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Abstract: In the last two decades, philosophy of neuroscience has predominantly focused on 

explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory 

success in neuroscience over, among other things, topological models. However, explanatory 

power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the 

notion of prediction has received comparatively little attention in the philosophy of neuroscience, 

in part because predictions seem disconnected from interventions. In contrast, we argue that 

topological predictions can and do guide interventions in science, both inside and outside of 

neuroscience. Topological models allow researchers to predict many phenomena, including 

diseases, treatment outcomes, aging, and cognition, among others. Moreover, we argue that these 

predictions also offer strategies for useful interventions. Topology-based predictions play this role 

whether or not they do or can receive a mechanistic interpretation. We conclude by making a case 

for philosophers to focus on prediction in neuroscience in addition to explanation alone. 
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Prediction and Topological Models in Neuroscience 

 

1. Introduction 

Contemporary philosophy of neuroscience has in large part been dominated by a focus on 

explanation. This focus follows a more general trend in the philosophy of science, where causal 

or mechanistic explanations have overtaken law-based explanations as the preferred means for 

understanding much of the world. Indeed, philosophers have produced compelling arguments for 

mechanistic models being the standard of explanatory success in the biological sciences (Craver 

and Darden, 2013). However, when it comes to the enterprise of science, the explanatory power 

of theoretical models is only one of many virtues (Schindler, 2018). Another virtue of theoretical 

models, which in recent years has received comparatively less attention in the philosophy of 

science, is prediction, despite it being once heralded as equally relevant as explanation among the 

goals of science (Hofstadter, 1951; Popper, 1963; Lakatos and Musgrave, 1970; Salmon, 1978). 

This absence is particularly noticeable in the philosophy of neuroscience, as there has been almost 

no discussion on the predictive power or value of theoretical models in neuroscientific research. 

When contrasted with the fact that contemporary neuroscience is heavily engaged in generating 

predictive models (e.g., Yarkoni and Westfall, 2017), the dearth of discussion on prediction in the 

philosophy of neuroscience is even more remarkable. 

 Pretheoretically, many people think of prediction as synonymous with prognostication or 

forecasting, meaning that that which is predicted has not occurred yet. This time-dependent view 

of prediction contrasts with a knowledge-dependent view, according to which what one predicts 

may or may not have already occurred, as long as it is not known. In this paper, we adopt this 

knowledge-dependent or epistemic reading of prediction and side with Barrett and Stanford (2004) 
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in defining a prediction as “a claim about known matters of fact whose truth or falsity has not 

already been independently ascertained by some more direct method than that used to make the 

prediction itself” (586). Moreover, successful predictions in general enhance our epistemic 

standing, not by way of supplying further explanatory details, but by reducing our uncertainty as 

to what to expect under certain conditions, and by providing us with strategies to effectively 

intervene and manipulate phenomena. Of course, successful predictions often lead to improved 

explanations (Douglas, 2009); however, even without this additional bonus, successful predictions 

have value in and of themselves.  

Perhaps a key reason as to why there is so much emphasis on explanation (as compared to 

prediction) in the philosophy of science in general, and of neuroscience in particular, is that there 

is a clear relationship between explanation and intervention. For many scientists and philosophers, 

the scientific goal of unveiling the real nature of the world is at least as important as that of offering 

strategies to intervene and control it (e.g., Longino, 2002). Given that mechanistic models provide 

both descriptions of natural phenomena and approaches to manipulate such phenomena, it is 

unsurprising that such models are taken as ideal candidates as to how to best pursue research in 

neuroscience (Craver, 2007). The current chapter, however, puts pressure on this view by 

highlighting the connection between the predictive power of certain theoretical models in 

neuroscience and their value as strategies for manipulation and intervention (Douglas, 2009). 

Importantly, the kinds of theoretical models we have in mind are topological models, which have 

recently been the subject of discussion in the philosophy of science, with some arguing that they 

offer an alternative kind of explanation, different from mere causal or mechanistic explanation 

(Huneman, 2010; Lange, 2016), and others arguing that they do not (Craver, 2016; Povich and 

Craver, 2018). We will largely sidestep this discussion, however, as we seek to explore the 
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predictive rather than explanatory ambitions of topological models in neuroscience (with 

occasional mention of other disciplines too), and the role they can play in our capacity to intervene, 

manipulate, and control neural phenomena. To reiterate: our arguments seek neither to support nor 

to undermine the claim that topological models are explanatory, nor whether or not they are so in 

virtue of receiving a mechanistic interpretation. We want to argue instead for a different claim, 

namely that whether or not topological models receive a mechanistic interpretation, they still hold 

predictive value and can be reliable guides to intervention and manipulation. Moreover, we put 

forth the more general claim that good predictions ought to be a central goal of neuroscience, 

whether or not they are afforded by models that have (or even could receive) a complete 

mechanistic interpretation. 

The chapter will proceed as follows. In section 2, we offer a brief discussion on the 

relationship between prediction and explanation, and we place the role of mechanistic models in 

general, and in the philosophy of neuroscience in particular, within that dialectic. Next, in section 

3, we discuss the nature of topological models and their use in prediction and interventions in a 

number of different fields before focusing on the use of topological models in network 

neuroscience for prediction. We also show how these models can be useful for intervention and 

manipulation even absent a mechanistic understanding of their underpinnings. Finally, in section 

4, we draw some general conclusions and questions for future research.  

