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Abstract 
 

Formal ontologies are nowadays widely considered a standard tool for knowledge 

representation and reasoning in the Semantic Web. In this context, they are expected to 

play an important role in helping automated processes to access information. Namely: 

they are expected to provide a formal structure able to explicate the relationships 

between different concepts/terms, thus allowing intelligent agents to interpret, correctly, 

the semantics of the web resources improving the performances of the search 

technologies.  

Here we take into account a problem regarding Knowledge Representation in general, 

and ontology based representations in particular; namely: the fact that knowledge 

modeling seems to be constrained between conflicting requirements, such as 

compositionality, on the one hand and the need to represent prototypical information on 

the other. In particular, most common sense concepts seem not to be captured by the 

stringent semantics expressed by such formalisms as, for example, Description Logics 

(which are the formalisms on which the ontology languages have been built). The aim 

of this work is to analyse this problem, suggesting a possible solution suitable for 

formal ontologies and semantic web representations.  

The questions guiding this research, in fact, have been: is it possible to provide a formal 

representational framework which, for the same concept, combines both the classical 

modelling view (accounting for compositional information) and defeasible, prototypical 

knowledge ? Is it possible to propose a modelling architecture able to provide different 

type of reasoning (e.g. classical deductive reasoning for the compositional component 

and a non monotonic reasoning for the prototypical one)?  

We suggest a possible answer to these questions proposing a modelling framework able 

to represent, within the semantic web languages, a multilevel representation of 

conceptual information, integrating both classical and non classical (typicality based) 

information. Within this framework we hypothesise, at least in principle, the co-

existence of multiple reasoning processes involving the different levels of 

representation. 

This works is organized as follows: in chapter 1 the semantic web languages and the 

description logics formalisms on which they are based are briefly presented. Then, in 
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chapter 2, the problem on which this work is focused (e.g. conceptual representation) is 

illustrated and the general idea of the proposed multi-layer framework is sketched. In 

chapter 3 the psychological theories about concepts based on prototypes and exemplars 

are surveyed. In this chapter we argue that such distinction can be useful in our 

approach because it allows (i) to have a more complete representation of the concepts 

and (ii) to hypothesise different types of non monotonic reasoning processes (e.g. non 

monotonic categorization). In chapter 4 the  proposed modeling architecture is presented 

and, in chapter 5, it is evaluated on particular information retrieval tasks. The chapter 6 

is dedicated to the conclusions.  
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Chapter 1.  

Ontological Languages and Description Logics 

 

 

 

 

The Semantic Web was originally proposed as an extension to the current Web, as the 

way to solve the problem of semantic heterogeneity (T.B. Lee 2001). In this view, the 

proposed solution has been that one of adding, a so called semantic layer as an extra 

layer built on top of the Web, which makes data not only human processable but also 

machine processable thanks to an enriched semantics. The word “semantics”, in the this 

research area, assumes a precise connotation: the meaning of the data and documents is 

assumed to be codified as metadata, i.e. data about data (Giunchiglia et al 2010). In this 

view, data are organized in different levels of  increasing expressiveness, each 

corresponding to a specific representation need. Such levels correspond to different 

representation languages: XML, XML Schema, RDF and RDF Schema (RDFS) and 

OWL. In the section 1.1, we briefly summarize the main distinctive elements of the first 

four mentioned languages. Then, in 1.2, we introduce the basic elements characterizing 

the standard Description Logics (DLs) and, in 1.3, individuate the connections between 

DLs  and the semantic web languages. Finally, the description of OWL (Ontology Web 

Language) and of its sub languages is demanded to the  paragraph 1.4. 

 

1.2. Semantic Web Languages 

 

XML is designed to represent information using customized tags. Due to this feature, 

this language is widely used for information exchange on the Web and elsewhere. 

Strictly speaking XML is not a semantic web language as it codifies no semantics. 

However, it is important because all the semantic web languages are extensions of 

XML. Furthermore, it has also a historical importance because, if compared to HTML, 

it represents a first step towards the semantic web languages.  
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An example of a XML based representation is the following: let suppose that we have to 

represent a statement like “DBpedia was last modified on 28 January 2012”. It can be 

represented in XML using, for example, the tags “DBpedia”, and “modified”, along 

with a statement indicating the specific XML version of the representation, as shown in 

fig. 1.1 

 

 

 

 

Fig. 1.1 a XML representation 

 

XML Schema is a XML based format defining the rules that an XML document must 

respect. From an object oriented programming point of view, XML Schema can be 

assimilated to a class, while XML documents correspond to instances of that class. It is 

used for exchanging information between parties that agree on a particular set of rules. 

However, the terms used in XML Schema have, again, no semantics. Therefore, it 

results to be difficult for machine to accomplish communication between them when 

new XML vocabulary terms are introduced. Because of the lack of semantics, XLM 

Schema does not allow to differentiate between polysemous concepts/terms and does 

not allow to combine the synonymous terms.  

RDF language was developed in order to overcome these limits. RDF is used to 

describe information about web resources. This metadata based description allows to 

make information machine processable and “understandable”. It is  designed to provide 

flexibility in representing information. RDF is based on a simple data model that allows 

to make statements about web resources, and provides the capability to perform 

inferences on the represented statements. The data model of RDF is a directed graph 

consisting of nodes and edges. Statements about resources can be represented by using 

this graph. The example in figure 1.2 represents the assertion “Geonames has coverage 

of all countries” (from De Virgilio et al 2010, p. 30). Edges in RDF graph are labeled. 

When they connect two nodes, they form a triple. The triples based semantics is one of 

the main features of RDF and RDF based languages. One of the two nodes represents 

the subject, the other the object and the edge represents the predicate of the statement. 

<? Xml version=”1.0” ?> 
    <DBpedia> 
    <modified>28 January 2012</> 
    </DBpedia> 
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The direction of the edge is from the subject to the object. RDF usually uses URIs 

references to identify subjects, objects and predicates (as in fig. 1.2)1.  

 

 

 

Figure 1.2. RDF graph based on URIs 

 

A statements such as that of fig. 1.2  can be described in RDF as shown below: 

 

 

 

 

 

 

 

 

A limit of RDF is represented by the fact that it does not allow to define a hierarchy 

between the represented resources. For this reason, RDF Schema (RDFS) was created.  

RDFS is an extension of RDF able to provide a vocabulary to represent classes, 

subclasses, properties and relations between properties. The capability of representing 

classes and subclasses allows users to publish ontologies on the web, but these 

ontologies are limited, as RDFS cannot represent disjunction or specific cardinality 

values. Furthermore, RDFS presents also other limits such as, for example: (i) it is not 

possible to localize the range and domain constraints of a specific property (e.g. it is not 

possible to express that the range of hasChild is person when applied to persons and 

                                                 
1 However, in such cases some elements within the triple can be represented without URI. For 

example: if the statement to be represented in RDF is “DBpedia was modified on 25 January 2012” we 
have the object of the triple (25 January 2012) which is a literal. Thus it can be represented without URI.  

<? Xml version=”1.0” ?> 
    <rdf:RDF 
           xlmns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”  
           xlmns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”  
           xlmns:rdfs=http://www.purl.org/dc/terms#” >  
    <rdf:Description rdf:about=”http://www.geonames.org” > 
             <dc:coverage rdf:resource=”http://www.geonames.org/countries” > 
              </rdf:Description> 
         </rdf:RDF> 
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elephant when applied to elephants), (ii) it is not possible to insert inverse or 

symmetrical properties (e.g. it is not possible to say that hasPart is the inverse of 

isPartOf and that the property “touches” is symmetrical). 

For these reasons, other languages were developed (see Baader et al 2002, Horrocks et 

al 2011). One of these is the OWL language. It is based on Description Logics and 

makes it possible to describe concepts and relations between concepts via logical 

axioms. OWL is the result of the integration between the OIL and DAML languages. 

Similarly to RDF, on which it is based, in OWL data are represented as triples: subject, 

object and predicate. In particular, it is possible to distinguish between three basic OWL 

languages: OWL Lite, OWL DL and OWL Full. Each of them is characterized by  

different expressivity and computational complexity. Before describing in major detail 

these three languages, we will introduce, in the next paragraphs, the main features of the 

Description Logics and will try to evidence the connection between description logics 

and the Ontology Web Language. 

 

1.2 Description Logics 

 

Description Logics (from now on DLs) are a family of class-based (concept-based) 

knowledge representation formalisms (Baader et al 2002). They are characterised by the 

use of various constructors that allow to build complex classes from simpler ones and 

by an emphasis on the decidability and computational complexity of some key 

reasoning tasks. Description Logics had a strong influence on the design of OWL, 

particularly on the formalisation of semantics and the choice of language constructs. A 

key feature of Description Logics is that they are logics, i.e., formal languages with well 

defined semantics. The standard technique for specifying the meaning of a Description 

Logic is via a model theoretic approach, whose purpose is to explicate the relationship 

between the language syntax and the models of the language. As reported in Horrocks et 

al. (2011): a model consists of a domain (which is usually written ∆I) and an 

interpretation function (often written ·I), where the domain is a set of objects and the 

interpretation function is a mapping from individual, class and property names to 

elements of the domain, subsets of the domain and binary relations defined on the 

domain, respectively.  
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So, for an individual Nicola, NicolaI ∈ ∆I, for a class Person, PersonI ⊆ ∆I, and for a 

property2 friend, friendI  ⊆ ∆I × ∆I. The interpretation function can be extended from 

class names to complex class descriptions in the obvious way. For example, given two 

classes Male and Person interpreted as the sets MaleI = {a, b, c} and PersonI = {b, c, e}, 

then the intersection of Male and Person (i.e., male persons) is interpreted as the 

intersection of {a, b, c} and {b, c, e}, i.e., (Male and Person)I = {b, c}  A domain can be 

potentially represented by any set of objects. What is important, in fact, is the 

relationship between objects and sets of objects. In a given model, for example, an 

individual i is an instance of a class C just in case i is interpreted as an element of the 

interpretation of C (i.e., iI ∈ CI), and a class C is a subclass of a class D just in case the 

interpretation of C is a subset of the interpretation of D (i.e., CI ⊆ DI).   

The main building blocks of DL knowledge bases are concepts (or classes), roles (or 

properties), and individuals. Certain concepts (e.g., say, Person) are atomic. Then, using 

a rich set of concept constructors, it is possible to create complex concepts, by 

describing the conditions on concept membership. For example, the concept ∃hasFather 

.Person describes those objects that are related through the hasFather role with an object 

from the concept Person.  

The general architecture of a DL System is represented in the figure 1.3 below. Namely: 

a DL knowledge base typically consists of a TBox T and an ABox A. A TBox 

(Terminological Box) introduces the terminology, i.e., the vocabulary of an application 

domain, an contains axioms about the general structure of all allowed worlds, and is 

therefore akin to a database schema. An ABox  (Assertional Box) contains assertions 

about specific individuals in the terms of the TBox vocabulary, and contains axioms 

that describe the structure of a particular world. For example, the TBox axiom (1) states 

that each instance of the concept Person must be related by the role hasFather with 

another instance of the concept Person. While (2) and (3) represent the assertional 

knowledge within the ABox and state that Nicola is a Person (2), and that Teresa and 

Nicola are brothers (3).  

 
                                                 

2 In this case with the term “property” we indicate a two argument relation (Rab). However, usually, 
the term property is used in order to indicate predicates with one argument (Pa). This distinction, well 
known in classical logics, is generally not considered within this research area, thus all the types of 
predicates are named “properties”.     
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(1) Person ⊑ ∃hasFather .Person 

(2) Person(Nicola) 

(3) hasBrother (Nicola,Teresa) 

 

Figure 1.3. DL Knowledge Base architecture (from Baader and Nutt, 2002). 

 

As explained before, the meaning of the expressed axioms is given by corresponding 

constraints on models. For example: if the knowledge base contains an axiom stating 

that Person is a subclass of Animal (written Person ⊆ Animal), then in every model of 

the knowledge base the interpretation of Person must always be a subset of the 

interpretation of Animal. The meaning of a knowledge base derives from features and 

relationships that are common to all possible models. If, for example, the interpretation 

of a class must always be the empty set, then that class is said to be inconsistent, while 

if there are no possible interpretations, the knowledge base itself is said to be 

inconsistent. If the relationship specified by a given axiom must hold in all 

interpretations of a knowledge base, then that axiom is said to be entailed by the 

knowledge base, and if one knowledge base entails every axiom in another knowledge 

base, then the first knowledge base is said to entail the second knowledge base. A 

knowledge base containing the axiom Person ⊆ Animal, for example, entails that the 

intersection of Male and Person is also a subclass of Animal.  

A DL system, however, not only stores terminologies and assertions, but also offers 

services that reason about them. Typical reasoning tasks for a terminology are to 
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determine whether a description is satisfiable (i.e., non-contradictory), or whether one 

DL description is more general than another one (e.g. whether the first subsumes the 

second, Baader et al 2002). Reasoning problems concerning an ABox are to find out 

whether it is consistent (i.e. whether it has a model), and whether it entails that a 

particular individual is an instance of a given concept description. Satisfiability 

checking of descriptions and consistency checking of sets of assertions are useful to 

determine whether a knowledge base is meaningful at all. By performing subsumption 

tests, one can organize the concepts of a terminology into a hierarchy according to their 

generality. A concept description can also be conceived as a query, which describes the 

set of objects one is interested in. Thus, with instance tests, one can retrieve the 

individuals or concepts that satisfy the query (this query based method will be used in 

the evaluation of our proposal - see chapter 5 below). One important aspect to keep in 

mind when dealing with reasoning in Description Logics is that they all follow an open 

world assumption (OWA). This is especially important since knowledge representation 

systems bear a superficial similarity with database systems. The TBox is similar to the 

database schema and the ABox similar to the data stored in it. The important difference 

is that databases adopt closed-world assumptions when answering queries. Namely: if in 

a database there is no individual that fulfills the query criteria, then the assumption is 

that such an individual does not exist and that the statement that no such individual 

exists is true. On the contrary, in the open-world reasoning of Description Logics, if no 

individual fulfills the query criteria, then the implication is that there is a lack of 

information. It is not possible to deduce that, since the query is not fulfilled, the 

negation of the query is true.  

The last element showed by the figure 1.3 is that, in any application, a DL system is 

embedded into a larger environment. External application programs interact with the DL 

components by querying the knowledge base and by modifying it. Furthermore, a 

restricted mechanism to add assertions are rules. Rules are an extension of the logical 

core formalism, which can still be interpreted logically. For a detailed description of all 

these elements we refer to the Description Logic Handbook (Baader et al. 2002). 
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1.3 Description Logics for Semantic Web Languages 

 

In this section we will briefly present the syntax and semantics of the Description 

Logics on which OWL (and previous semantic web languages such as OIL, 

DAML+OIL) is based. Namely we present the family of description logics extending 

the S family of DLs. The S family of logics is based on an extension of the well known 

DL ALC (see Schmidt-Schauß and Smolka, 1991; Baader et al 2002 for details).  

In the literature, in order to better understand the expressivity of the different DLs, a 

standard notation has been adopted, in which each letter forming the name of a DL 

corresponds to a specific expressivity requirement. Namely: the letter S stands for the 

basic ALC DL (equivalent to the propositional modal logic K(m)) extended with 

transitive roles, H stands for role hierarchies (or, equivalently, to inclusion axioms 

between roles), O stands for nominals (classes whose extension is a single individual), I 

for inverse roles (I) and (possibly qualified) number restrictions (Q if qualified via 

datatypes, N otherwise). The correspondence between the letters and the corresponding 

syntax and semantics of each logic of the families S and SH is provided in the figure 1.4 

below. 

 

Fig. 1.4  Sintax and Semantics of the S family of Description Logics (from Horrocks at al. 2003) 
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In figure 1.4, the syntax and semantics of these features is schematized. Namely: A is a 

concept name, C and D are concepts, R and S are roles, RC is the set of transitive roles, 

o is an individual name, P is a simple role (i.e., one that is not transitive and has no 

transitive sub-roles), and n is a non-negative integer. These logics can also be extended 

with a simple form of concrete domains known as datatypes; this is denoted by 

appending (D) to the name of the logic, e.g., SHOIN(D).  

The OWL languages that we are going to consider in major detail are directly based on 

these description logics. Namely: OWL Lite is based on SHIQ DL (it correspond to the 

SHOIQ DL without nominals, and with only functional number restrictions) while 

OWL DL is based on the SHOIN (D) where the (D) represent the possibility of adding 

simple form of datatypes on concrete domain (D).  

 

1.4 From Description Logics to Semantic Web languages 

 

As previously mentioned, the OWL language has three sublanguages (OWL Lite, OWL 

DL and OWL Full), each with certain characteristics. The first two languages have been 

explicitly designed in order to provide the possibility of having decidable inferences, 

thus they are based on Description Logics that provide limitations on the expressivity of 

the language. In OWL Full, instead, all RDF graphs are allowed. The benefits of this 

expansive style include total upward compatibility with RDF and a greater expressive 

power. The price for this increased expressivity is, however, that reasoning in OWL 

Full is undecidable. In the following we focus in major detail on the these sublanguages, 

trying to put in evidence the main differences with the above mentioned semantic web 

languages (e.g. RDF, RDFs).  

Before going into the details, however, we underline the differences that even the more-

limited versions of OWL have with the standard Description Logics. Are, in fact, these 

differences that move these versions of OWL from the formal Description Logic world 

to the Semantic Web world. Namely they can be grouped as follows:  

 

- OWL uses URI references as names, and constructs these URI references in the 

same manner as RDF. It is thus common in OWL to use qualified names as 
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shorthands for URI references, using, for example, the qualified name owl:Thing 

for the URI reference http://www.w3.org/2002/07/owl#Thing. 

- OWL gathers information into ontologies, which are generally stored as Web 

documents written in RDF/XML. Ontologies can import other ontologies, 

adding the information from the imported ontology to the current ontology. 

- OWL uses the facilities of RDF datatypes and XML Schema datatypes to 

provide datatypes and data values. 

 

Summing up: what makes OWL a Semantic Web language is not its semantics, which is 

quite standard for a Description Logic, but instead the use of URI references for names, 

the use of XML Schema datatypes for data values, and the ability to connect to 

documents in the World Wide Web. 

 

1.4.1 OWL Lite 

 

OWL Lite allows the use of a subset of OWL and RDF(S) vocabulary. The main goal of 

this language is to guarantee termination of reasoning processes. OWL Lite language 

prohibits unions and complements, restricts intersections to the implicit intersections in 

the frame-like class axioms, limits all embedded descriptions to concept names, does 

not allow individuals to show up in descriptions or class axioms, and limits cardinalities 

to 0 or 1. These restrictions make OWL Lite similar to the Description Logic SHIF(D) 

(obtained by adding some constraint to SHOIQ(D)) . Like SHIF(D), in fact, key 

inferences in OWL Lite can be computed in worst case exponential time (ExpTime). 

This improvement in tractability comes with relatively little loss in expressive power. 

Infact, although OWL Lite syntax is more restricted than that of OWL DL, it is still 

possible to express complex descriptions by introducing new class names and exploiting 

the implicit negations introduced by disjointness axioms (Horrocks 2003, 2011). Using 

these techniques, all OWL DL descriptions can be captured in OWL Lite except those 

containing either individual names or cardinalities greater than 1. In particular, in OWL 

Lite language it is possible to use 35 out of 40 OWL constructs and 11 of the 33 RDFs 

constructs. The list of the 33 RDFs constructs and of the 40 OWL construct is taken 

from Giunchiglia et al. 2010, and is presented in the Appendixes A and B at the end of 
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the chapter. To define a class in OWL Lite one must use the OWL construct owl:Class 

instead of rdfs:Class which is not allowed. Other not allowed constructs in OWL Lite 

are: complementOf, disjointWith, hasValue, oneOf and unionOf. 

 

1.4.2 OWL DL 

 

OWL DL is based on SHOIN(D) syntax and semantics. OWL DL language  can use, as 

OWL Lite language,11 out of the 33 RDFS constructs.  In addition, in OWL DL is 

possible to use all the 40 constructs of OWL. However, some of these constructs are 

restricted in order to provide the decidability of the language. In particular, classes 

cannot be used as individuals, and vice versa. Each individual (or instance) must be an 

extension of a class and must be necessarily categorized in a class (if there is no more 

specific class, it must be categorized as belonging to the owl:Thing class). Furthermore: 

individuals cannot be used as properties and vice versa, and properties cannot be used as 

classes and vice versa. Properties in OWL DL are divided into object properties and 

datatype properties. Object properties connect instances of two classes, datatype 

properties connect instances of classes and literals. The restriction in OWL DL allow to 

maintain a balance between exspressivity and complexity. In fact, even if computational 

complexity is higher than OWL Lite (SHOIN(D) is an expressive Description Logic 

whose worst case complexity is of nondeterministic exponential time: NExpTime) 

reasoning in OWL DL remains decidable and correspond to that one of its 

correspondent description logics. 

 

1.4.3 OWL Full  

 

OWL Full is the most expressive OWL language. Like RDF and RDFS (with which has 

a complete compatibility), it allows classes to be used as individuals. OWL Full goes 

beyond OWL DL. For example, in OWL Full, it is possible to impose a cardinality 

constraint on rdfs:subClassOf, is desider. This language can use all the 40 constructs 

OWL without any restriction imposed on OWL-DL. Moreover the construcr rdfs:class 

and owl:Class can be used to define a class. The key difference with respect to OWL 

DL is that in OWL Full what we can say, e.g. classes, properties etc, can be used as 



Chapter 1. Ontological Languages and Description Logics 
 

12 
 

individuals.  The penalty to be paid here is two-fold. First, reasoning in OWL Full is 

undecidable. Second, the syntax for OWL DL (Horrocks, 2003) is inadequate for OWL 

Full, and the official OWL exchange syntax, RDF/XML, must be used. 

