Suppose A*", and thus [a, B, [B, a, $H:]] = [a, B, "Suppose A*"] = "Suppose
[a, B, A*]" = "Suppose A". With Theorem 1-24-(iii) and B ¢ STSEQ($)), we then have
[a, B, [B, a, H]] = [, o, $H:] = H, and thus §H; = "Suppose A" and P($);) = A. Thus we have
A € AVAP($). Hence we have (iii).

Ad (iv): Suppose $ # 0. Because of B ¢ STSEQ($) and a) and Theorem 1-24-(ii), we
have [a, B, C(H7] = [o B, P(H'bomey)] = [ B [B, o P(Hpomen2)]l = [o, a,
P(Hpom(st)-2)] = P(Hpboms)-2). We have Dom($*) = Dom($)+1. Hence we have [a, B,
C(H")] = P(Hpom(s+-2) = P(Hpom(s)-1) = C().

Now for the proof by induction: Suppose $* € RCS and b) hold for all £ < Dom(s)).
Suppose Dom($)) = 0. Then we have $ = @ = {(I+1 | | € Dom(AVS($))}. With a) and
Definition 3-16, we have $* = {(0, "Therefore p = ")} e IIF(@) = RCS. Obviously, we
have Dom(AVS(6") = {0} = {(I+1 | I € Dom(AVS($))} u {0}. Now, suppose 0 <
Dom($). Then we have §§ e RCS\{0}. With Theorem 3-6, we then have $ <
RCE($HIDom($)-1). According to the I.H., we then have

c) H* = {(0, "Therefore p = )} [B, a, HIDom($)-1] € RCS and Dom(AVS(H*)) =
{lI+1 |1 € Dom(AVS($HIDom($)-1))} u {0}.

With $ € RCE($IDom($)-1) and Definition 3-18, we have that $ € AF($Dom($)-1)
or $ € CAIF($HIDom(H)-1) or $ € CAEF(HIDom($)-1) or $ e CIF(HIDom($)-1) or
e CEF(HIDom($)-1) or $ e BIF(HIDom($)-1) or H € BEF(HIDom($)-1) or §
DIF(9IDom(H)-1) or $ e DEF(HIDom($)-1) or $H e NIF(HIDom($)-1) or H €
NEF($HIDom(H)-1) or € UIF(HIDom(H)-1) or § e UEF(HIDom(H)-1) or §H €
PIF(HIDom($)-1) or $H e PEF(HIDom($)-1) or $H e HF(HIDom($H)-1) or §H €
IEF(HIDom($)-1).
Since operators are not affected by substitution, we have

d) For all i € Dom($))-1: P($*:x1) = [B, o, P($H:)] and H* ;.1 = "E [B, o, P(H,)]", where $, =
"EP($,)" foraE e PERF.
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With B € PAR\STSEQ($) and o € CONST, we also have
e) For all i e Dom($): B ¢ ST(P($,) and o ¢ ST([B, o, P(H)]),

because, if not, we would have B € STSEQ($)) or a = 3, which contradicts the hypothesis
and Postulate 1-1 respectively. With a), it holds that

f) 9" =H* u {(DOM(H*), H bom(s)} = H* U {(DoM($), [B, &, Hoom(s)-11)}-

Now, we will show that in each of the cases AF ... IEF it holds that $* € RCS and that
b), with which ™ is then in each case the desired RCS-element. In order to ease the
treatment of CdEF, CIF, CEF, BIF, BEF, DIF, DEF, NEF, UIF, UEF, PIF, IIF and IEF,

we will now first show that

g) If 9 e CAIF(H*) u NIF(H*) u PEF($H*), then § e CdIF(HIDom($)-1) u
NIF(HDom($)-1) u PEF($HI Dom($))-1).

Preparatory part: Suppose $* e CdIF($H*). According to Definition 3-2 and with c) and
f), there is then an « € Dom(AVAS($*)) such that there is no [ such that : < [ < Dom($))-1
and [ € Dom(AVAS(H%*)), and H* = $H* u {(Dom($H), "Therefore P(5H*;) — C(H*)")}.
We have $H*, = "Therefore B = 37 ¢ AVAS($H*). Therefore we have ¢ # 0. With d), we
have P($*;) = [B, a, P(9,1)] and C($*) = [B, &, P($pom(s)-2)]. Therefore we have H* = H*
u {(Dom($), "Therefore [B, a, P(H:.1)] — [B, o P(Hoomn)-2)]")}. With f), it holds that
"Therefore [B, o, P($H:1)] — [B. o P(Hoome)-2)]" = [B. o, Therefore P(Hi1) —
P(9oom@)2)'] = [B: o Hoome)-1]. Theorem 1-21 then yields "Therefore P($.1) —
P(Hoom(s)-2)" = Hoomsm)-1 and thus we have $H = HIDom($H)-1 u {(Dom(H)-1, "Therefore
P($i:1) — Poome)y2)')}- With c), d) and ¢ # 0, we also have i1 €
Dom(AVAS($HIDom($)-1)) and there is no [ such that -1 < [ < Dom($€))-2 and [ €
Dom(AVAS($HIDom($)-1)). Hence we have § € CAIF($IDom($)-1). In the case that $*
e NIF($*), one shows analogously that then also $ € NIF($IDom($))-1).

Now, suppose $* € PEF($*). According to Definition 3-15 and with c), d) and f),
there are then p* € PAR, { € VAR, A € FORM, where FV(A) < {(}, and i €
Dom(AVS($*)) such that P($*;) = "VCA™ and P($H*.1) = [B*, {, A] = [B, a, P($,)], where
i1 e DOM(AVAS(S%), [B, o, P(Sioams2)] = C(9%), p* ¢ STSF{A, [B, o
P($9pom(s)-2)1}), there is no j < ¢ such that f* e ST($H*)), there is no [ such that i+1 < [ <
Dom($)-1 and I € Dom(AVAS(H*)), and " = $H* u {(Dom($), "Therefore C(H*)")} =
$H* u {(Dom(%), "Therefore [B, o, P(Hoom)-2)]")} = H* u {(Dom($), [B, o, "Therefore
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P(Hpom(s)-2) ' D} With f), we have [B, a, "Therefore P($pom)-2)'] = [B, @ Hoom(s)-1l-
Theorem 1-21 then yields "Therefore P($pom(s)-2)" = Hoom(s)-1 and thus $ = HDom($)-1
u {(Dom($)-1, "Therefore P($Hpom(s)-2) ")} With P(H*;) = "VCA™ # B =B = P(H%), it
holds that 7 = 0 and thus that P(9*,) = "VCA™ = [B, o, P(9:1)].

With ¢), d) and ¢« # 0, we have -1 e Dom(AVS($HIDom($)-1)), i €
Dom(AVAS($HIDom($)-1)) and there is no [ such that i < [ < Dom($)-2 and [
Dom(AVAS($HIDom($))-1)). Now, we have to show that P(£..1), P(£;) and P($oom(s)-2)
satisfy the requirements for € PEF($HIDom($)-1).

We have [B, a, P(£:1)] = P(%*) = "VCA™ and [B, o, P($),)] = P(H*ix1) = [B*, {, A]. Since
operators are not affected by substitution, we thus have because of [B, a, P($),.1)] = "V(A™:
P($:1) = "VCA™ fora A* € FORM, where B ¢ ST(A") and FV(A") < {C}. Thus we have
"VCA™ = [B, o, P(9:0)] = [B, @, "VCAT] = "V[B, o, AT]" and hence A = [B, a, A]. Thus
we have [B, a, P(9)] = [B*, &, Al = [B*, & [P, a, A']] and B* ¢ ST([B, a, A']). Also, we
have B = B* or B # p*. If B = p*, then there would be no j < such that B € ST(H*)).
However, we have B € ST("Therefore B = ") = ST($*p) and 0 < i. Therefore we have
# B*. With p* € ST([B, o, P($,)]) and B* ¢ ST([B, a, P($,)]), we can then distinguish two
cases.

First case: Suppose p* € ST([B, a, P(,)]). With A = [B, a, A"] and Theorem 1-25-(ii),
we have [B, o, P(9:)] = [B*, &, Al = [B*, § [B, o, A"]] = [B, o, [B*, &, A"]]. We have that B
¢ ST(P(%,)) and, because of B # B* and B ¢ ST(A"), also B & ST([B*, {, A]) and thus,
with Theorem 1-20, P($;)) = [B*, {, A"]. Now, suppose for contradiction that B* e
STSF({A", P(Hpom(s)-2)}) Or that there is a j < -1 such that B* e ST(,). Because of p* #
o and with d), we would then also have p* € STSF({[B, a, A’], [B, . P(Hpom(s)-2)]}) or
there would be a j < i such that B* € ST($*;). Contradiction! Thus the parameter condi-
tions for p* are also satisfied in $HfDom($)-1 and hence we have $ e
PEF($IDom($)-1).

Second case: Now, suppose p* ¢ ST([B, o, P(£)]). With [B, o, P(£)] = [B*, ¢ [B, «,
A™]], we then have ¢ ¢ FV([B, a, A™]). Then we have [B, o, P($)] = [B*, &, [B, o, A™]] =
[B, a, A*] and thus, with B ¢ ST(P($),)) u ST(A") and Theorem 1-20, P($);) = A", where,
with { ¢ FV([B, a, A']), also { ¢ FV(A"). Now, let B* € PAR\STSEQ($!Dom($))-1).
With { ¢ FV(A"), we then have P($),) = A" = [B*, {, A"] and it holds that B* ¢ STSF({A",
P($pom(s)-2)}) and that there is no j < i such that B* € ST($);). Hence we have again §
PEF($IDom($))-1). Therefore we have in both cases $) € PEF($Dom($))-1).
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Main part: Now we will show that in each of the cases AF ... IEF it holds that " e
RCS and Dom(AVS($") = {I+1 | | € Dom(AVS($))} u {0}. First we will deal with
CdIF, NIF and PEF. Then we can make an exclusion assumption that allows us to deter-
mine Dom(AVS($")) for all other cases just with c), g) and Theorem 3-25.

(CdIF, NIF): Suppose $ € CdIF($HIDom($)-1). According to Definition 3-2, there is
then an ¢ e Dom(AVAS(HIDom($)-1)) such that there is no [ e
Dom(AVAS($HIDom($)-1)) such that : < [ < Dom($)-2, and $H = $HIDom($H)-1 u
{(Dom($)-1, "Therefore P($;) — C(HIDom(H)-1)")}. With a), d) and f), it then holds
that i+1 € Dom(AVAS($H*)) and that there is no [ such that +1 < [ < Dom($€)-1 =
Dom($*)-1 and I € Dom(AVAS($*)), and P($*.1) = [B, a, P(6,)] and C($H*) = [B, a,
C(HIDom(H)-1)] and H* = H* u {(Dom($), [B, «, ' Therefore P($H,) —
C(HIDom($H)-1)"D} = o* u {(Dom($), Therefore [B, o, P(H) — [B o,
C(HIDom($H)-D]")} = H* u {(Dom($), "Therefore P($H*+1) — C(H*)")}. Hence we
have " e CdIF($*) and thus $* € RCS.

With Theorem 3-19-(iii), we then have AVS($) = AVS($HIDom($H)-1)\{(j, H)) | i<j<
Dom($)-1} u {(Dom($)-1, "Therefore P(H;) — C(HIDom($)-1)")} and AVS(H") =
AVS(H*N(, 7)) | i+1 < j < Dom($)} u {(Dom($)), Therefore [B, a, P(5:)] — [B, a,
C(HIDom($)-1)1")}. With Dom(AVS($H*)) = {I+1 | | € Dom(AVS($HIDom(H)-1))} v
{0} it then follows that also Dom(AVS($")) = {i+1 | I € Dom(AVS($))} u {0}. In the
case that § e NIF($HIDom($)-1), one shows analogously that then also $* € NIF(H*) <
RCS and Dom(AVS(H") = {i+1 |l € Dom(AVS($))} u {0}.

(PEF): Now, suppose $ € PEF($HIDom($)-1). According to Definition 3-15, there are
then B* € PAR, { € VAR, A € FORM, where FV(A) < {(}, and i €
Dom(AVS($HIDom($)-1)) such that P($,) = "VCA™, P(9+1) = [B*, {, A], where i+1 €
Dom(AVAS($HIDom($)-1)), B* ¢ STSF({A, P(Hoom(s)-2)}), there is no j < i such that *
€ ST(9,), there is no [ such that +1 <[ < Dom($))-2 and | € Dom(AVAS($IDom($)-1)),
and $ = HfDom($)-1 u {(Dom(H)-1, "Therefore P(Hooms)-2)")}-

With ¢), d) and f), it then follows that i+1 € Dom(AVS($*)) and P(H*x1) = [B, «a,
P($9)] = [B, a, "VEA™] = "V([B, a, A]", i+2 € Dom(AVAS(H*)) and P(H*i2) = [B, a,
P(9:2)] = B, o, [B*, & All, C(5*) = P(5*bom(s)1) = [B, ¢, P(Hpam(sy-2)] and §* = §* v
{(Dom($), [B, a, "Therefore C($HIDom($)-1)" 1} = H* u {(Dom($)), "Therefore [B, a,
C(HIDom($)-1)1")} = $H* u {(Dom($), "Therefore C($H*)")}, and that there is no [ such
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that +2 < [ < Dom($)-1 = Dom($*)-1 and [ € Dom(AVAS($H*)). With p* £ 3 and p* =
B3, we can distinguish two cases.

First case: Suppose p* # . With Theorem 1-25-(ii), we have P($*:2) = [B, o, [B*, ¢,
All = [B*, ¢, [B, a, All.- Also, we have P($*i1) = "VC[B, a, A]". If p* € STSF({[B, a, A],
[B, o, P(Hooms)-2)]}) or if there was a j < ¢+1 such that p* € ST(H*;), then we would
have, because of B* #  and with d), also B* € STSF({A, P($pom(s)-2)}) or there would be
a j <isuch that p* € ST(%;). Contradiction! Therefore we have p* ¢ STSF({[B, a, A], [B,
o, P($oom(s)-2)]1}) and there is no j < 7+1 such that B* € ST($*;) and hence we have that
9" e PEF($H*) and thus $§* € RCS.

Second case: Now, suppose B* = . Then we have { ¢ FV(A), because, if not, we would
have B e ST([B*, ¢, A]) < STSEQ(%). Then we have [B*, ¢, A] = A and thus P($*,) =
[B, o, [B*, &, A]l = [B, @, A] and we have P($*41) = "VE[B, o, A]". Now, let B* e
PAR\STSEQ($*). Then with { ¢ FV(A) also { ¢ FV([B, a, A]) and thus P($*.,) = [B, a,
Al =1[B", ¢ [B, o, A]] and it holds that B* ¢ STSF({[B, a, A, [B, &, P(fpom(s)-2)1}) and that
there is no j < 4+1 such that B* € ST($*;). Hence we have again $* € PEF($*) and thus
$" e RCS. Thus we have in both cases $§* € PEF($*) and thus $* € RCS.

With Theorem 3-21-(iii), we have that AVS($) = AVS(HIDom($H)-I\{(j, H;) | i+1 <
< Dom($)-1} u {(Dom($)-1, Therefore P(Hpom)2)')} and that AVS(H") =
AVS(H*IM(, H7) | #+2 < j < Dom(H)} u {(Dom($), Therefore [B, o, P(Hpom(s)2)]")}-
With Dom(AVS($H*)) = {i+1 | [ € Dom(AVS($HIDom($)-1))} u {0}, it then follows that
Dom(AVS(§%)) = {i+1 |1 € Dom(AVS(H))} u {0}.

Exclusion assumption: For the remaining cases suppose $) ¢ CdIF(HIDom($)-1) u
NIF(HIDom($)-1) u PEF($HIDom($)-1). With g), we then have $H* ¢ CdAIF(H*) u
NIF($H*) u PEF($*). With Theorem 3-25, we thus have for all of the following cases that
AVS($) = AVS(HIDom($)-1) u {(Dom($)-1, C(£))} and that AVS(H") = AVS(H*) u
{(Dom($), C(5H*))}. With Dom(AVS(6H*)) = {i+1 | | € Dom(AVS(HIDom(H)-1))} v
{0} it then holds for all remaining cases that Dom(AVS($")) = {I+1 |l € Dom(AVS($))}
u {0}.

(AF): Suppose $ € AF($HIDom($)-1). According to Definition 3-1, we then have $ =
HIDom(H)-1 u {(Dom(H)-1, "Suppose P(Hpoms)-1) ). With f), we then have H* = H* u
{(Dom($), "Suppose [B, o, P(Hpom)-1)]")} € AF($H*) and thus H* € RCS.

(CdEF, CIF, CEF, BIF, BEF, DIF, DEF, NEF): Now, suppose § e
CdEF($HIDom($)-1). According to Definition 3-3, there are then A, B € CFORM such
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that A, "A — B € AVP($HIDom($)-1) and $H = HIDom($H)-1 u {(Dom($)-1, "There-
fore B™)}. With f), it then follows that: " = $* u {(Dom($)), "Therefore [B, a, B]")}.
With A, "A — B e AVP(HIDom()-1) and Definition 2-30, there are i, j €
Dom(AVS(HHIDom(£))-1)) such that P($);) = A and P($);) = "A — B™. With c) and d), it
then follows that i+1, j+1 € Dom(AVS($*)) and P($*+1) = [B, @, A] and P($*;x1) = "[B,
a, A] — [B, o, B]". Thus we have §* = $* u {(Dom($), "Therefore [B, a, B]")} €
CdEF($*) and thus $* € RCS. CIF, CEF, BIF, BEF, DIF, DEF and NEF are treated
analogously.

(UIF): Now, suppose $ € UIF($HIDom($))-1). According to Definition 3-12, there are
then B* € PAR, { € VAR, A € FORM, where FV(A) < {C}, such that [B*, {, A] €
AVP($HIDom($)-1), p* ¢ STSF({A} u AVAP($HIDom(£)-1)) and $ = $HIDom(H)-1 u
{(Dom($)-1, "Therefore A(A™)}. With f), we then have §* = §* u {(Dom($), [B, a,
"Therefore ALA™])} = §* u {(Dom($)-1, "Therefore AL[B, a, A]")}. With [B*, (, A] e
AVP($HIDom($)-1) and Definition 2-30, there is an i € Dom(AVS($HIDom($)-1)) such
that [B*, ¢, A] = P($;). With a) and d), it then follows that i+1 € Dom(AVS($*)) and that
P($H*+1) = [B, o, P(5:)] = [B, o, [B*, &, A]]. With B* # B and B* = B, we can distinguish
two cases.

First case: Suppose B* # B. With Theorem 1-25-(ii), we have P(H*1) = [B, a, [B*, &,
All = [B*, & [B, o, A]]. We have C($") = "AL[B, o, A]". Now, suppose for contradiction
that p* € STSF({[B, a, A]} u AVAP($*)). Since B* # B and B* ¢ ST(A), we have B* ¢
ST([B, a, A]). Thus we would have p* € STSF(AVAP($*)). With Definition 2-31, there
would then be a j € Dom(AVAS($*)) such that * € ST(P(H*;)). With $*; € ISENT,
we have j # 0. But with d), we would then have P(£*;) = [B, o, P($;.1)] and since B* # 3,
we would then have p* € ST(P($;1)). With c) and d) and j € Dom(AVAS($*)), we
would also have that j-1 € Dom(AVAS($IDom($))-1)). Thus we would have P($);.1) €
AVAP($HIDom($)-1) and B* € STSF(AVAP($HIDom($)-1)), whereas, by hypothesis, we
have B* ¢ STSF(AVAP($HIDom($)-1)). Contradiction! Therefore we have pB* ¢
STSF{[B, a, A]} u AVAP($*)) and hence H* € UIF(H%*).

Second case: Now, suppose B* = . Then we have { ¢ FV(A), because, if not, we would
have B € ST([B*, {, A]) < STSEQ($). Thus we have [B*, {, A] = A and thus P($*;+1) =
[B, a, [B*, & All = [B, a, A] and we have C($") = "ALPB, a, A]". Now, let B* €
PAR\STSEQ($*). Then with { ¢ FV(A) also { ¢ FV([B, a, A]) and thus P($*+1) = [B, «,
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Al = [B", ¢, [B, o, A]] and it holds that B* ¢ STSF({[B, o, A]} u AVAP($*)). Hence we
have again H* € UIF($*). Thus we have in both cases that $* € UIF($*) < RCS.

(UEF): Now, suppose $ € UEF($HIDom($))-1). According to Definition 3-13, there are
then 6 € CTERM, { € VAR, A € FORM, where FV(A) < {(}, such that "ACA" €
AVP($HIDom(H)-1) and $H = HIDom($H)-1 u {(Dom($)-1, "Therefore [0, {, A]")}. With
f), we then have " = $H* u {(Dom($), [B, a, "Therefore [0, {, A']D} = H* u
{(Dom($), Therefore [B, o, [6, {, A]l")}. With "ALA™ e AVP($HIDom($)-1) and
Definition 2-30, there is an : € Dom(AVS($HIDom($))-1)) such that P($,) = "AA™. With
c) and d), we then have i+1 € Dom(AVS($*)) and P($H*:1) = [B, o, "ACA™] = "AL[B, a,
A]". With Theorem 1-26-(ii), we have C(H") = [B, a, [0, ¢, A]] = [[B, o, 0], & [B, o, A]l
where, with 6 € CTERM, also [B, a, 6] € CTERM and, with FV(A) < {}, also FV([B, a,
A)]) < {C}. Hence we have $* € UEF($H*) < RCS.

(PIF): Now, suppose $ € PIF(HIDom($)-1). According to Definition 3-14, there are
then 6 € CTERM, { € VAR, A € FORM, where FV(A) < {C}, such that [0, {, A] €
AVP(HDom($)-1) and $H = HIDom($H)-1 u {(Dom($)-1, "Therefore VCA™)}. With f),
we then have §* = §* u {(Dom($), [B, o, "Therefore VCA™]} = H* u {(Dom(5),
"Therefore VC[B, a, A]")}. With [0, {, A] € AVP($HIDom($))-1) and Definition 2-30, there
is an i € Dom(AVS($HDom($)-1)) such that P($,) = [0, {, A]. With ¢) and d), we then
have i+1 € Dom(AVS($*)) and P($H*+1) = [B, a, P($;)]. With Theorem 1-26-(ii), we then
have P(9*.1) = [B, o, P(9,)] = [B, o, [0, C, A]] = [[B, a, 6], C, [B, @, A]], where, with 6
CTERM, also [B, a, 6] € CTERM and, with FV(A) < {(}, also FV([B, a, A]) < {C}.
Hence we have * € PIF($*) < RCS.

(I1F): Now, suppose $ € lIF($IDom($)-1). According to Definition 3-16, there is then
0 € CTERM such that $ = HIDom(H)-1 u {(Dom($)-1, "Therefore 6 = 67)}. With f),
we then have H* = H* u {(Dom($), [B, a, "Therefore 6 = 07])} = H* u {(Dom($),
"Therefore [B, a, 0] = [B, a, 6]")}, where with 6 € CTERM also [B, o, 0] € CTERM.
Hence we have $* € IIF($*) < RCS.

(IEF): Now, suppose $ e IEF(HIDom($))-1). According to Definition 3-17, there are
then 6y, 8; € CTERM, { € VAR and A € FORM, where FV(A) < {(}, such that "0, =
017, [00, C, A] € AVP(HIDom($)-1) and $ = HIDom($H)-1 u {(Dom($H)-1, "Therefore
[01, &, A]")}. With f), we then have §* = §* u {(Dom($), [B, o, "Therefore [0, {, A]'])}
= 9* u {(Dom(H), Therefore [B, a, [01, C, A]]")}. With "6y = 6,7, [60, {, A] €
AVP($HIDom(H)-1) and Definition 2-30, there are i, ; € Dom(AVS($HIDom($)-1)) such
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that P(9;) = "8p = 6, and P($);) = [60, £, A]. With c) and d), it then holds that 7+1, j+1 €
Dom(AVS(H*)) and P(H*+1) = [B, o, P(H)] = [B, @, 0o =61"] = "[B, a, 60] = [B, a, 81]"
and P(9*;11) = [B, a, P($;]. With Theorem 1-26-(ii), we then have P($*;11) = [B, a,
P(5)] = [B, o, [00, & Al = [[B, @, O], &, [B, o, All and C(£7) = [B, o, [0, &, Al = [[B, o,
011, ¢, [B, o, A]], where with 6y, 6; € CTERM also [B, a, 0], [B, o, 6] € CTERM and
with FV(A) < {} also FV([B, o, A]) < {C}. Hence we have $* € IEF($*) < RCS. m

In the proof of the following theorem, Theorem 4-8 provides the induction basis and is
used in the induction step. The theorem prepares the RCS-preserving concatenation of

two RCS-elements that share common paramateres.

Theorem 4-10. Multiple substitution of new and pairwise different parameters for pairwise
different parameters is RCS-preserving

If § € RCS, k € N\{0} and {B*, ..., P*r1} < PAR\STSEQ($)), where for all 4, j < k with i #
J itholds that B*; # *;, and {Bo, ..., Br-1} S PAR{B*o, ..., p*1-1}, where for all 7, j < k with ¢ #
J it holds that B, # B;, then [(B*o, ..., P*r1), Bo, .-, Br1), H] € RCS and Dom(AVS([(B*o, ..,
B*1-10), Boy ---» Br-1), H])) = DOM(AVS(SH)).