 

2. Prediction, explanation, and mechanistic models 

To fully understand the relationship between intervention (or manipulability), on the one 

hand, and mechanistic models in neuroscience, on the other, it may be useful to begin with a brief 

excursus into the history of the debate on the relationship between explanation and prediction in 
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the philosophy of science (for a recent excellent review see Douglas, 2009). This will allow us to 

better locate the role of mechanistic models in neuroscience within this dialectic.  

    

2.1. Prediction and explanation: A brief history 

Although one can find interesting discussions about the relationship between explanation 

and prediction in science in the works of Hume (1748), Whewell (1840), and Mill (1843), 

contemporary scholarship on the subject usually starts with the deductive-nomological (DN) 

model proposed by Hempel and Oppenheim (1948). According to the DN model, the explanandum 

(i.e., the statement to be explained) must deductively follow from the explanans: a set of premises 

that not only should be true but also include boundary conditions and general laws. According to 

the DN model, in its simplest form, a scientific explanation would have the following structure: 

 

C1 ∧ C2 ∧ C3 ∧ … ∧Cn 

L1 ∧ L2 ∧ L3 ∧ … ∧ Ln   Explanans 

∴ Explanandum 

 

Here, each Ci is a true statement of a boundary condition or particular occurrence of an event, and 

each Li is a statement of a general law. Thus, a successful explanation of, say, a particular 

observation of a planet’s location at a particular time would be given by a set of premises involving 

other relevant observations and empirical conditions, as well as by certain physical laws governing 

celestial bodies. Importantly, for Hempel and Oppenheim, both explanations and predictions 

shared the same logical structure, as it is possible for an explanans to state a yet unobserved event. 
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Predictions, as it were, are explanations of future events; or, alternatively, explanations are 

predictions of past events (aka “postdictions”).  

 This view, known since as the “symmetry thesis”, was met with substantial backlash in the 

1950s and 1960s. It was pointed out, for instance, that while explanations require true propositions, 

successful predictions need not (Scheffler, 1957). Others argued that the uncertainty that applies 

to explanations differs from that which applies to predictions (Helmer and Rescher 1959), while 

still others pointed out that some theoretical models—such as in quantum mechanics (Hanson, 

1959) and evolution (Scriven, 1959)—are good at explaining but bad at predicting. By the time 

Nagel’s The Structure of Science (1961) was published, the focus in philosophy of science had 

almost entirely moved to explanation for, as he remarked, “the distinctive aim of the scientific 

enterprise is to provide systematic and responsibly supported explanations” (1961, 15). The 

displacement of prediction—or the “decentering of prediction” as Heather Douglas (2009) calls 

it—brought explanation to the forefront of philosophical scholarship in the philosophy of science.1 

With prediction relegated to the background, most discussions focused on whether or not 

the DN model offered a successful analysis of scientific explanation. Philosophers quickly grew 

dissatisfied with the logical structure of explanations offered by the DN model. Some of the first 

concerns pertained to the difficulty of distinguishing statements of non-accidental generalizations 

from those of scientific laws (Hempel, 1965). Soon after, counterexamples to the DN model started 

to emerge. Some pointed out explanatory asymmetries, as in the example in which the length of a 

flagpole is deductively derived from the length of its shadow in conjunction with relevant laws 

about the propagation of light (Bromberger, 1966). Such a derivation, it was argued, conforms to 

                                                
1 It is important to note that this decentering may not apply to other related areas of research, such as issues on 
confirmation and accommodation, both of which are related to the notion of prediction (see, for instance, Eells, 2006). 
We thank a reviewer for inviting us to note this issue.   
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the logical structure of the DN model, yet we feel that the explanans (i.e., the length of the flagpole) 

is not really explained by the explanandum (i.e., the length of the shadow plus laws pertaining to 

the propagation of light). Other counterexamples pointed at cases of explanatory irrelevance, as 

with the case of the following derivation (Salmon, 1971):  

 

(P1) All males who take birth control pills regularly fail to get pregnant 

(P2) John Jones is a male who has been taking birth control pills regularly 

∴ John Jones fails to get pregnant 

  

which seems to conform to the structure of the DN model—i.e., P1 satisfies the criteria of 

lawfulness, and P2 states particular true observations—and yet does not constitute a successful 

explanation.  

  As a consequence, the 1970s and 1980s saw a proliferation of models of scientific 

explanation, including Salmon’s statistical-relevance (SR) model (Salmon, 1971), the causal 

model (Salmon, 1984), and the unification model (Kitcher, 1989), to name a few. Unsurprisingly, 

most of the scholarship on scientific explanation during those two decades boiled down to a series 

of exchanges between counterexamples and defenses of these various models. By the 1990s, no 

agreed-upon model of explanation was in the offing and, instead, philosophers of science largely 

moved toward some kind of explanatory pluralism. Arguments turned into discussions as to what 

sort of explanatory model would be more appropriate for each scientific discipline. This was the 

intellectual environment in which the mechanistic explanation model was fully articulated 

(Machamer, Darden and Craver, 2000), and the following years helped to strengthen it as the 
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paramount model for scientific explanation in the life sciences, including neuroscience (Craver, 

2007).  

