Implicit Comparatives and the Sorites

JOHN-MICHAEL KUCZYNSKI

Maryland, USA

Received 9 September 2004 Revised 3 October 2004

A person with one dollar is poor. If a person with n dollars is poor, then so is a person with $n + 1$ dollars. Therefore, a person with a billion dollars is poor. True premises, valid reasoning, a false a conclusion: a paradox. This is an instance of the Sorites-paradox. Most attempts to solve this paradox reject some law of classical logic, usually the law of bivalence. I show that this paradox can be solved while holding on to all the laws of classical logic. Given any predicate that generates a Sorites-paradox, significant use of that predicate is actually elliptical for a relational statement: a significant token of ‘Bob is poor’ means Bob is poor compared to x, for some value of x. Once a value of x is supplied, a definite cutoff line between having and not having the paradox-generating predicate is supplied. This neutralizes the inductive step in the associated Sorites argument, and the would-be paradox is avoided.

I. A person with an IQ of 70 is not smart. For any number n, if a person with an IQ of n is not smart, then a person with an IQ of $n + 1$ is not smart. Thus, a person with an IQ of 455 is not smart. But this conclusion is false. So, we have a false conclusion following from true premises.