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1 Introduction

What’s so good about having probabilistically coherent credences? Some answer
this question by showing that incoherent credences are needlessly bad at playing
some key functional or theoretical role, e.g., guiding action or encoding accurate
truth-value estimates. Coherent credences, in contrast, lack this defect. For
example, de Finetti (1974), building on the seminal work of Ramsey (1931),
showed that incoherent credences lead to sure loss. That is, for any agent with
incoherent credences there is some collection of gambles that (i) the agent is
required to judge fair even though (ii) jointly those gambles are guaranteed to
result in negative utility. That seems foolish. Coherent credences never lead to
such foolishness. This seems to show that incoherent credences are needlessly
bad at guiding action.

Joyce (1998, 2009) and Pettigrew (2016), in contrast, show that incoherent
credences are needlessly bad at playing a key epistemic role. In particular, they
encode truth-value estimates that are accuracy-dominated. More carefully, for
any agent with incoherent credences and any reasonable measure of accuracy,
there is some coherent set of credences that encode truth-value estimates that
are guaranteed to be strictly more accurate. Coherent credences are never
accuracy-dominated in this way. This seems to show that incoherent credences
are needlessly bad at “representing the world” (encoding accurate truth-value
estimates).1

There are, of course, other answers to the question that kicked us off. For
example, Koopman (1940b,a), Good (1950), and Krantz et al. (1971) all treat cre-
dences as mere numerical measures of comparative belief. Paired with appropriate

0Thanks to Julia Staffel, Catrin Campbell-Moore, Arthur Van Camp, Kevin Blackwell and
Richard Pettigrew for invaluable help on both the philosophical and formal parts of these
remarks. This research was produced as part of the Epistemic Utility for Imprecise Probability
project which is funded by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 852677).

1Joyce (1998, 2009) and Pettigrew (2016) build on the work of de Finetti (1974), Savage
(1971) and many others. De Finetti showed that avoiding sure loss is equivalent to avoiding
Brier score dominance. That is, credences avoid sure loss if and only if there is no other
set of credences that is guaranteed to incur a strictly smaller loss when penalized by the
Brier score (i.e., mean squared error). (Hence they avoid both defects if and only if they are
probabilistically coherent.) While de Finetti thought of these penalties as practical—the agent
is docked in some quantity with linear utility (lottery tickets perhaps)—Joyce and Pettigrew
think of these penalties as epistemic. The Brier score and other strictly proper scoring rules
matter for their purposes because they are reasonable measures of accuracy and accuracy is
the principal determinant of epistemic value.
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representation theorems, this view entails that an agent has probabilistically
coherent credences just in case her comparative beliefs satisfy various rationality
constraints.2,3 You better have probabilistically coherent credences, then, lest
you violate these constraints.

Julia Staffel, in her excellent book Unsettled Thoughts, takes the on/off,
binary question that we started with and makes it gradational: Why is it
good to be less, rather than more incoherent? She argues that the functional-
role-style answer—incoherent credences are needlessly bad at playing a key
functional/theoretical role—extends naturally to this gradational variant. If
your credences are incoherent, then there is some way of nudging them toward
coherence that is guaranteed to make them more accurate and reduces the extent
to which they are Dutch-bookable. This seems to show that such nudging makes
your credences better at both representing the world and guiding action. This
is crucially important for non-ideal agents like us. We will always fall short of
perfect coherence however much we nudge. If all of the reward is on the other
side of the finish line and that finish line is too far away to cross, then why
try? If a miss by an inch is no better than a miss by a mile, then why waste
the effort to miss by an inch? Staffel argues that, luckily for us, we are not
in this unfortunate predicament. There’s a path toward the finish line (i.e.,
probabilistic coherence) that allows us to pick up increasing shares of the reward
(i.e., practical and epistemic value) as we move along it.

As promising as this sounds, I will argue that Staffel’s answer to the grada-
tional question needs some tweaking. Staffel’s general strategy is as follows:

First, identify some value that justifies some requirement of rational-
ity, in the sense that complying with the requirement best promotes
this value, and violating the requirement precludes optimal promo-
tion of the value. Then identify a way in which this value can be
had to greater or lesser degrees. Lastly, select a distance measure
or divergence such that approximating ideal compliance with the
requirement of rationality delivers increasing amounts of the value.
(Staffel, 2019, p. 94)

The basic problem is this. Staffel identifies a plausible class of epistemic value
measures, viz., accuracy measures, but not practical value measures. Accuracy
may well be the cardinal epistemic good-making feature of credences. (So say
veritists, anyway.) So numerical measures of accuracy may well be fit to serve
as epistemic value/utility functions. But on the practical end, Staffel focuses
on measures of Dutch bookability. The problem: degree of immunity to Dutch
books is definitively not the cardinal practical good-making feature of credences.
Susceptibility to a Dutch book is a practical defect, no doubt. It is a surefire sign
that one’s credences are needlessly bad at guiding action. But one’s degree of
immunity to Dutch books is not itself a good measure of how well your credences
guide action. Indeed, credences that are less immune from Dutch books are
often better at guiding action. Hence numerical measures of Dutch bookability
are not fit to serve as measures of the practical value of one’s credences.

Luckily, all Staffel’s strategy needs is a small tweak. While Joyce (1998,
2009), Pettigrew (2016) and others argue that strictly proper scoring rules

2Cf. Konek (2019).
3Cox (1961) takes a similar approach. He shows that (conditional) credences that satisfy

some plausible axioms fully agree with a probability function. Cf. Joyce (2009).
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are reasonable measures of accuracy, Schervish (1989), Levinstein (2017) and
Pettigrew (2020) show that they are also reasonable measures of guidance value.
In section 3, I will exploit this fact to provide a new version of Staffel’s argument.
I will show that if the scoring rules that measure accuracy and guidance value are
“sufficiently similar”, then there will be some way of approximating coherence
that is guaranteed to yield more of both. The upshot: we can retain Staffel’s
general strategy and fix the basic problem.

2 The Problem

Consider an example from Easwaran and Fitelson (2012) and Joyce (2013):

Imagine a believer, Joshua, who has opinions about whether a certain
coin will come up heads or tails when next tossed, and who also has
evidence about the coin’s bias. We may think of Joshua’s credences as
assigning real numbers to atomic events [±H&ch(±H) = x], where
±H might be H or ¬H and where ch(±H) = x says that the coin’s
objective chance of landing ±H is x ∈ [0, 1]. Let’s suppose further
that Joshua knows that the coin’s bias toward heads is 0.2, so that
b(ch(H) = 0.2) = 1, and that this is all the relevant evidence he has
about the coin. (Joyce, 2013, p. 9)

Suppose that Joshua’s credence for H is 0.2 (i.e., b(H) = 0.2) and his credence
¬H is also 0.2 (i.e., b(¬H) = 0.2). So Joshua’s credences are probabilistically
incoherent. Now, if Joshua had these incoherent credences but knew nothing
about the bias of the coin (and had no other information suggesting one credence
deserves more revision than another), then Staffel suggests that “moving directly
towards the closest coherent credence assignment seems like a reasonable way
to improve coherence” (Staffel, 2019, p. 84). For concreteness, let’s measure
inaccuracy by the Brier score, B:

B(b,H) = (1− b(H))2 + (0− b(¬H))2 (1)

B(b,¬H) = (0− b(H))2 + (1− b(¬H))2 (2)

And let’s measure the proximity from one credence function b to another c by
the “Bregman divergence” associated with the Brier score, DB, which is just
squared Euclidean distance:

DB(b, c) = (b(H)− c(H))2 + (b(¬H)− c(¬H))2 (3)

The closest coherent credence assignment to Joshua’s when measuring closeness
using squared Euclidean distance is:

c(H) = 0.5, c(¬H) = 0.5 (4)

And moving “directly towards” c just means adopting some convex combination
of b and c:

bλ(H) = λc(H) + (1− λ)b(H), bλ(¬H) = λc(¬H) + (1− λ)b(¬H) (5)

So Joshua could nudge toward coherence, for example, by first adopting a
credence of 0.21 for H and ¬H, respectively, and then adopting a credence of
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0.22, and so on. This seems reasonable, according to Staffel, for a number of
reasons. Firstly, as you nudge b directly toward c, you end up with credences
that are guaranteed to be increasingly accurate (i.e., have a strictly lower Brier
score):

B(b,H) B(b,¬H)
b0(H) = b0(¬H) = 0.2 0.68 0.68

b0.0333(H) = b0.0333(¬H) = 0.21 0.6682 0.6682
b0.0666(H) = b0.0666(¬H) = 0.22 0.6568 0.6568

...
...

