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Connexive Negation

Abstract. Seen from the point of view of evaluation conditions, a usual way to obtain

a connexive logic is to take a well-known negation, for example, Boolean negation or

de Morgan negation, and then assign special properties to the conditional to validate

Aristotle’s and Boethius’ Theses. Nonetheless, another theoretical possibility is to have the

extensional or the material conditional and then assign special properties to the negation

to validate the theses. In this paper we examine that possibility, not sufficiently explored in

the connexive literature yet.We offer a characterization of connexive negation disentangled

from the cancellation account of negation, a previous attempt to define connexivity on top

of a distinctive negation. We also discuss an ancient view on connexive logics, according

to which a valid implication is one where the negation of the consequent is incompatible

with the antecedent, and discuss the role of our idea of connexive negation for this kind

of view.
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1. Introduction

According to “the now standard notion of connexive logic” (cf. [59]), a logic
L is connexive if it validates the following schemas, where N and > are a
negation and an implication, respectively, in the underlying language of L:

N(A > NA) (Aristotle’s Thesis)

N(NA > A) (Variant of Aristotle’s Thesis)

(A > B) > N(A > NB) (Boethius’ Thesis)

(A > NB) > N(A > B) (Variant of Boethius’ Thesis)

and, moreover, it invalidates the following one:

(A > B) > (B > A). (Symmetry of Implication)
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Derivatively, any > that satisfies these requirements is called ‘connexive’.
Although it can be disputed whether meeting all these conditions is either
necessary or sufficient for connexivity,1 we will assume that it is sufficient
and, accordingly, we will call collectively the schemas above ‘the connexive
schemas’.

The usual procedure to obtain a connexive logic is to take a negation with
standard truth and falsity conditions, for example, Boolean negation—as
in Angell-McCall’s CC1; see [31]—or de Morgan negation—as in Wansing-
style connexive logics; see [41,58]—, and then modify the (standard) truth
or falsity conditions of a conditional —as the intuitionistic conditional (see
[58]) or the material conditional (see [59])– to validate the schemas above.
Nonetheless, another theoretical possibility is to take a conditional with
standard truth and falsity conditions —like the extensional or the material
conditional—and then modify the (standard) truth or falsity conditions of
a negation to validate the schemas above. In this paper we examine this
latter possibility, that has not been sufficiently explored in the connexive
literature yet.

Thus, just like a > that validates the connexive schemas (in the company
of a ‘standard’ negation) is called a ‘connexive conditional’ or ‘connexive
implication’, any N that validates the connexive schemas in the company of
a ‘standard’ conditional will be called a ‘connexive negation’. True, in many
cases further discussion is needed to make sure that the connexive connec-
tive, whether a conditional or a negation, belongs in fact to the intended
category, that is, that it in fact is a conditional or a negation. We will devote
some time to that discussion in due course, in Section 4.

The closest antecedent to the idea that interests us has been the con-
siderations about the account of negation as cancellation, explored in [57]
and [46]. Nonetheless, such an account of negation does not leave other
notions untouched. In particular, the conditional is required to be neither
extensional nor material. Actually, what precludes contradictions to imply
anything (different from a contradiction) in Priest’s proposal is not a dis-
tinctive evaluation condition for negation, but either the modified notion of
logical consequence or the intensional conditional proposed.

Our general motivation is lead by the validation of the connexive schemas
by means of a suitable negation. What is going to count as a negation will
not be delivered by a theory of negation occurring in a natural language, but

1For example, McCall [30] only required invalidating the Symmetry of Implication and
validating at least one of Aristotle’s or Boethius’ Theses, not necessarily both.
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rather by examining the evaluation conditions of the relevant unary connec-
tives. In a way, our project can be seen as more general than the account of
negation as cancellation, since it is also disentangled from the particularities
of the properties of negation interacting with other connectives.2

The plan of the paper is as follows. In Section 2 we set the technical
preliminaries for the rest of the paper. In Section 3, we introduce four families
of negations and, in Section 4, we discuss whether our negations can achieve
the status of connexive negations. In Section 5 we compare some properties
of these connectives with those of negation under the cancellation account.
Finally, in Section 6 we examine whether our negations can be used to define
compatibility connectives that meet the requirements set out in [45].

2. Technical Preliminaries

Let NEG be a family of negations, with a negation denoted generically
by Ni—or even without the subscript if there is no risk of ambiguity—,
COND a family of conditionals, with a conditional denoted generically by
>j—again, we might omit the subscript if the context allows so—and CONJ
a family of conjunctions, with a conjunction denoted generically by �k.
Let L{Ni,>i} be a propositional language with a denumerable set V ar of
propositional variables, and a finite set {Ni, >j} of connectives. The set of
formulas FORM is defined on L{Ni,>i} in the usual way. We use upper
case letters A, B, C and so on, as meta-variables ranging over arbitrary
formulas, and lower case letters p, q, r and so on, as meta-variables ranging
over arbitrary propositional variables.

We express an expansion of a language by indicating at subscripts the
symbols added. For instance, we write L�k

to denote {Ni, >j , �k}. The
set of formulas is then defined on this expanded language as usual. In many
cases below, the exact shape of a language, and therefore of a logic, will be
left implicit and will be indicated by the de facto use of connectives.

Let σ : V ar −→ {{1}, {1, 0}, { }, {0}} be a valuation function from the
set of propositional variables to the set {{1}, {1, 0}, { }, {0}}. (Thus, propo-
sitional variables are interpreted in terms of sets of truth values.) Valuation
functions are extended to the set FORM according to some fixed condi-
tions, depending on the particular connectives one is dealing with. As usual,

2There have been attempts to make connexive other connectives using a different strat-
egy to the one employed here. For further references see [18–21]. For a critical assessment
of Francez’s attempts see [16].
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we write Σ |=L A if and only if for all B ∈ Σ, if 1 ∈ σ(B) then 1 ∈ σ(A).
For simplicity, in this paper we use classical logic in the meta-theory.

Definition 2.1. A Dunn atom is an expression of the form vi ∈ σ(A) or
vj /∈ σ(A), with vi, vj ∈ {1, 0}. If it is of the first form, we will say that it is
a positive Dunn atom; in the latter case, we will say that it is negative.

We observe that valuations can be rewritten in terms of Dunn atoms as
follows:

• σ(A) = {1} iff 1 ∈ σ(A) and 0 /∈ σ(A)

• σ(A) = {1, 0} iff 1 ∈ σ(A) and 0 ∈ σ(A)

• σ(A) = { } iff 1 /∈ σ(A) and 0 /∈ σ(A)

• σ(A) = {0} iff 1 /∈ σ(A) and 0 ∈ σ(A).

