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Abstract How do people reason about their opponent in turn-taking games? Often,
people do not make the decisions that game theory would prescribe. We present a logic
that can play a key role in understanding how people make their decisions, by delin-
eating all plausible reasoning strategies in a systematic manner. This in turn makes
it possible to construct a corresponding set of computational models in a cognitive
architecture. These models can be run and fitted to the participants’ data in terms of
decisions, response times, and answers to questions. We validate these claims on the
basis of an earlier game-theoretic experiment about the turn-taking game “Marble
Drop with Surprising Opponent”, in which the opponent often starts with a seemingly
irrational move. We explore two ways of segregating the participants into reason-
able “player types”. The first way is based on latent class analysis, which divides
the players into three classes according to their first decisions in the game: Random
players, Learners, and Expected players, who make decisions consistent with forward
induction. The second way is based on participants’ answers to a question about their
opponent, classified according to levels of theory of mind: zero-order, first-order and
second-order. It turns out that increasing levels of decisions and theory of mind both
correspond to increasing success as measured by monetary awards and increasing
decision times. Next, we use the logical language to express different kinds of strate-
gies that people apply when reasoning about their opponent and making decisions in
turn-taking games, as well as the ‘reasoning types’ reflected in their behavior. Then,
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we translate the logical formulas into computational cognitive models in the PRIMs
architecture. Finally, we run two of the resulting models, corresponding to the strategy
of only being interested in one’s own payoff and to the myopic strategy, in which one
can only look ahead to a limited number of nodes. It turns out that the participant
data fit to the own-payoff strategy, not the myopic one. The article closes the circle
from experiments via logic and cognitive modelling back to predictions about new
experiments.

Keywords Game-theoretic experiment - Strategies - Types - Forward induction -
Backward induction - Theory of mind - Strategy logic - PRIMs model

1 Introduction

Turn-taking games are ubiquitous in our daily life—from debates and deliberations to
negotiations, and from competition between firms to coalition formation. How suit-
able are idealized formal models of social reasoning processes with respect to the
nuances of the real world? In particular, do these formal models represent human
strategic reasoning satisfactorily or should we instead concentrate on empirical stud-
ies and models based on those empirical data? Such questions have been raised by
researchers in game theory, logic and cognitive science (cf. Camerer 2003; Benthem
2008; Verbrugge 2009; Lambalgen and Counihan 2008; Isaac et al. 2014).

Game theorists define a strategy of a player as a partial function from the set of
histories (sequences of events) at each stage of the game to the set of actions of the
player when it is supposed to make a move (Osborne and Rubinstein 1994). Agents
devise their strategies so as to force maximal gain in the game. In cognitive science,
the term strategy is used much more broadly than in game theory. A well-known
example is formed by George Polya’s problem solving strategies (understanding the
problem, developing a plan for a solution, carrying out the plan, and looking back to
see what can be learned) (Polya 1945). Many cognitive scientists construct theories
about human reasoning strategies (Lovett 2005; Juvina and Taatgen 2007), based on
which they construct computational cognitive models. These models can be validated
by comparing the model’s predicted outcomes to results from experiments with human
subjects (Anderson 2007).

In Ghosh et al. (2014), together with Meijering, we aimed to bridge the gap between
logical and cognitive treatments of strategic reasoning in the turn-taking game “Marble
Drop with Rational Opponent”. We proposed to combine empirical studies, formal
modeling and cognitive modeling to study human strategic reasoning: “rather than
thinking about logic and cognitive modeling as completely separate ways of modeling,
we consider them to be complementary and investigate how they can aid one another
to bring about a more meaningful model of real-life scenarios”. In the current article,
we aim to apply this combination of methods to the questions to what extent people use
backward induction or forward induction in a turn-taking game in which the opponent
does not always make rational decisions, which we call “Marble Drop with Surprising
Opponent”, and to what extent they can be differentiated according to reasoning types.
Let us give some background first in order to explain our aims more precisely.
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1.1 Backward and forward induction reasoning

In game theory, turn-taking games (or dynamic games) are represented by game trees
referred to as extensive-form games. Backward induction (BI) is the textbook approach
for solving extensive-form games with perfect information. In generic games without
payoff ties, BI yields the unique subgame perfect equilibrium. The assumptions under-
pinning BI are that all players commonly believe in everybody’s future rationality, no
matter how irrational players’ past behavior has already proven. Informally, back-
ward induction only considers the opponent’s future choices and beliefs, and ignores
the opponent’s past choices (“let bygones be bygones”). See Osborne and Rubinstein
(1994), Perea (2012) for more details.

In forward induction (FI) reasoning, on the other hand, a player takes into account an
opponent’s past moves and tries to rationalize the past behavior in order to assess that
opponent’s future moves. Thus, when a player is about to play in a subgame which
has been reached due to some strategy of the opponent that is not consistent with
common knowledge of rationality for each of the players, and also his past behavior,
the player may still rationalize the opponent’s past behavior. So how does the player
do that? She attributes her opponent a strategy which is optimal against a possible
suboptimal strategy of hers, or attributes to him a strategy which is optimal against
some rational strategy of hers, which is only optimal against a suboptimal strategy of
his and so on. If the player pursues this kind of rationalizing reasoning to the highest
extent possible (Battigalli 1996) and reacts accordingly, she ends up choosing what is
called an Extensive-Form Rationalizable (EFR) strategy (Pearce 1984) (see also Perea
2012, 2015; Pacuit 2015; Ghosh et al. 2015b). Thus extensive-form rationalizable
strategies are based on forward induction reasoning, and in the following we use the
terms extensive-form rationalizable (EFR) and forward induction (FI) synonymously.

Although EFR strategies may be distinct from BI strategies, still, in perfect infor-
mation games in which both players have a strict ranking among the pay-offs at all
the game-tree leaves following each of their decision nodes (that is, games without
relevant pay-off ties), it has been shown that there is a unique EFR outcome, which
coincides with the unique BI outcome (Battigalli 1997; Chen and Micali 2011, 2013;
Perea 2012; Heifetz and Perea 2015). There have been extensive debates among game
theorists and logicians about the merits of backward induction.

1.2 Experimental studies on dynamic perfect information games

A reason for taking EFR as our predictive concept rather than the more popular BI
concept is the fact that experimental economists and psychologists have shown that
human subjects do not always follow the backward induction strategy in large cen-
tipede games (Rosenthal 1981; Camerer 2003; McKelvey and Palfrey 1992; Nagel
and Tang 1998). Centipede games, introduced by Rosenthal (1981), are two-player
turn-taking games of perfect information. The payoffs are arranged in such a way
that at each decision point, if a player does not ‘go down’ to take the first possible
exit and the opponent takes the next possible exit, the player receives less than if
she had taken the first possible exit; Game 1 in Fig. 3 is an example of a relatively
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small centipede game. Instead of immediately taking the ‘down’ option, people often
show partial cooperation, moving right for several moves before eventually choosing
‘down’. Indeed, if a player has reason to believe that the opponent will not exit on
the next step, this is a rational decision (Rosenthal 1981). For example, Nagel and
Tang (1998) suggest that people sometimes have reason to believe that their opponent
could be an altruist who usually cooperates by moving to the right and McKelvey
and Palfrey (1992) suggest that players may believe that there is some possibility that
their opponent has payoffs different from the ones the experimenter tries to induce
by the design of the game. A more recent explanation is that the opponent may have
made an error or cannot apply backward induction for the number of steps required
(Kawagoe and Takizawa 2012); see the paragraph on orders of theory of mind on the
next page.

A number of experiments have been done with smaller centipede-like perfect-
information games, where the opponent was a rational computer player, and this fact
was told to the participants. In some of these experiments, it seemed that people were
not able to reason sufficiently deeply about their opponent’s strategy (Hedden and
Zhang 2002). Later, Meijering and colleagues introduced the game “Marble Drop
with Rational Opponent”, based on a centipede-like game tree with three decision
points (first the participant decides, then the computer, then the participant) with a
visualization that is intuitive for participants because it resembles a children’s toy: a
marble drops down a device and its course is influenced by the players’ choices of
trapdoors to open. Meijering et al. (2010, 2011) showed that both this new visualiza-
tion as well as several other interventions—namely, stepwise training and questions
that prompted participants’ reasoning about the opponent—can help the experimental
subjects to reason about the rational computer player when they play small centipede-
like games. It turned out that with the appropriate interventions, at the end of the
experiment after playing more that 40 games, participants made backward induction
decisions in more than 90% of games.

Recently, based on an eye-tracking study and complexity considerations, it turned
out that even when the participants produced the correct ‘backward induction answer’
in the “Marble Drop with Rational Opponent” games, they may have used a different
internal reasoning strategy to achieve it (Meijering et al. 2012; Bergwerff et al. 2014).

1.3 Theory of mind

Theory of mind (ToM) is the ability to attribute beliefs, desires, and intentions to other
people, in order to explain, predict and influence their behavior. Even though ToM has
been widely studied in the cognitive sciences, relatively little research has concentrated
on people’s reasoning about their opponents in turn-taking games. We speak of zero-
order reasoning in ToM when a person reasons about world facts, as in “Anwesha
wrote a novel under pseudonym”. In first-order ToM reasoning, a person attributes a
simple belief, desire, or intention to someone else, for example in “Khyati knows that
Anwesha wrote a novel under pseudonym”. Finally, in second-order ToM reasoning,
people attribute to other people mental states about mental states, as in “Khyati knows
that Soumya thinks that Anwesha did not write a novel under pseudonym”.
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One way of studying the cognitive basis of theory of mind in a controlled experimen-
tal setting is the use of turn-taking games. By investigating the underlying strategies
used during these games, one can shed light upon the underlying cognitive processes
involved—including ToM reasoning. In recent times, higher-order theory of mind has
been the central focus of a lot of research papers that are based on experiments with
games (see, for example Camerer 2003). Higher-order theory of mind reasoning also
became an attractive topic for logical analysis (Braiiner et al. 2016).

1.4 Typologies of players

To the best of our knowledge, studies on the typology of players according to their
cognitive strategies in turn-taking games are very scarce. Often it is difficult to gauge
from the participants’ decisions only, which reasoning patterns (often called ‘cognitive
strategies’) they may actually have been using. Raijmakers et al. (2014) have used sta-
tistical methods such as latent class analysis to divide children into classes according to
the cognitive strategies they may have used in a dynamic game similar to Marble Drop.

In the literature on behavioral game theory, there is a natural tendency to analyze
mostly the choices made by players at different turns of the game, thereby ignoring
the data on how much time they have taken to make that choice, namely, the response
time data. Rubinstein (2016) does argue for the importance of response times and
takes that data into account while discussing a typology of players in different games.
Also, he discusses typologies that are beyond the traditional psychometric typologies
originating from ‘type theory’ and ‘trait theory’ (Bateman et al. 2011). Rubinstein
views the analysis from a game-theoretic point of view.

In the current article, instead of defining typologies on the basis of game-theoretic
approaches, we use latent class analysis (Goodman 1974) as well as an analysis of
participants’ answers in terms of orders of theory of mind, from zero-order to second-
order. Furthermore, we investigate the interplay between the outcomes of the latent
class analysis and the theory of mind-based analysis.

