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Abstract The aim of this article is to explain why knot diagrams are an effective
notation in topology. Their cognitive features and epistemic roles will be assessed.
First, it will be argued that different interpretations of a figure give rise to different
diagrams and as a consequence various levels of representation for knots will be
identified. Second, it will be shown that knot diagrams are dynamic by pointing at
the moves which are commonly applied to them. For this reason, experts must
develop a specific form of enhanced manipulative imagination, in order to draw
inferences from knot diagrams by performing epistemic actions. Moreover, it will be
argued that knot diagrams not only can promote discovery, but also provide evi-
dence. This case study is an experimentation ground to evaluate the role of space
and action in making inferences by reasoning diagrammatically.

1 Introduction

In recent years, an interest has been growing among scholars towards the practice of
mathematics, with the aim of explaining its internal mechanisms and methodologies.
As Mancosu (2008, p. 2) summarizes, ‘‘the epistemology of mathematics needs to be
extended well beyond its present confines to address epistemological issues having to
do with fruitfulness, evidence, visualization, diagrammatic reasoning, understanding,
explanation and other aspects of mathematical epistemology which are orthogonal to
the problem of access to ‘abstract objects’.’’
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In this article, we aim at identifying and discussing the role of diagrammatic reasoning
in one particular branch of mathematics: knot theory. As Mancosu continues, ‘‘Certain
philosophical problems become salient only when the appropriate area of mathematics is
taken into consideration.’’ Knot theory seems to us particularly well-suited to provide
epistemological insights into one mathematical practice involving diagrams.

Knot theory is very rich in heterogeneous calculations and symbols, and for this
reason it is an interesting case study to appreciate the productive role of notations. As
Colyvan (2012, Ch. 8) has recently pointed out, developing an effective notation is
crucial in the practice of mathematics: Notation has a role in advancing mathematics and
contributes to mathematical understanding. Brown (1999, Ch. 6) claims that knot
diagrams have computational power and therefore are a particularly good and effective
notation. In accordance to this claim, we aim at unfolding the conditions for this
computational power and more generally for knot diagrams’ effectiveness in prompting
inference. First, we will draw attention to the procedures that knot diagrams make
available. Muntersbjorn (2003, p. 167) has suggested that one of the principal heuristics
governing the growth of mathematics is to make the implicit explicit, which most of the
times means to make explicit ‘‘not premises, or propositions about mathematical objects,
but rather procedures, or ways of engaging mathematical objects.’’ Following this line of
thought, we will propose a framework in which a diagram is dynamic in the sense that it
is related to procedures and possible moves. Second, we will argue that knot diagrams
have at the same time diagrammatic and symbolic elements, and therefore the traditional
dichotomy between visual and linguistic reasoning cannot capture them. This would
help define a ‘‘more discriminating and more comprehensive’’ taxonomy for
mathematical thinking, going beyond twofold divisions (Giaquinto 2007, p. 260).

In order to set up the framework we propose the following terminology. By figure,
we mean a physical object, for instance drawn on a piece of paper or shown on a
computer screen. A figure per se does not have a meaning; in order to become
meaningful, it has to be considered inside a particular context of use, and therefore
interpreted in such a context. It is only when the intention behind the figure is
recognized that the figure is seen as a representation and as a consequence it becomes
an illustration or a diagram. By illustration, we mean a static representation, which
can be useful by conveying information in a single display, but where modifications
are not well-defined. By diagram, we mean a dynamic representation, on which we
can perform moves that can count as inferential procedures. Diagrams are dynamic
inferential tools that are modified and reproduced by the experts for various epistemic
purposes. They do not only represent strategies to solve problems but also give
evidence for their solutions. We propose an operational account for knot diagrams,
based on: (i) the moves allowed on them and (ii) the space they define.

