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Abstract   Modeling mechanisms is central to the biological sciences – for pur-
poses of explanation, prediction, extrapolation, and manipulation. A closer look at 
the philosophical literature reveals that mechanisms are predominantly modeled in 
a purely qualitative way. That is, mechanistic models are conceived of as repre-
senting how certain entities and activities are spatially and temporally organized 
so that they bring about the behavior of the mechanism in question. Although this 
adequately characterizes how mechanisms are represented in biology textbooks, 
contemporary biological research practice shows the need for quantitative, proba-
bilistic models of mechanisms, too. In this paper we argue that the formal frame-
work of causal graph theory is well-suited to provide us with models of biological 
mechanisms that incorporate quantitative and probabilistic information. On the ba-
sis of an example from contemporary biological practice, namely feedback regula-
tion of fatty acid biosynthesis in Brassica napus, we show that causal graph theo-
retical models can account for feedback as well as for the multi-level character of 
mechanisms. However, we do not claim that causal graph theoretical representa-
tions of mechanisms are advantageous in all respects and should replace common 
qualitative models. Rather, we endorse the more balanced view that causal graph 
theoretical models of mechanisms are useful for some purposes, while being insuf-
ficient for others. 

Keywords   Causal graph theory; Modeling; Mechanism; Probabilistic model; 
Quantitative model 
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3.1 Introduction 

The search for mechanisms that underlie the phenomena under study is ubiquitous 
in many biological fields. Physiologists seek to find the mechanism for muscle 
contraction, cancer scientists try to discover the mechanisms that cause cell prolif-
eration, and ecologists aim at elucidating the various mechanisms that bring about 
the maintenance of species diversity – just to mention a few examples. In the last 
15 years, the philosophical literature on mechanisms has dramatically increased. 
Among the major proponents of the “new mechanistic philosophy” (Skipper and 
Millstein 2005, 327) are Carl Craver (2007), William Bechtel (2006, 2008), Stuart 
Glennan (2002, 2005), Lindley Darden (2006, 2008), and Peter Machamer et al. 
(2000). According to the mechanist’s view, scientific practice consists in the dis-
covery, representation, and manipulation of mechanisms. Scientific explanations 
are (exclusively or primarily) conceived as mechanistic explanations, that is, as 
descriptions of how the components of a mechanism work together to produce the 
phenomenon to be explained.2 

Our primary interest in this paper is the modeling of biological mechanisms. 
How are, can, and should mechanisms be represented? Are certain kinds of mod-
els of mechanisms advantageous with regard to particular scientific purposes like 
explanation, understanding, prediction, or manipulation? Previous philosophical 
literature on this topic (e.g., Glennan 2005; Craver 2007; Bechtel 2008) regards 
mechanistic models as being primarily qualitative representations. According to 
the mechanist’s view, adequate models of mechanisms describe all and only those 
factors that contribute to bringing about the mechanism’s behavior of interest (i.e., 
the “constitutively relevant” factors; cf. Craver 2007, 139-159). These factors in-
clude the entities (or objects) that compose the mechanism, the activities (or oper-
ations or interactions) that these entities engage in, and the spatial and temporal 
organization of the entities and activities (i.e., how the entities are spatially dis-
tributed, which position shifts of entities take place, which activities initiate which 
other activities to what time, etc.). These qualitative models of biological mecha-
nisms are typically depicted by diagrams (cf. Perini 2005), which scientists some-
times call “cartoon models” (Ganesan et al. 2009, 1621). Diagrams make it easier 
to understand how the steps of a mechanism together bring about the behavior in 
question. Hence, the representations of mechanisms that can be found in common 
biology textbooks are typically qualitative models. 

However, biological research practice is much more diverse than what is de-
picted in biology textbooks. Whereas the models of mechanisms which are de-
signed for textbooks aim at providing explanations and promote understanding, 
modeling strategies that are pursued in contemporary scientific practice, by con-
trast, serve multiple purposes. Besides offering explanation, models of mecha-
nisms are also used, for instance, to make (quantitative or qualitative) predictions, 
                                                           
2 Of course, one need not subscribe to all the details of the mechanistic view of science in order 
to acknowledge the importance of mechanisms to wide areas of biology. 
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to guide hypotheses building in scientific discovery, and to design manipulation 
experiments or even computer simulations. In some research contexts what will be 
needed are not purely qualitative models of mechanisms, but rather models that 
contain quantitative, probabilistic information. These models often have the virtue 
of being closer to the experiments and studies that are actually carried out in bio-
logical research practice. It is due to this closeness that probabilistic and quantita-
tive models often allow for more usable predictions, in particular when it comes to 
predicting the probabilities of certain phenomena of interest under specific manip-
ulations. Another advantage of models of mechanisms that combine qualitative 
with quantitative, probabilistic information might be that they allow for the inte-
gration of qualitative (e.g., molecular) studies and probabilistic (e.g., ecological or 
evolutionary) studies in a certain biological field. This is, for example, an urgent 
issue in epigenetics where the laboratory experiments performed by molecular ep-
igeneticists and the observational studies and computer simulations conducted by 
ecologists and evolutionary biologists need to be brought together (cf. Baedke 
2012). 

With this paper we respond to the need of contemporary biology for models of 
mechanisms that include quantitative, probabilistic information. We argue that the 
formal framework of causal graph theory is well suited to provide us with proba-
bilistic, (often) quantitative representations of biological mechanisms. We illus-
trate this claim with an example from actual biological research, namely feedback 
regulation of fatty acid biosynthesis in Brassica napus. Modeling this example al-
lows us to show how causal graph theory is able to account for certain features of 
biological mechanisms that have been regarded as problematic (e.g., their multi-
level character and the feedback relations that they frequently contain). However, 
besides the virtues our analysis of this case study also reveals which difficulties 
causal graph theoretical modeling strategies face when it comes to representing 
mechanisms. As a result, we argue for the balanced view that, even though causal 
graph theoretical models of mechanisms have advantages with respect to particu-
lar scientific purposes, they also have shortcomings with respect to other purposes. 

We start with an introduction of the basic formal concepts of causal graph theo-
ry (Section 3.2). In Section 3.3 we present what can be regarded as the major 
characteristics of biological mechanisms, namely their multi-level character, their 
two kinds of components, and the spatial and temporal organization of their com-
ponents. Section 3.4 deals with the case study that is central to our analysis: the 
mechanism for feedback inhibition of ACCase by 18:1-ACP in Brassica napus. In 
Section 3.5 we discuss how this mechanism (as well as one of its submechanisms) 
can be modeled by using causal graph theory. In doing so, we also address the 
possible objection that causal graph theory can account neither for the feedback 
relations that many biological mechanisms contain, nor for the fact that mecha-
nisms are frequently organized in nested hierarchies. On basis of this analysis we 
can then specify, on the one hand, the virtues and, on the other hand, the short-
comings of modeling biological mechanisms within a causal graph framework 
(Section 3.6). 
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3.2  Causal Graph Theory 

Causal graph theory is intended to model causality in a quite abstract and empiri-
cally meaningful way; it therefore provides principles which connect causal struc-
tures to empirical data. While causal structures are represented by graphs, empiri-
cal data is stored by means of probability distributions over sets of statistical 
variables. In this section we will introduce the basic formal concepts needed to in-
vestigate the question of whether a causal graph framework is capable of repre-
senting mechanisms. We start by giving some notational conventions and remarks 
concerning statistical variables and probability distributions (Section 3.2.1), before 
providing definitions for ‘probabilistic dependence’ and ‘probabilistic independ-
ence’ (Section 3.2.2). We introduce the concept of a causal graph (Section 3.2.3) 
and illustrate how such a causal graph, complemented by a probability distribu-
tion, becomes a causal model (Section 3.2.4).  

3.2.1 Statistical Variables and Probability Distributions 

A statistical variable X is a function that assigns exactly one of at least two mutu-
ally exclusive properties/possible values of X (‘val(X)’ designates the set of X’s 
possible values) to every individual in X’s domain DX. Statistical variables can be 
used in a way quite similar to predicate constants. ‘X(a) = x’ (where ‘a’ is an indi-
vidual constant), for instance, can be read as the token-level statement ‘individual 
a (e.g., a particular Drosophila fly) has property x (e.g., red eye color)’ and ‘X(u) 
= x’ (where ‘u’ is an individual variable) as the type-level statement ‘having prop-
erty x’. Formulae like ‘X(u) = x’ can be abbreviated as ‘X = x’ or, even shorter, as 
‘x’ whenever reference to individuals u is not needed. For the sake of simplicity 
we shall only use discrete variables, that is, variables X whose set of possible val-
ues val(X) is finite. Continuous quantities can be captured by discrete variables 
whose values correspond to the accuracy of the used measurement methods. 