...
b0.9666(H) = b0.9666(¬H) = 0.49 0.5002 0.5002

b1(H) = b1(¬H) = 0.5 0.5 0.5

On top of this, nudging b directly toward c reduces the extent to which Joshua’s
credences are Dutch-bookable according to a number of measures of Dutch book
vulnerability. For example, according to the neutral/sum measure of Dutch
bookability considered by Schervish et al. (2003), we calculate Joshua’s Dutch-
bookability by buying and/or selling bets to/from him in a way that maximizes
the amount he is guaranteed to lose (normalizing the loss by the sum of the
total stakes) ((Schervish et al., 2003, p.5), (Staffel, 2019, p. 64)). In the case at
hand, we maximize the (normalized) amount that Joshua is guaranteed to lose by
buying the gamble [$1 if H, $0 otherwise] from him for $0.2 (which he considers
fair) and buying the gamble [$1 if ¬H, $0 otherwise] from him for $0.2 (which he
also considers fair). The result is a normalized sure loss of $0.3 (=total loss/sum
of stakes=0.6/2). If Joshua nudges his credences from 0.2 to x ∈ (0.2, 0.5], he
incurs a normalized sure loss of (1− 2x)/2, which gets smaller as x approaches
1/2. So his degree of Dutch bookability decreases as he nudges toward coherence.

To recap: if Joshua had the incoherent credences b(H) = b(¬H) = 0.2, knew
nothing about the bias of the coin, and had no other information suggesting one
credence deserves more revision than another, then this seems as good a way to
go as any. Given his lack of information, the only evaluative facts he can rely
on to revise his credences are ones that are guaranteed to hold. Approximating
coherence by nudging directly toward c(H) = c(¬H) = 0.5 is guaranteed to yield
more accuracy and less Dutch bookability, as we just saw (at least relative to
one measure of accuracy and Dutch-bookability, respectively). And no other
way of revising his credences is guaranteed to do better. So no alternative is
obviously preferable.

But in our example Joshua is not in such an informationally impoverished
situation. He does have more to go on. In particular, Joshua knows that the coin
has a 0.2 bias toward heads. In that case, he need not rely only on evaluative
facts that are guaranteed to hold. He might also rely on facts about what the
objective chance function expects to hold. This is what leads Jim Joyce to
respond to Joshua’s case as follows:

I do not praise Franco when I say that Hitler was worse along every
dimension of dictatorial evil. I am not recommending Northern
Manitoba’s climate when I tell you that the weather in Churchill
is better than the weather in Vostok in every season. Likewise,
when I point out that Joshua’s credences are accuracy-dominated by
〈0.5, 0.5〉 I do not imply that he should adopt the latter beliefs. In
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fact, as we will see below, I should be quite certain that a person
who knows what Joshua does about the chances should not adopt
any of the credences that dominate his own. What he should do,
instead, is to reflect more carefully on his total evidence with the
goal of finding a credal state that strikes the optimal balance between
the good of being confident in truths and the evil of doubting them,
it being understood that this optimal state might well not be found
among the dominating credences. When he does he will see that the
optimal credences are 〈0.2, 0.8〉. (Joyce, 2013, p. 15)

The true chance function expects

ch(H) = 0.2, ch(¬H) = 0.8 (6)

to be maximally accurate (relative to the Brier score or any other strictly proper
scoring rule). It also expects moving along the straight line from b to ch to
strictly improve accuracy (on any strictly proper scoring rule). Even better, it
expects moving along the straight line from b to ch to improve accuracy more
than moving along the straight line from b to c.

Figure 1: Objective expected Brier inaccuracy of λc+ (1− λ)b (blue)
and λch+(1−λ)b (orange) for λ ∈ [0, 1]; Objective expected Spherical
inaccuracy of λc+ (1− λ)b (green) and λch + (1− λ)b (red).

In light of this fact, approximating coherence by nudging “directly towards” ch
improves the justification of Joshua’s credence more than moving directly towards
c, on Joyce’s view (Joyce, 2013, p. 17). So there is a clear epistemic rationale
for setting aside Staffel’s default advice about how to improve coherence.4 The

4Staffel very openly does not provide general advice about how to improve coherence.
Though “we would ultimately like to answer questions about how particular irrational thinkers
should reason or change their credences,” Staffel says, “taken by itself, the evaluative theory I
have developed cannot (and is not intended to) answer these questions” (Staffel, 2019, p. 160).
In general, how we should improve coherence will depend on a range of epistemic factors—e.g.,
facts about objective expected accuracy, if you happen to have evidence about the chances—as
well as practical factors, e.g., whether spending mental energy improving coherence in some
domain is worthwhile, or whether that mental energy might be better put to another purpose
(Staffel, 2019, p. 161).
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rationale is this: another path toward coherence is objectively expected to yield
more epistemic value (accuracy and justification if Joyce is right) than the path
toward the closest dominator. And Joshua knows what the true chance function
is.

There is also a clear practical rationale for Joshua to improve coherence by
nudging b towards ch rather than c. Consider an arbitrary bet on H that Joshua
might face.

H ¬H
F a b
G c d

For concreteness, let a = 3, b = 4, c = −1 and d = 6. So Joshua faces the
following decision problem, D:

D H ¬H
F 3 4
G -1 6

Suppose that Joshua uses his credence b(H) = 0.2 to make his choice. Then he
will choose G, since the expected utility of G is higher than the expected utility
of F according to b(H) = 0.2:

b(H)(a) + (1− b(H))(b) = (0.2)(3) + (1− 0.2)(4) (7)

= 3.8 (8)

< 4.6 (9)

= (0.2)(−1) + (1− 0.2)(6) (10)

= b(H)(c) + (1− b(H))(d) (11)

Would it be better for Joshua to use some other credence x for H to decide
between F and G? According to the true chance function, no. In decision
problem D, any x < 1/3 uniquely recommends G and any x > 1/3 uniquely
recommends F . (If x = 1/3, then both F and G are choiceworthy.) So chance
expects Joshua to end up with the following utility if he uses any credence
x < 1/3 to guide his choice:

ch(H)u(G&H) + ch(¬H)u(G&¬H) = (0.2)(−1) + (1− 0.2)(6) = 4.6 (12)

If x > 1/3 then the objective expected utility is

ch(H)u(F&H) + ch(¬H)u(F&¬H) = (0.2)(3) + (1− 0.2)(4) = 3.8 (13)

If Joshua flips a fair coin to decide when both F and G are choiceworthy, i.e.,
when x = 1/3, then chance expects him to end up with utility 4.2. In any case,
Joshua’s credence of 0.2 for H maximizes objective expected utility (as does any
x < 1/3).

What about Joshua’s credence for ¬H? Would it be better for him to use
some other credence y for ¬H to decide between F and G? Yes! In decision
problem D, any y < 2/3 recommends F and its objective expected utility is
3.8. Any y > 2/3 recommends G and its objective expected loss is 4.6. And if
y = 2/3 and Joshua flips a fair coin to break the tie between F and G, then
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his objective expected utility is 4.2. The upshot: Joshua’s credence of 0.2 for
¬H minimizes rather than maximizes objective expected utility (as does any
y < 2/3). He would be better off using a credence y > 2/3 for ¬H.

Now suppose that we calculate the objective expected guidance value in D of
any pair of credences 〈x, y〉 by the sum of their individual objective expected
utilities in D. Then ch = 〈0.2, 0.8〉 maximizes objective expected guidance value
in D. Moreover, the true chance function expects moving along the straight line
from b to ch to (weakly) increase guidance value in D. Interestingly, it expects
moving along the straight line from b to c to (weakly) decrease guidance value
in D, even though it improves Dutch bookability.

Figure 2: Objective expected guidance value of λc+ (1− λ)b (blue)
and λch + (1− λ)b (orange) in D for λ ∈ [0, 1].

What’s going on here? Well, moving along the straight line from b to c raises
Joshua’s credence in H from 0.2 to 0.5. From the perspective of the true chance
function, this is a bad idea. If Joshua uses his current credence of 0.2 in H to
guide his choice in D, he will choose G, which is what chance prefers. But once
his credence crosses the 1/3 threshold, he will will choose F . And chance thinks
that choosing F is likely to lead to greater loss.

On the other hand, chance is no fan of Joshua’s 0.2 credence in ¬H. If
Joshua uses his 0.2 credence in ¬H to guide his choice in D, he will choose F ,
which gets a Booooo! from chance. But moving along the straight line from b to
c does not push his credence in ¬H high enough. Joshua needs to cross the 2/3
threshold to switch from F to G. Moving along the straight line from b to c will
never get him there. So, from chance’s perspective, approximating coherence by
moving from b directly towards c is all risk and no reward.