We argue that these definitions are not stipulative, but in line with the jargon
typical of this specific practice. Experts have acquired a form of imagination that
prompt them to re-draw diagrams and calculate with them, performing epistemic
actions (Kirsh and Maglio 1994).1 This imagination derives from our interaction

1 Kirsh and Maglio distinguish between pragmatic actions, i.e.‘‘actions performed to bring one physically
closer to a goal’’, and epistemic actions, i.e. ‘‘actions performed to uncover information that is hidden or
hard to compute mentally’’, by examining their role in Tetris, a real-time, interactive video game.
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with concrete objects and our familiarity with manipulating them. In topology,
which is informally referred to as ‘rubber-band geometry’, a practitioner develops
the ability to imagine continuous deformations. Manipulations of topological
objects are guided by the consideration of concrete manipulations that would be
performed on rubber or other deformable material.2

In Sect. 2, we will introduce knot theory and identify different representational
‘levels’ for knots, with various forms and epistemic roles. In Sect. 3 we will
consider knot diagrams ‘in action’, by presenting examples of diagrammatically
defined invariants. In Sect. 4 we will discuss our case study in the light of our
considerations about diagrammatic reasoning and notations. In Sect. 5 we will sum
up possible conclusions and hint at future directions of research.

2 Knot Theory and Its Representations

2.1 Mathematical Knots in a Nutshell

We introduce mathematical knots preserving a rigorous presentation without
entering into details not essential to our analysis.3

Definition 1 A knot is a smooth closed simple curve in the Euclidean
3-dimensional space.4

We can think of mathematical knots as abstractions of physical knots: They have
no thickness, since a curve has just one dimension, and they are closed—the ends of
the curve are glued together. A knot is not only a curve, but a curve in space, i.e. an

embedding of a circle in R3. From an intrinsic point of view, any knot is
topologically equivalent to a circle, however from an extrinsic point of view knots
may be different from each other in the sense that it may be impossible to unravel a

knot in R3 without cutting and gluing so as to form a circle or a different knot.
Definition 1 is not enough to determine which knots are equivalent.

Definition 2 Two knots are equivalent if there is an ambient isotopy5 transforming
one into the other. A knot type is a class of equivalent knots.

2 We are developing an account of the peculiarities of the practice of low-dimensional topology with
particular focus on proving, using different kind of diagrams and visual material in general (De Toffoli
and Giardino, forthcoming).
3 See Adams (1994) or Lickorish (1997) for introductory manuals.
4 The vast majority of knot theory only deals with tame knots, i.e. knots that admit a diagram with only a
finite number of intersection points. This restriction is meant to ban so-called wild knots, which are
‘‘monsters’’ in Lakatos’ terminology. Every tame knot is equivalent to a smooth knot, that is why it is
common to consider only smooth knots or other equivalent categories. A simple curve is a curve without
self-intersections.
5 Two knots K1 and K2 are ambient isotopic if there exists a continuous map: h : R3 ! ½0; 1#! R3; with

ht(x) : = h(x, t), such that (i) ht : R3 ! R3 is a homeomorphism for all t, (ii) h0 ¼ id and (iii)
h1(K1) = K2. Ambient isotopies model the deformations on knots that we can perform without cutting
and then pasting the two cut ends.
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This equivalence relation is very intuitive: It captures the intention of describing
the ‘knottedness of knots’ and not their particular geometric shape, by focusing on
topological properties that remain unchanged under deformations like stretching
them or moving them around. In knot theory the term ‘knot’ is often interchanged
with ‘knot type’. Even if this causes no confusion to the working mathematician
(Lickorish 1997, p. 2), our assumption is that it is philosophically relevant to unveil
conceptual differences by disambiguating terms as much as possible.

2.2 From Illustrations to Diagrams

The main problem in knot theory is to recognize whether two knots are equivalent.
This can be a challenge even for the simplest knot type, called the unknot—that is,
as the name suggests, a not knotted knot type.

Figure 1 shows three two-dimensional figures which are easily interpreted as
three-dimensional objects thanks to the fact that the curves are represented as
having thickness and being sensitive to light. In the proposed framework, they are
illustrations of knots. We can think of illustrations as pictures of knots, taken from
different points of view, some of which give rise to chaotic representations. For this
reason, despite following some general standards—such as to suggest three-
dimensionality—and being a first informal access to knots, illustrations are not
sufficiently constrained and are in some cases mathematically useless. With the
exception of Fig. 1a that clearly represents the unknot, it is difficult to recognize
whether this is also the case for the other two. Consider Fig. 1b. One way to
determine whether the underlying knot is knotted or not would be to take a rope and
give it the form depicted; then, after gluing its ends, check if it remains knotted by
moving it around. Nonetheless, if we consider Fig. 1c, even this naive strategy
cannot be undertaken. In fact, this illustration hides the relevant information.