Proof: By induction on k. With Theorem 4-8, the statement holds for £ = 1. Now, suppose
the statement holds for k. Now, suppose $) € RCS, k+1 € N\{0} and {B*o, ..., p*1} <
PAR\STSEQ(%), where for all 4, j < k+1 with ¢ # j it holds that p*; # B*;, and {Bo, ..., Br}
< PAR\{B*o, ..., B*1}, where for all 7, j < k+1 with 4 # j it holds that B, # B,. According to
the 1.H., we then have [{$*o, ..., B*1-1), PBo, ---s Pr-1), H] € RCS and Dom(AVS([{B*o, ...,
B*i-1), Poy -+ Pr1)y H])) = Dom(AVS($)). With Theorem 1-27-(iv), we have [B*), B
[B*o, ..., B*r-1) Boy .-y Br-vy HI = [B*0s -y B0, Bo, ---, Br), H]. With Theorem 4-8, we
thus have [(B*o, ..., B*K, Bo, ---» By H] € RCS and Dom(AVS([{B*o, ..., B*», Po, ---
B, 1)) = Dom(AVS([(B*o, ---, B*s-1), Boy -, Br-1), H])) = DoM(AVS($)). m
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Theorem 4-11. Ul-extension of a sentence sequence
If $ € RCS\{@}, & € N\{0}, {&, ..., &1} < VAR, where for all 7, j < k with ¢ # j it holds that
& # &, A € FORM, where FV(A) < {&, ..., &1}, and {Bo, ..., Pr1} < PAR\STSF({A} u
AVAP(%)), where for all 7, j < k with ¢ # 7 it holds that B, # B,, and C($) = [(Bo, .-, Br-1), o
...y 1), A], then there is an H* € RCS\{@} such that

(i) PAR n STSEQ(f*) = PAR n STSEQ($),
(i) AVAP($*) = AVAP($), and
(|||) C(f)*) = r/\(io.../\ék_lA-l.

Proof: By induction on k. Suppose £ = 1 and $H € RCS\{0}, suppose & € VAR, A €
FORM, where FV(A) < {&}, and B € PAR\STSF({A} u AVAP($)) and C($) = [B, &, Al
With Theorem 2-82, we have [B, & A] = C($) € AVP($), and thus, according to
Definition 3-12, $* = § u {(Dom(%), "Therefore AEA™)} e UIF($H) < RCS\{0} and
C(H*) = "AEA™. We also have that PAR n STSEQ(H*) = (PAR n STSEQ(9)) u (PAR
n ST("AEA™)) = PAR n STSEQ($), and, with Theorem 3-26-(v), we have AVAP($*) <
AVAP(S).

Now, suppose the statement holds for k£ and suppose $H € RCS\{0}, {&, ..., &} <
VAR, where for all 7, j < k+1 with 7 # j it holds that &; # §;, A € FORM, where FV(A) <
L&, ..., &}, and {Po, ..., B} < PAR\STSF({A} u AVAP($)), where for all 7, j < k+1
with i # j it holds that B, # B;, and C($)) = [Bo, ---» B)s Eos ---» &)y A]. With Theorem
1-28-(ii), we then have C(9) = [Bo, .., B, Eo, - Ey Al = [Brs &k [Bos -, Brs)s Eor -,
&y A]]. With FV(A) < {&o, ..., &} we then have FV{([(Bo, .., Br-1), Eos .-+ Ep1)y A]) <
{&;}. Since B, are pairwise different and {Bo, ..., B} < PAR\STSF({A} u AVAP($))), we
then have B; € PAR\STSF({[(Bo, ..., Br1), Eor ..., Exr) AI} U AVAP($)). Since [Br, &
[Bo, -+, Br-1)y oy ---y Er1)y A]] = C($) € AVP($), we then have, according to Definition
3-12, 9' = $H u {(Dom($), "Therefore A&[(Bo, .., Br-1), v ---» Ex-1)y A7)} € UIF(H) <
RCS\{0} and C(§") = "A&LPo, ..., Pr), Eor ..., Ea), A" and PAR n STSEQ($)') = (PAR
n STSEQ(9)) v (PAR n ST("A&I(Bo, ---, Br-1)s oy -y &)y A]™)) = PAR n STSEQ($))
and, with Theorem 3-26-(v), we have AVAP($)") < AVAP($). Since the &; are pairwise
different, we have for all i < k: &; # &. Thus we then have C($) = "A&[(Bo, ..., Br-1), o
ooy Gy AT = [Boy ey Bir)y oy ooy Err)y TAEAT] With FV(A) < {&, ..., &}, we then
have FV("A&A™) < {&o, ..., &1}, Where the & with i < k are pairwise different. With {Bo,
..., B} < PAR\STSF({A} u AVAP(5)), we have {Bo, ..., Pr-i} = PAR\STSF({"AEA™}
u AVAP($)), where the B; with ¢ < k are also pairwise different. According to the 1.H.,



4.1 Preparations 195

there is thus, with C($") = [Bo, ..., Br1)s &o, ..., &1y AEAT], an H* € RCS\{0} such
that PAR n STSEQ($H*) = PAR n STSEQ($') = PAR n STSEQ($), AVAP(H*) <
AVAP($") < AVAP($) and C(H*) = "A&...N\gA™ . m

Theorem 4-12. UE-extension of a sentence sequence

If $§ € RCS\{0}, k € N\{0}, {60, ..., 0.1} < CTERM, {&, ..., &1} < VAR, where for all 4, j
< k with 7 # j it holds that & # &, A € FORM, where FV(A) < {&, ..., &}, and
"Neo... Nej A" € AVP($), then there is an H* € RCS\{0} such that

(i)  Dom($*) = Dom($)+£,

(iiy H*IDom(H) = 9,

(i)  AVAP(§*) = AVAP($),

(iv)  Foralli<k-1: C(H*TDom(§)+i+1) = "N&uz... A&ra[(Bo, ..., 02, &, ..., &), A]", and
(v)  C(9H*) =[O0, ---, 010, Eoy ---s &), A

Proof: By induction on k: Suppose k£ = 1. Suppose $ € RCS\{0}, 6 € CTERM, &
VAR, A € FORM, where FV(A) < {&}, and "AEA™ € AVP($)). With Definition 3-13, it
then holds that $* = §7{(0, "Therefore [0, & A]")} € UEF($H) < RCS\{0}, and it holds
that Dom($H*) = Dom($)+1 and H*IDom($) = $ and, with Theorem 3-27-(v), that
AVAP($H*) < AVAP($). Because of £ = 1, clause (iv) is satisfied trivially and we have
C(9) =16, & Al

Now, suppose the statement holds for k£ and suppose $ € RCS\{@}, {6o, ..., 0:} <
CTERM, {&, ..., &} < VAR, where for all 7, j < k+1 with ¢ # j it holds that & # &, A €
FORM, where FV(A) < {&, ..., &}, and "A&...A&A™ e AVP($). With FV(A) < {&,
.., &}, we then have FV(A&;...A&A) < {&} and, with 60 € CTERM and "A&... A&A”
e AVP($) and Definition 3-13, we have $' = §~{(0, "Therefore [0, &, A&;1...AEA])}
e UEF($) < RCS\{0}. Then we have Dom($)") = Dom($))+1 and $H'TDom($)) = $ and,
with Theorem 3-27-(v), we have AVAP($") < AVAP($). Since the &; are pairwise dif-
ferent, we have for all ¢ with 0 < 7 < k: & # &. Thus we then have C($") = [0o, &,
N1 NEAT] = TAE.. NELB0, Eo, AT

Now, let {; = &1 and 6, = 6,4 for all 4 € k. Then we have {6, ..., 0.1} < CTERM,
{Co, ..., G1} < VAR, where for all 4, j < k with i # j §; # ;, [0, &, A] € FORM, where,
with FV(A) < {&, ..., &} and B, € CTERM, it holds that FV/([0q, &, A]) < {&1, ..., &} =
{Co, ..., G1}, and, with Theorem 2-82, it holds that "Al...Ali1[00, &, A" =
"AEr...N&[Bo, &0, AT = C(H") € AVP($"). According to the I.H., there is then an $H* e
RCS\{0} such that:
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a) Dom($H*) =Dom($H")+k,

b)  $H*IDom(H) = &'

c) AVAP(H*) < AVAP(H),

d) Forall i< k-1: C(H*IDom($H)+i+1) = "Ali1... AG1[(0, ..., 0", &ov vy §)y [Oo,
&, A, and

e) C®H*)=1[®, ..., 0%, o, ..., G [B0, Eor Al

With a) and because of Dom($)") = Dom($))+1, we then have Dom($*) = Dom($))+k+1.
With b) and because of $'IDom($) = 6, we also have H*Dom($) = . With c) and be-
cause of AVAP(9") < AVAP($), we have that AVAP($H*) < AVAP($)). Thus we have
that $* € RCS\{@} and that clauses (i) to (iii) hold for $*. With d) and {; = &+, and 0'; =

0,+1 we also have
For all 7 < k-1: C($H*IDom($")+i+1) = "A&ua... N&[(O1, ..., 0i1), (&1, ..., Eisr), [00, Eo, AT
With Dom($)") = Dom($))+1 we thus have

f) For all i < k-1: C(H*IDom(H)+i+1+1) = Ao AELO, -.., Od), Exr ..y Eid), [0, Eor
AIl".

Thus we have

g) For all i with 0 < i < k: C(H*IDom($H)+i+1) = "A&is... N[O, ..., 0, &, ..., &, [0,
éOi A]]-I .

We also have

h) For all s with 0 <4 < k+1: [0y, ..., 0, &1, ..., &), [00, &0, A]] = [0, ..., 05, &0, ..., &,

Al.
h) can be shown by induction on i. First, we have, with Theorem 1-28-(ii), that [64, &, [0,
o, A]] = [(Bo, 01), (&0, &1), A]. Now, suppose for i it holds that if 0 < ¢ < k+1, then [(8q, ...,
0, &1y +.vy &, [00, Eo, A]] =[O, ..., 0:), o, ..., &, A]. Now, suppose 0 < i+1 < k+1. Then
we have ¢ = 0 or 0 < 4. For ¢ = 0, the statement follows in the same way as the induction
basis. Now, suppose 0 < i. With Theorem 1-28-(ii), we first have [{01, ..., 0i41), (&1, ...,
Eir)y [00y &0y A]] = [0i41, Eiva, [O1, --.y 0, 1y -.vy E, [B0, Eo, A]]]- With the LH., it then
holds that [0;1, &1, [O1, ..., 0, &1, --vy EN [00, &0y ANl = [0i41, Eivry [Bos .-, 02, oy .-y
&>, A]]. Again with Theorem 1-28-(ii), we then have [0:+1, &1, [(Bo, .., 05, (o, ..., &), A]]
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= [(6o, ..., 0x1), o, ..., Ei+r), A] @nd hence [(By, ..., 0:1), &1, ..., Ex1)y [00, Eo, Al = [(Bo,
cees 0i41), oy -+, &), A]. Therefore we have h).

With Dom($") = Dom($)+1 and C(H*IDom(9") = C(H") = "A&;...A&[0o, &, AT, we
have C(H*IDom($H)+0+1) = "A&...A&[B0, &, A]". With g) and h), we thus get that

clause (iv) holds:
For all i < k: C(§*IDom($)+i+1) = "A&ir... A& (O, ..., 0, o, ..., E), AT
Last, it holds, with €), h) and 0'; = 8,1 and ; = &1 that

C(9H*) =[O, ..., 01, o, ---, G0, [0, o, All

[O1, ..., 00, €1, ..y E), [0, Eo, A]]

[, ..., Ox), (&, ---, Ex, Al

Thus clause (v) holds as well, and hence the theorem holds for k+1. m

Theorem 4-13. Induction basis for Theorem 4-14

If 5, H' € RCS\{0} and AVAS(H') = @, then there is an H* € RCS\{@} such that
(i)  C(9), C(%) € AVP(H*) and
(i)  AVAP(H*) < AVAP(9).

Proof: Suppose 5, $' € RCS\{0} and suppose AVAS(H') = 0. If C($) = C($"), we can
choose $ as well as $' for H*. Now, suppose C(9) # C($'). With PAR n STSEQ($) n
STSEQ($') = @ and PAR n STSEQ($) n STSEQ($') # @, we can then distinguish two
cases.

First case: Suppose PAR n STSEQ($) n STSEQ(H) = 0. There is an a €
CONST\(STSEQ($) u STSEQ($"). With Theorem 4-4, there is then an $§* € RCS\{0}
such that AVP($) u AVP(§') < AVP(H") and AVAP(H") = AVAP($H) u {Ta =o'} u
AVAP($"). With Theorem 2-82, we have C($)) € AVP($) and C($') € AVP($') and thus
we have C(9), C(9) € AVP($"). With Theorem 4-7, there is then an $* € RCS\{0}
such that AVAP($*) < AVAP(H )Mo = o'} = (AVAP(H) u {0 = a'} u
AVAP(HN){ "o = o'} < AVAP(H) u AVAP($) and C($), C(H") € AVP(H*), with
which $* is the desired RCS-element.

Second case: Now, suppose PAR n STSEQ($) n STSEQ($') # @. Then there occur &
pairwise different parameters in §' for a k& € N\{0}. Now, let {Bo, ..., Br1} = PAR n
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STSEQ($'), where for all 7, j < k with 7 # j it holds that B; # ;. There are p*, ..., p*11 €
PAR\(STSEQ($) u STSEQ(%")), where for all 7, j < k it holds that if ¢ # j, then B*; # p*;.
Also, there are &, ..., &1 € VAR\(STSEQ($) u STSEQ($")), where for all 4, j < k: If ¢ #
J, then &#&;.

With Theorem 2-77 and AVAS(H’) = @, we also have AVAP($') = @. With Theorem
1-16, there is a A € FORM, where FV(A) < {&, ..., &1} v FV(C($)) = {&, ..., &1}
and ST(A) n {Po, ..., Pr-a} = 0, such that C() = [Bo, ..., Pr-s)s o, ..., Ers), A]. With
Theorem 4-11, it then follows that there is $* € RCS\{0} such that PAR n STSEQ($?) =
PAR n STSEQ($)'), AVAP($Y) < AVAP($') = @ and thus also AVAS($') = @ and C(H%)
= "A&o... A&t AT, With C(9) = [Bo, ..., Bra) o, ... Ea), Al it follows that PAR n
ST(A) < PAR n STSEQ($") = {Po, ..., Br-1} and thus, with ST(A) n {Bo, ..., Pr-1} = 9, it
follows that PAR n ST(A) = PAR n ST("A&...A&.1A™) = PAR n ST(C(HY) = 0.

We also have, with Theorem 4-10, that $2 = [{B*o, ..., P*i2), Po, ..., Pr1), H'] € RCS
and Dom(AVS($%) = Dom(AVS($')) and thus Dom(AVAS($?)) = Dom(AVAS(HY)) =
@ and hence also AVAP($%) = @. Moreover, we have PAR n STSEQ($) n STSEQ($?)
< PAR n STSEQ($) n {B*o, -.., B*r1} = 0. Furthermore, we have, because of PAR n
ST(C(HY) = 0, that C(H%) = [(B*o, ..., B0 Bo, ..., Brw)y CHH] = C(HY =
"A&o... N&paA™. There is an o € CONST\(ST($) u ST($?)). With Theorem 4-4, there is
then, because of PAR n STSEQ($) n STSEQ(H?) =0, an $° € RCS\{0} such that:

a) Dom($°) = Dom($)+1+Dom($?),

b)  $*Dom(H) = 9,

c)  9°boms) = "Suppose a = o,

d)  Forall i e Dom($°) it holds that $% = $°pom(s)+1+i

e) Dom(AVS(H%) = Dom(AVS($H)) u {Dom($H)} u {Dom($H)+1+l | I
Dom(AVS($%))},

f)  AVP(§®) = AVP($H) u {"a=a'} u AVP(HH?), and

9) AVAP(H% = AVAP($) u {"a=a'} u AVAP($H?) = AVAP(H) u {"a=0o"}.

m

With Theorem 2-82, we have C($9)) € AVP($) and hence, with f), C(£) € AVP($°). We
have "A&...A&aAT = C(H) = C(H%. With Theorem 4-12, there is then an $* e
RCS\{0} such that
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hy  Dom($*) = Dom(§°)+k,
) HtDom(% = 6°,
i)  AVAP($') < AVAP(H®) = AVAP($) u {Ta=a"},

k) Forall i <k C(H'Dom(H%)+i+1) = "Asr... Ara[Bor -.or By Eoy ...y &, AT,
and

) C®*=[Bo, - Bra) Eoy -y Epa)s Al

Then we have C($) = [(Bo, .., Pr-1), o, ..., )y A] = C(HY) € AVP(H?). We also have:
9 bom(s) = Hpom(s) = "Suppose a = o . Since o € CONST\(ST($) u ST(£?) and thus o
¢ ST(A) and since PAR n CONST = @, it follows, with a), b), ¢), d), h), i), k) and I), that
for all [ € Dom($?) it holds that

a € ST(H%) iff [ = Dom($).

With $?boms) € AS(H*) and Theorem 4-3, we then have that there is no closed segment
2 in $H* such that min(Dom(2)) < Dom($) < max(Dom(2A)). If 2A was a closed segment in
$* such that min(Dom(2A)) < Dom(H)-1 < max(Dom(2)), then we would have
min(Dom(2()) < Dom($) < max(Dom(2)). Therefore there is no closed segment 2 in $*
such that min(Dom(2()) < Dom($)-1 < max(Dom(2A)) and thus we have P($*bom(s)-1) =
C(5) € AVP(H%). We also have C(9') = C(H*) e AVP($). With Theorem 4-7, there is
thus an $° € RCS\{@} such that AVAP($°) < AVAP(H)\{"a = a'} < (AVAP(H) u {a
= aP)\{ o= o'} < AVAP(H) and C($), C(H) € AVP(H°). m

Theorem 4-14. CdE-, CI-, Bl-, BE- and IE-preparation theorem
If 5, ' € RCS\{@}, then there is an H* € RCS\{@} such that
(i)  C(9), C(%) € AVP(H*) and
(i)  AVAP(H*) < AVAP(H) u AVAP($H".

Proof: Proof by induction on |AVAS($)')|. For [AVAS($")| = 0 the statement holds with
Theorem 4-13. Now, suppose the statement holds for n and suppose $, $' € RCS\{0}
and [AVAS($)| = n+1. With Theorem 3-18, we then have $' = $'"{(0, "Therefore
P($ ' max@om(avasey)) — C(H)")} € CAIF(H') < RCS\{0}. With Theorem 3-19-(iv) and
(v), we have |AVAS($Y)| = n and, with Theorem 3-19-(ix), we have AVAP(§') <
AVAP($"). With the I.H., it then holds that there is an $* € RCS\{@} such that
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a) C(9), C(HY) € AVP($H?) and
b) AVAP($%) < AVAP(H) u AVAP($") < AVAP($) u AVAP(H").

Now, let the following sentence sequences be defined, where o € CONST\STSEQ($?):

e 9* v {(Dom(H%),  "Suppose P(H maxpomavaseyy) )}
9* 9 v {(Dom(H®,  Therefore o= a")}
9° 9" u  {(Dom(®%,  Therefore C(£)")}.

With Theorem 1-12, we have C($°) ¢ ISENT and thus $° ¢ CdIF($%) u NIF($%) u
PEF($?). With Theorem 1-10 and Theorem 1-11, we have that C(£?) is neither a negation
nor a conditional and thus we have $* ¢ CAIF(£%) u NIF($°). If P($)'maxpomavas)y) =
"a = o, then we would have a € ST(P(H'mapomavasey)) < ST(C(HY)) <
STSF(AVP($%) < STSEQ(HH?) and thus a contradiction. Therefore $* ¢ CdIF($%) u
NIF($% u PEF(8%). If $° € CAIF(9* u NIF($*) u PEF($?), then we would have o €
ST(P($ maxomavas(syy)) U ST(C(H)) < ST(C(HY) < STSEQ($H?) and thus again a con-
tradiction. Therefore $° ¢ CdIF($%) u NIF($*) u PEF(H%).

On the other hand, we have that $°® € AF($?%) and thus $*® € RCS and, with Theorem
3-15-(vi), C(%), C(H), P(H'maxpomavas@y) € AVP(H?) U {P(H ' maxpomavas@)} =
AVP($®) and, with Theorem 3-15-(viii), AVAP(%%® = AVAP(H?) U
{P($ maxomavas)))} S AVAP($) u AVAP($'). Next, we have $* e 11IF($°) and thus
$* € RCS and, with Theorem 3-25, AVS($*) = AVS($®) u {(Dom($)°), "Therefore a =
o")}. Thus we have AVAP($?) = AVAP(H®) < AVAP(H) u AVAP($) and C(),
C(HY), P(®'max@omavassy) € AVP®?) < AVP($H?Y). Because of C(H) =
P9 maxom(avas(y) — C(H)7, we have $° € CAEF($*) < RCS\{0}. With Theorem
3-25, we have AVS(°) = AVS($*) u {(Dom($*), Therefore C(5)")")}. Thus we have
AVAP($°) = AVAP($") < AVAP($) u AVAP($") and C($) € AVP(H*) < AVP($°)
and, with Theorem 2-82, C($)") = C($°) € AVP(§°) and $° € RCS\{0}. $° is thus the de-
sired RCS-element. m
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4.2 Properties of the Deductive Consequence Relation

Now, we will establish some usual theorems about the deductive consequence relation. In
particular, we will show that the deductive consequence relation is reflexive (Theorem
4-15), monotone (Theorem 4-16), closed under the introduction and elimination of logical

operators (Theorem 4-18) and transitive (Theorem 4-19).

Theorem 4-15. Extended reflexivity (AR)
If X € CFORM and A € X, then X - A.

Proof: Suppose X < CFORM and A € X. Then we have A € CFORM and, according to
Definition 3-1, we have that {(0, "Suppose A™")} € AF(0) < RCS\{d} and we have
C({(0, "Suppose A™")}) = A and AVAP({(0, "Suppose A™")}) = {A} < X. With Theorem

3-12, we thushave X — A. m

Theorem 4-16. Monotony
IfXHBand X € Y < CFORM, then Y — B.

Proof: Suppose X —B and X < Y < CFORM. With Theorem 3-12, there isthenan $ e
RCS\{0} such that AVAP($) < X and C() = B. Then we have AVAP($)) < Y and thus
Y-B. =

Theorem 4-17. Principium non contradictionis
If X u {I'} € CFORM, then X = "—(I" A —I')".

Proof: Suppose X u {I'} € CFORM. Now, let ) be the following sentence sequence:

0 Suppose TI'A-TI

1 Therefore T

2 Therefore —I'

3 Therefore —(I" A-I)

According to Definition 3-1, we have $I'1 € AF(0) < RCS\{0} and, with Theorem 3-15,
we have AVS($I'1) ={(0, "Suppose I' A —I"")} = HI'1 and AVP($HI1) = {'T A —=I"'} and
AVAS(HI1) = {(0, "Suppose I' A —I'")}und AVAP(HI1) = {'T A —I"}. According to
Definition 3-5, we then have $I2 e CEF($I1) < RCS\{@}. Since, with Theorem 1-8, T
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A =l ¢ SK(I), we have, with Definition 3-2, Definition 3-10 and Definition 3-15, that
HI2 ¢ CAIF(HIL) u NIF(HIL) u PEF(HI1). With Theorem 3-25, it then follows that
AVS(9l2) = AVS(HIL) u {(1, "Therefore I")} = H2. We also have with Theorem
3-27-(ii) and -(iii) that AVAS($12) = AVAS(HI1) and thus AVAP($2) = AVAP($HI1) =
{T A"}

With Definition 3-5, we then have $H3 € CEF($[2) < RCS\{0}. Since, with Theorem
1-8, T A—=I" ¢ SF("—I"") and " # "—I"", we have, with Definition 3-2, Definition 3-10
and Definition 3-15 that $[3 ¢ CdIF(H12) u NIF($!2) u PEF($!2). With Theorem 3-25,
it then follows that AVS($HI3) = AVS(HI2) u {1, "Therefore —I"")} = H[3 and, with
Theorem 3-27-(ii) and -(iii), that AVAS($!3) = AVAS($!2) and thus that AVAP($I3) =
AVAP($H!2) = {T A —=I"}. Then we have 0 = max(Dom(AVAS($[3))) and 1, 2 €
Dom(AVS($H13)) and P($13;) =T and P($[3,) = "—I". According to Definition 3-10, we
thus have $ e NIF($[3). According to Theorem 3-20, we have AVAS($) =
AVAS($HII3)M{(0, "Suppose I' A —I"")} = @ and thus also AVAP($) = @. Hence we have $
e RCS\{0} and AVAP($H) =0 and C(9) = "—(I' A =I')". With Theorem 3-12, we then
have @ — "—(I"' A =I')" and thus it holds, with Theorem 4-16, that X — "—=(I' A —=I')". m

Theorem 4-18. Closure under introduction and elimination
If A, B, " e CFORM, 6,, 6; € CTERM, & € VAR and A € FORM, where FV(A) <
{&}, then:

(i) IX+FBandA e X, then X\{A}"A - B", (Cdl)
(i) FXHAandYH~T"A—B", then X u Y B, (CdE)
@iii)y MX+HAandYH—B,thenX u Y "AAB", cn
(iv FXETAAB'or X+ "BAA", then X A, (CE)
v) fXH"A-B'andY+—"B—>A",thenXuYHF"A < B, (BI)
(vij IfX+—BandA e Xand Y AandB €Y, then (X\{A}) u (Y\{B}) - "A (BI*)
— B7,

(vii) fXHAandYH~"A—B'orYH "B« A’ then X u Y B, (BE)
(viii) IfXHAor X+B,then X~ "Av BT, (DI)

(ix) FXHFTAvB'andYH~"A—-T"andZ+"B—-T",thenXuvY uZ-T, (DE)

xX) IfX+HTAvB'andY+—TandA eYand Z+—TandB € Z,then X u (DE¥)
("{A}) v (Z{B}H +T,

xi) HXFTandYF"—I"andA e X v Y, then(X v Y)\{A}- =A™, (NI)

(xii) If X+ "——I", then X T, (NE)

(xiil) If X [B, & Aland B ¢ STSF(X u {A}), then X = "AEA™, (un
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(xiv) If X = "AEA™, then X I [0o, &, A], (UE)

(xv) If X [00, & A], then X = "VEA™, (PI)

(xvi) FXE"™VeATandY =T and [B, EA]l € Y and B ¢ STSF((Y\{[B, &, A]}) v (PE)
{A, T}), then X v (Y\{[B, & A]}) =T,

(xvii) If X < CFORM, then X - "8, =6,", and (m

(xviii) If X "0,=0,"and Y [0y, &, A], then X u Y [0y, &, A]. (IE)

Proof: Suppose A, B, I' € CFORM, 6o, 6; € CTERM, ¢ € VAR and A € FORM, where
FV(A) < {&}. First, we will deal with case (i), in which the set of premises is reduced.
Then we will treat the cases (ii), (iii), (v), (vii) and (xviii), in which two premise sets are
joined. In the cases (iv), (viii), (xii), (xiii), (xiv) and (xv), the premise set does not change.
The remaining special cases will be dealt with in the order (vi), (ix), (x), (xi), (xvi), (xvii).