 

2.2. The mechanistic model of explanation in neuroscience 

 Although there are several definitions of “mechanism” and “mechanistic explanation” in 

the philosophy of science (e.g., Machamer et al, 2000; Glennan, 2002; Bechtel and Abrahamsen, 

2005), they all seem to agree on what Craver and Tabery (2015) call the “ecumenical” 

characterization of mechanism, according to which mechanisms consist of four components. First, 

there is the phenomenon, which is understood as the behavior of the system that the mechanism 

constitutes. Every mechanism, then, is a mechanism of some particular phenomenon—e.g., 

digestion, long-term potentiation, inattentional blindness—and, depending on the particular 

phenomenon, a mechanism can produce, underlie, or maintain it. The second component are the 

parts of the mechanism which, in turn, are linked by the third component: causal relations. 

Considerable discussion has ensued regarding the best characterization of causal relations for 

mechanistic explanations. For our purposes, what matters is that such causal relations are 

intervenable, that is, they can be in principle—even if not in practice—manipulated to make a 

difference in the phenomenon. Finally, mechanisms are also organized in some fashion. In the case 

of neuroscience, many think of mechanisms as hierarchically organized in different levels (Craver, 

2007), but other organizations may be possible too (Craver and Tabery, 2015). 

 Mechanistic models in neuroscience, then, are useful for the purpose of explanation insofar 

as they can capture a mechanism. And they can capture a mechanism if they conform to what 

Craver and Kaplan (2011) call the “3M” mapping requirement: 
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(3M) A model of a target phenomenon explains that phenomenon when (a) the variables in 

the model correspond to identifiable components and organizational features of the target 

mechanism that produces, maintains, or underlies the phenomenon, and (b) the causal 

relations posited among these variables in the model correspond to the activities or 

operations among the components of the target mechanism. (Craver and Kaplan, 2011, 272) 

 

It is likely that, as of now, we do not have a single mechanistic model that fully conforms to the 

3M requirement and that provides a complete characterization of all the components. At best, we 

have schematic models: abstract or idealized descriptions of a mechanism in which many of the 

details are omitted and/or that include provisional place-holders for unknown components 

(Darden, 2002). Moreover, mechanistic schematic models also vary in terms of the degree to which 

they capture the actual phenomenon. On one extreme, how-possibly models describe mechanisms 

in terms of how the different parts might be causally related and organized to produce, maintain, 

or support a phenomenon. On the other extreme, how-actually models depict how they are actually 

causally related, what all the parts really are, and how the parts are in reality organized to produce, 

maintain, or support a phenomenon. Unsurprisingly, we likely have very few—if any—how-

actually models in neuroscience; these constitute a normative goal that our constantly refined how-

possibly mechanistic schematic models seek to reach (Craver and Darden, 2013). Much of the 

scientific work in contemporary neuroscience consists precisely in discovering the underlying 

components of a mechanistic model to provide interpretations of the filler terms that can bring a 

how-possibly model closer to a how-actually one. Consider our current model of long-term 

potentiation (LTP) in neurons in the dentate gyrus. While this may constitute one of the most 

thorough mechanistic models in neuroscience, researchers keep discovering new details that help 
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to make certain assumptions and idealizations more concrete. For instance, while early models 

postulated that N-methyl-D-aspartate receptors (NMDAR) were necessary to trigger the induction 

of LTP (Collingridge et al, 1983), more recent discoveries have shown that other receptors, such 

as metabotropic glutamate (MGluRs) and kainate receptors can do it as well. More recently still is 

has been shown that even Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 

acid receptor (AMPAR) can do the trick, further inviting the revision of the actual components of 

our mechanistic model of LTP (Park et al., 2014). Despite being one of the most complete 

mechanistic models in neuroscience, our current model for LTP is not a how-actually model quite 

yet; at best, it is a how-nearly-actually mechanistic model (Craver and Tabery, 2015). 

 Nevertheless, mechanistic models seem perfectly appropriate to deliver on what arguably 

are the two main goals of the scientific enterprise: to uncover the nature of reality, and to enable 

us to manipulate and control it. Mechanistic models—as opposed to the DN-, the SR-, and some 

variants of unificationist and mathematical models—are ideally suited to contribute toward the 

first goal, insofar as they care less about the logical structure of the explanation and more about its 

ontic commitments, that is, the kinds of actual, real structures that count as legitimately 

explanatory (Craver, 2014).2 The explaining is done by real stuff, causally related and organized 

in various ways in order to produce, sustain or underlie a phenomenon. Mechanistic models not 

only tell us why something happens, but also what makes it happen. In turn, mechanistic models 

contribute to the second goal thanks to their reliance on counterfactual theories of causation, 

particularly manipulationist views (Woodward, 2003). When the causal relations are thus 

                                                
2 There are some views of mechanistic models that need not have such strong ontic commitments (e.g, Bechtel, 2008) 
and/or that need not be committed to a manipulationist/counterfactual-dependent account of causation. It is possible 
that some of the arguments we discuss here do not necessarily apply to these accounts. We don’t discuss these accounts 
in depth, in part because they are not as thoroughly developed in the philosophy of neuroscience. Thanks to a reviewer 
for inviting us to clarify this point. 
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understood, the parts of a mechanism that constitute the relata can be seen as variables able to 

make a difference to the phenomenon—i.e., the behavior of the mechanism they are part of. In 

other words, mechanistic models enable us to tell what would happen to the phenomenon if one 

were to intervene on a particular variable (i.e., a part) at a certain level of organization. Thus, 

mechanistic models are ideal to tell us how the phenomenon would behave under counterfactual 

conditions and, consequently, they seem perfectly suited to offer predictions as well. 