 

Appendix A: RDF(S) Constructs 

 

This appendix provides a list of the thirty-three RDF(S)constructs excluding the sub-

properties of rdfs:member. 

The RDF(S) constructs are rdf:about, rdf:Alt, rdf:Bag, rdf:Description, rdf:first, rdf:ID, 

rdf:List, rdf:nil, rdf:Object, rdf:predicate, rdf:Property, rdf:resource, rdf:rest, rdf:Seq, 

rdf:Statement, rdf:subject, rdf:type, rdf:value, rdf:XMLLiteral, rdfs:Class, 

rdfs:comment, rdfs:Container, rdfs:ContainerMembershipProperty, rdfs:Datatype, 

rdfs:domain, rdfs:isDefinedBy, rdfs:label, rdfs:Literal, rdfs:member, rdfs:range, 

rdfs:seeAlso, rdfs:subClassOf, and rdfs:subPropertyOf. Details of the meaning of the 

above constructs can be found in the RDF(S) manuals. To provide a few examples, 

rdfs:Class allows to represent a concept, rdfs:subClassOf to state that a concept is more 

specific than another, rdf:resource to represent a resource (an instance of a concept), 

rdfs:label to represent a human readable label (for a concept or resource or property), 

rdfs:comment to provide a human readable description of a concept or resource or 

property. 

 

Appendix B: OWL Constructs 

 

This appendix provides the lists of the forty OWL constructs and eleven RDF(S) 

constructs that can be used in an OWL representation. 

The OWL constructs are owl:AllDifferent, owl:allValuesFrom, 

owl:AnnotationProperty, owl:backwardCompatibleWith, owl:cardinality, owl:Class, 

owl:complementOf, owl:DataRange, owl:DatatypeProperty, owl:DeprecatedClass, 

owl:DeprecatedProperty, owl:differentFrom, owl:disjointWith, owl:distinctMembers, 

owl:equivalentClass, owl:equivalentProperty, owl:FunctionalProperty, owl:hasValue, 

owl:imports, owl:incompatibleWith, owl:intersectionOf, owl: 

InverseFunctionalProperty, owl:inverseOf, owl:maxCardinality, owl:minCardinality, 
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owl:Nothing, owl:ObjectProperty, owl:oneOf, owl:onProperty, owl:Ontology, 

owl:OntologyProperty, owl:priorVersion, owl:Restriction, owl:sameAs, 

owl:someValuesFrom, owl:SymmetricProperty, owl:Thing, owl:TransitiveProperty, 

owl:unionOf, and owl:versionInfo. The RDF(S) constructs are rdf:about, rdf:ID, 

rdf:resource, rdf:type, rdfs:comment, rdfs:domain, rdfs:label, rdfs:Literal, rdfs:range, 

rdfs:subClassOf, and rdfs-:subPropertyOf. To provide a few examples of the meaning of 

the constructs above, owl:Class can be used to represent a concept, owl:equivalentClass 

to state that a concept is equivalent to another, owl:Thing to represent an instance of a 

concept, owl:sameAs to state that two instances refer the same thing. 
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Chapter 2.  

Representing Non Classical Conceptual Information  

 

 

 

After the brief introduction regarding the connection between the Description Logics 

and the Semantic Web languages, in this chapter we introduce the problem investigated 

in this research. Namely: the problem of concept representation. And, more specifically, 

the problem of “non classical” concept representation within the field of formal 

ontologies. The computational representation of concepts is a central problem for the 

development of ontologies and knowledge engineering. Concept representation is a 

multidisciplinary topic of research that involves different disciplines such as Artificial 

Intelligence, Philosophy, Cognitive Psychology and Cognitive Science in general. 

However, the notion of concept itself turns out to be highly disputed and problematic. In 

our opinion, one of the causes of this current state of affairs is that the very notion of 

concept is, to a certain extent, heterogeneous and encompasses different cognitive 

phenomena. This results in a strain between conflicting requirements such as 

compositionality, on the one hand, and the need to represent prototypical information on  

the other. This has several consequences for the practice of knowledge engineering as 

well as the technology of formal ontologies. In this chapter we propose an analysis of 

this situation. 

The rest of the chapter is organised as follows. In section 2.1, we point out some 

differences between the way concepts are conceived in philosophy and psychology. In 

section 2.2 and 2.3 we introduce the conflicting requirements (such as 

compositionality, on the one hand and the need to represent prototypical information 

on the other) characterizing the history of concept based representations. Then, in 

section 2.4 we argue that AI research in some way shows traces of these contrasting 

needs. In particular, the requirement of compositional, logical style semantics 

conflicts with the need to represent concepts in terms of the typical traits that allow 

for exceptions. In section 2.5. we point out the necessity for artificial conceptual 
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systems to represent and reason on non classical concepts and prototypical 

information in order to deal with so called “common sense” concepts. This necessity, 

in our opinion, can be covered taking into account some evidence from cognitive 

analysis of the human way of organizing and processing information. In this view, our 

basic assumption is that knowledge representation systems whose design takes into 

account evidence from experimental psychology may register better performance in 

real life  applications (e.g. specifically in the fields of information retrieval and 

semantic webs). 

In section 2.6, we review several attempts to introduce non classical representation and 

reasoning in the field of knowledge representation, while paying particular attention to 

description logics. Finally, in section 2.7, we identify several possible suggestions 

coming from different aspects of cognitive research in order to overcome this problem. 

Namely: (i) the distinction between two different types of reasoning processes, 

developed within the context of the so-called “dual process” accounts of reasoning; (ii) 

the proposal to keep prototypical effects separate from the compositional representation 

of concepts; and (iii) the possibility to develop hybrid, prototype and exemplar-based 

representations of concepts. All these elements representing the cognitive background 

of our approach will be more deeply described in next chapters. 

 

2.1 Concepts in Philosophy and Psychology 

 

Within the field of cognitive science, the notion of concept is highly disputed and 

problematic. Artificial intelligence (from now on AI) and, in general, the computational 

approach to cognition reflect this current state of affairs. Conceptual representation 

seems to be constrained by conflicting requirements, such as compositionality, on the 

one hand and the need to represent prototypical information on the other. A first 

problem (or, better, a first symptom indicating that a problem exists) lies in the fact that 

the use of the term “concept” in the philosophical tradition is not homogeneous with the 

use of the same term in empirical psychology (see e.g. Dell’Anna and Frixione 2010). 
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Briefly3, we can say that in cognitive psychology a concept is essentially intended as the 

mental representations of a category, and the emphasis is on processes such as 

categorisation, induction and learning. According to philosophers, concepts are above 

all the components of thoughts. Even if we leave aside the problem of specifying 

exactly what thoughts are, this requires a more demanding notion of concept. In other 

words, some phenomena that are classified as “conceptual” by psychologists turn out to 

be “nonconceptual” for philosophers. There are, thus, mental representations of 

categories that philosophers would not consider genuine concepts. For example, 

according to many philosophers, concept possession involves the ability to make high 

level inferences explicit and also sometimes the ability to justify them (Peacocke 1992; 

Brandom 1994). This clearly exceeds the possession of the mere mental representation 

of categories. Moreover, according to some philosophers, concepts can be attributed 

only to agents who can use natural language (i.e. only adult human beings). On the 

other hand, a position that can be considered in some sense representative of an 

“extremist” version of the psychological attitude towards concepts is expressed by 

Lawrence Barsalou in an article symptomatically entitled “Continuity of the conceptual 

system across species” (Barsalou 2005). He refers to knowledge of scream situations in 

macaques, which involve different modality-specific systems (auditory, visual, affective 

systems, etc.). Barsalou interprets these data in favour of the thesis of a continuity of 

conceptual representations in different animal species, in particular between humans 

and non-human mammals: “this same basic architecture for representing knowledge is 

present in humans. [...] knowledge about a particular category is distributed across the 

modality-specific systems that process its properties” (p. 309). Therefore, according to 

Barsalou, a) we can also speak of a "conceptual system" in the case of non-human 

animals; b) low-level forms of categorisation which depend on some specific perceptual 

modality also belong to the conceptual system. Elizabeth Spelke’s experiments on 

infants (see e.g. Spelke 1994; Spelke and Kinzler 2007) are symptomatic of the 

difference in approach between psychologists and philosophers. These experiments 

demonstrate that some extremely general categories are very precocious and presumably 

                                                 
3 Things are made more complex by the fact that also within the two fields considered separately this 

notion is used in a heterogeneous way, as we shall concisely see in the following. Consequently, the 
following characterisation of the philosophical and psychological points of view is highly schematic. 
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innate. According to the author, they show that newborn babies already possess certain 

concepts (e.g., the physical object concept). However, some philosophers (Bermudez 

1995, Bermudez and Cahen 2011) have interpreted these same data as a paradigmatic 

example of the existence of nonconceptual contents in agents (babies) who have yet to 

develop a conceptual system. 

 

2.2 Compositionality  

 

The fact that philosophers consider concepts mainly as the components of thoughts has 

given greater emphasis to compositionality, as well as to other related features, such as 

productivity and systematicity, which are often ignored by the psychological treatment 

of concepts. On the other hand, it is well known that compositionality is at odds with 

prototypicality effects, which are crucial in most psychological characterisations of 

concepts (we shall develop this point in greater detail in the next section). Let us first 

consider the compositionality requirement. In a compositional system of 

representations, we can distinguish between a set of primitive, or atomic, symbols and a 

set of complex symbols. Complex symbols are generated from primitive symbols 

through the application of a set of suitable recursive syntactic rules (generally, a 

potentially infinite set of complex symbols can be generated from a finite set of 

primitive symbols). Natural languages are the paradigmatic example of compositional 

systems: primitive symbols correspond to the elements of the lexicon (or, better, to 

morphemes), and complex symbols include the (potentially infinite) set of all sentences. 

In compositional systems, the meaning of a complex symbol s functionally depends on 

the syntactic structure of s as well as the meaning of primitive symbols in it. In other 

words, the meaning of complex symbols can be determined by means of recursive 

semantic rules that work in parallel with syntactic composition rules. This is the so-

called principle of compositionality of meaning, which Gottlob Frege identified as one 

of the main features of human natural languages. In classical cognitive science, it is 

often assumed that mental representations are compositional. One of the clearest and 

most explicit formulations of this assumption was proposed by Jerry Fodor and Zenon 

Pylyshyn (1988). They claim that the compositionality of mental representations is 

mandatory in order to explain some fundamental cognitive phenomena. In the first 
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place, human cognition is generative: in spite of the fact that the human mind is 

presumably finite, we can conceive and understand an unlimited number of thoughts 

that we have never encountered before. Moreover, the systematicity of cognition also 

seems to depend on compositionality: the ability to conceive certain contents is 

systematically related to the ability to conceive other contents. For example, if 

somebody can understand the sentence the cat chases a rat, then (s)he is presumably 

also able to understand a rat chases the cat, by virtue of the fact that the forms of the 

two sentences are syntactically related. We can conclude that the ability to understand 

certain propositional contents systematically depends on the compositional structure of 

the contents themselves. This can easily be accounted for if we assume that mental 

representations have a structure similar to a compositional language. 

 

2.3 Against "Classical" Concepts 

 

Compositionality is less important for many psychologists. In the field of psychology, 

most research on concepts moves from the critiques to the so-called classical theory of 

concepts, i.e. the traditional point of view according to which concepts can be defined in 

terms of necessary and sufficient conditions. Empirical evidence favours those 

approaches to concepts that account for prototypical effects. The central claim of the 

classical theory of concepts (i.e.) is that every concept c is defined in terms of a set of 

features (or conditions) f1, ..., fn that are individually necessary and jointly sufficient for 

the application of c. In other words, everything that satisfies features f1, ..., fn is a c, and 

if anything is a c, then it must satisfy f1, ..., fn. For example, the features that define the 

concept bachelor could be human, male, adult and not married; the conditions defining 

square could be regular polygon and quadrilateral. This point of view was 

unanimously and tacitly accepted by psychologists, philosophers and linguists until the 

middle of the 20th century. The first critique of classical theory is due to a philosopher: 

in a well known section from the Philosophical Investigations, Ludwig Wittgenstein 

observes that it is impossible to identify a set of necessary and sufficient conditions to 

define a concept such as GAME (Wittgenstein, 1953, § 66). Therefore, concepts exist 

which cannot be defined according to classical theory, i.e. in terms of necessary and 
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sufficient conditions. Concepts such as GAME rest on a complex network of family 

resemblances. Wittgenstein introduces this notion in another passage in the 

Investigations: «I can think of no better expression to characterise these similarities than 

“family resemblances”; for the various resemblances between members of a family: 

build, features, colour of eyes, gait, temperament, etc. etc.» (ibid., § 67). Wittgenstein's 

considerations were corroborated by empirical psychological research: starting from the 

seminal work by Eleanor Rosch (1975), with the psychological experiments that 

showed how common-sense concepts do not obey the requirement of the classical 

theory4: common-sense concepts  cannot usually be defined in terms of necessary and 

sufficient conditions (and even if for some concepts such a definition is available, 

subjects do not use it in many cognitive tasks). Concepts exhibit prototypical effects: 

some members of a category are considered better instances than others. For example, a 

robin is considered a better example of the category of birds than, say, a penguin or an 

ostrich. More central instances share certain typical features (e.g. the ability of flying for 

birds, having fur for mammals) that, in general, are neither necessary nor sufficient 

conditions.  

Prototypical effects are a well established empirical phenomenon. However, the 

characterisation of concepts in prototypical terms is difficult to reconcile with the 

compositionality requirement. According to a well known argument by Jerry Fodor 

(1981), prototypes are not compositional (and, since concepts in Fodor's opinion must 

be compositional, concepts cannot be prototypes). In brief, Fodor's argument runs as 

follows: consider a concept like PET FISH. It results from the composition of the 

concept PET as well as the concept FISH. However, the prototype of PET FISH cannot 

result from the composition of the prototypes of PET and FISH. For example, a typical 

PET is furry and warm, a typical FISH is greyish, but a typical PET FISH is neither 

furry and warm nor greyish. Moreover, things are made more complex by the fact that, 

even within the two fields of philosophy and psychology considered separately, the 

situation is not very encouraging. In neither of the two disciplines does a clear, 

unambiguous and coherent notion of concept seem to emerge. Consider for example 

psychology. Different positions and theories on the nature of concepts are available 

                                                 
4 On the empirical inadequacy of the classical theory and the psychological theories of concepts see 

(Murphy 2002). 
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(prototype view5, exemplar view, theory theory) that can hardly be integrated. From this 

point of view, the conclusions of Murphy (2002) are of great significance, since in 

many respects this book reflects the current status of empirical research on concepts. 

Murphy contrasts the approaches mentioned above in relation to different classes of 

problems, including learning, induction, lexical concepts as well as children’s concepts. 

His conclusions are rather discouraging: the result of comparing the various approaches 

is that “there is no clear, dominant winner” (ibid., p. 488) and that “[i]n short, concepts 

are a mess” (p. 492). This situation persuaded some scholars to doubt whether concepts 

constitute a homogeneous phenomenon from the point of view of a science of the mind 

(see e.g. Machery 2005 and 2009; Frixione 2007). 

2.4. Concept Representation in Artificial Intelligence 

 
The situation outlined in the section above is, to some extent, reflected by the state of 

the art in AI and, in general, in the field of computational modelling of cognition. This 

research area often seems to hesitate between different (and hardly compatible) points 

of view. In AI, the representation of concepts is faced mainly within the field of 

knowledge representation (KR). Symbolic KR systems (KRs) are formalisms whose 

structure is, broadly speaking, language-like. This usually entails assuming that KRs are 

compositional. In their early development (historically corresponding to the late 1960s 

and the 1970s), many KRs oriented to conceptual representations attempted to take into 

account suggestions from psychological research. Examples are early semantic 

networks and frame systems. Frame and semantic networks were originally proposed as 

alternatives to the use of logic in KR. The notion of frame was developed by Marvin 

Minsky (1975) as a solution to the problem of representing structured knowledge in AI 

systems6. Both frames and most semantic networks allowed for the possibility to 

characterise concepts in terms of prototypical information. However, such early KRs 

were usually characterised in a rather rough and imprecise way. They lacked a clear 

                                                 
5 Note that the so-called prototype view does not coincide with the acknowledgement of prototypical 

effects: as stated before, prototypical effects are a well established phenomenon that all psychological 
theories of concepts are bound to explain; the prototype view is a particular attempt to explain empirical 
facts concerning concepts (including prototypical effects). On these aspects, see again Murphy 2002. 

6 Many of the original articles describing these early KRs can be found in (Brachman & Levesque 
1985), a collection of classic papers of the field. 
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formal definition, with the study of their meta-theoretical properties being almost 

impossible. When AI practitioners tried to provide a stronger formal foundation to 

concept oriented KRs, it turned out to be difficult to reconcile compositionality and 

prototypical representations. As a consequence, they often chose to sacrifice the latter. 

In particular, this is the solution adopted in a class of concept-oriented KRs which were 

(and still are) widespread within AI, namely the class of formalisms that stem from the 

so-called structured inheritance networks and the KL-ONE system (Brachman and 

Schmolze 1985). Such systems were subsequently called terminological logics, and 

today are usually known as description logics (DLs) (Baader et al. 2002). We already 

presented in greater detail this class of formalisms in chapter 1. A standard inference 

mechanism for this kind of network is inheritance. The representation of prototypical 

information in semantic networks usually takes the form of allowing exceptions to 

inheritance. Networks in this tradition do not admit exceptions to inheritance, and 

therefore do not allow for the representation of prototypical information. In fact, 

representations of exceptions cannot be easily accommodated with other types of 

inference defined on these formalisms, first and foremost concept classification 

(Brachman 1985). Since the representation of prototypical information is not allowed, 

inferential mechanisms defined on these networks (e.g. inheritance) can be traced back 

to classical logical inferences. In more recent years, representation systems in this 

tradition have been directly formulated as logical formalisms (the above mentioned 

description logics, Baader et al., 2002), in which Tarskian, compositional semantics is 

directly associated to the syntax of the language. Logical formalisms are paradigmatic 

examples of compositional representation systems and, as a result, this kind of system 

fully satisfies the compositionality requirement. This has been achieved at the cost of 

not allowing exceptions to inheritance. However, in so doing, we have forsaken the 

possibility to represent concepts in prototypical terms. From this point of view, such 

formalisms can be seen as a revival of the classical theory of concepts, in spite of its 

empirical inadequacy in dealing with most common-sense concepts. As we have seen in 

the previous chapter, nowadays DLs are widely adopted within many application fields, 

in particular within that of the representation of ontologies. For example, the OWL 



Chapter 2. Representing Non Classical Conceptual Information  
 

22 
 

(Web Ontology Language - see sect. 1.4 of chapter 1) system7 is a formalism in this 

tradition that has been endorsed by the World Wide Web Consortium for the 

development of the semantic web.  

 

2.5 Artificial Systems: Why Prototypical Effects are Needed 

 

Prototypical effects in categorisation and, in general, in category representation are not 

only crucial for the empirical study of human cognition, but they are also of the greatest 

importance in representing concepts in artificial systems. Let us first consider human 

cognition. Under what conditions should we say that somebody knows the concept DOG 

(or, in other terms, that (s)he possesses an adequate mental representation of it)? It is not 

easy to say. However, if a person does not know that, for example, dogs usually bark, 

that they typically have four legs and that their body is covered with fur, that in most 

cases they have a tail and that they wag it when they are happy, then we probably 

should conclude that this person does not grasp the concept DOG. Nevertheless, all 

these pieces of information are neither necessary nor sufficient conditions for being a 

dog. In fact, they are traits that characterise dogs in typical (or prototypical) cases. The 

problem is exactly the same if we want to represent knowledge in an artificial system. 

Let us suppose that we want to provide a computer program with a satisfactory 

representation of DOG. Then we probably also want to represent the kind of 

information mentioned above: for many applications, a representation of DOG that does 

not include the information that dogs usually bark is a bad representation also from a 

technological point of view. Therefore, if a system does not allow information to be 

represented in typical/prototypical terms (as is the case of standard description logics), 

then it is not adequate in this  respect. With standard DLs, the only way to tackle this 

problem should be the recourse to tricks or ad hoc solutions (as often happens in many 

applications). The concept DOG is not exceptional from this point of view. The 

majority of everyday concepts behave in this way. For most concepts, a classical 

definition in terms of necessary and sufficient conditions is not available (or, even if it 

is available, it is unknown to the agent). On the other hand, it may be that we know the 

                                                 
7 http://www.w3.org/TR/owl-features/ 
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classical definition of a concept, but typical/prototypical knowledge still plays a central 

role in many cognitive tasks. Consider the following example: nowadays most people 

know necessary and sufficient conditions for being WATER: water is exactly the 

chemical substance whose formula is H2O, i.e., the substance whose molecules are 

formed by one atom of oxygen and two atoms of hydrogen. However, in most cases of 

everyday life, when we categorise a sample of something as WATER, we do not take 

advantage of this piece of knowledge. We use such prototypical traits such as the fact 

that (liquid) water is usually a colourless, odourless and tasteless fluid. As a further 

example, consider the concept GRANDMOTHER. Everybody knows a classical 

definition for it: x is the grandmother of y if and only if  x is the mother of a parent of y. 

However, in many cases we do not use this definition to categorise somebody as a 

grandmother. We resort to typical traits: grandmothers are old women who take care of 

children, who are tender and polite with them, and so on. Once more, the problem is not 

different in the case of artificial systems: generally a system that has to categorise 

something as WATER cannot perform chemical analyses, and it must trust to 

prototypical evidence.  With these example our aim is that one of pointing out that the 

use of prototypical knowledge in cognitive tasks such as categorisation is not a “fault” 

of the human mind, as it could be the fact that people are prone to fallacies and 

reasoning errors (leaving aside the problem of establishing whether recurrent errors in 

reasoning could have a deeper “rationality” within the general economy of cognition). It 

has to do with the constraints that concern every finite agent that has a limited access to 

the knowledge which is relevant for a given task. This is the case of both natural and 

artificial cognitive systems.   