The study of such typologies of players may help to explain the differences between
people’s cognitive attitudes when reasoning strategically and to better understand
people’s possible behaviors in interactive situations, which in turn may be used for
modeling purposes in, for example, economics, artificial intelligence, and linguistics.

1.5 Aims of this article

Marr (1982) has influentially argued that any task computed by a cognitive system
must be analyzed at the following three levels of explanation (in order of decreasing
abstraction):

the computational level identification of the goal and of the information-processing
task as an input—output function;

the algorithmic and representational level specification of an algorithm which
computes the function;

the implementation level physical or neural implementation of the algorithm.
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In recent years, as part of a revival of interest in Marr’s levels in cognitive sci-
ence, Willems (2011) has argued for more attention for the why of cognition, “what
is the goal for the organism at the present moment”. He claims that research in cog-
nitive neuroscience has often been stimulus-driven or capacity-driven, overlooking
the organism’s goal, which is properly investigated at the computational level. We
agree with the importance of the computational level, but are also interested in the
how of cognition, investigated at the algorithmic level. We think that both logic and
computational cognitive modeling can play a fruitful role at both these levels and at
the interface between them.

According to Isaac et al. (2014), logic can be of use at each of Marr’s three levels, but
in the history of cognitive science, logic has been especially useful at the computational
level. Baggioetal. (2015) provide some fruitful examples in which computational level
theories based on appropriate logics predict and explain behavioral data and even EEG
data in the cognitive neuroscience of reasoning and language.

As to computational cognitive modeling, Cooper and Peebles (2015) argue that
computational cognitive architectures such as ACT-R through their theoretical com-
mitments constrain declarative and procedural learning, thereby constraining both the
functions that can be computed (the computational level) and the way that they can
be computed (the algorithmic level).

In the current article, our main aim is to construct an appropriate logic to describe
participants’ possible cognitive reasoning strategies when reasoning about a surprising
opponent in a turn-taking game and then to find a generic method to turn these logical
descriptions into computational cognitive models in the recently developed cognitive
architecture PRIMs (Taatgen 2013).

This aim extends the aim that we had in our paper with Meijering (Ghosh etal. 2014).
In the current article, we extend the language that we introduced there to represent
strategies by a new belief component, so that we can now describe reasoning about
the opponent at a more fine-grained level than was necessary to model participants
reasoning in “Marble Drop with Rational Opponent”. Figure 1, visually similar to the
scheme in Ghosh et al. (2014), presents how the details of our approach are laid out
in the current paper.

This extension to the logic was needed to make reasonable models of participants’
reasoning in the more complex turn-taking game “Marble Drop with Surprising Oppo-
nent”. Together with Heifetz, we conducted a game-theoretic experiment that involves
a participant’s expectations about the opponent’s reasoning strategies, that may in turn
depend on expectations about the participant’s reasoning. The resulting article (Ghosh

FExperimentation —— Formal modeling —— Cognitive modeling

\/

Fig. 1 A schematic diagram of the approach: the experiments discussed in Sect. 3 inform our logical
model of reasoning strategies in “Marble Drop with Surprising Opponent” in Sect. 2. This logical model in
turn helps to construct computational cognitive models of reasoning strategies in the cognitive architecture
PRIMs in a generic way, as presented in Sect. 5; subsequently, two instantiations of the resulting models are
validated against the experimental results. Finally, as described in Sect. 5, simulations with computational
cognitive models often lead to new experiments in order to test the models’ predictions
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et al. 2015b) deals with the following question: In the dynamic game of perfect infor-
mation “Marble Drop with Surprising Opponent”, are people generally inclined to do
forward induction reasoning (i.e. show EFR behavior)? The main new elements of this
article with respect to Ghosh et al. (2014, 2015b) are as follows:

— In comparison to the logical language introduced in Ghosh et al. (2014), we have
now included the possibility to represent agents’ beliefs about their opponents’
moves and beliefs. We conjecture that the new language is more succinct than the
one proposed in Ghosh et al. (2014) in describing strategic reasoning (see Sect. 4.1
for a discussion), which in turn may lead to more efficient computational cognitive
modelling, for example, if there is a straightforward generic translation from the
logical syntax to the computational representations. An initial presentation of the
language was given in our LORI paper (Ghosh et al. 2015a), which is now extended
with worked-out examples of formalized reasoning strategies.

— Instead of the generic trends in participants’ choices (“do they generally show
EFR behavior or not?””) studied in Ghosh et al. (2015b), we now turn our attention
to differences between players: can they be characterized in meaningful ways?
We introduce two typologies, one based on latent-class analysis and one based
on orders of explicit theory of mind in participants’ verbal comments regarding
the reasoning about the opponent which they applied to make their decisions. An
initial analysis of such typologies was given in the conference contribution (Halder
et al. 2015), which is now extended with a comparison between the outcomes of
the two analyses.

— Incomparison to the computational cognitive models of Ghosh et al. (2014, 2015a)
which were based on the cognitive architecture ACT-R, we now base our generic
translations from strategic logic formulas to computational cognitive models on
the new architecture PRIMs (Taatgen 2013).

— Unlike in any of our previous work, we have now implemented two PRIMs models
resulting from two logical formulations of possible reasoning strategies in “Marble
Drop with Surprising Opponent”, and have made predictions based on the simula-
tions about the data of our previous experiment, and then compared the simulations
to the experimental results with respect to decisions and reaction times. Thus, this
article closes the circle from experiments via logic and cognitive modelling back
to predictions about the current and new experiments.

The rest of this article is structured as follows. In Sect. 2, we extend the language
introduced in Ghosh et al. (2014) to describe players’ reasoning strategies and types
of players, adding a belief operator to reflect players’ expectations. In Sect. 3, we
briefly recall Ghosh and colleagues’ recent experiment on forward induction (Ghosh
et al. 2015b) and suggest two typologies of players, based on strategic and cognitive
analysis, respectively. In Sect. 4, the reasoning strategies and the reasoning types
discussed in Sect. 3 are described with the logical syntax proposed in Sect. 2. Finally,
in Sect. 5, we sketch how strategy and belief formulas in this extended language
can be turned into production rules of computational cognitive models that help to
distinguish what is going on in people’s minds when they play dynamic games of
perfect information. Finally, we validate two of the resulting models by running them
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and comparing results with respect to decision and reaction time to the participants’
data.

2 A language for types and strategies

The focus of Ghosh et al. (2014) has been to use a logical framework as a bridge
between experimental findings and computational cognitive modelling of strategic
reasoning in a simpler Marble Drop setting, in which the computer opponent always
made rational choices: “Marble Drop with Rational Opponent”. Taking off from the
work of Ghosh et al. (2014), we now propose a logical language specifying strategies as
well as reasoning types of players. As mentioned above, our motivation for introducing
this logical framework is to build a pathway from empirical to cognitive modelling
studies.

This framework uses empirical studies to provide insights into cognitive models of
human strategic reasoning as performed during the experiment discussed in Sect. 3.
The main idea is to use the logical syntax to express the different reasoning procedures
as performed and conveyed by the participants and use these formulas to systematically
build up reasoning rules of computational cognitive models of strategic reasoning.

A novel part of the proposed language is that we add an explicit notion of belief to the
language proposed in Ghosh et al. (2014) in order to describe participants’ expectations
regarding future moves of the computer. This belief operator is parametrized by both
players and nodes of the game tree so that the possible expectations of players at each of
their nodes can be expressed within the language itself. The whole point is to explicate
the human reasoning process, therefore the participants’ beliefs and expectations need
to come to the fore. Such expectations form an essential part of the experimental study
discussed in the next section.

In addition to describing strategic reasoning, we also describe different typologies
of players based on the various factors that might influence human strategic reasoners,
as discussed in the previous section. We will use the same syntax to describe such types.
Before moving on any further, we first define the concepts necessary for describing
the strategies and typologies.

2.1 Describing game trees and strategies in logic

In this subsection, we give reminders of the definitions of extensive form games, game
trees and strategies, following Ghosh et al. (2014). On the basis of these concepts,
we present our new logical contribution in Sect. 2.2, where we formalize reasoning
strategies and typologies.

2.1.1 Extensive form games
Extensive form games are a natural model for representing finite games in an explicit
manner. In this model, the game is represented as a finite tree where the nodes of the

tree correspond to the game positions and edges correspond to moves of players. For
this logical study, we will focus on game forms, and not on the games themselves,
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which come equipped with players’ payoffs at the leaf nodes of the games. We present
the formal definition below.

Let N denote the set of players; we use i to range over this set. For the time being,
we restrict our attention to two player games, and we take N = {C, P}. We often use
the notation i and 7 to denote the players, where C = P and P = C. Let X be a finite
set of action symbols representing moves of players; we let a, b range over X'. For a
set X and a finite sequence p = x1x2...x,; € X*, let last(p) = x,, denote the last
element in this sequence.

2.1.2 Game trees

LetT = (S, =, so) be atree rooted at sg on the set of vertices S andlet =: (S x X) —
S be a partial function specifying the edges of the tree. The tree T is said to be finite

>
if S is a finite set. Foranode s € S,let s={s' € S | s = s forsome a € X}. A

node s is called a leaf node (or terminal node) if s=0.

An extensive form game treeisapair 7 = (T,’A\) where T = (S, =, sp) is a tree.
The set S denotes the set of game positions with sy being the initial game position. The
edge function = specifies the moves enabled at a game position and the turn function
% : S — N associates each game position with a player. Technically, we need player
labelling only at the non-leaf nodes. However, for the sake of uniform presentation,
we do not distinguish between leaf nodes and non-leaf nodes as far as player labelling
is concerned. An extensive form game tree T = (T, ’):) is said to be finite if T is finite.
Fori € N,let S' = {s | /):(s) = i} and let frontier(T) denote the set of all leaf nodes
of T.

A play in the game T starts by placing a token on sg and proceeds as follows: at
any stage, if the token is at a position s and /):(s) = i, then player i picks an action
which is enabled for her at s, and the token is moved to s’ where s L . Formally a
play in T is simply a path p : soaps; ... in T such that for all j > 0, s;_; a,:_>1 sj. Let
Plays(T) denote the set of all plays in the game tree 7.

2.1.3 Strategies

A strategy for player i is a function 1/ which specifies a move at every game position
of the player, i.e. 4’ : S* — X.Fori € N, we use the notation ./ to denote strategies
of player i and ' to denote strategies of player 7. By abuse of notation, we will drop
the superscripts when the context is clear and follow the convention that y represents
strategies of player i and t represents strategies of player 7. A strategy w can also be
viewed as a subtree of T where for each node belonging to player i, there is a unique
outgoing edge and for nodes belonging to player 7, every enabled move is included.
Formally we define the strategy tree as follows: For i € N and a player i’s strategy
w: St — X, the strategy tree T, = Sy, =u, so,l)\\ﬂ) associated with p is the least
subtree of T satisfying the following property:

- 850 € SM'
— For any non-leaf node s € §,,
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— if A(s) = i then there exists a unique s’ € S, and action a such that s =, s
where j1(s) = a and s = s’.
- if A(s) # i then for all s" such that s = s/, we have s :>u
- }‘M- = l/Su

Let £2/(T) denote the set of all strategies for player i in the extensive form game
tree T. A play p : soaps; .. . is said to be consistent with y if for all j > 0 we have that
sj € St implies u(s;) = a;. A strategy profile (u, ) consists of a pair of strategies,
one for each player. Note that here we are modelling strategies as ‘plans of actions’,
as specified in the game-theoretic literature (Osborne and Rubinstein 1994).