 Given all these considerations it is hard not to think of mechanistic models as the 

paradigmatic model for not only scientific explanations, but also scientific predictions in 

neuroscience. In fact, some mechanists seem to suggest as much. They claim that understanding 

how a phenomenon works via subsuming it under a mechanistic model is perhaps the most reliable 

way to predict how it will behave in the future, and how it can be manipulated so that we can make 

it “work for us” (Craver and Kaplan, 2011). A strong reading of this view would imply that models 

can only yield successful predictions if they have strong ontic commitments to the structures they 

represent, and if they offer, if not a how-actually, at least a how-nearly-actually or a how-plausibly 

mechanistic schema of the phenomenon.3 

In what follows, we argue against this strong reading according to which mechanistic 

models are paradigmatic models for both explanation and prediction, particularly as they apply to 

neuroscience. Instead, we argue for a weaker view, according to which, even if mechanistic models 

are ideally fitted for generating explanations in neuroscience, there may be some non-mechanistic 

models that are well suited to offer not only successful predictions but also strategies to manipulate 

                                                
3 We see successful predictions as those which accurately model alternative outcomes (and thus support 
counterfactuals to some degree), or model future states with accuracy significantly above chance. In short, good 
predictions estimate outcomes above randomness. Note that, on this view, how-actually and how-possibly models can 
both yield successful predictions; however, how-actually models may not always make predictions that are perfectly 
accurate, since their use is often limited to certain contexts (consider the difference between Newtonian and relativistic 
physics, for example).  
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and control certain phenomena. In particular, we defend this weaker reading in relation to 

topological models, which have recently been criticized by mechanicists who argue that they are 

not explanatory, or that, if they are, they explain precisely because they ultimately resolve into a 

mechanistic model (Craver, 2016). The suggestion we put forth in the rest of this essay is that even 

if topological models only have explanatory value when translated into their mechanistic 

components, they still have predictive value whether or not they have clear ontic commitments 

and/or mechanistic interpretations.4  

 

3. Network science: prediction and interventions 

Network science makes use of the mathematical tools and formalisms from graph theory 

to empirically investigate real-world networks. In its simplest form, a network can be thought of 

as a collection of differentiable elements, or nodes, and the pairwise relationships between them, 

or edges. Diverse real-world systems can be thought of as networks. For example, protein-protein 

interaction networks, structural and functional brain networks, infectious disease networks, 

friendship networks, and air transportation networks have all been modeled as networks for various 

purposes. Despite the obvious differences in the actual, real-world phenomena, all these networks 

can be understood as collections of nodes with certain edges between them (Butts, 2009). But of 

course, what the nodes and edges actually represent in the world will differ across the different 

kinds of networks (Figure 1).  

[Figure 1 about here] 

                                                
4 A clarification: we are not saying that Craver is necessarily committed to the strong reading. As far as we know, 
partisans of mechanisms have said little as to whether or not predictive models also demand the same ontic 
commitments that explanatory models do. Our view should rather be seen, then, as an admonition to the effect that 
even if one adopts a mechanistic stance vis-à-vis the way in which neuroscience ought to be pursued, then the strong 
ontic commitments that have been argued for explanation need not apply to prediction too.  
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Graph theoretic metrics can then be used to characterize the topological properties of these 

networks—regardless of how the nodes and edges are defined in practice (Watts and Strogatz 

1998; Butts, 2009; Huneman, 2010; Sporns, 2011). A simple example of a topological property is 

geodesic distance: the minimum number of edges required to transverse from one particular node 

i to another node j in the network. You and your Facebook friend have a geodesic distance of 1, 

because it only takes one edge to connect you and your friend. But the geodesic distance between 

you and a friend of that friend who is not also your friend on Facebook would then be 2. Thus, 

geodesic distance, for instance, can help to calculate the spread of information on your Facebook 

wall. Relatedly, the path length of any node i in a network can be obtained by computing the 

average shortest number of steps necessary to get from i to each other node in the network 

(Dijkstra, 1959). Path length offers an indication of how quickly or effectively information can 

spread throughout a network. Consider, for example, a large hierarchically structured company. 

The CEO likely has a relatively short path length, and information can be transmitted from the 

CEO to any employee in relatively few steps, whereas most low-level employees likely have a 

longer path length, as it takes more steps for them to communicate with members in faraway 

departments. A more complex graph theoretic metric is eigenvector centrality, a measure of the 

extent to which a node i is connected with other influential nodes in the network (nodes with lots 

of edges). Nodes with high eigenvector centrality are thought to be highly influential and effective 

in spreading information throughout a network. On social media (e.g., Twitter), for example, 

certain celebrities like Justin Bieber tend to have particularly high eigenvector centrality, as they 

tend to be connected with many other influential celebrities. 

Topological and spatial scales can be changed depending on a researcher’s interests. To 

give an example from neuroscience, the hippocampus can be studied as a single structure or unit, 
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it can be studied as a three-part entity composed of CA1, CA3, and the dentate gyrus, or it can be 

studied as a more complex structure containing various cell types, layers, and their projections. 