 

2.6 Non-classical Concepts in Computational Ontologies 

 

Within symbolic, logic oriented KR, rigorous approaches exist that make it possible to 

represent exceptions, and that would therefore be, at least in principle, suitable for 

representing “non-classical” concepts. Examples are fuzzy logics and non-monotonic 

formalisms. Therefore, the adoption of logic oriented semantics is not necessarily 

incompatible with prototypical effects. Nevertheless, such approaches pose various 
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theoretical and practical difficulties, with many problems remaining unsolved. In this 

section, we review some recent proposals to extend concept-oriented KRs, and in 

particular DLs, with a view to representing non-classical concepts. Recently, different 

methods and techniques have been adopted to represent non-classical concepts within 

computational ontologies. These are based on extensions of DLs as well as standard 

ontology languages such as OWL. The different proposals that have been put forward 

can be grouped into three main classes: a) fuzzy approaches, b) probabilistic and 

Bayesan approaches, c) approaches based on non-monotonic formalisms. 

a) As far as the integration of fuzzy logics in DLs and in ontology oriented 

formalisms is concerned, see for example Gao and Liu 2005, and Calegari and Ciucci 

2007. Stoilos et al. (2005) propose a fuzzy extension of OWL,  

f-OWL, able to capture imprecise and vague knowledge, and a fuzzy reasoning engine 

that lets f-OWL reason about such knowledge. Bobillo and Straccia (2009) propose a 

fuzzy extension of  

OWL 2 for representating vague information in semantic web languages. However, it is 

well known (Osherson and Smith 1981) that approaches to prototypical effects based on 

fuzzy logic encounter some difficulty with compositionality. 

b) The literature offers also several probabilistic generalizations of web ontology 

languages. Many of these approaches, as pointed out in Lukasiewicz and Straccia 

(2008), focus on combining the OWL language with probabilistic formalisms based on 

Bayesian networks. In particular, Da Costa and Laskey (2006) suggest a probabilistic 

generalization of OWL, called PR-OWL, whose probabilistic semantics is based on 

multi-entity Bayesian networks (MEBNs); Ding et al. (2006) propose a probabilistic 

generalization of OWL, called Bayes-OWL, which is based on standard Bayesian 

networks. Bayes-OWL provides a set of rules and procedures for the direct translation 

of an OWL ontology into a Bayesian network. A general problem of these approaches 

could consist in avoiding arbitrariness in assigning weights in the translation from 

traditional to probabilistic formalisms.  

c) The role of non monotonic reasoning in the context of formalisms for the 

ontologies  is actually a debated problem. According to many KR researches, non 

monotonic logics are expected to play an important role for the improvement of the 

reasoning capabilities of ontologies and of the Semantic Web applications. In the field 
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of non monotonic extensions of DLs, Baader and Hollunder (1995) propose an 

extension of ALCF system based on Reiter’s default logic8. The same authors, however, 

point out both the semantic and computational difficulties of this integration and, for 

this reason,  propose a restricted semantics for open default theories, in which default 

rules are only applied to individuals explicitly represented in the knowledge base. Since 

Reiter’s default logic does not provide a direct way of modelling inheritance with 

exceptions in DLs, Straccia (1993) proposes an extension of H-logics (Hybrid KL-ONE 

style logics) able to perform default inheritance reasoning (a kind of default reasoning 

specifically oriented to reasoning on taxonomies). This proposal is based on the 

definition of a priority order between default rules. Donini et al. (1998, 2002), propose 

an extension of DL with two non monotonic epistemic operators. This extension allows 

one to encode Reiter’s default logic as well as to express epistemic concepts and 

procedural rules. However, this extension presents a rather complicated semantics, so 

that the integration with the existing systems requires significant changes to the 

standard semantics of DLs. Bonatti et al. (2006) propose an extension of DLs with 

circumscription. One of motivating applications of circumscription is indeed to express 

prototypical properties with exceptions, and this is done by introducing “abnormality” 

predicates, whose extension is minimized. Giordano et al.  (2007) propose an approach 

to defeasible inheritance based on the introduction in the ALC DL of a typicality 

operator T9, which allows to reason about prototypical properties and inheritance with 

exceptions. This approach, given the non monotonic character of the T operator, 

encounters some problems in handling inheritance (an example is what the authors call 

the problem of irrelevance). Katz and Parsia argue that ALCK, a non monotonic DL 

extended with the epistemic operator K10 (that can be applied to concepts or roles) could 

represent a model for a similar non monotonic extension of OWL. In fact, according to 

the authors, it would be possible to create “local” closed-world assumption conditions, 

in order the reap the benefits of non monotonicity without giving up OWL’s open-world 

semantics in general. 
                                                 
8 The authors pointed out that “Reiter's default rule approach seems to fit well into the philosophy of 
terminological systems because most of them already provide their users with a form of ‘monotonic’ 
rules. These rules can be considered as special default rules where the justifications - which make the 
behavior of default rules nonmonotonic – are absent”. 
9   For any concept C, T(C) are the instances of C that are considered as “typical” or “normal”. 
10 The K operator could be encoded in  RDF/XML syntax of OWL as property or as annotation property. 



Chapter 2. Representing Non Classical Conceptual Information  
 

26 
 

A different approach, investigated by Klinov and Parsia (2008), is based on the use 

of the OWL 2 annotation properties (APs) in order to represent vague or prototypical, 

information. The limit of this approach is that APs are not taken into account by the 

reasoner, and therefore have no effect on the inferential behaviour of the system 

(Bobillo and Straccia 2009). 

 

2.7 Some Suggestions from Cognitive Science 

 

Even though a relevant field of research exists, in the scientific community there is no 

agreement on the use of non-monotonic and, in general, non-classical logics in 

ontologies. For practical applications, systems that are based on classical Tarskian 

semantics and that do not allow for exceptions (as it is the case of “traditional” DLs), 

are still preferred. Some researchers, such as Pat Hayes (2001), argue that non-

monotonic logics (and, therefore, the non-monotonic “machine” reasoning for the 

semantic web) can be adopted for local uses only or for specific applications because it 

is “unsafe on the web”. Nevertheless, the question about which “logics” must be used in 

the semantic web (or, at least, to what degree and in which cases certain logics could be 

useful) is still open.  

Empirical results from cognitive psychology show that most common-sense concepts 

cannot be characterised in terms of necessary/sufficient conditions. Classical, 

monotonic DLs seem to capture the compositional aspects of conceptual knowledge, but 

are inadequate in representing prototypical knowledge. However, a “non-classical” 

alternative, a general DL able to represent concepts in prototypical terms still does not 

exist. 

As a possible way out, we outline a tentative proposal based on several suggestions 

from cognitive science. Some recent trends in psychological research favour the 

hypothesis that reasoning is not a unitary cognitive phenomenon. At the same time, 

empirical data on concepts seem to suggest that prototypical effects could stem from 

different representation mechanisms. To this end, we identify some suggestions that, in 

our opinion, could be useful in developing artificial representation systems, namely:  (i) 

the distinction between two different types of reasoning processes, which has been 

developed within the context of the so-called “dual process” accounts of reasoning (see 
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Chapter 4.2.1); (ii) the proposal to keep prototypical effects separate from the 

compositional representation of concepts (sect. 4.2.2); and (iii) the possibility to 

develop hybrid, prototype and exemplar-based representations of concepts (sect. 4.2.3). 

In particular in the next chapter we focus our attention on the prototype and exemplar 

theories of concept representation and reasoning developed in the field of cognitive 

psychology. As we will argue, in fact, it is our opinion that maintain both the 

representational level within a unique architectural framework can improve both the 

quality of the information represented within a knowledge base and, at least in principle, 

pose the conditions for the realization of a non  monotonic reasoning module for 

approximate categorization based on both the representations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                          Chapter 4. A Hybrid Approach to Concept Representation and Reasoning                                                                                                                  
 

28 
 

Chapter 3.  

 

Models of Cognition: Prototypes and Exemplars to 

Explain the Typicality 

 

 

 

In the last 30 years, the results coming from the research in cognitive science 

demonstrated the inadequacy of the so called “classical” theory of concepts - according 

to which concepts can be defined in terms of sets of necessary and sufficient conditions 

– for the explanation of such processes as conceptualization, categorization and 

common sense reasoning. 

The failure of this theory, and of its purely compositional approach to the semantics, 

revealed, as counterpart, the role played by typicality traits in the above mentioned 

processes, thus representing  a real shift of paradigm in the study of both natural and 

artificial concept oriented systems. 

In this chapter we focus on the models of typicality deriving from the research of the 

last 30 years in cognitive science and psychology. After a brief, and necessarily not 

exhaustive, review of the main models (section 3.1) we focus on the differences among 

the proposed theories, with a particular attention to prototype and exemplar based 

approaches (section 3.2). In the last part of this section we analyze an emerging research 

direction trying to provide a unifying approach to typicality. In section 3.3 we 

investigate the dynamics of the processes implied by these two different views. Then, in 

section 3.4, we account for the problem of automatic categorization in the field of 

machine learning, investigating the contact point among this area and cognitive science 

research about conceptual categorization. In this section we also describe how machine 

learning research seems to be going towards a unified view of typicality in automatic 

classification, following, in a certain sense, the way indicated by psychological 

research.  
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The main goal of this chapter is to present the theoretical foundations and implications 

of typicality in concept representation and reasoning. It is our opinion that the 

suggestions coming from such different research areas - as cognitive sciences and 

machine learning - could be very fruitful to face the problem of representing and 

reasoning on typicality even in the field of knowledge representation. 

 

3.1. Theory of Concepts – an overview 

 

Within the field of psychology, different positions and theories on the nature of 

concepts are available. Usually, they are grouped in three main classes, namely 

prototype views, exemplar views and theory-theories (see e.g.  Murphy 2002, Machery 

2009). All of them are assumed to account for (some aspects of) prototypical effects in 

conceptualisation.  

According to the prototype view, knowledge about categories is stored in terms of 

prototypes, i.e. in terms of some representation of the “best” instances of the category. 

For example, the concept CAT should coincide with a representation of a prototypical 

cat. In the simpler versions of this approach, prototypes are represented as (possibly 

weighted) lists of features.  

According to the exemplar view, instead, a given category is mentally represented as a 

set of specific exemplars explicitly stored within memory: the mental representation of 

the concept CAT is the set of the representations of (some of) the cats we encountered 

during our lifetime.  

Theory-theories approaches adopt some form of holistic point of view about concepts. 

According to some versions of the theory-theories, concepts are analogous to theoretical 

terms in a scientific theory. For example, the concept CAT is individuated by the role it 

plays in our mental theory of zoology. In other version of the approach, concepts 

themselves are identified with micro-theories of some sort. For example, the concept 

CAT should be identified with a mentally represented micro-theory about cats.  

These approaches turned out to be not mutually exclusive. Rather, they seem to succeed 

in explaining different classes of cognitive phenomena, and many researchers hold that 

all of them are needed to explain psychological data. In the following pages a more 

detailed overview is presented. We will not focus our attention on the theory-theory 
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approach, since it is in some sense more vaguely defined if compared with the other two 

points of view and, for this reason, its computational treatment seems to be less feasible. 

 

3.2 Prototype and Exemplar Theories 

 

Prototypes and exemplars theories represent different approaches that have been 

developed with the aim of modeling and explaining the aspects of typicality effects in 

humans’ conceptualization and categorization. Historically these two views have been 

seen as contrasting and unconciliable among them. More recently, however, there is a 

growing trend in cognitive science to consider these two approaches as complementary 

in explaining the typicality issues (see the section 3.4 for further details). Following this 

direction, it is our opinion that the two theories, jointly, can be able to cover and explain 

some complex aspect of typicality in concept representation and reasoning. Therefore, 

both the views can provide a strong background from which to extract many 

suggestions. In the following subsections, we will go into the details of both approaches 

with the aim of illustrate their main features, their respective pros and cons, and the 

different assumptions made by the two approaches regarding the reasoning processes in 

which they are involved. 

 

3.2.1 Prototype Theory 

 

In the psychological literature it is possible to individuate different prototype-based 

theories. As reported in Machery (2009), they vary depending on how the nature of the 

knowledge stored in prototypes is characterized. Depending on the theory, prototypes 

can consist of: 

  

(i) knowledge about properties that objects either possess or do not possess 

(ii)  knowledge about properties that objects possess to a certain degree.  

 

The property having fins is an example of the first type of property (an entity can have 

or not have fins). The property being salty, instead, is an example of the second type: a 

substance can be more or less salty. This second type of property can also be discrete or 
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continuous. According to Smith and Medin (1981), prototype models that focus on the 

first type of property are usually called featural models, while models that focus on the 

second type of property are usually called dimensional models. Moreover, depending on 

the theory, prototypes represent either the typical properties of categories, the cue-valid 

properties or the properties that are both cue-valid and typical. In the first case, 

prototypes are supposed to store some knowledge about the typical properties of a class. 

A property P is typical of a class C if and only if the probability that an object possesses 

P given that it is a member of C is high. For example: having four legs is a typical 

property of dogs (usually the dogs have four legs). Knowing which properties are 

typical of a class is particularly useful in order to draw inductions about this class. For 

example: let us suppose that we have an element X that has 4 legs and that is a DOG. 

The process of induction consists in the inference according to which, starting from 

these premises, we draw the conclusion that “every DOG has four legs”. The given 

example, and the related inferential mechanism, can be even easily formalized in First 

Order Predicate Logic in the following way: 

 

(i) Known information: usually a Dog has 4legs 

4legs(a) 

Dog(a) 

∀x (Dog(x) → 4legs(x)) 

 

Of course this inference is not valid from a logical point of view: it is a non monotonic, 

defeasible inference, which is cognitively plausible (and in many cases reliable).  

According to other theories, prototypes store some knowledge about the highly cue-

valid properties of concepts (see e.g., Hampton 1993). A property has a high cue 

validity if, statistically, it is very informative about the class membership. A high-cue 

validity feature is one which conveys more information about the category or class 

variable. For example: To woof is a highly cue-valid property of dogs. Having four legs 

is not a highly cue-valid property of dogs even if it is a typical trait of being a dog (a lot 

of mammals have four legs). Knowing which properties are highly cue-valid for a class 

is particularly useful for the reasoning task of categorization. For example: if, at a given 

element X, it is assigned the property to woof (which is a high cue-valid property of 



                          Chapter 4. A Hybrid Approach to Concept Representation and Reasoning                                                                                                                  
 

32 
 

dogs), then there is an high degree of probability that X is a DOG. Furthermore, there is 

also an high degree of probability that humans categorize, by default, the element X as 

DOG. Because the property “woof” (even if it is neither necessary nor sufficient for 

being a DOG) represents, from a cognitive point of view, a highly informative feature 

for that class membership assignment. Therefore, as we have seen in this example, 

knowing which properties are cue-valid for a class is particularly useful in order to draw 

non monotonic forms of categorization about this class. 

Finally,  according to some approaches, prototypes store both typical and cue 

valid properties. In Jones (1983), for example, prototypes are assumed to store some 

knowledge about the properties that maximize some weighted function of typicality and 

cue-validity (fore a more detailed literature on the subject see, again, Machery 2009).   

A classical, well known, attempt of representing prototypes in Artificial 

Intelligence has been developed by Marvin Minsky, who introduced, in the mid '70s, the 

notion of frame in the field of Knowledge Representation (Minsky, 1975). A frame is a 

knowledge representation structure able to represent prototypical information and to 

perform some forms of non monotonic reasoning (e.g. exceptions to inheritance). In a 

frame based representation, concepts are represented according to some prototypical, 

and cognitively relevant, traits expressed in terms of slots, attributes and values. A slot 

is composed by an attribute and a value. The values assigned to certain attributes can be 

default values.  

The illustration 3.1 graphically shows the typical structure of a frame. 

 

Frame 1 

Concept 1 

Attribute 1 Value 1 

Attribute 2 Value 2 

Attribute 3 Value 3 

… … 

 

 

 

Figure 3.1: Example of a frame 
based representation  
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3.2.2 Criticisms 

 

In psychological literature many criticisms to the prototype theories of concepts have 

been proposed. A first criticism regards how to explain why, among the numerous 

typical (or cue-valid) properties of the members of a category, prototypical concepts 

represent only some of them. Psychologists and philosophers have repeatedly 

highlighted this issue (Smith and Medin 1981; Machery 2009), but answers in this 

direction are not yet arrived. Another well known criticism comes from Pinker and 

Prince (1996). They suggest that, in some domains, concepts can be considered as 

definitions, while, in other domains, concepts are prototypes or exemplars.11 They 

argue, for example, that kinship concepts (e.g., UNCLE) and legal concepts are well 

characterized by the classical theory. Also mathematical concepts can be assigned to 

this category: e.g. in geometry a TRIANGLE can be easily defined as a POLIGON with 

3 corners and 3 sides.  This criticism, however, rather than demonstrating the invalidity 

of the prototype theory, demonstrates that it cannot be applied to certain concepts in 

specific, well structured, domains. Namely: it does not apply to such domains in which 

there is no space for typicality.  

Other criticisms derive from the so-called heterogeneity hypothesis or from the hybrid 

theory of concepts, according to which a single concept can have a double level 

representation, or it can correspond two different concepts representing different levels 

of information (see the section 3.4 below for further details).  

Historically, in the psychological literature a direct antagonist of the prototype theory 

was the exemplars based approach. In the next section we provide an overview of the 

exemplar theories in order to underline which are the differences between the two 

approaches.   

 

 

 

 

                                                 
11  These authors also concede that to some concepts can be associated  both a definition and a 

prototype. In these cases, they seem to endorse the so called “heterogeneity hypothesis”. This position 
will be described  in major details in the section 3.4. 
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3.2.3 Exemplar theory 

 

The exemplar paradigm of concepts is built around the idea that concepts are sets of 

exemplars that are stored in our long term memory. In this perspective, our knowledge 

about a certain concept (let consider, for example, the concept DOG) comes from the 

accumulated knowledge deriving from all the exemplars of dogs encountered during our 

lifetime (e.g. Fido, Rin Tin Tin, Lassie etc.). An exemplar represents, in other words, a 

body of knowledge about the properties possessed by a particular member of a class 

(Machery, 2009). Exemplar based models have posed a strong emphasis on 

categorization process. According to Palmeri and Gauthier (2004, 294): “Exemplar 

models assume that recognition, categorization and identification depend on stored 

instances of experienced objects.”. Similarly Medin and Schaffer write (1978, 209-210): 

“The general idea of exemplars based models is that categorization judgments are based 

on the retrieval of stored exemplar information”.  

In order to better indicate the way in which exemplars have been usually represented 

according to this theory, we introduce one of the best known exemplar model of 

concepts: the Context Model proposed by Medin and Schaffer’s (1978). In Medin and 

Schaffer’s model, the exemplars are represented as follows: four (independent) 

properties or “dimension” (for instance, color) are given. For each of them, exemplars 

can assume a dichotomic value. For example, color can have the values red or blue. So 

values can be represented by 0 and 1. Some values may not be specified, because people 

may have selectively attended to some properties of the encountered category members. 

Thus, Medin and Schaffer represent the exemplar information in the following way: 

 

                 111?-A(A1)  10?0-A(A2) 

                 00?1-B(B1)  110?-B(B2), 

 

where the question marks indicate that information that would differentiate value 1 and 

value 0 on that dimension either has not been stored, or cannot be accessed. 

 

In the Context Model, exemplars could thus be represented as follows: 
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Concept A 

Exemplar A1 

Dimension 1 Value 1 

Dimension 2 Value 1 

Dimension 3 Value 1 

Dimension 4 Unknown 

value 

 

Concept A 

Exemplar A2 

Dimension 1 Value 1 

Dimension 2 Value 0 

Dimension 3 Unknown 

value 

Dimension 4 Value 0 

 

 

 

 

A development of this proposal is the Nosofsky’s influential Generalized Context 

Model of categorization (Nosofsky 1986). It will be presented in the section 3.4.2.1 in 

order to show the basic mechanisms implied by exemplar theories in concept 

categorization tasks. In such processes, in fact, it is possible to individuate some of the 

main differences between prototype and exemplar approaches. For this reason the next 

sections will be dedicated to the models of categorization proposed within both 

prototype and exemplar perspectives. 

 

3.3 Prototype based model of categorization  

 

Prototype-based models proposed in literature share some key properties. One of the 

most important properties is that cognitive processes are assumed to involve the 

Figure 3.2: Exemplars in the Context 
Model, adapted from Machery (2009) 
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computation of the similarity between prototypes and other representations. For 

example, the categorization decisions are supposed to depend on the computation of the 

similarity between prototypes and the representation of the target concepts. Let us 

consider the following example: suppose that we want to categorize the element Fido 

that has certain characteristics (and suppose also that Fido is a DOG). The process of 

categorizing Fido as a dog results from the process indicated in Figure 3.3. The first 

phase starts when we possess some information (perceptual or of some other kind) 

concerning Fido. Then the available prototypical representations are  retrieved from the 

long-term memory and compared with the representation of Fido the similarity between 

these representations is computed (the degree of similarity depends on how many 

properties are represented by both the prototype and the representation of Fido) and, 

finally, the categorization decision that Fido is a dog follows from the high degree of 

similarity between the prototype of dog and the representation of Fido (for a brief 

overview of the different ways to calculate the semantic similarities among concepts. 

see chapter 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Information about Fido 

Prototype(s) retrieval 

Similarity computation 

Categorization decision 

Figure 3.3: A Sequential Schema of 
Psychological Categorization in Prototype 

Theories  
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Another relevant property of these models is that the similarity computation is usually 

assumed to be linear (Medin and Schaffer, 1978). In linear models, a property that is 

shared by the target and the prototype increases the similarity between the target and the 

prototype independently of whether other properties are shared by them. For example, 

the fact that the dog of my neighbor, Fido, has a property that matches my prototype of 

dog (e.g. barking) increases the similarity between the representation of Fido and the 

prototype of dog independently of whether Fido and my prototype of dog match in other 

respects. To put it more technically, properties are independent cues for categorization. 

