23rd International Symposium on Multiple Valued Logic. Sacramento, CA, May 1993 Proceedings. (IEEE Press, Los Alamitos, 1993) pp. 208–213

Systematic Construction of Natural Deduction Systems for Many-valued Logics

Matthias Baaz^{*} Christian G. Fermüller[†] Richard Zach[†] Technische Universität Wien, Austria

Abstract

A construction principle for natural deduction systems for arbitrary finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness and normal form theorems for the natural deduction systems.

1 Introduction

The study of natural deduction systems for manyvalued logics can be motivated by the following two issues: (1) Many-valued logics provide a general framework for the investigation of properties of classical (two-valued) systems. (2) A general construction of sound and complete natural deduction calculi leads to an adequate syntactical (proof-theoretic) characterization of many-valued logics for which one wants to emphasize the rôle of a particular truth value. (For standard logics, such as the families of Gödel und Lukasiewicz logics, one usually considers such distinguished truth values.)

We consider finitely-many-valued first order logics with arbitrary truth-functional connectives and distribution quantifiers (see Definition 2.2). A natural deduction derivation for a logic with the truth values $\{v_1, \ldots, v_m\}$ is defined as a derivation

$$\Gamma_1 \mid \dots \mid \Gamma_{m-1}$$
$$\vdots$$
$$\Gamma_m$$

where Γ_i $(1 \le i \le m)$ are sets of formulas $(\Gamma_1 \mid \ldots \mid \Gamma_{m-1} \mid represents the assumptions, <math>\Gamma_m$ is the conclu-

[†]Technische Universität Wien, Institut für Computersprachen E185.2, Resselgasse 3/1, A-1040 Wien, Austria, {chrisf, zach}@logic.tuwien.ac.at sion.) Each position *i* corresponds to one of the truth values, v_m is the distinguished truth value. The intended meaning is as follows: Derive that at least one formula of Γ_m takes the value v_m under the assumption that no formula in Γ_i takes the value v_i $(1 \le i \le m-1)$.

Our starting point for the construction of natural deduction systems are sequent calculi. (A sequent is a tuple $\Gamma_1 \mid \ldots \mid \Gamma_m$, defined to be satisfied by an interpretation iff for some $i \in \{1, \ldots, m\}$ at least one formula in Γ_i takes the truth value v_i .) For each pair of an operator \Box or quantifier Q and a truth value v_i we construct a rule introducing a formula of the form $\Box(A_1, \ldots, A_n)$ or (Qx)A(x), respectively, at position i of a sequent. The resulting calculi are shown to be sound and cut-free complete by Schütte's reduction tree method.

Every sequent rule introducing a formula at a nondistinguished position is converted into an elimination rule; the sequent rule introducing a formula at the distinguished position is transformed into an introduction rule (in the sense of natural deduction). Any natural deduction derivation can be translated into a derivation of the corresponding sequent calculus. On the other hand, any cut-free sequent calculus proof translates into a normal natural deduction derivation. (Here normal means that for no branch of the proof tree an elimination follows an introduction; this excludes maximal segments in the sense of PRAWITZ [1971].) Consequently, the natural deduction sytems are sound and complete and every derivation can be transformed into a normal derivation. Such derivations consist of "analytical" paths.

2 Preliminaries

2.1. DEFINITION A language \mathcal{L} for a logic **L** consists of: (1) free variables, (2) bound variables, (3) predicate symbols, (4) propositional connectives, (5) quantifiers, and (6) auxiliary symbols: "(", ")", ","

We use a, b, c, \ldots to denote free variables; x, y, z, \ldots to denote bound variables; P, Q, R, \ldots to denote

^{*}Technische Universität Wien, Institut für Algebra und Diskrete Mathematik E118.2, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria, baaz@logic.tuwien.ac.at

predicate symbols; \Box to denote connectives; and Q to denote quantifiers, all possibly indexed.