To provide more controlled representations, knot diagrams are introduced. In
order to draw a diagram for a knot, we project it on a plane, by keeping track, for
each crossing in the projection, of which arc goes over and which under. Not all
projection directions are allowed, since the projection must be regular, i.e. (i) the
intersection points are in finite number, (ii) they are transversal and (iii) no more
than two arcs meet at a time. These requirements prevent the emergence of messy
representations. For example, Fig. 1c cannot correspond to a diagram—even if we

Fig. 1 Illustrations of the unknot
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remove thickness and add the appropriate interruptions at crossings—as it violates
the conditions that intersections are transversal and only two arcs meets at a given
intersection point.

Definition 3 A knot diagram is a smooth regular projection of a knot onto a plane
with relative height information at the intersection points.

Definition 4 A knot diagram D represents a knot K if and only if D is a regular
projection of K. A knot diagram D represents a knot type K if and only if there
exists a knot K of type K such that D represents K.

For every knot, and therefore for every knot type, there exists a diagram
representing it (Cromwell 2004, Theorem 3.3.2). However, the same knot type
admits different diagrams: This is due to the choice of (i) one particular
representative knot from the equivalence class and (ii) a direction of projection.
Moreover, because of (ii), the same knot admits different diagrams. Conversely, two
different knots of the same knot type may be represented by the same diagram due
to the fact that by projecting we lose information.

Knot diagrams are in a sense privileged points of view on knots and knot types: They
display only a certain number of properties by selecting the relevant ones. If illustrations
are analogous to pictures, diagrams are like maps. In order to draw a map, it is required
to define conventions that would make it legible. Nevertheless, these conventions are
not completely arbitrary: In the case of knot diagrams they are intended to suggest
three-dimensionality. We interpret knot diagrams as ‘almost’ entirely on a plane:
Despite their being two-dimensional, the interruptions of the segments, as for example
in the diagrams of Fig. 2, are seen as occlusions. This is extremely useful because it
allows us to treat these diagrams as quasi-concrete objects: We imagine possible
transformations on them that would leave the corresponding knot type unchanged. It is
this interpretation that guides us among the diagrams representing equivalent knots.

Unlike illustrations, knot diagrams have the twofold role of representing and
being mathematical objects in themselves: They are not only representations of knot
and knot types, but also images of functions p(K) with relative height information at
the intersection points, where p is a regular projection onto a plane and K is a knot.
Because they are representations, we can modify them, leaving the knot type
unchanged; because they are mathematically defined objects, we can operate
mathematically and calculate with them and draw conclusions in a reliable way.

Theoretically, a single diagram is sufficient to infer all the properties of a knot type,
since it determines it univocally. Notwithstanding, in the practice it is not possible to

(a) (b)

Fig. 2 Two diagrams
representing the unknot
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extract all the properties of a knot type from one diagram: Each diagram is a point of
view on a knot type and therefore displays only certain properties of it. For example,
both diagrams in Fig. 2 hide the property of being unknotted of the corresponding knot
type. We can transform the first into the second by ‘pulling’ the middle arc down. This
move alone only allows us to conclude that both diagrams represent equivalent knots;
to see that they actually represent the unknot we would have to apply further similar
moves. In the following, we present a formalization for these moves.

2.3 Possible Moves

Many different geometric shapes are possible for knot diagrams. Nevertheless, in
general knot diagrams, like knots, are considered up to topological equivalence.

Definition 5 Two knot diagrams are equivalent if there is an ambient isotopy of
the plane transforming one into the other. A topological knot diagram is a class of
equivalent knot diagrams.

Definition 6 A topological knot diagram D represents a knot K if and only if there
exists a diagram D in the class D such that D represents K. A topological knot
diagram D represents a knot type K if and only if there exists K of type K and D in
the class of D such that D represents K.

By these definitions, the diagrams in Fig. 3 not only represent the same knot type
but are actually equivalent diagrams, that is the same topological diagram.

Despite the fact that knot theorists commonly deal with topological knot diagrams,
they also need to discriminate among equivalent diagrams through their different
geometric properties. To work with topological diagrams, experts have to choose one
geometric representative and this choice is not arbitrary. For example, some are more
convenient than others: All three diagrams in Fig. 3 are equivalent—and thus the
same if considered topologically—but the diagram in Fig. 3c is confusing because it
presents useless geometric properties—that is why a diagram such as this is never
used in the practice. Moreover, there are particular geometric properties, such as the
presence of symmetries, which can be used to infer properties of the represented knot
type. In the same example, the diagrams in Fig. 3a and in Fig. 3b, which are the same
diagram also if considered geometrically, display a clear symmetry of order four,
while the diagram in Fig. 3c does not. It is the context of use that determines whether
a diagram is considered as embedded in a geometrical or a topological space.