Ad (i) (Cdl): Suppose X — B and A € X. According to Theorem 3-12, there is then an
$ € RCS\{0} such that C($) = B and AVAP($)) < X. With Theorem 4-2, there is then

an $' € RCS\{0} such that AVAP($") < AVAP($) and C($") = C($) and for all 7 €
Dom(AVAS($H"): If P($';) = A, then 7 = max(Dom(AVAS($'))). With Theorem 2-82, we
then have B = C(9") € AVP(9'). With A € AVAP($") and A ¢ AVAP($"), we can now
distinguish two cases.

First case: Suppose A € AVAP($'). Then we have AVAS($') # @ and it holds for all
e Dom(AVAS($)): P(9") = A iff : = max(Dom(AVAS($'))). With Theorem 3-18, we
then have ©§* = §'~{(0, "Therefore A — B")} e CdIF($') < RCS\{0}. With Theorem
3-22, it then holds that AVAP($") = AVAP(H')\{A} < AVAP(H\{A} c X\{A}.
Hence we have $* € RCS\{0}, C($") = "A — B™ and AVAP($") < X\{A} and thus,

with Theorem 3-12, X\{A}+~ "A — B".
Second case: Now, suppose A ¢ AVAP($'"). Then we can extend ' as follows to an $*

e SEQ with $*IDom($') = "

1

' v {(Dom($", "Suppose A™)}

9t {(Dom($H'),  "Therefore A A B")}
)

)

N

U
2y {(Dom($%, Therefore B")}
3

U

S

]
1

{(Dom($®),  Therefore A — B")}.

First, we have $*bom(s) € ASENT. With Theorem 1-8, Theorem 1-10 and Theorem 1-11,
we have C($) = C($?) und C(5%) = C(5°). We also have that C(£?) is neither a condi-
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tional nor a negation. We further have with Theorem 1-8 that C(£°) =B # "A — (A A
B)" and that P($%bom) = A # (A A B)" = "—P($%0om(sy)”. With Theorem 2-42,
Definition 2-11, Definition 2-12 and Definition 2-13, we then have that it holds for all &
with 1 < k& < 3 that there is no closed segment 2 in $* such that min(Dom(2()) = Dom($)").
With Theorem 2-47, we thus have for all £ with 1 < k£ < 3 that there is no closed segment
20 in $* such that min(Dom(2l)) < Dom($") < max(Dom(2A)). Thus we also get that it
holds for all k£ with 1 < k < 3 that Dom($))) = max(Dom(AVAS($"))). With Theorem
3-19-(i), Theorem 3-20-(i), Theorem 3-21-(i) and Theorem 2-61, we then have for all &
with 2 < k<3 that 9 ¢ CAIF($H*1) u NIF(H*1) u PEF(H*Y).

On the other hand, we first have, according to Definition 3-1, ' € AF($") < RCS\{0}
and, with Theorem 3-15, AVS($Y) = AVS($) u {(Dom($)"), "Suppose A™)} and
(Dom($)"), "Suppose A™) € AVAS($') u {(Dom($'), "Suppose A")} = AVAS($H') and B
e AVP(H") < AVP($Y) and A € AVP($H'). Therefore we have second, according to
Definition 3-4, $% € CIF($') < RCS\{0} and, with Theorem 3-25, AVS($?) = AVS(H")
u {(Dom($H'), Therefore A A B")}. Thus we have (Dom($)"), "Suppose A7) e
AVAS($H') = AVAS($?) and "A A B™ € AVP($?). Therefore we have third, according to
Definition 3-5, $* € CEF($?) < RCS\{0} and, with Theorem 3-25, AVS($°) = AVS(H?)
u {(Dom($)%), Therefore B™)}. Thus we have Dom($)") € Dom($%) and P(£°pomsy) = A
and (Dom($)"), "Suppose A™) € AVAS(H%) = AVAS(H°%) and P(H°bom(3-1) = B and there
is no [ such that Dom($") < I < Dom($%-1 and (I, $%) € AVAS($®). According to
Definition 3-2, we thus have $* e CdIF($* < RCS\{@} and, with Theorem 3-19-(iv)
and -(v), AVAS(§") = AVAS(H)\{(max(Dom(AVAS($?))), $*maxponavaseom} =
AVAS(H\{(Dom($), "Suppose A} = AVAS(HHM{(Dom($'), "Suppose A)} =
(AVAS(9) u  {(Dom($"), "Suppose AP (Dom($'), "Suppose A"} =
AVAS(HN\{(Dom($"), "Suppose A™")} < AVAS(H'). With Theorem 2-75, we then have
AVAP($%) = AVAP($') and, because of A ¢ AVAP(') and AVAP(§') < AVAP($) <
X, we then also have AVAP($%) < AVAP($H)\{A} < X\{A}. Since C(9*) = "A — B,
it holds, with Theorem 3-12, that X\{A} ~ "A — B".

Ad (ii) (CdE), (iii) (CI), (v) (BI), (vii) (BE), (xviii) (IE): We prove (ii) exemplarily,
clauses (iii), (v), (vii) and (xviii) are shown analogously. Suppose for (ii) that X — A and

Y -~ "A — B". According to Theorem 3-12, there are then $, ' € RCS\{0} such that
AVAP($H) < X and C($H) = A and AVAP($H") < Y and C($') = "A — B™. With Theorem
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4-14, there is then an $* € RCS\{@} such that A, "A — B" € AVP($*) and AVAP($H*)
< AVAP(H) u AVAP(H') < X u Y. According to Definition 3-3, we then have §* =
$H*7{(0, "Therefore B")} € CdEF($H*) < RCS\{@} and, with Theorem 3-27-(v), we have
AVAP($H") < AVAP($H*) < X u Y and we have C($") = B. It then holds, with Theorem
3-12,that X v Y - B.

Ad (iv) (CE), (viii) (D), (xii) (NE), (xiii) (Ul), (xiv) (UE), (xv) (P1): We prove (iv) ex-
emplarily, clauses (viii), (xii), (xiii), (xiv) and (xv) are shown analogously. Suppose for
(iv) that X = "A A B or X = "B A A™. Now, suppose X -~ "A A B". According to
Theorem 3-12, there is then an $ € RCS\{@} such that AVAP($) < X and C($) = "A A
B™. With Theorem 2-82, we have "A A B" € AVP($) and thus, according to Definition
3-5, ' = H7{(0, "Therefore A")} € CEF($)) < RCS\{0} and, with Theorem 3-27-(v),
we have AVAP(H") < AVAP(H) < X and we have C($") = A. With Theorem 3-12, we
then have X - A. In the case that X — "B A A™, one shows analogously that X — A holds
as well.

Ad (vi:)(BI*): Suppose X =B and A € X and Y -~ A and B € Y. With (i), we then
have X\{A}~ "A — B" and Y\{B} = "B — A™. With (v), it then holds that (X\{A}) u
(Y{B}h)~"A - B".

Ad (ix) (DE): Suppose X+ "AvB'and Y+~ "A —»TI"and Z+ "B — I"". By double
application of (iii), we thenget X u Y u Z+— "(AVvB) A ((A—>T) A (B—T))". With
Theorem 3-12, there is then an $ € RCS\{0} such that AVAP($H) < X v Y u Z and

C($) = (AvB) A (A —T) A (B— I))". There is an « € CONST\STSEQ($). Thus we
can extend § as follows to an $° € SEQ with $°tDom($) = $:

1

u  {(Dom($€), "Suppose a. = o)}
! {(Dom($'),  Therefore A v B")}
{(Dom($H?),  "Therefore (A >T)A (B —1I)")}
{(Dom($®),  Therefore A —I")}
{(Dom($*),  Therefore B —I")}
> u  {(Dom($°), Therefore I")}.

w N
| |
w N

3]
|

E
cC C C C

o
|

9
9
9
9
9
9

55 S s S S
|

First, we have $°pomn) € ASENT. With o € CONST\STSEQ($)), we also have a ¢
STSF({A, B, I'}) and thus we have for all £ with 1 < k < 6: If i € Dom($"), then: a €
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ST(H") iff i = Dom($). Furthermore, it holds for all k& with 1 < k < 6 that Dom(§)) e
Dom(AS($"). With Theorem 4-3, we thus have for all k& with 1 < k < 6: There is no
closed segment 2 in $" such that min(Dom(2A()) < Dom($)) < max(Dom(2)). Thus we
also get that for all k£ with 1 < k& < 6 it holds that Dom($)) = max(Dom(AVAS($")). With
Theorem 3-19-(i), Theorem 3-20-(i), Theorem 3-21-(i) and Theorem 2-61, we then have
that for all k£ with 2 < k£ <6 it holds that $* ¢ CdIF($*?) u NIF($"?!) u PEF(H*Y).

On the other hand, we have first, according to Definition 3-1, $* € AF() < RCS\{0}
and, with Theorem 3-15, AVS($Y) = AVS($) u {(Dom($), "Suppose a = o)} and
AVAS($) = AVAS($) u {(Dom($), "Suppose o. = ')} and (A v B) A (A = T) A (B
— 1)) e AVP($) < AVP($Y). Therefore we have second, according to Definition 3-5,
$? € CEF(%Y) < RCS\{0} and, with Theorem 3-25, AVS($?) = AVS($HY) u {(Dom($HY),
Therefore A v B™)}. Thus we have AVAS($%) = AVAS(H), (AvB) A ((A—-T) A (B
— 1)) € AVP(HY) < AVP($% and "A v B* € AVP(§?). Therefore we have third, ac-
cording to Definition 3-5, $° € CEF($?%) < RCS\{0} and, with Theorem 3-25, AVS(§°)
= AVS(9?) u {(Dom(H?), TTherefore (A — I') A (B — I')")}. Thus we have AVAS(§°)
= AVAS($9), "A v B™ € AVP($%) < AVP(5%) and "(A - T) A (B —I)" € AVP(5°).
Therefore we have fourth, according to Definition 3-5, $* € CEF($®) < RCS\{0} and,
with Theorem 3-25, AVS($*) = AVS($°®) u {(Dom($?), Therefore A — I'")}. Thus we
have AVAS($?) = AVAS(5°), "Av B™, (A > T) A (B > I)" € AVP(8®) < AVP(8*)
and "A — I e AVP(H*). Therefore we have fifth, according to Definition 3-5, ° <
CEF($*) < RCS\{0} and, with Theorem 3-25, AVS($°) = AVS(H*) u {(Dom($%),
Therefore B — I")}. Thus we have AVAS(§°) = AVAS(H*), "Av B, "A > T €
AVP($%) < AVP($®) and "B — I" € AVP($°). Finally, we have sixth, according to
Definition 3-9, $° € DEF(£°) < RCS\{0} and, with Theorem 3-25, AVS($°) = AVS($°)
u {(Dom($°), "Therefore I"")}. Thus we have AVAS(H°) = AVAS($°) = AVAS($) u
{(Dom($), "Suppose a = o')}. Thus we have AVAP($°) = AVAP($) u {"a = o'} and
we have I' ¢ AVP(§°). With Theorem 4-7, there is then an $* € RCS\{0} such that
AVAP(H" < AVAPH)\ "o = a'} = (AVAP(H) u {0 = a’P{ @ = o'} =
AVAP(OMa=a'}c X v Y uZD{a=0} = X uY uZand C(H") =T. With
Theorem 3-12, we thenhave X u Y u Z-T.
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Ad (x) (DE*): Suppose X — "AvB'andYTand A e Yand Z~Tand B € Z.
Then it holds with (i): Y\{A} — "A — B and Z\{B} — "B — A". Then it holds with
(ix): X u (Y\{A}) v (Z{B}H FT.

Ad (xi) (NI): Suppose X =T and Y~ "—I"andA e X u Y. IfA="A'A-A" fora A’
e CFORM, then it holds, with Theorem 4-17, that (X u Y)\{A} = (A" A =A)" =
"—A™. Now, suppose A # "A' A =A™ for all A'. With (iii), it holds that X v Y = T A
—I. Also, we have, again with Theorem 4-17, X v Y = "—(I" A —I')" and thus we have,
with (iii), X v Y = ([ A =) A =(T A =I)". With (i), it then follows that (X u Y)\{A}
H"A — (' A=) A =(" A =T))". Thus there is, with Theorem 3-12, an $ € RCS\{0}
such that AVAP($)) < (X u Y)\{A}and C($H) = "A — (([ A =) A =(I" A =T))". Then
we can extend $ as follows to an $° € SEQ with $°IDom($)) = $:

1 —

{(Dom($),  "Suppose A™)}

{(Dom(HY),  Therefore (T A =) A =([ A =I)")}
{(Dom($?%),  Therefore A —I")}

{(Dom($®),  Therefore =(I' A —I)")}

u  {(Dom($?*,  Therefore —A™)}.

2 —

S
|
w [
c C C C

55 5 5 S
1
S

o
|
~

First, we have $°pomny € ASENT. By hypothesis, we have C($') = A # C(%?). With
Theorem 1-8, Theorem 1-10 and Theorem 1-11 we have C(§?) # C(£°) and C($°) +
C($%). We also have that C(£?) and C($°) are neither conditionals nor negations and that
C($" is not a conditional and by hypothesis C($*) = "—(I' A =" # "—A™. With
Theorem 2-42, Definition 2-11, Definition 2-12 and Definition 2-13, we then have that it
holds for all k£ with 1 < k < 4 that there is no closed segment 2 in $"* such that
min(Dom(2A)) = Dom($). With Theorem 2-47, we thus have for all £ with 1 < k£ < 4 that
there is no closed segment 2L in $* such that min(Dom(2)) < Dom($) < max(Dom(2)).
Thus we also get that it holds for all £ with 1 < k£ < 4 that Dom($) =
max(Dom(AVAS(£")). With Theorem 3-19-(i), Theorem 3-20-(i), Theorem 3-21-(i) and
Theorem 2-61, we thus have for all £ with 2 < k < 4 that H* ¢ CdIF(H*") u NIF($H*) u
PEF($H"Y).

On the other hand, we have first, according to Definition 3-1, $* € AF($) < RCS\{0}
and, with Theorem 3-15, AVS($HY) = AVS($) u {(Dom($), "Suppose A™)} and
AVAS($H) = AVAS(H) u {(Dom($), "Suppose A™)}, "TA — (T A=) A =([ A=D))" €
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AVP($) < AVP(HY) and A € AVP($'). Then we have second, according to Definition
3-3, 92 € CAEF(H') < RCS\{@} and, with Theorem 3-25, AVS($?) = AVS(HY) u
{(Dom($Y), Therefore (' A —I) A =( A —I)")}. Thus we have AVAS($?) =
AVAS($HY) and (' A =) A (T A =I)" € AVP($?). Therefore we have third, according
to Definition 3-5, $° ¢ CEF($?) < RCS\{0} and, with Theorem 3-25, AVS($° =
AVS($?) u {(Dom($?), Therefore I' A —I'")}. Thus we have AVAS($°) = AVAS($?),
"(C A=) A= A—=I)" € AVP($H) < AVP(H% and T A -7 € AVP($°). Then we
have fourth, according to Definition 3-5, $* € CEF($° < RCS\{0} and, with Theorem
3-25, AVS(H?) = AVS(H®) u {(Dom($3%), Therefore —(I' A —I')")}. Thus we have
AVAS($*) = AVAS($?) = AVAS($HY) and (Dom($H?), "Therefore T' A —I™"), (Dom($H°),
Therefore —(I' A —=I)") € AVS($*) and (Dom($), "Suppose A*) € AVAS(H') =
AVAS($7).

Thus we have Dom($)), Dom($?) € Dom($*), where Dom($) < Dom($?), P($*boms))
= A and (Dom($), $*oom(s)) € AVAS($?), P(pom(ed) = T A 1™ and P(5 bom(s4-1) =
(' A D)7, (DoM($7), Hooms) € AVS(H*) and there is no [ such that Dom($) < I <
Dom($%-1 and (I, H*) € AVAS($H?). Finally we thus have fifth, according to Definition
3-10, $° € NIF(%*) < RCS\{0} and, with Theorem 3-20-(iv) and -(v), AVAS(§°) =
AVAS(5)\{(Mmax(DOM(AVAS(§Y)),  Hnaxoomavasoin)} = AVASHN(Dom(s),
"Suppose A™)} = AVAS(HY\{(Dom($), "Suppose A"} = (AVAS(H) u {(Dom($),
"Suppose AT)PH\{(Dom($), "Suppose A")} = AVAS(H)\{(Dom($)), "Suppose A7)} <
AVAS($). With Theorem 2-75, we then have AVAP($°) < AVAP($) < (X u Y)\{A}.
Since C($°) = "—A™, it holds, with Theorem 3-12, that (X u Y)\{A} - "—A™.

Ad (xvi) (PE): Suppose X — "VEAT and Y T and [B, & A] € Y and B ¢
STSF((Y\{[B, & A]}) u {A, T'}). Then it holds, with (i), that Y\{[B, & A]} - "[B, &, A] —
I". We also have with " € CFORM: [B, §, I'] =T'. Thus we have [B, §, "A — 1] = "[B,
& Al — B, &ETT = "[B, & A] — I'" and thus we have Y\{[B, & Al} —[B, & "A —T"].
With B ¢ STSF({A, T'}), we have B ¢ ST("A — I'"). With ' € CFORM and FV(A) <
{&}, we also have FV("A — TI7) < {&}. Since by hypothesis also B ¢
STSF(Y\{[B, &, A]}), it then follows, with (xv), that Y\{[B, & A]} = "A§A — IN)'. With

(iii), we then have X u (Y\{[B, &, A]}) = "AEA — T) A VEA™.
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According to Theorem 3-12, there is thus an $ € RCS\{0} such that AVAP($) < X v
(Y{[B, & A]}) and C($) = "AE(A — T') A VEA™. With Theorem 4-5, there is then an H* e
RCS\{0} such that AVAP($H*) = AVAP(H) < X u (Y{[B, & A]}) and "AgA — T)7,
"VEA" € AVP($H*) and C(H*) = "VEA™. With Theorem 2-82, we have more precisely that
(Dom($H*)-1, "= VEA™) € AVS($H*) for a = € PERF. There is a p* € PAR\STSEQ($*)
and an o e CONST\STSEQ($*). Thus we can extend $3* as follows to an $° € SEQ with
H°1Dom($H*) = §H*:

1

9 = 9% u  {(Dom(H*),  "Suppose [B*, E A]")}

H° = 9o u  {(Dom(®', Thereforea=oa")}

9° = 9§ u  {(Dom($H?), Therefore [B*, & A] —» )}
9t = 9 u {(Dom(H®), Therefore ")}

9 = 9" u {(Dom(®*,  Therefore I")}.

First, we have $°poms+ € ASENT. We have, with o ¢ CONST\STSEQ($), also o ¢
STSF({[B*, & A], I'}) and thus C(&") # C(7%), C($7) # C(H°) and C($°) # [p*, & Al —
C($%". With Theorem 1-8, we also have C(°) # C($*). Furthermore we have, with
Theorem 1-10 and Theorem 1-11, that C($%) is not a conditional and that C($5%) and
C($°) are not negations. In addition we have C($%) = T[p*, & A]" # —([B*, & A] — I)"
= "=C(H7) and C(9") =T * "[B*, & Al — ([B*, & Al = )" = "C(H!) — C(H?)". With
Theorem 2-42, Definition 2-11, Definition 2-12 and Definition 2-13, it then holds for all £
with 1 < k < 4 that there is no closed segment 2 in $" such that min(Dom(2)) =
Dom($H*). With Theorem 2-47, we thus have for all £ with 1 < k£ < 4 that there is no
closed segment 2 in $" such that min(Dom(2l)) < Dom($H*) < max(Dom(2L)). Thus we
also get that it holds for all & with 1 < k < 4 that Dom($H*) = max(Dom(AVAS(£")).
With Theorem 3-19-(i), Theorem 3-20-(i), Theorem 3-21-(i) and Theorem 2-61, we thus
have for all k with 2 < k <4 that $* ¢ CAIF($") u NIF($™Y) u PEF(H™Y).

On the other hand, we have first, according to Definition 3-1, $* € AF($)) < RCS\{0}
and, with Theorem 3-15, AVS($') = AVS(H*) u {(Dom($H*), "Suppose [B*, & A]")}
and AVAS(H') = AVAS(H*) u {(Dom($), "Suppose [B*, & AI")}, (Dom($*)-1,
H°bom(e+)1) € AVS(HY), where P(H°pomg+-1) = "VEAT, and "AE(A — T)? € AVP(6H*)
AVP($Y) and [B*, & A] € AVP($%). Then we have second, according to Definition 3-16,
H? e IIF(HY) < RCS\{@} and, with Theorem 3-25, AVS($?) = AVS($H') u {(Dom(HY),
Therefore o = o)}. Thus we have (Dom($H*), "Suppose [B*, &, A]") € AVAS(H') =
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AVAS($H?) and "AEA — I)7, [B*, & A] € AVP(HY) < AVP($H?) and (Dom($*)-1,
H°bom(-1) € AVS($H?). Therefore we have third, according to Definition 3-13, $° e
UEF($%) < RCS\{0} and, with Theorem 3-25, AVS(°®) = AVS($?) u {(Dom($?),
"Therefore [B*, & A] — I)}. Thus we have (Dom($*), "Suppose [B*, & A]") €
AVAS($?) = AVAS(H%) and (Dom(H*)-1, H°bome=1) € AVS(H®) and [B*, & A]
AVP($?%) < AVP(H®) and T[p*, & A] — I'" € AVP($°). Therefore we have fourth, ac-
cording to Definition 3-3, $* € CdEF($®) < RCS\{0} and, with Theorem 3-25, AVS($*)
= AVS($% u {(Dom($?), "Therefore I")}. Thus we have (Dom($*), "Suppose [B*, &,
A]") € AVAS($°) = AVAS($*) and (Dom($H*)-1, H°bom(s=-1), (Dom(H*)+3, Therefore
M) e AVS(HY.

Altogether we thus have B* € PAR, & € VAR, A € FORM, FV(A) < {¢}, T € CFORM
Dom($*)-1 € Dom(H%), P(H'bom1) = VEAT and (Dom(H*)-1, H'oomeer1) €
AVS(5*), P(Hbom(sm) = [B*, & A] and (Dom(H*), H*bom(s=) € AVAS($), P(5*bom(s)-1)
=T, p* ¢ STSF({A, I'}) and there is no j < Dom($3*)-1 such that p* € ST($*) and there
is no m such that Dom($*) < m < Dom($*-1 and (m, H*%,) € AVAS($?). Finally we
thus have, according to Definition 3-15, ° € PEF($*) < RCS\{0} and, with Theorem
3-21-(iv) and  -(v), AVAS(H’) =  AVAS(H)\{(max(Dom(AVAS(H%)),
Nomaxomavassm)} = AVAS(HNM(Dom(H*), Suppose [B*, & AI)} =
AVAS(HYI\{(Dom($*), "Suppose [B*, & A]")} = (AVAS(H*) u {(Dom($H*), "Suppose
[6* & AI")HM(Dom($H*), "Suppose [B*, & A]")} = AVAS(H*)\{(Dom($H™*), "Suppose
[B*, & AT")} < AVAS($*). With Theorem 2-75, we then have AVAP($°) € AVAP($*)
< X u (Y{P, & Al}). Since C($°) =T, it thus holds, with Theorem 3-12, that X u

(YIB, & A} +T.

Ad (xvii) (I1): Suppose X < CFORM. According to Definition 3-16, we then have {(0,
"Therefore 6 = 07)} e IE(@) < RCS\{0} and we have AVAS({(0, "Therefore 6, = 6,")})
= @ and hence, according to Definition 2-31, AVAP({(0, "Therefore 6, = 65')}) = 0 and
we have C({(0, "Therefore 8, =6,")}) = "6p = 0" and thus, according to Theorem 3-12, @
F "0 = 0. With Theorem 4-16, we hence have X - "0, =60,". m
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Theorem 4-19. Transitivity
If X y—Yand Y — B, then X - B.

Proof: First we show by induction on |Y| that the statement holds for all finite Y: Suppose
the statement holds for all £ <|Y| € N. Suppose |Y| = 0. Now, suppose X y— Y and Y
B. Thenwe have Y =@ < X < CFORM. With Theorem 4-16 follows X +— B.