Strictly speaking, the linearity of the similarity function is not required by prototype 

models.  

Finally, prototype models of cognitive processes, for instance, prototype models of 

categorization, are typically integrative (Berretty et al. 1999). That is, it is assumed that 

our cognitive processes combine several cues to produce their outputs. For instance, to 

decide whether a target is a dog, we are assumed to take always into consideration 

several of its properties. 

 

3.3.1 An example of Prototype-based categorization: The Hampton's model 

 

There exist, in psychological literature, many different models of prototype-based 

categorization. These models usually specify: 

 

(i) how the similarity between a prototype and a target is computed—the similarity 

measure - 

(ii)  how the decision to categorize the target is made - the decision rule.  

 

Typically, nothing is said about whether the matching process between the 

representation of the target and the prototype is done serially (a property at a time) or in 

parallel (all properties at the same time).  

A classical, well known, model of prototype based categorization has been proposed by 

Hampton (1995). This model consists of three elements: a prototypical representation of 

concepts, a similarity measure, and a decision rule. The prototypical representation of 
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concepts is similar to other models and has a frame-like form (table 3.1). The similarity 

measure is the following: 

 

• S(x, C) = f(w(x, i)), 

  

where S(x, C) is the similarity between the target x and the prototype of the category C, 

f is a function that ranges over all the properties represented by the prototype, and w(x, 

i) is the weight of the value (e.g., red) possessed by x for the ith attribute (e.g., color). 

According to Hampton (1993, p. 74): 

 

“The simplest, and most common assumption for the function f is a linear 

combination rule, such that the similarity is proportional to the sum of the 

attribute-value weights possessed by an instance.” 

Thus,  

•  

Hampton’s decision rule for categorization is a simple deterministic rule (74):  

 

• S(x, C) > t → x∈C, 

 

where t represent a threshold on the similarity scale. It is important to note that 

Hampton’s model assumes that the same process of similarity evaluation underlies both 

typicality judgments (how typical an object is of its category) and categorization 

judgments. Typicality ratings are supposed to be strictly related to similarity. 

 Thus, Hampton’s model of the categorization process involves a matching 

process between representations as well as a linear measure of the similarity between a 

prototype and other presentations. These two traits can be considered as the main 

trademarks of prototype-based models of cognitive processes. 
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3.3.2 Categorization with exemplars 

 

Like prototype-based models of cognitive processes, exemplar-based models assume 

that cognitive processes involve the computation of the similarity between exemplars 

and other representations. For instance, categorization judgments are supposed to result 

from the computation of the similarity between exemplars and the representation of the 

target. Let us consider an example (from Machery, 2009): when we categorize Fido as a 

dog, one or several exemplars of dogs are retrieved from our long-term memory 

(together, maybe, with exemplars of other related categories, such as cats); this 

exemplar (or these exemplars) is (are) matched with our representation of Fido. Then, 

the similarity between these representations is computed and, finally, the decision that 

Fido is a dog results from the high degree of similarity between the retrieved 

exemplar(s) of dog(s) and the representation of Fido. Figure 3.4 summarizes these 

processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another central property of exemplar-based models is that the similarity measure is 

usually supposed to be non-linear. In non-linear measures, how much a property that is 

shared by the target and by an exemplar increases the similarity between the target and 

Information about Fido 

Exemplar(s) retrieval 

Similarity computation 

Categorization decision 

Figure 3.4: A Sequential Schema of 
Psychological Categorization in Exemplars 
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this exemplar depends on which other properties they share. For example: Suppose that 

the pet of my neighbors, Fido, has a property (say, barking) that is represented by one of 

the exemplars of dogs stored in my memory (say, the representation of my own dog, 

Lassie). How much the similarity between the representation of Fido and of Lassie is 

increased depends on whether Fido and Lassie share other properties, such as chasing 

cats. Thus, by contrast to linear measures, the degree of similarity in non-linear 

measures is supposed to be a function of the configuration of cues. To put it more 

technically, properties are dependent cues for categorization. 

  

3.3.2.1 Exemplar categorization: Nosofsky's Model 

 

In order to better explain the categorization process in exemplar theory, we briefly 

describe a well-known exemplar model: the Generalized Context Model of 

categorization developed by Nosofsky (1986, 1992). This model is an extension of 

Medin and Schaffer’s (1978) Context Model presented above (section 3.2.3). The 

Generalized Context Model consists of an exemplar model of concepts, a similarity 

measure and a decision rule. According to this model, each exemplar is represented as a 

point in a multidimensional space in which each dimension represents a continuous 

property. Thus, an exemplar is represented  by a specific value for each one of the 

dimensions that constitute the dimensional space. 

Regarding the similarity measure: in the Generalized Context Model, each target 

is compared to all the exemplars that constitute a concept. For instance, a dog, Fido, 

must be compared to all the exemplars of dogs that constitute my concept of dog as well 

as to all exemplars of wolves that constitute my concept of wolf. The similarity between 

Fido and a given exemplar, for instance an exemplar of dog, is a function of the 

psychological distance between Fido and this exemplar. This psychological distance 

depends on the extent to which Fido and the exemplar match on each of the relevant 

dimensions for categorizing Fido. The more different Fido and the exemplar are on a 

given dimension, say k, the further apart they are on this dimension. Formally, for a 

given dimension, the distance between the target Fido and the exemplar is: 

 

1. │xtk – xEk│ 
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where xtk is the value of the target, Fido, on dimension k and xEk is the value of the 

exemplar on this dimension. Each psychological dimension is weighted. The weight of 

dimension k, wk, indicates the attention paid to k. Greater values of this weight capture 

the idea that mismatch along dimension k increases the dissimilarity between the 

exemplar of a dog and Fido, decreasing, as consequence, the likelihood that Fido will be 

categorized as a dog. This parameter is assumed by Nosofsky to be context-dependent. 

Dimension weights sum to one: this captures the idea that decreasing the attention to 

one dimension entails increasing the attention to other dimensions. The psychological 

distance between Fido and the exemplar of a dog depends on whether the relevant 

dimensions are analyzable (see Ashby and Maddox 1990). Analyzable dimensions can 

be attended independently of one another. Size and weight are analyzable dimensions of 

objects. This means that it is possible to attend to the size of an object, independently of 

its weight. By contrast, non-analyzable dimensions cannot be attended independently of 

one another. For example, hue, brightness, and saturation of colors are non-analyzable 

dimensions. When dimensions are non-analyzable, the psychological distance is 

computed with a Euclidean metric: 

2.  

When the dimensions are analyzable, the psychological distance is computed with a 

city-block metric: 

3.  

More generally, the distance between the target and the exemplar for n dimensions is 

calculated as follows: 

4.  

where r depends on whether the dimensions are analyzable or not. c is a parameter that 

measures how much the overall psychological distance between a target and an 

exemplar affects their similarity. The similarity between t and E is an exponential 

function of the psychological distance between the target and the exemplar. It is 

calculated as follows: 
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5. StE = e-dtE 

 

Thus, the greater the psychological distance between the target, Fido, and the exemplar 

of dog, the smaller is their similarity. The overall similarity of the target, Fido, to the 

concept of dog, that is, to the set of exemplars of dogs, is the sum of its similarities to 

each exemplar of a dog. Formally, 

 

6. StC = ΣE∈C StE 

 

If two concepts, say DOG and WOLF, have been retrieved from long-term memory, the 

probability of classifying Fido as a dog is a function of the overall similarity of Fido to 

the concept of dog divided by the sum of the overall similarities to the concepts of dog 

and of wolf. Formally, 

 

7. P(t∈A) = StA / (StA + StB)  

 

where A and B are the two relevant concepts.  

Concluding: Nosofsky’s Generalized Context Model of categorization illustrates 

the core ideas of exemplar-based models. In this case the process of categorization 

involves matching the representation of targets with exemplars and calculating, in a 

non-linear way, their similarity. 

 

3.4 Prototypes and Exemplars 

 

A considerable literature exists comparing prototype and exemplar theories (see e.g. 

Dopkins and Gleason, 1998; Lalumera 2009). The scope of the comparison has been, 

usually, to provide evidence in support or in contrast with one of the two theories, in 

order to enhance the proposed empirical models of human categorization and 

conceptualization and to establish which theory better explains the typicality 

phenomenon. In the following sections our goal is to put in evidence the main 

differences and similarities among these two approaches. In the first part we present 
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some results that favour one approach with respect to the other one. Then we compare 

the two approaches in order to underline their similarities and their differences. In the 

final part, we present a new perspective according to which we can have both prototype 

and exemplar based representations, and that we can use them in different situations. 

This choice goes in the direction of a Multi Process Theory, and contrasts the classical 

Unified View of Cognition (for major details on this issue see Lalumera 2009). 

 

3.4.1. In favor of Prototypes: the Random Distortion Pattern Evidence 

 

An element of evidence in favor of prototype theory derives from the study of Smith 

and Minda (2002) regarding the categorization prediction of random patterns of points. 

In the experiment setting proposed by Smith, different answers are expected according 

to prototype and exemplar theories. More precisely: exemplar and prototype theories 

make rather similar predictions about the categorization of high-level distortion patterns 

of points (1 and 2 in the figure below). However, their prediction differs for low-level 

distortion patterns (3 and 4 in the figure). Exemplar theories predict that the probability 

of classifying low-level distortion patterns of points should not increase with increasing 

typicality, or, equivalently, decreasing distortion. The prototype theories, instead, make 

the opposite prevision. The description of the experiment can be summarized in the 

following way: there is a  starting phase, a training phase and a test phase. The starting 

phase consists of the creation of a category of patterns of points. In the training phase, 

training items are patterns of points that are obtained by distorting the original pattern at 

a similar degree . In the test phase, two different patterns of points are proposed to the 

subjects of the experiment. In particular, a low-level distortion patterns of points (items 

3 and 4 in figure 3.5) and high-level distortion patterns of points (items 1 and 2 in the 

same figure) are showed to the subjects.  Exemplar theories predict that the probability 

of classifying low level distortion patterns of points should not increase with increasing 

of typicality or, equivalently, decreasing distortion. Therefore, for the exemplar theories 

the probability of classifying 4 as a category member should be equal to the probability 

of classifying 3. The reason is that, for low-level distortion patterns of points, any 

change in typicality will increase the similarity with some exemplars of patterns of 

points, but decrease the similarity with others, leaving the overall similarity to the set of 
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exemplars unmodified. By contrast, prototype theories predict that the probability of 

classifying low-level distortion patterns of points should increase with increasing 

typicality, or, equivalently, decreasing distortion. That is, prototype theories predict that 

the probability of classifying 4 as a category member should be greater than the 

probability of classifying 3. Figure 3.5 illustrates this argument. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using existing data sets about subjects’ categorization profiles in the dot-distortion 

classification task, Smith and Minda (2002) shown that prototype models of 

categorization do better at describing the categorization profiles of normal subjects.  

    

3.4.2. Evidence Against Prototypes 

 

Despite the above mentioned results, in head-to-head competition, exemplar models are 

in most cases more successful than prototype models. There are, in fact, numerous 

empirical evidences demonstrating this. For example: a first empirical element that is 

coherent with the exemplar theory and not with prototypes is the “old-items advantage 

effect”. This effect consists in the fact that old items are usually more easily categorized 

Training items: 
randomly and 
equally distorted 

Original 
pattern 

Test items: high-
level distortion 

Test items: low-
level distortion 

Figure 3.5: Test and Training Patterns of points 
(from Smith & Minda 2002) 

1 

2 

3 
4 
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than new items that are equally typical (for a review, see Smith and Minda 1998). For 

example: it is easier for me to classify my old pet Fido as a dog than an unknown dog 

that is equally typical. This effect is not predicted by prototype theories of concepts. 

Prototype theorists assume that people abstract a prototype from the stimuli they are 

presented with during the learning phase, and categorize old as well as new stimuli by 

comparing them to the prototype. What matters for categorization is the typicality 

degree of the items, not whether they have already been seen or not. By contrast, the 

old-items advantage falls out from the exemplar paradigm.  

A second type of empirical evidence in favour of exemplar theories is the following: it 

can happen that a less typical category member can be categorized more quickly and 

more accurately than a more typical category member. Furthermore, its category 

membership can be learned more quickly than the category membership of a more 

typical instance if it is similar to previously encountered exemplars of the category (e.g., 

Medin and Schaffer 1978). For example, it may be easier for me to categorize as a dog a 

three-legged dog than a four-legged one if my own pet dog lost a leg. Medin and 

Schaffer’s (1978) found evidence that supports their prediction. Furthermore, if 

compared with prototype models, the exemplar models tend to be more conservative 

about discarding information. They store a major amount of information than the 

prototypes do. This availability of a wider amount of information facilitates predictions 

and exemplar models seems to be better than prototype models in predictions support 

(Machery 2009). Another important blow to the prototype theory derives from the study 

of linear separable categories (Medin and Schwanenflugel 1981). A category is linearly 

separable if and only if it is possible to determine whether items belong to this category 

by summing the evidence offered by each property of this item. For example, suppose 

that two categories are characterized by two dimensions. These categories are linearly 

discriminable if and only if one can determine the category membership of each item by 

summing its value along the x- and y-axes, that is, if a line can be drawn between the 

members of each category (Figure 3.6). 
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Linearly separable 
categories 

Non linearly separable 
categories 

 

 

Fig. 3.6 Linear Separability 

 

The study of Medin and Schwanenflugel (1981) demonstrated that it is not possible to 

claim that linearly discriminable categories are easier to learn. This conflicts with the 

assumption made by the prototype theory. According to this approach, in fact,  people 

should find it difficult to form a concept of a non-linearly discriminable category 

(Medin and Schwanenflugel 1981; Murphy 2002). From an operational point of view, 

subjects should be faster at learning two categories, when such categories are linearly 

discriminable rather than non-linearly discriminable. Exemplar theories, instead, do not 

predict that subjects would be better at learning linearly discriminable categories than 

categories that are not linearly separable. In psychological literature this result has been 

taken as strong evidence for the exemplar models of concept learning. All these findings 

are clearly problematic for the prototype paradigm of concepts, while they are 

consistent with the exemplar view. In the next section a brief summary of the main 

evidences coming from the comparison of the two approaches is drawn. 

 

3.4.3. Prototypes vs Exemplars in short 

 

Prototype and exemplar approaches present significant differences. A brief summary of 

such differences is presented here. First of all, exemplar-based models assume that the 

same representations are involved in such different tasks as identification (e.g., “this is 

the Tower Bridge”) and categorization (Nosofsky 1986). This contrasts with the 

prototype models, which assume that different kinds of representation are involved in 
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these cognitive processes. Furthermore prototype models intend to capture only some 

central, and cognitively founded, aspects of the features of a concept, while the 

exemplars models represent in toto the particular knowledge of a certain entity. Another 

aspect of divergence consists in the treatment of the categorization process. As we have 

seen in the examples of sects. 3.4.1 and 3.4.2.1, in order to account for this reasoning 

task, both prototype-based and exemplar-based models assume that the similarity 

between prototypical/exemplars representations and target representations must be 

computed. The decision of whether the target belongs to some category depends on the 

result of this comparison. Despite this common mechanism, in the prototype view the 

computation of similarity is usually assumed to be linear (a property that is shared by 

the target and the prototype increases the similarity between the target and the prototype 

independently of whether other properties are shared by them) while, according to the 

exemplar view, it is assumed to be non-linear (a property that is shared by the target and 

the exemplar is considered relevant only if there are also other shared properties 

between the two representations). Another relevant difference among the two 

approaches regards the different assumptions made on our memory. According to 

exemplar theorists, we form memories of many encountered category members and we 

use by default these memories in cognitive tasks. On the contrary, according to 

prototype theorists, we store in our long-term memory only some parameters that 

characterize the categories we represent. This difference involves different memory 

costs: if compared to exemplars, prototypes are synthetic representations and occupy a 

minor space of memory. On the other hand, the process of creation of a prototype 

requires more time and cognitive effort, while the mere storage of knoweldge about 

exemplars is more parsimonious and less consuming because no abstraction is needed. 

The table below summarizes the main traits of the two approaches.  
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Table 3.1 Prototype models vs Exemplar Models 

3.4.4. Criticisms to the Exemplar Paradigm and Hybrid Approaches 

Despite the success of exemplar theories during the '80s and the '90s of the last century, 

different results coming from empirical research has shown some weakness point of this 

approach. Smith and Minda (2000) are the authors of one of the most famous articles in 

this sense. The authors cast some doubts on the strength of the evidence for the 

exemplar approach to concepts, categorization, and concept learning. The criticisms 

have been focused on the fact that many experiments that support the exemplar 

paradigm of concepts against the prototype paradigm are based on the same category 

structure12, which Smith and Minda, called the “5-4 category structure.” There are 2 

categories. Category A consists of 5 elements, category B of 4 elements. Apart from 

                                                 
12 A category structure is an abstract characterization of categories used in experiments. Four 
properties matter from this point of view: (i) how many categories are used in the experiment, (ii) for each 
category, how many members belong to it, (iii) how many properties or dimensions characterize the items 
used in the experiment,(iv) whether the members of the category possess or not each property.  

 Prototype models Exemplar Models 

Memory Storage The prototype of each category 

is a sort of  “average” 

description of all the exemplar 

experienced.  

Many exemplar encountered 

are stored along with the 

category to which it belongs 

Memory Costs Not expensive. Prototypes are 

“syntetic” representations. 

Expensive: the information 

concerning whole particular 

exemplars is stored. 

Cognitive Efforts It is expensive to build the 

prototype. More time is 

requested.  

It is parsimonious to use the 

exemplars knowledge. 

Decision Rule for 

Categorization 

Linear Not linear  

Inferential Prediction Not so good because it does not 

keep in memory all the traits. 

Better in support predictions 

based on partial information. 

Effects in Categorization  Similarity degree based on 

typicality. 

Old Items Advantage Effect. 
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these nine training stimuli, there are seven transfer stimuli. Four binary dimensions 

distinguish these 16 items. Each item is characterized by a value 1 or 0 along each of 

these four dimensions. Table 3.2 summarizes the 5-4 category structure (adapted from 

Smith and Minda 2000).  

 

 Dimensions 

 D1 D2 D3 D4 

Category A     

A1 1 1 1 0 

A2 1 0 1 0 

A3 1 0 1 1 

A4 1 1 0 1 

A5 0 1 1 1 

Category B     

B1 1 1 0 0 

B2 0 1 1 0 

B3 0 0 0 1 

B4 0 0 0 0 

Transfer 

stimuli 

    

T1 1 0 0 1 

T2 1 0 0 0 

T3 1 1 1 1 

T4 0 0 1 0 

T5 0 1 0 1 

T6 0 0 1 1 

T7 0 1 0 0 

 

Table 3.2: The 5-4 Category Structure 

(Adapted from Smith and Minda 2000 
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Let suppose that a prototype 1111 could be abstracted from category A, while category 

B would correspond to a prototype 0000. In this case, the category A has four members 

that share three features with the hypothesized prototype of A and one member that 

shares two features with this prototype. As emphasized by Smith and Minda (2000), 

category A has no “exceptional” member, that is a member “sharing more features in 

common with the opposing prototype,” but an “ambiguous” member, which shares 

“features equally with both prototypes.” Category B members share 2, 2, 3, and 4 

properties with the hypothesized prototype of B. Thus, category B contains two 

ambiguous members, and no exceptional member. So the average typicality of the 

members of A and of the members of B is the same. Additionally, the authors noted that 

natural world categories seem to be more differentiated and are not restricted to a few 

members. Thus, results found with undifferentiated, small categories may say little 

about how we learn concepts and categorize in real-world situations. For these two 

reasons, the validity of many experiments assumed to support the exemplar paradigm 

has been considered at least as controversial. 

 

Moreover, Smith and Minda argue that “subjects’ performances in experiments that use 

the 5-4 category structure do not support the exemplar paradigm as clearly as exemplar 

theorists would have it. Smith and Minda examined 30 data sets from eight articles that 

were obtained with the 5-4 category structure. They confirm that standard prototype 

models of categorization do not fit very well the data sets while, by contrast, the 

Context Generalized Model proposed by Nosofsky (presented in the section 3.4.2.1) 

successfully fits the data sets. However they show that prototype models can be 

extended in various ways to fit the categorization of dataset.  

Smith and Minda’s (2000) critique has been very influential against the claim that the 

exemplar paradigm is supported by an overwhelming body of evidence. Moreover, this 

criticism finds confirmations in many others experimental results, showing that people 

can use either exemplars or prototypes to solve categorization tasks. This goes in the 

direction of a hybrid view of concept representation and reasoning. In the next section 

we will do a brief overview on this approach.  
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3.5 Towards Hybrid Approaches to Concepts Representation and Reasoning 

 

Hybrid theories of concepts were first proposed for several reasons at the end of the 

1970s and at the beginning of the 1980s. They were sometimes motivated by the desire 

to save the view that concepts consist of definitions (the “classical” view). The 

argument was the following one: if concepts consist of two parts, a definition and an 

additional part, experimental findings that cannot be explained by assuming that 

concepts consist of definitions might be explained by hypothesizing that subjects 

behavior relied on this additional knowledge. Furthermore, as reported in Lalumera 

(2005) and Machery (2009), hybrid theories of concepts were also motivated by the 

shortcomings of the new theories of concepts proposed in the 1970s, such as the 

prototype theories.  

