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ABSTRACT

This paper examines the question of whether Large Language Models (LLMs)
like ChatGPT possess minds, focusing specifically on whether they have a gen-
uine folk psychology encompassing beliefs, desires, and intentions. We approach
this question by investigating two key aspects: internal representations and dis-
positions to act. First, we survey various philosophical theories of representation,
including informational, causal, structural, and teleosemantic accounts, arguing
that LLMs satisfy key conditions proposed by each. We draw on recent inter-
pretability research in machine learning to support these claims. Second, we
explore whether LLMs exhibit robust dispositions to perform actions, a neces-
sary component of folk psychology. We consider two prominent philosophical
traditions, interpretationism and representationalism, to assess LLM action dis-
positions. While we find evidence suggesting LLMs may satisfy some criteria
for having a mind, particularly in game-theoretic environments, we conclude
that the data remains inconclusive. Additionally, we reply to several skeptical
challenges to LLM folk psychology, including issues of sensory grounding, the
“stochastic parrots” argument, and concerns about memorization. Our paper has
three main upshots. First, LLMs do have robust internal representations. Second,
there is an open question to answer about whether LLMs have robust action
dispositions. Third, existing skeptical challenges to LLM representation do not
survive philosophical scrutiny.

Keywords Large Language Models (LLMs) · Artificial Intelligence · Folk Psychology · Mental
Representation · Interpretability · AI Cognition

1 Introduction

Recent developments in AI are stunning. Large language models like ChatGPT can generate
text that is fluent, accurate, and responsive to human questions. These advances have sparked a
fundamental question: Do these AI systems possess minds?

To address this broad question, we focus on a more specific aspect of the mental: folk psychology.
The key question we explore is whether LLMs have beliefs, desires, and intentions. In other
words, do LLMs have goals about what to do, a perspective on what the world is like, and plans
for achieving their goals given what the world is like?
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Why care about LLM folk psychology? There are at least three reasons. First, folk psychology is
the primary lens that humans use to understand the behavior of agents. When we interact with
one another, we consistently try to explain what is happening in terms of beliefs and desires
(Hutto and Ravenscroft (2021)). As LLMs become increasingly capable, we will increasingly
interact with them. It is worth figuring out whether we can genuinely use beliefs and desires to
understand these interactions, or whether instead beliefs and desires would be at best an elaborate
metaphor. Second, folk psychology is relevant for moral patiency. When we ask what it takes
to be the kind of entity that can be harmed, one important answer appeals to the satisfaction of
desires (Heathwood (2016)). More may be required too, such as full-fledged consciousness; but
folk psychology will play a role. Third, folk psychology is relevant to AI safety. As AI systems
become more powerful, many have worried that they may systematically pursue goals that conflict
with humanity (Russell (2019)). But much of this discussion implicitly assumes that AI systems
will have goals and a perspective about how to achieve those goals. If there are important barriers
for AI systems to possess a folk psychology, this may complicate our understanding of what it
would take for AI systems to be safe.

Our approach is simple. The question of folk psychology has two key aspects: internal represen-
tations and dispositions to act. We’ll explore in detail whether LLMs possess each aspect of a
folk psychology.

The first key question is whether LLMs have robust internal representations of the world. Here, our
strategy in §2 will be to survey various philosophical theories of representation, and see whether
LLMs satisfy the theories. We’ll look at a range of conditions on representation, including: (i) that
the system has internal states that carry information about the world; (ii) that these internal states
are causally effective at producing the system’s behavior; (iii) that these internal representation
satisfy folk patterns of reasoning; (iv) that the structure of these internal representations mirrors
the structure of what they represent; and (v) that the information-carrying capacity of these
representations emerged from some kind of selective, evolutionary process. In each case, we’ll
draw on recent research in machine learning about LLM interpretability, which suggests that
these systems satisfy the relevant condition on mental representation.

But internal representations alone are not sufficient for a full-blown folk psychology. In order to
possess beliefs and desires, the second key question is whether LLMs have robust dispositions to
perform actions. If LLMs have both internal representations and action dispositions, then they
will have a folk psychology. In particular, nearly every theory of belief and desire will explain
these mental states in terms of some combination of internal representations and dispositions
to act. In §4, we explore two of the most prominent traditions of theorizing about belief and
desire, interpretationism and representationalism. In each case, we suss out what kinds of action
dispositions the theory requires of LLMs. Then we critically assess whether LLMs satisfy the
relevant condition. The crucial question for LLMs will be whether their linguistic outputs are
stable enough to be best explained as promoting goals. Our conclusion in §4 will be tentative. We
argue that the behavior of LLMs in game environments is suggestive of the kinds of rich plans of
action required for belief/desire psychology. But the data is not decisive.

Our third goal of the paper, in §3, will be to refute some of the existing skeptical challenges to
LLM folk psychology. Here, we’ll engage directly with three challenges. The first challenge,
symbol grounding, raises the following question: if the only inputs to a language model are strings
of text, rather than rich perceptual experiences or feedback from motor actions, how can language
models understand prompts about the external world? The second challenge is that LLMs do
not represent the world because they are not trained to do so; instead, they are merely stochastic
parrots, trained to predict the next word. The third challenge is that LLMs do not represent the
world because their behavior can be fully explained by an alternative theory, according to which
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they rely on memorization and shallow shortcuts. In each case, we’ll argue that the challenge
does not survive philosophical scrutiny.

Overall, then, our conclusions for future research run as follows. First, we think there are
interesting questions about exactly how LLMs represent the world, and what in the world they
represent. But we think overall there is quite strong evidence that they do so. Second, there
is a rich debate to be had about whether LLMs genuinely have beliefs and desires about the
world, in the sense that is involved in assembling complex plans of action. Third, we suggest that
many of the existing skeptical challenges to LLMs deserve more careful development, as they
possess major shortcomings. Before we turn to our main claims, we’ll end this section by briefly
summarizing how LLMs work.

1.1 Large Language Models

At the heart of modern LLMs lies the transformer architecture (Vaswani et al. (2023)). Although
many variants exist, we’ll here focus on the mechanics of decoder-only models such as GPT 3.5.1

When you feed a prompt to a model, it makes a prediction about what comes next. For example,
if you feed it “The cat sat on the,” it will assign a probability to each possible next token.2 It will
assign some probability to “aardvark,” some probability to “banana,” some probability to “mat,”
and so on.

To compute these probabilities, each token is converted into an initial embedding—a vector, or
long list of numbers, which encode “The,” “cat,” “sat,” “on,” and “the.” The initial embedding
carries information about the corresponding token, but it doesn’t at first carry any information
about surrounding tokens. For example, the initial embedding for “cat” does not encode the fact
that “The” precedes it.

The initial embeddings for each token are then transformed and updated across a large number of
layers. At each layer, the embedding for a given token is first updated through the mechanism
of self-attention. Self-attention allows the embedding for a given token to “attend to” itself and
earlier tokens in the sequence. For example, the token for “sat” might attend to “cat” at a given
layer. The embedding for “sat” could then be updated to represent the fact that “cat” was the
immediately preceding token or, perhaps, to encode somehow that “cat” was the subject. In other
words, after paying attention to the information of earlier tokens and itself, the embedding for
“cat” is updated to include contextual information about the surrounding tokens in the prompt. We
call this new embedding a contextual embedding. These new embeddings are then refined further
using something like a multi-layer perceptrons (MLPs) before being fed forward into a new layer.

After the embeddings are passed through all the layers of the model, the model uses the final
contextual embedding for a token to predict what the next token will be. To generate more and
more text, we can then select some token assigned relatively high probability, tack it onto the
initial prompt, and then feed the new augmented sequence to the model again. For an illustration,
see fig. 1.

Transformer models get extremely good at generating plausible text via training. Training for retail
models like ChatGPT comes in two main phases. In the first phase, we take lots of pre-existing
text, feed an initial segment of it to the model, and then have the model generate probabilities
about what comes next. We then tweak the parameters of the model via gradient descent to make
more accurate predictions. For instance, if the model is fed “Happy families are all alike; every

1More advanced models have many architectural changes, but the exact details are not public.
2Tokens can be words, subwords, numerals, punctuation, etc. For our purposes, we can just think of tokens as

words.
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Figure 1: Simplified two-layer transformer architecture processing “The cat is on the”. Each word
is initially converted to an embedding vector. In each layer, self-attention (Att) allows words
to attend to each other, followed by a multi-layer perceptron (MLP). After the first layer, new
contextual embeddings are created. The final layer produces probabilities for the next token.

unhappy family is unhappy in its own” it will learn to generate a higher probability for “way”
as the next token. The model’s parameters are adjusted through gradient descent to improve its
predictions over time.