Given a statistical variable X or a set of statistical variables X, then Pr is a 
probability distribution over X if and only if Pr is a function assigning a value ri  

[0,1] to every x  val(X), so that the sum of all assigned ri equals 1. Since proba-
bility distributions should be capable of storing empirical data, we interpret proba-
bilities as objective probabilities, that is, as inductively inferred limit-tendencies of 
observed frequencies. 
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3.2.2 Probabilistic Dependence and Independence Relations 

Given a probability distribution Pr over variable set V, conditional probabilistic 
dependence between two variables X and Y can be defined in the following way: 

(1)  DEPPr(X,Y|M) if and only if there are x, y, and m so that Pr(x|y,m) ≠ 
Pr(x|m), provided Pr(y,m) > 0.3 

Read ‘DEPPr(X,Y|M)’ as ‘X and Y are probabilistically dependent conditional on 
M’. According to definition (1) two variables X and Y are probabilistically de-
pendent conditional on M if the probability of at least one value of one of these 
two variables is probabilistically sensitive to at least one value of the other varia-
ble in at least one context M = m. So ‘probabilistic dependence’ is a quite weak 
notion. ‘Probabilistic independence’, on the other hand, is a very strong notion. If 
two variables X and Y are probabilistically independent conditional on M, then 
there is not a single X-value x and not a single Y-value y so that x is probabilisti-
cally sensitive to y in any context M = m. Conditional probabilistic independence 
(INDEPPr) is defined as the negation of conditional probabilistic dependence: 

(2)  INDEPPr(X,Y|M) if and only if for all x, y, and m: Pr(x|y,m) = Pr(x|m), 
provided Pr(y,m) > 0. 

Unconditional probabilistic dependence/ independence (DEPPr(X,Y)/ IN-
DEPPr(X,Y)) turns out to be a special case of conditional probabilistic depend-
ence/independence; it can be defined as conditional probabilistic depend-
ence/independence given the empty context M = : 

(3)  DEPPr(X,Y) if and only if DEPPr(X,Y|), and 
(4)  INDEPPr(X,Y) if and only if INDEPPr(X,Y|). 

3.2.3 Graphs and Causal Graphs 

Let us turn to the concept of a causal graph. A graph G is an ordered pair V,E, 
where V is a set of so-called vertices (which are statistical variables in causal 
graphs) while E is a set of so-called edges. Edges may be all kinds of arrows (e.g., 
‘’, ‘>’, and ‘’) or undirected links (‘—‘) representing diverse binary rela-
tions among objects in V. Two variables in a graph’s variable set V are called ad-

                                                           
3 The condition Pr(y,m) > 0 is needed because Pr(x|y,m) is defined as Pr(x,y,m)/Pr(y,m) and divi-
sion by 0 is undefined. 
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jacent if and only if they are connected by an edge. A chain of n ≥ 1 edges con-
necting two variables X and Y of a graph’s variable set V is called a path between 
X and Y. A path of the form X...Y is called a directed path from X to Y. 
Whenever a path contains a subpath of the form XZY, then Z is called a col-
lider on this path; the path is called a collider path in that case. X is called an an-
cestor of Y if and only if there is a directed path from X to Y; Y is called a de-
scendant of X in that case. The set of all ancestors of a variable X is denoted by 
‘Anc(X)’, while the set of all descendants of X is indicated by ‘Des(X)’. All X for 
which XY holds are called parents of Y; the set of all parents of Y is referred to 
via ‘Pa(Y)’. All Y for which X...Y holds are called children of X; the set of all 
children of X is referred to via ‘Chi(X)’. Variables to which no arrowhead is point-
ing are called exogenous variables. Non-exogenous variables are called endoge-
nous variables. A graph G = V,E containing a path of the form X...X (with X 
 V) is called a cyclic graph; an acyclic graph is a graph that is not a cyclic graph. 
A graph G = V,E is called a directed graph if E contains only directed edges. 

A graph becomes a causal graph as soon as its edges are interpreted causally. 
We will interpret ‘XY’ as ‘X is a direct cause of Y in causal graph G’. X is a 
cause (i.e., a direct/indirect cause) of Y in G if and only if there is a causal chain 
X...Y in G.  

3.2.4 Bayesian Networks and Causal Models 

A directed acyclic graph (DAG) G = V,E and a probability distribution Pr over 
G’s variable set V together become a so-called Bayesian network (BN) G,Pr if 
and only if G and Pr satisfy the Markov condition4 (MC). If G is an acyclic causal 
graph, then G and Pr become an acyclic causal model (CM) if and only if G and 
Pr satisfy the causal Markov condition5 (CMC): 

(MC/CMC): G = V,E und Pr satisfy the (causal) Markov condition if and 
only if for all X  V: INDEPPr(X,V\Des(X)|Pa(X)).6  

V\Des(X) is the set of all non-descendants of X. Note that ‘Des(X)’ and ‘Pa(X)’ in 
CMC refer to X’s effects and X’s direct causes, respectively, while ‘Des(X)’ and 
‘Pa(X)’ are not causally interpreted at all in MC. The main idea behind CMC can 

                                                           
4 Cf. Glymour et al. 1991, 156. 
5 Cf. Spirtes et al. 2000, 29. 
6 In addition to MC/CMC, there are further principles of special interest when it comes to causal 
inference on the basis of empirical data (e.g., causal sufficiency, the minimality condition, and 
the faithfulness condition). For further details on these principles see, for example, Spirtes et al. 
(2000) or Williamson (2005). 
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be traced back to Reichenbach’s The Direction of Time (1956).7 It captures the 
strong intuition that conditioning on all common causes as well as conditioning on 
intermediate causes breaks down the probabilistic influence between two formerly 
correlated variables X and Y. Or in other words: the direct causes of a variable X 
contain all the probabilistic information which can be found under the causes of 
event-types X = x; knowing the values of X’s parents screens X off from all of its 
indirect causes.  

We illustrate how CMC works by providing some examples. CMC implies for 
the DAG in Figure 3.1, for instance, the following independence relations (as well 
as all probabilistic independence relations implied by them). These independence 
relations can directly be read off CMC applied to this DAG: INDEPPr(X1,X4), IN-
DEPPr(X2,{X3,X4,X6}|X1), INDEPPr(X3,{X2,X4}|X1), INDEPPr(X4,{X1,X2,X3,X5}), 
INDEPPr(X5,{X1,X4,X6}|{X2,X3}), and INDEPPr(X6,{X1,X2,X5}|{X3,X4}). 

 

 

Fig. 3.1 

It follows from MC/CMC that the equation Pr(X1,...,Xn) = i Pr(Xi|pa(Xi))8 
holds in every BN/acyclic CM V,E,Pr and, thus, that every BN/acyclic CM de-
termines a fully defined probability distribution Pr(X1,...,Xn) over the variable set 
V of this BN/acyclic CM. Hence, BNs/acyclic CMs allow for probabilistic reason-
ing about events which can be described in terms of the variables in V. Because 
Pr(X1,...,Xn) = i Pr(Xi|pa(Xi)) holds in acyclic CMs, the conditional probabilities 
Pr(Xi|pa(Xi))—which are called Xi’s parameters—can represent the causal 
strengths of a variable Xi’s direct causes. Note that Pr(X1,...,Xn) = i Pr(Xi|pa(Xi)) 
and thus MC/CMC do not hold in cyclic CMs, either. It is because of this that in 
cyclic CMs there are always some variables whose parameters are undefined 
(these are the variables lying on a cyclic directed path) and, thus, that also the 
causal strengths of their direct causes are undefined in such models.  

                                                           
7 See also Williamson (2010). 
8 Note that ‘pa(Xi)’ stands for Xi’s parents taking certain values, while ‘Pa(Xi)’ stands for Xi’s 
parents, i.e., the variables which are Xi’s direct predecessors in the corresponding graph. 
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3.3 Biological Mechanisms 

Before we can assess the strengths and shortcomings of causal graph theoretical 
models of biological mechanisms we need to know what the main features of bio-
logical mechanisms are. In the last 15 years, philosophical interest in mechanisms 
has significantly increased. Those who endorse the mechanistic account place the 
concept of a mechanism at the heart of their philosophical analysis of scientific 
practice. They regard models of mechanisms as being involved in almost all scien-
tific activities, let it be explanation, discovery, prediction, generalization, or inter-
vention. There are still controversies in the debate with regard to how the notion 
of a mechanism should be specified, for instance, to which ontological category 
the components of a mechanism belong (Machamer et al. 2000; Tabery 2004; 
Torres 2008), whether the regular occurrence of the mechanism’s behavior is a 
necessary condition (Bogen 2005; Craver and Kaiser 2013), or whether the con-
cept of a mechanism can be extended such that it also accounts for the behavior of 
complex systems (Bechtel and Abrahamsen 2010, 2011) or for historical processes 
(Glennan 2010; see also Glennan’s paper in this volume). Despite these differ-
ences there are also many points of accordance. In what follows we will briefly 
present what are regarded as the major characteristics of biological mechanisms in 
the debate. 

To begin with, a mechanism is always a mechanism for a certain behavior 
(Glennan 2002), for instance, the mechanism for protein synthesis or the mecha-
nism for cell division. This is crucial because only those factors (i.e., entities and 
activities/interactions) that contribute to producing the specific behavior of the 
mechanism are said to be components of this mechanism.9 An important conse-
quence is that, although, for example, protein synthesis is the behavior of a cell 
not all parts of the cell are also components of the mechanism for protein synthe-
sis. Some parts of the cell (e.g., the centrosome and the cytoskeleton) are causally 
irrelevant for synthesizing proteins and thus do not count as components of the 
mechanism for protein synthesis.10 In other words, the decomposition of a mecha-
nism into its components depends on how the behavior of the mechanism is char-
acterized (Kauffmann 1970; Craver and Darden 2001). 