Nowadays many psychologists agree that, for many categories, we have both a 

definition (e.g. a classical representation based on sets of necessary and sufficient 

conditions) and another type of representation: for instance, a set of exemplars. Some of 

them, for example Ashby and colleagues (1998), propose that a definition of a category 

and, say, a prototype for this category form two concepts, instead of being two parts of a 

single concept (Ashby et al. 1998; Ashby and Ell 2001). This position is completely 

different from that supported by other proposals and experimental evidences. Large part 

of researchers, in fact, argue that the different types of representation should be thought 

as parts of the same concept, thus endorsing a hybrid theory of concepts. An example 

going in this direction has been proposed by Osherson and Smith (1981). They propose 

that concepts are made of two parts, a core and an identification procedure: the core of a 

concept consists of a definition, while the identification procedure consists of a 

prototype (1981, 57): 

 

“[W]e can distinguish between a concept’s core and its identification procedure; 

the core is concerned with those aspects of a concept that explicate its relation to 

other concepts, and to thoughts, while the identification procedure specifies the 

kind of information used to make rapid decisions about membership (…). We 

can illustrate with the concept woman. Its core might contain information about 

the presence of a reproductive system, while its identification procedure might 
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contain information about body shape, hair length, and voice pitch. Given this 

distinction, it is possible that some traditional theory of concepts correctly 

characterize the core, whereas prototype theory characterizes an important 

identification procedure.” 

 

Osherson and Smith proposed also that some cognitive competences involve only one 

of these two parts. Particularly, concept composition is assumed to involve exclusively 

the core while other competences, such as categorization, involve both the definition 

and the prototype: Categorization is underwritten by two distinct processes—a 

prototype-based process and a definition-based process. According to the authors we 

categorize objects by means of the prototype when we need to identify quickly their 

category membership. This categorization is reliable, but defeasible. We categorize 

objects by means of the definition when we need to be sure of their category 

membership. The idea of a hybrid representation of concepts is presented also in the 

Nosofsky's and colleagues (1994)  model called “RULEX” - which stands for “rules 

plus exemplars”. According to RULEX a concept consists of two parts, a rule and a set 

of exemplars. A rule is equivalent to a definition. An exemplar is a representation of a 

category member. During the process of categorization, these two parts are used as 

follows. When people have to categorize an object in one of two categories, A and B, 

they first apply a rule that discriminates most members of A from most members of B. 

Then, they check out whether this object is not one of the instances that are known to be 

exceptions to the rule (Figure 3.7). 

 

 

 

 

 

 

 

 

 

 

Does the object have the properties P and Q? 

Is it the object O* that has the properties 
P, Q and R? 

Is it the object O# that has the properties 
T and Z, but not P and Q? 

A A B B 

no 

no yes 

yes 

no yes 

Figure 3.7: the Categorization Procedure of RULEX 
(from Machery, 2009) 
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In other words, this model assumes that a single categorization process uses both parts 

of our concepts (rule and exemplars), so that the parts of a given concept do not produce 

inconsistent categorization judgments. Therefore, differently from what has been 

proposed by Osherson and Smith, they propose a single categorization process on a dual 

representatation.  

 

Another important psychological study supporting the idea of multi-process theory was 

done by Malt (1989). Her study had the aim of investigating if people categorize and 

learn categories according to the exemplar approaches or to the prototype based models. 

Her work, done using  behavioral measures such as categorization probability and 

reaction time, demonstrates that not all subjects retrieve exemplars to categorize. Some 

use exemplars; a few rely on prototypes, and others appeal to exemplars and to 

prototypes. A protocol analysis of subjects’ description of their categorization strategy 

confirms this interpretation13. Malt writes (1989, 546-547): 

 

“Three said they used only general features if the category in classifying the 

new exemplars. Nine said they used only similarity to old exemplars, and eight 

said that they used a mixture of category features and similarity to old 

exemplars. If reports accurately reflect the strategies used, then the data are 

composed of responses involving several different decision processes” 

 

This suggests that people can use either prototypes or exemplars to solve Malt’s 

categorization task. These findings are consistent with other well known studies such as 

Smith et al.’s (1997) and Smith and Minda’s (1998) experiments carried out with 

artificial stimuli. Smith et al. (1997), in fact, found that the performances of half of the 

subjects of their experiments were best fitted by a prototype model, while the 

performances of the other half were best fitted by an exemplar model. This suggests that  

people can learn at least two different types of concepts—prototypes and exemplars—

and that they can follow at least two strategies of categorization. Smith and Minda 

                                                 
13 A protocol analysis consist in the recording of what the subjects of an experiment say after the 

experiment about the way in which they performed the assigned tasks. 
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(1998) replicated these findings. Additionally, they found that during the learning 

phase, subjects’ performances are best fitted by different models, suggesting that, when 

they learn to categorize artificial stimuli, subjects can switch from a strategy involving 

prototypes to a strategy involving exemplars. They also found that the learning path is 

influenced by the properties of the categories subjects are presented with. For example, 

they show that categories with few, dissimilar members promoted the use of exemplar-

based categorization strategies. Thus, psychological evidence suggests that we have at 

least two different mechanisms for categorizing. These mechanisms rely on different 

types of knowledge: prototypes and exemplars.  

 

3.6. Prototypes and Exemplar Theories in Machine Learning: a brief overview 

 

The theories of human categorization based on prototypes or exemplars have been 

considered not only in the field of psychology and philosophy but also in such 

disciplines as machine learning and automatic classification14 (Witten, Frank, 2005). 

Machine learning is the field of artificial intelligence that is concerned with the design 

of programs that can learn from experience and improve their performance (Russel, 

Norvig 2002). In the subfield of supervised learning, the problem of  classification 

concerns the construction of classifier systems that, after a suitable training, can assign 

instances or objects assumed in input to the proper class among a set of possible classes. 

Categorization process in a classification system is carried out in two steps: the first one 

consists of a learning, or training, phase, and the second one is the categorization phase 

in a strict sense. 

In short, the process can be summarized as follows: in the first phase a set of labeled 

data, called the training set, is considered, in order to learn the function which maps 

data to classes. In the second phase, the classification function learned during the 

                                                 
14 In the machine learning literature, the terms classification and categorization are usually used as 

synonyms. However, the two terms can refer to different reasoning processes. For example, in the field of 
DLs, classification is a (deductive) reasoning process in which superclass/subclass (i.e., ISA) relations are 
inferred from implicit information encoded in a KB. More in general, in cognitive science, categorization 
is usually an inferential process through which a specific entity is assigned as an instance to a certain 
class. In non-monotonic categorization class assignment is a non deductive inferential process, based on 
typicality. In this section, respecting the terminology of machine learning community, we will use the 
terms as synonyms whose intended meaning is that one represented by the term “categorization” in 
psychological literature.  
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training phase is used to classify new data, for which the appropriate classification is 

still unknown.  

In the last years many classifier systems and algorithms have been developed following 

both the psychological theories of prototypes and exemplars. There are models 

developed following the assumption of prototype approaches (e.g. the PRT model 

proposed by Reed (1972), and exemplar based models of categorization, such as 

ALCOVE (Attention Learning COVEring map) developed by Kruscke (1992) (see 

Leon and Galea (2007) for major details).  

Particularly, in the machine learning area known as Instance based learning, it is 

possible to individuate different types of classifiers. For example, there is the Nearest 

Prototype Classifier (NPC), based on prototypes, and the Nearest Neighbour Classifier 

(NNC) based on exemplars. Before explaining in major detail the main characteristics 

of these two classifiers, we briefly characterize the Instance Based Learning 

methodology in general. Instance based learning is basically founded on four elements: 

the definition of similarity between observations, the representation of classes, the 

learning algorithm and the classification algorithm (see, again, Gagliardi 2011 for 

further details).  In the following we briefly summarize them:  

� Similarity: is formalized through a definition of a metric in the space of all 

possible observations, by which it is possible to quantify the distance between 

objects and thus also between the new instances and the ones stored as 

representative of the classes.   

� Classes representation consists of a set of couples composed by an instance and 

the relative class. It is created by the learning algorithm and is used by the 

classification algorithm. 

� The learning algorithm uses the training set to construct a set of representative 

instances.  

� Classification algorithm assigns a class to each new observed instance on the 

base of a criterion of greater similarity to the representative instances.  

 

In instance-based learning systems the knowledge extracted from the training set 

consists of the storage of directly observed or abstract instances belonging to the set of 

all possible observations. These instances which are saved in memory form the 
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categories representation. Classification is performed comparing a new instance, for 

which the class is unknown, with the labeled instances in memory. According to 

Gagliardi (2008 pag. 2)  

 

“the instances based representation, unlike other widely used representations in 

machine learning (e.g. rules, decision trees, etc.), is the only coherent with both 

the prototypes and exemplars theories and hence, in accordance with the 

“typicality view” on categorization, is the one to be used in order to develop 

classifier systems characterized by cognitive plausibility. Other representations 

(e.g. Classification rules) can be only related to the classical theory of 

categorization, and therefore, they lack a truly cognitive plausibility”.  

 

3.6.1. Instance-based Classifier Systems  

 

As mentioned above, there are different instance based classifier systems that are based 

on different categorization theories. For example: the Nearest Prototype Classifier 

(NPC) is one of the simplest classification systems and it is based on the assumptions of 

prototype theories (Kuncheva, Bezdek, 1998) (Bezdek et al., 1998). In NPC the learning 

algorithm constructs a single representative instance for every class. Each of these 

instances is called the prototype of the relative class, and it is calculated as the 

barycentre of the instances belonging to that class. The NPC assigns  any new observed 

instance to the class whose prototype is the nearest.  

A different approach to automatic categorization is given by the Nearest Neighbour 

Classifier (NNC), which is exemplars-based. The Nearest Neighbour Classifier is based 

on the plain comparison between the new instances and the training set. The learning 

phase is de facto absent because the set of the representative instances coincides with 

the entire training set. For this reason this classifier is called memory based. The NNC 

assigns to any new instance the class of the closest representative instance.  

 Recently, in the instance based learning research area, different new proposals 

have been presented. Some of them are modified version of NPC – for example this is 

the case of the NMPC (Nearest Multiple Prototype Classifier) in which the numbers of 

prototypes for each class is increased. Other proposals are modified versions of NNC. 
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These algorithms are variations of the prototype and of the exemplar based approaches 

respectively. 

Another interesting and promising solution goes in the direction of creating 

hybrid classifiers, in order to consider prototype and exemplar based theories not as two 

conflicting alternatives, but as two limit cases of the Instance Based Learning technique. 

Hybrid algorithms allow this “unified view” of typicality because they use a mixed 

representation of classes, composed by both prototypes and exemplars. And, moreover, 

they usually have the interesting property of exhibiting as special cases exactly the 

behavior of NPC and NNC, being able to vary in all possible intermediate cases. 

Therefore, they seem to be able to satisfy the need of a more inclusive approach to 

categorization. In our opinion, as we shall show in the next chapter, such a hybrid 

approach could be fruitful also to face the problem of representing and reasoning on 

typicality within the field of formal ontologies. 
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Chapter 4.   

A Hybrid Approach to Concept Representation and 

Reasoning 

 

 

 

 

As anticipated in the chapter 2, the representation of prototypical information and the 

mechanisms of reasoning on “typicality” have been widely debated in the field of 

Knowledge Representation. Historically these needs have been contrasted with the 

requirement of compositionality and the need to perform deductive reasoning. These 

two groups of requirements have often been viewed as not conciliable, and this dualism 

determined, in various domains, the realization of “partial systems”, limited both for the 

type of information expressed and for their reasoning capabilities. 

Our proposal is to provide a general architecture able to take into account, in an 

integrated perspective, these two elements of the common sense knowledge, with the 

aim of overcome the dichotomy typicality vs compositionality within the ontology 

based systems. In this sense, we propose a hybrid approach based on a two-layer 

structure for knowledge representation and reasoning. This architecture has a 

psychological background (see section 4.2 for major details) based on three different 

approaches. Namely: (i) the dual theories of reasoning and rationality, stating that 

human reasoning is the result of the interaction of two different types of cognitive 

systems  (ii) the pseudo-fodorian idea of taking separated the different knowledge 

components based on compositional and typical information, (iii) the prototype and 

exemplar theories of concept.  

Following this ideas, we propose a model combining a module for classical ontological 

representation and reasoning with a second one implementing reasoning on prototypical 

information and information about exceptions. Within the semantic web languages, this 

integration is now made easier because the linked open data better support (e.g. via 



                          Chapter 4. A Hybrid Approach to Concept Representation and Reasoning                                                                                                                  
 

59 
 

URI, sameAs and other OWL linking statements) the connection of multiple knowledge 

modules providing different types and/or levels of information for the same concept.   

 

4.1 General Description 

The proposed architecture consists of two main interconnected elements, representing 

the modules of the dual structure, and corresponding to the two types of cognitive 

system hypothesized by the dual process theory. Such knowledge modules are:  

- a compositional part, in which concepts are represented in an Ontology Web 

Language, and described in terms of necessary and/or sufficient conditions. Such 

component provides well known types of deductive reasoning such as classical 

classification, consistency checking and deductive categorization. See chapter 2 for 

further details. 

 - A “typical” part, which can represent both prototypical or exemplar-based knowledge 

concerning a certain concept (the different ways in which prototypical and exemplar 

information are represented will be discussed in the following pages), and in which 

some forms of non deductive reasoning can be added to the classical inferences 

performed by the compositional knowledge bases.  

In the general architecture of the system, a connection between these two knowledge 

modules is provided. This connection represents, in our proposal, a kind of “integration 

with some limitation” of the two modules. In  our view, in fact, the two representations 

must be kept independent even if interconnected. This separation is motivated by the 

fact that each representation is associated to a specific type of reasoning. Compositional 

representation and deductive reasoning must be kept separated from typical information 

and approximate reasoning. One of the reasons of this separation is to keep safe the 

results obtained by deductive reasoning in the DL knowledge-base from the results that 

can be provided only with the second “typical” part. This solution presents a relevant 

advantage: it does not cause inconsistencies in the case in which the different forms of 

reasoning would draw to different conclusions15 This form of “separation within the 

                                                 
15 It could be possible to obtain different results between monotonic and non monotonic reasoning 

processes 
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integration” is possible thanks to the realization of a cascade model, in which one of the 

components of the system is assumed to have a priority on the other. We can 

individuate the following general procedural steps in the architecture behavior 16: 

1) Perform deductive reasoning on the DL knowledge-module (e.g. classification, 

consistency checking, monotonic categorization etc.) 

2) Save the obtained results  

3) Run specific task tests on the DL system (e.g. queries on the KB) 

4) If the obtained results are “satisficing” for your purpose then stop, else execute the 

same tasks on the “typical” knowledge-base and take that results.  

 

According with the above mentioned assumption, the link between the two layers of the 

architecture is assumed to be unidirectional. In the case mentioned before, in fact, it is 

only possible to proceed from the compositional (DL) part to the typical part and not 

vice versa. In other words: the results obtained with the task tests executed at the step 3 

can only be enriched and /or be substituted, in case they are considered as not relevant, 

with the results coming from the typical module. But is not possible to operate in the 

opposite direction. This condition is  necessary in order to avoid the overlapping of the 

two representations and of the relative reasoning processes. However, as we will see in 

the following pages, in some tasks (for example, tasks in which the results provided by 

the typical module are heuristically more relevant and “smarter” than those obtained by 

classical reasoning) , in order to obtain certain types of results closer to the human way 

of categorizing the world and retrieve information, it is possible to assume that this 

procedure can be  modified  assuming that the connection among the knowledge layers 

is still unidirectional, but in the opposite sense: the starting point is represented by the 

results coming from the typical part, and the information enrichment process proceed 

from the typical part to the DL one. Some examples regarding these situations are 

presented in the section 4.3. The image in figure 4.1 graphically represents the 

“canonical” direction of the interconnection between the two layers (from compositional 

to the typical part). 

                                                 
16 The task to execute in the third step can vary according to the specific application and purpose for 

which the system is used. In our approach, as will be explained later, we consider applications to 
information retrieval and information discovery tasks. 
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Figure 4.1. General canonical model of the architecture 

 

4.1.1 Compositional Module 

The compositional knowledge module of the architecture is supposed to represent, when 

possible, concepts in terms of necessary and/or sufficient conditions. In the case of an 

ontology based system, the description of concepts can be expressed using a standard 

Description Logics formalism, and can be represented according to the classical 

elements of an OWL ontology (e.g. classes, properties, instances etc., see chapter 2). 

For example the concept BACHELOR (not married person) can be easily formalized in 

the following way in a DL knowledge base: 

(i) BACHELOR ⊆ PERSON 

(ii) BACHELOR ≡ MaleAdultPERSON ˄ ¬ Married 

(iii) BACHELOR(Giordano, Bruno,...)17 

This information can be easily expressed in an OWL ontology, representing the concept 

PERSONS with the above mentioned properties (e.g. ¬ Married) and with the indication 

of class membership (e.g. in the example Giordano and Bruno are instances of the class 

BACHELOR). This module represents, in our architecture, the “first choice”, the first 

                                                 
17 The expressions in (i) and (ii) belong to the TBOX (terminological box) in a typical DL system. 

(iii) belongs to the Abox (assertional box) of the knowledge-base.  
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element to be processed, and on which classical DL based reasoning processes must be 

performed (step 1 of the above described procedure). Furthermore, this module is also 

the one on which, in a next phase (step 3) of the procedure, specific tests on the 

knowledge base can be performed, such as query tests finalized to information 

discovery and retrieval. In the case in which the results obtained at the step 3 are 

satisficing the system stops;  otherwise, the second module based on “typicality” is 

activated.   

4.1.2 Typical Knowledge Module – Prototypes and Exemplars  

According to our proposal, the typical knowledge module can represent typical 

information using both prototype and “exemplars based” representations. Prototypes 

describing concepts according to typicality traits should be implemented as data 

structures that are external to the DL knowledge base. Such structures could be lists of 

(possibly weighted) attribute/value pairs that are linked to the corresponding concept in 

the DL module. Some attributes of the list correspond to attributes of the DL concept, 

for which the value is further specified. Other attributes of the prototype could be absent 

from the corresponding DL concept. The exemplar based representation, instead, are 

assumed to be internal to the DL module, even if further levels and or “pieces” of 

related information can be stored in external data structures. They represent the specific 

traits of a certain entity. The representation of the exemplar Fido, belonging to the 

concept DOG, for example, could contain such peripheral characteristics as the 

information that Fido has got distemper. The prototypical representation of DOG, on the 

contrary, will describe the concept DOG according to a subset of cognitively central and 

relevant traits associated to dogs: e.g. they woof, they wag tail, and so on.  

In our view, prototype based representation of concepts can be described according to 

the classical “format” of a frame (Minsky 1975) . A frame can be considered as a 

cognitive founded model of a specific concept. It can represent a single conceptual class 

or can be related to other frame representations, forming, in this case, the so called 

frame system. Usually a single frame is composed by three main elements: slots, values 

and facets. The slots represent the attribute assigned to a concept. They correspond to 

the “properties” (named binary relations between concepts) of a DL representation. 
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Facets constrain the values taken on by slots, such as, for example, the minimum or 

maximum value of a slot. The values specify a punctual information for a specific 

attribute.  

On the other hand, exemplar based representations express a specific information within 

a wider and more general DL knowledge-Base. According to our hypothesis, it is not 

possible that exemplar information is in contrast with that one more general provided in 

the compositional module. The presence of contradiction between these two levels 

represent, in our perspective, a symptom of a wrong modeling. Let us consider a typical 

example from medicine (Motik et. al 2006): suppose that the knowledge to be modeled 

is the following “the people have the heart on the left, but some people (called 

dextrocardiacs) have it on the right”. In their paper Motik et al. state that such a domain 

cannot be modeled in a classical compositional OWL knowledge base because the 

axioms: Human ⊆ HeartOnLeft, Dextrocardiac ⊆ Human, and Dextrocardiac ⊆ 

¬HeartOnLeft make the concept Dextrocardiac unsatisfiable and produce a 

contradiction. In our opinion, it would be an error to model the domain in these terms18. 

The correct way, that allows to account for the “exception” represented by the concept 

dextrocardiac, would be the following one: the class Human is represented in terms of 

necessary and sufficient conditions in the DL module, HeartOnLeft is represented as a 

prototypical properties of human beings (and, therefore, it is represented in the typical 

part of the concept Human), while the “atypical” situation of being a dextrocardiac can 

be  modeled both linking this state to a specific exemplar within the DL knowledge base 

(representing the state of being dextrocardiac as a specific property of an exemplar 

within the knowledge base) or creating a class Dextrocardiac defined as: Dextrocardiac 

⊆ Human and with HeartOnRight as a necessary and sufficient condition for a being 

dextrocardiac. This example allows us also to show the way in which both prototypical 

and exemplar representations interact among them in the general presented framework.  

4.2 Cognitive Background 

 

                                                 
18 An important remark: Motik et al consider this kind of KB in ontology web language profiles with a low 

expressivity while we  move at the expressivity level of OWL Full profile. 
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The empirical results coming from cognitive psychology show that most common-sense 

concepts cannot be characterised in terms of necessary/sufficient conditions. Classical, 

monotonic DLs seem to capture the compositional aspects of conceptual knowledge, but 

are inadequate to represent prototypical knowledge. However a “non classical” 

alternative able to represent concepts in prototypical terms does not still emerge. 

Some recent trends of psychological research favour the hypothesis that reasoning is not 

an unitary cognitive phenomenon. At the same time, empirical data on concepts seem to 

suggest that prototypical effects could stem from different representation mechanisms. 