Eventually, the model gets very good at predicting what comes next in text. But it is still not
especially conversational or useful. So, the second (more optional) phase of training, called
“fine-tuning,” involves tweaking the model further to be a better conversational agent. We will
omit the details of this portion of training here, but the essential idea is to get humans or other AI
to rate various responses for quality and then push the model to be more disposed to generate
high quality responses.3

Note, at this point, some initial obvious reasons for skepticism about LLMs. LLMs are trained,
essentially, to make good predictions about sequences of text and then to tell people what they
want to hear. There is no direct pressure to represent the world nor to represent truth. Instead,
the immediate pressure on LLMs is to find plausible or pleasant continuations of prompts.
Furthermore, pure LLMs only connect with the world via textual embeddings. They have some

3The most common method is reinforcement learning from human feedback (RLHF) (Christiano et al. 2023), but
there are a number of alternatives such as reinforcement learning from AI feedback and direct preference optimization.
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initial embedding for words like “rainbow” or “hammer,” and they manipulate these embeddings
based on context, but they’ve never actually seen a rainbow nor manipulated a hammer.

There is, then, an important question of whether LLMs can or do end up representing the world
as a means toward their training objective. While they manipulate embeddings based on context,
their lack of direct sensory experience and the focus on plausibility rather than accuracy raise
reasons for skepticism about their representational capabilities.

2 Theories of representation

Can LLMs represent the world? In this section, we explore this question by examining various
philosophical theories of representation. We aim to demonstrate that LLMs meet many of the
criteria set by these theories. In particular, we’ll highlight a series of recent studies in AI inter-
pretability research and related behavioral research that connect closely to various philosophical
theories of representation.

We focus primarily on naturalistic theories of representation. These theories explain representation
in terms of physical processes. They differ from other theories, such as those proposing that
representation is primitive (Boghossian (1990)) or dependent on primitive phenomenal properties
(Graham et al. (2007)). While non-naturalist theories may allow for LLM representation, it is
difficult to say whether AIs could have primitive representational or phenomenal properties.

Our focus is on whether LLMs have internal states that represent the world by having truth
conditions. A representation can truly depict the world if the world is a certain way and falsely if
it is another. We will also consider if LLMs have internal states that refer to objects or properties
in the world.

Importantly, our main interest is not the text produced by LLMs but whether LLMs have mental
states that represent the world. Our hypothesis is that the activations of LLMs—the patterns of
internal neural activity within the network as it processes information—refer to objects in the
world and have truth conditions. These activations, which can be thought of as the temporary,
computation-specific states of the network, are distinct from the more permanent weights that
encode the model’s learned knowledge. This question of representation is an important first step
in determining whether LLMs have a robust folk psychology with beliefs and desires.

With these questions in mind, we will survey leading theories of mental representation to see if
LLMs meet their criteria. We draw on existing surveys, including Adams and Aizawa (2021)
and Schulte (2023). Our goal is to show that, according to these leading theories, there is strong
evidence that LLMs indeed represent the world.

We will consider five key conditions on mental representations, and argue that LLMs satisfy each
one:

• Information carrying: Informational theories posit that mental representation requires
internal states to carry information about the external world, typically through probabilis-
tic connections. We demonstrate how recent advances in AI interpretability, particularly
in probing techniques, provide compelling evidence that LLM internal embeddings carry
such world-relevant information.

• Causal efficacy: Fodorian theories demand that representational states be causally
effective in generating system behavior. We present evidence from recent interpretability
studies showing that LLM outputs indeed depend counterfactually on their internal
embeddings, satisfying this causal requirement.
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• Folk-psychological reasoning: Another Fodorian condition requires that reasoning with
internal representations follows patterns familiar from folk psychology. We argue that
emerging research on world models in LLMs reveals their capacity for effective reasoning
about the world.

• Structural isomorphism: Structural theories of representation require that the internal
architecture of representations mirrors the structure of what they represent. We illustrate
how recent studies on LLM concepts of color and direction demonstrate that their
representations exhibit the requisite structural properties.

• Selection: Teleosemantic theories stipulate that genuine representations must emerge
from a selective, evolution-like process. We contend that the training methodologies
employed in developing LLMs fulfill this selectional criterion.

2.1 Information

A long tradition of work on representation has appealed to the concept of carrying information.
Smoke carries information about fire, mumps carry information about measles, and thermometers
carry information about temperature. Dretske (1981) and others have argued that a system can
only represent the world if that system carries information about it.

Philosophers have disagreed about how exactly to define carrying information, but in general
different analyses all appeal to probabilistic concepts. According to Dretske, a state carries
the information that p if and only if the probability of p given the state is 1, provided that
various background conditions obtain. Some theorists have instead focused on states raising the
probability of p, rather than making it certain (Usher (2001)). Other theorists have focused on
more general conditions involving entropy.4

How can we tell whether LLMs carry information about the world? Harding (forthcoming) argues
there is a close connection between informational approaches to representation and recent work
on probing in AI interpretability research (Alain and Bengio (2018)). In probing, researchers
train a separate classifier to take activations as input and make a prediction. The probe takes in
some activations and predicts features of the input. For example, in a visual AI system, a probe
might predict whether the system is looking at a cat based solely on activations, without access to
the original input.5

A compelling example of using probes to discover LLM representation comes from Li et al.
(2022). We’ll use this example as a case study below. Li et al trained an LLM on sequences of
moves in the 8x8 board game Othello, using only lists of moves (like F5 D6 C3 D3 C4 F4 E3)
without describing the rules or the board. Othello is a simpler game than chess, but there are far
too many possible moves in general for an LLM simply to memorize all legal game states. Despite
this, the trained LLM, dubbed Othello-GPT, tended to output legal moves with high probability.
To understand how, the authors used probes to identify possible internal representations of the
board. By comparing the model’s internal states to the actual board, they trained probes to
guess whether each of the sixty-four squares was black, white, or blank. The probes achieved
remarkable accuracy with an error rate of only 1.7%. Similar probing techniques have been used

4The exact connection between carrying information and representing the world is also debated. For Dretske, a
mental state represents that p iff the state carries the information that p during the end of the subject’s learning period
associated with the state. This doesn’t require that whenever a state represents that p, it carries the information that p;
for Dretske, carrying information is factive, and so this would rule out misrepresentation. But other notions of carrying
information might not be factive, and so could allow a more direct connection between representation and information.

5Probes typically use linear classifiers or shallow neural networks trained on model activations to predict specific
features. For details, see (Alain and Bengio 2018).
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Input: “F5 D6 C3 D3 C4 F4 E3”

Othello-GPT

[0.3, -0.1, 0.7, ...]

Probing Classifier

Output: Square D4 is blank

Activation

LLM Processing

Feature Extraction

Figure 2: Illustration of the probing process using Othello-GPT. The LLM processes the input
sequence of Othello moves, generating activations. A separate probing classifier is trained to
predict specific features (e.g., the state of a particular square) from these activations.

to understand how models represent grammatical case, number, tense, and more (e.g., Giulianelli
et al. (2021)). Figure 2 illustrates the probing process.

Informational theories of representation make sense of the relevance of probes for mental repre-
sentation. If the classifier can correctly determine whether a cat is present almost 100% of the
time, and the classifier is only using the activations of the system to make its prediction, then
those activations likely represent the cat. At the very least, they carry mutual information with the
presence of cats. If mental representation is a matter of carrying information, then there is no
special barrier to LLMs representing the world.

2.2 Causal powers

Fodor (1975) imposed a series of conditions on genuine representations, one of which is that they
must have genuine causal powers. The key question here is whether LLM outputs are robustly
caused by the activations discovered by probes or whether these apparent representations are
actually epiphenomenal.