A second major characteristic of mechanisms is their multi-level character. The 
notion ‘multi-level character’ refers to two distinct but related features of mecha-
nisms: first, it appeals to the part-whole relation that exists between a mechanism 
and its components. This part-whole relation gives rise to the ontological claim 

                                                           
9 Craver calls these factors “constitutively relevant” and specifies this notion by his criterion of 
“mutual manipulability” (2007, 139-159). 
10 However, the parts of the cell that are not components of the mechanism for protein synthesis 
may be components of other mechanisms. For instance, the centrosome and the cytoskeleton are 
components of the mechanism for cell division. 
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that the mechanism as a whole is located on a higher level of organization11 than 
the entities and activities/interactions that compose the mechanism. For instance, 
the mechanism for muscle contraction is said to be located on a higher level than 
the calcium ions, the sarcoplasmic reticulum, the myosin and actin molecules etc. 
that interact with each other in a certain way (or that perform certain activities) in 
order to bring about the behavior of the mechanism as a whole (i.e., the contrac-
tion of the muscle fiber). Second, what is also meant by ‘multi-level character’ is 
the fact that many mechanisms (in particular, in the biological realm) occur in 
nested hierarchies. Many mechanisms have components that are themselves (low-
er-level) mechanisms; and many mechanisms themselves constitute a component 
in a higher-level mechanism. For instance, the calcium pump that actively trans-
ports the calcium ions from the cytosol back into the sarcoplasmic reticulum is a 
part of the mechanism for muscle contraction. However, the calcium pump is also 
a mechanism on its own, namely a mechanism for active transport of calcium ions. 
As such, it has its own components (e.g., A-, N-, and P-domain, transmembrane 
domain, calcium ions, ATP, etc.) with their own organization. Furthermore, the 
mechanism for muscle contraction constitutes itself a part in a higher-level mech-
anism, for instance, in the mechanism for crawling by peristalsis, a behavior that is 
exhibited, for example, by earthworms. 

The third feature of mechanisms concerns their components. It is the one with 
respect to which there exists least conformity. The proponents of the mechanistic 
view concur that mechanisms consist of components, but they use different termi-
nologies to classify the components and some of them assign the components to 
different ontological kinds (whereas others are just not interested in metaphysical 
issues). For instance, Machamer et al. (2000) endorse the dualistic thesis that 
mechanisms are composed of entities and activities, which they conceive as two 
distinct ontological kinds. By contrast, Glennan (1996, 2002) characterizes mech-
anisms in a monist fashion, that is, as being constituted exclusively by entities that 
interact with each other and thereby change their properties. Other mechanists do 
not take a stand on this ontological dispute, but nevertheless draw the distinction 
between the spatial components of a mechanism and “what the spatial components 
are doing” or “the changes in which the spatial components are involved”. Moreo-
ver, these authors adopt a different terminology to describe this difference. 
Bechtel (2006, 2008), for example, speaks of component parts and component op-
erations (or functions). We think that it is not necessary (although legitimate) to 
become engaged in the ontological dispute about whether mechanisms consist of 
components that belong to one or to two distinct ontological kinds. One can avoid 
this dispute and yet argue that the two concepts – let it be entities and activities, 
entities and interactions, component parts and component operations, or whatever 
                                                           
11 We leave it open whether the notion of a level of organization must be spelled out in a mecha-
nistic way, as for example Craver claims (2007, 184-195). Alternatively, one could try to offer an 
account of levels, according to which levels are not only defined in local explanatory contexts, 
but rather globally. In this spirit, for instance, Wimsatt takes levels to be local maxima of regu-
larity and predictability (1976, 1994, and 2007). 
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one likes – are descriptively adequate, that is, useful for representational purposes. 
When biologists represent mechanisms, they typically distinguish between the ob-
ject itself (e.g., ribosome) and what the object is doing or the interactions in which 
the object is involved (e.g., binding, moving along the mRNA, releasing polypep-
tide). Thus, one should account for this difference when one models biological 
mechanisms. This, however, leaves open the ontological question of whether ac-
tivities can be reduced to property changes of entities12 or not. In sum, the third 
feature of mechanisms is that they are represented as having two kinds of compo-
nents, entities and activities (or operations or interactions). 

A fourth major characteristic of mechanisms is the importance of the spatial 
and temporal organization of their components for the functioning of the mecha-
nism. Only if the components of a mechanism are organized in a specific way, the 
mechanism as a whole brings about the behavior in question. It is important to 
note that mechanisms are organized in a spatial as well as in a temporal manner. 
The spatial organization refers to the fact that certain entities are localized in cer-
tain regions of the mechanism, move from one region to another, and perform dif-
ferent activities in different regions. For instance, it is significant to the function-
ing of the mechanism of photosynthesis that the transport of electrons through the 
thylakoid membrane causes the transport of protons from the chloroplast stroma 
into the thylakoid lumen, and that the resulting chemiosmotic potential is used for 
ATP synthesis by transporting the protons back into the stroma again. The tem-
poral organization means that a mechanism is temporally divided into certain 
stages which have characteristic rates and durations as well as a particular order. 
Earlier stages give rise to latter stages so that there exists a “productive continui-
ty” (Machamer et al. 2000, 3) between the stages of a mechanism. In other words, 
the activities or interactions are “orchestrated” (Bechtel 2006, 33) such that they 
produce the phenomenon of interest. Consider the mechanism of photosynthesis 
again. This mechanism is also characterized by a specific sequence of activities. 
The first step is the absorption of a photon (by the photosystem II). This causes the 
excitation of an electron, which is followed by the transport of this electron down 
the electron transport chain. This transport brings about the transport of protons, 
and so on. 

At this point one could discuss further features of mechanisms, like the fact that 
most mechanisms produce a certain behavior in a regular way (given certain con-
ditions) or that the components of mechanisms might be connected by a special 
kind of causal relations, namely “productive causal relations” (Bogen 2008). 
However, these characteristics of mechanisms are far more controversial than the 
ones we have mentioned so far. This is why we do not take them for granted here. 
In what follows we examine the question of whether causal graph theoretical 
models of biological mechanisms are able to capture the major characteristics of 
mechanisms that we have presented in this section, namely the multi-level charac-

                                                           
12 Or, in the case of an activity that involves two entities, two events in which the change of one 
property of one object causes the property change of another entity. 
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ter of mechanisms, their two kinds of components, and the spatial and temporal 
organization of their components. We do this by means of an extended analysis of 
an example from recent biological research. As announced before, the result of our 
analysis will be that causal graph theory succeeds with regard to some respects 
while failing with regard to others (Section 3.5). But before, we give a short intro-
duction to the case study that we are concerned with (Section 3.4). 

3.4 Feedback Inhibition of ACCase by 18:1-ACP in Brassica 
napus 

Feedback inhibition is a common mode of metabolic control. Generally speaking, 
in feedback inhibition a product P produced late in a reaction pathway inhibits an 
enzyme E that acts earlier in the pathway and that transforms the substrate S into 
an intermediate product IP1. Figure 3.2 illustrates this general connection. 
 

 
 

Fig. 3.2    The General Mechanism for Feedback Inhibition 

The figure shows that the substrate S is transformed in several steps into the 
product P (via the intermediate products IP1,...,IPn). As P accumulates, it slows 
down and finally switches off its own synthesis by inhibiting the regulatory en-
zyme E that often catalyzes the first committed step of the pathway. That way, 
feedback inhibition prevents the cell from wasting resources by synthesizing more 
P than necessary. Because enzyme activity can be rapidly changed by allosteric 
modulators, feedback inhibition of regulatory enzymes provides almost instanta-
neous control of the flux through the pathway. 

Many instances of this general mechanism of feedback inhibition can be found 
in nature. In this paper, we focus on an example from contemporary botanical re-
search, namely on the feedback regulation of fatty acid biosynthesis in Brassica 
napus. This particular feedback inhibition mechanism has only recently been iden-
tified by Andre et al. (2012).13 Fatty acid biosynthesis is a crucial process for both 
plants and animals, providing the cell with components for membrane biogenesis 
and repair and with energy reserves in specialized cells (such as epidermal cells or 

                                                           
13 However, empirical work on similar regulation mechanisms, for instance, in tobacco suspen-
sion cells (Shintani and Ohlrogge 1995) and in Escherichia coli (Heath and Rock 1995; Davis 
and Cronan 2001), has been carried out before. 
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the cells of oil seeds). Since the need for fatty acids varies not only with the cell 
type, but also depends on the stage of development, time of the day, or rate of 
growth, fatty acid biosynthesis must be closely regulated to meet these changes. 
Although the biochemistry of plant acid biosynthesis has been extensively stud-
ied,14 comparatively little is known about its regulation and control (Ohlrogge and 
Jaworski 1997). Hence, a major challenge for contemporary plant fatty acid re-
search is to provide an understanding of how plants regulate differential fatty acid 
synthesis. Andre et al. (2012) take up this challenge with regard to canola (Brassi-
ca napus). Knowing the mechanism of how fatty acid biosynthesis in plants is 
regulated is important, not least because it may give rise to the design of strategies 
for increasing fatty acid synthesis in plants (cf. Tan et al. 2011). This is particular-
ly significant in light of the economic potential of genetically manipulated oil 
crops for improved nutritional quality or as renewable sources of petrochemical 
substitutes.15 