2.2. DEFINITION A matrix **L** for a language \mathcal{L} is given by:

- (1) a nonempty set of truth values $V = \{v_1, \ldots, v_m\}$ of size m,
- (2) an abstract algebra **V** with domain V of appropriate type: For every *n*-place connective \Box of \mathcal{L} there is an associated truth function $\widetilde{\Box}: V^n \to V$,
- (3) for every quantifier \mathbb{Q} , an associated truth function $\widetilde{\mathbb{Q}}: \wp(V) \setminus \{\emptyset\} \to V$

A language and a matrix for it together fully determine a logic \mathbf{L} . \mathbf{L} is said to be *m*-valued.

The intended meaning of a truth function for a propositional connective is obvious and perfectly analogous to the two-valued case. A truth function for a quantifier is a mapping from nonempty sets of truth values to truth values: given a quantified formula (Qx)F(x), such a set of truth values describes the situation where the instances of F take exactly the truth values in this set as values under a given interpretation.

2.3. EXAMPLE The matrix for the three-valued Gödel logic \mathbf{G}_3 consists of:

- (1) The set of truth values $V = \{f, *, t\}$
- (2) The truth functions for the connectives, e.g.:

		\vee	t	*	f	\supset	f	*	t
t	f	t	t	t	t	f	t	t	t
*	*	*	t	*	*	*	f	t	t
f	t	f	t	*	f	t	f	*	t

(3) The truth functions for the quantifiers \forall and \exists (generalized \land and \lor):

$$\begin{array}{rcl} \widetilde{\forall}(\{t\}) &= t & \widetilde{\exists}(\{t\}) &= t \\ \widetilde{\forall}(\{t,*\}) &= * & \widetilde{\exists}(\{t,*\}) &= t \\ \widetilde{\forall}(\{t,f\}) &= f & \widetilde{\exists}(\{t,f\}) &= t \\ \widetilde{\forall}(\{t,*,f\}) &= f & \widetilde{\exists}(\{t,*,f\}) &= t \\ \widetilde{\forall}(\{*\}) &= * & \widetilde{\exists}(\{*\}) &= * \\ \widetilde{\forall}(\{*,f\}) &= f & \widetilde{\exists}(\{*,f\}) &= * \\ \widetilde{\forall}(\{f\}) &= f & \widetilde{\exists}(\{f\}) &= f \end{array}$$

2.4. DEFINITION An interpretation **M** is a mapping of all free variables to elements of a given domain D, and of predicate symbols to functions of type $D^n \to V$.

A valuation $\operatorname{val}_{\mathbf{M}}$ is a mapping that extends the interpretation to formulas via the truth functions given in the matrix. We only give the precise definition of the valuation function for a quantified formula:

$$\operatorname{val}_{\mathbf{M}}((\mathbf{Q}x)G(x)) = \widetilde{\mathbf{Q}}\left(\bigcup_{d\in D}\operatorname{val}_{\mathbf{M}(d/a)}G(a)\right),$$

where a is a new free variable, and $\mathbf{M}(d/a)$ is defined as the interpretation equal to \mathbf{M} , except that $\mathbf{M}(d/a)a = d$.

3 Sequent calculi

Sequent calculi for classical logic were introduced by GENTZEN [1934] and were later generalized to the many-valued case by SCHRÖTER [1955], ROUSSEAU [1967], and others. More recently, equivalent formulations for tableaux calculi were given (see, e.g., CARNIELLI [1987] or HÄHNLE [1991]). The method used here can also be used to obtain calculi for transformation into clause form for many-valued resolution (see BAAZ and FERMÜLLER [1992]).

3.1. DEFINITION An (*m*-valued) sequent is an *m*-tuple of finite sets Γ_i of formulas, denoted thus:

$$\Gamma_1 \mid \Gamma_2 \mid \ldots \mid \Gamma_m$$

For convenience, we will abbreviate $\Gamma \cup \Delta$ by Γ, Δ ; $\Gamma \cup \{F\}$ by Γ, F ; and sometimes $\Gamma_1 \mid \ldots \mid \Gamma_m$ by $\mid \Gamma_l \mid_{l=1}^m$. We say that F stands (or occurs) at place i, if $F \in \Gamma_i$; v_i then is the truth value corresponding to place i.