Moving along the straight line from b to ch is another story. Approximating
coherence in this way will leave his current credence of 0.2 in H intact. So if
Joshua uses this credence to guide his choice in D, he will continue to choose G—
the right answer from chance’s perspective. Even better, moving from b directly
towards ch will eventually push his credence in ¬H across the 2/3 threshold.
Once it crosses the threshold, then using his credence in ¬H to guide his choice
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will also lead him to choose G. So, from chance’s perspective, approximating
coherence by moving from b directly towards ch is all reward and no risk.

Of course, objective expected guidance value in D is not objective expected
guidance value tout court. But that’s no problem. Something similar is true
for any binary decision on H and ¬H. In any such problem, there is some
threshold q that divides the credences that recommend F from the credences
that recommend G. Any credence x on one side of q will recommend F (or G,
depending on the utilities in play). Any x on the other side of q will recommend
the other option. (If x = q, then it recommends both.) And chance will always
expect credences x for H on the same side of q as ch(H) = 0.2 to maximize utility.
Credences on the wrong side of q minimize expected utility. Likewise, chance
will always expect credences y for ¬H on the same side of 1− q as ch(¬H) = 0.8
to maximize utility. Credences on the wrong side minimize expected utility.

But the only credence x for H that is on the same side of q as ch(H) = 0.2
for all q ∈ [0, 1] is x = 0.2. So the only credence for H that maximizes objective
expected utility for every possible bet on H and ¬H is the chance of H itself,
viz., 0.2. Ditto for ¬H. The only credence for ¬H that maximizes objective
expected utility for every possible bet on H and ¬H is the chance of ¬H itself,
viz., 0.8. Hence ch = 〈0.2, 0.8〉 is the unique credal state that maximizes objective
expected guidance value in all binary decision problems on H and ¬H.

This gives us a grip on the best way for Joshua to approximate coherence
from the practical perspective. The true chance function expects moving along
the straight line from b to ch to (weakly) increase guidance value in all binary
decision problems on H and ¬H. The reason is simple. Moving along the
straight line from b to ch will never shift any of your credences from the right
side of the decision-threshold to the wrong side, according to the true chance
function (since both ch(H) = 0.2 and ch(¬H) = 0.8 are on the right side of their
respective thresholds from chance’s perspective). So it cannot strictly decrease
objective expected guidance value. But if b(¬H) = 0.2 is on the wrong side of
the decision threshold, then moving it toward ch(¬H) = 0.8 will eventually pull
it onto the right side. So it can strictly increase objective expected guidance
value). (Indeed, this true whenever you approximate coherence by moving b
uniformly toward ch, whether you follow the straight line or not.) The moral:
approximating coherence by moving from b directly (or even just uniformly)
towards ch is all reward and no risk, from chance’s perspective, regardless of
which binary decision problem on H and ¬H you happen to face. But as we
saw earlier, approximating coherence by moving b directly towards its closest
dominator c sometimes decreases objective expected guidance value.

Where does this leave us? There is a clear epistemic and practical rationale
for Joshua to improve coherence by nudging b towards ch rather than c. Even
though nudging b towards c is guaranteed to improve accuracy and nudging b
towards ch is not, the latter is nevertheless preferable to the former from the
epistemic perspective. The reason: nudging b towards ch is objectively expected
to yield more accuracy than nudging b toward c. And Joshua knows the chances!
Likewise, even though nudging b towards ch reduces one’s degree of guaranteed
loss (Dutch bookability) no more or less than a comparable nudge towards c,
the latter is nevertheless preferable to the former from the practical perspective.
The reason: nudging b towards ch is objectively expected to yield more guidance
value than nudging b toward c.

All of this reveals a slight oddity at the heart of Staffel’s approach. Staffel
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answers the gradational question—Why is it good to be less, rather than more
incoherent?—as follows. There is some way of nudging incoherent credences
toward coherence that both reduces the extent to which they are Dutch-bookable
and is guaranteed to make them more accurate. This, according to Staffel, shows
that there is a way of improving coherence that delivers increasing amounts
of practical and epistemic value. But measures of Dutch bookability are not
good measures of practical value. Credences are practically valuable in virtue
of guiding action well. And guiding action well is a matter of recommending
practically valuable actions—ones that produce as much utility as possible.
Conspiracy theorists and superforecasters may both be probabilistically coherent.
So they may both be perfectly immune to Dutch books. But the credences of
the latter are nevertheless better at guiding action than the former (from the
perspective of both truth and chance). And if Dutch bookability can remain
fixed while guidance value varies, then Dutch bookability is not a good measure
of practical value. Similarly, in our running example,

d(H) = 0.2, d(¬H) = 0.794 (14)

is Dutch bookable and

c(H) = 0.5, c(¬H) = 0.5 (15)

is not. But chance expects d’s recommended action to produce at least as much
utility as c’s in every binary decision problem, and sometimes strictly more
(since d’s credences are uniformly closer to the true chances than c’s). So chance
expects d to be better than c at guiding action. But chance also expects (indeed
is certain) that c is less Dutch-bookable than d. If chance’s view of guidance
value and Dutch bookability can come apart like this, then so much the worse
for Dutch bookability as a measure of practical value.

Of course, if your credences are Dutch bookable, then they must be incoherent.
And in that case, they are guaranteed to be worse at guiding action than some
other credences (see section 3). So Dutch bookability is a surefire sign that one’s
credences are needlessly bad at guiding action. But your degree of immunity
to Dutch books is not itself a good measure of how practically valuable your
credences are.

The lesson, I think, is that Staffel’s approach needs a small tweak. Following
Schervish (1989), Levinstein (2017) and Pettigrew (2020), I propose using strictly
proper scoring rules to measure both accuracy and guidance value. If the principal
epistemic role of credences is to encode accurate truth-value estimates, then
strictly proper scoring rules are fit to serve as measures of epistemic value.
Likewise, if the principal practical role of credences is to recommend actions
that produce as much utility as possible, then strictly proper scoring rules are fit
to serve as measures of practical value. The upshot: we ought to replace Dutch
bookability measures in Staffel’s framework with strictly proper scoring rules. I
will argue that this allows us to give a more satisfying version of Staffel’s answer
to the gradational question.

3 The Solution

One last time, consider an arbitrary binary decision problem D on X and ¬X
that Joshua might face.

9



X ¬X
F a b
G c d

For any credence x in X, there is some act that x recommends in D, viz., the
act that maximises expected utility. If

(x)(a) + (1− x)(b) > (x)(c) + (1− x)(d) (16)

then x uniquely recommends F in D. In that case, we call F the Bayes act
(relative to x in D). If

(x)(a) + (1− x)(b) < (x)(c) + (1− x)(d) (17)

then x uniquely recommends G (G is the Bayes act). If

(x)(a) + (1− x)(b) = (x)(c) + (1− x)(d) (18)

then x recommends both F , G, and any coin flip between the two (any “mixed
act”). In that case, we can simply pick one of F , G or a mixture as “the” Bayes
act, since all are equally choiceworthy. How we pick won’t matter.5

Using the Bayes act, we can define the loss of credence x in decision problem
D and state X, which we denote LD(x,X). LD(x,X) is the difference between
the maximum possible utility achievable in state X and the utility that x’s
recommended action produces in X. For example, if a > c and x recommends G
in D, then LD(x,X) = a− c, since a is the maximum possible utility achievable
in state X and c is the utility that G produces in X. LD(x,X) represents how
far x’s recommended action falls short of the objectively best action to perform
in state X. (For formal details, see the appendix.) Similarly, LD(x,¬X) is the
difference between the maximum possible utility achievable in state ¬X and the
utility that x’s recommended action produces in ¬X.

Finally, we can use these losses to measure the guidance value of credence x
if X is true or false, respectively. Firstly, choose a measure µ on the space of all
possible binary decision problems. The measure µ might reflect: (i) how likely
it is that your next decision problem will fall in one class or another from the
perspective of the true chance function (objective doxastic interpretation); (ii)
how likely this is from your own perspective (subjective doxastic interpretation);
(iii) how much you care about choosing well in any given class of choice problems
(subjective bouletic interpretation). We will return to this question in section 4.
In any case, given a measure µ, we can measure the guidance value of credence
x in state X by integrating the losses LD(x,X) relative to µ:

g1(x) =

∫
D
LD(x,X) dµ

g1(x) represents how far x’s recommended action falls short of the objectively
best action (maximum possible utility) in state X on average (according to µ).

5It won’t matter for two reasons. Firstly, the class of decision problems with non-unique
Bayes acts will be a set of measure zero relative to any measure that is absolutely continuous
with respect to the Lebesgue measure on R4 (i.e., the space of possible decision problems).
Secondly, relative to any measure on R4 and any choice of Bayes act in this case, the measure
of guidance value that we construct will turn out to be strictly proper.
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It is worth emphasising that g1 penalises x for recommending actions that are
suboptimal in state X. The lower the penalty, the better x does (at guiding
action, on average, in state X).