In this spirit, we individuate some point of reference from cognitive sciences that, in our 

opinion, could be useful for the development of artificial representation systems and 

seems to go in the direction prospected with the proposed architecture. Namely: (i) the 

distinction between two different types of reasoning processes, which has been 

developed within the context of the so-called “dual process” accounts of reasoning 

(sect. 4.2.1  below); (ii) the proposal to keep prototypical effects separate from 

compositional representation of concepts (sect. 4.2.2 ); and (iii) the possibility to 

develop hybrid, prototype and exemplar-based representations of concepts (sect. 4.2.3). 

4.2.1 Dual Process Approach  

Cognitive research about concepts seems to suggest that concept representation does not 

constitute an unitary phenomenon from the cognitive point of view. In this perspective, 

a possible solution should be inspired by the experimental results of empirical 

psychology, in particular by the so-called dual process theories of reasoning and 

rationality (Stanovich and West 2000, Evan and Frankish 2008). In such theories, the 

existence of two different types of cognitive systems is assumed. The systems of the 

first type (type 1) are phylogenetically older, unconscious, automatic, associative, 

parallel and fast. The systems of the type 2 are more recent, conscious, sequential and 

slow, and are based on explicit rule following. In our opinion, there are good prima 

facie reasons to believe that, in human subjects, classification, a monotonic form of 

reasoning which is defined on semantic networks, and which is typical of DL systems, 

is a task of the type 2 (it is a difficult, slow, sequential task). On the contrary, exceptions 

play an important role in processes such as categorization and inheritance, which are 
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more likely to be tasks of the type 1: they are fast, automatic, usually do not require 

particular conscious effort, and so on.  

Therefore, a reasonable hypothesis is that a concept representation system should 

include different “modules”: a monotonic module of type 2, involved in classification 

and in similar “difficult” tasks, and a non-monotonic module involved in the 

management of exceptions. This last module should be a "weak" non monotonic system, 

able to perform only some simple forms of non monotonic inferences (mainly related to 

categorization and to exceptions inheritance). This solution goes in the direction of a 

“dual” representation of concepts within the ontologies, and the realization of hybrid 

reasoning systems (monotonic and non monotonic) on semantic network knowledge 

bases.  

 

4.2.2 A “Pseudo-Fodorian” Proposal  

 

Fodorian theory also represents an important point of reference for our proposal. 

According to Fodor, concepts cannot be prototypical representations, since concepts 

must be compositional, and prototypes do not compose. On the other hand, in virtue of 

the criticisms to “classical” Aristotelian theory (stating that concepts can be described in 

terms of necessary and sufficient conditions), concepts cannot be definitions. Therefore, 

Fodor argues that (most) concepts are atoms, i.e., are symbols with no internal structure. 

Their content is determined by their relation to the world, and not by their internal 

structure and/or by their relations with other concepts (Fodor 1987, 1998). Of course, 

Fodor acknowledges the existence of prototypical effects. However, he claims that 

prototypical representations are not part of concepts. Prototypical representations allow 

to individuate the reference of concepts, but they must not be identified with concepts. 

Consider for example the concept DOG. Of course, in our minds there is some 

prototypical representation associated to DOG (e.g., dogs usually have fur,  they 

typically bark, and so on). But this representation does not the coincide with the concept 

DOG: DOG is an atomic, unstructured symbol.  

We borrow from Fodor the suggestion that compositional representations and 

prototypical effects are demanded to different components of the representational 

architecture. We assume that there is a compositional component of representations, 
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which admits no exceptions and exhibits no prototypical effects, and which can be 

represented, for example, in the terms of some classical DL knowledge base. In 

addition, a prototypical representation of categories is responsible for such processes as 

categorisation, but it does not affect the inferential behaviour of the compositional 

component.  

It must be noted that our present proposal is not entirely “Fodorian”, at least in the 

following three senses: 

i. We leave aside the problem of the nature of semantic content of conceptual 

representations. Fodor endorses a causal, informational theory of meaning, according to 

which the content of concepts is constituted by some nomic mind-world relation. We 

are in no way committed to  such an account of semantic content. (In any case, the 

philosophical problem of the nature of the intentional content of representations is 

largely irrelevant to our present purposes).  

ii. Fodor claims that concepts are compositional, and that prototypical representations, 

in being not compositional, cannot be concepts. We do not take position on which part 

of the system we propose must be considered as truly “conceptual”. Rather, in our 

opinion the notion of concept is spurious from the cognitive point of view. Both the 

compositional and the prototypical components contribute to the “conceptual 

behaviour” of the system (i.e., they have some role in those abilities that we usually 

describe in terms of possession of concepts). 

iii According to Fodor, the majority of concepts are atomic. In particular, he claims that 

almost all concepts that correspond to lexical entries have no structure. We maintain 

that many lexical concepts, even though not definable in the terms classical theory, 

should exhibit some form of structure, and that such structure can be represented, for 

example, by means of a DL taxonomy. 

4.2.3 Prototypes and Exemplars  

As anticipated in the chapter 3, within the field of psychology, different positions and 

theories on the nature of concepts are available. They are generally grouped into three 

main classes, namely prototype views, exemplar views and theory-theories (see e.g. 

Murphy 2002, Machery 2009). All of them succeed in accounting for (some aspects of) 

the prototypical effects in conceptualisation. According to the prototype view, 



                          Chapter 4. A Hybrid Approach to Concept Representation and Reasoning                                                                                                                  
 

67 
 

knowledge about categories is stored in terms of prototypes, i.e. in terms of some 

representation of the “best” instances of the category. For example, the concept CAT 

should coincide with a representation of a prototypical cat. In the simpler versions of 

this approach, prototypes are represented as (possibly weighted) lists of features.  

According to the exemplar view, a given category is mentally represented as a set of 

representations of specific exemplars explicitly stored within memory: the mental 

representation of the concept CAT is the set of the representations of (some of) the cats 

we have encountered during our lifetime.  

Theory-theories approaches adopt a holistic attitude towards concepts. According to 

some versions of the theory-theories, concepts are analogous to theoretical terms in a 

scientific theory. For example, the concept CAT is identified by the role it plays in our 

mental theory of zoology. In other versions of the approach, concepts themselves are 

identified with micro-theories of some sort. For example, the concept CAT should be 

identified with a mentally represented micro-theory about cats. 

These approaches turn out to be not mutually exclusive. They seem to succeed in 

explaining different classes of cognitive phenomena, and many researchers hold that all 

of them are needed in order to explain psychological data. In this perspective, we 

propose integrating some of them in computational representations of concepts. More 

precisely, we propose combining prototypical and exemplar based representations in 

order to account for category representation as well as the  prototypical effects (for a 

similar, hybrid prototypical and exemplar based proposal developed in the field of 

machine learning, see Gagliardi 2008). We do not take into consideration the theory-

theories approach, since it is in some sense more vaguely defined when compared to 

both prototypes and exemplar based approaches. As a consequence, at present its 

computational treatment seems to be more problematic. 

4.3 Adaptation of the proposed cascade procedure  

At a first view, a difference between our proposal and one of the above mentioned 

psychological theory (namely: the dual process theory, section 4.2.1) can be 

individuated. In the procedure described in  sect. 4.1, the various steps seem do not 
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completely respect the assumption made by the psychological theory. In fact, in our 

proposal, the knowledge module associated to the non monotonic, typicality based 

categorization is only assumed to be used in a second phase of the process (Step 4). This 

approach has been preferred in order to use the typical knowledge only as an extension 

of the compositional one. It is, in a certain sense, a more conservative approach because 

it minimizes the risk of errors since it considers as strict propriety the trustful and sure 

results coming from the DL part and from classical reasoning. However, according to 

the "dual theory", the typical component  is assumed to be the “faster” and automatic 

module of the cognitive system. In our opinion, this situation can be, in certain cases, 

plausibly hypothesized within the proposed architecture. Let consider, for example, the 

following situation: the individual Anna is an usual customer of a cinema. According to 

the management board of the cinema she has to be assigned to a predefined class of 

customers (a cluster) in order to plan the execution of targeted promotional activities 

when new movies arrive.19 Let suppose that Anna, and all the clients of the cinema, are 

described (in the DL KB) with properties registering the previously watched movies. 

And let even suppose, for sake of simplicity, that Anna watched in that cinema only two 

movies regarding superheroes. She is therefore described as: 

haswatchedSupermanMovie, haswatchedSpidermanMovie. Following the dual process 

theory then a non monotonic categorization process must be performed. Let assume 

that, in this case, the instance/exemplar Anna is assigned to the class 

“LoversOfSuperHeroesMovies” that we suppose to be represented within the typical 

component of the system20. Of course this assignment is based on a non monotonic and 

also defeasible reasoning (e.g. Anna could dislike that genre and have seen that movies 

only because, in that situations, she was with her children that likes the super heroes). 

However, according to the limited amount of data available, the drawn conclusion 

                                                 
19 Targeted activities have a major percentage of success and minor costs because they are specifically 

performed on targets (e.g. groups of persons) which can be potentially interested to the promoted activity 
and not to all the possible audience. For example: in a book store if a customer is assigned to the class of 
“Lovers of Science Fiction genre” ha can be contacted through a target activity when a new book of the 
genre is available. Of course this contact has a major probability of success (the success, in this case, can 
be measured by the numbers of book sold to the members of the target class)  if compared with the 
probability of success of the same  contact presented to another cluster of customers/readers (e.g. let 
suppose the readers belonging to the class “Lovers of  the romance level genre”).  

20 This typical class can be characterized by typical properties representing, for example, the fact that 
the instances belonging to that class usually watch movies whose based on super heroes stories. 
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seems to be plausible. What follows from this situation is that if we perform a concept 

retrieval task based on query such as: Does Anna likes super heroes movies?  (this 

query corresponds to  instance checking task that we will further describe in section 4.8) 

then an answer can be only provided by the typical component (in the case of the above 

mentioned example the answer would be affirmative). It is however, possible to 

hypothesize a successive check even on the classical knowledge base in order to control 

if the result obtained from the typical component is “confirmed” (in the case in which 

the exemplar is categorized in the same class even in the DL21) or not. In this last case 

the unique possibility of keeping trace of this (uncertain but plausible) information is 

demanded exclusively to the typical component. Therefore, in these situations, we claim 

that it is more plausible to start from the prototype based knowledge and not from the 

classical one. In cases such as that one in the example, the procedure describing the 

system behaviour would be, therefore, different and runs as follow: 

• Perform non deductive reasoning on the typical knowledge-module (e.g. non 

monotonic categorization) 

• Save the results obtained from the typical part  

• For information retrieval task such as instance checking (see paragraph 4.8) 

consider as priority the results obtained by the non monotonic categorization. 

• If the obtained results are “satisficing” then stop, else perform deductive 

reasoning on the DL component (e.g. classification, consistency checking, 

deductive categorization) and execute the same tasks on the “DL” knowledge-

base. 

• If the results are the same stop. If the results are different (e.g. the concept X is 

categorized in different manners in the two knowledge bases) then take the result 

coming from the prototypes if you want to adopt a “risky” strategy offering 

uncertain but plausible (and potentially smart) answers. Otherwise consider the 

results coming from the DL.  

 

                                                 
21 Of course we hypothesize that the same class prototypically represented to which the instance has 

been assigned is even represented within the DL knowledge base with a classical description. 
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Summarizing: in the presented procedure in a first time non monotonic categorization of 

instances in the typical component is performed. Then the obtained results are “saved” 

and for certain tests such as, for example, instance checking (whose objective is to 

check whether an instance belongs to a certain class), the system retrieve, as first 

choice, the results obtained by the non monotonic categorization. Only at a second step 

it accesses, if needed, to the results obtained by deductive reasoning processes.  

Therefore in cases like these, in which both approximate reasoning and typical 

knowledge level are taken in consideration, the procedural process completely follow 

the suggestions coming from the psychological theory. It is important to note that this 

procedure can drive to errors and can be maybe suggested for technology (such as, for 

example, search technologies) in which is not crucial to have, at the first attempt, the 

correct answer; while, conversely, the access to “smart answers” obtained thanks to non 

monotonic reasoning - even if not valid from a logical point of view  - could really 

improve the system performance in terms of user experience. 

4.4 Implementation 

In the field of web ontology languages, the development of the architecture sketched 

above appear nowadays, technologically easier to implement. Within the Semantic Web 

research community, in fact, the Linked Data perspective is assuming a prominent 

position (Bizer et al. 2009). According to this view, in recent years, one of the main 

goals of the Semantic Web community is the integration of different data 

representations (often stored in different data sources) within a unique, semantically 

linked, representational framework. The main technical result coming from this 

integration is represented by the possibility of enlarging the answer-space of a query 

through the realization of “semantic bridges” between different pieces of data (and, 

often, data sources). Such integration is made possible through constructs provided by 

Semantic Web languages, such as OWL, or schemas such as SKOS22 etc. According to 

Bizer et al (2009, p. 2) “Linked Data provides a publishing paradigm in which not only 

documents, but also data, can be a first class citizen of the Web, thereby enabling the 

extension of the Web with a global data space based on open standards - the Web of 

                                                 
22 http://www.w3.org/2004/02/skos/  
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Data”. Publishing a data set as Linked Data on the Web involves the following three 

basic steps (T.B.Lee 2006): 

 

• Assign URIs to the entities described by the data set and provide for 

dereferencing these URIs over the HTTP protocol into RDF representations. 

•  Set RDF links to other data sources on the Web, so that clients can navigate the 

Web of Data as a whole by following RDF links. 

•  Provide metadata about published data, so that clients can assess the quality of 

published data and choose between different means of access. 

 

An indication of the range and scale of the Web of Data originating from the Linking 

Open Data project is provided in Figure 4.2 below (a version updated to September 

2011 is available at: richard.cyganiak.de/2007/10/lod)    
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Figure 4.2. Relations between published Linked Open Data (from Bizer et al. 2009) 

As is possible to see, the content of the cloud is diverse in nature comprising data about 

geographic locations (Geonames), people (FOAF), companies (IBM), scientific 

publications (DBLP), images (Flickr), etc.  

The arcs in the figure indicates the links between interconnected data sets. In our case, 

the way in which Linked Data allows to expand the answer space of a query is 

represented by the fact they represent other possible representations of a certain 

concept. This representations are interrogable by - and can extend the knowledge of - 

different knowledge bases via the RDF based links (represented, in the figure 4.3 below 

by the black arrow).  
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4.3. Answer space extension through the interconnection of different KB 

 

An example of RDF links, stating that the URIs in subject and object correspond to the 

same entity, is provided below:  

 

 

 

Consider now the opposition between exemplar and prototype theories (see sect. 4.2.3  

and the chapter 3 above). Both theories can be implemented in a representation system 

using the Linked Data perspective. 

Let us consider first the case of prototype theory. A “dual” representation of concepts 

and reasoning mechanisms appears to be possible trough the following approach: first a 

concept is represented in a formal ontology based on a classical, compositional DL 

system. Concepts in the compositional module (expressed with DL formalisms) are 

represented as in fig. 4.4. Every concept can be subsumed by a certain number of 

superconcepts, and it can be characterised in the terms of a number of attributes, that 

relate it to other concepts. Concepts correspond to one-argument predicates, and 

attributes to two-argument relations. To each attribute, it can be associated a restriction 

on the number of possible fillers. Concept/superconcept relations  and attributes are 

assumed to correspond to necessary conditions for the application of a concept. DL 

formalisms allow to specify which of such conditions are also as sufficient conditions. 

Every concept can have one or more individual instances. 

Query1 

Ontology1: 
Concept1 
Concept2 
    … 

Published Linked Data 
information for Concept 1 

SUBJECT: http://dbpedia.org/page/Venus 
PREDICATE: http://www.w3.org/2002/07/owl#sameAs 
OBJECT: http://dbpedia.org/page/Phosphorus_(morning_star) 
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SUPERCONCEPT 1 SUPERCONCEPT n 

CONCEPT 1 
CONCEPT m 

CONCEPT attribute 1 
attribute m 

. . . 

INSTANCE 1 INSTANCE k 
. . . 

 

Fig. 4.4. Concept representation in the compositional module 

 

As an example, consider fig. 4.5. The concept DOG is described as a subconcept of 

MAMMAL. DL concepts express only necessary and/or sufficient conditions; therefore, 

some details must be very loose. So, for example, according to fig, YYY, a DOG can 

have or have not a tail (this is the expressed by the number restriction 0/1 for the 

attribute has_tail), and has an unspecified number of limbs (some dogs could have lost 

some limbs, and teratological dogs could have more than four limbs). LASSIE and RIN 

TIN TIN are represented as individual instances of DOG (of course, concepts describing 

individual instances can be further described, for example by specifying the values of 

attributes inherited from parent concepts). 
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MAMMAL 

LIMB 
TAIL DOG 

has_limb has_tail 

LASSIE RIN TIN TIN 

0/n 0/1 

 

Fig. 4.5. Example of a concept description in the compositional module 

 

At a second step the prototypical representation of the same concept is implemented 

using the Open Knowledge-Base Connectivity (OKBC) protocol. The knowledge model 

of the OKBC protocol is supported and implemented in the so called Frame 

Ontologies23 that represent a possible solution for the prototypical representations of 

concepts and, if compared with other possible solutions, present the advantage of being 

easily interoperable with the classical DL system. Following the above mentioned 

example, we can suppose to represent a prototypical DOG in a frame ontology 

characterised by such slots as: hasFur, hasTail and Woof. A fragment of code a frame 

ontology about DOG is presented below. 

 

 

 

 

 

 

                                                 
23 Protege Frames is an an ontology editor that supports the building of Frame Ontologies and that 

implements the knowledge model of the OKBC protocol. 

<class>  
<name>Dog</name> 
 <type>:STANDARD-CLASS</type>  
<own_slot_value> 
 <slot_reference>:ROLE</slot_reference> 
 <value value_type="string">Concrete</value> 
 </own_slot_value> <superclass>:THING</superclass> 
<template_slot>Fur</template_slot>  
<template_slot>Tail</template_slot>  
<template_slot>Woof</template_slot>  
</class>  
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According to the classical format of the frame representation, each conceptual frame is 

represented in terms of slots, facets and values. Obviously each slot can be, and should 

be, further specified, as in the example below in which the information that “a 

prototypical DOG has usually exacly 1 Tail” is expressed stating that the Slot Tail has 

MaxCardinality = MinCardinality = 1.  

Fragment Code of a Frame ontology specifying cardinality constraints 

Since it is possible to export (without losing the prototypical information) the Frame 

Ontologies in OWL language, the connection between the two types of representation 

can be done using the standard formalisms provided by the Semantic Web community 

within the linked data perspective (e.g. using the owl:sameAs or other “linking” 

constructs). In the case of sameAs, the model of the connection that can be provided 

between the DL representation and the prototypical one is the following:  

<owl:Class rdf:ID="Dog">;; DL CLASS representing the concept DOG 

<owl:sameAs rdf:resource="URI_FrameOntology/#Class_NameDOG"/>;; URI of the 

external frame based representation of the concept DOG 

</owl:Class>24 

 

In a similar way, an exemplar based information of a given concept can be expressed in 

a Linked Data format, and be connected to a DL ontological representation. Returning 

to the example before: the specific representation of the exemplar Fido (a specific 

                                                 
24  Please note that, in this case, is assumed that OWL Full language is used.  
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DOG) can be linked via URI to an external resource representing, for example, the 

image of Fido it self (as shown in the figure 4.6 below)25. 

 

Figure 4.6. Ex. of connection between and exemplar and the relative concept in DL. 

In this way, according to our hypothesis, different types of reasoning processes can 

follow different paths. For example, classification and other classical forms of reasoning 

could involve only the DL ontology, while different types of reasoning (such as non 

monotonic categorization) could involve exemplars and/or prototypical information.  

4.5 Performing Heuristic Categorization  

The main goal of the introduction of this type of reasoning regards the attempt of 

modeling a KRs able, in a certain measure, to give results more similar to those of 

                                                 

      25  It is important to note that this type of representation, made possible by the integration between the 

dual architecture and the linked data approach, has – at least in principle - important consequences in the 

world of search technologies. In fact, the connection of different pieces of data for the same concept 

allows, in such fields in which the technology is already mature, to rethink the notion of search. Up to 

now, in fact, this notion is mostly related to textual search. Even when we search images, for example, we 

are forced to type text in a search box and the returned results are given according to the textual 

description of the image. With this type of information architecture, instead, is possible to think, for 

example, at an image retrieval in which the input is represented by an image itself and not by a text 

referred to an image. In fact, assuming the use of techniques of image processing and pattern recognition 

(well known in Artificial Visions and Robotics), and an interface supporting the upload of photo and /or 

of other types of data, is possible to imagine a direct connection between the external information 

provided via URI (containing, in our example, an image of a specific exemplar) and the “multimedia” 

input provided in the query process.  

sameAs 

 

http://URIFidoimage.j
pg 
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human cognition. Within common sense reasoning, humans often draw non deductive 

conclusions that are heuristically relevant in our life, and “rational” within the general 

economy of cognition. Non monotonic categorization (e.g. the assignment of an 

individual to a class according to incomplete and uncertain information) is one of these 

cases, and the introduction of the possibility of drawing heuristic categorization in 

ontological knowledge-bases would represent a relevant improvement for these 

systems. In the following pages we will propose a possible approach to this problem, 

taking into account suggestions coming from the field of machine learning and 

automatic categorization. In particular, within machine learning, two approaches have 

been adopted for the realization of different classifiers26 the Nearest Prototype Classifier 

(NPC), based on prototypes, and the Nearest Neighbour Classifier (NNC), based on 

exemplars (Gagliardi 2010). Recently, different proposals of hybrid classifiers have 

been developed, in order to overcome the dichotomy between prototypes and 

exemplars, and to take advantage from both approaches. In our opinion, such a hybrid 

approach could be fruitful to face the problem of reasoning on typicality within the dual 

architecture proposed above.  