Now, suppose 0 < |Y| and suppose X v Y and Y ~ B. According to Definition 3-25,
we then have X u Y < CFORM and for all A € Y: X — A. Now, suppose Y  B. Since
|Y| # 0, we have that there is an A € Y. With Theorem 4-18-(i), we then have Y\{A} -
A — B". Then we have [Y\{A}| < |Y|. By the I.H., we thus have X - "A — B, and,
since A € Y, we also have X -~ A. With Theorem 4-18-(ii), we thus have X - B.

As the statement holds for finite Y, it also holds in general: Suppose X y— Y and Y -~
B. According to Definition 3-25, we have X v Y < CFORM and forall A € Y: X - A.
Now, suppose Y + B. With Theorem 3-12, there is then an $ € RCS\{0} such that
AVAP($) < Y and C($) = B. According to Theorem 3-9, AVAP($)) is finite and

AVAP($) < CFORM. According to Theorem 3-12, we have that AVAP($) -~ B. We
also have with AVAP($) < Y that it holds for all T € AVAP($) that X — T" and thus that

X m— AVAP($). Thus it then follows that X -+ B. m

Theorem 4-20. Cut
IfXu{B}~AandYB,then X v Y A.

Proof: Suppose X u {B} — A and Y I B. With Theorem 4-18-(i), we then have X\{B}
"B — A" and thus with Theorem 4-16 that X — "B — A™. With Theorem 4-18-(ii), it

thusholdsthat X u Y A. m

Theorem 4-21. Deduction theorem and its inverse
X u{A}-Biff X+ "A - B".

Proof: First, suppose X u {A} I B. Then it holds, with Theorem 4-18-(i), that X\{A}

A — B and thus, with Theorem 4-16, that X — "A — B™. Now, suppose X -+ "A —
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B™. According to Definition 3-21 and Theorem 3-9, we then have "A — B € CFORM
and thus also A € CFORM. With Theorem 4-15, we then have {A} — A and hence, with
Theorem 4-18-(ii), X u {A}—-B. =

Theorem 4-22. Inconsistence and derivability
X A iff X u {"=A"} is inconsistent.

Proof: (L-R): First, suppose X — A. With Definition 3-21 and Theorem 3-9, we then have
X < CFORM and A € CFORM. Then we have "—A" € CFORM and it thus holds, with
Theorem 4-16, that X v {"=A"} ~ A, and, with Theorem 4-15, it holds that X u
{"—=A"} -~ "—A". According to Definition 3-24, we then have that X u {"—A™} is incon-

sistent.

(R-L): Now, suppose X u {"=A"} is inconsistent. According to Definition 3-24, we
then have X u {"=A"} < CFORM and that there is a I' € CFORM such that X u
{—A"}—Tand X v {"—A"} - "—I". With Theorem 4-18-(xi), it then holds that
X\{"—A"} = "=—A" and thus, with Theorem 4-16, that X - "——A™. From this we get,

with Theorem 4-18-(xii), that X — A. m

Theorem 4-23. A set of propositions is inconsistent if and only if all propositions can be de-
rived from it

X is inconsistent iff forall ' € CFORM: X T.

Proof: (L-R): First, suppose X is inconsistent. According to Definition 3-24, we then have
X < CFORM and that there is an A € CFORM such that X — A and X = "—A™. Now,
suppose I' e CFORM. Then we have "—I"" € CFORM. With Theorem 4-186, it then holds
that X v {"—I"}~Aand X u {"—["} — "—A". Thus we have that X u {"=I"} is in-

consistent. According to Theorem 4-22, we then have X T

(R-L): Now, suppose for all T € CFORM it holds that X —T'". There isa A € CFORM.
With A € CFORM, we also have "—A" € CFORM. Then we have X — A and X
"'—A™. With Definition 3-21, we then have X < CFORM. According to Definition 3-24,

we hence have that X is inconsistent. m
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Theorem 4-24. Generalisation theorem

If £ € VAR, A € FORM, where FV(A) < {&}, o« € CONST and X + [a, & A], where o ¢
STSF(X u {A}), then X = "AEA™

Proof: Suppose & € VAR, A € FORM, where FV(A) < {&}, a € CONST and X + [, &,
A], where a ¢ STSF(X u {A}). According to Theorem 3-12, there is then an § €
RCS\{0} such that AVAP($) < X and C(9) = [a, &, A]. There isa B € PAR\STSEQ($).
With Theorem 4-9, there is then an $* € RCS\{0} such that:

a) o ¢ STSEQ(H%),
b) AVAP(H) = {[o, B, B] | B € AVAP($*)}, and
c)  C(®)=I[ao B, C(HM)]

Since it holds for all ' € AVAP(H) that a ¢ ST(I'), it holds with b) for all B €
AVAP($H*) that B ¢ ST(B) and thus that p ¢ STSF(AVAP($*)). For if € ST(I') fora T
e AVAP($H*), then we would have a € ST([a, B, I']) and, with b), we would have [a, B,
I'l € AVAP($H) < X. Thus we would have that a € STSF(X), which contradicts the hy-

pothesis. With b), we thus have AVAP($) = {[o, B, B] | B € AVAP(H*)} ={B | B €
AVAP(H*)} = AVAP(H*).

With c), it holds that [a, & A] = C(9) = [a, B, C($H*)]. According to the initial assump-
tion and with a), we have o ¢ ST(A) u ST(C($*)). With Theorem 1-23, we thus have
C(9H*) = [B, & A]. Then we have f ¢ ST(A), because otherwise we would have, with [a,
& Al = C(9), that B € ST(C($)) < STSEQ(%), which contradicts the choice of 3. With
Definition 3-12, we thus have $* u {(Dom($*), "Therefore AEA™)} e UIF(H*) <
RCS\{0}. With Theorem 3-26-(v), it then holds that AVAP($H* u {(Dom($*), "There-
fore AEA™)}) < AVAP(H*) = AVAP(H) < X. With Theorem 3-12, we hence have X

"NEAT. m

Theorem 4-25. Multiple IE

If £ € N\{0}, {00, ..., 01}, {0, ..., 0.1} < CTERM, {&, ..., &1} < VAR, where for all 4, j
e kwith i # jalso & # &, A € FORM, where FV(A) < {&, ..., &1}, and X = [(Oo, ..., 0j.1),
Eoy ooy Epa), Aland forall i < k: X = "0, =07, then X = [0, ..., 0's.1), Eos +..y Err), A

Proof: By induction on k. For k£ = 1, the statement follows with Theorem 4-18-(xviii).
Now, suppose the statement holds for k£ and suppose {6o, ..., 6:}, {0%, ..., 0} <
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CTERM, {&, ..., &} < VAR, where for all 7, j < k+1 with i # jalso & # §;, A € FORM,
where FV(A) < {&, ..., &}, and X - [(Oo, ..., O, o, ..., &, Al and for all 4 < k+1: X -
0,=0".

With Theorem 1-28-(ii), we then have that [(, ..., 0, (o, ..., &y A] = [0k & [O1, ..,
012, 1, ..., Ed), A]] and thus that X [0, & [On, ..., 0r1), Eu ..., Exd), A]], where,
with FV(A) < {&, ..., &7, it holds that FV/([(01, ..., 05.1), &, ---, Era)y A]) < {&:}. With
X "0, = 0" and Theorem 4-18-(xviii), we then have X — [0, &: [(Oo, ..., 01-1), o, .-,
&r-1), A]] and thus, again with Theorem 1-28-(ii), that X — [(0o, ..., 0k-1, 0'%), o, .-+, k-1
&, A]. With Theorem 1-29-(ii), we have [(Oq, ..., 051, 0'%), o, ---y &1, Ey A] = [(Oo, ...,
0510, oy «--y Ei1)y [0'F &k A]] @nd thus X - [(Bo, ..., 0k-1), Eos ---y Er-1)y [0 kv A]l, Where,
with FV(A) < {&, ..., &}, it holds that FV([0';, & A]) < {&o, ..., &-1}. According to the
I.H., it then holds that X  [(0', ..., 0'%1), o, ---, &), [0' & A]] and thus, again with
Theorem 1-29-(ii), that X  [(0', ..., 0'%), (o, ---, &y A]. m









5 Model-theory

In this chapter we will develop a classical model-theoretic consequence concept for the
language L. First, we will define the concepts we need, in particular model-theoretic satis-
faction and based on it the model-theoretic consequence relation, and prove some basic
theorems about them (5.1). Subsequently, we will prove some theorems on the closure of
the model-theoretic consequence relation (5.2). Consequently, in ch. 6, we can then prove
the correctness and completeness of the Speech Act Calculus relative to the model-

theoretic consequence concept developed in ch. 5.1.

5.1 Satisfaction Relation and Model-theoretic Conse-

quence

The development of the model-theoretic consequence concept proceeds in the standard
way.™ First, we will define interpretation functions, models and parameter assignments.
This suffices to assign each closed term a denotation (Definition 5-6), where the usual
definition is mirrored in Theorem 5-2. Subsequently, we can determine under which con-
ditions a model and a parameter assignment satisfy a formula (Definition 5-8). The usual
definition is here mirrored by Theorem 5-4. Then, we will prove a coincidence and a sub-
stitution lemma (Theorem 5-5 and Theorem 5-6) as well as some other theorems that are
needed for the further account. Finally, we will introduce further usual concepts, among
them the model-theoretic consequence (Definition 5-10), which is used in the formulation

of correctness and completeness.

Definition 5-1. Interpretation function

I is an interpretation function for D

iff

D isasetand I is a function with Dom(I) = CONST v FUNC u PRED and
(i) Foralla € CONST: I(a) € D,
(i)  Forall 9 € FUNC: If ¢ is r-ary, then I(¢) is an r-ary function over D,
(iii)  Forall ® € PRED: If @ is r-ary, then I(®) < 'D, and
(iv) I("=")={(a,@)|a € D}.

1 See, for example, EBBINGHAUS, H.-D.; FLUM, J.; THOMAS, W.: Mathematische Logik, p. 29-62,
GRADEL, E.: Mathematische Logik, p. 49-53, and WAGNER, H.: Logische Systeme, p. 47-54.
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Definition 5-2. Model

M is a model
iff
There is D, I such that I is an interpretation function for D and M = (D, I).

Note: The non-emptiness of D is ensured by CONST # @ and clause (i) of Definition 5-1.

In contrast to the usual procedure, we will not use variable assignments, but parameter
assignments. So, parameters, in keeping with their role in the calculus, fulfill tasks in the
model-theory that are often given to free variables. Accordingly, quantificational formu-
las (e.g. "AEA™) are not evaluated for A, but for a suitable parameter instantiation (e.g. [,
&, A]) (cf. Definition 5-7 and Theorem 5-4).

Definition 5-3. Parameter assignment

b is a parameter assignment for D

iff

b is a function with Dom(b) = PAR and Ran(b) < D.

Definition 5-4. Assignment variant

b'is in B an assignment variant of b for D

iff

b' and b are parameter assignments for D and B € PAR and b"\{(B, b'(B))} < b.

Definition 5-5. Term denotation functions for models and parameter assignments

F is a term denotation function for D, I, b

iff

(D, I) is a model and b is a parameter assignment for D and F is a function on CTERM and:
(i) Ifa € CONST, then F(a) = I(a),
(i) If B € PAR, then F(B) = b(B), and
(iii)  If ¢ € FUNC, ¢ r-ary, and 6, ..., 6,.; € CTERM, then F("o(0q, ..., 0,.1)") =

I(@)((F(6o), -, F(6,-1))).
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Theorem 5-1. For every model (D, I) and parameter assignment b for D there is exactly one
term denotation function

If (D, I) is a model and b is a parameter assignment for D, then there is exactly one F such
that F is a term denotation function for D, I, b.

Proof: Suppose (D, I) is a model and b is a parameter assignment for D. With the theo-
rems on unique readability (Theorem 1-10 and Theorem 1-11) there is then exactly one

function F on CTERM such that clauses (i) to (iii) of Definition 5-5 are satisfied for F

and thus, according to Definition 5-5, exactly one term denotation function for D, I, b. m

Definition 5-6. Term denotation operation (TD)
TD®, D, I, b)=a
iff
(i)  There is a term denotation function F for D, I, b and 6 € CTERM and a = F(6)
or
(i)  There is no term denotation function for D, I, b or 6 ¢ CTERM and a = 0.

The following theorem mirrors the usual definition of term denotations for models and

parameter assignments:

Theorem 5-2. Term denotations for models and parameter assignments
If (D, I) isamodel and b is a parameter assignment for D, then:
(i) If o € CONST, then TD(0, D, I, b) = I(a),
(i) Ifp e PAR, then TD(B, D, I, b) = b(B), and
(iii)  If ¢ € FUNC, where ¢ r-ary ist, and 6, ..., 6,., € CTERM, then TD("¢(0o,
vy 0.0)7, D, 1, b) = I[(9)(TD(6g, D, I, b), ..., TD(6,.1, D, I, b))).

Proof: Suppose (D, I) is a model and b is a parameter assignment for D. With Theorem
5-1, there is then exactly one term denotation function F for D, I, b. According to

Definition 5-6, we then have for all 6 € CTERM: TD(6, D, I, b) = F(6). From this, the

statement then follows with Definition 5-5. m
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Definition 5-7. Satisfaction functions for models and parameter assignments
F is a satisfaction function for D, I
iff
(D, I) is a model, F is a function on CFORM x {b | b is a parameter assignment for D},
Ran(F) = {0, 1} and for all parameter assignments b for D:
Q) If ® € PRED, @ r-ary, and 6y, ..., 6, € CTERM then:
F("®(0q, ..., 0,1)", b) = 1iff (TD(0o, D, I, b), ..., TD(0,.4, D, I, b)) € I(D),
(i) If A e CFORM, then: F("—A", b) =1iff F(A, b) =0,
(iii) IfA, B € CFORM, then F("A AB™, b) =1iff F(A,b)=1and F(B, b) =1,
(iv) If A, B e CFORM, then F("A v B", b)=1iff F(A,b)=1or F(B, b) = 1,
(v) IfA,B e CFORM,then F("A —B",b)=1iff F(A,b)=0o0r F(B, b) =1,
(vi) If A,B € CFORM, then F("A < B", b) = 1iff F(A, b) = F(B, b),
(vii) If& e VAR, A e FORM and FV(A) < {&}, then
F("A\eA™, b) =1
iff
there is B € PAR\ST(A) such that for all b' that are in B assignment variants of b
for D: F([B, &, A], b") =1, and
(viii) If& e VAR, A € FORM and FV(A) < {&}, then
F("VEA™, b) =1
iff
there is B € PAR\ST(A) and b' that is in B an assignment variant of b for D such
that F([B, &, A], b") = 1.

Theorem 5-3. For every model (D, I) there is exactly one satisfaction function
If (D, I) is a model, then there is exactly one satisfaction function for D, I.

Proof: Suppose (D, I) is a model. With the theorems on unique readability (Theorem
1-10 and Theorem 1-11), there is then exactly one function F on CFORM x {b | b is a
parameter assignment for D} such that clauses (i) to (viii) of Definition 5-7 are satisfied

for F. Hence there is exactly one satisfaction function for D, I. m

Definition 5-8. 4-ary model-theoretic satisfaction predicate ('.., .., .., & ..")

D, I,bET

iff

I' e CFORM, b is a parameter assignment for D and there is a satisfaction function F for D, I
such that F(T", b) = 1.
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The following theorem mirors the usual definition of model-theoretic consequence in the
grammatical framework chosen here. In this, we use the contradictory predicate for '.., ..,

LB el L, L inthe usual way.

Theorem 5-4. Usual satisfaction concept

If (D, I) is a model, b is a parameter assignment for D, A, B € CFORM, & € VAR, @ €
PRED, @ r-ary, 0y, ..., 8,1, € CTERM, A € FORM , where FV(A) < {&}, then:

() D,I,bE o6, ..., 0,1)" iff (TD6o, D, I, b), ..., TD(®,.1, D, I, b)) € I(D),

(i) D,I,b="-A"iffD,I,bH#A,

(iiiy D, I,be"AABYiffD,I,b=AandD, I, bEB,

vy D, I,b="AvBiffD,I,b=AorD,I, bEB,

vy D, I,b=E"A-B'iffD,I,b#AorD,I,bEB,

(viy D,I,bET"A B iff
D, I,b=AandD,I,beEBorD,I, b Aand D, I, b & B,

(vii) D, I, bE "AEA™ iff
there is a p € PAR\ST(A) such that for all b' that are in B assignment variants of b for
D:D,I,b'=[B, & A, and

(viii) D, I, bE "VEA" iff
there is a B € PAR\ST(A) and a b' that is in B an assignment variant of b for D such
that D, I, b' = [B, &, A].

Proof: Let (D, I) be a model, b a parameter assignment for D, A, B € CFORM, &
VAR, ® € PRED, @ r-ary, 0, ..., 0, € CTERM, A e FORM, where FV(A) = {&}.
With Theorem 5-3, there is then exactly one satisfaction function F for D, I. With
Definition 5-8, it then follows that for all ' € CFORM: D, I, b =T iff F(I', b) = 1 and
D, I, b ¥ T iff F(I', b) = 0. From this, the statement then follows with Definition 5-7. m

Theorem 5-5. Coincidence lemma
If (D, I) and (D, I') are models and b, b' are parameter assignments for D, then:
(i) Forall 6 € CTERM: If ITSE(0) = I''SE(0) and b[ST(0) = b'IST(0), then TD(O, D, I,
b)=TD(6, D, I', b"), and
(i) ForallT' e CFORM: If ITSE(I') = I''SE(T") and bIST(T') = b'IST('), then D, I, b =T
iff D,I', b'=T.

Proof: Ad (i): Let (D, I) and (D, I') be models and b, b' parameter assignments for D.

The proof is carried out by induction on the complexity of & € TERM. First, suppose 6 €
ATERM n CTERM and suppose ITSE(0) = I''SE(0) and bIST(0) = b'IST(0). Then we



222 5 Model-theory

have 8 € CONST u PAR. Now, suppose 6 € CONST. Then it holds with {0} = SE(0) n
CONST and ITSE(0) = I''SE(0) and Theorem 5-2-(i) that TD(0, D, I, b) = I(0) = I'(0) =
TD(6, D, I', b"). Now, suppose 6 € PAR. Then it holds with {6} = ST(0) n PAR and
b!IST(0) = b'IST(0) and Theorem 5-2-(ii) that TD(0, D, I, b) = b(0) = b'(0) = TD(0, D,
I, b).

Now, suppose the statement holds for 6y, ..., 6,.; € TERM and suppose ¢ € FUNC, ¢
r-ary, and suppose "¢(0y, ..., 0,.1)" € FTERM n CTERM and suppose ITSE("¢(6o, ...,
0,1)") = I'"SE("0(Bo, ..., 6,.1)") and bIST("@(0o, ..., 6,-1)") = b'IST("o(bo, ..., 6,.1)").
With FV("o(0o, ..., 0,1)") = U{FV(6)) | 7+ < r}, it then holds for all 6; with 7 < r that 0,
CTERM. We also have, with U{SE(6,) | : < r} < SE("o(6o, ..., 6,.1)") and U{ST(6,) | ¢ <
r} < ST("e(0o, ..., 6,.1)"), for all 7 < r: ITSE(®;) = I''SE(6;) and bIST(8;) = b'[ST(6)).
With the I.H., itthus holds for all : < r that TD(0;, D, I, b) = TD(6,, D, I', b"). With ¢ <
SE("o(0o, .., 0,.1)") n FUNC, we have by hypothesis that I(¢) = I'(). Thus it holds that

TD("9(0y, ..., 0,4)", D, I, b)

I(9)((TD(8o, D, I, b), ..., TD(8,.1, D, I, b)))

I'(e)((TD(6o, D, I', b), ..., TD(0,.4, D, I', b")))

TD("9(o, ..., 0,4)", D, I', b).
Ad (ii): The proof is carried out by induction on the degree of a formula. For this, suppose
the theorem holds for all A € FORM with FDEG(A) < k. Now, let (D, I), (D, I') be
models, b, b' parameter assignments for D and suppose I' e CFORM and suppose
ITSE(T") = I''SE(T") and bIST(T') = b'IST(T') and suppose FDEG(T') = k.

Suppose FDEG(I') = 0. Then we have I' € AFORM. Then there are 6y, ..., 6,1 €
TERM and ® € PRED, ® r-ary, such that I' = "®(0o, ..., 6,.1)". Then it holds, with
FV("®(0y, ..., 0,1)") = U{FV(0)) | i < 7}, U{SE(®)) | i < r} < SE("®(8y, ..., 6,-1)") and
U{ST(6,) | i < r} < ST("®(6, ..., 0,-1)") and with ' € CFORM, for all 7 < r that 0,
CTERM, IfSE(6;) = I''SE(8;) and bIST(6;) = b'IST(8;). With (i), we thus have for all i <
r TD(O,, D, I, b) = TD(0;, D, I, b"). With @ e SE("®(6q, ..., 0,1)") n PRED, we have
by hypothesis I(®) = I'(®). With Theorem 5-4-(i), it thus holds that
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D ILbET

iff

D, I, b 00, ..., 0,1)

iff

(TD(8o, D, I, b), ..., TD(®,.1, D, I, b)) € I(d)
iff

(TD(8o, D, I', "), ..., TD(0,.1, D, I', b)) € I'()
iff

D, I b= 00, ..., 0,1)°

iff

D, I'b'=T.

Now, suppose FDEG(T") # 0. Then we have I' ¢ CONFORM u QFORM. We can distin-
guish seven cases. First: Suppose I' = "—A™. Then we have FDEG(A) < FDEG(I'). Ac-
cording to the assumption for ", we then have that A € CFORM, ITSE(A) = I''SE(A) and

bIST(A) = b'IST(A). With Theorem 5-4-(ii) and the I.H., we thus have

D, I,beT

iff

D, I,bE A"
iff

D, I,b#A

iff

D, I'b'# A
iff

D, I'b' = "—A"
iff

D, I'b'=T.

Second: Suppose I' = "A A B". Then we have FDEG(A) < FDEG(I') and FDEG(B) <
FDEG(I'). According to assumption for I', we then have A, B € CTERM, I[(SE(A) u

SE(B)) = I'N(SE(A) u SE(B)) and bI(ST(A) u ST(B)) = b'I(ST(A) u ST(B)). With
Theorem 5-4-(iii) and the I.H., it then holds that

D, I,bET

iff

D, I,b="AAB

iff

D, I,b=AandD,I,bEB
iff

D, I'b=Aand D, I''b'=B
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iff

D, I'b'E"AAB"
iff

D, I'b'=T.

The third to fifth cases are treated analogously.
Sixth: Suppose I" = "ACA™. According to the assumption for I', we then have FV(A) <

{C}, I'SE(A) = I''SE(A) and bIST(A) = b'[ST(A). Now, suppose D, I, b = "ALA™. With
Theorem 5-4-(vii), there is then a p € PAR\ST(A) such that for all b* that are in B as-
signment variants of b for D it holds that D, I, b* = [B, {, A]. Now, suppose b'; is in B an
assignment variant of b' for D. Now, let b; = (b\M(B, b(B))}) u {(B, b'1(B))}. Then b, is
in B an assignment variant of b for D and thus it holds that D, I, by = [B, {, A]. Since B ¢
ST(A) and bIST(A) = b'IST(A), we have for all B' € ST(A) n PAR that b;(B") = b(B') =
b'(B) = b'1(B). Since also b1(B) = b'1(B) and ST([B, {, A]) < ST(A) u {B}, we thus have
that b, ST([B, ¢, A]) = b'1IST([B, ¢, A]). Also, we have ITSE([B, ¢, A]) = IT(SE([B, ¢, A)
n (CONST u FUNC u PRED)) = II(SE(A) n (CONST u FUNC u PRED)) = IISE(A) =
I''SE(A) = I'T(SE(A) n (CONST u FUNC u PRED)) = I'"(SE([B, ¢, A]) n (CONST u
FUNC u PRED)) = I'l(SE([B, ¢, A]) and thus that ITSE([B, ¢, A]) = I'TSE([B, &, Al).
Moreover, we have [B, {, A] € CFORM and, with Theorem 1-13, we have FDEG([B, &,
A]) = FDEG(A) < FDEG(I'). According to the I.H., we thus have that with D, I, b, = [B,

¢, A] it also holds that D, I', b'; = [B, ¢, A]. Therefore we have for all b™* that are in B as-
signment variants of b' for D: D, I', b"™ = [B, ¢, A] and hence, according to Theorem
5-4-(vii), D, I', b' = "ALA™. The right-left-direction is shown analogously.