Similarly, we can measure the guidance value of x in state ¬X by integrating
the losses LD(x,¬X) relative to µ:

g0(x) =

∫
D
LD(x,¬X) dµ

g0(x) represents how far x’s recommended action falls short of the objectively
best action in state ¬X on average (according to µ).

What’s more, we can prove that any pair of guidance value measures 〈g0, g1〉
that are constructed in this way are strictly proper (given fairly weak assumptions
about µ; see appendix):

Proposition 1. For any x, p ∈ [0, 1] with x 6= p

pg1(x) + (1− p)g0(x) > pg1(p) + (1− p)g0(p)

We can then calculate the guidance value of an entire credence function c : F → R
(where F is a σ-algebra on a finite sample space Ω) at a world w ∈ Ω by taking
a weighted average of the guidance value of c(X) for each X ∈ F :

G(c, w) =
∑

X∈F : w∈X
λXg1(c(X)) +

∑
Y ∈F : w 6∈Y

λY g0(c(Y ))

As (Pettigrew, 2020, pp. 76-77) notes, we can use such guidance value measures
to provide a new pragmatic argument for probabilism. For any agent with
incoherent credences b and any reasonable measure of guidance (dis)value G
(which is strictly proper according to proposition 1), there is some coherent set
of credences c that is guaranteed to guide action strictly better than b, i.e.,

G(c, w) < G(b, w)

for all w ∈ Ω Predd et al. (2009). Coherent credences are never guidance-value-
dominated in this way. This shows that incoherent credences are needlessly bad
at guiding action.

In addition, we can use these guidance value measures to provide a more
satisfying version of Staffel’s answer to the gradational question. Why is it good
to be less, rather than more incoherent? The answer: the cardinal epistemic
good-making feature of credences is accuracy. And strictly proper scoring rules
are the right tools to measure accuracy. Similarly, the cardinal practical good-
making feature of credences is guiding action well, or put more perspicuously,
recommending actions that produce as much utility as possible. Strictly proper
scoring rules are the right tools for measuring this as well. Moreover, when
one’s epistemic scoring rule and practical scoring rule are “sufficiently similar,”
then there is some way of nudging incoherent credences toward coherence that
is guaranteed to yield more of both types of value, relative to those scoring rules.
More carefully:

1. Veritistic Epistemic Value: Credences have epistemic value in virtue
of being accurate (i.e., encoding accurate truth-value estimates). So the
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epistemic value of a credence function c : F → R at a world w is given by
−I(c, w), where I is some reasonable measure of inaccuracy. We assume
that I is additive, i.e.,

I(c, w) =
∑

X∈F : w∈X
λXf1(c(X)) +

∑
Y ∈F : w 6∈Y

λY f0(c(Y ))

and that f1 and f0 are continuous and strictly proper.
2. Causalist Practical Value: Credences have practical value in virtue of

recommending practically valuable actions. And actions have practical value
in virtue of producing utility. So the practical value of a credence function
c : F → R at a world w is given by −G(c, w), where G is some reasonable
measure of guidance value. G is a reasonable measure of guidance value just
in case −G(c, w) captures the extent to which c recommends actions that
produce maximal utility in w (on average, in binary decision problems).
We assume that G is additive, i.e.,

G(c, w) =
∑

X∈F : w∈X
λXg1(c(X)) +

∑
Y ∈F : w 6∈Y

λY g0(c(Y ))

and that g1(x) and g0(x) take the following form:

g1(x) =

∫
D
LD(x,X) dµ

and

g0(x) =

∫
D
LD(x,¬X) dµ

3. Proposition 1 (appendix). Any reasonable measure of guidance value
G is strictly proper.

4. Similarity Postulate: If I and G are reasonable measures of the epis-
temic and practical value of a single agent’s credences, then they must be
“sufficiently similar” to one another in the following sense: If x + y > 1,
then

xy

(1− x)(1− y)
>
m(x)/n(x)

m(y)/n(y)
,
m(y)/n(y)

m(x)/n(x)

and if x+ y < 1, then

xy

(1− x)(1− y)
<
m(x)/n(x)

m(y)/n(y)
,
m(y)/n(y)

m(x)/n(x)

where m and n are the Schervish density functions of I and G (see below).
5. Nudge Toward Coherence. If I and G are “sufficiently similar,” in the

sense of the Similarity Postulate, then for any incoherent credence function
b : F → R, there is some coherent credence function c : F → R such that
nudging b in the direction of c is guaranteed to yield more epistemic and
practical value, respectively, i.e.,

∇cI(b, w) < 0

and
∇cG(b, w) < 0

for all w ∈ Ω. (Propositions 3 and 4 in the appendix prove this for the
special case of F = {X,¬X}.)
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6. Dominance. If credences c are guaranteed to be more epistemically and
practically valuable than credences b, then any agent ought to strictly
prefer c to b.

C. Any agent with incoherent credences b ought to strictly prefer the result
of nudging b toward some coherent c over b itself, i.e., she ought to strictly
prefer (1− ε)b+ εc to b (for some ε > 0).

I will not defend premises 1 and 2 further here. Premise 3 is a slight variant
of a result in (Pettigrew, 2020, 6.3.2). Proofs of premises 3 and 5 are in the
appendix. Premise 6 is uncontroversial.6 That just leaves premise 4 as the odd
duckling.

To get a sense of what premise 4 amounts to, consider three popular strictly
proper rules:

• Brier Score: I(c, w) =
∑
X∈F

(w(X)− c(X))2

• Log Score: I(c, w) =
∑
X∈F

−log(|1− w(X)− c(X)|)

• Spherical Score: I(c, w) =
∑
X∈F

(
1− |1− w(X)− c(X)|√

c(X)2 + (1− c(X))2

)

Building on the work of (Savage, 1971, pp. 786-7), (Schervish, 1989, Thm 4.2)
shows that a pair of scoring rules f1 and f0 are continuous and strictly proper if
and only if there is some non-negative density function m : [0, 1] → R>0 such
that

f1(x) =

∫ 1

x

(1− t)m(t) dt

and

f0(x) =

∫ x

0

tm(t) dt

and
∫ b
a
m(t) dt > 0 for any 0 6 a < b 6 1.7 This density function m is what I

called the Schervish density function in premise 4. These density functions are
closely related to the measure µ that we used to construct our guidance value
measures.8 µ reflects either (i) how likely it is that your next decision problem
will fall in one class or another (objectively or subjectively), or (ii) how much you
care about choosing well in any given class of choice problems. The Schervish
density function can be thought of as condensing the information in µ. It lumps
each (binary) decision problem together with all of the other decision problems
that share the same decision threshold q (section 2), which are sometimes called
q-problems. It reflects either (i) how likely it is that your next decision problem

6(Pettigrew, 2016, Ch. 2) argues that we ought to weaken Dominance to a principle he calls
“Immodest Dominance.” But Pettigrew casts Dominance as a principle governing rationality
rather than strict preference. None of Pettigrew’s concerns impugn the Dominance principle
governing strict preference.

7(Schervish, 1989, Thm 4.2) actually only requires that f1 and f0 are left continuous and
that their values at 0 and 1 are the limits of their values as you approach 0 and 1 from the
right and left, respectively.

8The density m is the Radon–Nikodym derivative (with respect to the Lebesgue measure)
of a certain transformation of µ.
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will be a q-problem (objectively or subjectively), or (ii) how much you care about
choosing well in a q-problem.

In any case, here are the Schervish density functions for the Brier, Log and
Spherical scores, respectively.

Fig 3: Brier score density. Fig 4: Log score density. Fig 5: Spherical score density.

To help illustrate what premise 4 means, observe: The Brier score is “suffi-
ciently similar” to both the Log and Spherical scores. That is, the Brier density
and Log density satisfy the Similarity Postulate. The Brier density and the
Spherical density also satisfy the similarity postulate. But the Log and Spherical
scores are just too different to satisfy the Similarity Postulate. To see this, let
m be the Log density:

m(t) =
1

t(1− t)
Let n be the Spherical density:

n(t) =

(3−2t)t−1
(1+2(t−1)t)3/2 + 1

(1+2(t−1)t)1/2

t

And consider the incoherent credences x = 0.9 for X and y = 0.2 for ¬X. Then
we have

xy

(1− x)(1− y)
= 2.25,

m(x)/n(x)

m(y)/n(y)
≈ 2.35,

m(y)/n(y)

m(x)/n(x)
≈ 0.425

So the Log score and Spherical score jointly violate the Similarity Postulate
(since 2.25 6> 2.35).