(a) (b) (c)

Fig. 3 Three equivalent diagrams of the knot type 818
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We define now a series of moves on topological knot diagrams that connect
different topological diagrams representing the same knot type: the three
Reidemeister moves. These moves are local modifications, as depicted in Fig. 4.

Move I consists in inserting or deleting a buttonhole, Move II in sliding an arc under
another and Move III in sliding an arc under a crossing. If one interprets the elements of
the figures correctly, as overlapping threads constituting a knot diagram, it is easy to see
that these moves do not alter the underlying knot type. Reidemeister’s Theorem
(Cromwell 2004, Theorem 3.8.1) shows that through a finite sequence of these three
moves we can connect any two diagrams representing the same knot type. For example,
the move used to go from the diagram in Fig. 2a to the one in Fig. 2b, can be
decomposed in three Moves III. Of course, since these moves are defined on topological
knot diagrams, a representative of a class can be modified also via ambient isotopies,
but these are part of the definition of the space in which the diagram is embedded.
Reidemeister’s Theorem allows us to define an equivalence relation *R between knot
diagrams considered topologically—and thus between classes of geometric diagrams.

Definition 7 Two topological knot diagrams are Reidemeister-equivalent if there
is a finite sequence of Reidermeister moves transforming one into the other.

This dynamics defined on diagrams is what actually connects them to knot
types.6 From the Reidemeister’s Theorem we obtain the following proposition,
which enables us to identify a knot type with a class of topological knot diagrams.

Proposition 1 Let K and K0 be two knots. Then, K * K0 if and only if there exists
D representing K and D0 representing K0 such that D is in the class D;D0 is in the
class D0 and D% RD0.

2.4 Different Spaces

We propose now a classification for knot diagrams according to the different moves
that are allowed on them, so as to make explicit the various possible interpretations
that are common in the practice.

LetD0 be the kind of knot diagram interpreted in a geometric space, where lengths and
angles count, as in Definition 3. Modifications leaving Euclidean properties invariant
are still allowed, i.e. rigid motion. For example, Fig. 3a and in Fig. 3b represent the

Fig. 4 The three Reidemeister moves

6 It is also possible to partially translate diagrams and moves on them into codes (Adams 1994, Ch. 2).
Many of such codes (like the Dowker Code) have been developed to the aim of using computers in order
to classify knots. However, the possibility of translating a knot type or diagram into a code, that is their
potential inter-translatability, does not tell us anything about the way in which diagrams are interpreted
and effectively used in the practice of knot theory.
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same diagram of typeD0: LetD1 be the standard kind of knot diagram considered in a
topological space, where more modifications, i.e. ambient isotopies of the plane, can
be performed on a diagram without transforming it into a distinct one. A D1 kind of
diagram is a class of diagrams ofD0 kind by the equivalence relation * introduced in
Definition 5. LetD2 be the kind of knot diagram on which also the Reidemeister moves
are allowed: A D2 kind of diagram is a diagram up to a further extended set of
modifications. More precisely, it is a class of diagrams ofD1 kind by the equivalence
*R introduced in Definition 7. Proposition 1 tells us that a knot type can be identified
with a D2 kind of diagram. In these different definitions of knot diagrams, more and
more objects are grouped together in the same class and treated as equal. A diagram is
always generic until a certain degree, identified by its belonging to one of the
previously defined classes. More in general, based on various sets of moves, which can
also be different from the ones mentioned here7, we can create hierarchies of diagrams.

In turn, these diagrams form different spaces. We define the space S0 as the one
formed by all diagrams of D0 kind and similarly the spaces S1 and S2 as formed by
all diagrams of D1 and D2 kind respectively.

Then the following holds: S1 ’ S0=fAmbient isotopiesg ¼ S0=% . The space S1

can be seen as a quotient8 of S0: All elements which can be connected by ambient
isotopies are identified. Furthermore we have: S2 ’ S1=fReidemeister movesg ¼
S1=% R:The spaceS2 can also be obtained from S0:S2 ’ ðS0=fAmbient isotopiesgÞ=
fReidemeister movesg ¼ ðS0=%Þ=% R. There is a bijection between the spaceS2 and
the space of knot types.