3.2. DEFINITION An interpretation **M** is said to satisfy a sequent $\Gamma_1 | \ldots | \Gamma_m$, if there is an i $(1 \le i \le m)$ and a formula $F \in \Gamma_i$, s.t. $\operatorname{val}_{\mathbf{M}}(F) = v_i$. A sequent is called *valid*, if it is satisfied under every interpretation.

3.3. DEFINITION An introduction rule for a connective \Box at place *i* in the logic **L** is a schema of the form:

$$\frac{\left\langle \Gamma_{1}^{j}, \Delta_{1}^{j} \mid \ldots \mid \Gamma_{m}^{j}, \Delta_{m}^{j} \right\rangle_{j \in I}}{\Gamma_{1} \mid \ldots \mid \Gamma_{i}, \Box(A_{1}, \ldots, A_{n}) \mid \ldots \mid \Gamma_{m}} \Box:i$$

where the arity of \Box is n, I is a finite set, $\Gamma_l = \bigcup_{j \in I} \Gamma_l^j$, $\Delta_l^j \subseteq \{A_1, \ldots, A_n\}$ and the following condition holds: Let **M** be an interpretation. Then the following are equivalent:

- (1) $\Box(A_1, \ldots, A_n)$ takes the truth value v_i under **M**. (2) For $i \in I$ **M** satisfies the second $A_i^j \vdash A_i^j$
- (2) For $j \in I$, **M** satisfies the sequents $\Delta_1^j \mid \ldots \mid \Delta_m^j$.

It should be stressed that the introduction rules for a connective at a given place are far from being unique: Let the expression A^{v_l} denote the statement "A takes the truth value v_l ". Then every introduction rule for $\Box(A_1, \ldots, A_n)$ at place *i* corresponds to a conjunction of disjunctions of some A^{v_l} which is true iff $\Box(A_1, \ldots, A_n)$ takes the truth value v_i (namely, $\bigwedge_{j \in I} \bigvee_{l=1}^{m} \bigvee_{A \in \Delta_{l}^{j}} A^{v_{l}}).$ Any such conjunctive normal form for $\Box(A_{1}, \ldots, A_{n})^{v_{i}}$ will do.

In particular, the truth table for \Box immediately yields a *complete* conjunctive normal form, the corresponding rule is as in Definition 3.3, with: $I \subseteq V^n$ is the set of all *n*-tuples $j = (w_1, \ldots, w_n)$ of truth values such that $\widetilde{\Box}(w_1, \ldots, w_n) \neq v_i$; and $\Delta_l^j = \{A_k \mid 1 \leq k \leq n, v_l \neq w_k\}$.

3.4. EXAMPLE Consider the implication in threevalued Gödel logic \mathbf{G}_3 given in Example 2.3. The conjunctive forms

$$(A \supset B)^f = (A^* \lor A^t) \land B^f (A \supset B)^* = A^t \land B^* (A \supset B)^t = (A^f \lor A^* \lor B^t) \land (A^f \lor B^* \lor B^t)$$

yield the following introduction rules:

$$\begin{array}{c|c} \frac{\Gamma \mid \Delta, A \mid \Pi, A \quad \Gamma', B \mid \Delta' \mid \Pi'}{\Gamma, \Gamma', A \supset B \mid \Delta, \Delta' \mid \Pi, \Pi'} \supset:f \\ \frac{\Gamma \mid \Delta \mid \Pi, A \quad \Gamma' \mid \Delta', B \mid \Pi'}{\Gamma, \Gamma' \mid \Delta, \Delta', A \supset B \mid \Pi, \Pi'} \supset:* \\ \frac{\Gamma, A \mid \Delta, A \mid \Pi, B \quad \Gamma', A \mid \Delta', B \mid \Pi', B}{\Gamma, \Gamma' \mid \Delta, \Delta' \mid \Pi, \Pi', A \supset B} \supset:t \end{array}$$