Seventh: Suppose I = "VCA™. According to the assumption for I', we then have FV(A)
c {C}, ITSE(A) = I''SE(A) and bIST(A) = b'IST(A). Now, suppose D, I, b = "VCA™.
With Theorem 5-4-(viii), there is then p € PAR\ST(A) and b, that is in B assignment
variant of b for D such that D, I, by = [B, ¢, A]. Now, let b'y = (b"{(B, b'(B))}) v {(B,
b:(B))}. Then b'; is in B an assignment variant of b' for D. Since B ¢ ST(A) and b[ST(A)
= b'IST(A), it then holds for all B' € ST(A) n PAR that b1(B") = b(B) = b'(B") = b"1(B).
Since also b1(B) = b'1(B) and ST([B, ¢, A]) < ST(A) u {B}, we thus have that b;IST([B, ¢,
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A]) = b'aIST([B, ¢ A]). Also, we have ITSE([B, ¢, A]) = IT(SE([B, ¢, A]) n (CONST u
FUNC u PRED)) = I'(SE(A) n (CONST u FUNC u PRED)) = IISE(A) = I''SE(A) =
I'N(SE(A) n (CONST u FUNC u PRED)) = I'N(SE([B, ¢, A]) n (CONST u FUNC u
PRED)) = I'N(SE([B, ¢, A]) and hence ITSE([B, ¢, A]) = I'ISE([B, ¢, A]). Moreover, we
have [B, {, A] € CFORM and, with Theorem 1-13, FDEG([B, {, A]) = FDEG(A) <
FDEG(T'). According to the I.H., we thus have, with D, I, b, = [B, {, A],also D, I', b'; =
[B, ¢, A] and hence, according to Theorem 5-4-(viii), D, I', b' = "VCA™. The right-left-

direction is shown analogously. m

Using the coincidence lemma, we can now prove the substitution lemma:

Theorem 5-6. Substitution lemma
If (D, I), (D, I') are models, b, b' are parameter assignments for D, & € VAR, 6, ' € CTERM

and TD(0, D, I, b) =TD(0', D, I', b") then:
(i)  Forall 8" e TERM with FV(8") < {&}, I'SE(6") = I''SE(8") and bIST(6%) = b'IST(0)
it holds that TD([6, &, 6'], D, I, b) = TD([0', &, 6*], D, I', b'), and
(i)  Forall A e FORM with FV(A)  {&}, I'SE(A) = I''SE(A) and bIST(A) = b'IST(A) it
holdsthat D, I, b = [0, & A]iff D, I', b' = [0, &, A].
Proof: Ad (i): Let (D, I), (D, I') be models, b, b' parameter assignments for D, £ € VAR,
0,0 € CTERM and TD(0, D, I, b) = TD(¢', D, I', b"). The proof is carried out by induc-
tion on the complexity of 0° € TERM. First, suppose 0° € ATERM, where FV(0*") <
{&}, I'SE(0") = I''SE(0") and bIST(0") = b'[ST(0"). Then we have 8° € CONST u PAR
u VAR. Now, suppose 0© € CONST. Then we have [0, &, 0"] = 0" =[0', &, 7] and thus it
holds, with SE(6") = {0}, II'SE(0") = I''SE(6") and Theorem 5-2-(i), that TD([6, &, 67],
D, I, b)=TD(®", D, I, b) = I(¢") = I'(0") = TD(6", D, I', b') = TD([®', &, 6'], D, I', b).
Now, suppose 6 € PAR. Then we have [0, &, 671 = 0" =[0', & 0] and thus it holds, with
ST(0%) = {06}, bIST(6") = b'IST(0") and Theorem 5-2-(ii), that TD([6, &, 6], D, I, b) =
TD@®", D, 1, b) = b(0") = b'(6*) = TD®", D, I', b’) = TD([0, &, 0'], D, T, b’). Now, sup-
pose 0° € VAR. Then we have 0" = & Then we have [0, &, 0"] =0 and [0, &, 6] = 0'. By
hypothesis, we thus have TD([0, &, 0*], D, I, b) = TD(0, D, I, b) = TD(®', D, I', b") =
TD([0", £,0°], D, I', b").
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Now, suppose the statement holds for 6%, ..., 8", € TERM and suppose ¢ € FUNC, ¢
r-ary, and suppose 0" = (0%, ..., 0%,.1)" € FTERM, where FV("o(0%, ..., 0%,.1)") <
{&}, I'SE("p(0%, ..., 0%,1)") = I''SE("@(0%, ..., 0°,.1)") and bIST("e(®%, ..., 07,1)") =
b1IST("9(0%, ..., 0,4)7). Then it holds, with FV("(0%, ..., 8%-.1)") = U{FV(6") | i < r},
U{SE(0%) | i < 7} < SE("¢(0%, ..., 0,.4)") and U{ST(0") | i < r} < ST("e(0%, ...,
0°,.1)"), for all i < r that FV/(0*)) < {&}, I'SE(6%) = I''SE(6*)) and bIST(6%) = b'}ST(6").
With the 1.H., it thus holds for all < r that TD([0, &, 6%], D, I, b) = TD([0', &, 0"]], D, I',
b"). With ¢ € SE("p(0%, ..., 0°-1)") n FUNC, we have, by hypothesis, also I(¢) = I'(¢).

With Theorem 5-2-(iii), we hence have

TD([6, &, "9(0%, ..., 0%.1)"]1, D, I, b)

TD(I—(P([G, él e+0]1 LRRN] [9, &; ei—r—l:l)_| ' Dv I, b)
I((P)«TD([BI éi 6+0]! D, L b), SRS ] TD([G, é! e+7‘—1]1 Dv I! b)))

I'((P)«TD([GI’ é! e+0]! D! Ili bl)’ ey TD([B', &; e+r—l]! D, Ili bl»)

TD(I—(P([G'i é! 6+O]! LERN] [e" él e+7‘—1])-|! D, I', bl)

TD([0', &, "0(0%, ..., 0°.1)"], D, I', b").

Ad (ii): The proof is carried out by induction on the degree of a formula. For this, suppose
the theorem holds for all A € FORM with FDEG(A) < k. Let now (D, I), (D, I') be mod-

els, b, b' parameter assignments for D, & € VAR, 0, ' € CTERM and TD(0, D, I, b) =
TD(0', D, I', b") and suppose A € FORM, where FV(A) < {&}, I'SE(A) = I''SE(A) and
bIST(A) = b'IST(A), and suppose FDEG(A) = k. Suppose FDEG(A) = 0. Then we have A
e AFORM. Then there are 0, ..., 0*,.; € TERM and ® € PRED, where @ is r-ary, such
that A = "®(0%, ..., 0%.1)". With EV("®(0%, ..., 05,1)") = U{FV(6%) | i < r}, U{SE(6*) |
i<r} < SE("®(0%, ..., 0%,.1)") and U{ST(0%) | i <} = ST("®(0", ..., 6",.1)") and the
assumption for A, it then holds for all i < r that FV(0*)) < {&}, IISE(0";) = I''SE(0";) and
bIST(0%;) = b'IST(0%). With (i), we thus have for all 7 < r that TD([0, &, 0*,], D, I, b) =
TD([0, & 0%], D, I', b"). With ® € SE("®(0, ..., 0°,.1)") n PRED, we have, by hy-
pothesis, that I(®) = I'(®). With Theorem 5-4-(i), we hence have
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D, I,bE6, & A

iff

D,1,bE[6,& "0, ..., 07.0)"]

iff

D, I,bE o6, & 0%], ..., [0, & 0°.4])"

iff

(TD([0, &, 0%], D, I, b), ..., TD([6, &, 0%,.1], D, I, b)) € I(D)
iff

TD([0', & 0%), D, I, b), ..., TD([0', &, 0*,..], D, I', b)) e I'(D)
iff

D, I' b = "0([0', &, 0%, ..., [0, & 6%,.1])"

iff

D, I'b =10, & "00%, ..., 0%.1)"]

iff

D, I'b =10, & Al

Now, suppose FDEG(A) # 0. Then we have A € CONFORM u QFORM. We can distin-
guish seven cases. First: Suppose A = "—A™. Then we have FDEG(A) < FDEG(A). Ac-
cording to the assumption for A, we also have FV(A) < {&}, ITSE(A) = I''SE(A) and

bIST(A) = b'IST(A). With the I.H. and Theorem 5-4-(ii), it then follows that

D, I, b8, & Al

iff

D, I b6, & —A"]
iff

D, I, b [0, & AT
iff

D, I, b0, & Al

iff

D, I'b' =0, & A]

iff

D, I'b'= [0, & AT
iff

D, I'b'=[0, & —A"]
iff

D, I'b' =0, & Al

Second: Suppose A = "A A B". Therefore FDEG(A) < FDEG(A) and FDEG(B) <
FDEG(A). According to the assumption for A, we also have FV(A) v FV(B) < {&},
IT(SE(A) u SE(B)) = I'N(SE(A) u SE(B)) and bI(ST(A) u ST(B)) = b'I(ST(A) v
ST(B)). With the I.H. and Theorem 5-4-(iii), it then follows that
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D, I, b6, & Al

iff

D, IbE=[6,& "AAB']

iff

D, I,bE=T0,& Al A [0, & B]”

iff

D, I,b=[6,& Aland D, I, b =16, &, B]
iff

D, I'b'=[0,& Aland D, T, b' = [0, &, B]
iff

D, I'b'= "0, & Al A [0, & BT

iff

D, I'b'=[0,& "AAB]

iff

D, I'b' =0, & Al

The third to fifth cases are treated analogously.

Sixth: Suppose A = "ACA™. According to the assumption for A, we then have FV(A) <
{&, (3}, ITSE(A) = I''SE(A) and bIST(A) = b'IST(A). Suppose ¢ = &. Then we have [0, &,
Al =10, ¢ "ACA] = TACAT = [0', ¢, "ACAT] = [0, & A] and hence [0, & Al = A = [0, &,
A]. Also, we have FV(A) = @ and hence A e CFORM. Since, by hypothesis, ITSE(A) =
I''SE(A) and bIST(A) = b'IST(A) we thus have, with Theorem 5-5-(ii), that D, I, b = [0,
EAIIFFD, I,b=AIffD, I'b'=Aiff D, I', b' = [0, & A]. Now, suppose ¢ # &. Then
we have [0, & A] = "AJ[0, &, A" and [0', & A] = "AL[0), & A]". With { # & and ¢, & ¢
ST(6") for all 6" € CTERM and Theorem 1-25-(ii), we also have for all B* € PAR: [p*, ¢,
[0, & ATl=1[6,& [B". & Alland [B", § [0, & Al = [0, & [B", &, AllL

Now, suppose D, I, b = "A{[0, &, A]". With Theorem 5-4-(vii), there is then a p* e
PAR\ST([0, & A]) such that for all b* that are in B assignment variants of b for D it
holds that D, I, b* = [B*, ¢, [6, & Al]. Now, let B* € PAR\(ST([6, &, A]) u ST(6)

C

ST(8"). Now, suppose b'y is in p* an assignment variant of b' for D. Now, let by =
(BM*, b v {(B*, b'1(B")}. Then by is in p* an assignment variant of b for D and
bi(B") = b'1(B"). Now, let b, = (b\{(B*, b(B)}) u {(B*, b'1(B")}. Then b, is in B* an as-
signment variant of b for D and thus we have D, I, b, = [B", ¢, [0, &, A]]. Also, we have
TD(B*, D, 1, b,) = by(B*) = b'1(p*) = ba(*) = TD(B”, D, I, b1). Also, we have, according
to the assumption for B* and B, that p*, p* ¢ ST([6, & A]) and thus boIST([6, & A]) =
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bIST([0, &, A]) = baIST([6, &, A]). Also, we trivially have that ITSE([6, &, A]) = ITSE([6,
&, A]). Further, we have FV([0, &, A]) < {C} and, with Theorem 1-13, we have FDEG([9,
&, A]) = FDEG(A) < FDEG(A). By the I.H., we thus have, because of D, I, b, = [B, ¢,
[0, & All, thatalso D, I, by = [B%, ¢, [0, & ATl = [0, &, [B", ¢ Al

With p* ¢ ST(0), we have that b;[ST(0) = bIST(6) and, with p* ¢ ST(0'), we have that
b'IST(6") = b'IST(0"), and, because we trivially have ITSE(0) = I'SE(0) and I'TSE(6") =
I''SE(0"), we thus have, according to Theorem 5-5-(i), that TD(0, D, I, b;) = TD(6, D, I,
b) and TD(0', D, I', b'1) = TD(0', D, I', b"). By our intial hypothesis, we thus have TD(9,
D, I, b)) =TD(®, D, I, b'y). With bIST(A) = b'1ST(A), b1(8*) = b'1(8*) and ST([B, ¢,
A]) < ST(A) u {B"}, we also have byl ST([p", ¢, A]) = baIST([B", ¢, A]). We also have:
I'SE([B, ¢, A]) = IN(SE([p*, ¢, A]) n (CONST u FUNC u PRED)) = II(SE(A) n
(CONST u FUNC u PRED)) = I'SE(A) = I''SE(A) = I'N(SE(A) n (CONST u FUNC u
PRED)) = I'N(SE([B", ¢, A]) n (CONST u FUNC u PRED)) = I'N(SE([p*, ¢, A]) and
hence ITSE([B", ¢, A]) = I''SE([p*, ¢, A]). Further, we have FV([p*, ¢, A]) < {&} and,
with Theorem 1-13, we have FDEG([B*, ¢, A]) < FDEG(A). By the I.H. it thus holds, be-
cause of D, I, by = [0, &, [P, ¢, A]], thatalso D, I', b'; = [0, &, [B", ¢, A]] = [B*, ¢, [0', &,
A]]. Therefore we have for all b** that are in p* assignment variants of b' for D that D, I',
b = [, ¢ [0, & A]] and hence we have, according to Theorem 5-4-(vii), that D, I', b'
E= "AL[0', &, AT". The right-left-direction is shown analogously.

Seventh: Suppose A = "VCA™. According to the assumption for A, we then have FV(A)
< {&, }, ITSE(A) = I''SE(A) and bIST(A) = b'IST(A). Suppose { = &. Then we have [6,
EA]=16,C "VCAT] = "VCAT =0, C, "VCAT] = [0, &, A] and hence [6, &, Al = A =[6', &,
A]. Also, we have FV(A) = @ and hence A € CFORM. Since by hypothesis I[SE(A) =
I''SE(A) and bIST(A) = b'TST(A), we thus have, with Theorem 5-5-(ii) that D, I, b = [6,
EAlIED, I,Lb=AIffD, I'b'=Aiff D, I', b' = [0, & A]. Now, suppose ¢ # &. Then
we have [0, & A] = "V([6, & AT and [0, & A] = V[0, & A]". With (£ Eand , & ¢
ST(6") for all 6* € CTERM and Theorem 1-25-(ii), it holds for all B* € PAR that [B*, ¢,
[6,& Al =16, & [B", & Alland [B", G, [0, & AT = [0', &, [B, &, Al
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Now, suppose D, I, b = "V([0, & A]". With Theorem 5-4-(viii), there is then B* e
PAR\ST([0, &, A]) and by, that is in B* an assignment variant of b for D such that D, I,
b= [P ¢ [0, & Al Now, let B* € PAR\(ST([0, & A]) u ST(6) u ST(6')). Now, let b,
= (\{(B", b'(BNY) v {(B", b1(B))}. Then b'y is in p* an assignment variant of b' for D
and b'1(B*) = b1(B"). Now, let b, = (b\{(B", b(B")}) u {(B”, b'+(B")}. Then b, is in " an
assignment variant of b for D and TD(B*, D, 1, b,) = by(p*) = b'1(p*) = b1(B*) = TD(B*,
D, I, by). According to the assumption for B* and p*, we also have that p*, B* ¢ ST([6, &,
A]) and thus that b, ST([6, &, A]) = bIST([0, & A]) = b1IST([6, &, A]). We trivially have
ITSE([6, &, A]) = ITSE([6, &, A]). Also, we have FV([6, & A]) < {C} and, with Theorem
1-13, we have FDEG([0, &, A]) = FDEG(A) < FDEG(A). By the I.H., it thus holds, be-
cause of D, I, by = [B*, ¢, [0, & All, that D, I, b, = [B7, ¢, [0, & ATl = [0, &, [P, ¢, Al

With p* ¢ ST(0) and p* ¢ ST(0"), we have b,IST(0) = bIST(0) and b'[ST(®) =
b'l'ST(0") and hence, according to Theorem 5-5-(i), we have TD(0, D, I, b,) = TD(0, D,
I, b) and TD(0', D, I', b'y) = TD(0', D, I', b"). By our initial hypothesis, we thus have
TD(, D, I, by) = TD(®, D, I', b'1). With bIST(A) = b'IST(A), bo(8*) = b'1(p") and
ST([B, ¢, Al) < ST(A) u {B"}, we also have b, ST([B, ¢, A]) = b'uIST([B", ¢, Al) and it
holds that ITSE([B*, ¢, A]) = INSE([p*, ¢, A]) n (CONST u FUNC u PRED)) =
I'(SE(A) n (CONST u FUNC u PRED)) = IISE(A) = I''SE(A) = I''(SE(A) n (CONST
u FUNC u PRED)) = I'N(SE([B", ¢, A]) n (CONST u FUNC u PRED)) = I'N(SE([p", ¢,
A]) and hence it holds that It SE([B", ¢, A]) = I''SE([B", ¢, A]). Further we have FV([p”, ¢,
A]) < {&} and, with Theorem 1-13, we have FDEG([B", ¢, A]) < FDEG(A). By the I.H., it
thus holds, because of D, I, b, = [0, &, [B", ¢, A]], that D, I', b1 = [0', &, [B*, ¢, Al] = [B,
¢, [0, & A]] and hence, according to Theorem 5-4-(viii), that D, I', b' = "V([0', &, A]".

The right-left-direction is shown analogously. m

Now we will proof some consequences of the substitution lemma in order to facilitate

some later proofs.
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Theorem 5-7. Coreferentiality
If (D, I) is a model, b is a parameter assignment for D, & € VAR, 0, 0' € CTERM and TD(0,
D, I, b)=TD(0', D, I, b), then:
(i) Forall 8" € TERM with FV(06") < {&} it holds that TD([0, &, 7], D, I, b) = TD([0, &,
0'], D, I, b), and
(ii)  For all A € FORM with FV(A) < {&€} itholdsthat D, I, b = [0, &, Al iff D, I, b =
[6" & Al

Proof: Suppose (D, I) is a model, b is a parameter assignment for D, & € VAR, 0, 0' €
CTERM and TD(6, D, I, b) = TD(0', D, I, b). Then we trivially have for all u € TERM

u FORM: ITSE(u) = ITSE(w) and bIST(w) = bIST(u) and thus the statement follows with

Theorem 5-6. m

Theorem 5-8. Invariance of the satisfaction of quantificational formulas with respect to the
choice of parameters

If (D, I) is a model, b is a parameter assignment for D, & € VAR, A € FORM, with FV(A) <
{&} and B € PAR\ST(A), then:

(i) D, I, b= "NeA™ iff for all b' that are in B assignment variants of b for D it holds that
D,I,b'=[B, & A, and
(i) D, I, bk "VEA" iff there is a b' that is in B assignment variant of b for D such that
D,I,b'=[B, & Al
Proof: Suppose (D, I) is a model, b is a parameter assignment for D, & € VAR, A e
FORM with FV(A) < {&} and B € PAR\ST(A). Ad (i): The right-left-direction follows
directly with Theorem 5-4-(vii). Now, for the left-right-direction, suppose D, I, b
"AEA™. Then there is a p* € PAR\ST(A) such that for all b* that are in B* assignment
variants of b for D it holds that D, I, b* &= [B*, &, A]. Now, suppose b' is in B an assign-
ment variant of b for D. Now, let b* = (b\{(B*, b(B*))}) v {(B*, b'(B))}. Then b* is in
B* an assignment variant of b for D and hence we have D, I, b* = [B*, &, A]. We also
have TD(B*, D, I, b*) = b*(*) = b'(3) = TD(B, D, I, b"). With B, B* ¢ ST(A), we fur-
ther have b*ST(A) = bIST(A) = b'IST(A). With Theorem 5-6-(ii), we hence have D, I,
b'=1B, & Al
Ad (ii): The right-left-direction follows directly with Theorem 5-4-(viii). Now, for the
left-right-direction, suppose D, I, b = "VEA™. Then there is p* € PAR\ST(A) and b* that
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is in p* an assignment variant of b for D such that D, I, b* = [B*, &, A]. Now, let b' =
(BB, b(B)}) v {(B, b*(B*))}. Then b'is in B an assignment variant of b for D and we
have TD(B*, D, I, b*) = b*(B*) = b'(B) = TD(B, D, I, b'). With B, p* & ST(A) we have
again b*[ST(A) = b'[ST(A). With Theorem 5-6-(ii), we hence have D, I, b' = [B, &, A]. m

Theorem 5-9. Simple substitution lemma for parameter assignments
If (D, I) is a model, b is a parameter assignment for D, § € VAR, B € PAR and 6 € CTERM,
then:
(i) If b'isin B an assignment variant of b for D and b'(B) = TD(0, D, I, b), then for all
0" € TERM with FV(0") < {£} and B ¢ ST(0"): TD([6, &, 0°], D, I, b) = TD([B, &,
0’1, D, I, b'), and
(i)  If b'isin B an assignment variant of b for D and b'(B) = TD(0, D, I, b), then for all A
e FORM with FV(A) < {&}and B ¢ ST(A): D, I, b =6, & Al iff D, I, b' = [B, &,
Al

Proof: Suppose (D, I) is a model, b is a parameter assignment for D, & € VAR, B € PAR
and 6 € CTERM. Now, suppose b' is in B an assignment variant of b for D, where b'(B)
=TD(6, D, I, b). Now, suppose p € TERM u FORM with FV(u) < {€} and B ¢ ST(w).
Then we trivially have ITSE(n) = ITSE(n). With B ¢ ST(u), we also have bST(n) =
b'I'ST(w). By hypothesis, we also have TD(B, D, I, b") = b'(B) = TD(6, D, I, b).

According to Theorem 5-6-(i), we then have for all 0" € TERM with FV(0") < {&} and
B ¢ ST(0"): TD([6, &, 071, D, I, b) = TD([B, &, 07], D, I, b"), and, with Theorem 5-6-(ii),
we have for all A € FORM, where FV(A) < {€} and B ¢ ST(A): D, I, b = [0, &, A] iff
D LbE[BEALm

Definition 5-9. 4-ary model-theoretic satisfaction for sets

D, I,by=X

iff

(D, I) is amodel, b is a parameter assignment for D, X < CFORM and forallA € X: D, 1, b
= A.
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Definition 5-10. Model-theoretic consequence

XET

iff

X u{l'} cCFORMandforall D,I,b:1fD,I, b y= X,then D, I, b =T.

Definition 5-11. Validity
ETIiffo=T.

Definition 5-12. Satisfiability

I is satisfiable

iff

I' e CFORM and there is D, I, b such that D, I, b =T.
In Definition 5-8 to Definition 5-12 we introduced some of the usual model-theoretic
concepts. With the next Definition, we will now add a 3-ary satisfaction concept for
propositions that aims especially at parameter-free propositions. Subsequently, we will
introduce concepts for sets of propositions that are analogous to the concepts we intro-
duced for closed formulas in Definition 5-10 to Definition 5-13, in the same way as we
did with Definition 5-9 for the satisfaction concept for closed formulas defined in

Definition 5-8.

Definition 5-13. 3-ary model-theoretic satisfaction

D, I=T

iff

(D, I) is amodel and for all b that are parameter assignments for D it holds that D, I, b =T.

Definition 5-14. 3-ary model-theoretic satisfaction for sets

D Iy=X
iff
(D, I) isamodel, X € CFORM and for all A € X it holds that D, I = A.

Definition 5-15. Model-theoretic consequence for sets
Xu=EY

iff

X uY € CFORM and for all A € Y it holds that X = A.
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Definition 5-16. Validity for sets

m= X
iff
X < CFORM and for all A € X it holds that = A.

Definition 5-17. Satisfiability for sets

X is satisfiabley
iff
X < CFORM and thereis D, I, b suchthat D, I, b E X.

In the following the context will always indicate if we deal with propositions or with sets
of propositions. Therefore, we will supress the index 'M' when using concepts defined in
Definition 5-9 and Definition 5-14 to Definition 5-17. Now, we will define the closure of
a set of propositions under the model-theoretic consequence relation. The remaining part

of this section contains only some simple supporting theorems.

Definition 5-18. The closure of a set of propositions under model-theoretic consequence
X" ={A|A e CFORM and X F A}.

Theorem 5-10. Satisfaction carries over to subsets
IfD,I,bE= X, thenitholdsforallY < Xthat D, I, bEY.

Proof: Follows directly from Definition 5-9. m

Theorem 5-11. Satisfiability carries over to subsets
If X is satisfiable, then it holds for all Y < X that Y is satisfiable.

Proof: Follows directly from Definition 5-17 and Theorem 5-10. m

Theorem 5-12. Consequence relation and satisfiability
If X u {T'} € CFORM, then: X =T iff X u {"—I""} is not satisfiable.

Proof: Suppose X u {I'} < CFORM. Suppose X = I'. Then we have for all D, I, b: If
D, I, b= X, then D, I, b =T. Suppose for contradiction that X u {"—I"} is satisfiable.
Then there would be D, I, b such that D, I, b = X u {"=I""}. With Definition 5-9 and

Theorem 5-4-(ii), it then follows that D, I, b ¥ T". On the other hand, we would have,
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with Theorem 5-10, that D, I, b = X and thus, by hypothesis, that D, I, b = T". Contra-
diction!

Now, suppose X u {"—I"} is not satisfiable. Then there isno D, I, b such that D, I, b
= X u {"—I"}. With Definition 5-9 there is then no D, I, b such that D, I, b = X and
D, I, b= "—I". Now, suppose D, I, b = X. Then (D, I) is a model and b is a parameter
assignment for D and D, I, b # "—I"". According to Theorem 5-4-(ii), we then have D,
I, b =T. Therefore we have for all D, I, b: If D, I, b =X, then D, I, b = T'. Hence we
have X ET. m
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5.2 Closure of the Model-theoretic Consequence Rela-
tion

The following section leads to correctness. For each rule of the Speech Act Calculus (cf.
ch. 3.1) (or for each extension operation (cf. ch. 3.2)), we will therefore prove a model-
theoretic theorem that corresponds to the respective closure clause in ch. 4.2, i.e. to
Theorem 4-15 (AR) or to one of the clauses of Theorem 4-18. First, however, we will

prove the monotony of the model-theoretic consequence relation (cf. Theorem 4-16).

Theorem 5-13. Model-theoretic monotony
IfX'c X< CFORMand X'=T,then X =T.