The main aim of the experimental studies conducted by Andre et al. (2012) was 
to discover the feedback system that regulates the biosynthesis of fatty acids in the 
plastids of Brassica napus. In other words, they sought after characterizing both 
the “enzymatic target” of the inhibition, that is, the enzyme E that is inhibited by 
the product P, and the “feedback signal” of the inhibition, that is, the product P 
that inhibits the enzyme E (see Figure 3.2). In order to do so, Andre et al. carried 
out several in vitro experiments, for instance, they tested the effect that Tween 80 
(which contains predominantly oleic acid (18:1)) has on the rate of fatty acid syn-
thesis as compared to the effect other Tweens have (2012, Table 1). The major re-
sults of their studies are twofold: first, they provide evidence for the hypothesis 
that plastidic acetyl-CoA carboxylase (in short, ACCase) is the target for feedback 
inhibition (i.e., the regulatory enzyme that is inhibited). ACCase catalyzes the 
transformation of acetyl-CoA into malonyl-CoA. This finding is in line with other 
studies that have revealed ACCase as a major regulatory point for plant fatty acid 
synthesis (cf. Ohlrogge and Jaworski 1997, 115-118). Second, their experiments 
indicate that the 18:1-acyl carrier protein (in short, 18:1-ACP) is the feedback sig-
nal, that is, the inhibitor of ACCase. On basis of these findings they proposed the 
mechanism for feedback inhibition of fatty acid synthesis in Brassica napus that is 
illustrated in Figure 3.3. 

 

                                                           
14 For an overview about lipid biosynthesis see, for instance, Ohlrogge and Browse (1995). 
15 Canola (Brassica napus) is the third largest source of vegetable oil supply. It is of high nutri-
tional value (because of its high concentrations of unsaturated C18 fatty acids and a low level of 
erucic acid) and a suitable source for biodiesel fuels as well as for raw materials in industry (Tan 
et al. 2011). 
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Fig. 3.3    Mechanism for Feedback Inhibition of Fatty Acid Synthesis in Brassica napus (Re-
produced from Andre et al. 2012) 

The mechanism for feedback inhibition that takes place in the plastid (depicted 
in the upper, inner box) can be characterized as an instance of the general mecha-
nism presented in Figure 3.2. The enzyme ACCase (E) converts the substrate ace-
tyl-CoA (S) into the intermediate product malonyl-CoA (IP1), which is then trans-
formed into the product 18:1-ACP (P). If the concentration of 18:1-ACP increases, 
more and more 18:1-ACP molecules bind to ACCase molecules and inhibit them. 
This, in turn, slows down and finally switches off the synthesis of further 18:1-
ACP.  

3.5 Modeling the Mechanism for Feedback Inhibition 

The mechanism presented in the previous section can be characterized as bringing 
about a certain phenomenon, namely the regulation of the synthesis of 18:1-ACP 
(which is a fatty acid). One way to characterize this phenomenon in more detail is 
to specify it quantitatively: the concentration of 18:1-ACP is regulated such that it 
very likely does not exceed a certain upper bound b (i.e., that the probability for a 
concentration of 18:1-ACP lower than b is greater than a certain defined probabil-
ity threshold r). Figure 3.4 shows an illustration. 
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Fig. 3.4   The Explanandum Phenomenon of 18:1-ACP Regulation [The dots stand for the 18:1-
ACP concentrations (C18:1-ACP) measured over time (t).16 More than r (95% in this example) of 
18:1-ACP concentrations measured so far are lower than b.] 

3.5.1 A Causal Graph Theoretical Model of the Mechanism for 
Feedback Inhibition 

How can the mechanism that brings about the regulation of fatty acid synthesis 
(more precisely, the regulation of the synthesis of 18:1-ACP) be represented with-
in a causal graph framework? At first, we need to introduce a variable P, standing 
for the concentration of the product 18:1-ACP.17 P shall be a discrete variable fi-
ne-grained enough to correspond to the given measurement accuracy. The phe-
nomenon may then be described as Pr(p < b) > r.  

Furthermore, the concentration of the substrate acetyl-CoA (from now on rep-
resented by variable S) is causally relevant for the 18:1-ACP concentration P: the 
higher the concentration of acetyl-CoA is, the higher will be the probability for 
higher 18:1-ACP concentrations. Another factor that is causally relevant for the 
18:1-ACP concentration is the concentration of the regulatory enzyme ACCase. 
Here we have to distinguish between active enzymes and enzymes which bind the 
product 18:1-ACP (at the effector interaction site). We represent the former by the 
variable Eactive and the latter by the variable EP-bound. While the concentration of ac-
tive enzymes is causally relevant to the concentration of the product 18:1-ACP 
(the higher Eactive’s value, the higher the 18:1-ACP concentration), the 18:1-ACP 
concentration is causally relevant to the concentration of P-bound enzymes (the 
higher P’s value, the higher EP-bound’s value) which is, again, causally relevant to 
the concentration of active enzymes (the higher EP-bound’s value, the lower Eactive’s 

                                                           
16 To be precise, the empirical data that biologists actually gather are not concentrations. Rather, 
they measure, for instance, optical densities (in spectrophotometric studies), and then draw infer-
ences from the density values about the concentrations. 
17 Note that variables are always represented by italic letters. The italic ‘P’, for example, stands 
for a variable describing the concentration of the product 18:1-ACP, while the non-italic ‘P’ 
stands for the concentration of the product 18:1-ACP itself.  
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value) and so on. The negative causal influence of EP-bound on Eactive represents the 
fact that the binding of 18:1-ACP molecules to active ACCases causes the inhibi-
tion of the ACCases (i.e., the ACCases becoming inactive), and the negative caus-
al influence of Eactive on S stands for the fact that many active enzymes decrease 
the amount of the ACCases. According to these considerations, we may illustrate 
the mechanism by the causal graph depicted in Figure 3.5. 
 

 

Fig. 3.5    Static Cyclic CM of the Mechanism for Feedback Inhibition [S and Eactive are direct 
causes of P. P is a direct cause of EP-bound which is a direct cause of Eactive which is, again, a direct 
cause of S and P, and so on. Direct causal influences are represented by arrows. A plus (‘+’) 
above an arrow stands for a positive causal influence (i.e., high cause values lead to high effect 
values) and a minus (‘-’) stands for a negative causal influence (i.e., high cause values lead to 
low effect values).]18 

To get a causal model, we have to supplement the causal graph depicted in Fig-
ure 3.5 with a measured probability distribution Pr over variable set V = 
{S,P,Eactive,EP-bound}. This probability distribution will imply that the probability of 
p < b will be greater than r (this is the phenomenon the mechanism brings about). 
The probabilities Pr will correspond to the positive/negative causal influences as 
described above. So the probability for high P-values, for example, will be high 
given high S- and Eactive-values, and low given low S- or Eactive-values. This corre-
sponds to the facts that many 18:1-ACPs are produced when there are many sub-
strates and active enzymes, and that few 18:1-ACPs are produced when there are 
few substrates or active enzymes available, respectively.  

The probabilities Pr are interpreted as inductively inferred limit-tendencies of 
the observed frequencies of the diverse concentrations, as they are found under 
normal conditions. These normal conditions can be captured by adding a context 
C = c. This context C = c is simply an instantiation of a variable or a set of varia-
bles which stand for the typical experimental setup and are not (or only slightly) 

                                                           
18 One might object that this causal graph theoretical model is inadequate because it contains two 
variables that are analytically dependent, namely EP-bound and Eactive. We do not think that this is 
the case. EP-bound and Eactive are analytically independent variables because there is a temporal dis-
tance between the binding of P to E and the inactivation of E (i.e., the conformational change of 
the substrate binding site). In other words, the binding of P to E and the inactivation of E are not 
the same processes occurring at the same time, but rather the former causes the latter. This is also 
why there exists a submechanism that specifies this causal relation. 



16   Causal Graphs and Biological Mechanisms 

changed during measuring or manipulating S, P, Eactive, or EP-bound. With regard to 
our case study the context C = c will include a certain temperature (or range of 
tolerable temperatures), a particular level (or tolerable range) of salinity, and a cer-
tain pH value (or range of tolerable pH values). The conditional probabilities 
along the causal arrows should correspond to the causal strengths of the variables’ 
direct causes under normal conditions (i.e., in context C = c).  