3.5. DEFINITION An introduction rule for a quantifier Q at place *i* in the logic **L** is a schema of the form:

$$\frac{\left\langle \Gamma_{1}^{j}, \Delta_{1}^{j} \mid \ldots \mid \Gamma_{m}^{j}, \Delta_{m}^{j} \right\rangle_{j \in I}}{\Gamma_{1} \mid \ldots \mid \Gamma_{i}, (\mathbf{Q}x)A(x) \mid \ldots \mid \Gamma_{m}} \mathbf{Q}:i$$

where I is a finite set, $\Gamma_l = \bigcup_{j \in I} \Gamma_l^j$, $\Delta_l^j \subseteq \{A(a_1), \ldots, A(a_p)\} \cup \{A(t_1), \ldots, A(t_q)\}$, the a_l are metavariables for free variables (the eigenvariables of the rule) satisfying the condition that they do not occur in the lower sequent, the t_k are metavariables for terms, and the following condition holds:

Let \mathbf{M} be an interpretation. Then the following are equivalent:

- (1) $(\mathbf{Q}x)A(x)$ takes the truth value v_i under **M**.
- (2) For all $d_1, \ldots, d_p \in D$, there are terms t'_1, \ldots, t'_q s.t. for all $j \in I$, $\mathbf{M}(d_1/a_1, \ldots, d_p/a_p)$ satisfies $\Delta'_1^j \mid \ldots \mid \Delta'_m^j$ where Δ'_l^j is obtained from Δ_l^j by instantiating the term variable t_k with t'_k $(1 \leq k \leq q)$.

The truth function for a quantifier \mathbf{Q} immediately yields introduction rules for place *i* in a way similar to the method described above for connectives: Let $I = \{j \subseteq \{v_1, \ldots, v_m\} \mid \widetilde{\mathbf{Q}}(j) \neq v_i\}$, then the rule is given as in Definition 3.5, with $\Delta_l^j = \{A(a_w^j) \mid w \in$ $j, w \neq v_l \} \cup \{A(t^j) \mid v_l \in V \setminus j\}$. Again, it should be stressed that in general this is not the only possible rule.

3.6. EXAMPLE Consider the universal quantifier \forall in three-valued Gödel logic \mathbf{G}_3 given in Example 2.3. Intuitively, $(\forall x)A(x)$ takes the value f, if A(t) is false for some t; t, if A(a) is true for all a; and *, if A(t) takes the value * for some t and A(a) never takes the value f. We obtain the following rules:

$$\frac{\Gamma, A(t) \mid \Delta \mid \Pi, A}{\Gamma, (\forall x) A(x) \mid \Delta \mid \Pi} \forall : f \quad \frac{\Gamma \mid \Delta \mid \Pi, A(a)}{\Gamma \mid \Delta \mid \Pi, (\forall x) A(x)} \forall : t$$
$$\frac{\Gamma \mid \Delta, A(a) \mid \Pi, A(a) \quad \Gamma' \mid \Delta', A(t) \mid \Pi'}{\Gamma, \Gamma' \mid \Delta, \Delta', (\forall x) A(x) \mid \Pi, \Pi'} \forall : *$$

3.7. DEFINITION A sequent calculus for a logic \mathbf{L} is given by:

- (1) Axioms of the form: $A \mid \ldots \mid A$, where A is any formula,
- (2) For every connective \Box and every truth value v_i an introduction rule $\Box:i$,
- (3) For every quantifier Q and every truth value v_i an introduction rule Q:i,
- (4) Weakening rules for every place i:

$$\frac{\Gamma_1 \mid \ldots \mid \Gamma_i \mid \ldots \mid \Gamma_m}{\Gamma_1 \mid \ldots \mid \Gamma_i, A \mid \ldots \mid \Gamma_m}$$

(5) Cut rules for every two truth values $v_i \neq v_j$:

$$\frac{\Gamma_1 \mid \ldots \mid \Gamma_i, A \mid \ldots \mid \Gamma_m \quad \Delta_1 \mid \ldots \mid \Delta_j, A \mid \ldots \mid \Delta_m}{\Gamma_1, \Delta_1 \mid \ldots \mid \Gamma_m, \Delta_m}$$

A sequent is *provable* in a given sequent calculus, if there is an upward tree of sequents s.t. every topmost sequent is an axiom and every other sequent is obtained from the ones standing immediately above it by an application of one of the rules.