If diagrams emerge from a figure only once their possible moves, and consequently
their space, are fixed, then their use is connected to their dynamics. Experts perform
actions on diagrams by re-drawing them in appropriate ways, according to the way
they interpret them. For this reason, novices need to train their imagination in order to
recognize the various possible moves on diagrams, and then be able to effectively use
them. Moreover, these manipulations are similar to the manipulations we can perform
on concrete objects, but instead of having a pragmatic aim, they have an epistemic one
(Kirsh and Maglio 1994). The use of diagrams triggers a form of manipulative
imagination that gets enhanced by the practice. Thanks to this imagination, knot
diagrams become an effective notation to make operations and calculations: According
to specific aims, we can form sequences of diagrams connected by specific moves.

3 Diagrams in Action: Knot Invariants

On the basis of the above classification, it is possible to study knot types from
diagrams. One way is to define invariants via diagrams. An invariant is a mathematical
element associated to knots that depends only on the knot type, e.g. a number or an
algebraic structure. We will present examples of diagrammatically defined invariants,
in order to show that (i) knot diagrams can have an evidential role and (ii) it is

7 The moves presented here are basic in knot theory. However, other moves can be defined for more
specific aims. See for example the Kirby calculus for surgery equivalences (Kirby 1978).
8 Let X be a topological space and * an equivalence relation on it. The quotient space Y = X / * is
defined to be the set of equivalence classes of elements of X.
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necessary to use more than one diagram representing the same knot type in order to
appreciate its different properties. To define an invariant, we can start by defining a
property on a D1 kind of knot diagram and then make sure that it is preserved under
Reidemeister Moves; this is a crucial consequence of Reidemeister’s Theorem.

3.1 3-Colorability

Consider a D1 kind of knot diagram. We fix three colors and color each of its arcs.
The diagram is 3-colorable if it admits a coloring such that: (i) each arc is colored
by one color, (ii) the three arcs that meet at each crossing are all of the same color or
all of different ones, (iii) at least two different colors are used. Undoubtedly, the
minimal diagram9 of the unknot, which has no crossings, does not admit such a
coloring. On the contrary, a minimal diagram of the trefoil knot is 3-colorable, as
depicted in Fig. 5—where the colors are represented with various dotted lines.

To prove that 3-colorability is a property of the knot type and not of one particular
diagram, we have to check that it is preserved under Reidemeister moves. Consider
inserting locally a buttonhole, that is performing a Move I in one direction. If the diagram
is 3-colorable it remains so. We just keep the coloring: The new crossing will satisfy
condition (ii)—the three arcs will have the same color. If the diagram is not 3-colorable it
cannot become so. Two arcs of the new crossing are actually the same and therefore have
the same color: This implies that also the third arc must be colored in the same way. The
unfilled condition remains unfilled after such a move, since it is a local modification and
cannot influence the coloring of the diagram near other crossings. Similarly, the other
Reidemeister moves preserve the 3-colorability (Adams 1994, pp. 24–25).

The trefoil knot is 3-colorable, while the unknot is not, and thus they cannot be
equivalent. Therefore, this invariant allows us to prove the existence of non-trivial
knots, i.e. knots which are not equivalent to the unknot. Despite being intuitively
clear, the existence of such knots needs to be proven.

3.2 Unknotting Number

Consider another invariant: the unknotting number of a knot type, i.e. the minimal
number of crossing changes in a diagram representing that knot type in order to

Fig. 5 A coloring of a minimal
diagram of the trefoil knot

9 The crossing number of a knot diagram is the number of its crossings. Let K be a knot type. The
crossing number CðKÞ of K is the minimum over the crossing numbers of all the diagrams representing it.
A minimal diagram is a diagram presenting CðKÞ crossings.
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transform it into a diagram representing the unknot. By crossing changes we mean a
local ‘switch’ of a crossing, like the one in Fig. 6.

For example, the unknotting number of the trefoil knot is one. If we switch a
random crossing from the diagram in Fig. 5, we obtain a diagram of the unknot, and
thus the trefoil knot has either 1 or 0 as unknotting number. Nevertheless, since the
trefoil is a non-trivial knot, its unknotting number cannot be zero. In order to
calculate the unknotting number, experts have to perform a specific move different
from the ones defined above.