Here we can observe the first problem of our causal model: while the parame-
ters of a causal model are uniquely defined in an acyclic CM, this is not the case in 
cyclic CMs. This is a problem when it comes to explaining or predicting certain 
phenomena. We typically explain or predict a variable X’s taking value x by 
means of this variable’s direct or indirect causes and its parameters or the parame-
ters of the variables lying between X and its indirect causes. So we explain or pre-
dict X = x by reference to X’s causes and only to X’s causes and not to X’s effects. 
But in our cyclic CM some variable’s causes are also their effects. P, for example, 
is a cause and an effect of EP-bound. So conditioning on P does not correspond to 
the probabilistic influence of EP-bound’s direct causes alone, but rather to a mixture 
of the probabilistic influences one gets from EP-bound’s direct causes and some of 
its effects. In other words: conditioning on P does not give us the probabilistic in-
fluence of P on EP-bound transported only over path PEP-bound, but the mixed 
probabilistic influence of P transported over PEP-bound and EP-bound EactiveP. 
A second problem of our causal model is that it does not capture the dynamic as-
pect of mechanisms – it does not show how the parts of the mechanism described 
influence each other over a period of time. A third deficit of our causal model is 
that it does not represent any hierarchical organization, that is, it does not account 
for the fact that mechanisms are often embedded in higher-level mechanisms and 
have parts that are (sub)mechanisms themselves (see Section 3.3). The above 
model just describes the causal relations that are responsible for bringing about the 
behavior of the mechanism, that is, it refers only to causes at one and the same on-
tological level and therefore (even if the problem one would not exist) does not, 
strictly speaking, allow for interlevel explanation/prediction. In order to cope with 
these three problems, in the next two subsections we expand our causal model that 
represents the mechanism for feedback inhibition of fatty acid synthesis in Brassi-
ca napus.  

3.5.2 Dynamic Causal Models 

The first two problems discussed in the last section can be solved by unrolling the 
causal model over a period of time and thereby constructing a dynamic CM.19 In 
doing so, we quite plausibly presuppose that causal influences need some time to 

                                                           
19 Similar considerations can already be found in the first (but not in the second) edition of 
Spirtes et al. (2000). 
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spread and do not occur instantaneously. We get a dynamic CM if we add time in-
dices to the variables of our system V = {S,P,Eactive,EP-bound}, representing the 
mechanism’s diverse stages. By presupposing that causal influences need some 
time to take place, we can generate the dynamic CM whose causal graph is depict-
ed in Figure 3.6 (for five stages) on the basis of our static CM in Section 3.5.1. 
 

 

Fig. 3.6    The Causal Graph of a Five Stage dynamic CM representing the Mechanism for Feed-
back Inhibition in Brassica napus 

The dashed arrows transport probabilistic influences (the substrate concentra-
tion Si, for instance, is always probabilistically relevant to the substrate concentra-
tion at the next stage) in exactly the same way as their non-dashed counterparts. 
The only difference is that we interpret continuous arrows as direct causal connec-
tions while we want to leave it open whether the dashed arrows represent such 
causal connections. Dashed arrows could, for example, also be interpreted as ana-
lytic dependencies20: the later S-concentration may, for instance, analytically de-
pend on the earlier S-concentration. The variables of the five stages together with 
the continuous and the dashed arrows constitute the dynamic CM’s causal graph.  

The corresponding static CM’s topological structure can be read off from the 
dynamic CM. One just has to abstract from the diverse stages of the dynamic CM 
and look at the continuous arrows: there has to be an arrow from S to P, from P to 
EP-bound, from EP-bound to Eactive, and from Eactive to S and to P in the corresponding 
static CM, and these all have to be causal arrows in this static CM.  

Note that the time intervals between two stages of a dynamic CM should be 
suitably chosen. On the one hand, if they are too small, then the causal influence 
may not have enough time to spread from the cause to the effect variable and cor-
relations between causes and effects will get lost. On the other hand, these inter-
vals should not be too large, either. This may lead to violations of very basic caus-
al intuitions. To give an example, suppose the causal model in Figure 3.6 shows 
the correct causal structure of the mechanism for feedback inhibition of fatty acid 
synthesis in Brassica napus. Then S is an indirect but not a direct cause of EP-bound. 
S’s causal influence on EP-bound is mediated via P. But if the interval between two 

                                                           
20 ‘Analytic dependence’ is a notion that captures a wide range of non-causal dependences, e.g., 
conceptual dependence, definitional dependence, and dependence which is due to a part-whole 
relation. 
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stages were too large, say, for example, it were chosen such that stage 3 in the dy-
namic CM in Figure 3.6 would be the next stage after stage 1, then S and EP-bound 
would be correlated and this correlation would not break down under conditionali-
zation on the intermediate cause P. Thus, conditioning on an effect’s direct causes 
would not screen it off from its indirect causes. 

Dynamic CMs have some advantages over static CMs. First of all, they are 
acyclic CMs and, thus, we can use the same methods as in BNs to compute the 
probabilities we are interested in. Furthermore, CMC holds and the causal model’s 
parameters are defined. So we know the causal strengths of a variable’s causes and 
we can thus use dynamic CMs to explain certain phenomena which can be de-
scribed by means of endogenous variables. So the first problem discussed in Sec-
tion 3.5.1 can be solved: we can generate explanations and predictions by referring 
to the causes of the event of interest and to the probabilistic influence of these 
causes on this event. In addition, we can predict the probabilities of certain effects 
of interventions. We can, for example, predict the probability of certain P-
concentrations at stage 5 given certain S- and Eactive-concentrations at stage 1 when 
we change the concentration of S in a certain way at stage 3 via manipulation. The 
second problem can also be solved: the dynamic CM tells us how the parts of the 
mechanism described influence each other over a period of time and we can thus 
also make predictions about what will (most likely) happen at later stages of the 
mechanism when we manipulate certain variables at earlier stages of the mecha-
nism. Another nice feature of dynamic CMs is, provided the time intervals be-
tween the diverse stages of the mechanism are suitably chosen, that standard 
methods can be used for causal discovery because CMC holds for dynamic CMs. 
Causal discovery is still a serious problem for cyclic CMs and there are only a few 
algorithms which, in general, do not lead to very detailed causal information (cf. 
Richardson 1996; Spirtes 1995). The third problem, however, still remains: our 
dynamic CM captures only causal information at one and the same ontological 
level, and thus does not allow for interlevel mechanistic explanation, manipula-
tion, and prediction. 

3.5.3 Hierarchically Ordered Causal Models 

There are at least two possibilities to represent the hierarchic organization of 
mechanisms within causal graph theory, that is, to solve the third problem that we 
mentioned at the end of Section 3.5.1. Each of these approaches has its own merits 
and deficits. One of these possibilities is developed in detail in Casini et al. 
(2011). Casini et al. provide a quite powerful formalism. They propose to start to 
represent a mechanism’s top-level by a causally interpreted BN. Such a BN’s var-
iable set V may then contain some so-called network variables. These are varia-
bles whose values are BNs themselves. Network variables (or, more precisely, the 
BNs which are their possible values) are intended to represent the possible states 
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(e.g., “functioning” and “malfunctioning”) of a mechanism’s submechanisms. 
These BNs’ variable sets may then themselves contain network variables which 
stand for the possible states of a submechanism’s submechanisms and so on. To 
connect the diverse levels of the mechanism represented by such BNs, Casini et al. 
suggest an additional modeling assumption: the recursive causal Markov condi-
tion (RCMC). Whenever this condition holds, then Casini et al.’s formalism al-
lows for probabilistic reasoning across the diverse levels of the represented mech-
anism.  

In this paper, we can discuss Casini et al.’s (2011) approach only very briefly. 
Though their formalism is definitely powerful, their crucial modeling assumption 
RCMC is quite controversial. First of all, it is neither obvious that RCMC holds in 
general, nor is it clear how one could distinguish cases in which it holds from cas-
es in which it does not. Secondly, RCMC leads to contra-intuitive consequences. 
We have the strong intuition that learning information about a mechanism’s mi-
cro-structure should at least sometimes lead to better (or at least different) predic-
tions of the phenomena this mechanism will bring about. This should be the case, 
for example, when the macro-variable describing the possible states of the mecha-
nism is described in a quite coarse-grained way, while more and more knowledge 
about the mechanism’s micro-structure is collected. But, according to RCMC, a 
mechanism’s micro-variables are probabilistically screened off from its macro-
variables whenever the state of the submechanism represented by a network varia-
ble is known. A third deficit of Casini et al.’s approach is that it does not provide 
any information about how a submechanism’s micro-structure is connected to the 
macro-structure of the overlying mechanism, that is, how exactly changes of some 
of the submechanism’s micro-variables’ values influence the mechanism’s macro-
variables due to probabilistic influences transported over its causal micro-
structure. Such information is crucial when it comes to the question of how macro-
phenomena can be controlled by manipulating some of their underlying mecha-
nisms’ micro-variables. 

In what follows we sketch an alternative approach for representing the hierar-
chic structure of mechanisms which avoids these problems. According to our ap-
proach, the submechanisms that a particular mechanism contains are, at least in 
most cases, adequately represented not via network variables, as Casini et al. 
(2011) propose, but via causal arrows. We will illustrate this claim on basis of the 
case study that we have already introduced, namely the mechanism for feedback 
inhibition of fatty acid synthesis in Brassica napus. This mechanism can be mod-
eled within a causal graph framework as described in Section 3.5.1. An example 
for a submechanism of this mechanism is the mechanism for allosteric inhibition. 
This submechanism specifies the causal arrow between the variables EP-bound and 
Eactive (see Figure 3.7). That is, it describes how exactly the binding of the product 
18:1-ACP (i.e., P) to the regulatory enzyme ACCase (i.e., Eactive) causes the inhibi-
tion or inactivation of ACCase with the effect that ACCase cannot bind the sub-
strate acetyl-CoA (i.e., S) and convert it into 18:1-ACP anymore. In other words, 
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this submechanism discloses why it is the case that the higher the concentration of 
18:1-ACP, the lower the concentration of active ACCase. 
 