Here’s what this means. If your epistemic scoring rule is the Spherical score
and your practical scoring rule is the Brier score, then they are “sufficiently
similar” for there to be single way of nudging 〈0.9, 0.2〉 toward coherence that is
guaranteed to yield more of both types of value. But if your epistemic scoring
rule is the Spherical score and your practical scoring rule is the Log score, then
they violate the Similarity Postulate and our main argument guarantees no such
thing. Indeed, in this case any way of nudging 〈0.9, 0.2〉 toward coherence that
is guaranteed to increase epistemic value fails to deliver a guaranteed increase
in practical value (and vice versa).

Hopefully this gives a little insight into our mysterious little duckling. Let’s
take stock. I argued that Staffel’s approach to the gradational question is
promising, but needs a small tweak. We can show that it’s better to be more
rather than less coherent. To do so, we need to identify reasonable measures
of epistemic and practical value, respectively. Then we need to show that
we can always nudge incoherent credences toward coherence in a way that is
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guaranteed to yield more of both types of value. Staffel’s problem, I argued,
was that while she identified appropriate measures of epistemic value, she did
not identify appropriate measures of practical value. Staffel uses measures of
Dutch-bookability as her preferred measures of practical value. But credences
have practical value in virtue of recommending actions that produce as much
utility as possible. And while susceptibility to a Dutch book is a surefire sign that
one’s credences are needlessly bad at this task, one’s degree of Dutch-bookability
is not itself a good measure of how well they recommend practically valuable
actions. Strictly proper scoring rules are the right tools, I argued, for measuring
both epistemic and practical value. Luckily, we can rerun Staffel’s strategy
swapping in strictly proper scoring rules for Dutch-bookability measures and
end up with a very similar conclusion.

How satisfying is this new version of Staffel’s answer to the gradational
question? That depends primarily on what sort of case can be made for the
Similarity Postulate. Perhaps disappointingly, I will not attempt anything like
a proper defence of it here (though I will say a bit more in section 4). It is
worth noting, however, that Staffel guarantees that there is sufficient similarity
between measures of epistemic and practical value by requiring the former to be
convex. While Joyce (2009) offers some considerations in favour of Convexity, it is
nevertheless controversial. Defending Convexity is not obviously easier or harder
than defending the Similarity Postulate. So I think we have successfully defused
the basic problem for Staffel’s approach without incurring much dialectical cost.
And ditching Convexity in favour of the Similarity Postulate comes with some
advantages. For example, our main argument establishes that it’s better to be
more rather than less coherent even when your epistemic scoring rule is the
Spherical score. But the Spherical score is not convex. So Staffel’s original
argument does not establish this.

Before wrapping up, let’s return one more time to Joshua. Joshua’s case led
us to the realisation that we ought to replace Dutch bookability measures in
Staffel’s framework with measures of guidance value (which turn out to take a
familiar form: they are strictly proper scoring rules). And that led to a more
satisfying version of Staffel’s answer to the gradational question. But Joshua
is no mere stepping stone! Let’s use what we have learned about measures of
guidance value to more carefully diagnose why Joshua should nudge toward
coherence in one way rather than another.

Recall, Joshua has the incoherent credences

b(H) = 0.2, b(¬H) = 0.2

The closest coherent credences to Joshua’s (when measuring accuracy by the
Brier score and closeness by squared Euclidean distance) are:

c(H) = 0.5, c(¬H) = 0.5

And the chance of heads and tails—which Joshua knows—are:

ch(H) = 0.2, ch(¬H) = 0.8

We said that there is a clear epistemic rationale for Joshua to nudge towards
ch rather than c. Even though nudging b towards c is guaranteed to improve
accuracy and nudging b towards ch is not, nudging towards ch is objectively
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expected to yield more accuracy than nudging towards c. Using the Brier score,
B, to measure inaccuracy, we can make the point even more explicitly. Nudge b
towards c. Let’s go half way between the two, just for concreteness. Then we
end up with:

p(H) = 0.35, p(¬H) = 0.35

If we slide b half way towards ch we end up with:

q(H) = 0.2, q(¬H) = 0.5

Observe: p is guaranteed to have a lower Brier score (be less inaccurate) than b;
q is not.

B(·, H) B(·,¬H)
b 0.68 0.68
p 0.5 0.5
q 1.28 0.08

Nevertheless, chance expects q to have a lower Brier score than p:

Ech(B(q)) = 0.41, Ech(B(p)) = 0.545

And Joshua knows the chances! This gives him good epistemic reason to prefer
q (the result of nudging b towards ch) over p (the result of nudging b towards c).
Of course, Joshua may not know that the Brier score is the “true” measure of
accuracy, as we have assumed. But

Ech(I(q)) < Ech(I(p))

for any strictly proper scoring rule I (because q’s probabilities are uniformly closer
to ch’s than p’s). So Joshua knows that q has higher objective expected accuracy
than p simply because this is true for all reasonable inaccuracy measures.

We also said that there is a clear practical rationale for Joshua to nudge b
towards ch rather than c. Even though nudging b towards ch reduces one’s degree
of guaranteed loss (Dutch bookability) no more or less than a comparable nudge
towards c, nudging towards ch is objectively expected to yield more guidance value
than nudging towards c. Using a particular measure of Dutch book vulnerability,
e.g., the neutral/sum measure, and a particular scoring rule to measure guidance
value, e.g., the log score, L, we can put the point more explicitly. Nudging b
towards c and ch, respectively (resulting in p and q), improves Joshua’s Dutch
book vulnerability to exactly the same degree, according to the neutral/sum
measure:

Neutral/sum measure
b 0.3
p 0.15
q 0.15

Nevertheless, chance expects q to have a lower Log score (higher guidance value)
than p:

Ech(L(p)) = 1.48, Ech(L(q)) = 1.19
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Since Joshua knows the chance of H and ¬H, this gives him good reason to
prefer making decisions with q rather than p. Of course, Joshua may not know
that the Log score is the “true” measure of guidance value, as we have assumed.
But

Ech(G(q)) < Ech(G(p))

for any strictly proper scoring rule G. So Joshua knows that q has higher objective
expected guidance value than p simply because this is true for all reasonable
guidance value measures.

You might still wonder: what does it really mean to say that q has higher
objective expected guidance value than p? What sort of reason does this give
Joshua to prefer making decisions with q rather than p? Again, the reason
roughly is that chance expects q to recommend actions that produce more utility
on average than q does. But what “on average” amounts to depends on how we
interpret G. Recall

G(c, w) =
∑

X∈F : w∈X
g1(c(X)) +

∑
Y ∈F : w 6∈Y

g0(c(Y ))

where

g1(x) =

∫ 1

x

(1− q)m(q) dq

g0(x) =

∫ x

0

qm(q) dq

and m is a Schervish density function. This density function might reflect the
chance that next binary decision problem Joshua will face on H and ¬H will be
a q-problem (i.e., a decision problem where all the credences on one side of q
recommend one option and all the credences on the other side of q recommend
the other option). In that case, Ech(G(p)) is just chance’s best unconditional
estimate of how far p’s recommended action will fall short of optimal in that
next problem. Ditto for Ech(G(q)). Knowing these best estimates seems like
excellent reason to prefer making decisions with q rather than p.

Alternatively, the density function m might reflect Joshua’s degree of belief
that next binary decision problem he will face on H and ¬H will be a q-problem.
In that case, Ech(G(p)) is what Joshua should adopt, given his knowledge of the
chance of H and ¬H, as his own best estimate of how far p’s recommended action
will fall short of optimal in the next decision problem (according to G).9 Ditto
for Ech(G(q)). This too gives him excellent reason to prefer making decisions
with q rather than p.

Finally, the density function m might reflect how much Joshua cares about
choosing well in different types of decision problems. On this interpretation
(roughly speaking), the larger m(q) is, the more Joshua cares about choosing well
in q-problems. In that case, g1(x) represents how far x’s recommended action
will fall short of optimal on average if X is true. But the decision problems
that Joshua cares more about figure more heavily into this average. The ones
he cares less about figure in less heavily. Similarly for g0(x). Ech(G(p)), then,

9More carefully, it is the estimate that he would adopt if (i) he adopted the known chances
of H and ¬H as his own credences and (ii) used his expectation of p’s (and q’s) guidance value
as his best estimate(s), which is what coherence requires.
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can be glossed roughly as chance’s best estimate of how far p’s recommended
action will fall short of optimal in the decision problems that Joshua cares most
about. (Better but more opaque: Ech(G(p)) is chance’s best estimate of how far
p’s recommended action will fall short of optimal on priority-weighted-average.)