3.8. THEOREM (Soundness) For every sequent calculus in the sense of Definition 3.7 the following holds: If a sequent is provable, then it is valid.

Proof. By induction on the length of proofs (see BAAZ et al. [1993]). \Box

3.9. THEOREM (Completeness) For every sequent calculus in the sense of Definition 3.7 the following holds: If a sequent is valid, then it is provable without cuts from atomic axioms.

Proof. By the method of reduction trees, due to SCHÜTTE (see BAAZ et al. [1993]). \Box

4 Natural deduction systems

GENTZEN [1934] formulated natural deduction for intuitionistic logic as the system NJ. In correspondence with the intuitionistic sequent calculus LJ, where the right side of a sequent is restricted to at most one formula, NJ deals with inferences of one conclusion from a set of assumptions. At the application of rules, assumptions of a certain form can be *cancelled* in parts of the proof. A proof of a formula is a deduction tree where all assuptions have been cancelled.

Natural deduction for classical logic **NK** is obtained from **NJ** by adding *tertium non datur*. Alternatively, one can drop the restriction to one formula in the conclusion and allow sets of formulas (cf. PARIGOT [1992]). We generalize this classical multi-conclusion system of natural deduction to the m-valued case.

4.1. DEFINITION Let the \Box -introduction rules at place *i* be given as in Definition 3.3. The (natural deduction) *introduction rule* \Box : I for \Box is given by:

$$\frac{\left\langle \begin{array}{c} \Gamma_1^j, [\Delta_1^j] \mid \dots \mid \Gamma_{m-1}^j, [\Delta_{m-1}^j] \\ \Gamma_m^j, \Delta_m^j \end{array} \right\rangle_{j \in I}}{\Gamma_m, \Box(A_1, \dots, A_n)}$$

The elimination rule \Box : E_i for \Box at place i < m is given by:

$$\frac{MP}{\Gamma'_m, \Box(A_1, \dots, A_n)} \left\langle \begin{array}{c} \mid \Gamma^j_l, [\Delta^j_l] \mid_{l=1}^{m-1} \\ \Gamma^j_m, \Delta^j_m \end{array} \right\rangle_{j \in I}$$

$$\overline{\Gamma_m, \Gamma'_m}$$

where MP denotes the major premise of the form:

$$\Gamma'_1, [\Box(\ldots)] \mid \ldots \mid \Gamma'_i \mid \ldots \mid \Gamma'_{m-1}, [\Box(\ldots)]$$
$$\Gamma'_m, \Box(\ldots)$$

The formulas in square brackets are those which can be cancelled at this inference.

4.2. EXAMPLE The introduction rule for \supset in the logic \mathbf{G}_3 is:

$$\begin{array}{cc} \Gamma, [A] \mid \Delta, [A] & \Gamma', [A] \mid \Delta', [B] \\ \\ \underline{\Pi, B} & \underline{\Pi', B} \\ \hline \Pi, \Pi', A \supset B \end{array}$$

The elimination rule at place * is:

$$\begin{array}{c} \varGamma, [A \supset B] \mid \varDelta \quad \varGamma'' \mid \varDelta'' \quad \varGamma'' \mid \varDelta'', [B] \\ \\ \underline{\Pi, A \supset B} \quad \underline{\Pi', A} \quad \underline{\Pi''} \\ \hline \Pi, \Pi', \Pi'' \end{array}$$

The elimination rule at place f is:

$$\begin{array}{ccc} \Gamma \mid \Delta, [A \supset B] & \Gamma'' \mid \Delta'', [A] & \Gamma'', [B] \mid \Delta'' \\ \\ \underline{\Pi, A \supset B} & \underline{\Pi', A} & \underline{\Pi''} \\ \hline \\ \overline{\Pi, \Pi', \Pi''} \end{array}$$