Although it is often tempting to view phenomena at higher resolutions (e.g., cell types and the 

properties of those cells) as being the worthiest of serious investigation, it is sometimes not useful 

or valuable to improve the resolution with which one studies a given brain structure and its relation 

to cognition—especially when current computational and practical constraints are taken into 

account. Investigation at a more macroscopic scale often still yields useful and accurate 

predictions. Because it is unclear which level of granularity is the ground truth, and so unclear how 

best to demarcate components of the system (i.e., nodes representing functional units in the brain), 

topological prediction can play a central role. Comparing predictive utility at different levels of 

granularity can also guide future research and serve useful purposes. It is possible that different 

“scales of granularity” of network description will yield distinct yet complementary properties for 

predicting cognitive phenomena, disease states, and disease progression, among other things. 

There are many other graph theoretic metrics that capture certain topological properties of 

networks, such as eigenvector centrality, clustering coefficients, and modularity (Newman, 2010). 

Critically, one of the central features of network models is that topological properties can be 

ascertained independently of a system’s physical substrates. That is, the same graph metrics can 

be computed on any kind of network, no matter what the nodes and edges are representing in the 

world; networks comprised of differently defined nodes and edges can even possess the same 

topological properties. To be sure, there are interesting philosophical questions about the nature of 

such topological properties and their relationship to the actual substrates the network models are 

based on. We also believe that understanding whether or not the topological properties of network 

models have any explanatory value above and beyond the mechanisms that underlie the system 
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they seek to represent, is a worthwhile philosophical question (Huneman, 2010; Craver, 2016, 

Lange, 2017). That being said, we also believe that the longstanding emphasis on explanation in 

philosophy of science, as well as the fact that network models have mainly been discussed in 

reference to alternative explanatory frameworks, have obscured the fact that topological properties 

in network models have remarkable predictive power. Additionally, in some instances, the 

predictive power of topological properties in network science has enabled us to conduct successful 

interventions. Let us explore some examples. 

 

3.1. The predictive power of topological properties  

 We often obtain good predictions when causal information about the components of the 

system is incorporated into the model. However, in some cases, clear causal information is either 

unavailable, non-existent, or poorly-defined. Even in such cases, networks can still be 

characterized topologically, and their topological properties can produce accurate predictions. 

Studies of co-authorship networks, for example, capture patterns of collaboration in a given field. 

These networks allow us not only to identify prominent author(s) in a field, but also to successfully 

predict whether a publication will be well-cited in the future. For example, Sarigol, Pfitzner, 

Scholtes, Garas, and Schweitzer (2014) analyzed a dataset of over 100,000 publications from the 

field of computer science, and they investigated how centrality in the co-authorship network differs 

between authors who have highly cited papers and those who do not. Using a machine learning 

classifier based only on co-authorship network centrality measures (degree centrality, eigenvector 

centrality, betweenness centrality, and k-core centrality), they were able to predict whether an 

article would belong to the 10% most cited articles in five years’ time with a precision of 60%, 

well above chance. Interestingly, in order to not overemphasize one particular dimension of 
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centrality in networks, they used several complementary measures of network centrality, and this 

combination of measures was crucial in adequately predicting the publication “success” of the 

researchers. To compute each centrality metric, however, it was first necessary to define the full 

set of nodes and edges in the network. By mapping out all connections in the network and 

computing graph metrics, they quantitatively suggested the existence of a social bias, manifesting 

itself in terms of visibility and attention, and influencing measurable citation “success” of 

researchers. 

Another example pertains to traffic congestion. Consider the following question: “how can 

we accurately predict which roads in a city have or will have the highest occurrence of traffic 

jams?” A network approach might seek to predict whether a road will be congested by examining 

its topological properties within the larger network. This requires taking into account all other 

roads in the network (in this case, nodes might represent intersections, and edges might represent 

the road segments that link the intersections). Note that the kinds of buildings to which the roads 

provide access is not included in defining nodes and edges, and therefore, this information will not 

be included in—directly or indirectly—predicting traffic congestion.  

Adopting this network approach, Wang et al. (2012) show that by incorporating 

information about how centrally a road is situated in graph theoretic space, they can accurately 

predict traffic patterns in San Francisco and Boston. The extent to which a road segment occupies 

a central place in the city grid is measured in terms of a mathematical property of networks known 

as edge betweenness. Edge betweenness is computed for each individual edge in a graph. To 

compute the edge betweenness, a search algorithm identifies the shortest possible path between 

each and every node in the network. It then searches the resulting data structure to determine what 

proportion of those paths incorporate the road segment in question. That proportion is the edge 
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betweenness. In this particular case, edges represent road segments defined as stretches of roads 

between legal intersections, and nodes represent legal intersections. Wang et al. (2012) show that 

the traffic density on a road segment can be better predicted by modeling both the road’s centrality 

and inherent travel demand (i.e., how often the buildings on the road are frequented) than it can by 

modeling inherent travel demand alone. That is, incorporating edge betweenness into the 

predictive model actually provides better predictions above and beyond travel demand alone. 