Does this give Joshua good reason to prefer making decisions with q rather
than p? That’s not so clear. If, for example, Joshua was sure that he was
going to face the decision problems that he cares least about, then chance’s
best estimate of how good p’s (and q’s) recommended actions will be in the
problems he cares most about would be neither here nor there. Preferring to
make decisions with q rather than p on the basis of such estimates would be no
better than wishful thinking (i.e., wishfully thinking that he will face one type
of decision problem when he will likely face another). Even if Joshua has no
idea which decision problem he will face, it seems like wishful thinking to prefer
q to p on this basis. Joshua doxastic state should not preclude the possibility
that his most preferred decision problems are highly unlikely. But in that case,
the mere fact that chance expects q to do better than p in those problems is not
decisive reason to prefer q to p.10

This is symptomatic of a deeper problem with the subjective bouletic inter-
pretation. Credences have practical value at a world in virtue of recommending
actions which are practically valuable at that world. And actions have practical
value at a world in virtue of producing utility at that world. Now, as we have
set things up, “worlds” are just elements w of a finite sample space Ω. They
determine the truth-value of any proposition X in F (which is just a σ-algebra
on Ω): X is true if w ∈ X and false otherwise. But they do not determine which
binary decision problems on X and ¬X any agent will face at that “world”. So
we cannot, strictly speaking, say how practically valuable actions—and hence
credences—are at such “worlds”. But we can come close if we independently
specify how likely (either objectively or subjectively) she is to face different
classes of decision problems. In that case, we can specify the expected practical
value of credences at such “worlds” and treat this expectation or estimate as a
proxy for their final practical value. This is precisely how measures of guidance
value function on the doxastic interpretation (both objective and subjective). But
on the bouletic interpretation, g1(x) and g0(x) are not estimates at all; certainly
not estimates of how close to optimal x’s recommended actions will be (in X
and ¬X, respectively). Rather, they reflect how close to optimal those actions
will be in the decision problems that the agent cares most about. But in general
this tells us nothing about how much utility those actions will actually produce
(or even produce in expectation). So are these “priority weighted averages” fit
to serve as proxies for final practical value? I see no reason to think so. That
is, I see no reason to think so unless we treat an agent’s level of concern for
q-problems (represented by m(q)) as her degree of belief that she will face a
q-problem. But that is just wishful thinking!

So much, then, for the subjective bouletic interpretation. The long and short

10If Joshua applied the Principle of Indifference, then you might be tempted to interpret
g1(x) =

∫ 1
x (1−q) ·m(q) ·1 dq as follows: Joshua’s degree of concern for q-problems, m(q), scales

the loss that x incurs in q-problems if X is true, (1− q). And n(q) = 1 reflects his uniform
subjective probability density over q-problems. Likewise for g0. In that case, Ech(G(p)) reflects
Joshua’s own best estimate of p’s scaled losses in the next decision problem. But the POI is
no requirement of rationality. So this way forward grounds no general reason for Joshua to
prefer q to p.
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of it is this: there is indeed a clear practical rationale for Joshua to nudge b
towards ch rather than c. The rationale is that either (i) Joshua himself should
expect (on the subjective doxastic interpretation) or (ii) Joshua knows that
chance expects (on the objective doxastic interpretation) that q will recommend
better actions than p; ones that will produce more utility in the next decision
problem that Joshua faces.

4 Open Questions

Let’s wrap up by considering a few open and pressing concerns about our new
version of Staffel’s answer to the gradational question.

1. The Similarity Postulate. A proper defence of our answer requires
a proper defence of the Similarity Postulate. Recall that the Similarity
Postulate says: If I and G are reasonable measures of the epistemic and
practical value of a single agent’s credences, then they must be “sufficiently
similar” to one another. More carefully, their Schervish densities must
be “sufficiently similar” to one another. But why in the world would we
expect this to be true? Perhaps if those densities each reflected some type
of preference that the agent has, we could work up an argument that they
should not be too dissimilar (maybe they are preferences over similar types
of options, or something of the sort). But we have already pooh-poohed the
subjective bouletic interpretation! So it seems that we will have to hope
for some tight(ish) correspondence between the chance-facts or belief-facts
that determine the density of G and whatever it is that determines the
density of I. Perhaps this can be done, but it is not obvious how.

2. Binarity. In our main argument, we assume that reasonable measures of
guidance value G are additive, i.e.,

G(c, w) =
∑

X∈F : w∈X
λXg1(c(X)) +

∑
Y ∈F : w 6∈Y

λY g0(c(Y ))

and that g1(x) and g0(x) take the following form:

g1(x) =

∫
D
LD(x,X) dµ

and

g0(x) =

∫
D
LD(x,¬X) dµ

D is the space of binary decision problems on X and ¬X, i.e., decision
problems of the form:

X ¬X
F a b
G c d

The result is that G(c, w) only captures the extent to which c’s recommended
actions in binary decision problems (actions like F or G) produce optimal
results in w (in expectation). But not all decision problems are binary!
Sometimes our menu has more than two options. And sometimes those
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options have more than two possible outcomes. Why ignore all of these
other decision problems when calculating the guidance value of c at w?
The reason is this: c only encodes truth-value estimates and truth-value
estimates are informationally limited. When an agent’s credences c are
probabilities, then coherence requires her to estimate any other variable
V (e.g., how much utility action A will produce in non-binary decision
problem D) with Ec(V )—the expected value of V relative to c. (If c is
probabilistic, then Ec is the unique coherent extension of c to the space of
all variables V : Ω→ R.) But when c is non-probabilistic, there is no way
to extract estimates of non-binary variables from c. (c is already incoherent.
So we cannot extract an estimate of V from c by looking at the unique
coherent extension of c. There is no such thing.) As a result, c simply
fails to provide any guidance value in non-binary decision problems. The
upshot: if we want to assess both coherent and incoherent credences for
guidance value using a common standard, then we must focus myopically
on binary decision problems.

But there is another way forward. Rather than assessing credences or
truth-value estimates and focusing myopically on binary decision problems,
we could directly specify an agent’s best estimates of all variables and
score these for accuracy and guidance value, respectively. If we go this
route, then we do not need to extract an estimate of V from c. We take
it is an input, just like credences/estimates of truth-values. This gives us
recommended actions in all decision problems: A is choiceworthy iff A
is amongst the options with maximal estimated utility. Schervish et al.
(2014a,b) explore scoring rules for such infinite sets of estimates/forecasts.

3. Single-Shot Guidance Value. Scoring rules

g1(x) =

∫
D
LD(x,X) dµ

and

g0(x) =

∫
D
LD(x,¬X) dµ

are expectations of the loss of x in state X and ¬X, respectively, only if the
decision problems in D are mutually exclusive and jointly exhaustive. And
they must be expectations (either objective or subjective) for G to be a
statistic worth caring about. Hence we must think of the decision problems
in D as different possible descriptions of a single decision problem that our
agent will face (cf. (Schervish, 1989, p. 1859)). But in that case, µ—and
hence g0, g1 and G—will change from one decision context to the next.
Consequently, whether the Similarity Postulate is satisfied will change
from one decision context to the next. You might worry that this renders
our version of Staffel’s answer to the gradational question rather brittle.
Whether or not this is so will depend on how concern #1 shakes out.

4. Nudge Toward Coherence. In the appendix, I prove that if one’s
epistemic score rule, I, and practical scoring rule, G, are “sufficiently
similar,” in the sense of the Similarity Postulate, then for any incoherent
credence function b : F → R, there is some coherent credence function
c : F → R such that nudging b in the direction of c is guaranteed to
yield more epistemic and practical value. But I only prove this for the
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special case of F = {X,¬X}, i.e., when you just have a credence for one
proposition and its negation, nothing more. A proper defence of our answer
to the gradational question requires generalising propositions 2-4 in the
appendix.

5 Conclusion

Why is it good to be less, rather than more incoherent? Julia Staffel answers this
question by showing that if your credences are incoherent, then there is some way
of nudging them toward coherence that is guaranteed to make them more accurate
and reduce the extent to which they are Dutch-bookable. This seems to show that
such a nudge toward coherence makes them better fit to play their key epistemic
and practical roles: representing the world and guiding action. I argued that
Staffel’s strategy needs a small tweak. While she identifies appropriate measures
of epistemic value, she does not identify appropriate measures of practical value.
Staffel measures practical value using Dutch-bookability scores. But credences
have practical value in virtue of recommending actions that produce as much
utility as possible. And while susceptibility to a Dutch book is a surefire sign that
one’s credences are needlessly bad at this task, one’s degree of Dutch-bookability
is not itself a good measure of how well they recommend practically valuable
actions. Strictly proper scoring rules are the right tools, I argued, for measuring
both epistemic and practical value. I then showed that we can rerun Staffel’s
strategy swapping in strictly proper scoring rules for Dutch-bookability measures.
So long as one’s epistemic scoring rule and practical scoring rule are “sufficiently
similar,” there is some way of nudging incoherent credences toward coherence
that is guaranteed to yield more of both types of value.