To make this concern concrete, return to Othello-GPT. Suppose Othello-GPT itself does not
represent the state of the board at all. However, a clever probe could read off from its activations
alone what the history of moves was. For instance, if F5 D6 C3 D3 C4 F4 E3 were fed to
Othello-GPT, the probe could learn just from its internal state that F5 D6 C3 D3 C4 F4 E3 was
the input. If the probe also learned (via its own training) what the rules of Othello were, it could
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determine whether each square was black, white, or blank, even if Othello-GPT itself didn’t
represent that fact.

Alternatively, we can imagine that Othello-GPT does represent the board state, but the probe found
some other way to determine whether its square was black, white, or blank using information
from Othello-GPT’s activations that Othello-GPT itself does not use. To investigate this question,
interpretability researchers use methods of causally intervening on a model’s activations to test
whether supposed representations are actually relevant or useful to the model.6 For instance,
if we find a successful probe for a square in Othello-GPT, we can determine what elements of
Othello-GPT’s activations the probe is using to identify whether a square is black, white, or blank.
We can then hand-edit the activation to see what happens.

Suppose, in an oversimplified example, that the probe notices that when the first coordinate of an
embedding vector for a square is 1, the square is black; when it is 0, it is blank; and when it is −1,
it is white. We can feed the model a prompt making the square black, setting the first coordinate
of the relevant embedding vector to 1. Then, we can manually change this coordinate to 0 or
−1. If the model’s output changes as expected, we have strong evidence that the representation
we found is one the model itself uses to track the board state. Figure 3 illustrates the process of
causal intervention in the Othello-GPT model. This demonstrates how altering specific internal
representations can change the model’s outputs, providing evidence for the causal efficacy of
these representations.

As another example, consider finding a potential representation of grammatical number in an
LLM. Suppose we feed the LLM the prompt ‘I ate these’. Without hand-editing, ‘apples’ should
receive a higher probability than ‘apple’ as the next token. But if we hand-edit the representation
of ‘these’ from plural to singular, we can see if ‘apple’ becomes more likely than ‘apples’. If so,
we have causal evidence that our supposed representation is used by the model.

In the case of Othello-GPT, causal interventions were effective showing that the probes did in fact
find the model’s representation of the board’s state. In other cases, similar causal methods have
been used to find representations of grammatical number, subjecthood, and factual associations
(Giulianelli et al. (2021), Meng et al. (2023)). We thus have direct evidence of the causal
effectiveness of LLM representations.

2.3 Folk patterns of reasoning

So far, we’ve argued that LLM activations carry information and causally influence LLM outputs.
But this alone may not be enough for genuine representation. For example, Fodor (1975)
argued that genuine mental representations have to have special kinds of causal powers: the
representations have to influence the system’s behavior in ways that match the laws of folk

6There are many different methods of intervention to understand and manipulate neural network representations.
The simplest is ablation, where entire neurons are deactivated to assess their importance in the model’s performance.
More sophisticated approaches include:

• Iterated Nullspace Projection (Ravfogel et al. (2020)): This method iteratively projects embeddings into a
nullspace to remove the influence of specific concepts, effectively isolating and erasing targeted information.

• Least Squares Concept Erasure (LEACE) (Belrose et al. (2023)): LEACE identifies and removes concept-
specific information from embeddings using a least squares optimization approach, ensuring that the targeted
concept is no longer represented in the neural activations.

• Causal Tracing (Meng et al. (2023)): This method tracks the flow of information through a model to
determine the causal impact of specific components or representations. By intervening in the causal pathways,
researchers can assess the importance and role of particular features in the model’s decision-making process.

These techniques allow researchers to surgically target and manipulate information encoded in embeddings, providing
deeper insights into the functioning and interpretability of neural networks.
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(a) Othello board state and model predictions before and after intervention

(b) Activation patching process across model layers

Figure 3: Activation patching in Othello-GPT. (a) The top panel shows the Othello board state
and model predictions before and after intervention. The upper row in each state displays the
model’s move predictions with associated probabilities, while the lower row shows the actual
board state. Pre-intervention, the model correctly predicts legal moves. Post-intervention, the
model’s predictions change. (b) The bottom panel illustrates the process of activation patching
across different layers and timestamps of the model. The intervention at a specific layer and
timestamp propagates through subsequent layers, ultimately affecting the final prediction. This
demonstration shows how altering internal representations can causally influence the model’s
outputs, even leading to illegal move predictions in the context of the game state shown above.
Both depictions are adapted from Li et al. (2022).
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psychology. The representations have to make sense of the world, causing outputs in a way that
resembles ordinary reasoning. Given our interest in whether LLMs have folk psychological states,
this theory of representation is especially important for our purposes.

One way interpretability researchers have investigated this kind of condition is through the idea of
world models. A world model, in the context of AI, refers to an internal representation of how the
external world operates, including objects, their properties, and the causal relationships between
them. World models require coherent and consistent representations across contexts and a degree
of abstraction that allows LLMs to generalize from particular cases to more general situations.
For LLMs, these models are constructed purely from textual data, raising important questions
about their nature and limitations.

The importance of world models lies in their potential to bridge the gap between mere pattern
recognition and genuine understanding. If LLMs possess robust world models, it suggests
they have developed representations that go beyond simple statistical associations, potentially
supporting attributions of beliefs and reasoning capabilities.

Li et al. (2022) suggest their experiments with Othello-GPT are strong evidence of LLMs’ ability
to create world models, since Othello-GPT has some coherent internal model of the board state
that allows it to predict the next move. Indeed, Othello-GPT can easily generalize to make
predictions about new boards its never seen before and can even model permissible moves in
impossible boards—i.e., boards with states that can never be reached through a legal initial
series of moves. Recent work by Vafa et al. (2024) builds upon and extends this approach,
proposing new evaluation metrics for world model recovery inspired by the Myhill-Nerode
theorem from language theory. Their study encompasses not only game environments like Othello
but also navigation tasks and logic puzzles that can be captured by a finite state automaton. Their
research demonstrated that while language models can perform well on existing diagnostics, their
underlying internal models vary in levels of coherence.

However, the rules of Othello and those studied by Vafa et al. (2024) are essentially a kind of
language that renders some “moves” grammatical and others not. It’s not clear that modeling
Othello is sufficient evidence of LLMs’ having causal abstractions of physical processes that are
robust enough to count as world models.

Musker and Pavlick (2023) explore whether large language models build causal models in order
to understand the meaning of words. They rely on the HIPE theory, developed to understand
human lexical concepts, in connection with artifact terms like “mop” and “pencil” (Chaigneau
et al. (2004)). According to this theory, when human language users decide whether an artifact
term like “mop” can correctly apply to an object, they rely on an implicit causal model:

The object’s design history and the user’s goal are distal causes in the CM,
while the object’s physical structure and the user’s actions with respect to it are
proximal causes in the CM. Thus, HIPE predicts that, for example, both the
physical structure of an object (e.g., having a handle and something absorbent on
one end) as well as the reason the object was originally created (e.g., for wiping
up water) should affect how appropriate it is to call the object a ‘mop’, but that
the latter should have a minimal effect when the former is fully specified (Musker
and Pavlick 2023).

The idea is that the status of later nodes ‘screen off’ earlier nodes when judging whether something
is an artifact. To test this theory, Chaigneau et al. (2004) built vignettes that manipulated various
nodes in the causal model, and explored which of the nodes influenced language users’ judgments
about whether an object counted as a type of artifact. For example, one such vignette was:
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One day Jane wanted to wipe up a water spill on the kitchen floor, but she didn’t
have anything to do it with. So she decided to make something. [...] The object
consisted of a bundle of thick cloth attached to a 4-foot long stick. Later that
day, John was looking for something to wipe up a water spill on the kitchen floor.
[...] He grabbed the object with the bundle of thick cloth pointing downward and
pressed it against the water spill (Musker and Pavlick (2023)).

Musker and Pavlick (2023) applied this theory of lexical concepts to large language models.
Musker and Pavlick found that GPT-4 behaved very similarly to human subjects when evaluating
counterfactual vignettes. Compromising any factor in the model led to a negative effect on GPT-4
deciding that something counted as an artifact. Compromising proximal features had a larger
effect on GPT-4’s judgments than compromising distal features.7 This potentially suggests that
GPT-4 built causal models in order to deploy artifactual lexical concepts, in a way structurally
similar to humans.8

Recent work by Gurnee and Tegmark (2024) provides compelling evidence that large language
models (LLMs) develop coherent representations of space and time, even when trained solely
on text data. By probing the internal activations of Llama-2 models, they discovered that LLMs
learn linear representations of spatial and temporal information across multiple scales. These
representations are unified across different entity types (e.g., cities and landmarks) and robust
to variations in prompting. Remarkably, they identified individual “space neurons” and “time
neurons” that reliably encode spatial and temporal coordinates. Figure 4 provides striking visual
evidence of how LLMs develop structured representations of space and time. The clear organiza-
tion of locations and events in the model’s internal space suggests that these representations go
beyond mere statistical associations.