Importantly, one can only compute edge betweenness by completely searching the entire 

topographical structure of the system, even though the measure is computed for an individual road 

(i.e., edge). With this particular kind of quantitative description, one might then be able predict 

that in other major metropolitan cities in the United States (e.g., Houston, Phoenix, Chicago, 

Dallas, etc.), roads with higher edge betweenness will experience more traffic jams, on average. 

Another example comes from sexual networks, whereby persons are thought of as nodes 

and sexual contacts as edges. Long-term and large-scale data collection has led to the production 

of large-scale sexual networks from Manitoba, Canada, and from Colorado Springs, USA 

(Woodhouse et al. 1994; Rothenberg et al. 1998; Wylie & Jolly 2001; Jolly & Wylie 2002; Potterat 

et al. 2002). These kinds of networks highlight the heterogeneities present in sexual networks and 

show the importance of core groups (i.e., highly and disproportionally interconnected subsets of 

people with high numbers of contacts) and ‘long-distance’ connections (linking otherwise distant 

parts of the network) in disease transmission. Note that it is only possible to uncover these core 

groups (i.e., network modules) and ‘long-distance’ connections that interconnect groups by 

mapping out the full structure of the sexual network. Moreover, edges are defined only by whether 

two individuals have sex with each other during some time period t. To provide a particularly 

salient example, Liljeros et al. (2001) showed that sexual networks, like many networks that are 
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present in the world, have a scale-free degree-distribution (in contrast to, for example, a Gaussian 

distribution). This property means that the vast majority of individuals in the network have very 

few sexual contacts, but that there are a few individuals who have had a very large number of 

sexual contacts. Importantly, the fact the network has a scale-free architecture suggests that some 

of the individuals with a very large number of partners may bridge relatively isolated communities, 

i.e. they have long-distance connections in addition to many connections.5 

On the surface, it may seem as though predictions about human sexual networks are 

underwritten not by the topological properties of these networks, but instead by our knowledge of 

the actual causal properties involved. For example, we know a lot about human sexual contact, 

and can give accurate microbiological explanations of how some STDs pass from one person to 

another. However, the force of this example is that our predictions about human sexual networks 

would still be accurate, even if we had none of this causal and biological knowledge. Suppose that 

we were examining sexual networks in an alien species, for example. The topological properties 

would still be helpful in predicting disease transmission among members of the species, even if 

we had no knowledge, detailed or otherwise, about the alien biology. 

Moreover, this example offers an interesting case in which quantitatively characterizing 

the topological properties of the network allows us to identify particular individuals in the network 

who could be targeted for a subsequent intervention in response to a sexual-disease outbreak, as 

                                                
5 We say that a scale-free architecture “suggests” this organization of individuals because, while not a mathematical 
guarantee, it appears likely to be so. In a scale-free network architecture, statically speaking, some of the high-degree 
nodes will be provincial hubs and some of the high-degree nodes will be connector hubs. Granted, it is not the case 
that networks must not follow this principle; in some scale-free networks, all the high-degree nodes might be 
connectors. But this seems statistically unlikely as then distinct modules are unlikely to exist. If the high-degree nodes 
are “randomly” arranged, then some must be connectors and some must be provincial. In other words, in scale-free 
networks, the nodes at the far end of the distribution have considerable influence over the other nodes in the network, 
more so than in other kinds of networks with other kinds of degree distributions. Some of these nodes with very many 
connections are likely to interconnect many different communities and be essential (in the example from the text) for 
diseases to propagate throughout the network. 
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given limited resources, it may not be practical to target all individuals in the network to promote 

safe-sex practices. But by specifically targeting individuals who have the greatest number of 

connections and those who tend to disproportionately connect otherwise distant groups or clusters 

in the network, it may be possible to most efficiently and effectively promote safe-sex practices to 

reduce the likelihood of disease transmission across the entirety of the network.  

Let us summarize the three examples we have seen. The first dealt with a co-authorship 

networks, and focused on the predictive power of centrality measures. In this example, causal 

information for entities in the network is either non-existent or poorly defined; nevertheless, 

centrality measures are still able to help us generate successful predictions. The second example 

was about traffic congestion. Here, researchers used edge betweenness and other topological 

measures to describe global properties of the network, thereby making it possible to give accurate 

predictions about different cities based on the successes of a single network analysis. The third 

and last example, about sexual networks, illustrated the power of topological models to identify 

the degree distribution of a particular network—a scale-free distribution in this case, as opposed 

to, say, a Gaussian distribution. Most importantly, the example of sexual networks shows that 

causal knowledge—even when it is available and detailed—is not necessary for making 

predictions in virtue of topological properties. 

Taken together, what these and related examples strongly suggest is that the topological 

properties of network models can be successfully employed to make predictions and to guide 

interventions on the systems they represent even when no causal or mechanistic information about 

the system is either known or included in the model. In fact, the examples just discussed are 

agnostic as to their ontic commitments, as they tend to be independent of the precise physical 

substrata of the modeled system. Crucially, many of these models offer clear avenues for 
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intervention. For example, in the case of sexual contact networks, some individuals in the network 

have more connections than others, and certain individuals are disproportionately responsible for 

interconnecting relatively segregated communities in the network. By identifying and targeting 

those individuals, we might be more likely to stop the spread of disease. Of course, it may be 

possible that some of these predictions illuminate the underlying nature of the phenomenon, and 

as such may contribute to its explanation. But even if they don’t, the topological properties of 

network models still hold enormous epistemic value by enabling us to make predictions and by 

offering the possibility of gaining some measure of control over social and natural processes 

(Douglas 2009, 2013).  