6 Appendix

6.1 Guidance Value and Strictly Proper Scoring Rules

Let the space of all binary decision problems be D = R4. A point 〈a, b, c, d〉 in
D represents the decision problem

X ¬X
F a b
G c d

Let µ be a measure on D such that∫
D
a dµ,

∫
D
bdµ,

∫
D
cdµ,

∫
D
ddµ <∞

and ∫
R

dµ > 0

for any non-degenerate regionR ⊆ D. For any x ∈ [0, 1] and any D = 〈a, b, c, d〉 ∈
D, let B(x,D) be the Bayes act in D according to x, i.e., the act that maximises
expected utility in D:

B(x,D) = arg max
H∈{F,G}

(xu(H,X) + (1− x)u(H,¬X))
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If B(x,D) is not unique (i.e., if (x)(a)+(1−x)(b) = (x)(c)+(1−x)(d)), then we
stipulate that B(x,D) is the mixed act λF + (1− λ)G for some λ ∈ [0, 1]. The
choice of λ is unimportant since the expected utility of F , G, and any mixture
of the two is the same when (x)(a) + (1− x)(b) = (x)(c) + (1− x)(d).

Let the loss of x in decision problem D and state X be

LD(x,X) = max {a, c} − u(B(x,D), X)

So the loss of x in state X is the difference between the utility that x’s rec-
ommended action B(x,D) produces in X and the maximum possible utility
achievable in state X. It represents how far x’s recommended action falls short
of the objectively best action to perform in state X. Likewise, let

LD(x,¬X) = max {b, d} − u(B(x,D),¬X)

Finally, let

g1(x) =

∫
D
LD(x,X) dµ

g0(x) =

∫
D
LD(x,¬X) dµ

g1(x) represents how far x’s recommended action falls short of the objectively
best action in state X on average, across all possible decision problems, where
the weight given to any class of decision problems is specified by µ. Ditto for
g0(x) (but in state ¬X). Note that given our choice of µ, g1(x), g0(x) <∞.

Proposition 1. For any x, p ∈ [0, 1] with x 6= p

pg1(x) + (1− p)g0(x) > pg1(p) + (1− p)g0(p)

Proof. Observe that

g1(x)− g1(p) =

∫
D
LD(x,X)− LD(p,X) dµ (19)

=

∫
D
u(B(p,D), X)− u(B(x,D), X) dµ (20)

and

g0(x)− g0(p) =

∫
D
LD(x,¬X)− LD(p,¬X) dµ (21)

=

∫
D
u(B(p,D),¬X)− u(B(x,D),¬X) dµ (22)

So

p(g1(x)− g1(p)) + (1− p)(g0(x)− g0(p)) (23)

= p

(∫
D
u(B(p,D), X)− u(B(x,D), X) dµ

)
(24)

+ (1− p)
(∫
D
u(B(p,D),¬X)− u(B(x,D),¬X) dµ

)
=

∫
D

(p u(B(p,D), X) + (1− p) u(B(p,D),¬X)) (25)

− (p u(B(x,D), X) + (1− p) u(B(x,D),¬X)) dµ
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By the definition of B(p,D), the inside term is always non-negative. And since
µ places positive measure on every non-degenerate region, it is strictly positive
on some measurable set. Hence

p(g1(x)− g1(p)) + (1− p)(g0(x)− g0(p)) > 0 (26)

6.2 Local Dominance Relative to Distinct Scoring Rules

Let

f1(x) =

∫ 1

x

(1− t)m(t) dt

f0(x) =

∫ x

0

t m(t) dt

I1(x, y) = f1(x) + f0(y)

I0(x, y) = f0(x) + f1(y)

and

g1(x) =

∫ 1

x

(1− t) n(t) dt

g0(x) =

∫ x

0

t n(t) dt

I∗1 (x, y) = g1(x) + g0(y)

I∗0 (x, y) = g0(x) + g1(y)

Note that

∂I1
∂x

(x, y) = (x− 1)m(x)

∂I1
∂y

(x, y) = y m(y)

∂I0
∂x

(x, y) = x m(x)

∂I0
∂y

(x, y) = (y − 1)m(y)

∂I∗1
∂x

(x, y) = (x− 1)n(x)

∂I∗1
∂y

(x, y) = y n(y)

∂I∗0
∂x

(x, y) = x n(x)

∂I∗0
∂y

(x, y) = (y − 1)n(y)

Define

posi({g1, . . . , gm}) =

∑
i6m

aigi | a1, . . . , am > 0,
∑
i6m

ai > 0
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and

span({g1, . . . , gm}) =

∑
i6m

aigi | a1, . . . , am ∈ R


Proposition 2. The following two conditions are equivalent:

1.

0 6∈ posi(

{〈
∂I1
∂x

(x, y),
∂I1
∂y

(x, y)

〉
,

〈
∂I0
∂x

(x, y),
∂I0
∂y

(x, y)

〉}
)

2. y 6= 1− x

Proof. Suppose condition 1 holds but 2 does not. So y = 1− x. Let α = x and
β = 1− x. Then

α
∂I1
∂x

(x, y) + β
∂I0
∂x

(x, y) = x(x− 1)m(x) + (1− x)x m(x) = 0 (27)

and

α
∂I1
∂y

(x, y) + β
∂I0
∂y

(x, y) = x(1− x)m(1− x) + (1− x)(−x)m(1− x) = 0

(28)

which contradicts condition 1. Conversely, suppose that condition 2, i.e.,

0 ∈ posi(

{〈
∂I1
∂x

(x, y),
∂I1
∂y

(x, y)

〉
,

〈
∂I0
∂x

(x, y),
∂I0
∂y

(x, y)

〉}
)

= posi({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉})

For any α, β > 0,

posi({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉})
= posi({〈α(x− 1)m(x), αym(y)〉 , 〈βxm(x), β(y − 1)m(y)〉})

Let

α =
1

(1− x)m(x) + ym(y)

β =
1

xm(x) + (1− y)m(y)

Note that

〈α(x− 1)m(x), αym(y)〉+ 〈βxm(x), β(y − 1)m(y)〉 = 〈κ, κ〉 (29)

where

κ =
(x+ y − 1)m(x)m(y)

((1− x)m(x) + ym(y))(xm(x) + (1− y)m(y))
(30)

Clearly then

0 ∈ posi({〈α(x− 1)m(x), αym(y)〉 , 〈βxm(x), β(y − 1)m(y)〉})

iff κ = 0 which holds iff y = 1− x.
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Proposition 3. The following two conditions are equivalent:

1. There is some 0 6 p 6 1 s.t.

∇〈p−x,(1−p)−y〉I1(x, y) = lim
ε→0

1

ε
[I1((1− ε)x+ ε p, (1− ε)y + ε (1− p))− I1(x, y)] < 0

∇〈p−x,(1−p)−y〉I0(x, y) = lim
ε→0

1

ε
[I0((1− ε)x+ ε p, (1− ε)y + ε (1− p))− I0(x, y)] < 0

∇〈p−x,(1−p)−y〉I∗1 (x, y) = lim
ε→0

1

ε
[I∗1 ((1− ε)x+ ε p, (1− ε)y + ε (1− p))− I∗1 (x, y)] < 0

∇〈p−x,(1−p)−y〉I∗0 (x, y) = lim
ε→0

1

ε
[I∗0 ((1− ε)x+ ε p, (1− ε)y + ε (1− p))− I∗0 (x, y)] < 0

2.