Another skeptical challenge to LLM reasoning concerns poor performance in LLMs like GPT 3.5
when such models are asked to perform arithmetic operations. In order to genuinely represent
mathematical information on a Fodorian view, the LLMs would need a series of representations
that transform in law-like ways that reflect folk patterns of reasoning. Instead of genuinely
representing mathematical information, the skeptics argue, these models are instead engaged in
simplistic statistical pattern matching or simply memorize their training data.

Nanda et al. (2023) explored internal computations in a LLM trained to perform modular addition.
They found that rather than merely memorizing answers or relying on statistical patterns, the
LLM implemented a particular ‘Fourier multiplication algorithm’ for computing the sum: simply
put, “they perform this task by mapping the inputs onto a circle and performing addition on the
circle.”9

7For example, in one vignette (labeled “pencil object, compromised action scenario”) an object is designed to be
used as a pencil (satisfying the goal condition), but the user fails to successfully use the object to write on a piece of
paper (violating the action condition).

8For more on the emergence of causal models in LLMs, see Forbes et al. (2019), Da and Kasai (2019), Ettinger
(2020), Petroni et al. (2019), and Kassner and Schütze (2020). Musker and Pavlick themselves shy away from
interpreting these results as showing that GPT-4 genuinely builds causal models of artifacts (p. 7). Instead, they
suggest that more work is needed to identify methods for probing inner models. After all, their methodology relies
solely on GPT-4’s responses to text vignettes. But we have already seen that other work in interpretability research has
used probing and other paradigms to uncover world models in the internal representations of LLMs. In this setting,
even the behavioral evidence from Musker and Pavlick can potentially be interpreted as revealing inner causal models
associated with LLM lexical concepts. See Yildirim and Paul (2024) for further work exploring the philosophical
upshots of world models in LLMs.

9See Zhong et al. (2023) for an alternative algorithm some LLMs learned to perform modular arithmetic.
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Figure 4: Spatial and temporal representations in Llama-2-70b. Each point corresponds to the
layer 50 activations of the last token of a place (top) or event (bottom) projected onto a learned
linear probe direction. The clear structure in these projections, closely matching real-world
geography and chronology, demonstrates that the model has learned coherent representations of
space and time. All points depicted are from the test set. (Adapted from (Gurnee and Tegmark
2024).)

During training, the models initially overfitted the data by memorizing specific examples. How-
ever, over time, they transitioned to a generalizable understanding of modular addition, demon-
strating an internal shift from memorization to systematic reasoning.10

2.4 Structure

Structuralist theories of mental representation propose that mental states represent the world only
if their internal structure mirrors the structure of the external world (Opie and O’Brien (2004)).
This mirroring creates a network of relationships within the mental states that correspond to the
relationships between the objects or properties they represent. As an analogy, maps represent
geographic areas by containing a series of symbols whose physical relations on the page mirror
the physical distances between locations.

Structuralist theories of mental content are particularly relevant to large language models. In-
terpretability researchers have explored the activations of LLMs to see whether they stand in
patterns of relations with one another that are isomorphic to various worldly features.

Patel and Pavlick (2022) tested GPT-3’s concepts of direction and color. In the case of cardinal
directions, they exposed GPT-3 to a series of gridworlds, consisting of matrices filled with 0s
and a single 1. The task was to identify the direction of the 1 symbol in the gridworld: left,

10There are many more questions that can be asked about the extent to which LLM representations satisfy various
folk reasoning patterns. Recent discussion, for example, has highlighted the ‘reversal curse’, where LLMs are
competent with the phrase A is B, while failing to understand the phrase B is A (Berglund et al. (2024)). There has
been rich recent discussion about these sorts of issues, caught up with the question of whether LLM representations
exhibit the kind of full-blown compositional structure familiar from Fodor (1975). (For example, see Lake and Baroni
(2023) for a recent argument that LLMs do exhibit full compositional structure.)
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right, etc. They prompted GPT-3 with a series of sample answers, and tested whether GPT-3
could complete the pattern. Patel and Pavlick found that GPT-3 had a strong grasp of cardinal
directions. First, the LLM could smoothly generalize to a range of gridworld environments:
it could correctly describe directions in gridworlds with new lengths and widths. Second, the
LLM could smoothly generalize across cardinal directions: even when it was only prompted
with northerly or easterly directions, it could correctly answer questions about southerly and
westerly located 1s. This showed that GPT-3 had an underlying conceptual space of directions that
connected the concepts of north to south, and west to east. Once the LLM could hook up one of
these concepts to the gridworld, its underlying structural understanding of direction allowed it to
complete the grounding task. Finally, the LLM smoothly generalized to rotated gridworlds. Even
when the grids did not map onto our ordinary judgments of left and right, the LLM could quickly
generalize from examples. This suggested that the LLM had a stable underlying conceptual space
for directions.

Patel and Pavlick ran a similar experiment for color. In this case, they tested whether LLMs could
few-shot learn how to map folk color terms to three dimensional RGB scales. Again, although
GPT-3 is a text-only model, it nonetheless possessed an underlying conceptual space for color.
Even when it was only prompted with examples that associated RGB values with red colors, it
could still use this information to correctly predict how to associate RGB values with blue colors.
This showed that the LLM had an underlying grasp of the structural relation between red and blue
colors: once it learned how to connect red colors to RGB values, the further connection to blue
colors could be inferred.

In both the case of direction and color, Patel and Pavlick’s experiment demonstrated that LLMs
develop rich networks of representations, with structural relationships that resemble the analogous
human concepts. This result fits related interpretability research from Abdou et al. (2021),
which found that text-only language models create a network of embeddings for color terms.
These embeddings were found to have structural relationships that mirrored human judgments
of similarity between various colors: they found that language model “representations of color
terms that are derived from text only express a degree of isomorphism to the structure of humans’
perceptual color space”. For a visual illustration, see fig. 5.

Indeed, the nature of the embedding space allows for a natural representation of many different
structural relationships. Word embeddings are dense vector representations of words, where words
with similar meanings are located close to each other in the vector space. This spatial arrangement
allows LLMs to recognize and generate analogies by identifying patterns and relationships
between different word vectors. In the case of the analogy “man is to woman as king is to queen,”
LLMs can identify this relationship through the arithmetic of word vectors (Vylomova et al.
(2016)). The vector difference between “man” and “woman” is similar to the vector difference
between “king” and “queen.” Mathematically, this can be expressed as: king - man ≈ queen -
woman. For a visual illustration, see fig. 6.

When the LLM searches for a word that satisfies this relationship, it can correctly identify “queen”
as the word that completes the analogy. Likewise, the model can understand the relationship
between a city and its country through a similar mechanism. The vector difference between “Paris”
and “France” is similar to the difference between “Tokyo” and “Japan,” enabling the model to
complete the analogy.

Structural conditions on representational content may not themselves be sufficient to fully explain
how mental states have truth conditions.11 After all, several different networks of physical
properties could stand in the same structural relations, and this would then leave unsettled which
of them is the referent of the relevant mental state. But structural conditions can be combined

11See Piantadosi and Hill (2022) for an extended discussion of conceptual role semantics in LLMs.
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(a) Isomorphic and Random Rotations in Color Space: The leftmost panel shows the full 3D color spectrum. The three
right panels demonstrate how sample colors transform under different conditions: in their original positions, after a 90°
rotation (an isomorphic transformation), and after random reassignment. This illustrates how structural relationships
between colors are preserved in isomorphic rotations but disrupted in random rotations.

(b) Generalization to Unseen Color Terms: The left panel shows example training data, including primary, secondary,
and shades of red. The right panel demonstrates model outputs for an unseen color (navy blue). Importantly, navy blue
is in a separate color subspace from any of the colors used for training.