Proof: Suppose X' € X < CFORM and X' =T Then we have forall D, I, b: If D, I, b
= X', then D, I, b = T. Now, suppose D, I, b = X. Then it holds, with X' < X and
Theorem 5-10, that D, I, b = X'. By hypothesis, it thus holds that D, I, b =T'. Therefore
we have forall D, I, b: If D, I, b= X, then D, I, b =T. Therefore X =T". m

Theorem 5-14. Model-theoretic counterpart of AR
If X € CFORM and A € X, then X = A.

Proof: Suppose X < CFORM and A € X. According to Definition 5-9, we then have for
allD,I,b:1fD,I,bE= X, then D, I, b = A and thus we have X = A. m

Theorem 5-15. Model-theoretic counterpart of Cdl
If XE=Band A € X, then X\{A}="A —>B".

Proof: Suppose X = B and A € X. Now, suppose D, I, b = X\{A}. Then (D, I) is a
model and b is a parameter assignment for D and for all A € X\{A} it holds that D, I, b
= A. Then we have either D, I, b = A or D, I, b # A. In the first case, it holds that D, I,
b = Aforall A € X, and hence we have D, I, b = X. By hypothesis, it then follows that
also D, I, b = B. With Theorem 5-4-(v), it then follows that D, I, b = "A — B". The
same holds if D, I, b ¥ A. Therefore we have for all D, I, b that if D, I, b = X\{A},
then D, I, b = "A — B". Therefore X\{A}="A —>B". =
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Theorem 5-16. Model-theoretic counterpart of CdE
fXE"A—-B'andY=A,then X v Y =B.

Proof: Suppose X = "A — B" and Y = A. Suppose D, I, b= X u Y. Then (D, I) is a
model and b is a parameter assignment for D and, with Theorem 5-10, we have D, I, b
= Xand D, I, b = Y. By hypothesis, it then follows that D, I, b=Aand D, I, b = "A
— B". With D, I, b = "A — B" and Theorem 5-4-(v), we then have D, I, b ¥ A or D,
I, b=B.With D, I, b = A, we thus have D, I, b = B. Therefore we have for all D, I, b,
thatif D,I, b= X v Y, thenalso D, I, b =B. Therefore X u Y =B. m

Theorem 5-17. Model-theoretic counterpart of Cl
IfXEAandY =B,then X u Y= "AAB".

Proof: Suppose X = A and Y = B. Suppose D, I, b = X u Y. Then (D, I) is a model
and b is a parameter assignment for D and, with Theorem 5-10, we have D, I, b = X
and D, I, b = Y. By hypothesis, it then follows that also D, I, b= A and D, I, b = B.
With Theorem 5-4-(iii), it then follows that D, I, b = "A A B". Therefore we have for all
D,I,bthatif D,I,b=X v Y, thenalso D, I, b= "A AB". Therefore X u Y = "A A
B'.m

Theorem 5-18. Model-theoretic counterpart of CE
IfXE=T"AAB, then X = A and X = B.

Proof: Suppose X = "A A B". Suppose D, I, b = X. Then (D, I) is a model and b is a
parameter assignment for D and by hypothesis we have D, I, b = "A A B". With
Theorem 5-4-(iii), it then follows that D, I, b = A and D, I, b = B. Therefore we have
forall D, I, bthatif D, I, b= X, thenalso D, I, b = A and D, I, b = B. Therefore X =

Aand XE=B.m
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Theorem 5-19. Model-theoretic counterpart of Bl
fFXEA—-B'andYE="B— A", thenX uYE"A— B".

Proof: Suppose X = "A — B and Y= "B — A". Suppose D, I, b= X u Y. Then (D,
I) is a model and b is a parameter assignment for D and, with Theorem 5-10, we have D,
I,bE=Xand D, I, b =Y. By hypothesis, it then follows that D, I, b = "A — B™ and D,
I, b= "B — A". With Theorem 5-4-(v), it then follows that (i) D, I, b# AorD,I, b =
B and (ii) that D, I, b # B or D, I, b = A. Suppose (the first case of (i)) D, I, b ¥ A.
With (ii), it then holds that D, I, b & B. Suppose (the second case of (i)) D, I, b = B.
With (ii), it then holds that D, I, b = A. Therefore we have D, I, b=Aand D, I, b =B
or D, I, b Aand D, I, b # B. With Theorem 5-4-(vi), it then follows that D, I, b
"A < B". Therefore we have forall D, I, bthatif D,I, b= X v Y, thenalso D, I, b =

'A<~ B'.Therefore X uYE 'A<~ B'.nm

We include a variant of Theorem 5-19 as a corollary. Here it is not required that some

conditionals have to be model-theoretic consequences of some sets of propositions.

Theorem 5-20. Model-theoretic counterpart of BI*
IfXEBandA e Xand Y =AandB e Y, then (X\{A}) u (Y\{B}) = "A < B".

Proof: Suppose X =B and A € X and Y = A and B € Y. According to Theorem 5-15,
we then have X\{A} = "A — B" and Y\{B} = "B — A". With Theorem 5-19, it then
follows that (X\{A}) u (Y{B}) E"A—~B". =

Theorem 5-21. Model-theoretic counterpart of BE
fFXETA-B'orXE"BoATand Y EA, then X v Y EB.

Proof: Suppose X = "A < B" or X "B« A" and Y = A. Now, suppose D, I, b = X
u Y. Then (D, I) is a model and b is a parameter assignment for D and, with Theorem
5-10, we have D, I, b = X and D, I, b = Y. By hypothesis, it then follows that D, I, b
= A. Now, suppose X = "A < B™. Then we have D, I, b = "A < B". With Theorem
5-4-(vi), it then follows that D, I, b= A and D, I, b=BorD,I,b# Aand D, I, b ¥
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B. Now, suppose X = "B <> A™. Then we have D, I, b = " B « A™. With Theorem
5-4-(vi), it then follows againthat D, I, b=Aand D, I, b=Bor D, I, b# A and D, I,
b = B. However, since D, I, b = A, it cannot be the case that D, I, b= Aand D, I, b #
B. Thus we have D, I, b = A and D, I, b &= B. Therefore we have for all D, I, b that if
D, I,b=XvuY, thenalsoD, I, b=B. Therefore X u Y =B. m

Theorem 5-22. Model-theoretic counterpart of DI
IfXEAorX=B,then X ="AvB".

Proof: Suppose X = A or X = B. Suppose D, I, b = X. Then (D, I) is a model and b is
a parameter assignment for D. By hypothesis, we also have D, I, b= A or D, I, b = B.
With Theorem 5-4-(iv), we have in both cases D, I, b = "A v B". Therefore we have for
all D, I, bthatif D, I, b= X, thenalso D, I, b= "A v B". Therefore X="AvB". =

Theorem 5-23. Model-theoretic counterpart of DE
fFXEAvB andY="A—-T"andZ="B—-TI",thenX v Y u ZET.

Proof: Suppose X =E"AvB andY="A —->T"and Z="B —I".Suppose D, I, b =
X u Y u Z Then (D, I) is a model and b is a parameter assignment for D and, with
Theorem 5-10, we have D, I, b= X and D, I, b =Y and D, I, b = Z. By hypothesis, it
then follows that D, I, b= "Av B and D, I, b= "A—>T"and D, I, b= "B —>T".
With Theorem 5-4-(iv) and -(v), we then have: (i) D, I, b= A or D, I, b = B and (ii) D,
I,b¥AorD, I, be=Tand(iii) D, I, b¥Bor D, I, b =T. Suppose (the first case of
() D, I, b = A. With (ii), we then have D, I, b =T . Suppose (the second case of (i)) D,
I, b = B. With (iii), we then have D, I, b = T. Thus we have in both cases D, I, b = T.
Therefore we have forall D, I, bthatif D, I, b =X v Y u Z, thenalso D, I, b =T.
Therefore X uY U ZET. m

We include a variant of Theorem 5-23 as a corollary. Here it is not required that some

conditionals have to be model-theoretic consequences of some sets of propositions.
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Theorem 5-24. Model-theoretic counterpart of DE*
fXETAvB'andY=TandA e Yand ZET and B € Z, then X u (Y\{A}) u (Z\{B}) =

I.

Proof: Suppose X = "AvB'andYET and A € Yand ZE=T and B € Z. According to
Theorem 5-15, we then have Y\{A} &= "A —» I"" and Z\{B} &= "B — I"". With Theorem
5-23, it then follows that X u (Y\{A}) v (Z\{B}) ET. =

Theorem 5-25. Model-theoretic counterpart of NI
IfXEBandYkE= "—B'and A € X u Y, then (X u Y)\{A} = "—A".

Proof: Suppose X EBand Y = "—B" and A € X u Y. Suppose D, I, b = (X v
Y)\{A}. Then (D, I) is a model and b is a parameter assignment for D such that for all A
e (X v Y)\{A} it holds that D, I, b = A. Suppose for contradiction that D, I, b = A.
Then we would have forall A e X andforall A e Y: D, I, b= Aandthus D,I,b = X
and D, I, b &= Y. By hypothesis, it would then follows that D, I, b=Band D, I, b &
"—B". With Theorem 5-4-(ii), it would then follow that D, I, b =B and D, I, b & B. Sed
certe hoc esse non potest. Therefore D, I, b ¥ A and thus D, I, b = "—A™. Therefore we
have for all D, I, b thatif D, I, b = (X u Y)\{A}, then also D, I, b = "—A™. Therefore
X uY)\{A}E"—A". n

Theorem 5-26. Model-theoretic counterpart of NE
If X = "——A", then X = A.

Proof: Suppose X = "——A". Suppose D, I, b = X. Then (D, I) is a model and b is a pa-
rameter assignment for D and, by hypothesis, we also have D, I, b = "——A". With
Theorem 5-4-(ii), it then follows that D, I, b # "—A™. Applying Theorem 5-4-(ii) again
yields D, I, b = A. Therefore we have forall D, I, b: If D, I, b = X, then D, I, b = A.
Therefore XE A. m



5.2 Closure of the Model-theoretic Consequence Relation 241

Theorem 5-27. Model-theoretic counterpart of Ul
If B € PAR, & € VAR, A € FORM, where FV(A) < {¢},and X = [B, &, Al and B ¢ STSF(X

u {A}), then X = "AEA™.

Proof: Suppose p € PAR, § € VAR, A € FORM, where FV(A) < {&}, X = [B, &, A] and
B ¢ STSF(X u {A}). Suppose D, I, b = X. Then (D, I) is a model and b is a parameter
assignment for D. Suppose b' in B an assignment variant of b for D. Suppose A € X.
Therefore D, I, b = A. We have, by hypothesis, B ¢ ST(A). Therefore we have b ST(A)
= b'IST(A). According to Theorem 5-5-(ii) it then follows that also D, I, b' = A. There-
fore D, I, b'= Aforall A e X and hence D, I, b' = X. With X = [B, &, A], we then have
also D, I, b' = [B, &, A]. Therefore we have for all b' that are in B an assignment variant
of bforD: D, I, b' &= [B, & A]. With Theorem 5-4-(vii) follows D, I, b = "A£A™. There-
fore we have forall D, I, b: If D, I, b = X, then also D, I, b = "A¢A™. Therefore X =
"NEA™. m

Theorem 5-28. Model-theoretic counterpart of UE
If 0 € CTERM, £ € VAR, A € FORM, where FV(A) < {¢}, and X = "AEA™, then X = [0, &,

Al
Proof: Suppose 6 € CTERM, & € VAR, A € FORM, where FV(A) < {&}, and X &
"AEA™. Suppose D, I, b = X. Then (D, I) is a model and b is a parameter assignment for
D and, by hypothesis, D, I, b = "AEA™. According to Theorem 5-4-(vii) there is then a B
e PAR\ST(A) such that for all b' that are in B an assignment variant of b for D it holds
that D, I, b' = [B, & Al. Suppose b* = (b\(B, b(B))}) v {(B, TD(6, D, I, b))}. Obvi-
ously b* is in B an assignment variant of b for D. Therefore D, I, b* = [B, &, A]. With
b*(B) =TD(6, D, I, b) and B ¢ ST(A) it follows then with Theorem 5-9-(ii) that D, I, b
= [0, & A]. Therefore we have forall D, I, b: If D, I, b = X, then D, I, b = [0, &, A].
Therefore X = [0, &, A]l. m
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Theorem 5-29. Model-theoretic counterpart of Pl
If 0 € CTERM, & € VAR, A € FORM, where FV(A) < {&}, and X E [0, &, A], then X =

TVEA™.

Proof: Suppose 6 € CTERM, & € VAR, A € FORM, where FV(A) < {&}, and X & [0, &,
A]. Suppose D, I, b = X. Then (D, I) is a model and b is a parameter assignment for D
and, by hypothesis, we have D, I, b = [0, &, A]. Now, let B € PAR\ST(A) and let b* =
(B, b(B)}) v {(B, TD(6, D, I, b))}. Then b* is in B an assignment variant of b for
D. With b*(B) = TD(0, D, I, b), B ¢ ST(A) and Theorem 5-9-(ii), it then follows that D,
I, b* = [B, & A]. With Theorem 5-4-(viii), it then follows that D, I, b = "VEA™. There-
fore we have for all D, I, b: If D, I, b &= X, then D, I, b = "VEA™. Therefore X =
"VEA". m

Theorem 5-30. Model-theoretic counterpart of PE
If B € PAR, & € VAR, A € FORM, where FV(A) < {&¢}, and X = "VEA™ and Y = B and {[B,

& Al} € Yand B ¢ STSF((Y\{[B, & Al}) u {A, B}), then X u (Y\{[B, &, Al}) = B.

Proof: Suppose B € PAR, & € VAR, A € FORM, where FV(A) < {&}, X E "VEA™, Y &
B, {[B, & A]} € Y and B ¢ STSF((Y\{[B, & Al}) v {A, B}). Suppose D, I, b = X u
(Y\{[B, & A]}). Then (D, I) is a model and b is a parameter assignment for D and, with
Theorem 5-10, we have D, I, b = X and D, I, b = Y\{[B, &, Al}. By hypothesis, it then
follows that D, I, b = "VEA™. Since B ¢ ST(A), there is then, according to Theorem
5-8-(ii), a b' that is in B an assignment variant of b for D such that D, I, b' = [B, &, A].
Now, suppose A" € Y. Then we have A" € Y\{[B, &, A]} or A" =[B, &, A]. In the first case,
we have D, I, b = A'. Since B ¢ ST(A"), we have bIST(A") = b'IST(A"). By Theorem
5-5-(ii), it then follows that D, I, b' = A'. For the second case, we already have D, I, b' =
[B, &, A]. Therefore D, I, b' = A' forall A" € Y and hence D, I, b' = Y. By hypothesis, it
then follows that D, I, b' = B. Since B ¢ ST(B), we have bIST(B) = b'[ST(B). With
Theorem 5-5-(ii), it then follows that D, I, b = B. Therefore we have for all D, I, b: If
D, I,bEX u (Y\{[B, & Al}), then D, I, b = B. Therefore X u (Y\{[B, &, A]}) =B. m
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Theorem 5-31. Model-theoretic counterpart of Il
Forall X < CFORM and 8 € CTERM: X = "0 =0".

Proof: Suppose X < CFORM and 6 € CTERM. Suppose D, I, b = X. Then (D, I) is a
model and b is a parameter assignment for D. With (TD(9, D, I, b), TD(0, D, I, b))
{{(a, a) | a € D}, we have (TD(6, D, I, b), TD(, D, I, b)) € I("="). According to
Theorem 5-4-(i), it then follows that D, I, b = "0 = 0". Therefore we have for all D, I,
b:ifD,I,bEX,thenD,I,b="9=0". Therefore X = 0=0". m

Theorem 5-32. Model-theoretic counterpart of IE
If 60, 8, € CTERM, & € VAR, A € FORM, where FV(A) < {€},and X = "0, =0," and Y &

[00, &, A], then X U Y = [0y, &, Al

Proof: Suppose 6o, 61 € CTERM, & € VAR, A € FORM, where FV(A) < {&}, and X &=
"0 =0:" and Y = [0y, &, A]. Now, suppose D, I, b =X u Y. Then (D, I) is a model and
b is a parameter assignment for D and, with Theorem 5-10, we have D, I, b = X and D,
I, b = Y. By hypothesis, it then follows that D, I, b = "0, =6, and D, I, b = [0y, &, A].
By Theorem 5-4-(i), we then have that (TD(0o, D, I, b), TD(01, D, I, b)) € I("=") = {(a,
ay | a € D}. Thus we have TD(6o, D, I, b) = TD(0y, D, I, b). According to Theorem
5-7-(ii), it then follows, with D, I, b = [0y, &, A], that also D, I, b = [0y, &, A]. Therefore
we have forall D, I, b: If D, I, b= X v Y, then D, I, b = [0y, &, A]. Therefore X v Y
E[0,& Al m






6 Correctness and Completeness of the Speech

Act Calculus

After having established the Speech Act Calculus and a model-theory, we now have to
show that the respective consequence relations are equivalent. As usual, this adequacy
proof contains two parts: First the proof of the correctness of the Speech Act Calculus
relative to the model-theory. Informally: Everthing that is derivable also follows model-
theoretically (6.1). Second the proof of the completeness of the Speech Act Calculus rela-
tive to the model-theory. Informally: Everthing that follows model-theoretically is also
derivable (6.2).

Note that our talk of the correctness and completeness of the Speech Act Calculus fol-
lows the usual custom. On the other hand, one could also read the two results obversely,
i.e. so that we show in ch. 6.1 that the model-theoretic consequence relation is complete
relative to the calculus. In ch. 6.2 we would then accordingly show that the model-
theoretic consequence relation is correct relative to the calculus. We do not follow this
alternative way of interpreting the results in order to avoid confusion. However, even if
we speak of correctness and completeness in the usual way, we do not want to insinuate
that the model-theoretic consequence relation is in some way superior to the deductive
consequence relation established by the calculus or that calculi have to be justified by
reference to model-theoretic concepts of consequence and not the other way round. The
adequacy result just says that Speech Act Calculus and classical first-order model-theory

are associated with equivalent consequence relations.

6.1 Correctness of the Speech Act Calculus

The following section consists mainly of one single proof, namely the proof of Theorem
6-1, which says that in each derivation $ the conclusion is a model-theoretic consequence
of AVAP($)). The proof is carried out by induction on the length of a derivation. Using
the I.H., we will show that for all 17 possible extensions of $[Dom($))-1 to § it holds
that AVAP($)) = C($). In doing this, we will first deal with the more »interesting« cases,
i.e. those cases in which the set of available assumptions is reduced or augmented by the
extension of HIDom($)-1 to §. These four cases are AF, CdIF, NIF and PEF (or AR,

Cdl, NI and PE). For the remaining 13 cases, we can then exlcude that the the last step in
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the derivation under consideration belongs to one of the first four cases. The correctness
of the Speech Act Calculus relative to the model-theory is then established at the end of

the section in Theorem 6-2.

Theorem 6-1. Main correctness proof
If $ € RCS\{0}, then AVAP($) = C(5).

Proof: Proof by induction on |$|. For this, suppose the theorem holds for all [ < |$| and
suppose $) € RCS\{0@}. According to Definition 3-19, we then have $ € SEQ and for all
j < Dom($): HIj+1 € RCE($HIj). Also, with Theorem 3-8, it holds for all ; € Dom($))
that $Hj+1 € RCS\{0}. With this and the I.H., we have for all 0 < j < Dom($):
AVAP($H1j) E C($ly). According to Theorem 3-6 and Definition 3-18, we also have $ €
AF($HIDom($)-1) or H e CdIF(HIDom($)-1) or $H e CIEF(HIDom($H)-1) or $
CIF(HIDom($)-1) or $ € CEF(HIDom(H)-1) or $H e BIF(HIDom($H)-1) or H
BEF($HIDom($)-1) or $ e DIF(HIDom($)-1) or $H e DEF($HIDom($)-1) or $

)

I

m

m

m

m

NIF(HIDom(H)-1) or $H e NEF(HIDom($)-1) or $ e UIF(HIDom($)-1) or ©
UEF(HIDom($H)-1) or $ € PIF(HIDom(H)-1) or $H e PEF(HIDom($)-1) or ©
IHF(HTDom($)-1) or $H € IEF(HIDom(H)-1).

We further have that $ e AF®IDom(H)-1) u CdIF(HIDom(H)-1)
NIF(9IDom(9)-1) u PEF($HIDom($)-1) or $H ¢ AF®IDom($H)-1) v
CdIF(HIDom($)-1) u NIF(HIDom($)-1) u PEF($HIDom($)-1). Thus we can distinguish
two major cases. Now, for the first case, suppose $H e AF($HIDom($)-1) u
CdIF(HIDom($)-1) u NIF(HIDom($)-1) u PEF($IDom($)-1). Then we can distinguish
four subcases, where, with Definition 3-2, Definition 3-10 and Definition 3-16, we have
for the three latter ones: Dom($)-1 # 0 and thus $HIDom($)-1 € RCS\{0} and
AVAP(HIDom($)-1) = C(HIDom(H)-1).

(AF): Suppose $ € AF($HIDom($)-1). According to Theorem 3-15-(viii), we then have
C($) € AVAP($). Theorem 5-14 then yields AVAP(9) &= C($).

(CdIF): Suppose $H € CdIF($HIDom($)-1). According to Theorem 3-19-(x), we then
have  C(9) = "P(Hmaxom@avaseioom@)yn)) — C(HIDom(H)-1)". We have
AVAP(HIDom($H)-1) E C(HIDom($H)-1). With Theorem 3-19-(ix), we have
AVAP($HIDom($)-1) = AVAP($) U {P(Hmaxpom(avas(ivom(s)-1))} and thus we have
AVAP($) u {P(Hmaxpomavas@sioom@)-uy)} E C(HIDom($)-1). With Theorem 5-15, it
then follows that AVAP($)\{P(Hmaxoom(avasstoom)-0))} & "P(Hmaxoom(avas(stbom(s)-1))))

m

(@
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— C(HIDom($)-1)". Theorem 5-13 then yields  AVAP($) =
"P(Hmax(pomavassiboms)-1)) — C(HIDom($)-1)" and thus AVAP($) = C(5).

(NIF): Suppose $ € NIF($HIDom($))-1). According to Theorem 3-20-(x), we then have
C(®) = "=P(Hmax@om(avassipoms)-1))) ' - With Theorem 3-20-(i) and Theorem 2-92, there
isT" e CFORM and j € Dom($)-1 such that max(Dom(AVAS($Dom($))-1))) < j and
either P($);) = I" and P($Hpom(s)-2) = I or P(H;) = "=I" and P(Hpoms)-2) = I and (4, 9))
e AVS(HIDom($)-1). Thus we have either T' = C($[j+1) and "—I" = C(HIDom($))-1)
or "—I" = C(®lj+1) and I' = C($HIDom($)-1). First suppose I' = C(Hj+1) and "—I" =
C(HIDom($)-1). Then we have AVAP($HIj+1) =T and AVAP($HIDom($)-1) = —I".
Also, we have that T is available in HIDom($)-1 at ;7 and thus, according to Theorem
3-29-(iv), AVAP(H1j+1) < AVAP(HIDom($)-1). With Theorem 5-13, we thus also
have AVAP($HIDom($)-1) &= TI. Second suppose —I" = C(Hj+1) and I' =
C(HIDom($)-1). Then we have AVAP($HIj+1) = "—I'" and AVAP(HIDom($)-1) = T.
Also, "—I" is then available in $fDom($))-1 at j and hence we have, again with Theorem
3-29-(iv), that AVAP($Ij+1) < AVAP($HIDom($))-1) and thus, with Theorem 5-13, that
AVAP($HIDom($)-1) = "—I". Thus we have in both cases that AVAP($HIDom($)-1) &=
' and AVAP($HIDom($)-1) &= "—I". With Theorem 3-20-(ix), we have
AVAP(HIDom(H)-1) = AVAP($H) u {P(Hmaxpomavasivoms)-1))}- Thus we have
AVAP(H) v {P(Omax@omavassioom@)n))y F T and  AVAP(H) v
{P(Hmaxpom(avassipoms)-1))} = "—I". With Theorem 5-25 (where X as well as Y are in-
stantiated by AVAP($) u {P(Hmax@om(avasstooms)-))}) and Theorem 5-13, it then fol-
lows that AVAP($)) & "=P(Hmaxpom(avassipom(s)-1))) and thus that AVAP($) E C(9).

(PEF): Suppose $ e PEF($HIDom($)-1). According to Theorem 3-21-(x), we then have
C(9) = C(HIDom($)-1). According to Theorem 3-21-(i) and Theorem 2-93, there are p e
PAR, £ € VAR, A € FORM with FV(A) < {&}, and T € CFORM such that
P(Hmaxpomavas@ioom@)yy)-1) = VEAT and  (max(Dom(AVAS(HIDom($)-1)))-1, $
max(Dom(AVAS(IDom(5)-1))-1) € AVS(HIDom($)-1) and P(Hmaxpomavasstboms)-n)) = [B: &,
A] and B ¢ STSF({A, C($)}) and there is no j < max(Dom(AVAS($Dom(5))-1)))-1
such that B e ST($,). Then we have AVAP($IDom($)-1) = C(H!Dom($)-1) = C(9).
With  Theorem 3-21-(ix), we have AVAP(HIDom($H)-1) = AVAP($H) v
{P(Hmaxpom(avas@ibom(s)y-n))} = AVAP(H) u {[B, & A]} and thus AVAP($) u {[B, &,
Al} = C(9). Also, we have AVAP($HImax(Dom(AVAS(HIDom(5))-1)))) = "VEA™.
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It holds that AVAP($HImax(Dom(AVAS($HIDom($)-1)))) < AVAP($). According to
Theorem 3-21-(iii), we first have (max(Dom(AVAS($HIDom($)-1)))-1, "VEA") e
AVS(9) because (max(Dom(AVAS(HIDom($)-1)))-1, Hmax@omAvAS$IDom(s)-1))-1) €
AVS(HDom($)-1) and max(Dom(AVAS(HIDom($)-1)))-1 <
max(Dom(AVAS($HIDom($)-1))). Therefore "VEA™ is available in $ at
max(Dom(AVAS($HDom($)-1)))-1. With Theorem 3-29-(ii), it then follows that
AVAP($HImax(Dom(AVAS(HDom($)-1)))) < AVAP($). With Theorem 5-13, we then
have AVAP($)) = "VEA™.