2.1.4 Partial strategies

A partial strategy for player i is a partial function o/ which specifies a move at some
(but not necessarily all) game posmons of the player,i.e.o’ : §' — X.Let D, denote
the domain of the partial function o'. For i € N, we use the notation o' to denote
partial strategies of player i and 7' to denote partial strategies of player 7. When the
context is clear, we refrain from using the superscripts. A partial strategy o can also be
viewed as a subtree of T where for some nodes belonging to player i, there is a unique
outgoing edge and for other nodes belonging to player i as well as nodes belonging
to player 7, every enabled move is included.

A partial strategy can be viewed as a set of total strategies. Given a partial strategy
tree To = (S5, =06, 50, P o) for a partial strategy o for player i i, aset ¢ of trees T of
total strategies can be defined as follows. A tree T = (S, =, so, A) € T(7 if and only if

—
— if s € Sthenforall s’ €s,s” € S implies s’ € S,
— if A(s) = i then there exists a unique s’ € S and action a such that s = s’.

Note that 7, is the set of all total strategy trees for player i that are subtrees of the
partial strategy tree T,, for i. Any total strategy can also be viewed as a partial strategy,
where the corresponding set of total strategies becomes a singleton set.

2.1.5 Syntax for extensive form game trees

Let us now build a syntax for game trees (cf. Ramanujam and Simon 2008; Ghosh
and Ramanujam 2012). We use this syntax to parametrize the belief operators given
below so as to distinguish between belief operators for players at each node of a finite
extensive form game. Let N denote a finite set of players and let X' denote a finite set
of actions. We use i to range over the set N. As earlier, we restrict our attention to
two player games, and we take N = {C, P}. We use the notation i and 7 to denote the
players, where C = P and P = C.Let X be a finite set of action symbols representing
moves of players; we let a, b range over X. Let Nodes be a finite set. The syntax for
specifying finite extensive form game trees is given by:

G(Nodes) ::= (i, x) | Xy, ey (i, x), am, ta,,)

where i € N, x € Nodes, J(finite) C ¥, and t,, € G(Nodes).
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Fig. 2 Extensive form game
tree. The nodes are labelled with

1 To
turns of players and the edges b
with the actions. The syntactic @
representation of this tree can be
given by: h = ((1, xp), a, t1)

+ ((1, xq), b, t2), where x1 2 2 To
1= (2, x1), c1, 2, y1))
+ (2, x1),d1, (2, 2)); 12 c1 dq co do
=((2, x2), 2, (2, y3))
+ (2, x2), d2, (2, 4))

Y1 Y2 3 Yaq

Given h € G(Nodes), we define the tree T}, generated by % inductively as follows
(see Fig. 2 for an example):

— h = (i,x): Ty = (Sh. =h. An. Sx) Where S = {sx}, An(sx) = i.
—h = (G x),a1,tq)+ -+ ({0 x),a, t%): Inductively we have trees 771, ... T
wherefor j : 1 < j <k, T; =(Sj,=j,Aj,5;0)-

Y

Define T, = (S, =>h,’):h, sy) where

o Sp={sx}USp U---USp;
e An(sy) =i andforall j, forall s € STj, Ar(s) = Aj(s);
o == U,z UGraj 57000 =)).

Given h € G(Nodes), let Nodes(h) denote the set of distinct pairs (i, x) that occur in
the expression of 4.

2.2 Strategy specifications

We have used the syntax of Sect. 2.1 in our previous article Ghosh et al. (2014) to
describe empirical reasoning of participants involved in a simpler game experiment
using “Marble Drop with Rational Opponent” (Meijering et al. 2011, 2014). The
main case specifies, for a player, which conditions she tests before making a move.
In what follows, the pre-condition for a move depends on observables that hold at the
current game position, some belief conditions, as well as some simple finite past-time
conditions and some finite look-ahead that each player can perform in terms of the
structure of the game tree. Both the past-time and future conditions may involve some
strategies that were or could be enforced by the players. These pre-conditions are given
by the syntax defined below.

For any countable set X, let BPF (X) (the boolean, past and future combinations of
the members of X) be sets of formulas given by the following syntax:

BPF(X) :=x e X [~y | Y1 V2| @)y | (@),
where a € X', a countable set of actions.

Formulas in BPF(X) can be read as usual in a dynamic logic framework and are
interpreted at game positions. The formula (a*)v (respectively, (a™)v) refers to
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one step in the future (respectively, past). It asserts the existence of an a edge after
(respectively, before) which i holds. Note that future (past) time assertions up to any
bounded depth can be coded by iteration of the corresponding constructs. The ‘time
free’ fragment of BPF(X) is formed by the boolean formulas over X. We denote this
fragment by Bool(X).

For each h € G(Nodes) and (i, x) € Nodes(h), we now add a new operator ]B%;:’x)

to the syntax of BPF(X) to form the set of formulas BPF,(X). The formula ]B%g”‘)w
can be read as “in the game tree h, player i believes at node x that i holds”. One
might feel that it is not elegant that the belief operator is parametrized by the nodes
of the tree. However, our main aim is not to propose a logic for the sake of its nice
properties, but to have a logical language that can be used suitably for constructing
computational cognitive models corresponding to participants’ strategic reasoning.

2.2.1 Syntax

Let P! = {pj, p\. ...} be acountable set of observables fori € N and P = | J;y P'.
To this set of observables we add two kinds of propositional variables (u; = g;) to
denote ‘player i’s utility (or payoff) is ¢;” and (r < g) to denote that ‘the rational
number 7 is less than or equal to the rational number ¢’.! The syntax of strategy
specifications is given by:

Strat’ (P) == [+ al' | n1 4+ n2 | n1 - n2,

where i/ € BPF;,(P"). For a detailed explanation see Ghosh et al. (2014). The basic
idea is to use the above constructs to specify properties of strategies as well as to
combine them to describe a play of the game. For instance, the interpretation of a
player i’s specification [p + a]’ where p € P!, is to choose move a at every game
position belonging to player i where p holds. At positions where p does not hold, the
strategy is allowed to choose any enabled move. The strategy specification n; + 12
says that the strategy of player i conforms to the specification 11 or 1;. The construct
n1 - 2 says that the strategy conforms to specifications 11 and ;.

2.2.2 Semantics

We consider perfect information games with belief structures as models. The idea is
very similar to that of temporal belief revision frames presented in Bonanno (2007). Let

=T, {—7}L,V)withT = (S, =, so,k U), where (S, =, so,k) is an extensive
form game tree, U : frontier(T) x N — Q is a utility function. Here, frontier(T)
denotes the set of leaf nodes of the tree 7. For each s, € S with /):(sx) =i, we
have a binary relation —7 over § (cf. the connection between & and T}, presented
above). Finally, V : § — 27 is a valuation function. The truth value of a formula
Y € BPF(P) at the state s, denoted M, s = ¥, is defined as follows:

1 As in Ghosh et al. (2014) and inspired by Bonanno (2007).
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- M,s E=piff p e V(s).

~ M,s = —yiff M, s .

- M,s =y Vvypifft M,s =y or M,s = .

— M, s = (at)y iff there exists an s’ such that s = 5" and M, s" = .

— M, s = (a~ ) iff there exists an s” such that s’ = s and M, s’ = .

- M,s = B;li’x)lﬁ iff the underlying game tree of T}, is the same as 7}, and for all
s" such thats —7 5", M,s" = .

The truth definitions for the new propositions are as follows:

- M,s = (u; =q;)ifft(s,i) = gq;.
- M,s = (r <gq)iff r < g, where r, g are rational numbers.

Strategy specifications are interpreted on strategy trees of 7. We also assume the
presence of two special propositions turn; and turn; that specify which player’s turn
it is to move, i.e. the valuation function satisfies the property

_ foralli € N, turn; € V(s) iff A(s) = i.

One more special proposition root is assumed to indicate the root of the game tree,
that is the starting node of the game. The valuation function satisfies the property

— root € V(s) iff s = s9.

We recall that a strategy for player i is a function ! which specifies a move at every
game position of the player, i.e. u’ : S — X. A strategy i can also be viewed as a
subtree of T where for each node belonging to the opponent player i, there is a unique
outgoing edge and for nodes belonging to player 7, every enabled move is included. A
partial strategy for player i is a partial function o/ which specifies a move at some
(but not necessarily all) game positions of the player, i.e. o/ : §' — X. A partial
strategy can be viewed as a set of total strategies of the player (Ghosh et al. 2014).

The semantics of the strategy specifications are given as follows. Given a model
M and a partial strategy specification n € Strar' (P'), we define a semantic function
[-1a : Strar' (P") — 22" (Tm)_ where each partial strategy specification is associated
with a set of total strategy trees and £2°(T') denotes the set of all player i strategies in
the game tree 7.

For any n € Strat' (P'), the semantic function [5] is defined inductively:

— [[¥ — al ]y = 1T € 22 Tm) satisfying: u € T iff u satisfies the condition that,
if s € §,, is a player i node then M, s |= v implies out, (s) = a.

= [m +m2lm = [mlm Y [n2lm

= v - melae = Imlae O [n2lm

Above, out; (s) is the unique outgoing edge in p at 5. Recall that s is a player i node
and therefore by definition of a strategy for player i, there is a unique outgoing edge
ats.

Before describing specific strategies found in the empirical study, we would like
to focus on the new operator of belief, IB%;;’X) proposed above. Note that this oper-
ator is considered for each node in each game. The idea is that the same player
might have different beliefs at different nodes of the game. We had to introduce
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the syntax of the extensive form game trees to make this definition sound, other-
wise we would have had to restrict our discussion to single game trees. The semantics
given to the belief operator is entangled in both the syntax and semantics, which
might create problems in finding an appropriate axiom system. A possible solution
would be to introduce some generic classes of games similar to the idea of generic
game boards (Benthem et al. 2008), using the notion of enabled game trees (Ghosh
and Ramanujam 2012). This is left for future work, as well as a comparison of the
expressiveness of the current language with those of existing logics of belief and
strategies.

3 Experimental study: do people use forward induction?

We now move on to the empirical part of the work. The experiment on which we pre-
viously reported in Ghosh et al. (2015b) was designed to tackle the question whether
people are inclined to use forward induction (FI/EFR) reasoning when they play
dynamic perfect information games. The main interest was to examine participants’
behavior following a deviation from backward induction (BI) behavior by their oppo-
nent, the computer, right at the beginning of the game. The computer was programmed
in such a way that in each game it played according to a strategy that is the best response
with respect to some strategy of the human participant, and sometimes this meant a
deviation from a BI strategy. When the participant was about to play next, the ques-
tion was whether they would take the computer’s previous moves under consideration
in assessing its future move and play accordingly, thereby applying extensive form
rationalizability, or they would just play as if they were playing a new game starting at
their present node without considering the previous move(s), by backward induction
reasoning; for details, see Ghosh et al. (2015b).