4.3. DEFINITION Let the Q-introduction rules at place i be given as in Definition 3.5. The (natural deduction) introduction rule Q:I for Q is given by:

$$\frac{\left\langle \begin{array}{c} \Gamma_{1}^{j}, [\Delta_{1}^{j}] \mid \dots \mid \Gamma_{m-1}^{j}, [\Delta_{m-1}^{j}] \\ \Gamma_{m}^{j}, \Delta_{m}^{j} \end{array} \right\rangle_{j \in I}}{\Gamma_{m}, (\mathsf{Q}x)A(x)}$$

The elimination rule $Q:E_i$ for Q at place i < m is given by:

$$\frac{MP}{\Gamma_m, (\mathbf{Q}x)A(x)} \left\langle \begin{array}{c} \mid \Gamma_l^j, [\Delta_l^j] \mid_{l=1}^{m-1} \\ \Gamma_m^j, \Delta_m^j \end{array} \right\rangle_{j \in I}$$

$$\Gamma_m, \Gamma_m'$$

where MP denotes the major premise of the form:

$$\Gamma_1', [(\mathbf{Q}x)A(x)] \mid \ldots \mid \Gamma_i' \mid \ldots \mid \Gamma_{m-1}', [(\mathbf{Q}x)A(x)]$$

$$\Gamma_m, (\mathbf{Q}x)A(x)$$

The eigenvariables in Δ_l^j must not occur in $\Gamma_1, \Gamma'_1, \ldots, \Gamma_m, \Gamma'_m$ nor in $(\mathbf{Q}x)A(x)$.

4.4. DEFINITION A natural deduction system for a logic \mathbf{L} is given by:

- (1) Assumptions of the form $|A|_{l=1}^{m-1}$ where A is any formula,
- (2) For every connective \Box an introduction rule \Box :I as well as an elimination rule \Box :E_i for every truth value $v_i \neq v_m$;
- (3) For every quantifier Q an introduction rule Q:I as well as an elimination rule Q:E_ifor every truth value $v_i \neq v_m$;
- (4) The weakening rule:

$$\Gamma_1 \mid \ldots \mid \Gamma_{m-1}$$
$$\frac{\Gamma_m}{\Gamma_m, A} \le$$

Weakenings are considered as introductions.

In the classical case, a derivation of a formula F from an assumption A has the intuitive meaning of: assuming A holds, we can deduce F. Viewed truthfunctionally, this means: assuming that A is true, i.e., not false, then F is true as well. The generalization to the many-valued case is as follows: Given a derivation of F from the assumption $A_1 | \ldots | A_{m-1}$: if A_i does not take the truth value v_i $(1 \le i \le m-1)$, then F takes the truth value v_m . **4.5.** DEFINITION A natural deduction derivation is defined inductively as follows:

(1) Let A be any formula. Then

$$\frac{\mid A \mid_{l=1}^{m-1}}{A}$$

is a derivation of A from the assumption $|A|_{l=1}^{m-1}$ (an *initial derivation*).

(2) If D_j are derivations of Γ_m^j, Δ_m^j from the assumptions $\Gamma_1^j, \Delta_1^j \mid \ldots \mid \Gamma_{m-1}^j, \Delta_{m-1}^j$, and

$$\frac{\left\langle \begin{array}{c} \Gamma_1^j, [\Delta_1^j] \mid \dots \mid \Gamma_{m-1}^j, [\Delta_{m-1}^j] \\ \Gamma_m^j, \Delta_m^j \end{array} \right\rangle_{j \in J}}{\Gamma_m}$$

is an instance of a deduction rule (the Δ_i^j may be empty) satisfying the eigenvariable conditions, then

$$\frac{\langle D_j \rangle_{j \in J}}{\Gamma_m}$$

is a derivation of Γ_m from the assumptions $\bigcup_{j\in I} \Gamma_1^j \mid \ldots \mid \bigcup_{j\in I} \Gamma_{m-1}^j$. The formulas in Δ_i^j which do not occur in $\bigcup_{j\in I} \Gamma_i^j$ are said to be *cancelled* at this inference.