In Fig. 7 are two non-equivalent diagrams of the same knot type: Fig. 7a is a
minimal diagram (with 10 crossings) with unknotting number three and Fig. 7b is a
non-minimal diagram (with 14 crossings) of the same knot type with unknotting
number two. In order to appreciate the crossing number of the corresponding knot
type, we need to look at a minimal diagram like the one in Fig. 7a. Nevertheless, such
a diagram cannot give us information about the unknotting number, which can be
proved to be less than or equal to two, by experimenting with the diagram in Fig. 7b.
If we switch the marked crossings we obtain a non-trivial diagram of the unknot.10

Non-equivalent diagrams representing the same knot type unveil different
properties of it. Not only do we need to choose a good geometric representative of a
diagram of D1 kind, and therefore be able to ‘move’ between equivalent *
diagrams, but we also have to consider non-equivalent diagrams representing the
same knot type, and therefore be able to ‘move’ between equivalent *R diagrams.

4 Discussion of the Case Study

4.1 Knot Diagrams Require Interpretation

The meaning of a knot diagram is fixed by its context of use: Diagrams are the
results of the interpretation of a figure, depending on the moves that are allowed on
them and at the same time on the space in which they are embedded. Once we
establish the appropriate moves, we fix the ambient space, thus determining the
different equivalence relations. The context of use does not have to be pre-defined.
This is not a ‘‘damaging ambiguity’’11; on the contrary, it expresses the richness of

Fig. 6 Switching a crossing

10 Bleiler [1984] proved that the unknotting number of a knot type is not necessarily appreciable from a
minimal diagram of it. In this specific case, he proved that the unknotting number of the knot type 108 is
exactly two.
11 Shin and Lemon use this term to refer to Euler’s belief that the same kind of visual containment
relation among areas used in the case of two universal statements can be used as well in the case of two
existential statements; this is not correct and the employed representation raises a ‘‘damaging ambiguity’’
(Shin and Lemon 2008).
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this notation and explains why it is effective in promoting inference. The
indetermination of meaning makes different interpretations available, and therefore
allows attending to various properties and moves. In order to ‘see’ a diagram in a
figure we have to recognize the relevant information and be aware of the possible
modifications. For this reason, the effectiveness of a diagram increases with
expertise: Only experts are able to fully exploit the richness of the different possible
meanings that a figure can acquire.

Giaquinto (2007, p. 261) identifies aspect-shifting as a crucial operation of spatial
thinking in mathematics. By shifting aspects, the same figure is arranged differently
depending on alternative interpretations of its elements. For example, in Plato’s
Meno, in order to find a square with double area of a given one, we build another
square having the diagonal of the original one as a side. To prove that the new square
meets the requirement, we draw its two diagonals and then we have to recognize that
the triangles in which it is now divided are (i) a quarter of it and (ii) a half of the
original square. In our examples, we also appreciate aspect-shifting, but it comes in a
different form. While in Plato’s case we recognize a local rearrangement of parts, in
knot diagrams we observe a global re-interpretation of the space in which the
diagram is embedded. This interpretation precedes actual transformations or moves
and is the condition for them.

4.2 Knot Diagrams are Dynamic

A knot diagram prompts possible manipulations. The rules of motions for the space
defined by knot diagrams are given in the interpretation step: Our interaction with
the diagrams is in this sense pivotal. This case is a new example of what Giaquinto
(2007, p. 263) defines as visualizing motion. In his view, ‘‘cognitively speaking’’
this falls under the heading of image transformations. These operations have
epistemic value because they promote discovery by bringing our attention to new
information. To visualize motion means to be able to understand what will be the
outcome of a certain global or local move. On the one hand, to recognize the
equivalence of the diagrams in Fig. 3a, c we need to visualize a continuous global
motion transforming the latter into the first. On the other hand, to interpret correctly
the Reidemeister moves as not altering the represented knot type, we need to
visualize local motions.

Therefore, the dynamic nature of knot diagrams involves a form of manipulative
imagination that gets enhanced through training by transposing our manipulative
capacities from concrete objects to this notation. As Giaquinto (2007, p. 264)
suggests, ‘‘even symbol movements can have a haptic feel, something perhaps

(a) (b)

Fig. 7 Two non-equivalent diagrams of the knot type 108
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reflected in the metaphor of symbol manipulation’’. Knot diagrams are a notation
where it is possible to identify this haptic feel. In this way, diagrams become tools
for and objects of ‘experiment’, on which experts perform epistemic actions, which
correspond to inferential steps in an argument.