As a reminder, the games that were used in the experiment of Ghosh et al. (2015b)
are given in Figs. 3 and 4. In these two-player games, the players play alternately,
therefore they are called turn-taking (or dynamic) games. Let C denote the computer
and P the participant. In the first four games (Fig. 3), the computer plays first, followed
by the participant. The players control two decision nodes each. In the last two games
(Fig. 4), which are truncated versions of two of the games of Fig. 3, the participant
moves first.

To explain the difference between BI and EFR behavior consider game 1, one of the
experimental games (cf. Fig. 3). Here, the unique backward induction (BI) strategies
for player C and player P are a; e and c; g, respectively, which indicate that the game
will end at the first node, going down.

In contrast, for forward induction reasoning, the question is how the participant
would play if her first decision node was reached; in game 1, reaching the first P-node
would already indicate that the opponent C had not opted for its rational decision,
namely to go down immediately. Would the participant’s (P’s) decision depend on
her opponent’s previous choice? Here, she would have to choose between continu-
ing the game (by moving to the right, action d) and opting out (by moving down,
action c).
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c b P d Cc f P h 1) c b P d c f P 0
a c e 9 a c e 9
(=1) (1,2) (2,0) (0,2) (2,1) x,2) (z,0) (0,3)
Game 1 qame 2
b a
¢ L c f ® n (4.4) c b P40 f P (4,4)
a ¢ e 9 a ¢ e 9
(1) (0,2) (2,2) (1,4) (2,1) (0,2) (2.2) (1,4)
Game 2 Game 4

Fig.3 Collection of the main games used in the experiment presented as extensive form game trees. Vertices
represent decision points and are labeled by the player whose turn it is, where C stands for the computer and
P for the participant. Edges are labeled by the names of actions; thus a stands for the computer going down,
thereby ending the game, while b stands for the computer going to the right and continuing the game. The
ordered pairs at the leaves represent pay-offs for the computer (C) and the participant (P), respectively; for
example, the (3, 1) at the leftmost leaf of game 1 means that if the game ends there, the computer gains 3
marbles, while the participant gains 1 marble. In games 14, the computer plays first. Because of the typical
tree structure of these games, they are often called “centipede games” in the literature

P d C P h
f (1) Pacf® “4.4)
¢ € 9 c e 9
@2 o) (©3) ©3) (@2 (@4
qame 1 Game 3’

Fig. 4 Truncated versions of Game 1 and Game 3. The ordered pairs at the leaves represent pay-offs for
C and P, respectively. The participant (P) plays first

EFR would proceed as follows, starting from the first decision node of P. Among
the two strategies of player C that are compatible with this event, namely b; e and
b; f, only the latter is rational for player C. This is because of the fact that b; e is
dominated by a; e, while b; f is optimal for player C if it believes that player P will
play d; h with a high enough probability. Attributing to player C the strategy b; f
is thus player P’s best way to rationalize player C’s choice of b, and in reply, d; g
is player P’s best response to b; f. Thus, the unique Extensive-Form Rationalizable
(EFR, Pearce 1984) strategy (an FI strategy) of player P is d; g, which is distinct
from her BI strategy c; g. For a detailed discussion on BI and EFR strategies in games
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You decide here.

You decide here.

Fig.5 Graphical interface for the participants. The computer controls the blue trapdoors and acquires blue
marbles (represented as dark grey in a black and white print) as pay-offs, while the participant controls the
orange trapdoors and acquires orange marbles (light grey in a black and white print) as pay-offs. (Color
figure online)

2,3,4, 1,3, see Ghosh et al. (2015b). As a reminder, we repeat the table of BI and
EFR strategies here, with permission.

3.1 Materials, methods and aggregated results

The experiment of Ghosh et al. (2015b) was conducted at the Institute of Artificial
Intelligence at the University of Groningen, the Netherlands. A group of 50 Bach-
elor’s and Master’s students from different disciplines took part. They had little or
no knowledge of game theory, so as to ensure that neither backward induction nor
forward induction was already known to them.? The participants played finite perfect-
information games that were game-theoretically equivalent to the games depicted in
Figs. 3 and 4. However, the presentation was made such that participants were able
to understand the games quickly, see an example of the graphical interface on the
computer screen (cf. Fig. 5).

2 The candidate participants were asked about their educational details. Two students who had followed a
course on game theory were excluded.
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3.1.1 Materials

In each game, a marble was about to drop. Both the participant and the computer
determined its path by controlling the trapdoors: The participant controlled the orange
trapdoors, and the computer the blue ones. The participant’s goal was that the marble
should drop into the bin with as many orange marbles as possible. The computer’s goal
was that the marble should drop into the bin with as many blue marbles as possible.
In Fig. 5, a practice game that did not correspond to any of the six games in Figs. 3
and 4, if the computer is rational and uses backward induction, it opens the top right
blue trapdoor, leading to 3 blue marbles (its rational choice for this game).

In the experiment, however, the computer often makes an apparently irrational first
choice, operationalized as follows. For each game item, the computer opponent had
been programmed to play according to plans that were best responses to some plan of
the participant. This was told to the participants in advance. We dub this game “Marble
Drop with Surprising Opponent”.

3.1.2 Procedure

Each participant first played 14 practice games so that the participants were familiar
with the games before the start of the experiment proper. In the actual experiment, each
participant played 48 games divided into 8 rounds, each comprised of the 6 different
game structures corresponding to Games 1, 2, 3, 4, 1’ and 3’ that were described
above (see Figs. 3, 4). Different graphical representations of the same game were
used in different rounds so as to prevent recognition. We were especially interested in
the decision at the participant’s first decision node if that node was reached: did the
participant end the game by choosing ¢ or continue by choosing d?

At some points during the experimental phase, the participants were asked a
multiple-choice question: “When you made your initial choice, what did you think
the computer was about to do next?” (possibilities: most likely e, most likely f, or
neither).

At the end of the experiment, each participant was asked the following question:
“When you made your choices in these games, what did you think about the ways the
computer would move when it was about to play next?”” The participants were asked to
describe in their own words which plan they thought was followed by the computer on
its next move after the participant’s initial choice. We used these answers to classify
various strategic reasoning processes applied by the participants while playing the
experimental games. Participants earned 1015 euros for participation, depending on
points earned.

3.1.3 The forward induction hypothesis

In Ghosh et al. (2015b), to analyse whether participants P played FI strategies in
the games described in Figs. 3 and 4, we formulated the following forward induction
hypothesis (cf. Table 1) concerning the participant’s choice in his first decision node
(if reached in games 1, 2, 3, 4, and in all rounds of games 1’ and 3'):
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Table 1 BI and EFR (FI) strategies for the 6 experimental games in Figs. 3 and 4

Games Strategies
BI strategy EFR strategy
Game 1 C.ae C.ase
P:c;g P:d; g
Game 2 C.ase C:ae
Pic; g P:ic; g
Game 3 C:a;e,b;e,a; f,b; f Ciase,a; f,b; f
P:c;g,d;g,¢c;h,d; h P:d;g.d;h
Game 4 C:a;e,b;e,a; f,b; f C:ase,b;e,a; f,b; f
Pic;g,d;g,c;h,d; h P:c;g,d;g,c;h,d; h
Game 1’ C:e C:e
P:c; g P:c; g
Game 3/ C:e, f Cie, f
P:ic;g,di g, c;h,d; h P:c;g,d;g.c;h,d;h

Notice that for Games 1 and 2, having no pay-off ties, the general result implies that there is just one unique
EFR outcome, coinciding with the BI outcome, namely C chooses a, exiting the game immediately. Even if
there are relevant pay-off ties, the EFR outcomes constitute a subset of the BI outcomes (Chen and Micali
2011, 2013; Perea 2012), but the inclusion may possibly be strict. This is illustrated by Game 3, which
was first described by Chen and Micali (2013); here, one possible BI outcome is given by C choosing b
followed by P choosing ¢, which cannot be achieved by EFR

Action d will be played more often in game 1 than in game 2 or 1/, and more
often in game 3 than in game 4 or 3.

Note that game 2 is similar to game 1 except for the pay-offs for C after the moves a
and e, which are interchanged, and game 4 is similar to game 3 except for the pay-offs
for C after the moves a and e, which are interchanged. Games 1" and 3’ are truncated
versions of games 1 and 3, respectively. In games 1 and 3, d is the only EFR move; in
games 1’ and 2, d is neither a BI nor an EFR move; and in games 3’ and 4, both ¢ and
d are EFR moves.

3.1.4 General results on strategic reasoning in the game

It turned out that in the aggregate, participants were indeed more likely to make
decisions in accordance with their best-rationalization EFR conjecture, i.e., consistent
with FI reasoning (Ghosh et al. 2015b). However, there exist alternative explanations
for the choices of most participants, and such alternative explanations also emerge
from several of the participants’ free-text verbal descriptions of their considerations
as solicited from them at the end of the experiment. One likely alternative explanation
had to do with the extent of risk aversion that some participants at their first decision
nodes (which was reached because the computer played b, instead of the outside option
a) attributed to the computer in the remainder of the game, rather than reasoning about
the sunk outside option that the computer had already foregone at the beginning of the
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game. For a detailed study and a discussion of some alternative explanations of the
results, see Ghosh et al. (2015b).

In the next subsections, we explore several ways of segregating the participants into
groups to see whether and how they can be divided into reasonable “player types”.
We started with the most obvious ways to divide the participants: We segregated the
participants in terms of gender and discipline (topic of study) and went on to test the
Forward induction hypothesis over the different groups formed by segregation.? The
statistical analyses based on gender and discipline suggest that the results mentioned
above about participants’ behavior at their first decision node are robust. We only found
minor variations corresponding to certain groups (see Ghosh et al. 2015a for a report).
Because the results on the hypothesis turn out to be rather robust, we considered
more subtle typologies that emerge out of the experimental findings, in two ways: (i)
by latent class analysis of the participants based on their choices, ¢ or d, at the first
decision node in the game items corresponding to games 1, 2, 3 and 4 of Fig. 3; and
(i) by theory of mind analysis, as exhibited by the participants in their free-text verbal
descriptions of their considerations about the computer’s moves.

3.2 Latent class analysis

Latent class analysis (LCA) is a statistical method that can be applied to classify
binary, discrete or continuous data in a manner that does not assign subjects to classes
absolutely, but with a certain probability of membership for each class (Goodman
1974). Latent class analysis can be used to explore how participants can best be
distinguished according to reasoning strategies, in cases where no fixed set of reasoning
strategies has been defined in advance. Raijmakers et al. (2014) have profitably applied
latent class analysis to analyze children’s reasoning strategies in turn-taking games.

As mentioned above, for the current experiment, the participants were categorized
into certain classes based on their choices, ¢ or d, at the first decision node in the game
items corresponding to games 1, 2, 3 and 4 of Fig. 3. Note that each participant played
8 rounds of each game, in 2 rounds of which the computer, playing first, immediately
ended the game playing a. So, the participant only had to reason in 6 rounds of each
of the games 1, 2, 3 and 4.