We already have B ¢ STSF{A, C(9)}). Since there is no j <
max(Dom(AVAS(HDom($)-1)))-1 such that B e ST($;), there is no j €
Dom(AVAS($HImax(Dom(AVAS($)I Dom($)-1))))) such that B € ST($,) = ST(P($,) and
j # max(Dom(AVAS($HIDom($)-1))). With Theorem 3-21-(iv) und -(v), we therefore
have that there is no j € Dom(AVAS($))) such that B € ST(P($);)). Thus we have § ¢
STSF(AVAP($)) and thus B ¢ STSF(AVAP($H) u {A, C(9H)}) and finally B ¢
STSF((AVAP(H)\[B, & Al}) v {A, C($)}). According to Theorem 5-30 (where X is in-
stantiated by AVAP($) and Y is instantiated by AVAP($) u {[B, &, A]}), we hence have
AVAP(9) E C(9).

Second case: Now, suppose $ ¢ AF(®HIDom($)-1) u CdIF(HIDom($H)-1) u
NIF($HIDom($)-1) u PEF($HIDom($)-1). According to Theorem 3-28, we then have
AVAP($) = AVAP($HIDom($)-1). We can distinguish 13 subcases.

(CdEF, CIF, BIF, BEF, IEF): Suppose $ e CdEF($[Dom($)-1). According to
Definition 3-3, there is then A € CFORM such that A, "A — C(§)" e
AVP($HIDom(H)-1). Because of A, "A — C(9)" € AVP(HIDom($)-1) there are j, [ €
Dom($)-1 such that A is available in $fDom($))-1 at j and "A — C(£€)" is available in
HIDom($H)-1 at I. Then we have C(H!j+1) = A and C(Hl+1) = "A — C($)". Then we
have AVAP(H[j+1) = A and AVAP(HI+1) E "A — C(9)". With Theorem 3-29-(iv), it
then follows that AVAP($Hj+1) < AVAP(HIDom($)-1) and AVAP(HI+1) <
AVAP(HIDom($)-1). Since AVAP($) = AVAP(HIDom(f)-1), we thus have
AVAP(HIj+1) < AVAP($H) and AVAP(HI+1) < AVAP($) and thus, with Theorem
5-13, also AVAP(H) E A and AVAP(H) E "A — C($)". Theorem 5-16 then yields
AVAP($) = C($). Similarly one shows for CIF with Theorem 5-17, for BIF with
Theorem 5-19, for BEF with Theorem 5-21 and for IEF with Theorem 5-32 that
AVAP($) E C().
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(CEF, DIF): Suppose $) € CEF($HIDom($)-1). According to Definition 3-5, there is
then A € CFORM such that "A A C($)" e AVP(HIDom($)-1) or "C(H) A A" €
AVP(HDom($)-1). Because of "A A C(9)" € AVP(HIDom($)-1) or "C(H) A A" €
AVP(HDom($)-1) there is j € Dom($))-1 such that "A A C($)™ or "C($)) A A" is avail-
able in $HIDom($)-1 at j. Then we have C(H[j+1) = "A A C($)" or C(Hlj+1) = "C(H) A
A". Then we have AVAP($Ij+1) = "A A C($)" or AVAP(H[7+1) = "C($H) A A". With
Theorem 3-29-(iv), it follows that AVAP(H[j+1) < AVAP(HIDom($)-1) = AVAP(9).
With Theorem 5-13, we thus have AVAP($) &= "A A C($)" or AVAP($H) &= "C(H) A A™.
Theorem 5-18 yields in both cases AVAP($) i C($). For DIF one shows similarly, with
Theorem 5-22, that AVAP($)) &= C(5).

(DEF): Suppose $ € DEF($HIDom($)-1). According to Definition 3-9, there are then
B, A € CFORM such that B v A", "B — C(§)", "A — C(§)" € AVP($!Dom(§)-1).
Then there are j, k, [ € Dom($))-1 such that "B v A™ is available in S Dom($)-1 at j and
"B — C(H)" is available in H[Dom($H)-1 at k£ and "A — C(9)" is available in
HIDom($)-1 at [. Then we have C(HIj+1) = "B v A" and C(Hlk+1) = "B — C($)" and
C(HN+1) = "A — C(H)'. Then it holds that AVAP($lj+1) = "B v A" and
AVAP(HIk+1l) = "B — C(9)" and AVAP(HII+1) = "A — C($)". With Theorem
3-29-(iv), it then follows that AVAP($H1j+1) < AVAP($HIDom($)-1) and AVAP(Hk+1)
c AVAP($H'Dom($)-1) and AVAP(Hl+1) < AVAP(HIDom($)-1) and thus
AVAP(HIj+1) < AVAP($) and AVAP(H'k+1) < AVAP($) and AVAP(HI+1) <
AVAP($). With Theorem 5-13, we thus have AVAP($) = "B v A" and AVAP($) = "B
— C($)" and AVAP(H) = "A — C($)". Theorem 5-23 then yields AVAP($)) &= C(5)).

(NEF, UEF, PIF): Suppose $ € NEF($IDom($))-1). According to Definition 3-11, we
then have "——C($)" € AVP($HIDom($)-1). Then there is j € Dom($)-1 such that
"——C($)" is available in HIDom($)-1 at 5. Then we have C(Hlj+1) = "——C($))". Then
we have AVAP(HIj+1) = "——C($)'. With Theorem 3-29-(iv), it follows that
AVAP(HIj+1) < AVAP(HIDom($)-1) = AVAP($). With Theorem 5-13, we thus have
AVAP($) = "—=—C($)". Theorem 5-26 then yields AVAP($) & C($). Similarly, one
shows for UEF with Theorem 5-28 and for PIF with Theorem 5-29 that in both cases
AVAP(H) = C(9).

(UIF): Suppose $ € UIF($HIDom($))-1). According to Definition 3-12 there is then B ¢
PAR, £ € VAR and A € FORM, where FV(A) < {&}, such that [B, & A] €
AVP(HIDom($H)-1) and B ¢ STSF({A} u AVAP(HIDom($)-1)) and C($H) = "AEA™.
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Then there is ;7 € Dom($)-1 such that [B, &, A] is available in H[Dom($)-1 at j. Then we
have C(HIj+1) = [B, & A]. Then it holds that AVAP($!j+1) & [B, & A]. With Theorem
3-29-(iv), it follows that AVAP($H!j+1) < AVAP(HIDom($)-1) = AVAP($). With
Theorem 5-13, we thus have AVAP(H) & [B, & A]. With AVAP($HIDom(H)-1) =
AVAP($), it follows from B ¢ STSF({A} u AVAP($HIDom($))-1)) that B ¢ STSF({A} v
AVAP($)). Theorem 5-27 then yields AVAP(H) = C(9).

(I1F): Suppose $ € IIF(HIDom($)-1). According to Definition 3-16 there is then 6 e
CTERM such that C($) = "0 = 6. Theorem 5-31 yields AVAP($)) &= C($)). m

Theorem 6-2. Correctness of the Speech Act Calculus relative to the model-theory
Forall X, T: If X T, then X =T.

Proof: Suppose X +I'. According to Theorem 3-12, we then have that X < CFORM and
that there is $ € RCS\{0} such that I' = C($) and AVAP($) < X. Theorem 6-1 then
yields AVAP($) = I'. With Theorem 5-13 and AVAP(H) < X, it followsthat X =T. m
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6.2 Completeness of the Speech Act Calculus

In the following we will prove the completeness of the Speech Act Calculus relative to
the model-theoretic consequence relation for L defined in Definition 5-10. To do this, we
will show that consistent sets are satisfiable. Since CFORM, the set of closed L-formulas,
is denumerably infinite, it suffices to show this for denumerably infinite sets. For this, we
choose the method of constructing Hintikka sets and showing that Hintikka sets are satis-
fied by the respective canonical term structure.™ For this purpose, L has to be expanded
to the language Ly, which results from L by adding denumerably infinitely many new

individual constants to the vocabulary of L.:

Definition 6-1. The vocabulary of Ly (CONSTEXP, PAR, VAR, FUNC, PRED, CON, QUANT,
PERF, AUX)

The vocabulary of Ly contains the following pairwise disjunct sets: the denumerably infinite
set CONSTEXP = CONST u CONSTNEW, where CONSTNEW = {c*; | i € N} (and for all 4,
j € Nwith i # j: ¢* # ¢*; and ¢*; € {c*} and CONST n CONSTNEW = @), and PAR, VAR,
FUNC, PRED, CON, QUANT, PERF, AUX.

Note: In the remainder of this section we adopt the following notation: For all expressions
P that are defined by definition D let Py be the expression defined for Ly instead of L
and let Dy be the corresponding definition and for all theorems T let Ty be the corre-
sponding theorem for Ly. As for the relationship of P and Py, it holds that suitable re-
strictions of Py and Py(a) to L lead back to P and P(a), respectively. For example, we
have: (i) PEXP = PEXPy n PEXP, TERM = TERMy n PEXP, FORM = FORMy n
PEXP, SENT = SENTy n PEXP, SEQ = SEQn n SEQ, RCS = RCSh n SEQ. (ii) ST =
STHIPEXP, STSEQ = STSEQuISEQ, STSF = STSFy[Pot(FORM), P = P4ISENT, C =
CulSEQ, AVAP = AVAPYISEQ. (iii) If H € SEQ, then RCE($) = RCEn(H) n SEQ.
Many of these relationships can be shown without much technical difficulties but require
quite some tedious writing. Therefore, we will not reproduce the proofs here. Where the
relationships are not immediately obvious or where there are particular complications in a

proof, we will execute the proofs. For example, we will show that RCS < RCSy in

5 See, for example, GRADEL, E.: Mathematische Logik, p. 109-119, WAGNER, H.: Logische Systeme, p.
97-101, and KLEINKNECHT, R.: Grundlagen der modernen Definitionstheorie, p. 154-157.
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Theorem 6-6. In Theorem 6-3-(i), we will show that modelsy can be transformed into
models by restricting the respective interpretation functiony on PEXP (or, more precisely:
CONST u FUNC u PRED). For the substitution operation, the equivalence for L-
arguments is trivial. To avoid a clutter of indices behind square brackets (cf. the proof of
Theorem 6-10), we will therefore suppress the H-index for the substitution operator.

The following theorems first secure the connection between satisfiability in L and Ly
(Theorem 6-3 to Theorem 6-5) and between consistency in L and Ly (Theorem 6-6 to
Theorem 6-8). Then we will define Hintikka sets (Definition 6-2). Subsequently, we will
show that all consistent sets of L-propositions have a Hintikka superset (Theorem 6-9)
and that all Hintikka sets are satisfiabley (Theorem 6-10). From this, we will then derive

the completeness of the Speech Act Calculus (Theorem 6-11).

Theorem 6-3. Restrictions of Ly-models on L are L-models
(i) If(D,I)isamodely, then (D, IT(CONST u FUNC u PRED)) is a model,
(ii) b is a parameter assignmenty for D iff b is a parameter assignment for D, and

(iii)  b'is in B an assignment varianty of b for D iff b' is in B an assignment variant of b
for D.

Proof: Ad (i): Suppose (D, I) is a modely. According to Definition 5-2y, I is then an in-
terpretation functiony for D. According to Definition 5-1y, we then have Dom(I) =

CONSTEXP u FUNC u PRED. With CONST < CONSTEXP, we then have
Dom(IT(CONST u FUNC u PRED)) = CONST u FUNC u PRED and for all pu e

CONST u FUNC u PRED it holds that I1(CONST u FUNC u PRED)(n) = I(w). Thus it
follows, with Definition 5-1, and Definition 5-1, that IT(CONST u FUNC u PRED) is
an interpretation function for D and thus that (D, I(CONST u FUNC u PRED)) is a
model.

Ad (ii): With Definition 5-3y and Definition 5-3 it holds that

b is a parameter assignmenty, for D

iff

b is a function with Dom(b) = PAR such that for all B € PAR: b(B) € D
iff

b is a parameter assignment for D.

Ad (iii): With Definition 5-4y, (ii) and Definition 5-4 it holds that
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b'is in B an assignment varianty of b for D

iff

b' and b are parameter assignmentsy for D and B € PAR and b"\{(B, b'(B))} < b
iff

b' and b are parameter assignments for D and B € PAR and b"\{(B, b'(B))} < b
iff

b'is in B an assignment variant of b for D.

Theorem 6-4. Ly-models and their L-restrictions behave in the same way with regard to L-
entities

If (D, I) is a modely and b is a parameter assignmenty for D, then for all 8 € CTERM, T e
CFORM and X < CFORM:

(i) TDw(®, D, I, b)=TD(®, D, IN(CONST u FUNC u PRED), b),
(i) D,I, beyTiff D, II(CONST u FUNC u PRED), b =T, and
(i) D, I b=y X iff D, INCONST u FUNC u PRED), b = X.

Proof: The proof for (i) and (ii) is analogous to the proof of the coincidence lemma
(Theorem 5-5) by induction on the complexity of terms and formulas. Additionally, one
has to use Theorem 6-3. (iii) then follows from (ii) and Definition 5-9y and Definition
5-0. m

Theorem 6-5. A set of L-propositions is Ly-satisfiable if and only if it is L-satisfiable
If X < CFORM, then: X is satisfiabley iff X is satisfiable.

Proof: Suppose X < CFORM. Now, suppose X is satisfiabley. According to Definition
5-17y, there are then D, I, b such that D, I, b =4 X. With Theorem 6-4, it then follows
that D, IT(CONST u FUNC u PRED), b = X and thus we have that X is satisfiable.
Now, suppose X is satisfiable. Then there is D™, I", b~ such that D™, I, b™ = X. We have
that there is an a € D. Now, let I = I u (CONSTNEW x {a}). Then (D, I') is a
modely and b~ is a parameter assignmenty and I'T(CONST u FUNC u PRED) = I". With

Theorem 6-4, it then follows that D™, I, b~ =4 X and hence that X is satisfiabley. m
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Theorem 6-6. L-sequences are RCSy-elements if and only if they are RCS-elements
If § € SEQ, then: $) € RCSy iff § € RCS.

Proof: The proof is to be carried out by induction on Dom($)). The induction basis is
given with @ € RCSy n RCS and one easily shows for $ € SEQ with 0 < Dom($)) that if
the statement holds for I Dom($))-1, it also holds for ). m

Theorem 6-7. An L-proposition is Ly-derivable from a set of L-propositions if and only if it is
L-derivable from that set

If X u {I'} € CFORM, then: X k- I"iff X I,

Proof: Suppose X u {I'} < CFORM. Then the right-left-direction follows directly with
Theorem 3-12, Theorem 6-6 and Theorem 3-124. Now, for the left-right-direction, sup-
pose X Fy I'. According to Theorem 3-12y, there is then an § € RCSH\{0} such that
AVAPL($) < X and Ky($H) = T'. Now we can show by induction on [CONSTNEW n
STSEQu($)| € N that there is an H* € SEQ n (RCSy\{0}) with AVAPL(H*) =
AVAPL(H) and Cu($H*) = Cn(H). With Theorem 6-6, we then have for such $H* that $H* €
RCS\{0}, AVAP(9H*) = AVAPL(H*) = AVAPL($) < X and C(H*) = Cy(H*) = Cu(H) =
I". From this, we then get X T

Suppose |[CONSTNEW n STSEQu($)| = k and suppose the statement holds for all H*
with [CONSTNEW n STSEQu($H*)| < k. Suppose k£ = 0. Then § itself is the desired H*
e SEQ n (RCSK\{@}) with AVAPL(H*) = AVAPL(H) and Cx(H*) = Cu($). Now, sup-
pose 0 < k. Let o be the individual constant with the greatest index in CONSTNEW n
STSEQH($). There is a p € PAR\STSEQu($). According to Theorem 4-9, there is then
an 9* e RCSy\{0} with a ¢ STSEQu($H*), STSEQu(H*)\{B} < STSEQn(H),
AVAP($) = {[a, B, B] | B € AVAPL(H*)} and Ku($) = [a, B, Ku(H*)]. Since
AVAPL($H) < X, it holds that o ¢ STSFH(AVAPH($)). Therefore we have B ¢
STSFL(AVAPL(H*)) and thus [a, B, B] = B for all B € AVAPL($*). Therefore we have
AVAPL(H) = AVAPL($H*). Since Cu($H) =T € CFORM, we also have a ¢ STu(Cu($)).
Therefore we have B ¢ STu(Cr($*)) and thus Cu($) = [a, B, Cu(H*)] = Cu(H*). There-
fore we have Cy($H) = Cu(H*). From o ¢ STSEQu(H*) and STSEQu(H*)\{B} <
STSEQu(9), it follows that [CONSTNEW n STSEQu($H*)] < |CONSTNEW n
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STSEQu($H*)|. According to the L.H., there is then an §' such that AVAPy($H") =
AVAPH(ﬁ*) = AVAPH(ﬁ) and CH(ﬁ') = CH(ﬁ*) = CH(f)) and 9H' e SEQ N RCSH\{@} |

Theorem 6-8. A set of L-propositions is Ly-consistent if and only if it is L-consistent
If X < CFORM, then: X is consistenty iff X is consistent.

Proof: Suppose X < CFORM and suppose X is not consistent,. With Theorem 4-23,, it

then holds for all A €« CFORMy that X 4 A. Then we have X 4 "co = ¢o' and X Hy

"—(Co = Cp)". It holds that "co = ¢co', "—(Co = Co)’ € CFORM and thus it follows with

Theorem 6-7 that X - "co = ¢o' and X — "—(co = Cp)". Hence X is not consistent. Now,

suppose X is not consistent. Then there is A € CFORM < CFORMy such that X — A

and X - "—A™. With Theorem 6-7 we then also have X 4 A and X -y "— A™ and thus

that X is not consistenty. m

Definition 6-2. Hintikka set
X is a Hintikka set

iff

X < CFORMy and:

(i)
(i)
(iii)
(iv)
v)
(vi)
(vii)
(viii)
(ix)
)
(xi)

(xii)

(xiii)

(xiv)

If A e AFORMy n X, then "—A™ ¢ X,

If A e CFORMyand ——A™ € X, then A € X,

If A,B e CFORMyand "A AB™ € X, then {A, B} < X,

If A,B € CFORMyand "—(A AB)" € X, then{™—A", —B"} n X #0,

If A,B e CFORMyand "AvB" € X, then{A, B} n X #0,

If A,B € CFORMyand "=(A vB)" € X,then{™—A", —B"} C X,

If A,B e CFORMyand "A — B € X, then {"—A", B} n X #0,

If A,B € CFORMyand "—(A — B)" € X, then{A, —-B"} C X,

If A,B e CFORMyand "A < B" € X,then{A,B} < Xor{™—A", =B} C X,

If A, B e CFORMyand "—(A <~ B)' € X,then{A, "B} < X or{"—A", B} C X,
If & e VAR, A € FORMy, where FV4(A) < {£}, and "AEA™ € X, then it holds for all
6 € CTERMy that [0, & A] € X,

If £ € VAR, A € FORMy, where FV4(A) < {&}, and "—AEA™ e X, then there isa 6
€ CTERMy such that ™[, &, A]" € X.

If £ € VAR, A € FORMy, where FV1(A) < {&}, and "VEA™ € X, then thereisa 6 €
CTERMy such that [0, &, A] € X,

If £ € VAR, A € FORMy, where FVy(A) < {&}, and "=VEA™ e X, then it holds for
all 0 € CTERMy that "—[6, &, A]" € X,
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(xv) If6 e CTERMy, then "0=0" € X,

(xvi) If 6, ..., 0,1 € CTERMy, 6, ..., 0.1 € CTERMy, foralli<r: 70,=0" € Xand ¢ €
FUNC, ¢ r-ary, then "@(6p, ..., 0,.1) = ¢(0', ..., 0'1)" € X, and

(xvii) If 0, ..., 0,1 € CTERMy, 0', ..., 01 € CTERMy, forall i<r; 70; =0 € X and ®
€ PRED, @ r-ary, and "®(0q, ..., 0,.1)" € X, then "®(0', ..., 0'4)" € X.

Theorem 6-9. Hintikka-supersets for consistent sets of L-propositions

If X < CFORM and X is consistent, then there isa Y < CFORMy such that
(i) Y isaHintikka set, and
(i) Xcv.

Proof: Suppose X < CFORM and X is consistent. Now, let g be a bijection between N
and CFORMy. Using g and the (inverse of) the CANTOR pairing function C, we will now

define an enumeration of the I' € CFORMy in which each proposition occurs denumera-

bly infinitely many times as value.'® For this, let F = {(k, T) | There is i, j € N, k =
Wﬁj and I' = g(y)}. Then F is a function from N to CFORM. First, we have

Dom(F) < IN. Now, suppose k£ € IN. With the surjectivity of the CANTOR pairing function
and Dom(g) = N, it then holds that there are 7, j € N and I' € CFORMy such that k£ =

Wﬁj and I' = g(y). Therefore we have also N < Dom(F) and hence Dom(F) = IN.

According to the definitions of F and g, we have Ran(F) < CFORMy. Now, suppose (k,

@ir+gn)-(ir+yr+1)

'), (k, T*) € F. Then there are 7, 7 and 7', j' so that Mﬁy =k= +7" and

' = g(j) and T'* = g(j'). Because of the injectivity of the CANTOR pairing function, we then
have : =14 and j = 5 and thus I" = g(j) = g(j') = I'*. Also, we have forall/ e Nand allT e
CFORMy: There is a k£ > [ such that F(k) = I'. To see this, suppose [ € Nand I' e

<

CFORMy. Then there is an s € N such that I" = ¢(s). Then we have [ < %;-Sﬂ)ﬁs

(+14s5)-(I+1+s+1)
2

+sand F(

(+14s)-(I+1+s+1)
2

+s) = g(s) =T

18 For the CANTOR pairing function C: N x N I N with C(, ) = i+ G+ j+1)/2+] see, for example,

DEISER, O.: Mengenlehre, p. 112-113.
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Using F, we will now define a function G on N, with which we will generate the de-
sired Hintikka-superset for X. For this, let G(0) = X. For all £ € N let G(k+1) be as fol-
lows: If F(k) € G(k), then:

(i*) If F(k) = "®(0y, ..., 0,.1)", then G(k+1) = G(k) u {"®(0, ..., 0',)" | Forall i < r: "0,
=0 e G(k)} u {"p(0%0, ..., 0%.1) = 007, ..., 071)" | "0(0%, ..., 0%.1)" =6y and for all
i<s 0%=0"" € G(k)},

(i*) If F(k) = —®(0p, ..., 0,.1)", then G(k+1) = G(k),

(iii*) If F(k) = ——A", then G(k+1) = G(k) u {A},

(iv¥) If F(k) = "A A B, then G(k+1) = G(k) u {A, B},

(v*) If F(k) = "—(A A B)", then G(k+1) = G(k) u {"—A™}, if G(k) u {"—A} is consis-
tenty, G(k+1) = G(k) u {"—B™} otherwise,

(vi*) If F(k) = "A v B7, then G(k+1) = G(k) v {A}, if G(k) u {A} is consistenty,
G(k+1) = G(k) u {B} otherwise,

(Vii*) If F(K) = "—(A v B)", then G(k+1) = G(k) u {"—A", =B},

(viii*) If F(k) = "A — B™, then G(k+1) = G(k) u {"=A}, if G(k) u {"=A"} is consis-
tenty, G(k+1) = G(k) u {B} otherwise,

(ix*) If F(k) = "—(A — B)", then G(k+1) = G(k) u {A, =B},

(x*) If F(k) = "A « B", then G(k+1) = G(k) u {A, B}, if G(k) u {A, B} is consistenty,
G(k+1) = G(k) u {"=A" "—B™} otherwise,

(xi*) If F(k) = "=(A < B)7, then G(k+1) = G(k) v {A, =B}, if G(k) u {A, =B} is
consistenty, G(k+1) = G(k) u {"—A", B} otherwise,

(xii*) If F(k) = "AEA™, then G(k+1) = G(k) u {[6, &, A] | 6 € STSF4(G(k)) n CTERM,},
(xiii*) If F(k) = —AEA™, then G(k+1) = G(k) u {"—[o, & AJ"} for the o € CONSTNEW
with the smallest index for which it holds that o ¢ STSFy(G(k)),

(xiv*) If F(k) = "VEA™, then G(k+1) = G(k) u {[o. & A]} for the « € CONSTNEW with
the smallest index for which it holds that o ¢ STSFy(G(k)),

(xv*¥) If F(k) = "—VEA™, then G(k+1) = G(k) u {"=[0, & A]" | 0 e STSFL(G(E)) n
CTERM,}.
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If F(k) ¢ G(k), then: If F(k) = "0 = 6" fora® € CTERMy, then G(k+1) = G(k) u {76 =
0"}, G(k+1) = G(k) otherwise.
Note that G is well-defined, because no « € CONSTNEW is a subtermofal € X <

CFORM and because for every k € IN at most one element of CONSTNEW can be added
to the subterms of elements of G (k) in the step from G(k) to G(k+1): For all £ € IN it

holds that CONSTNEW\STSFx(G(k)) is denumerably infinite.