 

3.2. Predictions and interventions in network neuroscience 

The aforementioned considerations were confined to network models outside the field of 

neuroscience. The question now is whether or not we have evidence to the effect that network 

models and their topological properties can also afford predictions and strategies for manipulation 

within in neuroscience. We believe they can. Some contemporary neuroscientists treat the brain as 

a large-scale network. Determining what constitutes a node or an edge, however, is tricky, as it 

depends on the particular level of analysis, the particularities of the research questions, and the 

idiosyncrasies of the available technologies from which the data is acquired (Stanley et al., 2013). 

Regarding levels of analysis, brains can be seen as varying along at least three scales. First, there 

is a spatial scale that ranges from the very micro (e.g., neurons, glia) to the very macro (e.g., gross 

anatomical regions comprising millions of neurons and even more synapses connecting those 

neurons). Thus, while networks at the micro-level may include neurons as nodes and synaptic 

connections as edges, networks at the macro-level may include cytoarchitecturally delimited 
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portions of brain tissue as nodes and white matter tracts as edges—in the case of structural 

networks—or voxels as nodes and correlations in signal over time as edges, in the case of 

functional connectivity networks. Second, brain networks also vary along a topological scale that 

goes from local (e.g., networks within a brain region) to global (e.g., networks across the whole 

brain). Finally, brain networks vary along a temporal scale, ranging from very fast (e.g., sub-

second neural processes) to the very slow (e.g., life-span or evolutionary changes). Networks 

whose topological features vary along several scales are known as multi-scale. Therefore, brains 

can be thought of as multi-scale networks (Betzel and Bassett, 2016; De Brigard, 2017).  

Different research questions, and their inherent practical limitations, also influence the way 

in which network models are constructed. We may, for instance, want to construct a brain model 

in which each individual neuron is represented as a node, with the edges between nodes 

representing synapses. Unfortunately, while this has been done successfully in the significantly 

less complex organism C. Elegans (Sporns and Kötter, 2004; Towlson et al., 2013), it is not 

currently possible to image, record, or computationally analyze the tens of billions of neurons in 

the human brain, especially when neurons often have thousands of synapses (Drachman, 2005). 

Current neuroimaging technology limits functional and structural brain network analyses to nodes 

above the millimeter scale, meaning that many potentially interacting neurons, synapses, and other 

structures will be represented as an individual node in human brain networks. The lack of a clear, 

obvious choice of what should represent a node in a functional brain network has resulted in the 

analysis of brain networks across a wide range of scales, ranging from 70-node (Wang et al., 2009) 

to 140,000-node whole brain networks (Eguíluz et al., 2005), using a variety of parcellation 

schemes dependent on wide-ranging definitional criteria (Stanley et al. 2013). The boundaries 

representing reasonable functional units (i.e., nodes) in the brain for investigating a particular 
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phenomenon of interest need not line up with the surfaces of structures or other commonsense loci 

of demarcation, and the ‘best’ way to define nodes (size, brain-region, etc.) often depends on a 

researcher’s question. Furthermore, it is possible that these different levels of granularity provide 

network descriptions that are distinct, yet complementary, when predicting cognitive phenomena. 

For example, the particular firing patterns of neurons exclusively within the hippocampus support 

memory encoding and retrieval (Battaglia et al., 2011), and the increased topological centrality of 

the hippocampus—modeled as a single node in the whole brain network—also supports memory 

retrieval (Geib et al., 2017a).  

Finally, the data from which topological models of brain networks are built also varies as 

a function of the technology employed to extract them. For instance, functional brain networks 

have been constructed using functional MRI (fMRI) (Achard & Bullmore 2007, Achard et al. 2006, 

Eguíluz et al. 2005, Geib et al. 2017a, 2017b, Liu et al. 2008, Salvador et al. 2005a, van den Heuvel 

et al. 2008), electroencephalography (EEG) (Micheloyannis et al. 2006, Stam et al. 2007), 

magnetoencephalography (MEG) data (Bassett et al. 2006, Deuker et al. 2009, Stam 2004), and 

ECoG (Betzel et al. 2019). Structural brain graphs have been constructed from diffusion tensor 

imaging (DTI) or diffusion spectrum imaging (DSI) (Gong et al. 2008, Hagmann et al. 2008), as 

well as from conventional MRI data (Bassett et al. 2008, He et al. 2007). 

Importantly, as in the case of the network models discussed above (section 3.1), recent 

studies suggest that the topological properties of network models in neuroscience offer 

extraordinary predictive value. Consider, for instance, research on brain disease. A recent study 

by Khazaee et al. (2015) combined network analyses of fMRI data with advanced machine learning 

techniques to investigate brain network differences between patients with Alzheimer’s disease 