The latent class analysis was performed using the statistical software R, with 25
estimated parameters and 25 residual degrees of freedom. Since each participant played
in 6 rounds of 4 games, we had 24 data points in total for each participant. So even
if we had wanted to divide the participants into two classes, we did not have enough
parameters to work with, as the total number of participants was 50. Consequently, we
divided the available data points into two sets of 12 and subsequently performed the
analysis. The data for 50 participants were separated into two sets: the set containing
the first three rounds for each game in which they had to make a decision at the first
decision point and the set containing the last three rounds for each game in which
they had to make a decision at the first decision point. The participants were classified
into two groups based on their behavior in each set of three rounds. Figure 6 shows

3 Because of little variance among participants, we did not segregate by age.
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Fig. 6 Graphical representations of latent class analysis for the set containing the first three rounds for
each game (left) and the set containing the last three rounds for each game (right). The horizontal axes
correspond to the different instantiations of the games at the rounds of the game, where gi j stands for the
jth round of game i of Figs. 3 and 4, while the vertical axes correspond to the probability of playing ¢

the graphs depicting the fraction of their choices of ¢ in each of the relevant rounds
in each of the games: on the left for rounds 1-4 and on the right for rounds 5-8 (g;;
denotes behavior at the jth round of the ith game).

The different predicted groups are denoted by different colors in Fig. 6. Group 1
behaved in an expected fashion (akin to EFR behavior) in both cases, compared to
the more random behavior of the other group. Considering group 1 for both sets of
rounds, 24 common participants were noted down, who were predicted to behave in
an expected fashion in all the rounds. The available data on the behavior of these 24
participants at their first decision node in the six games were considered and hypothesis
testing was done for these 24 participants exclusively,* for the games 1, 2, 3 and 4 of
Fig. 3. The result for the forward induction hypothesis was as follows:

— d was played more often in game 3 than in game 4 and more often in game 1 than
in game 2.
For the individual games, the tests revealed the following behaviour. The null hypoth-
esis was that ¢ and d were chosen equally often at the first decision node, whereas the
alternatives were chosen accordingly:

— Game I ¢ was chosen more often than d.
— Game 2 ¢ was chosen more often than d.
— Game 3 d was chosen more often than c.
Game 4 d was chosen more often than c.

Further groups that resulted from the latent class analysis are as follows:

Group I These participants played in an expected fashion in both the initial three
rounds and the later three rounds; there were 24 such players.

Group 2 These participants did not play in an expected fashion in the initial three
rounds but played in an expected fashion in the later three rounds; there were 9
such players.

4 The results are based on one sample and two sample proportion tests.
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Group 3 These participants played in an expected fashion in the initial three rounds
but did not play in an expected fashion in the later three rounds; there were 7 such
players.

Group 4 These participants did not play in an expected fashion in either the earlier
or the later set of three rounds; there were 10 such players.

3.2.1 Statistical typology

On the basis of the above analysis, we propose the following statistically developed
typology of players:

Expected the 24 players who belong to group 1 above;
Learner the 9 players from group 2 above;
Random the 17 players from groups 3 and 4 combined.

Interestingly, this classification corresponds neatly with the amount of money that
participants gained in the game by earning points corresponding to the marbles gained
in each game (€10 fixed reward plus €0.04 for each marble achieved). While overall
the total rewards for the 50 participants ranged between €14.10 and €14.85, the
Expected players earned an average of €14.64, which is quite a bit more than the
Learners’ average earnings of €14.46, which in turn surpasses the Random players’
average earnings of €14.42.

For further statistical validations of the proposed typology, we tested a number
of hypotheses using standard statistical methods. One such hypothesis is to check
whether the answering time is more in case of expected players than random players.
The intuition behind this hypothesis is that a person who is playing in an expected
fashion or learning to do so would pay greater attention in choosing a correct option
than a person who is playing less sensibly (randomly), cf. Rubinstein (2013, 2016).
This hypothesis was tested twice using two sample t-test for difference of means,
firstly Expected versus Random and secondly Expected+Learner versus Random. In
both cases, our null hypothesis of equality of means was rejected at 5% level of
significance (p-values 0.02 and 0.04, respectively). Hence, we may regard that the
Expected and Learner players took more time in answering than the players termed as
Random. As a conclusion of the above analysis, we can regard that the three statistically
developed types proposed above are robust at 5% level of significance.

3.3 Theory of mind study
At the completion of the game-theoretic experiment, each participant was asked to
answer the following final question:

When you made your choices in these games, what did you think about the ways
the computer would move when it was about to play next?

The participant needed to describe in his or her own words, the plan he or she thought
was followed by the computer on its next move after the participant?s initial choice.
Based on their answer, 48 players were classified into three types according to the
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order of theory of mind exhibited in their answer to the final question.’> These were
the types:

Zero-order players, who did not mention mental states in their answer; there were
5 such players.

First-order players, who presented first-order theory of mind in their answer; there
were 27 such players;

Second-order players, who presented second-order theory of mind in their answer;
there were 16 such players.

This classification, as mentioned above, was done by manual scrutiny of each answer.
If an answer referred to behavior only but not to mental states, we classified it as zero-
order. If mental state verbs such as think, decide, expect, plan, know, believe, intend,
and take a risk were attributed to the computer, we classified the answer as (at least)
level 1. If similar mental state verbs about the participant were embedded into mental
state clauses referring to the computer, as in “He thinks that I plan to choose to go
left”, we classified the answer as second-order. We did not find any deeper embeddings,
corresponding to third- or higher-order answers. The set of all participants’ answers
will be made available at http://www.ai.rug.nl/SocialCognition/experiments/. Typical
answers from each group are as follows:

Zero-order answers “It would repeat its former choice in the same situation.”
First-order answers “I thought the computer took the option with the highest
expected value. So if on one side you had a 4 blue + 1 blue marble and on the
other side 2 blue marbles he would take the option 4 + 1 = 2.5.”

Second-order answers “...1 thought the computer anticipated that I (his opponent)
would go for the bin with the most orange marbles in his decision to open doors.
This could lead to him getting less marbles than ‘expected’ because I would choose
a safe option (3 marbles) over a chance between 4 marbles or 1 (depending on the
computer’s doors).”

Similar to the case of latent class analysis, the classification by orders of theory of
mind also corresponds to the average rewards that participants from each group gained
in the game by earning points corresponding to the marbles gained in each game. The
Second-order ToM participants earned an average of €14.58, which is more than the
First-order ToM participants’ average earnings of €14.51, which in turn surpasses the
Zero-order participants’ average earnings of €14.46.

For statistical validation of the theory of mind classification into zero-order, first-
order, and second-order participants, we set up different hypotheses. Intuitively, one
can expect that the players adopting second-order theory of mind would take maximum
time to make a decision at the first decision node in comparison to players adopting
first-order theory of mind and that people adopting zero-order theory of mind would
take the least time among all three classes. This fact was validated statistically by
performing difference of means test on the response time data of the first decision node
for the three classes. We tested the hypotheses at 5% level of significance. Combining
the results, we found that s > wf > uz for first decision time. Here, us stands

5 The two participants who answered “I don’t know” have been excluded from classification.
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for the mean first decision time of second-order players, i f and pz denotes the first
decision times for the first-order and zero-order players, respectively. Reviewing the
results obtained, we can conclude that the three types of participants based on theory
of mind are statistically valid and robust at 5% level of significance.

3.4 Comparing typologies: latent class analysis and theory of mind

To get a sense of whether and how the two typologies which both have three classes
that intuitively correspond to growing levels of rationality correspond to each other,
we have started from the LCA classes and counted how many participants were in each
of the 9 possible intersections according to the theory of mind levels of their answers:

Random players (17 players)
No answer: 1 participant;
Zero-order players: 2 participants;
First-order players: 7 participants;
Second-order players: 7 participants.
Learners (9 players)
Zero-order players: 1 participant;
First-order players: 7 participant;
Second-order players: 1 participant.
Expected players (24 players)
No answer: 1 participant;
Zero-order players: 2 participants;
First-order players: 13 participants;
Second-order players: 8 participants.

Contrary to intuitive expectations, the levels do not match exactly. There is a clear
match at the intermediate levels in the sense that if a player is a Learner according
to LCA, than he/she has a much higher chance to give a first-order answer than in
the general population (7 out of 9 compared to 27 out of 48), and therefore much
lower chances to give a zero-order answer and to give a second-order answer. It seems
that these 7 Learners are doing less than perfect reasoning at first, but slowly come
to understand the game in a better way, even with their First-order theory of mind
reasoning.

Surprisingly, Second-order theory of mind players are divided almost equally over
the Expected players (8) and the Random players (7). It appears that a slight majority
of the Second-order reasoners understand the game properly and hence play in the
Expected way. When looking more closely at the answers of the Second-order players
who are classified as Expected players, four of the eight mention aversion fo risk (that
they are, that the opponent is, or that the opponent thinks they are risk-averse) and three
of them mention the opponent making surprising choices. Among the Second-order
Random players, in contrast, the aspect of risk-aversion is only mentioned by one
player and the aspect of surprise does not occur at all; instead, two of these Second-
order Random players mention risk-seeking attitudes of themselves or the opponent,
while three others mention the (non-)competitive or trusting nature of the opponent.
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4 Describing strategies and types of reasoning

We are now ready to describe the reasoning strategies and the reasoning types discussed
in Sect. 3 with the syntax proposed in Sect. 2.

4.1 Describing specific strategies in the experimental games

Let us now express some actual reasoning processes that participants displayed during
the experiment. Some participants described how they reasoned in their answers to the
final question. Example 1 of such reasoning: “If the game reaches my first decision
node and if the payoffs are such that I believe that the computer would not play e if
its second decision node is reached, then I play d at my current decision node”. This
kind of strategic reasoning can be expressed using the following formal notions.

Let us assume that actions are part of the observables, thatis, ¥ € P. The semantics
for the actions can be defined appropriately. Let n1, ..., n4 denote the four decision
nodes of Game 1 of Fig. 3, with C playing at nj and n3, and P playing at the remaining
two nodes ny and n4. We have four belief operators for this game, namely two per
player. We abbreviate some formulas that describe the payoff structure of the game:

o = (d)(f)(h)((uc = pc) A (up = pp))

(from the current node, a d move followed by an f move followed by an & move
lead to the payoff (pc, pp))

B = (d)(f){g)((uc =qc) A (up = qp))

(from the current node, a d move followed by an f move followed by a g move
lead to the payoff (gc, gp))

y == {d){e)((uc =rc) A(up =rp))

(from the current node, a d move followed by an e move lead to the payoff (rc, rp))
§ :=(c)((uc = sc) N (up =sp))

(from the current node, a ¢ move leads to the payoff (sc, sp))

x = (b "Wa)((uc =tc) A (up =1p))

(the current node can be accessed from another node by a » move from where an
a move leads to the payoff (¢c, tp))

Now we can define the conjunction of these five descriptions:
Q=0 ABAYASAY
Let ¢; denote the conjunction of all the order relations of the rational payoffs for
playeri (€ {P, C}) given in Game 1 of Fig. 3.
A strategy specification describing the strategic reasoning of Example 1 above at
the node n» is:

np (@ AYp Ae A (b7 )root ABL (d)—e A BT (d)(f)g) > d1”

In words: If the payoffs of players at the respective nodes are given by ¢ and ¥ p and
Y are given accordingly, then if player P is at n and believes at that node that after
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her move d, e will not be played by C, and believes that after her d move and player
C’s f move she will play g, then P will play d at the current node.
Backward induction reasoning at the same node n, can be formulated as follows:

np (9 Ay A A (b7 )root ABL T (dye ABITT (d)(f)g) > 1

In words: If the payoffs of players at the respective nodes are given by ¢ and if {p
and ¥¢ are given accordingly, then if player P is at np and believes at that node that
after her move d, e will be played by C, and believes that after her d move and player
C’s f move, she will play g, then P will play c at the current node.