4.6. DEFINITION In an elimination, the premises (sets of formulas) containing the formula to be eliminated are called *major premises*, the other premises are called *minor premises*.

We call a formula occurence A

- (1) the conclusion formula of an introduction, if it is the formula being introduced,
- (2) a premise formula of an introduction, if it is one of the formulas in Δ_m^j in that introduction,
- (3) the major premise formula of an elimination, if it is the formula being eliminated,
- (4) a minor premise formula of an elimination, if it is among the formulas in Δ_m^j in that elimination,
- (5) a cancelled assumption formula of an elimination, if it stands immediatly below an assumption which contains the formulas in Δ_l^j $(1 \le j \le m-1)$ being cancelled at that elimination.

A formula occurrence A is said to follow A', if both are of the same form and A' stands immediately above A.

4.7. THEOREM (Soundness) If a set of formulas Γ_m can be derived from the assumptions $\Gamma_1 \mid \ldots \mid \Gamma_{m-1}$, then the following holds for every interpretation **M**: If no formula in Γ_i (i < m) evaluates to the truth value v_i , then there is a formula in Γ_m that evaluates to v_m .

Proof. By inductive translation of a derivation D of Γ_m from $\Gamma_1 \mid \ldots \mid \Gamma_{m-1}$ to a sequent calculus proof of $\Gamma_1 \mid \ldots \mid \Gamma_m$ (see BAAZ *et al.* [1993]). \Box

4.8. Remark Translating sequent rules for two-valued logic yield natural deduction elimination rules which differ from those given by Gentzen. However, Gentzen's rules can be obtained in a systematic way by a simplification of the constructed rules. The resulting schema falls outside of our definition of natural deduction rules. We demonstrate this simplification pars pro toto for the \forall -elimination rule. The classical version as given by PARIGOT [1992] is:

$$\frac{\prod_{\substack{\Delta, (\forall x) A(x) \\ \Delta, A(t)}}}{\Delta, A(t)}$$

The constructed rule is:

$$\frac{\prod\limits_{\substack{\Delta, \ (\forall x)A(x) \\ \Delta, \ \Delta'}} \Gamma', [A(t)]}{\Delta, \Delta'}$$

Taking $\{A(t)\}$ for Δ' and \emptyset for Γ' , we obtain Parigot's rule by disregarding the redundant right premise.

5 Normal derivations

A maximum segment in the intuitionistic natural deduction calculus **NJ** is a sequence of formulas in a derivation that starts with an introduction and end with an elimination. In the classical, multi-conclusion system, it is a sequence starting with an introduction of a formula and ending in an elimination acting on the same formula. A maximum segment constitutes a redundancy in the proof. In **NJ**, and also in multi-valued natural deduction, there are always proofs without such redundancies (see PRAWITZ [1971]).

5.1. DEFINITION A sequence A_1, \ldots, A_r of occurrences of one and the same formula is called a maximum segment, if A_1 is the conclusion formula of an introduction, A_{j+1} stands immediately below A_j , and A_r is the the major premise formula in an elimination.

5.2. DEFINITION A normal derivation is a natural deduction derivation where no major premise of an elimination stands below an introduction.

5.3. PROPOSITION A normal derivation contains no maximum segments.

5.4. THEOREM Every cut-free sequent calculus proof of $S = \Gamma_1 \mid \ldots \mid \Gamma_m$ can be translated into a normal natural deduction derivation of Γ_m from the assumptions $\Gamma'_1 \mid \ldots \mid \Gamma'_{m-1}$, where $\Gamma'_l \subseteq \Gamma_l$ $(1 \le l \le m-1)$.

Proof. See BAAZ et al. [1993]. \Box

5.5. COROLLARY (Completeness) Natural deduction systems are complete.

Proof. By Theorems 3.9 and 5.4. \Box

5.6. COROLLARY (Normal Form Property) For every natural deduction derivation, there exists a normal natural deduction derivation of the same set of formulas from (a subset of) the same assumptions.