Figure 5: These figures together illustrate the study’s approach to testing language models’
understanding of color terms. While panel (b) suggests the model’s ability to generalize to
unseen colors, panel (a) shows how rotated color spaces were used to control for potential
memorization of RGB-to-name mappings. This combined approach helps distinguish between
true generalization and mere memorization of training data. (Adapted from (Patel and Pavlick
2022).

with other conditions to produce a full theory of mental content. For example, one strand of work
in philosophy of mind has appealed to structural conditions to explain the particular significance
of phenomenal experiences. According to representationalists about phenomenal character,
phenomenal experiences supervene on their representational content. According to these theories,
there can be no change in how things seem qualitatively without a change in the representational
content of one’s experiences. Many of these representationalists attempt to explain phenomenal
experiences in terms of a special kind of representational content. Here, structural conditions
have played an important role. For example, Rosenthal (2005) argued that qualitative experiences
are associated with a network of representational contents that are arranged in a similarity space.
Consider color concepts. Rosenthal’s idea is that color experiences not only represent the world,
but also stand in patterns of similarity to one another: red experiences are more similar to orange
experiences than to yellow ones. And these similarity patterns are isomorphic to patterns in what
color experience represents (for example, wave length). The interpretability research surveyed
above suggests that LLMs may satisfy this condition on rich color representation.
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Figure 6: Word embedding vector operations illustrated: king - man + woman ≈ queen

Finally, this work on color concepts is also relevant to our earlier question of whether LLM acti-
vations satisfy generalizations from folk psychology. When LLMs successfully make predictions
about the relationships between colors or directions they haven’t previously encountered, they
seem to reason in ways that are similar to the way humans reason.

2.5 Teleosemantics

Another potential necessary condition on representation comes from ‘teleosemantic’ theories
of mental content. According to teleosemantic theories, the function of the underlying system
generating a mental state determines its content (Millikan (1984)). For example, whether a given
mental state counts as a representation of a goldfinch depends on the function of the system that
created that mental state. On standard teleosemantic views, the function of a state is determined
by evolution: the state has whatever function explains why it was selected for via natural selection
(see (Schulte 2023, p. 35)).

Teleological conditions can be combined to causal and informational conditions on representation.
For example, Stampe (1977)’s causal account of content appealed to the idea of causal correlations
that obtain in normal conditions. This can be fleshed out in terms of evolution: a perceptual
state represents a feature of the world if that state being reliably caused by the feature helps
explain why the organism was selected for in natural selection. Similarly, Neander (2013, 2017)
argues that perceptual states have content when they have the function of being reliably produced
by features of the environment. For example, toads have evolved perceptual states that fire in
response to “small, dark, moving” objects. These states were selected for by natural selection,
because toads with these states were more successful at hunting flies. For this reason, these
perceptual states represent small, dark, moving objects. Similarly, informational accounts can be
supplemented with the condition that various information-carrying channels were selected for
(see Dretske (1981)).

We argue that teleological constraints on meaning are broadly compatible with AI representation.
Although LLMs are not products of biological evolution, they undergo a form of artificial
selection during their training process. This selection process optimizes the model’s parameters—
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specifically, its weights—to improve its performance on specific tasks. In teleosemantic theories,
the function of a mental state is determined by what it was selected for in the evolutionary process.
Analogously, in LLMs, the function of a particular weight configuration is determined by its role
in minimizing the loss function during training.

During training, the model’s weights evolve in response to the pressure of minimizing loss, much
like biological traits evolve under natural selection. This process bears important similarities to
natural selection: just as biological traits that enhance fitness are more likely to persist, weight
configurations that reduce prediction error are more likely to be retained. The resulting weight
structure of the trained model can be seen as encoding the “functions” that the model was selected
to perform, paralleling how evolved biological structures encode their functions.

The crucial disanalogy to natural selection is that in natural selection mutation is random, while
in machine learning weights do not change randomly, but are instead adjusted in the direction of
lower loss. But this disanalogy does not seem relevant to teleosemantic theories. In both cases, an
underlying optimization process creates a clear sense of a goal, and of normal versus abnormal
pursuit of that goal.

At this point, we’ve surveyed several different potential requirements on mental representation.
We have argued that results about AI interpretability suggest that large language models can meet
each of these requirements. We think that when LLMs play games like Othello, for example, they
don’t merely predict the next word. Instead, they represent the game environment. In particular,
as LLMs learn how to complete this task, they build internal models, representations that help
them figure out what to do next, for example by representing board states. In this way, we
think that interpretability research provides significant reason to reject skepticism about mental
representation.

3 Responding to Skeptical Challenges

At this point in the paper, we’ve laid out our positive claims about LLM mental representation. In
short, we think that there is a strong case that LLMs possess robust internal representations of the
world.

In this section, we’ll respond to three skeptical challenges to LLM folk psychology. Each
skeptical challenge targets the claim that LLMs represent the world. (In the next section, we
turn to challenges to LLMs possessing robust action dispositions.) In each case, we’ll identify
potential gaps in the skeptical challenge, and consider how the skeptical challenge is potentially
relevant to questions about LLM folk psychology.

We’ll consider three challenges:

• Sensory grounding: This challenge says that LLM inputs are meaningless because
LLMs have no connection to the external world. In response, we’ll argue that (i) the
challenge relies on overly simplistic causal constraints on mental representation; (ii) the
challenge ignores the possibility that LLMs form hypotheses about aspects of the world
that are not directly observable to them; and (iii) the challenge is fragile, because it relies
on properties of LLMs (such as the lack of perceptual inputs) that are not shared by all
models.

• Stochastic parrots: This challenge says that LLMs do not represent the world because
they aren’t trained to do so. In response, we’ll argue that (i) the challenge overgeneralizes
to threaten human cognition; (ii) the challenge ignores that LLMs could represent the
external world as a means to predicting the next word; (iii) the challenge ignores the
possibility that representation is an emergent capability of LLMs; and (iv) the challenge
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is incompatible with the structure internal representations identified by interpretability
research.

• Memorization: This challenge claims that LLMs do not represent the world because
their behavior can be explained through the alternate theory that they simply memorize
text. In response, we’ll argue that LLMs possess the ability to generalize robustly from
their training data, and then make correct predictions about new questions.

We can think of each of these three challenges as targeting one of the conditions on representation
we discussed earlier. The sensory grounding challenge claims that representation requires
specific kinds of causal connections between the external world and internal LLM states. The
memorization challenge claims that representation requires robust models and reasoning abilities,
which LLMs supposedly lack. The stochastic parrots challenge claims that representation requires
the right kind of functional origin, rooted in training objectives.

3.1 Sensory Grounding

One skeptical challenge concerns sensory grounding. This skeptic says that LLMs don’t represent
the world because they lack sensory grounding and merely use text: “a system that is trained
only on form [such as an LLM] would fail a sufficiently sensitive test [for intelligence], because
it lacks the ability to connect its utterances to the world” (Bender and Koller (2020) p. 5188).
Pure (text-only) LLMs only see patterns of text. They do not have any outside sensory input.
Therefore, according to this challenge, they can’t “break the syntactic circle” and connect any of
the symbols they see to the outside world. As Harnad (1990) defined it, the symbol grounding
problem is one of how the semantic interpretation of symbols can be “intrinsic to the system,
rather than just parasitic on the meanings in our heads.”

One version of the symbol grounding problem involves causal theories of mental representation.
For some theories of mental representation, the right sort of causal connection between the outside
world and internal states is required for such states to count as representational in the first place.
According to these theories (including Stampe (1977) and Fodor (1987)), mental states represent
the world when they are causally connected to the world in the right way.12 For example, my
perceptual experiences of cats tend to be caused by cats, and therefore represent them. In addition,
my desire to eat ice cream tends to cause me to eat ice cream, and therefore represents ice cream.
Causal theories of representation can explain, for example, why a photograph of an identical twin
represents one twin and not the other, despite resembling each twin perfectly.

Naive causal conditions may make trouble for LLM representation. LLMs have activations that
are related to cats. But these activations are not directly caused by cats in the way that our
perceptual system directly responds to cats in our environment. Instead, LLMs have learned about
cats through training on text, and this text itself has been caused by cats.

There are two ways to address causal skepticism about LLM representation. The first option is to
appeal to long causal chains. The second option is to appeal to pluralism about causal structure.
Let’s consider each in turn.