For a comparison to the experiment described in Sect. 3, we should add here that
for games 1 and 2, about 84% of the players showed similar strategic behavior to what
is depicted by the former strategy formula 17}, corresponding to game 1, whereas for
games 3 and 4, even 97% of the players showed such behavior.

The examples above show how strategic reasoning of participants can be described
by a logical formula, which could then be converted to appropriate reasoning rules to
construct computational cognitive models (see Sect. 5). Note that our representations
have become quite succinct using the newly added belief operator, compared to the
representations in Ghosh et al. (2014), because expressions for response strategies
are not needed anymore. Let us look at an example to have an idea of the relative
succinctness of the extended language.

To model players’ responses in Ghosh et al. (2014), we introduced the formula
77¢ in the syntax of BPF (P"). The intuitive reading of the formula 7?¢ is “player 7 is
playing according to a partial strategy conforming to the specification ¢ at the current
stage of the game”, and the semantics is given by:

e M,s =1 iff 3T such that T € [¢]p and s € T.

A strategy specification for player P describing her backward reasoning giving the
rational choice corresponding to the game tree 1’ given in Fig. 4 is:

n: [(C?[(P?[ga0 > g]lD A gpl) > e]C A gpz) — c]P, where:
— @V a ABAW)(f)turnp A (1 <3) Ay A (d)turne A (0 < 2) AToot A turnp A
A (0=<2)
—gliaAB AW (fiturnp A (1 <3) Ay A ({d)turne A (0 < 2)
—@?iaAB A (f)turnp A (1 <3)
In words, n says:

If the utilities and the turns of players at the respective nodes are as in Game 1’
(cf. Fig. 4), then player P would play c at the root node, as player C would have
played e at his node (had it been reached), and player P would have played g at
her node (had it been reached).

The same strategy specification can be expressed in the current specification language
with beliefs as follows:

0 [@ABAY ASA(1<3) A (0<2) A root A IB%;'I;P(d)e A BZ;;PBgi;Cmg) — c]”.
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Notice that this representation is much more succinct and more easily understandable
than the corresponding representation n from Ghosh et al. (2014). We conjecture that
in general, the new language is more succinct than the one proposed in Ghosh et al.
(2014) in describing strategic reasoning, but we leave this as an intuitive conjecture
for now. A detailed formal study of the current extended framework regarding its
expressive power and axiomatics is left for future work.

4.2 Describing specific types in the experimental games

In this subsection, we show how to formalize several types of strategic reasoning, both
according to the two typologies used in Sects. 3.2 and 3.3 and typologies used in the
literature.

4.2.1 Theory of mind types

We now show how to express the reasoning of players who apply different orders
of theory of mind, with the syntax proposed in Sect. 2.2. Participants who are not
familiar with playing turn-taking games such as Marble Drop, may start playing the
games according to some simple strategies (cf. Meijering et al. 2014). An example of
such a simple strategy is to compare the participant’s payoff in case of going down
immediately and stopping the game with the maximum of all her possible future
payoffs in case the game continues. Such a participant stops if the payoff of going
down is larger and continues otherwise. Note that such a participant does not attribute
mental states such as beliefs or plans to the other agent or herself but merely acts
upon some facts, and hence can be considered to be a zero-order theory of mind
player.

Next, one can consider a more complex strategy to play one of our experimental
games: A participant considers what her opponent might play in the next node in case
itis reached and plays according to what she thinks about her opponent’s mental states,
for example, she believes that the opponent is playing according to the simple zero-
order strategy described above. Participants who reason in this way can be considered
to be first-order theory of mind players.

Finally, at a next level of complexity, a participant could consider at her first deci-
sion node n, that her opponent would believe at the next decision node n3 that the
participant’s strategy at the final decision node n4 would be the simple zero strategy
described above. Then the participant’s considerations at n, would be an example of
applying a second-order theory of mind strategy.

Note that the way the participants answered the final question (cf. Sect. 3.3) in the
experiment indicated what kind of reasoners they were with respect to theory of mind.
We now express theory of mind types of our Marble Drop experiment in the language
proposed in Sect. 2.2. A similar syntax for expressing player types has been proposed
in Ramanujam (2014).

We use the abbreviated formulas «, 8, y, 8, x that describe the payoff structure of
the game as given above in Sect. 4.1.
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A zero-order theory of mind participant can be described by the following specifi-
cation:

rg (@ AYrp A (b7 )root) — c)f

In words: If the payoffs of players at the respective nodes are given by ¢ and ¥ p is
given accordingly, then player P will play c at the current node.

A first-order theory of mind participant can be described by the following specifi-
cation:

tp 9 A At A (b7 )root ABL T (d)—e) > d1”

In words: If the payoffs of players at the respective nodes are given by ¢ and ¥ p and
Y are given accordingly, then if player P is at ny, believes at that node that after her
move d, e will not be played by C, then P will play c at the current node.

Finally, a second-order theory of mind player can be described by:

3 [(p AYp A e A (b7)root A IBSZ%’P(d)—-e A ]BZZI’P]B%ETC(f)h) — d]?
In words: If the payoffs of players at the respective nodes are given by ¢ and ¥ p and
Y are given accordingly, then if player P is at ny, believes at that node that after her
move d, e will not be played by C, and believes that player C believes that after the
f move player P will play &, then P will play d at the current node.

Note the subtle differences in the belief expressions between these three theory of
mind formulas and the formulas provided in the previous section: The formula © },
only considers P’s belief about C’s move at the next node and nothing beyond that
(describing a first-order theory of mind participant), whereas the formulas n}, and n%,
do consider beliefs about all possible future plays, the way a game theorist would go
about strategic reasoning.

4.2.2 Expected, learner and random types

We now provide a brief discussion regarding how the type categories found by the
latent class analysis in Sect. 3.2 can be described in a similar way using appropriate
temporal representations of the specification formulas. To this end, we introduce a
finite set of time-points 7ime, say, and parametrize the specification formulas n with
respect to those time-points ¢ € Time, denoted by 7,. The semantic function [, ] is
given by:

[n:]a = [[U]]M,,

where M; = (T, {—>;ﬁt}, Vi) is almost the same as M = (T, {—7}, V) with
T; = T, and V; = V, the only possible change happening in the set of relations
{—>§f .- So, for any given set of time-points Time and a model M, we first define the
M;’s fort € Time and then we can interprete the strategy specifications corresponding
to those time-points.
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As a simple exemplification consider the set of time-points 7ime = {t1, t}, Game
1 (cf. Fig. 3) where the expected move at the first decision node for player P is d, then
the expected, learner and random types can be differentiated by the following pairs of
formulas, respectively:

cE (@ Ap A e A (b7 )Toot) > dIE, (@ AWe A Y A (b7 )root) > d1F)

In words: If the payoffs of players at the respective nodes are given by ¢ and ¥ p and
Y are given accordingly, then if player P is at n,, she will play d at that node at both
time points #; and 5.

¢ (e AWp Are A (b7 )root) > clf, [(9 Arp A e A (b7 )root) — dIf)

In words: If the payoffs of players at the respective nodes are given by ¢ and ¥ p and
Y are given accordingly, then if player P is at np, she will play ¢ at that node at
time-point #1, and d at time-point ;.

tF (o AP Abe A (b7 )root) = dIf [(@ Avp AWc A (b7 )root) — c]l)

In words: If the payoffs of players at the respective nodes are given by ¢ and ¥ p and
Y are given accordingly, then if player P is at ny, she will play d at that node at
time-point #1, and ¢ at time-point #,.

Note that for separating these classes of participants we had to take the individual
rounds of the games under consideration, and hence we had tuples of specification
formulas indicating the different time-points where the strategies are played. This
formalization suffices to list out the possibilities of typologies which could be used as
a controlling factor in the build-up of computational cognitive models.

In the experiment described in Sect. 3, the participants had to make their decisions
at 6 rounds of each of the games 1, 2, 3 and 4, and hence to model the strategies
we need to consider the set Time with 6 different time points, and we could describe
Expected players as those playing d in the last 5 time-points, Learners as those playing
d in the last 3 time-points, and the others as Random players.

4.2.3 Formalizing other player types from the literature

We end this section showcasing some other simple player types which describe play-
ers with different kinds of restrained reasoning capabilities. Note that such limited
reasoning is ubiquitous in our daily life (see e.g. Hedden and Zhang 2002; Meijering
et al. 2014). A myopic (or near-sighted) player can be considered as one who only
considers her current node and the next one to compare her payoffs and act rationally
depending on those payoffs without being able to look further into the game (cf. Hed-
den and Zhang 2002). Such a player-strategy can be described for games 1’ and 3" as
follows:
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kb [(8y Ay A0 <2) Aroot) > c]”

Ky (83 Ayy A (2 < 3) Aroot) > c]”

One can also consider players who are only capable or interested to look at their own
payoffs and do not consider the opponent’s payoffs at all and move wherever they get
more payoff (cf. Raijmakers et al. 2014). Their strategies in games 1’ and 3’ can be
described as follows:

X}; oy ABr ASUAYEAO <2)A Q2 <3)A (1 <2) Aroot) — d1”

X13:/ sy A By Ady Ayy A2 <3) A(3<4) Aroot) — d]lD

Note that in the above set of formulas, we only consider the relevant pay-offs, e.g. §
and y in case of the ¥ formulas, and «, 8, §, and y for the x formulas. In fact, one could
ignore the payoffs for C for the x formulas. We will come back to these strategies in
the next section when we validate the model predictions with the experimental results.

5 Modelling strategic reasoning processes in a cognitive architecture

Our aim in this section is to sketch a way how some of the strategy descriptions
that we formulated in the logical strategic language in Sect. 4 can be translated in a
straightforward way into computational cognitive models in the state-of-the art cogni-
tive architecture PRIM, which is based on ACT-R. The upshot of coupling our strategy
logic to PRIM is that PRIM, through its association with ACT-R, implements very
precise, experimentally validated theories about human memory and cognitive bounds
on reasoning processes. These theories have been built over the decades on the basis of
hundreds of tasks modeled in ACT-R and compared to experimental data: from learn-
ing high school algebra (Anderson 2007) and playing the game of SET (Nyamsuren
and Taatgen 2013) to driving cars (Gunzelmann et al. 2011). Thus, there is no need to
add possibly arbitrary resource bounds in the logical language.

We start with providing a brief description of the cognitive architectures at the
basis of our computational cognitive model, ACT-R and PRIMs and of previous com-
putational cognitive models of Marble Drop based on ACT-R. Then in Sect. 5.4 we
translate a number of the strategies that were represented by strategy formulas in the
previous section into PRIMs models—both strategies well-known from game theory
such as backward induction, followed by reasoning formulas corresponding to the
different players’ typologies, such as the one based on theory of mind. Finally, we
come full circle and we compare the simulation results of two PRIMs models with
actual participant data, to show that participants probably do not apply the reasoning
strategy that Hedden and Zhang (2002) called “myopic” (near-sighted).