According to the construction of G it now holds that

a) X = G(0) < URan(G),

b) For all £ € N: G(k) is consistenty,,

c) If i<k, then G(I) < G(k),

d) If Y < URan(G) and |Y| € N, then thereisa k € N such that Y < G(k),

e) URan(G) is consistenty,.

a) follows directly from the definition of G. Now ad b): By hypothesis, G(0) = X <
CFORM is consistent and thus, with Theorem 6-8, also consistenty. Now, suppose for £ it

holds that G(k) is consistenty. Suppose for contradiction that G(k+1) is inconsistent.
Then we have not for all T’ € G(k+1) that G(k) - T, because otherwise, we would have,
with Theorem 4-19, that G (k) is also inconsistenty. Thus it is not the case that G(k+1) <
G(k) u {"6=0"} fora 6 € CTERMy. Therefore we have F(k) € G(k). For this case, the
cases (i*) to (iv*), (vii*), (ix*), (xii*) and (xv*) are exluded for the same reason (this is
easily established with the Ly-versions of the theorems in ch. 4.2). Therefore we have
F(k) e G(k)and F(k)= "=(AAB)' or F(k)="AvB'or F(k)y="A—B" or F(k) ="A
— B" or F(k) = "—(A < B)" or F(k) = "=AEA™ or F(k) = "VEA™. Suppose F(k) = "—(A
A B)™. According to (v*), we then have G(k+1) = G(k) u {"—A"}, if G(k) u {"=A"} is
consistenty, G(k+1) = G(k) u {"—B™} otherwise. Then we have that G(k) u {"—A"} is
inconsistenty and G(k+1) = G(k) v {"—B™} is inconsistenty. With Theorem 4-22,, it
then holds that G(k) -4 A and G(k) 4 B and hence that G(k) -4 "A A B™. Thus we
would have that G (k) is inconsistenty. Contradiction! The other cases for connective for-

mulas are shown analogously. Now, suppose F(k) = "—AEA™. According to (xiii*), we
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then have G(k+1) = G(k) v {"—[a, & A]"} for the o € CONSTNEW with the smallest
index for which it holds that a ¢ STSFy(G(k)). Then we would have that G(k) u {™—[a,
&, A]'} is inconsistenty. Then we would have G (k) Fy [a, &, A]. But then we would have,
because of a ¢ STSFu(G(k)) and —AEA™ e G(k), that a ¢ STSFu(G(k) v {A}) and
thus, with Theorem 4-24, that G(k) =4 "AEA™. Then G (k) would be inconsistenty. Con-
tradiction! The case F(k) = "VEA™ is treated analogously. Hence we have b).

By induction on £, one can easily show that c) holds by the definition of G. Thus we
have also d). To see this, suppose Y < URan(G) and |Y| € N. Then we have forall T e
Y: Thereisan ! € N such thatT" € G(I). Now, let £ = max({/ | ThereisaT e Y such that
I' e G()}. Then it holds with c) forallT € Y: T € G(k).

Thus we have also e). To see this, suppose for contradiction that URan(G) is inconsis-
tenty. Then there would be a finite inconsistenty subset Y of URan(G) and thusa & € N
such that G (k) is inconsistenty, which contradicts b).

Now, we can show that URan(G) is a Hintikka set. First we have, with e), that clause (i)
of Definition 6-2 holds. Now, suppose "——A™ € URan(G). Then there is an [ € N such
that "——A™ € G((). Then there is a k£ > [ such that ——A™ = F(k). With c), we then have
"——A" e G(k). According to (iii*), we then have A € G(k+1) and thus A € URan(G).

Thus clause (ii) of Definition 6-2 holds. The other cases for connective formulas (clauses
(iii) to (x) of Definition 6-2) and the two particular cases (clauses (xii) and (xiii) of
Definition 6-2) are shown analogously.

Now, suppose 6 € CTERMy. Then there isa k£ € N such that "0 = 6" = F(k). Then it
holds: If 0 = 6" ¢ G(k), then 0 = 6" e G(k+1) and hence in both cases: 0 = 6" €
URan(G). Thus we have on the one hand, that clause (xv) of Definition 6-2 holds. On the

other hand, we thus have that the two universal cases, clauses (xi) and (xiv) of Definition
6-2, hold. To see this, suppose "AeA™ € URan(G). Now, suppose 6 € CTERMy. Then we

have (as we have just shown) 0 = 0" € G(I) foran [ € N and we have "AEA™ e G(4) for
ani € IN. Then there is a k£ > [, i such that "AEA™ = F(k). With c), we then have "AEA™, 7O
= 0" e G(k). According to (xii*), we then have [0, & A] € G(k+1) and thus [6, &, A] €

URan(G). Thus clause (xi) of Definition 6-2 holds. Clause (xiv) is shown analogously.
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Now, we still have to show the two IE-clauses, i.e. clauses (xvi) and (xvii), of
Definition 6-2. First ad (xvi): Suppose 0%y, ..., 0%, € CTERMy, 0%, ..., 0°1 €
CTERMy, for all 7 < s: "0*; = 0"," € URan(G) and ¢ € FUNC, ¢ s-ary. As we have al-
ready shown, it holds that "@(0%, ..., 6*.1) = 0(0%, ..., 0%,1)" € URan(G). With d),
there is thus an [ € N such that for all 7 < s: "0*; = 6", € G(I) and "(0%, ..., 0*,1) =
o(0%, ..., 0%,1)" € G(I). Then there is a k£ > [ such that the same holds for G (k) and F(k)
= "@(0%, ..., 0%.1) = @(0%, ..., 0*,1)". With (i*), we then have "p(0*, ..., 0%,1) = ¢(0%,
o 0%1)" € G(k+1) < URan(G).

Now ad (xvii): Suppose 6y, ..., 0,1 € CTERMy, 0', ..., 0.1 € CTERMy, for all i < r:
0,=0'" € URan(G) and ® € PRED, ® r-ary, and "®(0y, ..., 0,-1)" € URan(G). With d),
there isthen an [ € N such that forall i < r: "0, =0 € G() and "®(0y, ..., 0,.1)" € G(I).
Then there is a k£ > [ such that the same holds for G (k) and F(k) = "®(6y, ..., 0,.1)". With
(i*), we then have "®(0', ..., 0'.1)" € G(k+1) < URan(G). m

Theorem 6-10. Every Hintikka set is Ly-satisfiable
If X is a Hintikka set, then X is satisfiabley.

Proof: Suppose X is a Hintikka set. Now, let A = {(8, 6") | (8, 6") € CTERMy x CTERMy
and "0 =0" € X}.

Then it holds that A is an equivalence relation on CTERMy. Concerning reflexivity, we
have, according to Definition 6-2-(xv), that "0 = 8" € X and thus (6, 8) € A. Now for
symmetry, suppose (0, 0" € A. Then we have "6 = 0" e X and, as we have just shown,
"=0" € X. Thuswe have "0 =0" € X and "0 =6" e X and thus (with 6 for 6o, 6,, and
0'; and 6" for 6'g and "0 = 07 for "®(6y, 6,1)" and "0' = 6" for "d(6', 6'1)"), according to
Definition 6-2-(xvii), also "0' = 67 € X. Therefore (0, 6") € A. Now for transitivity, sup-
pose (0, 0") € A and (0", 6*%) € A. Thenitholds: "6 =07 € X and "0'=6*" e X. Also, as
we have shown, it holds that "0 = 6" € X. Thus it holds (with 6 for 6, and 6'g and 6' for 6,
and 6* for 6’y and "0 = 6™ for "®(6, 6;)" and 6 = 6*" for "®(6, 6'1)"), according to
Definition 6-2-(xvii), also that "0 = 6*" e X and thus that (8, 6*) € A.
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Now, for all 6 e CTERMy let [6], = {0" | (0, 0") € A}. Since A is an equivalence rela-
tion on CTERMy, it then follows that

a) Forall 0 € CTERMy: 0 € [0] .
b) For all 8, ' € CTERMy;: [0], = [0, iff (6, 0') € A iff 9=0" € X.
c) Forall 0, 0' e CTERMy: If [0], n [07, # 0, then [0], = [07],.

The second equivalence in b) follows from the definition of A.

Now, let D, = CTERMu/A = {[0], | 6 € CTERM4u}. In addition, let I, be a function
with Dom(I,) = CONST u CONSTNEW u FUNC u PRED, where for all o € CONST u
CONSTNEW: I (o) = [a], and for all ¢ € FUNC: If ¢ r-ary, then I (¢) = {([00],, .-,
[0,-1] ), [6*1) | (B0, ..., B,2), 0%) € 'CTERMy x CTERMy and "@(0p, ..., 0,.1) = 0*" €
X} and for all ® € PRED: If @ r-ary, then I (®) = {{[00],, ..., [0,1],) | B0, ..., 0,-1) €
"CTERM}; and "®(0y, ..., 6,.1)" € X}. Lastly, let b, be a function with Dom(b,) = PAR
and for all € PAR: b,(B) = [B],.

According to Definition 5-14, I, is then an interpretation functiony for D,. First, it holds
for all o € CONST u CONSTNEW: I (o) = [a], € D,. Now, suppose ¢ € FUNC, ¢ 7-
ary. Then we have I,(¢) = {({[0],, --., [6-1] ), [6%],) | ((Bo, ..., 6,.1), 0%) € "CTERMy x
CTERMy and "o(6y, ..., 6,.1) = 0*" € X}. Thus we have I (o) < TDX x D,. Now, sup-
pose {(do, ..., A1) € TDX. Then there are 6y, ..., 0,., € CTERMy such that for all : < r: a;
= [0;] . With Definition 6-2-(xv), we also have "@(0o, ..., 0,.1) = ¢(0o, ..., 0,1)" € X and
thus ({[00],, .- [0:1]), [@(Bo, ..., 6,1)],) € I(9) and therefore (o, ..., d,1) €
Dom(I (¢)). Now, suppose ({(do, .., ,-1), a*) € I(¢) and (4o, ..., a,1), a*) € L(o).
Then there are 0y, ..., 6,-1 and 0* such that for all i < r: a; = [6]], and a* = [0*], and ({0,
..., 0,.1), 0%) € '"CTERMy x CTERMy and "o(0o, ..., 0,.1) = 0*" € X and there are 6',
..., 0.1 and 0" such that for all i < 72 a; = [0'], and a” = [0"], and ({8, ..., 0.1), 07) €

"CTERMy x CTERMy and "o(0Y, ..., 0'1) =0 e X. Then we have for all i < r: [61, =
a; = [0],. Thus it holds that for all i < r: (0, 0') € A and thus "0; = 0" € X. According
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to Definition 6-2-(xvi), we then have that "o(0y, ..., 0,.1) = (0%, ..., 0'.1)" € X and thus,
with b), that ["@(6o, ..., 6,1)"1, = ["@(0', ..., 6'1)"],. With "o(Bq, ..., 6,1) = 6*" € X
and "(0', ..., 0'-1) = 0" e X and b), we then also have ["o(6q, ..., 6,.1)"], = [6*], and
["o(0, ..., 01)"], = [6"], and thus a* = [6*], = [6"], = a". Altogether, we thus have

that I, (o) is an r-ary function over D,. Furthermore, we have for all ® € PRED: If ® is r-

ary, then I (®) < 7"DX. Lastly, we have I.("=") = {(a, a) | a € D,}. To see this, suppose
(a,a’) e I("="). Then there are 0, 0' € CTERMy such that a = [0], and a' = [0'], and "0
=07 e X. With b), we thus have a = [6], = [0'], = a'. Now, suppose a € D,. Then there
isa 6 € CTERMy, such that a = [0] ,. According to Definition 6-2-(xv), we have "6 = 0"
e X and thus (a, a) € I("="). According to Definition 5-2,, (D

X

, 1) is hence a modely.
Also, we can easily convince ourselves that b, is a parameter assignmenty for D..

Morevover, it holds for all ¢ € FUNC that if ¢ is r-ary and 6y, ..., 6,.; € CTERMj,
then I (9)({[0a] s .-+, [0+-1] ) = ["@(O0, ..., 0,1)"],. To see this, suppose ¢ € FUNC, ¢ is
r-ary and 0o, ..., 6,1 € CTERMy. With Definition 6-2-(xv), we have "o(0y, ..., 0,.1) =
¢(0o, ..., 0,1)" € X and thus (([6c],, ..., [0,1] ), [0(B0, ..., 6,1)],) € L (¢). Thus we have
L(@){[0],, -, [0-1] ) = [T0(O0, ..., 0,.1)7],.

Now we will show that for all ® € PRED: If ® is r-ary and 0y, ..., 6,.; € CTERM4,
then: ([0o] ,, ..., [0,-1],) € I(®) iff "®(0y, ..., 0,.1)" € X. For this, suppose ® € PRED, ®

is r-ary and 0y, ..., 0,1 € CTERMy. First, suppose ([0o] ,, ..., [0-1] ) € I (®). Then there

are 0%, ..., 0’1 such that for all z < r: [0]], = [0"], and (0, ..., 0'.1) € 'CTERMy and
"0, ..., 0'.1)" e X. With b), it then holds for all i < r: "0, = 0" e X. With the symme-
try shown above, it then follows that for all : < r: "0, = 6," € X. Also, we have "®(0", ...,
0'.1)" e X and thus, according to Definition 6-2-(xvii), also "®(6y, ..., 6,.1)" € X. Now,
suppose "®(0y, ..., 0,.1)" € X. Then it follows easily that ([6]o, ..., [0],-1) € I (D).

Moreover, it follows with Theorem 5-2, by induction on the complexity of 6 that for all
0 € CTERMy: TD(®, D,, I, b)) = [6],. To see this, suppose a € CONST u

CONSTNEW. Then we have TD(w, D,, I, b,) = I.(a) = [a] ,. Suppose p € PAR. Then we
have TD(B, D,, I, b,) = b,(B) = [B],. Now, suppose the statement holds for 6y, ..., ,.1 €
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CTERMy and suppose "¢(6o, ..., 0,.1)" € FTERMy. Then we have TDu("o(6o, ..., 6,-1)",

D, 1,b,)=I1(e)(TD(6o, D,, I, b,), ..., TDu(6,.1, D,, I, b,))) and thus, with the I.H.,

TDu("o(80, ..., 6:4)", D, I, b) = L(9)({[60],,, .-, [6-1])) = ["@(Bo, ..., 6,0)],.
Furthermore, it follows that for all A € AFORMy: D, I, b, =4 A iff A € X. To see

this, suppose A € AFORMy. Then there are ® € PRED, ® r-ary, and 0y, ..., 0,1 €
CTERMy such that A = "®(8y, ..., 6,.1)". Then it holds that

D,I,b, =y A

iff

D, I, b, =y "0, ..., 6,1)"
iff

(TDw(bo, D, I, b)), ..., TDu(0,-1, D, L, b)) € I(®)
iff

(6o, -, [0];-2) € 1(D)

iff

"0, ..., 0,4)" € X

iff

AeX.

Now we will show by induction on FDEGK(I'): If ' € X, then D, I,, b, =4 T and if
'—I" e X, then D,, I,, b, ¥ I'. From this follows immediately D,, I,, b, = X and thus
that X is satisfiabley.

Suppose the statement holds for all £ < FDEGH(I'). Now, suppose FDEGH(I') = 0. Then
we have I' € AFORMy. Now, suppose I' € X. Then it holds that D,, I, b, =4 T'. Now,
suppose —I" e X. With Definition 6-2-(i), we then have I' ¢ X and thus D,, I, b, ¥4
T.

Now, suppose FDEGH(I") > 0. Then we have I' € CONFORMy u QFORMy. First, we
will now show: If ' € X, then D,, I, b, = T. For this, suppose I' € X. We can distin-
guish seven cases. First: Suppose I' = "—B™". Then we have FDEGy(B) < FDEGK(I') and
thus, according to the I.H., D,, I,, b, #4 B and hence D,, I,, b, =4 "—B™ =T. Second:
Suppose T' = "A A B". With Definition 6-2-(iii), it then holds that A, B € X. Since
FDEGH(A) < FDEGHK(I') and FDEGH(B) < FDEGHK(I'), we thus have, according to the



264 6 Correctness and Completeness of the Speech Act Calculus

I.H., that D,, I, b, =4 A and D, I, b, =y B and thus D,, I, b, =4 "A A B™ =T. The
third to fifth case are treated analogously.
Sixth: Suppose I' = "AEA™. With Definition 6-2-(xi), it then holds that [0, &, A] € X for

all 6 € CTERMy. Since, according to Theorem 1-13y, it holds for all 8 € CTERMy that
FDEGH([0, &, A]) < FDEGH(T'), we thus have, according to the I.H., for all 8 € CTERMy:
D, I, b, =4 [0, & A]. Now, let B € PAR\STK(A) and let b' be in B an assignment vari-
anty of b, for D,. Then we have b'(B) € D, and hence there is a & € CTERMy, such that
b'(B) = [6],. Then we have TDy(6, D,, 1, b,) = [6] , and hence b'(B) = TDw(8, D, I, b,).
Because of D, I,, b, =4 [0, &, A], it then follows, with Theorem 5-9y-(ii), that D,, I,, b’
Fu [B, & A]. Therefore we have for all b' that are in  assignment variantsy of b, for D,:
D,, I, b' =4 [B, & A]. According to Theorem 5-8-(i), we hence have D,, I, b, =y
"AEAT =T

Seventh: Suppose I = "VEA™. With Definition 6-2-(xiii), there is then a 8 € CTERMy
such that [0, & A] € X. According to Theorem 1-13y, we then have FDEGH([6, &, A]) <

FDEGH(I'). According to the I.H., we thus have D,, I, b, =y [0, & A]. Now, let B ¢
STh(A). Now, let b* = (b\{(B, b.(B))} v {(B, [6],)}. Then b'"is in B an assignment vari-
anty of b, for D, with b'(B) = [6],. Also, we have TDy(8, D,, I,, b,) = [6], and hence
b'(B) = TDw(®, D,, I, b,). Because of D,, I,, b, =4 [0, & A], it then follows, with
Theorem 5-9y-(ii), that Dy, I, b' =q [B, &, A]. Therefore there is a b' that is in B an as-
signment varianty of b, for D, such that D,, I,, b' =4 [B, &, A]. According to Theorem
5-8y-(ii), we hence have D,, I, b, =4 "VEA™ =T..

Now, we will show that if "—I"" € X, then D,, I, b, # I'. Suppose "—I"" € X. Re-

member that, by hypothesis, 0 < FDEGH(I"). Thus we can distinguish seven cases. First:

Suppose I' = "—B™. With Definition 6-2-(ii), we then have B € X. Since FDEGK(B) <
FDEGy(I'), we then have, according to the I.H., that D,, I, b, =4 B. With Theorem
5-4y-(ii), we then have D,, I,, b, ¥y "—B™ = I'. Second: Suppose I' = "A A B™. With
Definition 6-2-(iv), we then have "—A™ € X or —B" € X. Since FDEGK(A) <
FDEGH(I') and FDEGK(B) < FDEGH(I'), we then have, according to the I.H., that D,, I,
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b, #n A or Dy, I,, b, ¥y B. With Theorem 5-4y-(iii), it follows that D,, I, b, ¥y "A A
" =T. The third to fifth case are treated analogously.
Sixth: Suppose T' = "=AEA™. With Definition 6-2-(xii), there is then a 6 € CTERMy
such that —[0, & A] € X. According to Theorem 1-134, we have FDEGK([0, &, A]) <

FDEGH(I'). According to the I.H., we thus have D,, I, b, ¥y [0, & A]. Now, let B ¢
STw(A). Now, let b' be in B the assignment varianty of b, for D, with b'() = [6],. Then
we have TDy(8, D,, I, b,) =[], and hence b'(B) = TDw(6, D,, 1, b,). Because of D,, I,,
b, ¥4 [0, &, A], it then follows, with Theorem 5-9y-(ii), that D,, I,, b' ¥y [B, &, A]. There-
fore there is a b’ that is in B an assignment varianty, of b, for D, such that D,, I, b' ¥4 [B,
&, A]. With Theorem 5-84-(i), we hence have D,, I, b, #y "NEA™ =T.

Seventh: Suppose I' = "—VEA™. With Definition 6-2-(xiv), it then holds for all 6 €
CTERMy that ™[0, & A]" € X. According to Theorem 1-13y, it holds for all 6 €
CTERMy that FDEGK([0, &, A]) < FDEGy(T'). According to the I.H., it thus holds for all 6
e CTERMythat D, I, b, B4 [0, &, A]. Now, let B ¢ ST(A) and suppose b'is in 3 an as-
signment varianty of b, for D,. Then we have b'(B) € D, and hence there is a 0 <
CTERMy such that b'() = [6],. Then we have TD(0, D,, I, b,) = [6], and hence b'(p)
= TDw(0, D,, I, b,). Because of D,, I, b, ¥y [0, &, A], it then follows, with Theorem
5-9y-(ii), that D,, I, b' 4 [B, &, A]. Therefore we have for all b' that are in B assignment
variantsy of b, for D, that D,, I, b' ¥y [B, &, A]. With Theorem 5-8,-(ii), we hence have
D,, I, b, ¥y "VEA™.

Thus we have shown: If T € X, then D,, I, b, =4 T and if —I"" € X, then D,, I, b,

#n . According to Definition 5-17y and Definition 5-9, it follows from the first part

alone that X is satisfiabley. m

Theorem 6-11. Model-theoretic consequence implies deductive consequence

Forall X, T: If X =T, then X —T.

Proof: Suppose X &= T'. According to Definition 5-10, we then have X u {I'} € CFORM
and thus also X u {"—I""} < CFORM. With Theorem 5-12, we have that X v {"=I["} is

not satisfiable. Now, suppose for contradiction that X u {™—I"} is consistent. With
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Theorem 6-9, there would then be a Hintikka set Z such that X v {"—=I"} < Z. With
Theorem 6-10, Z would be satisfiabley. With Theorem 5-11y, we would then have that X
u {"—I"} is satisfiabley. But then we would have, with Theorem 6-5, that X v {"—I""}
is satisfiable. Contradiction! Therefore X u {"—I"} is not consistent and thus inconsis-

tent. With Theorem 4-22, it then follows that X —T". m

Theorem 6-12. Compactness theorem
(i) M XET, thenthereisaY < Xsuchthat|Y|e Nand Y =T,
(i) If X < CFORM, then: X is satisfiable iff it holds for all Y < X with |Y| € N that Y

is satisfiable.
Proof: Ad (i): Suppose X = I'. With Theorem 6-11, it then follows that X - I". According
to Definition 3-21, there is therefore an $ such that $) is a derivation of I from AVAP($)
and AVAP($) < X. According to Theorem 3-9, we then have |[AVAP($)| € N. Accord-

ingt to Definition 3-20, we also have $ € RCS\{0} and thus, with Theorem 6-1, also
AVAP($H) = T'. Hence we have (i).
Ad (ii): Suppose X < CFORM. The left-right-direction follows directly from Theorem

5-11. Now, for the right-left-direction suppose all Y < X with |Y| € IN are satisfiable.
Suppose for contradiction that X is not satisfiable. With Definition 5-17, there would then
be no D, I, b such that D, I, b = X. According to Definition 5-10, we would then have
X B "(cop = Cg) A—(Co = Cg)". With (i), there isthen Y < X such that |Y| e Nand Y &=
"(co = o) A—(Co = Co)". Suppose for contradiction that there are D, I, b such that D, I, b
= Y. According to Definition 5-9, (D, I) would then be a model and b would be a pa-
rameter assignment for D. According to Definition 5-10, we would also have D, I, b =
"(Co = Cg) A —(Co = Co)". With Theorem 5-4-(ii) and -(iii), it would then hold that D, I, b
E"co=Co' and D, I, b ¥ "co = ¢y . Contradiction! Thus Y is not satisfiable though |Y]

IN, which contradicts the assumption. Hence X is satisfiable. m









Ve Retrospects and Prospects

We have developed a pragmatised natural deduction calculus for which it holds that: (i)
Every sentence sequence § is not a derivation of a proposition from a set of propositions

or there is exactly one proposition I" and one set of propositions X such that §) is a deriva-
tion of I from X, where this can be determined for every sentence sequence without re-

course to any meta-theoretical means of commentary. (ii) The classical first-order model-
theoretic consequence relation is equivalent to the consequence relation for the calculus.
We assumed a language L, where L is an arbitrary but fixed language with certain proper-
ties: The development of the calculus and its meta-theory can therefore be applied to all
suitable languages.

We believe that this calculus is suited to support the claim that usual practices of infer-
ence can be established or modelled solely by setting up systems of rules, where the im-
plementation of these practices does not require any meta-theoretical support practices
(like, for example, an additional practice of commenting). Confessionally: Inferring in a
language consists in the performance of (rule-respecting) speech acts in this language and
not in the performance of speech acts in this language and concomitant meta-theoretical
speech acts. For short: Inferring in a language is performing speech acts in this language.
These theses have to be substantiated philosophically.

Also, some further meta-theoretical work seems in order, e.g. extending the complete-
ness result to non-denumerably infinite languages and a precise investigation of the rela-
tionships between the individual rules of the calculus. So, one could investigate in which
sense the logical operators are interdefinable. Also, it seems worthwhile to examine how
the approach we have taken can be extended so as to include speech-act rules for the
speech acts of positing-as-axiom, defining, stating and adducing-as-reason and for the use
of modal and description operators etc. Further, it has to be examined how derivations in
the calculus can be simplified by introducing admissible rules. Last but not least, a
propaedeutic version of the calculus is to be established, where such a version should also
demonstrate that in order to establish the availability concepts and the rules of the calcu-
lus solely for application purposes, one does not require genuinely set-theoretical vocabu-

lary.
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