4.3 Knot Diagrams are a Good Notation

In the following, we specify the reasons why knot diagrams can be considered as a
good notation. First, they count as a notation because they are a system of symbols
representing mathematical concepts. Second, they are a good notation because they
have inferential and computational power: Drawing sequences of diagrams allows
experts to effectively make inferences and calculations. Their use implies not only
aspect-shifting but also visualizing motion which lead to draw new diagrams
connected to a given one. Knot diagrams are ‘‘trans-configurational’’ as defined by
Macbeth (2012), because drawing inferences through them requires re-drawing.

For example, to prove that the diagram in Fig. 2a represents the unknot, we have
to draw other diagrams by applying moves on it until we get to a diagram that we
recognize as representing the unknot. Of course, to go from the diagram in Fig. 2a
to the one in Fig. 2b we do not need to write intermediate steps because, by using
manipulative imagination, we recognize that the represented knot type is the same.
This is because the requested modification, even if composed by three Reidemeister
moves, can be visualized mentally as a single modification.

In the actual practice, all knot diagrams are incomplete, even if mathematically
one knot diagram identifies one knot type: Each diagram shows only certain
properties of the knot type it represents. In fact, as for calculating the unknotting
number, in the practice we may have to use non-equivalent diagrams of the same
knot type in order to study its different properties. As Brown (1999, p. 96) sums up,
‘‘the moral to be drawn from knot theory is that knots (and other mathematical
entities) are like this: they, too, have indefinitely many different kinds of attributes,
and sometimes we only uncover them as we find new ways of representing them.’’

This case study supports an approach to mathematics according to which
mathematical symbols are intimately linked to the concepts they represent. De Cruz
and De Smedt (2013, p. 4) claim that ‘‘symbols are not merely used to express
mathematical concepts’’ but are ‘‘constitutive of the concepts themselves. Math-
ematical symbols enable us to perform mathematical operations that we would not
be able to do in the mind alone, they are epistemic actions.’’ In our case study, we
showed that knot diagrams both represent objects and allow for procedures.

4.4 Knot Diagrams can Provide Evidence

We have seen that invariants may be diagrammatically defined, and thus a knot
diagram can provide justification for a conclusion about a knot type. The kind of
evidence produced is accepted in the practice, and even if it might not be a
necessary justification, it is a sufficient one. By 3-colorability, it is possible to prove
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the existence of non-trivial knots. This is done through knot diagrams by adding
structure to them.

We mention here another example of an invariant where knot diagrams provide
evidence and in particular they allow for a connection between diagrammatic and
algebraic reasoning: the knot group.12 For every knot, we can define a group. The
Wirtinger presentation for it can be written directly from a diagram by interpreting
each arc of the diagram as a generator and each crossing as a relation. Different
Wirtinger presentations will therefore correspond to non-equivalent diagrams, but
two diagrams of the same D2 kind, and thus representing the same knot type, will
give rise to two Wirtinger presentations of isomorphic groups—because this group
is an invariant of the knot type. The knot group can be used to distinguish knots and
in particular to give an alternative proof of the existence of non-trivial knots.
Moreover, it shows that diagrammatic and algebraic reasoning can be related since
knot diagrams can be interpreted algebraically. This reveals that these diagrams can
be used as syntactic devices.

5 Conclusions

To summarize, we have analyzed a diagrammatic practice and we have argued that
it is fruitful for conjecturing and discovering and moreover that it encompasses
proving. Knot diagrams require different interpretations and are an effective
notation on which epistemic actions can be performed.

We envisage two directions for future research. First, we plan to apply the
proposed framework and terminology to other diagrammatic practices of knot
theory, for example the use of knot diagrams as a notation in polynomial
calculations. Furthermore, we will evaluate how to modulate the framework in order
to encompass other visual practices of topology and of other fields of mathematics.
Second, our long-term objective is to assess whether an operational framework
along these lines could be applied to other forms of diagrammatic reasoning outside
mathematics (Giardino 2013). This would show that diagrams in general are not
only visual prompts but have dynamic features that involve aspect shifting and
visualizing motion. Therefore, their use would presuppose a complex synthesis of
many different cognitive capacities, from unlearned ones to others requiring
expertise.
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