Definition 2.2. Let vi ∈ σ(A) (resp. vj /∈ σ(A)) be a Dunn atom. We will
say that vj /∈ σ(A) (resp. vi ∈ σ(A)), with vi, vj ∈ {1, 0} and vi �= vj , is
its Boolean counterpart. (And we will assume that the relation of being a
Boolean counterpart is symmetric.)

For instance, the following cases—horizontal-wise—are Boolean counter-
parts of each other:

1 ∈ σ(NxA) 0 /∈ σ(NxA)
0 ∈ σ(A�zB) 1 /∈ σ(A�zB)
0 /∈ σ(A >y B) 1 ∈ σ(A >y B).

Definition 2.3. A tweaking is a modification in the evaluation conditions
of a connective where the only changes are substituting at least one Dunn
atom by its Boolean counterpart.

Consider the evaluation conditions for the connectives in FDE, as they
will be useful throughout the paper:

1 ∈ σ(∼A) iff 0 ∈ σ(A)
0 ∈ σ(∼A) iff 1 ∈ σ(A)
1 ∈ σ(A ∧e B) iff 1 ∈ σ(A) and 1 ∈ σ(B)
0 ∈ σ(A ∧e B) iff 0 ∈ σ(A) or 0 ∈ σ(B)
1 ∈ σ(A ∨ B) iff 1 ∈ σ(A) or 1 ∈ σ(B)
0 ∈ σ(A ∨ B) iff 0 ∈ σ(A) and 0 ∈ σ(B)
1 ∈ σ(A → B) iff 0 ∈ σ(A) or 1 ∈ σ(B)
0 ∈ σ(A → B) iff 1 ∈ σ(A) and 0 ∈ σ(B).

As an illustration of tweakings, consider negation as evaluated in FDE in
the upper left corner and three connectives obtained by changing at least
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part of its evaluation conditions:

1 ∈ σ(∼A)iff 0 ∈ σ(A)
0 ∈ σ(∼A)iff 1 ∈ σ(A)

1 ∈ σ(∼2A)iff 1 /∈ σ(A)
0 ∈ σ(∼2A)iff 1 ∈ σ(A)

1 ∈ σ(∼1A)iff 0 ∈ σ(A)
0 ∈ σ(∼1A)iff 0 /∈ σ(A)

1 ∈ σ(∼3A)iff 1 /∈ σ(A)
0 ∈ σ(∼3A)iff 0 /∈ σ(A).

Definition 2.4. Let e be an evaluation condition expressed in Dunn se-
mantics that is classically equivalent to some evaluation condition ec in
classical logic. e is (classically) redundant if and only if there are Dunn
atoms at the right of the ‘iff’ of e that could be eliminated, giving rise to an
evaluation condition e− and it is still classically equivalent to ec. Otherwise,
e is (classically) non-redundant.

For example, the conditional defined through the following evaluation
conditions3 is redundant from the classical logic perspective, for at the right
of the ‘iff’ there are Dunn atoms that could be eliminated without loss (in
classical logic):

• 1 ∈ σ(A →ϕ B) iff (1) 0 ∈ σ(A) and 1 /∈ σ(A), or (2) 1 ∈ σ(B) and
0 /∈ σ(B), or (3) both 1 ∈ σ(A) iff 1 ∈ σ(B) and 0 ∈ σ(A) iff 0 ∈ σ(B)

• 0 ∈ σ(A →ϕ B) iff (1) 1 ∈ σ(A), 0 /∈ σ(A) and 0 ∈ σ(B), or (2) 1 ∈ σ(A),
and 1 /∈ σ(B), or (3) 0 /∈ σ(A), 1 /∈ σ(B) and 0 ∈ σ(B).

Note that already the first clause in the truth condition is redundant from
the classical point of view, as it states that one of the options for the A →ϕ B
to be true is that the antecedent is false but not true, but these two claims
amount to the same thing in classical logic. We present here its truth table
for self-containment:

A →ϕ B {1} {1,0} { } {0}
{1} {1} {0} {0} {0}

{1,0} {1} {1} {0} {0}
{ } {1} {0} {1} {0}
{0} {1} {1} {1} {1}

Definition 2.5. We will say that a connective is a classically clear case of
negation/conjunction/disjunction/conditional if

3This is the “Philonian conditional” discussed many times in the relevance logic tradi-
tion. See for example [56].
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1. its evaluation conditions are those of negation/conjunction/disjunction/
conditional in the logic FDE; or

2. its evaluation conditions are obtained from these by tweaking them; or

3. its evaluation conditions are classically redundant.

In the first two cases, the evaluation conditions will be called non-redundant.4

For example, the four negations above are clear cases of negations. Note
that ∼ and ∼3 are de Morgan negation and Boolean negation, respectively.

For definiteness, in this paper we will employ the following conditionals:

A → B {1} {1, 0} { } {0}
{1} {1} {1, 0} { } {0}

{1, 0} {1} {1, 0} {1} {1, 0}
{ } {1} {1} { } { }
{0} {1} {1} {1} {1}

A →m B {1} {1, 0} { } {0}
{1} {1} {1, 0} { } {0}

{1, 0} {1} {1, 0} { } {0}
{ } {1} {1} {1} {1}
{0} {1} {1} {1} {1}

A →AM B {1} {1, 0} { } {0}
{1} {1} {0} { } {0}

{1, 0} {0} {1} {0} { }
{ } {1} {0} {1} {0}
{0} {0} {1} {0} {1}

A →W B {1} {1, 0} { } {0}
{1} {1} {1, 0} { } {0}

{1, 0} {1} {1, 0} { } {0}
{ } {1, 0} {1, 0} {1, 0} {1, 0}
{0} {1, 0} {1, 0} {1, 0} {1, 0}

We refer to → and →m, respectively, as the extensional and material
conditional, and to →AM and →W , respectively, as the AM-conditional (for
Angell-McCall) and W-conditional (for Wansing). We call ‘extensional’ all
the usual connectives definable through positive Dunn atoms only. The ‘ma-
terial’ conditional is, in a sense, the weakest and most intuitive modification
of the extensional conditional that delivers the usually expected properties of
a conditional, such as Identity—A > A—or Detachment—If A > B and A,
therefore, B—. Note that the extensional conditional is definable as ∼A∨B,
and the material conditional is definable in a similar way but with another
negation, ¬b below, which is not available in the language of FDE.

These conditionals have the following evaluation conditions5:

1 ∈ σ(A → B) iff 0 ∈ σ(A) or 1 ∈ σ(B)
0 ∈ σ(A → B) iff 1 ∈ σ(A) and 0 ∈ σ(B)

4Note that we have only suggested a sufficient condition for non-redundant classically
clear cases. There are many other clear cases that are obtained in different ways, for
example, enriching the semantic machinery by allowing multiple non-empty indexes of
evaluation.

