Which Fitch?

MARK JAGO

Forthcoming in Analysis

1 Introduction

Jago (2019) uses a Fitch-style argument in an attempt to demonstrate that every truth has a truthmaker (maximality). But Trueman (forthcoming) shows there’s a parallel argument, this time to the conclusion that no truth has a truthmaker. Since we can’t accept both, we must ditch at least one Fitch. But which?

2 Jago’s Fitch

The key premise in Jago’s argument is that, for any truth, it’s logically possible for it to have a truthmaker, which we’ll abbreviate:

(J) \(A \rightarrow \Diamond TA \)

Given some background logical premises – that truthmaking is factive and distributes over conjunction – it logically follows that every truth has a truthmaker. The reasoning is familiar from Fitch’s paradox (Church 2009; Salerno 2009). Suppose for reductio that \(A \) is a truthmaker-less truth \((A \land \neg TA) \). Then, by assumption, it’s possible for this fact \((A \land \neg TA) \) itself to have a truthmaker \((\Diamond T(A \land \neg TA)) \). This quickly entails a possible contradiction: that \(A \) both has and lacks a truthmaker \((\Diamond (TA \land \neg TA)) \). But no contradiction is possible and so, by reductio, every truth has a truthmaker \((A \rightarrow TA) \).

3 Trueman’s Fitch

Truman responds with a parallel argument for the opposite conclusion, that no truth has a truthmaker. His key premise is that, for any truth, it is logically possible for it to be truthmakerless truth:

(T) \(A \rightarrow \Diamond (A \land \neg TA) \)

(Here, the factive context \((\neg \land \neg T \neg) \) acts as the ‘T’ operator did previously.) By similar reasoning, we validly infer that no truth has a truthmaker \((A \rightarrow \neg TA) \). Trueman (forthcoming, 1) concludes that ‘these arguments are as dialectically effective as each other, and so they are all in bad company’.

Trueman’s tit-for-tat strategy is highly effective. Jago argues for (J) on the grounds that logical possibility (\(\Diamond \)) can be as weak as we like. For any \(A \), it is
not logically inconsistent to posit a truthmaker, however metaphysically bizarre it may seem. Reified absences, negative facts, and totality facts are bizarre but at least consistent. Yet the weakness of the modality also works in Trueman’s favour. Offhand, (T) seems to have clear counterexamples, such as

(B) Bertie exists

Bertie makes this true, so it seems (B) can’t possibly be a truthmakerless truth. Yet, Trueman argues, on the bizarre but logically consistent theory that Bertie exists because (B) is true, (B) is a truthmakerless truth. When the modality is weak enough to make Jago’s premise plausible, counterexamples to Trueman’s premise vanish.

4 A Fixed Fitch

I want to suggest a slightly different approach for the truthmaker maximalist. Don’t try to convince those who think Bertie needn’t be a truthmaker for (B). Rather, focus on those who object to maximalism on the grounds that ‘negative’ truths like

(1) There are no unicorns

can’t have truthmakers. Why do they think this? A truthmaker for (1) must necessitate the non-existence of any unicorn; and how could any entity do that? Such entities would be ‘mysterious’ (Molnar 2000, 76), ‘really peculiar’ (Cameron 2008, 413), and ‘too weak to bear much metaphysical weight’ (Fox 1987, 206). It would be interesting, therefore, to discover that, for every truth, some entity necessitates it.

Our revised argument drops talk of truthmaking in favour of necessitation. Take ‘Nec A’ to abbreviate ‘there exists an entity which necessitates A’s truth’, $\exists x \Box (\exists y \ y = x \to A)$. The revised key premise is that, for any truth, it’s logically possible that something necessitates it:

(2) $A \to \Diamond \text{Nec } A$

This is at least as plausible as Jago’s premise (1) and, by Fitch-style reasoning, logically entails that, for every truth, some entity necessitates it ($A \to \text{Nec } A$). Trueman’s tit-for-tat strategy can’t be applied for the opposite conclusion. The premise in that case would be:

(3) $A \to \Diamond (A \land \lnot \text{Nec } A)$

for which there are purely logical counterexamples. One takes A to be $p \lor \lnot p$. For $p \lor \lnot p$ and hence $\text{Nec } (p \lor \lnot p)$ is logically necessary, contradicting the instance
\[(p \lor \neg p) \to \Diamond ((p \lor \neg p) \land \neg \text{Nec} \ (p \lor \neg p))\] of (3). But we needn’t rely on necessary examples. We might take A to be ‘a exists’, for necessarily, if a exists, then something exists which (as a matter of logic) necessitates a’s existence (namely, a itself).

This ‘necessitation’ version breaks the symmetry between the positive and the negative arguments and so, in this case, we should not conclude that both are in bad company. We have good reason to believe the key premise (2) and so good reason to believe that, for every truth, something necessitates it.

So what? Necessitation isn’t truthmaking (Restall (1996); although see Asay (2020) for a contrary view for the case of metaphysical necessity). So this isn’t a logical demonstration of truthmaker maximalism. Rather, it’s an argument that undercuts the main source of metaphysical resistance to maximalism, on which there cannot possibly exist entities which guarantee that unicorns don’t exist. Just what those absence-necessitating entities are is anyone’s guess; all this argument establishes is that they exist.

The conclusion can be strengthened slightly, by strengthening ‘necessitates’ to ‘(there exists an entity which) necessitates and is wholly relevant to’, Nec+. This too is factive and distributes over conjunction. (True, x may be wholly relevant to A \& B without being wholly relevant to A; but in that case, some other entity – a proper part of x – is wholly relevant to A, which is all we need here.) The key premise

\[(4) \ A \to \Diamond \text{Nec}+A\]

is just as acceptable as (2). We infer that, for every truth A, some entity both necessitates and is wholly relevant to A’s truth. That sounds an awful lot like truthmaker maximalism. And just as importantly, the Trueman-version,

\[(5) \ A \to \Diamond (A \land \neg \text{Nec}+A)\]

has contradictory instances under relatively weak assumptions. Suppose we take as an axiom that everything is wholly relevant to its own existence: a is relevant to the truth of ‘a exists’. Then we can derive Nec+(a exists), hence □Nec+(a exists), contradicting the instance of (5).

5 Conclusion

Which Fitch to ditch? Both Jago’s and Trueman’s. But take the fixed Fitch, which is all the maximalist needs.\(^1\)

\(^1\) Thanks very much to Robert Trueman, Roberto Loss, two Analysis referees, and the Editor, for helpful feedback.
References