(AD) and healthy, age-matched controls (see also, Khazaee et al., 2017). Alzheimer’s disease is a 
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progressive neurodegenerative disease that is accompanied by severe decline in cognitive 

functioning (in memory in particular; Albert et al., 2011). Graph theoretic metrics were obtained 

from each participant’s brain network, and machine learning was used to explore the ability for 

graph metrics to help in the diagnosis of AD. They applied their method to resting-state fMRI data 

of twenty patients with AD and twenty age- and gender-matched healthy subjects. The graph 

measures were computed and then used as the discriminating features in the model. Extracted 

network-based features were fed to different feature selection algorithms to choose the most 

significant features. Using a set of graph metrics computed for diverse nodes (brain regions) in the 

network, the researchers were able to identify patients with AD relative to healthy controls with 

perfect accuracy (i.e., 100% correctly). So, if a new case were presented to the researchers, they 

would presumably be able to accurately predict whether that individual had AD based upon a set 

of graph theoretic metrics obtained from that individual’s fMRI data. Results of this study suggest 

that graph theoretic metrics obtained from functional brain networks can efficiently and effectively 

assist in the diagnosis of AD. It may be that early diagnosis (before the onset of behavioral 

symptoms) is also possible by this method, whether or not we have a full mechanistic account 

explaining what occurs in the brain in AD. 

A subsequent study conducted by Hojjati and colleagues (2017) went a step beyond Khazee 

et al. (2015). Specifically, Hojjati et al. (2017) used similar graph theoretic metrics obtained from 

brain networks constructed from resting-state fMRI in conjunction with machine learning 

algorithms to predict which individuals would progress from Mild Cognitive Impairment (MCI) 

to AD and which individuals would not progress from MCI to AD. MCI is a transitional stage 

between normal age-related cognitive decline and actual AD. The researchers were able to predict 

with greater than 90% accuracy which individuals would progress from MCI to AD and which 
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would not. The ability to accurately predict which individuals are likely to progress to AD offers 

physicians useful information to better tailor prevention and treatment programs on an individual 

basis. Additionally, it would be of significant use to family members of when planning for future 

care. (See delEtoile and Adeli (2017) for a useful recent review of similar research.) 

Consider now the case of epilepsy, one of the most common neurological conditions. 

Epilepsy is characterized by the tendency toward recurrent, unprovoked seizures (Stam, 2014). 

Treatment for certain severe, drug-resistant cases of epilepsy sometimes involves anterior temporal 

lobectomy. Using graph theoretic metrics obtained from resting-state brain networks in 

conjunction with machine learning algorithms, He, Doucet, Pustina, and colleagues (2017) were 

able to predict surgical outcomes from patients who underwent anterior temporal lobectomy. More 

specifically, the researchers used graph theoretic measures of centrality during rest prior to the 

lobectomy to predict with high accuracy whether participants would be seizure-free a full year 

later. This research provides a useful potential biomarker for surgical outcomes, with the potential 

to usefully guide the decision-making of physicians in future cases by determining which 

individuals would be most likely to benefit from surgery. As in the examples above, the utility of 

graph theoretic metrics in predictive surgical outcomes is extremely valuable, whether or not we 

have a full mechanistic account explaining what occurs in the brain in epilepsy.  

Cases of MCI, AD, and epilepsy offer salient examples of the predictive and intervention-

guiding value of graph theoretic metrics obtained from brain networks. By “intervention-guiding,” 

we refer primarily to the possibility of identifying sub-populations which are at greater risk for 

certain health problems, on which clinicians may focus their treatment (though there are other 

ways in which brain-based graph theoretic metrics can guide interventions as well). Similar 

methods have also been used to predict with incredible accuracy which individuals have common 
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clinical disorders, such as major depressive disorder (Sacchet et al., 2015; Gong & He, 2015) and 

attention deficit hyperactivity disorder (Colby, Rudie, Brown, et al., 2012). In these cases, graph 

theoretic metrics obtained from brain networks offer great predictive utility in diagnosis. This, in 

turn, has the potential to aid in optimal treatment and intervention using other established 

techniques. Taking all of this together, the findings just reviewed clearly indicate that the 

topological properties of network models in neuroscience offer extraordinary predictive value and 

useful information for treatment and intervention, independent of their possible mechanistic 

interpretations. 

 

4. Conclusion  

Science is undoubtedly in the business of offering explanations about natural phenomena. 

But it is also in the business of offering predictions and strategies to intervene and manipulate 

reality. Most of the research in contemporary philosophy of science has focused on explanation, 

and the philosophy of neuroscience has followed suit. The overarching goal of the current paper 

has been to shed some light on the oft-neglected issue of prediction in neuroscience. We do so 

through the lens of network models and their topological properties. 

While current philosophers of neuroscience disagree as to whether or not network models 

are truly explanatory, or whether their explanatory power is based in mechanistic schemas (Klein 

2012; Muldoon & Bassett, 2016; Craver, 2016), we focused instead on the fact that many network 

models have predictive value and offer strategies for manipulation and intervention even when no 

clear causal or mechanistic account of the phenomenon is available. As such, topological models 

in network neuroscience promise to enhance our epistemic status regarding the brain and its effects 

by way of informing many vital decisions. The ability to use topological properties from network 
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models to make predictions also may help us to improve patient outcomes. The progression from 

pre-MCI to Alzheimer’s disease, for example, significantly impacts an individual’s life and the 

lives of loved ones. Predictions offer clear value for addressing these issues, even when a full-

fledged mechanistic explanation of the neurological conditions isn’t readily available. Cognitive 

neuroscience may not yet be able to give detailed instructions through mechanistic explanations 

for manipulating mental states; accurate predictions, on the other hand, do offer a clearer way 

forward for many applied problems. 
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