 

Fig. 3.7    Static CM of the Phenomenon that is brought about by the Submechanism for Allo-
steric Inhibition 

But how can such a submechanism be modeled within a causal graph frame-
work, and how can it be related to the mechanism for feedback inhibition of which 
it is a part? In order to assess these questions we need to go into more scientific 
details. Unfortunately, the biochemical submechanism that explains how the bind-
ing of 18:1-ACP to the enzyme ACCase (EP-bound) causes the inhibition of ACCase 
(Eactive) in Brassica napus has not been discovered yet (Andre et al. 2012). The 
same is true for the biochemical inhibition mechanisms in other species, for in-
stance, in Escherichia coli (Heath and Rock 1995; Davis and Cronan 2001). How-
ever, in order to get an idea of how the model of the submechanism might look 
like, we will consider a different but analogous example, in which extensive mo-
lecular and structural studies have been carried out to unravel the biochemical 
mechanism of inhibition. In their recent work Ganesan et al. (2009) investigated a 
different feedback system, namely the allosteric inhibition of the enzyme serine 
protease (more precisely, of hepatocyte growth factor activator, in short ‘HGFA’) 
by an antibody (Ab40). Their goal was to unravel the molecular details of this in-
hibition mechanism. That is, they aimed at characterizing the molecular interac-
tions and conformational changes that are caused by the binding of Ab40 (in gen-
eral terms: of product P) to the effector interaction site of the enzyme HGFA (in 
general terms, to enzyme E) and that bring about the inhibition or deactivation of 
HGFA. Their work is very useful for our analysis because, on an abstract level, 
Ganesan et al. (2009) were interested in discovering the same submechanism as 
the one we singled out above, namely the submechanism that explains how the 
binding of P to E causes the inhibition of E, in other words, why it is the case that 
the higher EP-bound’s value, the lower Eactive’s value. 

The exact route by which the amino acids that compose E transmit the alloster-
ic effect, that is, by which intermediate steps the binding of P to the remote effec-
tor interaction site of E causes the altered catalytic activity of E, is in general very 
poorly known (Sot et al. 2009). However, the structural and kinetic studies that 
Ganesan et al. (2009) performed produce some relief. One of their main results is 
that the binding of Ab40 (i.e., P) to the effector interaction site of HGFA (i.e., E) 
is accompanied by a major structural change (called the “allosteric switch”; Gane-
san et al. 2009, 1620), namely the movement of a certain part of the enzyme, the 
99-loop, from the competent into the non-competent conformation. This, in turn, 
obstructs the binding of the substrate to the enzyme E; more precisely, it causes a 
steric clash between the P2-Leu and the S2 subsite of E and the loss of stabilizing 
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interactions between P4-Lys and the S4 subsite of E. The diagram in Figure 3.8 
provides a general illustration of these changes (while leaving out most of the mo-
lecular details). 
 

 

Fig. 3.8    Qualitative Model of the Mechanism for Allosteric Inhibition of HGFA by Fab4021 
(Reproduced from Ganesan et al. 2009) 

The molecular interactions could be described in far more details.22 However, 
the foregoing description suffices for our purposes. How can this submechanism 
for allosteric inhibition of HGFA by Ab40 be modeled in a causal graph frame-
work? We propose to model the submechanism with a static CM containing the 
variables and causal topology depicted in Figure 3.9. 
 

 

Fig. 3.9    Static CM of the Submechanism for Allosteric Inhibition of HGFA by Fab40 

The first thing to note is that B, 99-loop, S2, and S4 are binary (and, thus, quali-
tative) variables. This is because the studies that were carried out in order to reveal 
the details of the submechanism are not quantitative, but qualitative studies: Gane-
san et al. (2009) primarily performed structural analyses, for instance, by using 
crystallographic methods. B can take one of the two values “bindings between 
functional groups of Ab40 and the effector interaction site of HGFA are estab-

                                                           
21 Fab40 is a special type of Ab40. 
22 For instance, Ganesan et al.’s (2009) structural analyses show that the steric clash between the 
P2-part of S and the S2 subsite of E is due to a conformational shift of the hydroxyl side of Ser99 
(which is an amino acid of E). In the competent conformation the hydrophobic S2 pocket is ide-
ally shaped to recognize Leu (i.e., an amino acid that is part of the substrate) as a P2 residue. By 
contrast, in the non-competent conformation there is no steric fit between P2 and S2. 
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lished” and “bindings between functional groups of Ab40 and the effector interac-
tion site of HGFA are not established”. 99-loop can take one of the two values 
“being in the competent state” and “being in the non-competent state”. S2 can take 
one of the two values “having an ideally shaped hydrophobic pocket to recognize 
Leu” and “having a deformed pocket so that P2-Leu cannot be recognized”. S4 
can take one of the two values “being able to perform stabilizing interactions to 
P4-Lys” and “being unable to perform stabilizing interactions to P4-Lys”. This 
model describes that if bindings between functional groups of Ab40 and the effec-
tor interaction site of HGFA are established, then the probability is high that 99-
loop is in its competent state, which is why the probability is high that S2 has an 
ideally shaped hydrophobic pocket to recognize Leu and S4 is able to perform sta-
bilizing interactions to P4-Lys. On the higher level, we would say that if P (Ab40) 
binds to E (HGFA), this submechanism brings about the behavior that E (HGFA) 
is inactive (which means, on the lower level, that the two amino acids P2-Leu and 
P4-Lys of the substrate cannot bind to the substrate binding sites S2 and S4 of the 
enzyme (HGFA)). 

We are aware of the fact that it is very unlikely that the biochemical submecha-
nism for the inhibition of ACCase by 18:1-ACP in Brassica napus looks exactly 
like the submechanism for the inhibition of HGFA by Ab40, which we just de-
scribed. There are too many molecular differences between the two enzymes and 
the two inhibitory products. However, for the sake of the argument suppose that 
also in the case of the inhibition of ACCase the binding of 18:1-ACP causes the 
movement of some part of the enzyme X from a competent state into a non-
competent state. Suppose further that this allosteric switch brings about certain 
molecular and conformational changes in two substrate binding sites S2 and S4 of 
the enzyme ACCase, which prevent the substrate to bind to the enzyme. A static 
CM of this hypothetical submechanism would look like the one in Figure 3.10. 
 

 

Fig. 3.10    Static CM of the Hypothetical Submechanism for Allosteric Inhibition of ACCase by 
18:1-ACP23 

                                                           
23 The corresponding possible values of the variables are the following: B can take one of the two 
values “bindings between functional groups of 18:1-ACP and the effector interaction site of 
ACCase are established” and “bindings between functional groups of 18:1-ACP and the effector 
interaction site of ACCase are not established”. X can take one of the two values “being in the 
competent state” and “being in the non-competent state”. S2 and S4 can take one of the two val-
ues “having an ideal conformation that allows its binding to a certain part of 18:1-ACP” and 
“having a deformed conformation that inhibits its binding to a certain part of 18:1-ACP”. 
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On this basis we can now tackle the crucial question of how the model of the 
mechanism for feedback inhibition, which we developed in Section 3.5.1, and the 
model of one of its submechanisms, namely of the biochemical mechanism of al-
losteric inhibition, can be related within a causal graph framework. We propose to 
model the hierarchic order of this multi-level mechanism by means of a hierarchic 
static causal model with the topological structure depicted in Figure 3.11. 
 

 

Fig. 3.11    Hierarchic Static CM of the Mechanism for Feedback Inhibition and of one of its 
Submechanisms, namely the Biochemical Mechanism for Allosteric Inhibition 

The two-headed arrows between EP-bound and B as well as between S2 and Eactive 
and S4 and Eactive which connect the two levels of the two mechanisms do not 
stand for causal, but rather for constitutive relevance relations, for instance, in the 
sense of Craver (2007). Hence they transport probabilistic dependencies and the 
effects of manipulations in the same way as direct causal loops in static CMs. 
Note that the causal arrow EP-boundEactive in our original static CM disappeared in 
the hierarchic causal model. It is replaced by the underlying mechanism of this 
causal arrow, that is, by a causal structure whose input and output variables are 
connected to EP-boundEactive, respectively, via constitutive relevance relations. Al-
so note that it is not clear how the submechanism represented by EP-boundEactive 
could be analyzed in Casini et al.’s (2011) approach. They would need to add a 
network variable N between EP-boundEactive (EP-boundNEactive). But then and 
because there is no intermediate (macro-level) cause N between EP-bound and Eactive, 
it is unclear what this network variable N should represent at the mechanism’s 
macro-level. 