5We make heavy use of the method in [42] to transform many-valued tables to evalua-
tion conditions and vice versa.
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1 ∈ σ(A →m B) iff 1 /∈ σ(A) or 1 ∈ σ(B)
0 ∈ σ(A →m B) iff 1 ∈ σ(A) and 0 ∈ σ(B)

1 ∈ σ(A →AM B) iff both 1 /∈ σ(A) or 1 ∈ σ(B) and 0 ∈ σ(A) iff 0 ∈ σ(B)
0 ∈ σ(A →AM B) iff (0 ∈ σ(A) iff 0 /∈ σ(B))

1 ∈ σ(A →W B) iff 1 /∈ σ(A) or 1 ∈ σ(B)
0 ∈ σ(A →W B) iff 1 /∈ σ(A) or 0 ∈ σ(B).

According to the definitions given above, only the first and second connec-
tives are clear cases of conditionals because the evaluation conditions of →
are those of the conditional of FDE, which is definable in that logic in terms
of (de Morgan) negation and disjunction, and the evaluation conditions of
→m are obtained by tweaking the truth condition of the conditional of FDE.
Thus, the evaluation conditions of → and →m are classically non-redundant.
We also consider the following negations:

A ∼A ¬bA

{1} {0} {0}
{1, 0} {1, 0} { }
{ } { } {1, 0}
{0} {1} {1}

Their evaluation conditions correspond, from left to right, to the evaluation
conditions of the negations ∼ A and ∼3 A presented above, but for reasons
that will be given later, we will use the notation of these last tables. These
connectives are clear cases of negation because the evaluation conditions of
∼ are those of the negation of FDE, and the evaluation conditions of ¬b are
obtained by tweaking both the truth and falsity conditions of the negation
of FDE. Thus, the evaluation conditions of ∼ and ¬b are classically non-
redundant.

Finally, we also consider the following connectives:

A ∧e B {1} {1, 0} { } {0}
{1} {1} {1, 0} { } {0}

{1, 0} {1, 0} {1, 0} {0} {0}
{ } { } {0} { } {0}
{0} {0} {0} {0} {0}

A ∧AM B {1} {1, 0} { } {0}
{1} {1} {1, 0} { } {0}

{1, 0} {1, 0} {1} {0} { }
{ } { } {0} { } {0}
{0} {0} { } {0} { }

These connectives have the following evaluation conditions:

1 ∈ σ(A ∧e B) iff 1 ∈ σ(A) and 1 ∈ σ(B)
0 ∈ σ(A ∧e B) iff 0 ∈ σ(A) or 0 ∈ σ(B)

1 ∈ σ(A ∧AM B) iff 1 ∈ σ(A) and 1 ∈ σ(B)
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0 ∈ σ(A ∧AM B) iff (0 ∈ σ(A) iff 0 /∈ σ(B)).

Only the first connective is a clear case of conjunction, as its evaluation
conditions are classically non-redundant. Its evaluation conditions are those
of the conjunction of FDE. Even though ∧AM it is not a clear case of con-
junction, one can make a case for its being a conjunction. Its truth condition
is that of the extensional conjunction of FDE. On the other hand, A∧AM B
is untrue if and only if A is untrue or B is untrue. This will be enough for
us to treat ‘∧AM ’ as a conjunction as well.6

As we mentioned in the introduction, the usual procedure to obtain a
connexive logic is to take a well-known negation, Boolean negation or de
Morgan negation, for example, and then change the evaluation conditions of
a familiar conditional to validate the connexive schemas. Consider the ap-
proach by Angell [1] and McCall [31]. They aim at obtaining a (negation-)
consistent connexive logic, and it can be easily seen that they keep Boolean
negation untouched. Then, they work with the AM-conditional, but to fur-
ther avoid contradictions, they also need a special conjunction. Thus, they
work with the language L{¬b,∧AM ,→AM}. On the other hand, Wansing in [58]
works on top of Nelson’s N4, keeping de Morgan negation and as much as
possible of the conditional. Else, working on top of material logic in [59],
Wansing keeps de Morgan negation and as much as possible of the material
conditional →m. In fact, the W-conditional presented above is like the ma-
terial conditional, with the exception that the falsity condition of the latter,
i.e.

• 0 ∈ v(A →m B) iff 1 ∈ v(A) and 0 ∈ v(B)

is changed to the following one:

• 0 ∈ v(A →W B) iff 1 /∈ v(A) or 0 ∈ v(B).

Moreover, in Wansing’s approach, (negation-)inconsistency is not a problem,
only non-triviality is aimed at.

6A more systematic analysis of the conditions to say that two connectives are of the
same kind is needed, of course. We decided not to complicate things for conjunction here,
but we will be more careful with negation below. For such a more systematic analysis and
comparison of connectives, see [17].
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3. Presenting Classical Negation, Anti-Classical Negation, Falsity
Negation and Truth Negation

So much for the preliminaries. In this section, we discuss four families of
negation-related connectives in order to approach the topic of negation-
driven connexivity. According to [6] and [43], there is no unique unary con-
nective one can expand the language of FDE with, and that can be properly
called ‘classical negation’. In this context, classical negation can be repre-
sented by any of the following sixteen connectives7:

A ¬bA ¬eA ¬1A ¬2A ¬3A ¬4A ¬5A ¬6A

{1} {0} {0} {0} {0} { } { } {0} { }
{1, 0} { } {0} { } {0} { } { } {0} {0}
{ } {1, 0} {1} {1} {1, 0} {1, 0} {1} {1, 0} {1}
{0} {1} {1} {1} {1} {1, 0} {1} {1, 0} {1}

A ¬7A ¬8A ¬9A ¬10A ¬11A ¬12A ¬13A ¬14A

{1} {0} { } {0} { } { } {0} { } { }
{1, 0} { } {0} {0} { } { } { } {0} {0}
{ } {1, 0} {1, 0} {1} {1, 0} {1} {1} {1, 0} {1}
{0} {1, 0} {1, 0} {1, 0} {1} {1, 0} {1, 0} {1} {1, 0}

For the sake of simplicity, let us suppose for the moment that the distinc-
tiveness of classical negation, represented here by ¬, is the following truth
condition:

1 ∈ v(¬A) iff 1 /∈ v(A).

This is the truth condition of Boolean negation, the connective ¬b given in
the preliminaries and in the tables above. It is is easy to see that all the
unary connectives just introduced have this truth condition.