Proof. If there is a derivation of Γ_m from $\Gamma_1 \mid \ldots \mid \Gamma_{m-1}$, then by Theorem 4.7 there is a cut-free sequent calculus proof of $\Gamma_1 \mid \ldots \mid \Gamma_m$, whose translation yields a normal derivation. \Box

5.7. DEFINITION A path in a natural deduction derivation is a sequence of occurences of formulas A_1 , ..., A_r s.t.

- (1) A_1 is either
 - (a) a formula standing immediately below an assumption or
 - (b) is the conclusion formula of an introduction without premise formulas (e.g., weakenings);
- (2) A_r is either
 - (a) an end formula of the derivation or
 - (b) a minor premise formula of an elimination or
 - (c) a major premise formula of an elimination without cancelled assumption formulas, and

(3) $A_{j+1} \ (1 \le j \le r-1)$ is either

- (a) a cancelled assumption formula of an elimination rule, if A_j is the major premise formula of that elimination, or
- (b) the conclusion formula of an introduction if A_i is a premise formula of that rule, or
- (c) follows A_j .

5.8. PROPOSITION A path in a normal derivation can be divided into three (possibly empty) parts:

- (1) The analytical part A_1, \ldots, A_p , where each formula is the major premise formula of an elimination and stands immediately below an assumption; A_j is a subformula of A_{j-1} ($2 \le j \le p$).
- (2) The minimum part A_{p+1}, \ldots, A_q ; A_j is equal to A_{j+1} $(p \le j \le q)$.
- (3) The synthetical part A_{q+1} , ..., A_r ; A_{q+1} is the conclusion formula of an introduction with premise formula A_q ; A_{j-1} is a subformula of A_j $(q+1 \le j \le r)$.

6 Conclusion

We emphasize the fact that the construction of the logical calculi as well as the translations given are purely systematic and can in principle be automatised. Moreover, soundness, completeness and normal form theorems for the systems considered are derived in a uniform way.

It remains to be investigated for which collections of operators one can achieve strong normalisation (i.e., normal form transformations with Church-Rosser property) according to some reasonable definition.

References

BAAZ, M. and C. G. FERMÜLLER.

- [1992] Resolution for many-valued logics. In Proc. LPAR'92, LNAI 624, 107–118, Springer, Berlin.
- BAAZ, M., C. G. FERMÜLLER, and R. ZACH.
- [1993] Systematic construction of natural deduction systems for many-valued logics: Extended report. TUW-E185.2-BFZ.1-93, Technische Universität Wien.
- CARNIELLI, W. A.

[1987] Systematization of finite many-valued logics through the method of tableaux. J. Symbolic Logic, 52(2), 473–493.

Gentzen, G.

[1934] Untersuchungen über das logische Schließen I–II. Math. Z., 39, 176–210, 405–431.

- HÄHNLE, R.
 - [1991] Uniform notation of tableaux rules for multiple-valued logics. In Proc. Intl. Symposium on Multiple-valued Logic, 238–245.
- Parigot, M.
 - $\begin{array}{ll} \mbox{[1992]} & \lambda\mu\mbox{-}\mbox{Calculus: an algorithmic interpretation of} \\ & \mbox{classical natural deduction.} & \mbox{In $Proc. LPAR'92$,} \\ & \mbox{LNAI 624, 190-201, Springer, Berlin.} \end{array}$
- PRAWITZ, D.
 - [1971] Ideas and results in proof theory. In Proc. Second Scandinavian Logic Symposium, J. E. Fenstad (ed.), 235–307, North-Holland, Amsterdam.
- ROUSSEAU, G.
 - [1967] Sequents in many valued logic I. Fund. Math., 60, 23–33.
- Schröter, K.
 - [1955] Methoden zur Axiomatisierung beliebiger Aussagen- und Prädikatenkalküle. Z. Math. Logik Grundlag. Math., 1, 241–251.