12The precise details of the causal theory differ with each particular adherent. Stampe proposed that a mental state
represents the proposition that p iff under optimal conditions, it is causally correlated with p. Stampe’s notion of
optimal conditions was then spelled out in terms of biologically normal conditions that “guarantee the well-functioning”
of the mechanisms that produce the mental state. Fodor defended a different, “asymmetric dependence” theory. For
Fodor, a concept C represents an object O when the concept is lawfully causally correlated with that object, and any
other correlations between C and other objects are asymmetrically explained by the connection between C and O.
For example, my concept ZEBRA is caused by zebras, but can also be caused by cleverly painted mules. But when
ZEBRA is caused by a painted mule, this itself is explained by the underlying causal connection between ZEBRA and
zebras.
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The first response appeals to long causal chains. In some sense, LLM activations related to cats
are not caused directly by cats, in the way that retinal stimulation is directly caused by cats.
Instead, LLM activations related to cats are caused by text about cats. But cat text is itself caused
by cats. In this way, there is a causal chain from cats to LLM activations about cats. So it isn’t
clear that even naive causal conditions on representation block LLMs from genuine reference.

The second response appeals to pluralism about causal structure. In fact, any causal theory
of representation needs to be pluralistic about the types of causal correlation that facilitates
representation. Stampe (1977) gives an example of barometers: the barometric representation is
caused by a drop in air pressure, and the drop in air pressure causes the storm, and in this way the
barometer represents the storm. While the barometric reading represents the storm, the storm is
neither a cause of the barometric reading nor one of its effects. This is one of the ways in which
informational theories of representation improve on naive causal theories: they can allow for a
wide range of causal relations to produce genuine representation.

Another version of the sensory grounding challenge is illustrated by ‘The Octopus Test’, a
thought experiment from Bender and Koller (2020). Imagine two humans communicating with
one another through telegraphic cables across two islands, and a hyper-intelligent octopus that
eavesdrops on their communication. In the beginning, the two humans mostly make small talk
and describe their environments, which the octopus cannot see. However, because the octopus is
hyperintelligent, it can pick up on various patterns in their communication. It has never seen trees,
but it knows the patterns of discourse around the word “tree” and can do a good job of mimicking
the other person. However, imagine that one of the people invents a catapult, and talks about it to
their partner.

The skeptical challenge claims that the octopus cannot represent the catapult, or any other object
that only exists on the islands rather than in the octopus’s own environment. Because the catapult
is novel to the discourse, the octopus won’t be able to understand what it is or make predictions
about how it works. And if this is the case, it suggests that LLMs cannot represent the world
either.

We ourselves don’t have a strong judgment about what the octopus can represent in this thought
experiment. But we think one fruitful way of resolving the question is to consider various
candidate conditions on representation. First, it is clear that the octopus carries information about
the catapult, since it can reliably predict who will say what about the catapult. But, second, it is
unclear whether the octopus has internal representations of the catapult that causally influence
its predictions. It is also unclear whether the octopus has a series of internal representations
of the catapult whose internal structure or pattern of similarity mirrors patterns in the catapult.
Moreover, it is unclear whether the octopus evolved to track the catapult through some kind of
optimization process such as natural selection. For all of these reasons, we think it is quite unclear
whether the octopus represents the catapult.

Finally, it is unclear whether the octopus can reason well about the catapult in a wide range of
counterfactual scenarios, in the kinds of ways that would produce genuine world models. The
claim that the octopus simply could not in principle represent the catapult in such a way ignores a
crucial hypothesis. When an LLM (or octopus) receives text, if it is sufficiently capable, it can
form hypotheses over what sort of processes generated such a text.

Just as scientists form hypotheses about microscopic phenomena responsible for observed patterns,
advanced octopuses could make educated guesses about how the world works based on the patterns
and types of text they receive. For example, if it reads lots of texts about machine learning, it
might form certain hypotheses about certain types of researchers and computational infrastructure
existing in the real world. From the under-water version of Wikipedia, it can make guesses
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about the sorts of processes and agents that would generate Wikipedia articles and what sort of
underlying reality would result in such strings of text.

While direct empirical evidence for LLMs (and octopuses) forming explicit hypotheses about
the world is limited, the possibility remains theoretically plausible. If advanced LLMs can form
hypotheses about how the world works, then the symbols they receive could connect to the outside
world, even if they do not have the capability of receiving anything other than text as input. Future
research should aim to uncover more about the internal mechanisms of LLMs and their ability to
form and use such hypotheses about the world.

Another problem for the sensory grounding challenge is its fragility. Even if skeptics can
successfully argue that a pure LLM is unable to represent reality, their victory may only be a
Pyrrhic one. The transformer architecture, which underlies these models, is designed for sequence
prediction generally and is versatile enough to be applied to various modalities, including computer
vision.

Vision-Language Models (VLMs), such as GPT-4V, integrate both visual and textual data, pro-
cessing them within a shared embedding space. Unlike systems that separately handle text and
images and then attempt to combine their outputs, VLMs use a single, unified transformer model
capable of processing and understanding both modalities simultaneously.

For instance, an image of a cat and the word “cat” would be represented in the same space,
allowing the model to draw connections between the visual and textual representations. This
shared embedding space helps bridge the gap between sensory input and linguistic representation.
By incorporating visual data, VLMs gain a form of sensory grounding that pure text-based LLMs
lack.

The architecture of VLMs is fundamentally similar to that of standard LLMs, relying on the same
principles of self-attention and sequence modeling. This similarity undermines the argument that
the transformer architecture itself is incapable of genuine representation. If VLMs, which are
built on the same foundational architecture, can achieve sensory grounding and representational
capabilities, it suggests that the perceived limitations of LLMs are not inherent to the architecture
but rather a consequence of the input modalities used.

For all of these reasons, we do not consider the sensory grounding challenge a decisive threat to
LLM representation.

3.2 Stochastic Parrots

Another skeptical challenge to LLM representation is associated with the “stochastic parrots”
argument, originally proposed by Bender et al. (2021). This view contends that LLMs, despite
their impressive outputs, are merely sophisticated statistical pattern matchers rather than systems
capable of genuine understanding or representation. The core claim of the stochastic parrots
argument is that LLMs are trained solely to predict the next word in a sequence, without any
true comprehension of the content they generate. According to this view, LLMs don’t represent
or reason about the world; instead, they simply reproduce patterns from their training data in a
statistically sophisticated but fundamentally meaningless way. Proponents of this view often point
to cases where LLMs produce fluent but nonsensical or contradictory outputs. For instance, an
LLM might confidently assert a false statement or agree with contradictory premises in different
conversations. These behaviors, they argue, reveal that LLMs lack genuine understanding and are
merely “parroting” patterns from their training data.

One way to understand the stochastic parrot challenge is in terms of the teleosemantic conditions
on representation we discussed earlier. Those conditions required that the internal states of LLMs
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have the function of representing features of the external world. This function would itself need
to emerge from some kind of evolutionary, selective process.

Here, we’ll lay out four challenges for the stochastic parrots view: The first challenge is over-
generalization. The argument that systems trained on pattern recognition can’t develop genuine
understanding potentially overgeneralizes. Human cognition, for instance, involves significant
pattern recognition and statistical learning, yet we don’t deny humans the capacity for genuine
understanding. Similarly, other AI systems trained on pattern recognition (like computer vision
models) are often considered to represent features of the world. The key question is not whether a
system is trained on patterns, but whether it develops more sophisticated capabilities as a result of
this training.

The second challenge is representation as a means to an end. While LLMs are indeed trained to
predict the next word, representing the world could be an efficient means to this end. For example,
to accurately predict words in a physics textbook, it would be helpful for an LLM to develop
some internal understanding of physics concepts. Our earlier discussions of probing studies and
world models provide evidence that LLMs do develop structured internal representations that go
beyond simple pattern matching. (See Herrmann and Levinstein (2024) for more.) Again, this
can be unpacked in terms of teleosemantic requirements on representation. The idea would be
that the training process of predicting the next word selects for the ability to track features of the
external world.