But one can overcome the bias towards truth, put forward a dual idea
and say that the distinctiveness of classical negation is the following falsity
condition:

0 ∈ v(¬A) iff 0 /∈ v(A)

that is the falsity condition of Boolean negation. Then one can obtain sixteen
new unary connectives. With the only exception of ¬b, we distinguish these
connectives from the previous ones by inverting the symbol for Boolean

7See [6] for criticisms on why some of these connectives cannot be considered classical
negations.
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negation and putting it backwards, i.e., � A, attaching the corresponding
subscripts8:

A �b A �e A �1 A �2 A �3 A �4 A �5 A �6 A

{1} {0} {0} {0} {0} {1, 0} {0} {1, 0} {0}
{1, 0} { } {1} { } {1} { } { } {1} {1}
{ } {1, 0} {0} {0} {1, 0} {1, 0} {0} {1, 0} {0}
{0} {1} {1} {1} {1} { } { } {1} {1}

A �7 A �8 A �9 A �10 A �11 A �12 A �13 A �14 A

{1} {1, 0} {1, 0} {1, 0} {0} {1, 0} {1, 0} {0} {1, 0}
{1, 0} { } {1} {1} { } { } { } {1} {1}
{ } {1, 0} {1, 0} {0} {1, 0} {0} {0} {1, 0} {0}
{0} {1} { } {1} { } { } {1} { } { }

Instead of the evaluation conditions of Boolean negation, one can inquire
into the evaluation conditions of de Morgan negation. Recall its truth and
falsity conditions:

1 ∈ v(∼A) iff 0 ∈ v(A)
0 ∈ v(∼A) iff 1 ∈ v(A).

Each condition defines again two groups of sixteen unary connectives. As
in the previous cases, in what follows we use ∼ with appropriate subscripts to
denote the connectives that have the truth condition of de Morgan negation
and �, with appropriate subscripts, to denote the connectives that have the
falsity condition of de Morgan negation9:

Unary connectives with the truth condition of de Morgan negation

A ∼m A ∼e A ∼1 A ∼2 A ∼3 A ∼4 A ∼5 ∼6 A

{1} {0} {0} {0} {0} { } { } {0} { }
{1, 0} {1, 0} {1} {1} {1, 0} {1, 0} {1} {1, 0} {1}
{ } { } {0} { } {0} { } { } {0} {0}
{0} {1} {1} {1} {1} {1, 0} {1} {1, 0} {1}

A ∼7 A ∼8 A ∼9 A ∼10 A ∼11 A ∼12 A ∼13 A ∼14 A

{1} { } {0} {0} { } { } { } {0} { }
{1, 0} {1, 0} {1, 0} {1} {1} {1, 0} {1, 0} {1} {1}
{ } {0} { } {0} { } { } {0} { } {0}
{0} {1, 0} {1, 0} {1, 0} {1, 0} {1} {1} {1, 0} {1, 0}

8Note that ¬b and �b are the same connective.
9Note that, like in the previous cases, �m and ∼m are the same connective.
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Unary connectives with the falsity condition of de Morgan negation

A �m A �e A �1 A �2 A �3 A �4 A �5 A �6 A

{1} {0} {0} {0} {0} {1, 0} {0} {1, 0} {0}
{1, 0} {1, 0} {0} {0} {1, 0} {1, 0} {0} {1, 0} {0}
{ } { } {1} { } {1} { } { } {1} {1}
{0} {1} {1} {1} {1} { } { } {1} { }

A �7 A �8 A �9 A �10 A �11 A �12 A �13 A �14 A

{1} {1, 0} {1, 0} {1, 0} {1, 0} {0} {0} {1, 0} {1, 0}
{1, 0} {1, 0} {1, 0} {0} {0} {1, 0} {1, 0} {0} {0}
{ } {1} { } {1} { } { } {1} { } {1}
{0} { } {1} {1} { } { } { } {1} { }

After the study of connectives with the same truth condition as Boolean
negation presented in [6], it was just a matter of time to consider connectives
with the truth condition of de Morgan negation, and then also to dualize the
approach and focus on falsity conditions. This was done independently in
[38,39] and [44]. In the latter, and although they do not cover the connectives
based on falsity conditions, plenty of results about the ∼i’s added to FDE,
K3 and LP are presented.

According to Avron [2, p. 160], the truth condition of de Morgan negation
“represents the idea of falsehood within the language”, that is, the negation
of A expresses that A is false. If this is correct, by parity of reasoning, the
falsity condition of de Morgan negation would “represent the idea of truth
within the language” in the sense that a formula A expresses its falsity, and
when one negates it, one obtains its truth.10

Definition 3.1. We will say that a unary connective N is negative if

1. it has the truth or falsity condition of a clear case of a negation; or,

2. its evaluation conditions have the following structure:

v ∈ σ(NA) iff condition1 and condition2

where condition1 and condition2 are Dunn atoms, either condition1 or
condition2 is the truth or falsity condition of a clear case of negation, and
condition1 does not contradict condition2.

Thus, all the tables given above in this section are tables of negative con-
nectives as they meet these requirements. Now, according to the terminology

10Studies on paraconsistency favoring falsity conditions over truth conditions can be
found in [32, Ch. 11] [33] and then continued in [11] and [12].
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introduced in the preliminaries, not all negative connectives are (classically)
clear cases of negations. There are twelve clear cases of negations, given by
¬b (or �b), ¬e (or �e), ¬1, ¬2, �e (or ∼e), �1, �2, ∼m (or �m), ∼1, ∼2, �1

and �2. The connectives ¬b, ¬e (or �e), �e (or ∼e) are obtained by tweak-
ings, and the evaluation conditions of the other connectives are classically
redundant.11

4. The Idea of a Connexive Negation

Remember that, under the now standard notion of connexive logic, there is
a negative condition to be met to ensure that we are working with a con-
ditional and not with a biconditional. However, that might not be enough,
because there are other binary connectives that can be confused with a con-
nexive conditional, in particular, conjunction. Omori has argued in [40] that
the alleged conditional in MRSP , studied in [10] and [14], is in fact a con-
junction. Therefore, some extra conditions are required in order to properly
characterize a conditional. Likewise, there are a few extra negative condi-
tions to be met to ensure that we are working with a negation and not
with any other unary connective, especially a unary connective that delivers
formulas that are always true.

According to some recent theories (see for instance [41], [47, Ch. 4]), a
negation has to form contradictory pairs, i.e., A and NA have to be contra-
dictories. Recall that A and B are contradictories iff 1 ∈ σ(A) iff 0 ∈ σ(B)
and 0 ∈ σ(A) iff 1 ∈ σ(B).12 In such an account, a negation has to meet the
following negative conditions:

(Non-verifier) There is an A such that A �|= NA
(Non-antiverifier) There is an A such that NA �|= A

and the following positive conditions, for any formula A:

(EDN) NNA |= A
(IDN) A |= NNA.