Our hierarchic static CM can be used for mechanistic reasoning24 across di-
verse levels. In contrast to Casini et al.’s (2011) models, our model also tells us 

                                                           
24 The main difference between mechanistic reasoning and causal reasoning is that mechanistic 
reasoning makes use not only of causal, but also of constitutive relevance relations. In other 
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how exactly probabilistic influence between macro-variables is transported over 
the underlying mechanism’s causal micro-structure and how exactly (i.e., over 
which causal and/or constitutive relevance paths) manipulations of micro-
variables influence certain macro-variables. For example, if we manipulate S4, 
this will change Eactive and S2 because S4 and S2 are constitutively relevant for 
Eactive. Since X is a direct cause of S4, changing S4 will, on the other hand, not 
have a direct influence on X’s value. But changing S4 will nevertheless have a 
quite indirect influence on X: a change of S4’s value will have an influence on 
Eactive’s value at the macro-level, which influences its macro-level effect EP-bound. 
Since B is constitutively relevant for EP-bound, EP-bound-changes will lead to B-
changes which will, since B is a direct cause of X at the micro-level, lead to certain 
X-changes.  

Though such hierarchic models as the one depicted in Figure 3.11 can be used 
for probabilistic reasoning across a multi-level mechanism’s diverse levels, they 
cannot generally be used for explanation and prediction. The reason is the same as 
in the case of static CMs, as illustrated in Section 3.5.1: a certain EP-bound-value, 
for example, can be explained or predicted only via reference to EP-bound’s causes, 
e.g., P. But in our hierarchic static CM, P does influence EP-bound not only as a 
cause, but also as an effect: P influences EP-bound not only over PEP-bound, but al-
so over PEactive<>S2XB<>EP-bound and PEactive<>S4XB<>EP-

bound. So the probabilistic influence of P on EP-bound does not correspond to P’s 
causal influence on EP-bound alone. We can solve this problem by rolling out our hi-
erarchic model over time as we have already done for our original static CM in 
Section 3.5.2. Figure 3.12 is an illustration of the result of this procedure. 
 

 

                                                                                                                                     
words, mechanistic reasoning contains not only intralevel reasoning, but also interlevel reason-
ing. 
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Fig. 3.12    Hierarchic Dynamic Causal Model of the Mechanism for Feedback Inhibition and the 
Biochemical Mechanism for Allosteric Inhibition 

Note that, while causal influences need some time to spread, value changes 
produced by constitutive relevance relations occur instantaneously. Because of 
this, the two-headed dashed arrows representing such constitutive relevance rela-
tions only connect variables at one and the same stage. This also corresponds to 
the fact that one cannot change one of two constitutively dependent variables 
without changing the other. Note also that the causal arrows from EP-bound to Eactive 
disappeared in the hierarchic dynamic CM. This is because these arrows repre-
sented a submechanism at work which is explicated in more detail in the hierar-
chic dynamic CM – the hierarchic dynamic CM tells us exactly (and, in contrast to 
our original dynamic CM developed in Section 3.5.2, in a mechanistic way)25 how 
EP-bound influences Eactive and thus finally solves problem three, too: hierarchic dy-
namic CMs allow for probabilistic interlevel explanation and prediction of certain 
Eactive-values. Certain Eactive-values, for instance, can be mechanistically explained 
or predicted by certain EP-bound-values: EP-bound at stage 1 has some influence on its 
constitutive part B at stage 1. B at stage 1 causes X at the micro-level at stage 1.5 
which causes S2 and S4 at the micro-level at stage 2, and, since S2 and S4 are con-
stitutively relevant for Eactive, they have a direct probabilistic influence on Eactive at 
stage 2.  

One could object that, since the two-headed dashed arrows in our hierarchic 
dynamic CM transport the influences of interventions in both directions, CMC 
does not hold in such models and, hence, they should have the same problems as 
static CMs when it comes to explanation and prediction. The first point of such an 
objection is definitely true: CMC does not hold for hierarchic dynamic CMs. 
However, this does not lead to the suspected consequence. The problem for expla-
nation and prediction in static CMs was that the probabilities one gets when condi-
tioning on some variables also provide some information which can only be 
achieved if one also knew these variables effects (in other words, probabilistic in-
formation is transported not only over cause paths, but also over effect paths). But 
the events that we want to explain do not occur because some of their effects oc-
curred (i.e., because they had a probabilistic influence on them), and events we 
want to predict cannot be predicted via reference to some of their effects (which 
have not occurred yet). However, this problem does not arise for hierarchic dy-
namic CMs. In a hierarchic dynamic CM cycles appear only due to constitutive 
relevance relations within certain stages and, thus, conditioning on a variable’s 

                                                           
25 Note also that Casini et al.‘s (2011) approach does not allow for mechanistic reasoning in this 
sense. In their approach the question of how two or more macro-variables (e.g., EP-bound and Eactive 
in our example) influence each other can only be answered by causal connections at the macro-
level. In our approach, on the other hand, we can explain such an influence by reference to the 
underlying mechanism – we can tell a story about how EP-bound influences Eactive by demonstrating 
how EP-bound’s constitutively relevant parts causally influence Eactive’s constitutively relevant parts 
at the micro-level. 
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causes does only provide probabilistic information about this variable’s values 
transported over cause or constitutive relevance paths. It never provides probabil-
istic information transported over an effect path. 

3.6 Merits and Limits of Causal Graph Theoretical Models 

On basis of the preceding analysis we can now approach the question of whether 
causal graph theory is suited for modeling biological mechanisms and what the 
advantages and shortcomings of representing mechanisms within a causal graph 
framework are. In the previous literature the concern has been raised that, even if 
it is possible to provide causal graph theoretical models of biological mechanisms, 
they are deficient because they fail to comprise some important kinds of infor-
mation. In this line, for instance, Weber (2012) argues that because causal graph 
theoretical models only encompass sets of variables and relations of causal de-
pendence, they fail to include information about the structure of biological entities 
(such as information about the DNA double helix topology and the movements 
undergone by a replicating DNA molecule) and about their spatiotemporal organi-
zation. However, claims like these remain on a quite general level. Our goal in this 
section is to use the results of our analysis of the case study in the previous section 
in order to assess and to specify these claims. We do so by pointing out which 
kinds of information about biological mechanisms cannot or can only insufficient-
ly be represented within a causal graph framework, and what are the reasons for 
these failures. In addition to revealing the limitations of causal graph theoretical 
models of mechanisms, we also highlight the virtues they have with respect to cer-
tain scientific purposes. 

To begin with, recall the major characteristics of biological mechanisms that 
we identified in Section 3.3. First, mechanisms possess a multi-level character, 
which means, on the one hand, that there exists a part-whole relation between the 
mechanism and its components and, on the other hand, that mechanisms frequent-
ly occur in nested hierarchies. Second, mechanisms are represented as having two 
different kinds of components: entities (having particular properties) and activities 
(or interactions, operations, etc.). Finally, a mechanism brings about a specific be-
havior only if its components are spatially and temporally organized in a certain 
way. Can all these three features of biological mechanisms adequately be repre-
sented by causal graph theoretical models? 

Consider first the multi-level character of mechanisms. As we have shown in 
the previous section, the fact that many mechanisms occur in nested hierarchies 
(i.e., that they are embedded in higher-level mechanisms and have components 
that are themselves submechanisms) can be represented in at least two ways. On 
the one hand, one can represent a mechanism’s submechanisms by so-called net-
work variables, as, for instance, Casini et al. (2011) do. We, on the other hand, 
think that there are good reasons for representing such submechanisms by causal 
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arrows between variables X and Y. In our approach one can generate a hierarchic 
causal model by replacing such a causal arrow by another causal structure. This 
causal structure should be on a lower ontological level than X and Y, it should con-
tain at least one constitutively relevant part of X and at least one of Y, and there 
should be at least one causal path going from the former to the latter at the micro-
level. Such hierarchic models allow, in contrast to purely qualitative models, for 
probabilistic mechanistic reasoning across different levels. Hierarchic dynamic 
CMs do even allow for probabilistic mechanistic interlevel explanation and pre-
diction. Contrary to Casini et al.’s models, they can also provide detailed infor-
mation about how certain causal influences at the macro-level are realized by their 
underlying causal influences propagated at the micro-level. This is important 
when it comes to questions about how certain manipulations of macro- or micro-
variables influence certain other macro- or micro-variables of interest and how a 
mechanism’s causal micro-structure is connected to its macro-structure.  

Let us now turn to the second feature of mechanisms. Do causal graph theoreti-
cal models succeed in representing mechanisms as being composed of two differ-
ent kinds of components, namely entities and activities (or operations, interac-
tions, etc.)? It is quite clear that causal models represent entities. Precisely 
speaking, the individuals in the domains DX1,...,DXn of the causal model’s variables 
X1,...,Xn represent the entities that are components of the mechanism. Furthermore, 
the variables X1,...,Xn taking certain values represent different properties or differ-
ent behaviors of these entities. But can causal graph theoretical models represent 
activities, too? 