In particular, we shall take into account the PEL-C algorithhm, Prototype-Exemplar 

Learning Classifier, developed by Gagliardi (Gagliardi 2008, 2009, 2010). The PEL-C 

is a hybrid machine learning algorithm able to account for typicality in the 

categorization process, using both prototype and exemplar based representations. It is 

based on the nearest neighbourgh (NN) classification algorithm, according to which any 

new observed instance is assigned to the class of the nearest instance among the 

representative ones (RI). The PEL-C algorithm works as follow: in the starting step of 

the learning phase a prototype for every concept is calculated using a barycentric 

measure, then the distance between the training set (TS) and representative instances 

(RI) is calculated. For any new learning iteration, the instance of the training set (TS) 

that is farthest from the individuated prototype is added as candidate instance and 

compared with the prototype it self. This instance may or may not undergo to an 

abstraction process according to which the prototype can be re-calculated. If the 

                                                 
26    Note that in the field of machine learning the terms classification and categorization are often 
synonymous.   
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abstraction takes place, the considered instances generate a new prototypical concept 

otherwise it is stored as an exemplar belonging to the prototypical concept. The 

termination conditions of the classifier can be defined a priori (e.g. in the case in which 

the number of learning iteration is known or, adaptively, during the its own 

performance. The learning algorithm proposed by Gagliardi is presented below. TS 

indicates the training set, RI the representative instance set and C(k) the items of a class 

k.  

Table 4.1. The learning algorithm proposed by Gagliardi 

 

The application of this algorithm requires the choice of a metric of semantic similarity 

between concepts within the prototype and exemplar based component of the 

architecture. In the next paragraph I give an overview of the ways of calculating concept 

similarities in ontologies. Some of these measures have been taken into account in order 

to propose an adaptation of the PEL-C algorithm.  It must be noted that PEL-C is in 

certain sense more general if compared to our present needs. For example, some steps of 

the learning phase are not needed because both the prototypes and exemplars are 

already available. Therefore, there is no need to calculate (at the initial stage) and 

recalculate (during the learning phase) the “prototype” of the representation. 

4.6. Concepts Similarities in Ontology KB  

 
1. Initialize RI with the barycenter of the class C(k) 
2. WHILE NOT (Termination Condition) 

                                                                           [Find a new candidate instance] 
2.1 Calculate the distance between every instance of TS and every instance of RI 
2.2 Among the misclassified instances of TS, find the new instance which is the 

farthest from the nearest instance of RI belonging to class C(k) 
2.3 Add X to RI                                                                                
                                                                           [Update RI] 
2.4 Consider only the instances of RI and TS belonging to C(k). Call them RI(k) and 

TS(k) respectively 
2.5 Update the position of RI using the k-means clustering algorithm applied only to 

TS(k) with starting conditions Ri(k): 
2.5.1 Apply the Nearest Neighbor rule to the items of TS(k) respect to the RI(k) 
2.5.2 Iteratively re-calculate the locations of instances of RI(k) by updating the 

barycenters calculated respect to the subclasses determined with the NN rule 
 
3. END 
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Different methods and techniques have been developed to calculate semantic similarity 

between concepts within the ontologies. A first type of methods is based on the 

calculation of the geometric distance between concepts. This model is also known as 

edge counting model or network model because concepts are arranged in a graph 

structures (see Rada et al. 1989). In this perspective, similarity calculation is performed 

by counting the number of edges that need to be traversed to get from one concept to the 

other. In this approach, the less is the distance, the greater is the concept similarity. 

However, this method is rather simple, and it mainly considers the “is-a” relationship 

that cannot accurately reflect other semantic aspects of similarity between concepts. 

Furthermore it depends on arbitrary aspects of the representation: among the concept 

DOG and the concept ANIMAL there can be an arbitrary number of intermediate 

concepts and this depend from contingent factors that do not deal with the similarity 

between concepts.. The techniques based on link counting were already criticized in the 

KL-ONE systems.  

A different method is based on information content algorithms (Resnik 1999). In this 

approach the semantic similarity between two concepts is determined taking into 

account both the amount of information that the two concepts have in common in their 

last common ancestor - called Most Specific Common Abstraction (MSCA) - and the 

probability of concept occurrence in the same corpus. According to the information 

content approach, similarity is obtained calculating the entropy of concepts. The more 

information two concepts have in common, the closer semantics they have. A major 

drawback of this method (as reported in Zhang and You 2010), is represented by the 

fact that it is entirely dependent by the statistics of occurrences of the corpus27 rather 

than on the analysis of the characteristics of ontology definitions. 

Semantic similarity methods are in their turn usually distinguished between single 

ontology similarity methods, which assume that the compared concepts are from the 

same ontology, and cross ontology similarity methods, which compare concepts from 

two different ontologies. Edge counting and information content methods work by 

exploiting structure information of the concepts in the hierarchy (i.e., position of terms) 

and are best suited for comparing concepts from the same ontology, while, for cross 

                                                 
27 The ontology can be seen as vocabularies and therefore as lexical corpora of defined terms. 
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ontology concept similarity, hybrid approaches - obtained through a mix of different 

methods - are used.  

Another method for concept similarity calculation is based on the lexical based 

matchmaking algorithms. They work directly on the name of the elements to compare 

(Williams et al. 2003) through the so called Edit Distance (ED), a basic function that 

calculates the number of substitutions which are necessary to transform the first word 

into the second one. This method do not consider the semantic of the concepts but only 

the string of characters composing the words. For example: for the words LOGIC and 

LOGICIAN the ED (LOGIC, LOGICIAN) = 3 since three letters have to be added the 

transform the first word into the second one. ED is usually incorporated into a weighted 

formula, which takes into account also the length of the shorter of the two words. So, 

the resulting formula is the following 

similarity(L1, L2) =     max( 0,  min (|L1|, |L2|) - ED(L1, L2))   ) 

                                     min((|L1|, |L2|)) 

 

This formula gives a similarity measure included between 0 and 1, where 0 is a bad 

match and 1 is a perfect match. So, in the above example, the complete similarity 

measure would be the following: 

 

similarity(Logic, Logician) = max (0, (5-3)/3) = 2/3. 

 

Despite its simplicity, this method present a lot of disadvantages because it completely 

ignores  the semantics of the terms and, therefore, the semantics of the concepts 

represented by that terms. For example different words pairs such as (DOG, DOGS) and 

(ACE, FACE) result to have the same semantic similarity event if their similarity it is 

not the same.  

 

Another well known approach is based on dictionary matchmaking. The difference with 

the previous method is represented by the fact that now there is a common vocabulary 

used as reference for the concept comparison. One of the most used vocabularies is 
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Wordnet28. The relations expressed in Wordnet represent the basis for the similarity 

measurement, which is calculated analogously to the above mentioned network 

approach (the number of the relations to be traversed to go from one concept to another 

is counted). In addition, each type of relation is differently weighted (Castano et al 

2003). For example: two words connected via synonymic relations have 1 as similarity 

value, while words connected via the hyperonym relation have a lower similarity value, 

e.g. 0.7. The problem of this approach is related to the usage of the synset in Wordnet. 

In Wordnet, in fact, the same word often has different synonyms, but it may happen that 

not all the members of the synset are synonyms in the same way. Let us consider an 

example taken by Hall (2006): consider the word FOREST. FORESTS has WOOD and 

WOODS as synonyms. But the problem here is that WOOD and FOREST do not have 

exactly the same meaning. WOOD, in fact, is a growth of trees that is smaller then a 

FOREST. In addition, the word WOODS usually denotes an area that is much larger 

than a WOOD. These differences are totally lost. A further problem is that the principles 

on which the semantic relations are constructed are often different for each concept.  

A different approach is based on structural matchmaking. It uses the ontology structures 

to calculate the concept similarity. The basic idea is that similar concepts have a similar 

set of surrounding concepts. In its simplest version, similarity is calculated taking into 

account the number of children, of parents and of properties that the two concepts have 

(Maedche and Staab 2002, Castano et al. 2005). However, the idea that similar concepts 

have similar surrounding concepts is based on the wrong assumption that different 

people model the same domain in a similar way. But this is not always the case. There 

are, in fact, a lot of modeling differences for the same domain depending by the specific 

modeling needs, or simply by idiosyncratic choices of the modellers. As a consequence, 

the same concept is often represented with a different structure in different knowledge 

bases. Such differences make this methods quite imprecise. Moreover, the structural 

matchmaking completely ignores the semantics of the concepts to be compared. 

                                                 
28 WordNet is an on line lexical database for the English language developed by Miller since the 

1995 (Miller 1995). It categorize the words according to four syntactic categories (nouns, verbs, 
adjectives, and adverbs) and represent the semantic relations between the terms expressing: synonymic 
relations, hyponymic/hyperonimic relation, meronymic/holonymic relations, entailment relations, 
antonymic relations, troponymic relations. 



                          Chapter 4. A Hybrid Approach to Concept Representation and Reasoning                                                                                                                  
 

83 
 

 Another relevant method is the Description Logics matchmaking (Paolucci et al. 2002). 

This approach is useful when concepts are encoded in ontology languages based on DLs 

and belong to different KBs. The Description Logics matchmakers works as follows: it 

attempts to use subsumption to insert the concept from one knowledge base in the other 

one. Depending on whether and if the concept from first KB is inserted into the 

hierarchy of the second KB, different levels of matching are distinguished. There is an 

exact match in the case in which the reasoner determined the equivalence from a DL 

point of view (Klen at al 2004, and Horrocks  2004); there is a plug-in match if the 

concept from the first ontology is subsumed by the concept of the second ontology (in 

this case the concepts are connected via an ISA relation and, even if that is not 

completely correct, are assumed to be similar. In the opposite case of the plug-in match 

(i.e., when the concept of the first ontology subsumes the concept of the second one), 

there is a subsume match. This match is considered at a lower level with respect to the 

plug in match because the relation concept vs super concept is seen as asymmetric: the 

sub concept is more similar to the super concept than the super concept to the sub 

concept. The intersection match is when the concepts cannot be arranged in a 

subsumption hierarchy but are not formally in conflict between them (Li and Horrocks 

2004). Finally, a disjoint match is when the definitions of the two concept are in conflict 

among them (see Li and Horrocks 2004, Lemmens and Arenas 2004).  

If compared with the other approaches, the DL method takes into account the semantics 

of the concepts, represented by  the  DL description defining their meaning. The others 

are mainly based on schema comparison. However, there are different problems also 

with this type of algorithms. The first one is represented by the situation in which a 

concept of the first ontology is subsumed by (in the case of plug-in match) or subsumes 

(in the case of subsume match) more than one concept of the other ontology.. Namely: 

for the plugin match a problem emerge if there are, for example, two target concepts 

that subsumes the source concept and that are not arranged in some king of is-a relation. 

In this case the algorithm can only assume that the two concept target have the same 

similarity with the source concept- However, one concept could be very specific and 

almost the same as the source concept and the other one could be more abstract (see 

Hall 2006 for details). For the subsume match, indeed, in the case in which the source 

concept subsumes more than one target concept (let say two concepts) it is nearly 
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impossible to say which of two subsume matches is better. Another problem regards the 

intersection match. Here the basic assumption of the algorithm is that two concepts that 

are not in a subsumption relation probably are not very similar. However, many 

concepts are not in a hierarchy relation between them and can be very similar. Finally, 

another drawback of the DL approach is that it only calculates the number of 

definitional parts that match and those that not, but it does not say anything about how 

closely the matching parts match and which is the “semantic distance” between the non 

matching parts. Let us consider, for example, the situation sketched below: 

 

Lake = WaterArea ˄ ∀ hasWater.(Standing ˄ Fresh) 

Inland Water = WaterArea ˄ ∀ hasWater.Inland 

Water = WaterArea 

 

In this case the DL based algorithm will find that LAKE and WATER are more similar 

than LAKE and INLAND WATER even if LAKE and INLAND WATER give more 

information on the type of water that they contain and are intuitively closer among 

them. This because the definition of the type of water contained conflicts from a DL 

point of view (it is not possible for the algorithms to compare the two types) while 

LAKE and WATER are fully compatible. 

 

A completely different approach for the calculation of concept similarities is based on 

cognitive models. Here the basic assumption is that semantic similarity measures in 

artificial systems should give results analogous to those given by human experts. 

Therefore, it assumed that the calculation of the semantic similarities between concepts 

must be based on a cognitive model.  

 

A first well known model is the Feature Based Model proposed by Amos Tversky 

(1977). The basic assumption behind this approach is that concepts are defined by 

unstructured lists of features that, together, compose their description. The similarity of 

two concepts C1 and C2 is a function of the features common to C1 and C2, of those in 

C1 but not in C2, and of those in C2 but not in C1. (i) is the formula for the similarity of 

two concepts.  
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                                                                   [Shared features] 

2. sim(C1;C2) =   [Shared features] + [Features only in C1] + [Features only in C2] 

 

In order to evaluate pros and cons of this approach, let us consider the simple example 

reported below:  

 

Forest = (Vegetation, Trees) 

Coniferous Forest = (Vegetation,  Coniferous Trees) 

 

According to the Tversky's algorithm, the similarity between the two concepts would be 

1/3 because: 

 

                                                                                   1 

             sim(Forest; Coniferous Forest) =            1 + 1 + 1  

 

Unfortunately, as soon as one concept is compared to two or more other concepts, then 

problems in the similarity measure become evident. For example, if we compare a third 

concept Scrub Vegetation  = (Vegetation, Scrub) to the two concepts of table 1, then the 

similarity between the first two concepts turns out to be equal to that between the first 

and the third concepts,  in spite of the fact that Forest is more similar to Coniferous 

forest than to Scrub vegetation . 

An additional problem is that the comparison between features is limited to the fact that 

they have or have not the same name. So, for example, the fact that a Coniferous Tree is 

a Tree cannot be modeled, and thus the comparison of Forest to Coniferous and to 

Scrub vegetation produces the same value. This problem can be solved by extending the 

definitions as shown in the table 4.2 below so that the hierarchy (and its relations) is 

represented in the feature list.  

 

Forest = (Vegetation, Trees) 

Coniferous Forest = (Vegetation,  Trees, Coniferous Trees) 

Scrub Vegetation  = (Vegetation, Scrub) 
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                                                                                  2 

sim(Forest; Coniferous Forest)  =                      2 + 1 + 1                    =   ½ 

                                                                               

                                                                                  1 

sim(Forest; Scrub Vegetation)  =                       1 + 1 + 1                    =   1/3 

 

Table 4.2. Example of the extension of a definition in the Tversky’s algorithm 

 

Another cognitive method is based on the theory of Cognitive Spaces proposed by 

Gärdenfors (Gärdenfors 2000, 2004). In the cognitive spaces model, concepts are points 

or areas in a hyperspace. Each property or aspect of the concept is modeled as a separate 

dimension, and each dimension can in its turn have an internal structure. Such an 

internal structure allows the cognitive space model to closely reflect human cognitive 

abilities. Similarity in conceptual spaces is defined either as city block or Euclidean 

distance. City block metric is used for those dimensions that are separable and do not 

influence each other, while the Euclidean metric is used for the inseparable dimensions. 

Additionally the conceptual spaces model also contains weights for the different 

dimensions, so that the relative relevance of the different dimensions can be considered 

in the similarity calculation. 

 

The problems with the cognitive space model are twofold. First, it cannot model 

relations between concepts. So, SAUSAGE DOG cannot be described as a DOG with 

certain characteristics. This could be modeled as another domain but does not fully 

capture the semantics of the concept. In addition all dimensions apply to the complete 

concept. It is not possible to define that a certain dimension is only relevant for parts of 

the concept. For example the fact that in a mixed housing/park urban area the type of 

building is only relevant for the housing part cannot be modeled.  

The second problem is that it is often hard to identify the internal structure of the 

dimensions. For some dimensions it is easy to describe their structure, as in the case of a 

conceptual space describing the human colour space in terms of hue, luminosity and 

saturation (figure 4.7). 
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Figure 4.7. Representation of colours in terms of Conceptual Spaces 

 

Unfortunately, for a large number of dimensions it is very hard to have a correct 

description. In addition, it is not quite clear how to handle concepts that have no definite 

values for a certain dimension. 

These problems represent, at the current state of art, the main obstacles to employing the 

cognitive spaces model in an integration scenario. However, if these problems will be 

fixed, this approach represent a really powerful model for taking into account the 

cognitive aspects of concept similarities in ontology based structures. Progress, in this 

sense, have been made with the development of the CSML (Conceptual Space Markup 

Language) language- - (a XML based representation language, see Abams and Raubaul 

2009, 2010). However this developments are still at an early stage.  

In conclusion, the best method for concept similarities calculation suitable for our 

proposal seems to be the feature based model. In the next paragraph we propose to 

integrate this approach developing an adaptation of the PEL-C algorithm. 

 

 

4.7 Proposed adaptation of the PEL-C algorithm  
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As mentioned in the previous paragraph, the PEL-C algorithm as proposed by Gagliardi 

need an adaptation in order to be used in the dual architecture context. In facts, in our 

proposal, the prototypes of the concept are already given (in the typical knowledge 

part), and there is no need of the learning phase of the algorithm, in which the 

prototypes of concepts are calculated. In a certain sense, such prototypes represent the 

“barycenter” of the concepts. From them, the semantic distance of the new instances is 

calculated, and this allows to determine if they belong to the prototypical class or not.  

An important aspect to take into account is the method for the calculation of the concept 

similarities. Here we propose to follow the model inspired by the Tversky’s feature 

theory (see paragraph above), according to which the similarity of two concepts can be 

calculated as the ratio between the shared features and those features that are only in 

one or the other concept. In this way, the adapted learning phase of the PEL-C 

algorithm is provided introducing what we call Category Set (CS) instead of the 

classical Training Set (TS) item. CS represent the set of the instances (new or already 

presented in KB but not assigned to a class) that need to be categorized. The adapted 

algorithmic procedure result to be the following: 

Table 4.3. Proposed adaptation of the learning algorithm 

 

1. Consider the representation in the typical component (TC) as the barycenter of the 
concept C 

2. WHILE NOT (Termination Condition) 

                                             [Find a new candidate instance] 

2.1 Calculate the distance (using the Tversky's feature model) between every instance of the 
Category set (CS) and the prototypical concepts of the typical component (TC) 

2.2 Create a list containing the results of the semantic similarity between concepts in CS and 
in TC.  

2.3 For each concept in CS: IF the semantic similarity result is OVER a predefined threshold
THEN [assign the concept Ck(S) to the prototypical concept in TC]  

                   ELSE    [do not categorize the concept Ck(S) as belonging to the typical concept 
in TC]  

3. END 
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The termination conditions here is determined by the end of the of the categorization 

process between the concepts in CS and the concepts in TC. Please note that if the 

typical component is composed only by a single “frame” the algorithm only perform a 

one to one comparison between the prototypical representation and the candidate 

instances. The result of this process consists in an instantiation task performed 

according to non monotonic reasoning. It, in fact, is based on the Tversky’s cognitive 

model and on its relative algorithms. As we will see in the paragraph below, the result 

of this non monotonic categorization turn out to be useful for the improvement of 

certain types of performances related to  the instance checking task. 

 

4.8. Expected Results 

The general presented architecture can be realized for different purposes and tested in 

different ways. In our case we focus our attention on the information retrieval and on 

the reasoning processes performed on ontology knowledge bases. Therefore, it is our 

intention to evaluate our proposal by comparing its performance with that of a 

traditional ontology based system representing the same domain. What we expect is a 

double result (Frixione M., Lieto 2011). From the information retrieval point of view 

we expect an enriched query-answering mechanism that should take advantage from the 

integration of different types and/or levels of information provided for the same 

concept. The evaluation task29 for this issue is based on a control known as “property 

checking”. It consists answering such questions as “does the class A have the property 

b?”. In the following example we explain in which sense a better result is expected. Let 

us suppose that an user runs an informational query30 on a “dual” knowledge base 

representing information concerning fruit in order to know which kind of citrus is 

yellow (that is an indirect formula to ask: ”does any citrus have the property of being 

yellow?”). The expected answer that fits the informational needs of the user is “lemon”. 

However,  does not exist in the compositional knowledge base any kind of citrus that 

                                                 
29  The evaluation tasks that are proposed are referred to the step 3 of the above mentioned 

procedures of the system behavior. 
30  According with the Information Retrieval literature, informational queries are different form 

transactional and navigational queries.  In informational queries , the user intention is to obtain a specific 
information concerning a given object (see Jansen et al 2008). 
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has the property of being yellow as a defining condition.  Being yellow is not a 

necessary condition for being a lemon and, therefore, this property is not represented 

into the class lemon of a DL ontology. However the property “to be yellow” is relevant 

from a cognitive point of view to characterize the concept “lemon”, and, according to 

our hybrid approach, can be represented into the prototypical component of the class 

“lemon”. In this way is possible to retrieve the desired information from the 

prototypical and/or exemplar part of the representation. So, given a query on the 

knowledge base such as:  

 

SELECT? citrus 

    WHERE {?citrus :has colour : YELLOW    } 

 

the result returned from the DL representation should be null, while the “correct” 

answer (correct with respect to the intention of the user) will be generated from the 

prototypical component of the representation. Improving, in this way, the answering 

mechanism of the system. 