The third challenge is emergent capabilities. Recent research suggests that LLMs can exhibit
capabilities that were not explicitly part of their training objective. For instance: a) Few-shot
learning: Brown et al. (2020) demonstrated that GPT-3 can perform new tasks with just a few
examples, despite not being explicitly trained for this ability. This “few-shot” learning suggests
a form of rapid adaptation that isn’t easily explained by simple pattern matching. b) In-context
learning: Wei et al. (2022) showed that LLMs can learn to perform new tasks from instructions
and examples provided in the input prompt, without any change to their weights. This ability
to “learn” within the context of a single forward pass challenges the notion of mere pattern
reproduction. c) Chain-of-thought reasoning: Wei et al. (2022) also demonstrated that prompting
LLMs to generate step-by-step reasoning significantly improved their performance on complex
reasoning tasks, suggesting a capacity for structured thinking beyond simple pattern matching. d)
Emergence of coding abilities: Chen et al. (2021) found that large language models trained on
natural language can develop unexpected coding abilities, despite not being explicitly trained on
programming tasks. e) Zero-shot task generalization: Kojima et al. (2022) showed that LLMs
can solve novel tasks they weren’t explicitly trained on when prompted to “think step by step,”
demonstrating a form of reasoning capability.

The fourth challenge is internal representations. As we’ve discussed earlier in this paper, inter-
pretability research provides evidence that LLMs develop rich internal representations of concepts
and relationships. This structured internal knowledge is difficult to reconcile with the stochastic
parrots view. It’s worth noting that the stochastic parrots argument raises important questions
about the nature of understanding and representation. Even if we reject the strong claim that LLMs
are merely stochastic parrots, we might consider intermediate positions. For instance, LLMs
might combine aspects of statistical pattern matching with more sophisticated representational
capabilities. Ultimately, the stochastic parrots argument highlights the need for careful empirical
investigation of LLM capabilities and limitations. While the behavior of LLMs can sometimes
be consistent with sophisticated pattern matching, the evidence we’ve reviewed throughout this
paper suggests that LLMs do develop meaningful internal representations and capabilities that go
beyond simple parroting.
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3.3 Memorization

Another skeptical challenge concerns memorization. According to this challenge, we don’t need
to posit genuine reasoning in LLMs, because we can explain their behavior in another way.
Instead of reasoning about questions, LLMs simply memorize great quantities of data and then
use shallow heuristics to generalize to new prompts. They are trained on billions of sentences,
and in the course of this training, they simply store the answers to a large number of questions.
These answers are then returned in response to prompts, without any genuine reasoning taking
place.

Whether memorization threatens LLM representation depends on what is required for representa-
tion. If representation is simply a matter of carrying information, then memorization is perfectly
compatible with genuine LLM representation. On the other hand, if representation requires the
presence of robust models or of reasoning about the world that matches folk psychology, then
memorization may rule out representation.

In fact, there is a lot of evidence that LLMs do not merely memorize the answers to questions they
are asked. Instead, LLMs seem to possess the ability to generalize robustly from their training
data and then make correct predictions about new questions. They do not simply use shallow
heuristics.

Return to the case of modular addition. As we discussed above, Nanda et al. (2023) found that
during training, the LLM learns modular addition in multiple steps: an initial period of overfitting,
based on memorization, followed by a transition to a general solution to the problem. In the initial
phase of training, the LLM does engage in memorization. But after using memorization, the
LLM learns a more general algorithm for computing the answer. After this algorithm is learned,
the LLM then removes its memorization components. As evidence for this claim, Nanda et al
found that in the initial period of training, the model achieved 100% accuracy on the training data,
but low accuracy on the testing data. After 10,000 epochs of training, the model learned how to
actually perform the task, and achieved high accuracy on the testing data. Overall, this suggests
that LLM skeptics are missing out on much of the rich structure of LLM reasoning.

Similar abilities to generalize were found in the Othello experiment. Every game of Othello starts
with one of four moves. Each initial move creates a ‘quadrant’ of Othello game space. To train
Othello, the experiments only included training data from 3 of the 4 quadrants. But they found
that the model was equally successful at playing Othello in the omitted quadrant of game space.
13 14

13Our focus in this paper is on whether LLMs have a folk psychology. This question is worth distinguishing from
another skeptical target: the question of whether LLM outputs are meaningful. Here, the key question is whether text
produced by LLMs has meaning. This is a different question than whether LLMs have a folk psychology. Compare:
we can imagine a human being who has beliefs and desires, but who does not know how to speak French. If they
started saying French sentences out loud phonetically, there would be an interesting question to ask about whether
these sentences are meaningful in their mouth. But this question is a separate one from whether the speaker has a
psychology. In practice, much of the debate about LLM outputs has itself been connected to debates about LLM folk
psychology. For example, one skeptical challenge to the meaningfulness of LLM outputs starts from the premise that
LLMs lack communicative intentions. This is itself a skeptical premise about LLM folk psychology. In response,
Mandelkern and Linzen (2023) have suggested that LLM psychology may not be necessary for LLM outputs to be
meaningful, as long as LLMs as part of our linguistic community. (See also Mollo and Millière (2023).) Others have
suggested that we think of LLMs as more like libraries rather than speakers, which could also allow outputs to be
meaningful (for discussion, see Gopnik (2022)). By contrast, Lederman and Mahowald (2024) argue that some kinds
of LLM outputs can only be meaningful of LLMs are genuine speakers. Our focus in this paper is the question of
whether LLMs have a psychology, rather than the question of whether LLM outputs are meaningful.

14The connection between belief and learning may offer another route to LLM skepticism. The philosopher Grace
Helton has argued that in order to genuinely have beliefs, those beliefs must be able to change in response to evidence
(Helton (2018)). Helton’s argument has two premises. First, you have a belief only if you are obligated to change that
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4 Action and Folk Psychology

While we’ve argued that LLMs have mental representations, the question remains: do they have a
robust folk psychology? To address this, we need to consider whether LLMs have beliefs about
the world, desires they aim to satisfy, and intentions that guide their actions. This question is
complex, involving issues of stability, coherence, and goal-directed behavior.

To approach this question, we’ll examine two influential philosophical perspectives on folk
psychology: interpretationism and representationalism. Each offers a different framework for
understanding mental states and presents different challenges when applied to LLMs.

4.1 Interpretationism

The most radical view is interpretationism. The idea behind interpretationism is that folk psychol-
ogy is for explaining behavior. All that is required to have a folk psychology is for the system to
behave in sufficiently complex ways best explained by appeal to folk psychological states. When
this happens, the system has beliefs and desires: the system’s desires are the goals promoted by
its actions, and its beliefs are the views about the world that are required to be true in order for
its actions to promote its goals. Whether it has internal states of a certain kind is not directly

belief in response to strong counter-evidence. Second, you are obligated to do something only if you are able to do
so. From these premises, it follows that LLMs have beliefs only if they are able to change their beliefs in response to
strong counter-evidence. But one might worry that after training, LLMs can no longer learn or change their beliefs. If
Helton’s premises are correct, it follows that LLMs do not have beliefs.

The initial skeptical concern here is that after training LLMs, no longer learn or change their beliefs. The idea is that
all of the learning that an LLM engages in occurs during training, when the weights of the LLM’s neural network
gradually change in response to feedback. But once a user interacts with the LLM, for example using ChatGPT, the
weights are frozen, and so the LLM no longer learns.

This skeptical response fails, because of in-context learning. In-context learning refers to the ability of a language
model to use the context provided within a given prompt or conversation to generate relevant and coherent responses
(Brown et al. (2020)). In general, in-context learning can refer to any way in which the model aptly adapts to the
context of the prompt: e.g., adapting the right style, responding to corrections, or maintaining continuity over a
conversation.

For our purposes, we can focus on few-shot learning, which is a form of in-context learning. In few-shot learning,
you can provide examples within your prompt, and the model will use these to understand the type of response you’re
looking for.

For example, if you want GPT-3 to predict nationalities, you might just ask it about Marie Curie’s nationality. But
with a few-shot prompt, you instead give it Einstein and Gandhi’s nationality, and then ask it Marie Curie’s nationality.
Often, LLMs will perform better after seeing a few examples, rather than answering a question ‘zero shot’. This
suggests that the LLM learns from the initial examples (Xie et al. (2021)).

Xie et al. (2021) found that in-context learning in LLM satisfies many features of Bayesian inference. In particular,
they hypothesized that in few-shot learning, there’s a hidden concept that explains each of the examples in the prompt
and that should be used to generate the response. They studied how a perfect bayesian would guess the right response
given this hypothesis and compared it to how GPT-2 performed. GPT-2 learned quickly, like a bayesian, and got better
and better with more examples.