A convenient first step towards an answer to this question seems to be to scru-
tinize the activities that are involved in our case study. Examples of activities that 
are part of the mechanism for feedback inhibition of fatty acid synthesis in Brassi-
ca napus are: the binding of 18:1-ACP (P) to ACCase (E), the transformation of 
acetyl-CoA (S) into 18:1-ACP (P) (via the intermediate product malonyl-CoA), 
and the inhibition of ACCase (E) by 18:1-ACP (P) (see description of Figure 3.5). 
The submechanism that brings about the activity of the inhibition of ACCase by 
18:1-ACP is, in turn, composed of the following micro-activities: the establish-
ment of a certain kind of binding between a functional group of 18:1-ACP and the 
effector interaction site of ACCase, the shifting the conformation of a particular 
part of ACCase, the deformation of the conformation of the S2-part of the sub-
strate binding site of ACCase, etc. (see description of Figure 3.9). What all these 
activities have in common is that they are temporally extended processes that in-
volve some kind of change. Correspondingly, Machamer et al. have characterized 
activities as being “the producers of change” (2000, 3). It should be noted that not 
all activities must involve interactions between two or more distinct entities.26 
There might also be activities (so-called “non-interactive activities” (Tabery 2004, 

                                                           
26 According to Glennan (2002, 344), an interaction is an occasion on which a change in a prop-
erty of one component of the mechanism brings about a change in a property of another compo-
nent.  
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9; Torres 2008, 246), like the shifting of the conformation of a particular part of 
ACCase) that involve only one entity (i.e., the particular part of ACCase) and a 
change of its properties (i.e., from the property “being in a competent state” to 
“being in a non-competent state”).27 In any case, activities involve the change of 
properties. In principle, the variables of a causal graph theoretical model could just 
be chosen in such a way that the different values they can take represent different 
processes or changes of properties. However, such a choice of variables would 
completely be at odds with experimental practice in biology. In most cases it is 
difficult or even impossible to measure entire processes by just measuring once. 
Rather, what biologists do, for instance to collect empirical data about the inhibi-
tion of ACCase by 18:1-ACP, is that they measure the concentration of the prod-
uct (which is an indicator of ACCase’s activity, and thus, also of its inhibition) to 
different times. Against this background it would be inadequate to choose the var-
iable in such a way that one of its values represents the entire process/activity of 
inhibition of ACCase by 18:1-ACP. The option of representing activities simply 
by variables taking certain values can also be ruled out by the following argumen-
tation: if activities were represented by variables taking certain values, then activi-
ties would neither involve changes, nor be productive – they would rather occur 
due to other productive causal relations. Since activities are productive and in-
volve changes, they must be represented differently. 

We think that there are two ways in a causal graph theoretical model by which 
the activities that compose a mechanism can be captured: they can either be repre-
sented by causal arrows between variables. For instance, the causal arrow be-
tween S and P in Figure 3.5 represents the activity “transformation of acetyl-CoA 
into 18:1-ACP”. This is the option that matches the neat picture that several au-
thors seem to have in mind: in a causal model the variables represent the entities 
(and their possible properties) and the arrows represent the activities. However, 
our analysis shows that things are not that neat. There is a second, equally ade-
quate way to represent activities in causal graph theoretical models, namely repre-
senting them by the change of the value of a variable. For instance, the activity 
“shifting the conformation of a particular part of ACCase” is represented in Figure 
3.9 by the variable X, changing its value from “being in a competent state” to “be-
ing in a non-competent state”.  

A related view of static CMs, which we have to give up, is the neat view that 
the different variables in static CMs always represent the possible properties and 
activities of distinct entities. The flexibility of the choice of variables allows that 
one static CM contains variables that represent different possible properties (and 
activities) of the same entity. For instance, in our static CM depicted in Figure 3.5 
the variables EP-bound and Eactive both refer to the concentrations of enzymes, but 
describe different properties of these enzymes, namely “being bound to P” and 

                                                           
27 As mentioned in Section 3.3, we leave it open whether activities can be reduced to state trans-
formations via property changes or whether there is something lost by this reduction (such as the 
productive nature of activities). 
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“being active”. In other words, in causal graph theoretical models the boundaries 
between different entities and between entities and activities often become fuzzier 
than in qualitative models. This fuzziness may have the disadvantage of impeding 
the understanding of how a mechanism brings about a certain phenomenon – when 
one looks at a static CM or at a dynamic CM, one does not recognize at first sight 
what the entities are and which activities they perform. 

To conclude, we think that it is possible to represent mechanisms as being 
composed of entities and activities in a causal graph framework. However, what 
one does not get are neat static CMs in which each variable represents a distinct 
entity and the arrows represent activities. This might be disadvantageous for some 
purposes, but not for others. 

Finally, how do things stand with the third main feature of mechanisms, name-
ly with the spatial and temporal organization of their components? How much 
and which structural and spatial information one actually represents simply de-
pends on one’s choice of variables. In our case study, for instance, the causal 
graph theoretical model depicted in Figure 3.11 contains structural as well as spa-
tial information: the variable S2, for example, refers to a particular entity, namely 
the S2-part of the substrate binding site of ACCase, and to the two possible struc-
tural properties that this entity can exhibit, namely “having an ideal conformation 
that allows its binding to a certain part of 18:1-ACP” and “having a deformed con-
formation that inhibits its binding to a certain part of 18:1-ACP”.28 A different ex-
ample is the variable EP-bound which represents the concentration of those regulato-
ry enzymes (ACCases) that are bound to, that is, spatially connected to, the 
product 18:1-ACP. Hence, it is possible to include certain crucial structural and 
spatial information about the components of a mechanism into a causal graph the-
oretical model – one just has to choose variables that refer to structural and spatial 
properties.  

Information about the temporal organization can be captured by and read off 
from the causal arrows of dynamic CMs: in the example we discussed in Section 
3.5.2, for instance, S at stage 1 causes P at stage 2, which causes EP-bound at stage 3. 
So at first S interacts with P, and then P interacts with EP-bound etc. However, even 
if there are no in-principle reasons for why it is impossible to include all the de-
tails of the spatial and temporal organization of a mechanism’s components into a 
causal graph theoretical model, this does not preclude that there may be heuristic 
reasons for doing so. For instance, including all the relevant spatial, structural, and 
dynamic information might give rise to a causal model that includes too many dif-
ferent variables, so that it is unmanageable and thus not useful. 

In sum, causal graph theoretical models can account for the three main features 
of mechanisms. However, they do so in a quite abstract way, which is why they 
are far worse than purely qualitative models with respect to the purpose of provid-
ing understanding. Qualitative models tell us in a very intelligible way how the 

                                                           
28 Of course, these two properties could be and, in fact, are specified in more detail in biological 
practice. We give this general and brief characterization just for heuristic reasons. 
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components of a mechanism interact to bring about the phenomenon of interest. 
They make, contrary to probabilistic causal models, clear distinctions between the 
macro- and the micro-level (i.e., between mechanisms and their submechanisms) 
and between distinct entities and activities (or operations, interactions, etc.). Pure-
ly qualitative models of mechanisms can also be used to explain certain behaviors 
of systems by revealing how the components of a mechanism bring about the be-
havior in question. These qualitative models are, however, limited. They fail when 
it comes to explain why certain systems frequently (but not always) bring about 
certain behaviors. In other words, they fail when it comes to explaining probabilis-
tic phenomena like the phenomenon described in Section 3.5. Moreover, they do 
not allow for probabilistic prediction and (interlevel) manipulation. But knowing 
how we can bring about a particular phenomenon with high probability is a crucial 
investigative strategy in the biological sciences. Finally, purely qualitative models 
fail to integrate qualitative information with quantitative, probabilistic infor-
mation. The latter is an important task in certain research areas like epigenetics 
where laboratory molecular experiments need to be brought together with ecologi-
cal or evolutionary observational studies and computer simulations. 

3.7 Conclusion 

In this paper we have shown how the formal framework of causal graph theory 
can be used to model biological mechanisms in a probabilistic and quantitative 
way. Our analysis of the mechanism for feedback regulation of fatty acid biosyn-
thesis in Brassica napus revealed that causal graph theoretical models can be ex-
tended such that they can also account for more complex forms of organization of 
the components of a mechanism (like feedback) as well as for the fact that mecha-
nisms are frequently organized into nested hierarchies. We argued that, because 
causal graph theoretical models are not purely qualitative, but rather include prob-
abilistic and quantitative information, they are useful in the context of causal dis-
covery – in particular if one wants to make quantitative, probabilistic predictions 
or conduct manipulations. What is more, since causal graph theoretical models al-
low us to represent different levels of mechanisms in the same model (e.g., a 
mechanism, one of its submechanisms, and the relations between them) they ena-
ble us to carry out interlevel mechanistic manipulation and prediction, too.  

However, our analysis of the case study did not only disclose advantages of 
representing biological mechanisms within a causal graph framework. Rather, it 
gave rise to the more balanced view that probabilistic, quantitative models of 
mechanisms – although there are clear merits with respect to some purposes – also 
have shortcomings with respect to other purposes. Accordingly, our analysis re-
vealed that causal graph theoretical models have the resources to represent the 
three main features of biological mechanisms, namely their multi-level character, 
their two kinds of components, and the spatial and temporal organization of their 
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components. However, it also became clear that in some respects probabilistic, 
quantitative models of mechanisms are insufficient (e.g., because the boundaries 
of entities and between entities and activities become fuzzy and because the 
amount of structural/spatial and dynamical information that can be represented is 
limited) which makes them inadequate for some purposes (in particular for provid-
ing understanding). With this analysis we hope to have shed some light on the 
merits and limitations of modeling biological mechanisms within a causal graph 
framework and to have provided some interesting prospect for future philosophi-
cal work. 
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