5.1 ACT-R

ACT-R is an integrated theory of cognition as well as a cognitive architecture that many
cognitive scientists use (Anderson 2007). It consists of modules that link with cognitive
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functions, for example, vision, motor processing, and declarative processing. Each
module is associated with a buffer and the modules communicate via these buffers.
Importantly, cognitive resources are bounded in ACT-R models: Each buffer can store
just one piece of information at a time.

The declarative memory module represents long-term memory and stores informa-
tion encoded in so-called chunks, representing knowledge structures. For example, a
chunk can be represented as a formal expression with a defined meaning. Each chunk
in declarative memory has an activation value that determines the speed and suc-
cess of its retrieval. Whenever a chunk is used, the activation value of that chunk
increases. As the activation value increases, the probability of retrieval increases
and the latency (time delay) of retrieval decreases. Therefore, a chunk represent-
ing a comparison between two payoffs will have a higher probability of retrieval,
and will be retrieved faster, if the comparison has been made recently, or frequently
in the past (Anderson and Schooler 1991; Anderson 2007). As soon as a chunk
is retrieved from declarative memory, it is placed into the declarative module’s
buffer.

The problem state module also contains a buffer that can hold one chunk. Typically,
the problem state stores a sub-solution to the problem at hand. In the case of a social
reasoning task, this may be the outcome of a reasoning step that will be relevant in
subsequent reasoning. Storing information in the problem state buffer is associated
with a time cost (typically 200ms).

A central procedural system recognizes patterns in the information stored in the
buffers, and responds by sending requests to the modules, for example, ‘retrieve a
fact from declarative memory’. This condition-action mechanism is implemented in
production rules. Production rules have so-called utility values. The model receives
reward or punishment depending on the correctness of its response. Both reward and
punishment propagate back to previously fired production rules, and the utility values
of these production rules are increased in case of reward and decreased in case of
punishment by a process called utility learning (Anderson 2007). If two or more
production rules match a particular game state, the production rule with the highest
utility is selected.

5.2 PRIMs

PRIM, the primitive elements theory, is a recent cognitive theory developed by Taat-
gen, who implemented it in the computational cognitive architecture PRIMs (Taatgen
2013). It builds on ACT-R, using ACT-R modules, buffers and mechanisms such as
production compilation. However, in contrast to ACT-R, PRIMs is suited for modeling
general reasoning strategies that are not included in the basic cognitive architecture
shared by all humans, but that are at the same time more general than ad hoc task-
specific reasoning rules. Thereby, PRIMs is especially suitable for modeling the nature
and transfer of cognitive skills. Because of our need to model participants’ beliefs about
the opponent’s beliefs, we decided to use PRIMs as cognitive architecture to model
more sophisticated reasoning strategies rather than ACT-R, which we used in Ghosh
et al. (2014).

@ Springer



Synthese (2018) 195:4265-4307 4295

Workspace
(cortex or striatum)

Cortical
Modules

Production rules
(Basal Ganglia
and Thalamus)

Comparisons
. between two elements in
S the workspace

S

S 4 .
Copying an element ~ A

from one place to
another in the workspace

;
’ P
k. J The PRIM model

SINPON
|ouo) yse |

Fig. 7 Schema of a PRIM model as represented in Taatgen (2013)

More specifically, PRIM breaks down the complex production rules typically used
in ACT-R models into the smallest possible elements (PRIMs) that move, compare
or copy information between modules (cf. Fig. 7). There is a fixed number of PRIMs
in the architecture. When PRIMs are used often over time, production compilation
combines them to form more complex production rules. While those PRIMs may
have some task-specific elements, PRIMs also have task-general elements that can
be used by other tasks. Taatgen (2013, 2014) showed the predictive power of PRIMs
by modeling a variety of transfer experiments such as text editing, arithmetic, and
cognitive control. The architecture has been used to model children’s development
of theory of mind (Arslan et al. 2015), transfer between the ‘take the best’ heuristic
and the balance beam task (Gittelson and Taatgen 2014), and children’s mistakes in
arithmetic (Buwalda et al. 2016). PRIMs models can be run to predict the estimated
time to complete certain tasks, which we will use in Sect. 5.4 to fit the predictions
of our PRIMs models of reasoning strategies in “Marble Drop with Surprising Oppo-
nent”.

Like ACT-R, PRIMs models cognitive resources as being bounded: Each buffer
can store just one piece of information at a time. Consequently, if a model has to keep
track of more than one piece of information, it has to move the pieces of information
back and forth between two important modules: declarative memory, representing
long-term memory, and the problem state, in which a small chunk of information can
be stored for a short time. Moving information back and forth comes with a time cost,
in some cases causing a cognitive bottleneck (Borst et al. 2010).
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5.3 Earlier models of strategic reasoning in Marble Drop

van Maanen and Verbrugge (2010) proposed an ACT-R model that follows a backward
reasoning strategy to predict the opponent’s moves further on in a game of “Marble
Drop with Rational Opponent” against a computer opponent that was known to be
rational. The drawback of this model is that it implements just one reasoning strat-
egy, while the results in Meijering et al. (2012), Bergwerff et al. (2014) show that
participants used several reasoning strategies. There have been two follow-up ACT-R
models to remedy this problem. Meijering et al. (2014) have implemented the idea
that players use negative feedback in order to move from an overly simple reasoning
strategy without theory of mind to a more complicated second-order theory of mind
strategy only if it is really needed.

Ghosh et al. (2014) constructed a more generic model that is able to fit a broader
spectrum of possible strategies than (van Maanen and Verbrugge 2010; Meijering et al.
2014). It relies on the declarative memory and the problem state, by retrieving relevant
information from declarative memory and moving that information to the problem state
buffer whenever it requests the declarative module to retrieve new information. The
PRIMs models that we present in the next subsection are based on similar ideas, but
they can also incorporate reasoning about beliefs of opponents.

5.4 Modeling reasoning strategies in PRIMs

We consider a class of models, where each model is based on a set of strategy and
type specifications that can be generated using the logical framework we presented in
Sect. 2. As explained in Sects. 4.1 and 4.2, both backward induction reasoning and
forward induction reasoning (in particular, EFR reasoning), as well as other types of
reasoning can be represented using logical specifications.

5.4.1 Modeling specific strategies from Sect. 4.1 in PRIMs

Each of the specifications defined in Sect. 4.1 comprises comparisons between relevant
payoffs for both players. For each comparison, a cognitive model has a set of production
rules that specify what the model should do. To compare player C’s payoffs, say at
two leaf nodes, the model first has to find, attend, and encode them in the problem
state. For each subsequent payoff, the model performs the following procedure (cf.
Fig. 8):

— request the visual module to find the visual location of the payoff (cf. Nyamsuren

and Taatgen 2013);
— direct visual attention to that location; and
— update the problem state (buffer).

The specifications n}, (corresponding to the choices of the vast majority of partici-
pants, see Example 1 in Sect. 4.1) and n%, (corresponding to backward induction, see
Sect. 4.1) specify what the model should do after encoding the payoffs in the problem
state. First, the payoffs need to be compared and the comparison needs to stored. Then
the belief operators are dealt with as follows (cf. Fig. 9):
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Fig. 8 Flowchart for reasoning processes as described in Example 1, constructed from formula 11}, of
Sect. 4.1

— attend to the visual location of the node depicted by the belief operator; and
— encode the actions and beliefs at the problem state (buffer).

These beliefs can be taken care of in the PRIMs model in the same way as in Arslan
et al. (2013), namely some n-th order strategy chunk can be created in the declarative
memory for an n-th order belief in the strategy/type formulas followed by creating an
(n — 1)-th order chunk for the (n — 1)-th order belief. This process can be continued
until the model creates a zero-order chunk corresponding to a zero-order belief. For
each n, the model would keep a reference to the (n — 1)-th order chunk in the declarative
memory, which in turn would have a pointer towards the n-th order chunk. The stored
beliefs are retrieved accordingly in the problem state buffer and production rules are
fired depending on the retrieval in order to make decisions.
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Fig. 9 Flowchart for reasoning loc = (b~ )root
processes utilized in backward
induction, constructed from l

formula n%, of Sect. 4.1
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l yes

respond:
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The decisions are made corresponding to the recorded payoffs and the resulting
beliefs. An example production rule could be as follows; the model will select and fire
this production rule to generate a response:

IF
Goal is to record Player P’s belief at node n If the current goal is to record Player P’s
beliefs at node n,
Problem State represents and the problem state has stored the actions,
Player P’s actions at n, ¢ and dB®m) f and the belief is that f will be played (by C),
THEN
Decision is play d then request the manual (or motor) module

to produce a key press (i.e., play d).

5.4.2 Modeling specific player types from Sect. 4.2 in PRIMs

Based on the same syntax as used for the strategies, one can model the player types, for
example, according to levels of theory of mind or according to the latent class analysis.
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Fig.10 Representing the simple zero-order theory of mind strategy from the player P’s perspective playing
at the second node. The model will compare P’s payoff in case it stops with her maximum possible payoff
in case she continues. This corresponds to zero-order theory of mind reasoning represented by formula rg
of Sect. 4.2

contlnue cC v P 4 C f P

(§
5 .
S
6 o
w
g\_—

2 < max{o, 4} = continue

Fig. 11 Representing the simple first-order theory of mind strategy from the player C’s perspective playing
at the third node. The model will compare C’s payoff in case it stops with her maximum possible payoff
in case she continues. This corresponds to attributing zero-order theory of mind reasoning to player C by
player P, who thereby performs first-order theory of mind reasoning, as represented by formula r}, of
Sect. 4.2

One can add different assumptions to the model with regard to the strategies being
used, the roles of players, whether they are considering the roles of their opponents,
and also with regard to the beliefs players have regarding opponents’ moves and
strategies. Figure 10 shows a schematic representations of the reasoning processes of
a model performing zero-order theory of mind reasoning from the viewpoint of the
participant P. One level of complexity higher, Fig. 11 shows a schematic representation
of the model attributing zero-order reasoning to player C from the viewpoint of P,
who is thereby applying first-order theory of mind. Similarly, one could use different
models with regard to different time-points in Time based on the different specification
formulas as given by the tuples of such formulas in Sect. 4.2 to deal with the Expected,
Learner and Random types of players.

As with the strategy formulas, the type formulas can be implemented in production
rules in the cognitive architecture PRIMs. Such production rules can determine, for
example, what the payoff would be when going down immediately and stopping the
game, what the maximum of all P’s possible future payoffs could be in case she
continues the game, and which beliefs influence which moves. The production rules
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are generally executed from the perspective of the player who is currently deciding
which course of action to follow. Thus, the Learner types that have been captured by
tuples of formulas in Sect. 4.2, can be transformed into production rules of a tuple
of models to simulate the behavior of such Learner types of players. Another kind
of learning, namely the move from simpler to more complex theory of mind levels,
can be reflected in PRIMs models as follows (inspired by, but implemented differently
than Meijering et al. 2014). The model attributes a player’s moves and beliefs from the
perspective of the current decision node to the opponent operating at the next decision
point, stepping into the opponent’s shoes, and while doing this, the model updates its
belief levels. Subsequently, the model acts in its heightened order of theory of mind
reasoning.