(Marcos [28] considered the negative conditions as minimal requirements for
a negation in any logic that is non-degenerate, such as empty or overfilled
logics.)

11However, this does not imply that the other connectives not mentioned above are not
negations, just that they are not classically clear cases of negations.

12We take this formulation using Dunn atoms from [41, p. 115].
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As we said above, the negative conditions make sure that negation is not
any other unary connective, similarly as the invalidation of Symmetry of
Implication is meant to secure that the conditional is not a biconditional.
Since the consequence relation is truth-preserving, the negative conditions
ensure that we are not speaking of other disguised unary connectives ∓, ±
and ±∓, with the following evaluation conditions:

(Taut) 1 ∈ σ(∓ A) iff 1 ∈ σ(A) or 1 /∈ σ(A) (that is, ∓A is always true, or
equivalently it is true under any interpretation.)13

(Antaut) 1 /∈ σ(± A) iff 1 ∈ σ(A) or 1 /∈ σ(A) (that is, ∓A is never true, or
equivalently it is not true under any interpretation.)

(Equa) vi ∈ σ(±∓ A) if and only if vi ∈ σ(A)

for any i ∈ {1, 0}. In other words, unary connectives that, when they are the
main connective in a formula, make it true under any interpretation—this
condition is obtained by (Non-verifier)—, or that make it untrue under any
interpretation —this condition is obtained by (Non-antiverifier)—or that do
not alter its evaluation—this condition is obtained by both (Non-verifier)
and (Non-antiverifier).14

Now, we consider the case where the extensional conditional → appears
uniformly in the connexive schemas, i.e.:

N(A → NA) (A1e)

N(NA → A) (A2e)

(A → B) → N(A → NB) (B1e)

(A → NB) → N(A → B) (B2e)

and the case where the material conditional →m appears uniformly in the
connexive schemas:

N(A →m NA) (A1m)

N(NA →m A) (A2m)

13It might be replied that a connective that is always true might be a negation. Such
always-true connective has the falsity condition of a negation and satisfies some properties
that one can consider as pertaining to any negation. What one would actually require is
a condition that ensures that one is not speaking of a unary connective which is just true
under any interpretation, but we will not press this point further and assume (Non-verifier)
as a necessary condition for a negation.

14In fact, as we are concerned with validating the connexive schemas—and not antiveri-
fying them, making them untrue in all interpretations—we are already assuming (Antaut).
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(A →m B) →m N(A →m NB) (B1m)

(A →m NB) →m N(A →m B) (B2m)

Proposition 4.1. No unary connective presented in Section 3 can validate
all the connexive schemas in the company of the extensional conditional and
also reject either (Taut), (Antaut) or (Equa).

Proof. For the countermodels below we will ignore �5 and �5 since they
do not reject (Non-verifier).

• For a countermodel to (A1e) with all the ¬’s, all the ∼’s and �b, �e, �2,�4, �10, �13, �14, �m, �e, �2, �3, �4 or �8, consider the case when
σ(A) = { }.

• For a countermodel to (A1e) with �1, �1, �9 or �10, consider the case
when σ(A) = {1, 0}.

• For a countermodel to (A1e) with �3, �6, �7, �11, �12, �13, �6, �11, �12,
�13 or �14, consider the case when σ(A) = {1}.

• For a countermodel to (B2e) with �7 or �8 consider the case when σ(A) =
{1} and σ(B) = {0}.

• For a countermodel to (B2e) with �9 consider the case when σ(A) = { }
and σ(B) = { }.

To put it boldly, granting the extensional conditional, no negative connective
is a connexive negation.

Things are different with the material conditional, as one can validate
the connexive schemas using some negative connectives from Section 3 that
also reject (Taut), (Antaut) or (Equa).

Proposition 4.2. The only connectives from Section 3 that can stand in
place of N to validate the connexive schemas in the company of the material
conditional and also reject (Taut), (Antaut) or (Equa) are �8, �9, �7 and
�8.

Proof. We provide countermodels to all the connectives that are not �8,�9, �7 and �8; that these validate the connexive schemas can be easily
verified through truth tables.

• For a countermodel to (A1m) with all the ¬’s, all the ∼’s, �b, �e, �1, �2,�4, �6, �10, �13, �m, �e, �1, �2, �4, �6, �11 or �12 consider the case
when σ(A) = {0}.
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• For a countermodel to (A1m) with �3, �7, �11, �12, �9, �10, �13 or �14,
consider the case when σ(A) = {1}. Again, we do not consider �5 and �5

as they do not reject (Non-verifier).

�8, �9, �7 and �8 fail to satisfy the positive requirement (EDN)—just
consider the case where A = {0}—, yet all of them satisfy (IDN). However,
if the problem is to keep both principles of double negation, one can verify
that these connectives satisfy at least the following weak versions:

If |= NNA, then |= A.
If |= A, then |= NNA.

Thus, any of �8, �9, �7 and �8 can do the job of being a connexive negation
with the material conditional. Note that, as we said in the previous section,
these connectives are not clear cases of negations. Strictly speaking, they
are non-(classically)-clear cases of connexive negations.

As it is known at least since the works by Dunn [7] —see also [8,49,53]—,
the double negation principles are relatively strong, so demanding them for
a connective to be a negation might be too much. We agree, the negative
requirements suggested by Marcos or even Contraposition in Dunn’s kite:

If A |= B then NB |= NA

would be enough. Nonetheless, several of our unary connectives satisfy the
stronger requirements, and those that do not, satisfy the weaker versions
that we have just mentioned—even Contraposition—so we do not think it
is necessary to consider weaker principles here. Of course, that would be
interesting in other contexts where the expressible unary connectives are
weaker than those presented here. Finally, it goes without saying that Sylvan
(see [57, p. 312]) considered the possibility of requiring that a negation
satisfied other principles, among them the connexive schemas; our negations
would meet this requirement by default.

Let us make clear our position about the previous result. That certain
unary connectives are not (classically)-clear cases of negations is not a neg-
ative result in itself. We have shown that the previous connectives meet the
minimal requirements for being a negation. If we wanted to say something
more about the nature of such connectives, especially by comparing them
to other connectives, we would need to be more cautious about the under-
lying notion of logical consequence. Commonly, the standard properties of a
connective depend heavily on the consequence relation adopted; this is par-
ticularly important to determine whether there are certain relations holding
among connectives and to evaluate whether a connective is similar to an-
other. For example, it has recently been argued—see [9], [15]—that certain
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connectives, like transplication15, are closer to its intended connective—in
this case, an implication—when the entailment relation is not Tarskian, in
particular, when it is non-transitive, because with a Tarskian consequence
relation it seems more a conjunction.