Although LLMs of today do not retain the information learned in-context in other inference cycles, they do update
their beliefs within a given inference cycle. Humans likewise often forget some of their beliefs–albeit not always–so
we do not see a special reason to deny that LLMs can learn and change their minds.

Philosophers often distinguish dispositional from occurrent beliefs. This distinction is particularly interesting in
the setting of LLMs. In LLMs, dispositional representations would be stored in the underlying weights of the neural
net, while occurrent representations would be tokened by the activations in response to prompts. When LLMs engage
in on-line learning, their occurrent representations change in response to evidence. In this way, Helton’s argument
could allow that LLMs possess occurrent beliefs, even if they lack dispositional beliefs. Rather, they would possess
unchanging dispositional representations that do not respond to evidence, and so are not subject to rational obligations,
even though they could guide action and inference.
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relevant to the question of folk psychology. Prominent interpretationists include Dennett (1981)
and Davidson (1984).15

The previous conditions we’ve explored could allow for a separation between mental represen-
tation in general and belief/desire psychology in particular. LLMs could satisfy informational,
causal, structural, and teleosemantic requirements on content, even if their behavior is too
disorganized and happenstance to count as possessing beliefs and desires. Importantly, for in-
terpretationists, folk psychological states come as a package deal. As Stalnaker (1984) puts
it:

Belief and desire . . . are correlative dispositional states of a potentially rational
agent. To desire that P is to be disposed to act in ways that would tend to bring it
about that P in a world in which one’s beliefs, whatever they are, were true. To
believe that P is to be disposed to act in ways that would tend to satisfy one’s
desires, whatever they are, in a world in which P (together with one’s other
beliefs) were true. (p. 15)

So, even if LLMs have something like mental representations of the world, they might not have
desires or the right kinds of behavioral dispositions required for folk psychological states.

Do large language models satisfy interpretationist conditions on mental representation? There are
at least two reasons for skepticism. The first challenge concerns LLM affordances: what actions
an LLM can perform. Pure LLMs do not have access to robotic bodies. Instead, they simply
produce text (or probability distributions over tokens). But at first glance these text interactions
aren’t naturally suited for performing complex actions.

There are at least two good responses to the problem of affordances. First, the problem of
affordances is fragile. Some LLMs today do have access to robotic limbs. For example, Google’s
Palm-E system integrates an LLM with a robotic limb, which can perform actions after being
prompted by a user with text (Driess et al. (2023)). When asked to pick up a bag of potato chips
from the counter, the robotic limb can skillfully sort between different objects and pick up the
chips.

Second, text production provides a rich enough space of alternative outcomes to count as a
full-fledged action space. In today’s digital world much human action takes place in text. When
we imagine a human being whose life is confined entirely to text-based actions, we see no barrier
to such a being possessing beliefs and desires. To see this point in greater detail, consider the
use of LLMs in game environments. Mei et al. (2024) studied the behavior of LLMs in social
cooperation games. These kinds of environments allow LLMs to formulate complex plans. They
found that GPT-3 and GPT-4 would adjust their behavior throughout the game:

In games with multiple roles (such as the Ultimatum Game and the Trust Game),
the AIs’ decisions can be influenced by previous exposure to another role. For
instance, if ChatGPT-3 has previously acted as the responder in the Ultimatum
Game, it tends to propose a higher offer when it later plays as the proposer, while
ChatGPT-4’s proposal remains unchanged. Conversely, when ChatGPT-4 has
previously been the proposer, it tends to request a smaller split as the responder.
(p. 17)

This kind of behavior suggests that LLMs have the ability to use game theory to navigate
environments involving other agents.

15Closely related to interpretationism is dispositionalism. On a dispositionalist picture, an agent has a belief that P if
it is disposed to behave as if P. See, e.g., Marcus (1990).
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A second reason for skepticism about action is instability. Shanahan and others have noted that
LLM outputs are very sensitive to prompting. If you slightly change the way you ask a question,
the LLM can start to behave very differently. This makes it hard to see the LLM as taking a wide
range of means to promote a unified goal (Shanahan et al. (2023)).

We think instability is potentially the most serious threat to LLM folk psychology. We see two
potential responses worthy of further development. First, one might concede that LLMs are
relatively unstable but say that each prompting session with an LLM produces a different agent
with its own beliefs and desires. For example, if you ask GPT-4 to write poetry for you on one day
and start a new conversation asking it to play chess with you the second day, you in effect have
two separate agents. The chess-playing instance has no interest in poetry, but it does have the goal
of beating you at chess. When you give it goals like writing poetry or playing chess or coding,
it does a good job. Those tasks are very difficult. So, the thought goes, the best explanation is
that the beliefs and desires of the LLM change from inference cycle to inference cycle, but the
behavior of particular instances is still fruitfully explained with beliefs and desires and intentions.

Second, one might reject the claim of instability. Although the behavior looks unstable, the
different behavior of LLMs in different prompting sessions might derive from a stable underlying
goal, such as pleasing the user. The different outputs of LLMs in different sessions might result
from a disconnect between what the model believes and what the model says. In other words,
instability in model outputs is evidence of lying, not evidence that the system lacks beliefs.16

Above all, we suggest that more research needs to be done about how stable LLM outputs are to a
range of different prompting environments. For example, one fruitful project would be to explore
how LLM strategies in game environments change as a result of different prompting conditions.
This would allow some measure of whether it forms coherent plans that are robust to a range of
perturbations.

4.2 Representationalism

Representationalism, advocated by philosophers like Jerry Fodor and Fred Dretske, holds that
having mental states requires having internal representations with appropriate functional roles.
On this view, to have a belief that p, a system must have an internal state that represents p and
plays the right causal role in the system’s cognitive economy.

There is cause for optimism on the representationalist picture. As we’ve argued at length, some
LLM mental states can have truth-conditions. Furthermore, LLMs even appear to have some sorts
of world models and structured representations of conceptual domains.17

However, even on representationalist pictures like Fodor’s, beliefs have to play the right role in
the larger system and generally cannot be divorced entirely from desires. Even if LLMs have rich
internal representations, it’s not clear that these play the right kind of role in generating behavior
to count as beliefs or desires. The issue of instability resurfaces here—if internal representations
don’t stably guide behavior across different prompts, can they really count as beliefs?

16For an argument that RLHF helps ground textual meaning through the goal of pleasing the user, see (Mollo and
Millière 2023).

17We might require that LLMs internally distinguish between true claims and false claims in a way that goes beyond
representation for the LLM to count as having beliefs. In particular, we might require that they somehow systematically
“tag” sentences as true or false and use this tag in their master algorithm to determine what text to output?

We don’t yet have a full answer to this question. Some (Burns et al. (2024), Azaria and Mitchell (2023)) have argued
that LLMs do make an internal distinction between truth and falsity. However, others (e.g., Levinstein and Herrmann
(2024)) claim these studies are flawed. Herrmann and Levinstein (2024) argue for a representationalist account of
belief for LLMs but maintain that current empirical evidence of whether LLMs actually have beliefs is inconclusive.
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Ultimately, we think matters are easier for the representationalist than the interpretationist. While
we have some behavioral evidence in the case of LLMs, behavioral evidence is much more
limited for LLMs than it is for humans. However, we have perfect internal access to LLMs,
and we have much to discover about the role various representations play in LLMs’ cognition.
Therefore, as we come to understand more about how LLMs think, it will become more obvious
for representationalists whether they have folk psychological mental states. Some key open
questions for attributing folk psychological states on either picture, then, include:

• Action and planning: How can we best understand LLM “action” given their limited
affordances?

• Stability: How can we reconcile the apparent instability of LLM outputs with the need
for stable beliefs and desires?

• Goal-directedness: Do LLMs have anything analogous to enduring goals or values?

Addressing these questions will require a combination of philosophical analysis and empirical
investigation. While there’s evidence that LLMs have sophisticated internal representations
and can exhibit complex, apparently goal-directed behavior, significant questions remain about
whether they possess full-fledged folk psychological states. Resolving these questions will
be crucial for understanding the capabilities, limitations, and potential moral status of these
increasingly ubiquitous AI systems.
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