On the whole, the strategy and the type specification formulas can be used to con-
struct various PRIMs models to simulate behaviors of players involved in varying kinds
of strategic reasoning, belonging to various type categories. Based on the validation
of the predictions of such models with respect to the experimental results (cf. Sect. 3),
one can narrow down the set of reasoning formulas and type formulas that provide apt
descriptions of human strategic reasoning and typologies. From another perspective,
these specification formulas act as controlling factors for suggesting the production
rules in different PRIMs models, providing a formal basis of the algorithms used to
construct the models. In other words, rather than having some ad-hoc production rules
for the PRIMs model, one could be guided by the logical formulas in formulating rules
leading to different PRIMs models that correspond to different strategies and types of
players. The models can then be compared with each other in terms of decisions and
reaction times with respect to the validations of their predictions, in order to provide
better modelling of human strategic reasoning and typologies.

5.5 Validating some reasoning types modeled in PRIMs against experimental
results

We have seen in Sect. 4.1 that some fitting of formal strategies to experimental data can
be done based directly on the logical strategy formula; for example, it turns out that
more than 84% of participants made decisions according to Example 1, formalized
as formula r;},. However, in order to be able to use more of the participant data, such
as their reaction times for making their first decision, the formulas do not suffice but
a PRIMS model corresponding to one or more strategy formulas can be constructed
and run a number of times, as if the models are virtual participants that perform the
game experiment.

As a test case, we have constructed PRIMs models based on the specification
formulas corresponding to two relatively simple player types inspired by the literature:
mypoic players (k p formulas of Sect. 4.2, inspired by Hedden and Zhang (2002)), and
own payoff players (x p formulas of Sect. 4.2, inspired by Raijmakers et al. (2014)).
The models were constructed following the general translation procedures described
in the previous subsection and can be found at http://www.ai.rug.nl/Social Cognition/
experiments/. In our simulations, both models were run 50 times (corresponding to 50
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Fig. 12 Reaction time predictions in milliseconds from the PRIMs models for games 1" and 3’, from left
to right corresponding to the formulas x},/ and X13)/ (own payoff strategy) and the formulas Kll,/ and K?,/

(myopic strategy)
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Fig. 13 Comparison of reaction times in milliseconds between the predictions of the own payoff strategy
model and the participants, for game 1" (left two bars) and game 3’ (right two bars). The red bars represent
the model predictions, while the blue bars represent the mean reaction times corresponding to participants’
choices that were consistent with the own payoff strategy. Error bars represent standard deviations. (Color
figure online)

“virtual participants” each), playing 50 rounds each for the games 1" and 3’ of Fig. 4.
The reaction time predictions obtained from the models are given in Fig. 12.

As can be seen in Fig. 12, the “virtual participants” who use the own payoff strategy
(based on the formulas x },/ and x?,/ of Sect. 4.2), need on average more time for
their first decision in game 1’ (more than 800ms) than in Game 3’ (around 7500
milliseconds).
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The “virtual participants” who use the myopic strategy (based on the formulas « },/

and K,33/ of Sect. 4.2), in contrast, need about the same amount of time for their decisions
in both games 1" and 3’ (both around 4000 ms), and moreover, this is much less than
the mean time needed for the “virtual participant” that uses the own payoff strategy.

The reaction times for the PRIMs model corresponding to the own payoff types and
those of the myopic types were fitted against those of the participants in the experiment
described in Sect. 3. It turns out that the participants’ reaction times fit well with
the own payoff model predictions for two reasons. Qualitatively, as Fig. 13 shows,
participants were slower in their decisions on Game 1’ than they were on Game 3’, just
like the “virtual participants” that use the own payoff strategy.® More quantitatively,
the reaction times for the real participants in Game 1’ (more than 8000 ms) and for
Game 3’ (around 7500 ms) are quite similar to those of the virtual ones.

In contrast, the findings from the PRIMs model corresponding to the myopic types
(based on the formulas K},/ and /<133/ of Sect. 4.2) do not fit the reaction time data at all:
in general, the real participants use much more time (mean around at least 7000) than
the “virtual participant” who uses the myopic strategy does (mean around 4000 ms).
A great advantage of computational cognitive models in an architecture such as PRIMs
is that one can also make predictions for future experiments. We will make one such
prediction now. Currently, together with Aviad Heifetz and Eric Jansen, we are in
the midst of a set of experiments in The Netherlands, India and Israel, based on
games that are variations of those of the experiments of Ghosh et al. (2015b), with the
same centipede-like trees as those in Figs. 3 and 4 but different payoff structures. In
particular, the new truncated game 1” corresponding to game 1’ of the current paper
has new payoffs (1, 2) after c, (3, 1) after e, (1, 4) after g, and (6, 3) after /; and the
new truncated game 3” corresponding to game 3’ of this paper has payoffs (1, 2) after
¢, (3, 1) after e, (1, 4) after g, and (6, 4) after 1. We predict that also for these games,
participants whose choices fit the own payoff strategy as well as the myopic one, are
still more likely to reason following the own payoff strategy, as shown by their reaction
times: we predict that they will be slower on Game 1” than on Game 3”.

6 Conclusions and future work

In this paper we have explored the question “How do people really reason about their
opponent in turn-taking games?” for specific turn-taking games of the type “Marble
Drop with Surprising Opponent”, in which the opponent often started with a seemingly
irrational move. We began with presenting a logical language that expresses different
kinds of strategies which people can apply when reasoning about their opponent and
making decisions in turn-taking games such as “Marble Drop”. It can also express
different possible ‘reasoning types’ reflected in participants’ behavior. The new logical
language extends our earlier strategy language of Ghosh et al. (2014) with (higher-

6 Note that to construct Fig. 13, we considered those instantiations of the games in which participants’
choices were consistent with the choice prescribed in the relevant x p. To account for individual differences
between participants, only those participants were considered for whom the majority of choices in games

. . . . / / .
1" and 3’ were consistent with the specification formula x }, and X}SD , respectively.
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order) beliefs. The extended language results in more user-friendly and more concise
formulas than the earlier one; this is an advantage because it makes the formulas more
understandable for cognitive modelers who are not logicians.

We then explored the data of our earlier experiment with Heifetz about the games
that was presented first in Ghosh et al. (2015b). In the current article, we moved
beyond the question whether participants in general use forward induction reasoning
and instead first explored two ways of segregating the participants into groups to see
whether and how they can be divided into reasonable “player types”. The first way
to construct a typology was based on latent class analysis, which turned out to divide
the players into three classes according to their first decisions in the game: Random
players, Learners, and finally Expected players who make decisions consistent with
forward induction. This typology appeared to be reasonable, because the three levels
correspond with increasing gains in the games and with increasing time spent on
decisions. The second way of constructing a typology was based on the participants’
answers to a question about their opponent, classified according to levels of theory of
mind: the resulting types are Zero-order, First-order and Second-order. This typology
was also validated by increasing levels of theory of mind turning out to correspond
to increasing monetary awards and increasing decision times. The logical language
was then used to describe different reasoning strategies and reasoning types that were
displayed by the participants during the experiment, including the types discussed
previously.

We mainly aimed for contributions on Marr’s computational and algorithmic levels
and the interplay between them through this study based on logic, experiment and
computational cognitive model. The logical language helped us delineate a number of
plausible reasoning strategies in a systematic manner. In general it is possible to trans-
late such logical formulas into computational models in the computational cognitive
architecture PRIMs, and this can be done in a generic way, enabling the construction
of a corresponding set of computational models in PRIMs. More specifically, the for-
mulas are implemented as production rules, which handle visual processing, problem
state updates, and motor processing. We have shown how such translation works for
two specific reasoning strategies and we have run the computational models and made
predictions from the simulations about the data. It turned out that the predictions of
one of the models, corresponding to the own payoff strategy, fit the actual participants’
data in terms of their response times remarkably well. We have also formulated a
model-based prediction for a future experiment.

All in all, we have shown that logic makes a contribution at Marr’s computational
level by providing a precise specification language for cognitive processes. Moreover,
we have illustrated that logic has a fruitful role to play in theories of resource-
bounded strategic reasoning at the algorithmic level, namely in the construction of
computational cognitive models in PRIMs. The great advantage of using the cogni-
tive architecture PRIMs rather than an ad hoc computational model, is that it already
implements very precise, experimentally validated theories about human memory and
cognitive bounds on reasoning processes. In comparison to ACT-R, PRIMs appears
to be easier for logicians to learn.
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6.1 Future work

We aim to implement various sets of specifications of reasoning strategies in separate
models, inspired by the 39-model study of Marewski and Mehlhorn (2011). The aim is
to simulate repeated game play, both to determine which participants in a new experi-
ment most closely belong to which player types, as well as to study possible learning
effects. An advantage of constructing PRIMs models, not only logical formulas, is
that quantitative predictions are generated, for example, concerning decision times
and locus of attention, which can then be tested in further experiments, for example,
using an eye-tracker.

Now that we have models in PRIMs, we can also make specific predictions for
training experiments, e.g. training people with second-order false belief tasks or com-
plex working memory tasks and investigating whether that helps them to transfer these
skills to “Marble drop with Surprising Opponent”.

From the logical perspective, the next step will be to provide a sound and com-
plete axiom system for strategic reasoning that models empirical human reasoning
in dynamic games of perfect information, including reasoning about the higher-order
beliefs of the opponent.
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Appendix: Instruction sheet

The following instruction sheet was given to each participant of the experiment pre-
sented in Sect. 2 and was explained to them by the experimenter.

In this task, you will be playing two-player games. The computer is the other
player.

In each game, a marble is about to drop, and both you and the computer determine
its path by controlling the orange and the blue trapdoors.

You control the orange trapdoors, and the computer controls the blue trapdoors.
Your goal is that the marble drops into the bin with as many orange marbles as
possible. The computer’s goal is that the marble drops into the bin with as many
blue marbles as possible.
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— Click on the left trapdoor if you want the marble to go left, and on the right trapdoor
if you want the marble to go right.

— How does the computer reason in each particular game?

The computer thinks that you already have a plan for that game, and it plays
the best response to the plan it thinks that you have for that game.

However, the computer does not learn from previous games and does not take
into account your choices during the previous games.

— The first 14 games are practice games. At the end of each practice game, you
will see how many marbles you gained in that game, and also the total number of
marbles you have gained so far.

— The practice games are followed by 48 experiment games. At the beginning of the
experiment games, the total number of marbles won will be set at 0 again. At the
end of each experiment game, you will see how many marbles you gained in that
game, and also the total number of marbles you have gained so far.

— You will be able to start each game by clicking on the “START GAME” button,
and move to the next game by clicking on the “NEXT" button.

— At some points during the experiment phase, you will be asked a few questions
regarding what guided your choices.

— There will be a break of 5 min once you finish 24 of the 48 experiment games.

— The money you will earn is between 10 and 15 euros and depends on how many
marbles you have won during the experiment phase. You will get 10 euros for
participation, and each marble you win will add 4 cents to your amount. The final
amount will be given to you rounded off to the nearest 5 cents mark.
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