In general terms, the idea is that, in order to clarify the nature of a
connective by comparing it with others, we probably would need to verify
whether a clear case of a given connective—say, conjunction—entails or
is entailed by a non-clear case of that connective. Until now, we assumed
the usual Tarskian consequence relation. But this is not necessary. Let us
suppose that the underlying consequence relation is p-consequence:
A is a p-logical consequence of Σ, in symbols, Σ |=p

L A, if and only if for all
B ∈ Σ, if 1 ∈ σ(B) or 0 /∈ σ(B) then 1 ∈ σ(A) or 0 /∈ σ(A).
Then, one can make sense more easily of some of the previous unary con-
nectives as negations, as some of them entail or are entailed by a clear case
of negation. A more detailed and systematic description of the interaction
of different consequence relations, connectives, and evaluation conditions
would be needed, though.16 We leave this point aside and continue using
the usual Tarskian consequence relation.

Let us note in passing that these unary connectives do not exclude a con-
nexive conditional, in the sense that there are languages containing any of
these four negative connectives and either Wansing’s conditional or Angell-
McCall’s conditional that validate the connexive schemas. Here we summa-
rize the combinations that deliver the validity of the connexive schemas:

N →AM →W�8 × ��9 � �
�7 × �
�8 × �

15A connective introduced by that name has been introduced in [5] through a table
structurally identical to the following one:

A →ϕ B {1} { } {0}
{1} {1} { } {0}
{ } { } { } { }
{0} { } { } { }

Nonetheless, this connective appeared earlier, in [48], and it is nowadays more well-known
as the de Finetti conditional, see [9] and the references therein.

16A detailed discussion of this issue can be found in [17].
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Definition 4.1. A negation N is connexively stable with respect to a family
of connexive conditionals CONDcnnxv iff
|= N(A >i N A)
|= N(N A >i A)
|= (A >i B) >i N (A >i N B)
|= (A >i N B) >i N(A >i B)

for any >i∈ CONDcnnxv.

Since it is already assumed that >i is a connexive conditional, there is no
need to mention the Non-Symmetry condition.17

With a toy but still illustrative example, consider the case where the fam-
ily of connexive conditionals has only two members: Wansing’s and Angell-
McCall’s. Then, only �9 is connexively stable with respect to that family
of connexive conditionals. For this reason we express our preference for the
negation �9.

The results in this section suggest the following picture about connexivity:
it depends on both negation and the conditional, not only on one of them.
This is not news. What is new is the right emphasis on both. In the usual
approaches, the conditional plays the most important role; it almost seems
that what is at the heart of connexivity is the conditional. And in this
context, that view seems to be supported by Proposition 1. The extensional
conditional is not regarded by many as a real conditional, and it would be no
wonder that, as per Proposition 1, none of the negations produce connexive
validities because we did not have a conditional to begin with, it was merely
the extensional disjunction in disguise.

Nonetheless, we have also shown that, if some specific negations do not
accompany a conditional better than the extensional conditional, it might
not validate the connexive schemas, either. The example in this case is the
conditional by Angell-McCall, that validates the connexive schemas only
with some negations. The reply here is that the Angell-McCall conditional
is rather a biconditional. Thus, in the end it would not be better than
the extensional conditional, so the proof that our negations do not deliver
the connexive schemas when combined with the Angell-McCall conditional
carries little weight. We do not agree with the claim that the Angell-McCall
conditional is not a conditional, but let that pass.

Someone could say that the Wansing conditional in fact shows that what
is at the heart of connexivity is the conditional, because it is stable under

17One can also define a connexively stable conditional > with respect to some class of
negations, as in [13]. In fact, we borrow the terminology from there.
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changes of negation. This is a moot point, though. The Wansing conditional
internalizes, so to speak, a particular conception of negation—at least, of the
negation of a conditional—in its falsity condition. Thus, it is not entirely
clear that in this case the conditional is more important than negation.
What would be in need of explanation is why such a conception of negation
internalized in the falsity condition is connexively stable under changes of
negation. We admit not having an answer to that.

5. Our Connexive Negations and the Negations as Cancellation
Account

A rather different approach to obtaining a connexive logic by looking at the
negation, instead of the conditional, has been associated with the cancella-
tion account of negation. The cancellation account of negation is the view
according to which the pair A,NA has no content, since the contents of A
and NA “cancel” or “erase” each other. (See [50–52].) In all fairness, nobody
knows what ‘content’ amounts to here, but let us assume that the contents
of A and NA cancel each other. If one couples the cancellation account of
negation with the idea that a valid implication is one in which the content of
the consequent is included in the content of the antecedent, and makes ex-
plicit that all propositions have some content—as the ancient and medieval
thinkers might have assumed (see [55])—then neither A can imply NA nor
vice versa, since the consequents in those implications cancel the contents of
their antecedents. For the same reason, if A implies B, NB cannot be part
of the content of A. Thus, one arrives at the connexive schemas.

Among the distinctiveness of the cancellation account of negation is the
invalidation of Explosion (A�NA) > B, and Simplification, (A�NA) > A
or (A�NA) > NA, because, as explained above, the antecedents cancel
themselves, so there is nothing that implies the consequent. Additionally, the
invalidation of Simplification is motivated by the fact that in the presence of
(B2e), Simplification leads to inconsistency. Wansing and Skurt [60, p. 482]
also suggest that the cancellation account of negation can motivate Abelard’s
First Principle, N((A > B)�(A > NB)) and Aristotle’s Second Thesis,
N((A > B)�(NA > B)). That is so because the former involves the nega-
tion of instances of Simplification, ((B�NB) > B)�((B�NB) > NB)),
and dually, the latter involves the negation of instances of Addition, both of
which are rejected in the cancellation account, as we have remarked above.18

18The Routleys’ proposal has some other distinctive features. Let ⊕ be a disjunction.
Accepting Contraposition (A > B) > (NB > NA) and all the de Morgan principles also
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However, in [60] the authors pointed out several conceptual problems with
the cancellation account of negation in the Routleys’ version, and have ar-
gued that it is better not to consider it a conceptual basis of connexive
logic. They observe that if the cancellation account of negation were correct,
A�NA would have no content, but then the external N in N(A�NA) would
be operating upon no content at all. However, this goes against the assump-
tion that all negations operate over some content. Moreover, N(A�NA)
could not cancel A�NA because A�NA would cancel itself, so there would
not be anything to cancel to begin with.