0 6∈ posi

({〈
∂I1
∂x

(x, y),
∂I1
∂y

(x, y)

〉
,

〈
∂I0
∂x

(x, y),
∂I0
∂y

(x, y)

〉
,〈

∂I∗1
∂x

(x, y),
∂I∗1
∂y

(x, y)

〉
,

〈
∂I∗0
∂x

(x, y),
∂I∗0
∂y

(x, y)

〉})
= posi ({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉 ,

〈(x− 1)n(x), yn(y)〉 , 〈xn(x), (y − 1)n(y)〉})

Proof. Suppose that condition 1 holds. Since in general∇〈a,b〉φ(x, y) = a∂φ∂x (x, y)+

b∂φ∂y (x, y), condition 1 holds iff

(p− x)(x− 1)m(x) + ((1− p)− y)ym(y) < 0 (31)

(p− x)xm(x) + ((1− p)− y)(y − 1)m(y) < 0 (32)

(p− x)(x− 1)n(x) + ((1− p)− y)yn(y) < 0 (33)

(p− x)xn(x) + ((1− p)− y)(y − 1)n(y) < 0 (34)

Suppose that condition 2 does not hold. Then there are α, β, ε, δ > 0 with
α+ β + ε+ δ > 0 such that

α(x− 1)m(x) + βxm(x) + ε(x− 1)n(x) + δxn(x) = 0 (35)

αym(y) + β(y − 1)m(y) + εyn(y) + δ(y − 1)n(y) = 0 (36)

But (31)-(34) imply

α(p− x)(x− 1)m(x) + α((1− p)− y)ym(y) 6 0 (37)

β(p− x)xm(x) + β((1− p)− y)(y − 1)m(y) 6 0 (38)

ε(p− x)(x− 1)n(x) + ε((1− p)− y)yn(y) 6 0 (39)

δ(p− x)xn(x) + δ((1− p)− y)(y − 1)n(y) 6 0 (40)

with at least one of (37)-(40) strict. This implies

(p− x) (α(x− 1)m(x) + βxm(x) + ε(x− 1)n(x) + δxn(x)) (41)

((1− p)− y) (αym(y) + β(y − 1)m(y) + εyn(y) + δ(y − 1)n(y)) < 0

which contradicts (35)-(36).
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Now suppose that condition 2 holds. Let

A = posi ({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉 ,
〈(x− 1)n(x), yn(y)〉 , 〈xn(x), (y − 1)n(y)〉}) ∪ {0}

B = {0}

Let A′ = A ∩ −A. By condition 2, A′ = B = {0}. So by Klee’s separation
theorem, there are α, β ∈ R such that α a+ β b < 0 for all 〈a, b〉 ∈ A \A′ (Klee,
1955, Theorem 2.5). In particular then

α(x− 1)m(x) + βym(y) < 0 (42)

αxm(x) + β(y − 1)m(y) < 0 (43)

α(x− 1)n(x) + βyn(y) < 0 (44)

αxn(x) + β(y − 1)n(y) < 0 (45)

Since condition 2 holds, we know from proposition 2 that y 6= 1−x. If x+ y > 1,
then the proof of proposition 2 establishes that

{〈a, b〉 | a, b > 0, a+ b > 0} ⊆ posi({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉})
⊆ posi ({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉 ,

〈(x− 1)n(x), yn(y)〉 , 〈xn(x), (y − 1)n(y)〉})

In that case, we must have α, β 6 0 with at least one strict. Similarly, if x+y < 1,
then the proof of proposition 2 establishes that

{〈a, b〉 | a, b 6 0, a+ b < 0} ⊆ posi({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉})
⊆ posi ({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉 ,

〈(x− 1)n(x), yn(y)〉 , 〈xn(x), (y − 1)n(y)〉})

In that case, we must have α, β > 0 with at least one strict. Either way, let

p =
α(1− y) + β x

α+ β
∈ [0, 1]

Then (31) holds iff

1− x− y
α+ β

(α(x− 1)m(x) + βym(y)) < 0 (46)

(32) holds iff

1− x− y
α+ β

(αxm(x) + β(y − 1)m(y)) < 0 (47)

(33) holds iff

1− x− y
α+ β

(α(x− 1)n(x) + βyn(y)) < 0 (48)

And (34) holds iff

1− x− y
α+ β

(αxn(x) + β(y − 1)n(y)) < 0 (49)
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And whether we have (i) x + y > 1, α, β 6 0 and α + β < 0 or (ii) x + y < 1,
α, β > 0 and α+ β > 0, we end up with

1− x− y
α+ β

> 0

Hence (42)-(45) and proposition 2 jointly imply (31)-(34).

Proposition 4. If x+ y > 1 then

xy

(1− x)(1− y)
>
m(x)/n(x)

m(y)/n(y)
,
m(y)/n(y)

m(x)/n(x)

iff

0 6∈ posi

({〈
∂I1
∂x

(x, y),
∂I1
∂y

(x, y)

〉
,

〈
∂I0
∂x

(x, y),
∂I0
∂y

(x, y)

〉
,〈

∂I∗1
∂x

(x, y),
∂I∗1
∂y

(x, y)

〉
,

〈
∂I∗0
∂x

(x, y),
∂I∗0
∂y

(x, y)

〉})
Similarly if x+ y < 1 then

xy

(1− x)(1− y)
<
m(x)/n(x)

m(y)/n(y)
,
m(y)/n(y)

m(x)/n(x)

iff

0 6∈ posi

({〈
∂I1
∂x

(x, y),
∂I1
∂y

(x, y)

〉
,

〈
∂I0
∂x

(x, y),
∂I0
∂y

(x, y)

〉
,〈

∂I∗1
∂x

(x, y),
∂I∗1
∂y

(x, y)

〉
,

〈
∂I∗0
∂x

(x, y),
∂I∗0
∂y

(x, y)

〉})
Proof. For any α, β, ε, δ > 0,

posi

({〈
∂I1
∂x

(x, y),
∂I1
∂y

(x, y)

〉
,

〈
∂I0
∂x

(x, y),
∂I0
∂y

(x, y)

〉
,〈

∂I∗1
∂x

(x, y),
∂I∗1
∂y

(x, y)

〉
,

〈
∂I∗0
∂x

(x, y),
∂I∗0
∂y

(x, y)

〉})
= posi ({〈(x− 1)m(x), ym(y)〉 , 〈xm(x), (y − 1)m(y)〉 ,

〈(x− 1)n(x), yn(y)〉 , 〈xn(x), (y − 1)n(y)〉})
= posi ({〈α(x− 1)m(x), αym(y)〉 , 〈βxm(x), β(y − 1)m(y)〉 ,

〈ε(x− 1)n(x), εyn(y)〉 , 〈δxn(x), δ(y − 1)n(y)〉})

Let

α =
1

(1− x)m(x) + ym(y)

β =
1

xm(x) + (1− y)m(y)

ε =
1

(1− x)n(x) + yn(y)

δ =
1

xn(x) + (1− y)n(y)
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Note then that

〈α(x− 1)m(x), αym(y)〉+ 〈βxm(x), β(y − 1)m(y)〉 = 〈κ1, κ1〉 (50)

〈α(x− 1)m(x), αym(y)〉+ 〈δxn(x), δ(y − 1)n(y)〉 = 〈κ2, κ2〉 (51)

〈ε(x− 1)n(x), εyn(y)〉+ 〈βxm(x), β(y − 1)m(y)〉 = 〈κ3, κ3〉 (52)

〈ε(x− 1)n(x), εyn(y)〉+ 〈δxn(x), δ(y − 1)n(y)〉 = 〈κ4, κ4〉 (53)

for some constants, κ1, κ2, κ3, κ4. Hence

0 6∈ posi ({〈α(x− 1)m(x), αym(y)〉 , 〈βxm(x), β(y − 1)m(y)〉 ,
〈ε(x− 1)n(x), εyn(y)〉 , 〈δxn(x), δ(y − 1)n(y)〉})

iff either (i) κ1, κ2, κ3, κ4 > 0 or (ii) κ1, κ2, κ3, κ4 < 0. And

κ1 =
(x+ y − 1)m(y)

((1− x)m(x) + ym(y))(xm(x) + (1− y)m(y))
(54)

κ2 =
(x− 1)m(x)

(1− x)m(x) + ym(y)
+

xn(x)

xn(x) + (1− y)n(y)
(55)

κ3 =
xm(x)

xm(x) + (1− y)m(y)
+

(x− 1)n(x)

(1− x)n(x) + yn(y)
(56)

κ4 =
(x+ y − 1)n(y)

((1− x)n(x) + yn(y))(xn(x) + (1− y)n(y))
(57)

Now, if x + y > 1, then κ1, κ4 > 0. So we must have κ2, κ3 > 0 as well. And
κ2 > 0 iff

xn(x)

xn(x) + (1− y)n(y)
>

(1− x)m(x)

(1− x)m(x) + ym(y)
(58)

iff

xyn(x)m(y) > (1− x)(1− y)m(x)n(y) (59)

iff

xy

(1− x)(1− y)
>
m(x)/n(x)

m(y)/n(y)
(60)

Similarly κ3 > 0 iff

xy

(1− x)(1− y)
>
m(y)/n(y)

m(x)/n(x)
(61)

Likewise, if x + y < 1, then κ1, κ4 < 0. So we must have κ2, κ3 < 0 as well,
which holds iff

xy

(1− x)(1− y)
<
m(x)/n(x)

m(y)/n(y)
,
m(y)/n(y)

m(x)/n(x)
(62)
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