Our proposal is that one can obtain connexive logics by modifying the
evaluation conditions of negations in such a way that, coupled with the
evaluation conditions of a standard conditional, would deliver the validation
of the connexive schemas, and that one can do so without assuming that
such connexive negations represent some cancellationist ideas. Thus, in what
follows we examine to what extent our connexive negations give similar
results to the Routleys’ idea of connexive negation. In particular, we want
to know whether we can detach the idea of connexive negation from the
failure of Simplification and the validation of Abelard’s First Principle and
Aristotle’s Second Thesis.19

Remark 5.1. Simplification is valid with either the material or the exten-
sional conditional, Angell-McCall’s conjunction ∧AM or extensional conjunc-
tion ∧e, and �8 or �9:20

• |= (A�{∧AM ,∧e}N{�8,�9}A) >{→,→m} A

• |= (A�{∧AM ,∧e}N{�8,�9}A) >{→,→m} N{�8,�9}A.

However, by using the connexive negations �7 and �8 one obtains differ-
ent results. All instances of Simplification are valid just with the material
conditional:

lead to the rejection of Addition A > (A⊕B) and B > (A⊕B) (see [60, p. 480]). Nowadays,
it is widely agreed that connexivity has nothing to do with the failure of Simplification,
much less of Addition, connexive logic being characterized as we reported at the beginning
of Section 1.

19These principles tend to divide connexivists. While in Angell-McCall’s CC1 Sim-
plification and Addition are invalid but Abelard’s First Principle and Aristotle’s Second
Thesis are valid, in Wansing’s C, Simplification and Addition are valid, but Abelard’s First
Principle and Aristotle’s Second Thesis are not.

20In the following we use the notation (A�{∧AM∧e}N{�8,�9}A) >{→,→m} N{�8,�9}A
to indicate that from the connectives that appear between the formulas one can uniformly
choose any of them. For instance, if one chooses �8 to appear in the antecedent, it also
needs to appear in the consequent.
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• |= (A�{∧AM ,∧e}N{�7,�8}A) →m A

• |= (A�{∧AM ,∧e}N{�7,�8}A) →m N{�7,�8}A

The same schemas, but with the extensional conditional, are invalid, though.
Just take A to be neither true nor false, { }:

• �|= (A�{∧AM ,∧e}N{�7,�8}A) → A

• �|= (A�{∧AM ,∧e}N{�7,�8}A) → N{�7,�8}A.

Finally, the problem of inconsistency mentioned above for Simplification
in the light of (B2e) arises for certain combinations of conditionals, conjunc-
tions and negations.

Proposition 5.1.

(A�{∧AM ,∧e}N{�7,�8,�8,�9}A →m N{�7,�8,�8,�9}A) →m

N{�7,�8,�8,�9}(A�{∧AM ,∧e}N{�7,�8,�8,�9}A →m A)

and
(A�{∧AM ,∧e}N{�7,�8,�8,�9}A) →m N{�7,�8,�8,�9}A

leads to inconsistency—following the standard proof by the use of modus
ponens. However, something similar does not happen by using the exten-
sional conditional, since it is possible to find countermodels to (A�{∧AM ,∧e}
N{�7,�8}A) → A—just consider the case when σ(A) = { }. The exten-
sional conditional in the company of either �8 or �9, and ∧AM or ∧e in the
schemas above leads to inconsistency, notwithstanding.

Proposition 5.2. Consider the following argument:

1. ((A�NA) > A) > N((A�NA) > NA) Boethius

2. (A�NA) > A Simplification

3. (A�NA) > NA Simplification

4. N((A�NA) > NA) 1, 2, Detachment

5. ((A�NA) > NA)�N((A�NA) > NA) 3, 4, Adjunction

The previous argument is valid using →m, in company of �8, �9, �7 or �8,
and ∧e or ∧AM . With respect to the conditional →, the argument is valid
in company of the negations �8 or �9, and ∧AM . However, it is not valid
using �7 or �8, and ∧e or ∧AM—just consider the case when σ(A) = { }.
Remark 5.2. With respect to Abelard’s First Principle and Aristotle’s Sec-
ond Thesis, only the former is valid with either Angell-McCall’s or exten-
sional conjunction, material conditional, and the negation �9.
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|=�9 ((A →m B)�{∧AM ,∧e}(A →m�9 B)).
All other cases are rendered invalid:

• �|= N{�8,�9,�7,�8}((A >{→m,→} B)�{∧AM ,∧e}(N{�8,�9,�7,�8}A >{→m,→}
B))

• �|= N{�8,�7,�8}((A >{→m,→} B)�{∧AM ,∧e}(A >{→m,→} N{�8,�7,�8}B))

For a countermodel to these schemas consider either the case when σ(A) =
{1} and σ(B) = { }, or the case when σ(A) = {1} and σ(B) = {0}, or else
the case when σ(A) = { } and σ(B) = {0}.

Remark 5.3. Finally, for any of our negations, the truth of NA does not
exclude the truth of A, nor vice versa, since NA is true in the same conditions
under which A is true, i.e., {1} or {1, 0}. This also has consequences on
the validity of Explosion. Explosion is valid with either Angell-McCall’s
conjunction or extensional conjunction, the extensional conditional and the
negations �8 and �9:

• |= (A�{∧AM ,∧e}N{�8,�9}A) → B

In all other cases, it is invalid:

• �|= (A�{∧AM ,∧e}N{�8,�9}A) →m B

• �|= (A�{∧AM ,∧e}N{�7,�8}A) >{→m,→} B

For a countermodel to (A�{∧AM ,∧e}N{�7,�8}A) → B consider the case when
σ(A) = σ(B) = { }. For a countermodel to the formulas (A�{∧AM ,∧e}
N{�8,�9}A) →m B and (A�{∧AM ,∧e}N{�7,�8}A) →m B consider the case
when σ(A) = {1} and σ(B) = { }.

6. Compatibility and Connexivity

According to a traditional view that can be traced back to Chrysippus (see
[54] and the references therein), the connexive schemas arise from certain
(in)compatibility relations between the antecedent and (the negation of)
the consequent. In such a view, an implication is valid if and only if the
negation of the consequent is incompatible with the antecedent. Let ◦ denote
a (binary) compatibility connective, such that (A ◦ B) is read, for example,
as “A is compatible with B”, “A does not exclude B”, “the realizability of A
does not exclude the realizability of B” or “the truth of A does not exclude
the truth of B”. Then, according to the above,

(A > B) =def N(A ◦ NB)
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We started with conditionals and negations instead, and we would like to
know which compatibility connectives can be defined in terms of those. Our
strategy is using the following usual definition derivable from the previous
one:

(A ◦ B) =def N(A > NB)

For example, in the Angell-McCall approach, the evaluation conditions of
A ◦AM B are as follows:

A ◦AM B {1} {1, 0} { } {0}
{1} {1} {1, 0} {1} {0}

{1, 0} {1, 0} {1} {0} {1}
{ } {1} {0} {1} {0}
{0} {0} {1} {0} {1}

Accordingly, in Wansing’s approach, the evaluation conditions of A ◦W B
are as follows:

A ◦W B {1} {1, 0} { } {0}
{1} {1} {1, 0} { } {0}

{1, 0} {1} {1, 0} { } {0}
{ } {1, 0} {1, 0} {1, 0} {1, 0}
{0} {1, 0} {1, 0} {1, 0} {1, 0}

Here, we examine the compatibility connectives arising not from standard
negations and connexive conditionals, but again using standard condition-
als and using our four connexive negations. We define those compatibility
connectives as follows:

A ◦
�8 B =def�8 (A →m�8B)

A ◦
�9 B =def�9 (A →m�9B)

A ◦�7 B =def�7 (A →m�7B)

A ◦�8 B =def�8 (A →m�8B)

A ◦
�8 B {1} {1, 0} { } {0}

{1} {1} {1, 0} {1} {1, 0}
{1, 0} {1} {1, 0} {1} {1, 0}
{ } {1, 0} {1, 0} {1, 0} {1, 0}

{1, 0} {1, 0} {1, 0} {1, 0} {1, 0}

A ◦
�9 B {1} {1, 0} { } {0}

{1} {1} {1, 0} {1} {1, 0}
{1, 0} {1} {1, 0} {1} {1, 0}
{ } {1, 0} {1, 0} {1, 0} {1, 0}

{1, 0} {1, 0} {1, 0} {1, 0} {1, 0}

A ◦�7 B {1} {1, 0} { } {0}
{1} {1, 0} {1, 0} {1, 0} {1}

{1, 0} {1, 0} {1, 0} {1, 0} {1}
{ } {1, 0} {1, 0} {1, 0} {1, 0}

{1, 0} {1, 0} {1, 0} {1, 0} {1, 0}

A ◦�8 B {1} {1, 0} { } {0}
{1} {1, 0} {1, 0} { } {1, 0}

{1, 0} {1, 0} {1, 0} { } {1, 0}
{ } {1, 0} {1, 0} {1, 0} {1, 0}

{1, 0} {1, 0} {1, 0} {1, 0} {1, 0}
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Perhaps the more unusual connectives are ◦�8 , ◦�9 , ◦�7 , because they
are true in all interpretations. In particular, this implies that A ◦�8 N A,
A ◦�9 N A and A◦�7 N A are true in all interpretations.

Can we do better in comparing these different compatibility connectives?
Yes, we can. Pizzi [45] put forward some criteria for a compatibility con-
nective.21 According to him, a compatibility connective must satisfy the
following properties:

For all A, |= A ◦ A (Reflexivity)

For all A and B, |= ((A > B) →m (A ◦ B)) (Subalternation)

For all A and B, �|= (A ◦ B) →m (A > B) (Non-collapse)

For all A, |= ♦A ◦ A (Modal compatibility)

where ♦ is a unary connective for possibility. These requirements express,
respectively, that the truth of A does not exclude the truth of A; that if
A implies B, the truth of A does not exclude the truth of B, but the fact
that the truth of A does not exclude the truth of B does not mean that A
implies B; finally, that the possibility of A’s truth does not exclude that A
is (actually) true.

Pizzi also set forth the following intuitive requirement on a compatibility
connective:

For all A, |= N(A ◦ NA) (Consistency)

Nonetheless, as it makes > reflexive, Pizzi considers (Consistency) a super-
fluous feature of a compatibility connective, derivable from the properties
of a conditional.22

21These properties have been originally set forth with respect to a consistent logic,
which contains classical zero-order logic and is closed under replacement of material equiv-
alents and uniform substitution. Nonetheless, it is clear that these requirements can be
investigated for any kind of logic.

22A > A certainly holds for the conditionals we are working with. Nonetheless, A > A
has failed in connexive settings. When the arrow is understood in certain ways, there
might be implicative logical truths without A > A being among them. For example, in
Goddard and Sylvan’s works on reason-giving conditionals and non-ponible reasoning—see
for example [22]—, A � B, “A is a reason for B”, is analyzed as “A (relevantly) implies B
and A is prior enhancing information to B”. This delivers Aristotle’s Thesis, for A is not
a reason against itself, but not A � A (in general, a proposition is not a reason for itself).
In that framework, (Consistency) might cause some trouble.
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It is easy to check whether the compatibility connectives defined in this
section meet Pizzi’s requirements. Whereas the property of (Modal compati-
bility) had some purpose for Pizzi’s discussion on consequential implication—
an implication →ci interpreted in modal terms that validates so-called
‘(Weak) Boethius’ Thesis’ ((A →ci B) →m ¬b(A →ci ¬bB))—we leave
it out in the consideration of our demodalized languages. The results are
summarized in the following table:

◦�8 ◦�9 ◦�7 ◦�8

(Reflexivity) � � � �
(Subalternation) � � � �
(Non-collapse) � � � �
(Consistency) � � � �

Thus, all the previous connectives pass the Pizzi test for being compatibility
connectives.

7. Conclusions

In this paper we considered a common view of connexive logic according to
which the validation of the so called “connexive schemas” (Aristotle’s Thesis
and its variant, and Boethius’ Thesis and its variant) and the invalidation
of Symmetry of Implication constitute sufficient conditions for a connexive
logic and, derivatively, to have a connexive conditional.

The standard way to obtain a connexive conditional is by taking a known
negation and then modifying the conditional to validate the connexive
schemas. We explored the converse situation: obtain a connexive negation
by taking a known conditional—the extensional conditional or material con-
ditional in this case—and then modifying the negation in such a way as to
validate the connexive schemas. Our exploration led us to consider the can-
cellation account of negation, and compare its properties with our connexive
negations. To round our analysis of the connexive negations, we connected
the connexive schemas with the notion of (in)compatibility; we defined some
connectives of compatibility by means of our connexive negations and dis-
cussed its adequacy with respect to some criteria given by Pizzi.

Finally, this sort of investigation opens some avenues for further research.
One of the most obvious is whether the satisfaction of the connexive schemas
is a sufficient condition for a non-classical negation be taken as connexive,
or whether the shift of focus to negation makes necessary to consider some
other conditions, even detached from conditionals. Another topic for future
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work is approaching the issue from the modal theories of negation; for exam-
ple, using those in [3,4,29,34–37]. Finally, one could employ other semantic
frameworks already used to study connexivity, for example, relating seman-
tics (cf. [23–27]), and try to adapt them to focus connexivity on negation.
Negation in general remains understudied in the relating framework, and
this could be a good topic for further testing of the machinery.
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Cano-Jorge, Sandra D.Cuenca. Hitoshi Omori, Elisángela Ramı́rez-Cámara,
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[16] Estrada-González, L., An analysis of poly-connexivity, Studia Logica 110:925-947,

2022.
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