Another expected result is based on the improvement of the inferential mechanisms 

provided by ontology based systems. Our cognitively inspired architecture, in fact, 

would make possible to consider a new type of reasoning with the introduction of a non 

monotonic, heuristic, process of categorization31 performed as indicated in the previous 

section. In this case the evaluation tasks consist in the “instance checking” control based 

on the interrogation of the knowledge base. Instance checking aims to answer at such 

questions as “is a particular instance member of a given concept?”. We expect that, the 

prototypical and exemplar based representations, performing a non monotonic 

reasoning process, could provide a different answer if compared to a traditional DL 

ontology. For example: it could result that an instance A is not a member of the Class 

A* in the DL component while it is an instance of the Class A** in the prototypical 

representation of the same concept. This result does not cause inconsistencies or create 

any problem because of the separation of representation and reasoning process and, in 

                                                 
31  While monotonic categorization is already performed on classical DL ontologies, non 

monotonic categorization is not yet performed and forecasted. 
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addition, it gives to the system the possibility of considering an enlarged space of 

answer provided through non deductive and cognitively founded reasoning 

mechanisms.  

4.9. Prototype and Exemplars Representation 

 

In the previous chapter we introduced the prototype and exemplar theories of concept 

representation and suggested that the use of both the forms of representation, within the 

proposed modeling approach, can provide interesting insights. 

In the following we try to argument why, in our opinion, it is important to keep both 

these representational forms. A first motivation is represented by the possibility of 

improving the representational capabilities of the ontology based systems allowing, for 

example, to attach prototypical information to the exemplars of a specific class. More in 

general we claim that the possibility of representing prototypical information at the 

exemplars level allows to take into account of more aspects within a representation, 

augmenting the quantity and the quality of data made available.  

The importance of keeping multiple views (classical, prototype based and exemplar 

based) on the same representation can be explained by the fact that they allow to have 

artificial representation which are closer to the reality.  

A simple example of different possible views for the same concept is taken by 

Lukyanenko and Parsons (2011): when professors think about its students each student 

retains a plethora of individual features. Some students may require more attention than 

others. The distribution of attention for each student may also change over time. 

However, a classical university domain ontology, ignoring this information,  typically 

defines a Student class using the same set of properties. And, furthermore, this 

representation usually does not include any information regarding the individual 

differences between each student32. Even if this representational choice is 

understandable and seems to reasonable under a certain perspective, we claim that, with 

this modeling approach, some information on individual/exemplars differences is lost. 

Namely what is lost is the information regarding the typical features of the exemplars. 

                                                 
32 It is important to note that the individual differences can be mainly described in terms of typical 

properties (e.g. the Student 1 can described as funny, the Student as shy etc.).  
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However, this information can turn out to be very useful in many circumstances as 

expressed in the example of Anna and the cinema provided in the chapter 4.3. As we 

have seen, in fact, in that case the presence of both the representations within the 

proposed modeling framework allows, at least in principle, the retrieval of prototypical 

information which is linked to the exemplars33.  In our opinion there are other cases able 

to illustrate why a dual, prototype and exemplar based, representation of concepts could 

turn out to be useful for the representation of non classical concepts in ontological 

knowledge bases also from a technological point of view. In the first place, there are 

kinds of concepts that seem to be more suited to be represented in terms of exemplars, 

and concepts that seem to be more suited to be represented in terms of prototypes. For 

example, in the case of concepts with a small number of instances, which are very 

different from one another, a conceptual representation in terms of exemplars should be 

more convenient. An exemplar based representation could be more suitable also for non 

linearly separable concepts (see the previous section).  On the other hand, for concepts 

with a large number of very similar instances, a representation based on prototypes 

seems to be more appropriate.  Consider for example an artificial system that deals with 

apples (for example a fruit picking robot, or a system for the management of a fruit and 

vegetable market). Since it is no likely that a definition based on necessary/sufficient 

conditions is available or adequate for the concept APPLE, then the system must 

incorporate some form of representation that exhibits typicality effects. But probably an 

exemplar based representation is not convenient in this case: the systems has to do with 

thousands of apples, which are all very similar one another. A prototype would be a 

much more natural solution. Thus, the presence of both a prototype and an exemplar 

based representation seems to be appropriate. Let us consider the concept BIRD (fig. 

4.8). And let us suppose that a certain number of individuals b1, …., bn are known by the 

systems to be instances of BIRD (i.e., the system knows for sure that b1, …., bn are 

birds). Let us suppose also that one of these  bi's (say, bk) is a penguin. Then, a prototype 

PBIRD is extracted from exemplars b1, …., bn, and it is associated with the concept BIRD.  

Exemplar bk concurs to the extraction of the prototype, but, since penguins are rather 

                                                 
      33 The cautelative expression “in principle” is necessary in this case because in that example, the 
retrieval is subordinate to the realization of a non monotonic categorization process operating transversely 
among the two layers.  
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atypical birds, it will result to be rather dissimilar from PBIRD. Let us suppose now that a 

new exemplar bh of penguin must be categorized. If the categorization process were 

based only on the comparison between the target and the prototype, then bh (which in its 

turn is rather dissimilar from PBIRD) would be categorized as a bird only with a low 

degree of confidence, in spite of the fact that penguins are birds in all respects. On the 

other hand, let us suppose that the process of categorization takes advantage also of a 

comparison with known exemplars. In this case, bh, due to its high degree of similarity to 

bk, will be categorized as a bird with full confidence. Therefore, even if a prototype for a 

given concept is available, knowledge of specific exemplars should be valuable in many 

tasks involving conceptual  knowledge. On the other hand, the prototype should be 

useful in many other situations. 

 

Figure 4.8. Exemplars and Prototypes for the concept BIRD 

 

Beyond the representational advantages, there is also at least one reason that goes in the 

direction of suggesting this double level of representation (which is made possible by 

proposed modeling framework). It is related to the reasoning issues. In fact, as 

mentioned in the chapter 3, there are different dynamics involving the process of 

categorization for exemplar and prototype based representations. Therefore, in certain 

cases, for the non monotonic categorization task, it could result to be better to have a 

categorization process involving the new item and an exemplar, while (in other cases)  it 

could result to be more useful to have a comparison between the new item and the 

prototype. Moreover, following the proposed modeling approach, it is possible to 



                          Chapter 4. A Hybrid Approach to Concept Representation and Reasoning                                                                                                                  
 

94 
 

hypothesize the realization of different reasoning modules operating independently, on 

the different representations. The interesting issue, at this level, is represented by the fact 

that this independence cannot be cause of contradictions because the reasoning modules 

can be run on different pieces of knowledge according to the “cascade model” proposed 

in section 4.1. However, this part regarding the enhancement of reasoning processes 

trough the realization of a non monotonic reasoning module able to take into account of 

aspects of typicality, has been at this moment only theorized but not yet implemented, 

tested and optimized. In the next chapter an evaluation of the proposed modeling 

approach is provided and the obtained results are analyzed and discussed
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  Chapter 5. Evaluation and Discussions 

 

 

An evaluation study has been conducted in order to test the behavior of the proposed 

architecture and to compare its results with that ones obtained by a standard DL 

based representation. The main aim of the evaluation regarded the observation and 

the analysis of the answers provided by the proposed modeling approach 

considering different representational configurations. In the section 5.1 the 

experimental set-up created for the evaluation phase is presented. In 5.2 the obtained 

results are summarized and in section 5.3 they are discussed. 

 

5.1. Evaluation 

 

The evaluation has been done on an information retrieval task. The system 

performance, in fact, has been tested through its capability of retrieving information 

starting from apparently unrelevant traits for certain defined concepts. The 

importance of retrieving information starting from typicality traits is given by the 

fact that this represent one of the most common – and successful -  heuristics of 

search used by humans. Humans, in fact, often use peripheral, secondary and typical 

traits in order to retrieve and or acquire information on a specific domain. These 

traits, even if not formally relevant for the information definition and structuring, 

represent, usually, central features from a cognitive point of view and are very 

useful for information extraction and retrieval. For these reasons, the goal of our 

evaluation is to reflect on the behavior of the proposed architecture for a particular 

well known kind of query named - in IR literature - informational query (see 

footnote 30 of the previous chapter for details).  

The evaluation test on this task has been realized with the following experimental 

setup: in a first phase a toy DL knowledge base has been built and connected with a 

typical representations of the concepts. 

The created toy knowledge base is composed of  20 classes, 10 attributes and 10 

instances. It has been built according to the modeling requirements provided by the 
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proposed approach. Namely: the concepts in DL are only represented, when  

possible, as sets of necessary and sufficient conditions, while the  representation of 

prototypical traits are demanded to an external typical component realized as a 

Frame Ontology following the Linked Data approach (it has been published as a 

RDF based statements available and interrogable on the web). 

The fact that the experimental KB respects the modeling requirements proposed in 

our approach is not secondary. In fact, many existing DL knowledge bases are based 

on approaches which mix, in a unique DL based representation, different types of 

information using the same formalism. In this sense, a typical example of a wrong 

modeling is represented by the case of the concept “dextrocardiac” presented in the 

section 4.1.2 by Motik et al.  (2006).   

The entire knowledge base used in the pilot study is available on the web at the 

following address: http://www.dualontologyarchitecture.net/ontology.owl. It is a KB 

representing specific types of fruits, in which the concepts (such as, for example 

LEMON and ORANGE) have been modeled in a distributed way according to the 

proposed approach. The classes of the ontology for the classification of different 

types of fruits (and, in particular, different types of citrus) are represented in Fig. 

5.1. 

Figure 5.1. Taxonomy of a toy DL knowledge-base 
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Other non domain dependent classes (such as Country, Field of Use, Vitamins etc.) are 

represented in the KB, in order to allow, jointly with object properties such as contains, 

is_contained_in, is_produced in etc., to represent, for example, that LEMONs contain 

Vitamine C and are produced, with a certain percentage, in certain specific countries. 

The instances in the KB belongs to the classes Vitamin (Vitamine_A, Vitamine_B etc.) 

and Country (Brazil, Spain, Italy etc.). 

Concepts such as LEMON and ORANGE are also represented as prototypes in a Frame 

Ontology, modeling only typical information such as: has_colour, has_dimension, 

has_form etc. The screenshot below shows how the first three slots have been filled 

with default values in the case of LEMON. For example: the representation of a typical 

LEMON contains the information that usually a Lemon is Yellow and has an oval form. 

 

 

A similar representation has been produced for the other concepts. The full list of the 

prototypes created for the experiment is available at the following address: 

http://www.dualontologyarchitecture.net/typicalrepresentations.txt .  

Prototypes are linked to the correspondent concepts in the DL knowledge base via the 

owl:sameAs construct. A battery of queries has been run first on the classical DL 

representation alone, and then on the representation obtained through the 

interconnection of both the prototypes and the DL component. The queries performed 

on the two KB have the following SPARQL form: 
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SELECT ? CONCEPT  

    WHERE {?CONCEPT :has typical PROPERTY : Typical Value of the typical 

PROPERTY  . 

     } 

Fig 5.2. Typology of query performed in the experiment 

 

This type of query correspond to the “property checking” task explained in chapter 4.8. 

In this case, the way in which the query has been built shows that the information 

extraction request is based on the typical features of the concepts. This evidence comes 

out from the WHERE clause inserted into the query system. The full list of query 

performed on the DL KB and then repeated on the dual architecture during the pilot 

study is presented here: http://dualontologyarchitecture.net/sparql.txt. The obtained 

results have been evaluated using precision and recall measures and, in some cases, 

using a simple yes/no counting approach regarding the success/unsucces of the concept 

retrieval task.  

Precision and recall are two standard measures within the information retrieval field. 

They are used, for instance, to evaluate the efficiency of a search engine in order to 

understand if the retrieved information is relevant with respect to the information need 

of the user. They are usually calculated as follow: 

 

• PRECISION= Relevant Retrieved/ retrieved (R,R/ (R,R+NR,R) 

• RECALL= Relevant Retrieved/ relevant (R,R/ (R,R+R,NR) 

 

 RELEVANT NOT RELEVANT 

RETRIEVED R,R NR,R 

NOTRETRIEVED R,NR NR,NR 

 

Table 5.1. Precision and recall 
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In other words, precision is the ratio between the relevant retrieved information and the 

totality of all retrieved information; recall (which is a coverage measure) is the ratio 

between the retrieved relevant information and the totality of relevant information that 

is retrievable in principle.  

In our case, we calculate the precision value for a specific query Q, as the number of  

relevant concepts that have been retrieved divided by the total number of the retrieved 

concept. Recall, instead, is the number of retrieved relevant concepts divided by the 

total number of relevant concepts.  

Four main experimental situations have been considered for the evaluation (we have 

called them E1, E2.1, E2.2 and E3). To each of them has been associated a specific 

configuration of the two representations (the compositional one and the typical one) 

composing the proposed architecture.  In certain cases (E2.1, E2.2) we individuated two 

control situations within the experimental situation itself. As we will see further, the 

analysis of these situations, within the same general set-up of the experiment, allowed 

us to explain in which representational cases the proposed architecture obtained good or 

bad results if compared to classical representations. The four experimental situations 

and the relative data emerging from the evaluation, are described in major detail in the 

following pages. The general picture of the different experimental set-up considered is 

schematized in the figure 5.3 below. The main experimental situations are represented 

by the blocks E1, E2 and E3. The four control situations investigated in E2 are 

represented by E2.1.1, E2.1a, E2.2.1 and E2.1a respectively. 

 

 

Figure 5.3. Experimental set-up situation for the evaluation task 

Experimental Set-up 

E1 E2 E3 

E2.1 E2. 

E2.2.1 

E2.2a 

E2.1.1 

E2.1a 
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In the first experiment  E1, the prototypical properties have been not represented in the 

DL ontology, and have been completely demanded to the external component. For 

example, in E1 the DL ontology 

(http://www.dualontologyarchitectures.net/ontology.owl) represents definitional 

properties such as: contains, is_contained_in (regarding the chemical composition of the 

fruits) et cetera, while it does not represent properties such as has_colour, 

has_dimension, has_taste etc. The general structure of the E1 knowledge base is 

represented in the figure 5.4 below. 

 
 
 
 
 
 
 
 
 
 
 
                                 
 
 
                                       DL Ontology                                    Typical component 

 

Figure 5.4. E1 experimental situation 

 

In the case of E1, the obtained results are in line with the expected ones. In fact, on a 

battery of 30 queries based on typical features, it resulted to be impossible to retrieve 

such information from the DL component because such information was not represented 

in it (we have 30 “concept not found” results). On the other hand, for the same battery 

of queries, it was possible to retrieve, the desired information from the prototype 

representation using both a simple query rewriting/adaptation process and the 

owl:sameAs construct as a semantic bridge between the two representations (these two 

“linking elements” are represented by the black arrow in fig. 6.1). Thus, in this case, we 

had 30/30 of “concepts found results”. Since in E1 the frames representing prototypes 

are isolated (e.g., frame representing the prototype of LEMON is not connected with the 

Concepts with 
Necessary and 
Sufficient Conditions 

Typicality based Query 

Prototype 1 

Prototype 3 

Prototype 2 
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frame representing the prototype of ORANGE, and so on) we use a binary metric in 

order to evaluate the results based on the success/unsuccess of the retrieval. In this case, 

in fact, does not have sense to calculate precision and recall because the denominator of 

both measures would always assume a value between 0 and 1 (in E1, in fact, it is only 

possible a single concept retrieval). 

In the second experiment E2, we inserted in the DL knowledge base properties 

considered as “typical” (e.g. the property of “being yellow”, was inserted in  the DL 

representation of LEMON). These properties have been, of course, represented even in 

the typical component as “slots” of the frames.  According to our analysis, this way of 

modelling concepts is not correct. However, it represents one of the most common 

approaches in the  development of ontology based representations. In E2 we divided a 

first experiment in two control situations. In the first one (E2.1.1) each typical property 

represented in the DL component was only applied to one concept within the ontology  

(e.g. the typical property has colour: Yellow is applied only to the DL concept LEMON 

and not to other DL concepts). Moreover, the typical component has been still 

considered as composed by single, independent, frame based ontologies.  

The figure 5.5 shows this particular control situation. In particular it shows the  

mechanisms activated by the query on the dual knowledge base. The mechanism is the 

following: the query is firstly executed on the DL knowledge base, where the concept 

C1 is retrieved, and then it is rewritten and reformulated on the typical component of 

C1. Due to the fact that the property Typ1 is represented also in the typical component 

of C1 (as Slot1), then the obtained answers from the two representation are identical and 

correspond to the same concept (C1, in the example). 

The result obtained from the 30 queries executed in the control situation E2.1.1 consist 

in an exact match between the concept obtained by the DL and that ones obtained by the 

external knowledge base. This result put in evidence the fact that if the typical property 

inserted in the DL module has a unique counterpart with the corresponding slot of the 

prototype, therefore the obtained results from the two components cannot be different 

(they are necessarily the same). 

 

 

 



                                                                                               Chapter 5. Evaluation and Discussions 
 

102 
 

 

 
 
 
 
 
 
 
 
 
 
 
                                 

                                                 DL Ontology                                    Typical component   

 

Figure 5.5 First control situation E2.1.1 

 

Within the same experimental situation E2 we provided, modifying the initial knowledge 
base used in E2.1.1, a second control situation (E2.1a) in which the typical property 
Typ1 in DL (corresponding to Slot1 in the prototypes), resulted to be represented in 
different concepts within the typical component (e.g. in concept C1, C2 etc.). Despite 
this representational difference, even in the second control situation, we obtained, for all 
the 20 queries executed, the same result from both the compared representations. This 
thanks to the link between the two representations expressed via the owl:sameAs 
construct. This construct, in fact, allows to define that the concept C1 in DL is the same 
of C1 in the typical component, thus identifying the unique path that the query rewriting 
process have to follow in order to interrogate the typical component. Without this 
element the two knowledge bases could provide discordant results.  
 
 
 
 
 
 
 
 
 
 
 
 
                                 
                                                 DL Ontology                                    Typical component 

 

Figure 5.6. Second control situation E2.1a 

 Nec. Suf. Typic. 

C1 X X Typ1 

C2 X X Typ2 
C3 … … … 

 

Concept with Typ1 ? C1 Slot1 Slot n … 
 

C3 Slot3 Slot n … 

 

C2 Slot2 Slot n … 

 

 Nec. Suf. Typic. 

C1 X X Typ1 

C2 X X Typ2 
C3 … … Typ3 

 

Concept with Typ1 ? C1 Slot1 Slot2 … 
 

C3 Slot1 Slot2 … 

 

C2 Slot1 Slot2 … 
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After these first experiments, a new experimental situation (E2.2), has been individuated 

for the evaluation. In E2.2 the typical properties inserted into the DL ontology have been 

considered to be applied to multiple domains (e.g. the property has_colour : ORANGE 

has been applied to different concepts within the DL ontology such as, for example, 

BITTER ORANGE, ORANGE and so on).  

More precisely: in E2.2 situation 5 typical properties have been considered as “multiple” 

and inserted into the DL knowledge base as belonging to 3 different concepts. These 

choice, even if arbitrary (one can imagine that the same property can be shared by more 

and more concept within a knowledge base), has been considered only in order enhance 

the manageability of the evaluation. Our aim, in fact, has been mainly finalized at 

discovering the different dynamics of the architecture behaviour when the same type of 

search stimulus (the typicality based query) is exposed to different representational 

situations. The new DL knowledge base obtained through the mentioned modifications 

is available at: http://www.dualontologyarchitecture.net/ontologyE2.2.owl. Thus, in E2.2 

it has been possible to calculate Precision and Recall because the possible retrieved 

concepts can be > 1 (in other words it is possible to have, as answer, a list of possible  

results.). Even in this condition we maintained the assumption of the typical 

representations as isolated blocks.  

A first control situation (E2.2.1) investigated for E2.2 is illustrated in the figure 5.7 

below. 

 

 
 
 
 
 
 
 
 
 
 
                                 
                                                 DL Ontology                                    Typical component 

 

Figure 5.7. E2.2.1 First control situation 

 Nec. Suf. Typic. 

C1 X X Typ1 

C2 X X Typ1 
C3 … … Typ1 

 

Concept with Typ1 ? C1 Slot1 SlotX … 
 

C3 Slot3 SlotZ … 

 

C2 Slot2 SlotY … 

 



                                                                                               Chapter 5. Evaluation and Discussions 
 

104 
 

 

This situation is characterized by the fact that the same typical property (Typ1) is shared 

by a set of DL concepts (C1, C2 and C3 in figure) and is also represented as slot only in 

one of the external representations of the typical component. We tested this experimental 

situation and, with 20 queries and, for all the performed queries (20/20), we obtained a 

better precision and recall values through the use of the typical knowledge base (in these 

specific case the improvement has been of the 66 %).  

For a second list of query we considered a  different control situation (E2.2a) which has 

been illustrated in the figure 5.8 below.  

 
 
 
 
 
 
 
 
 
 
 
                                 
                                                 DL Ontology                                    Typical component 
 

Figure 5.8 Second control situation E2.2a 

 

The figure 5.8 shows that the same property (Typ1) results to be distributed in the DL 

ontology and even in the typical component of the architecture. In this case the result 

provided by the proposed architecture is uncertain. Or, better, it depends functionally 

from the first prototype considered after the query performed on the DL ontology.  

In order to better explain the dynamics of the situation in E2.2a, we provide a simple 

example. Let’s consider the case of the property “being orange”  (e.g.: “has_colour : 

Orange”). In E2.2a ontology this information has been associated to 3 different concepts 

within the DL ontology: ORANGE, BITTER ORANGE and CLEMENTINE. Therefore 

for the query Q1 “find all the citrus that are orange”  the query answer mechanism 

recover all the concepts in DL having this characteristics (for a total of 3 concepts 

retrieved). In this case the function of the typical representation is that one of refine the 

obtained results from the DL ontology. Of course the problem of this “refinement” is 

 Nec. Suf. Typic. 

C1 X X Typ1 

C2 X X Typ1 
C3 … … Typ1 

 

Concept with Typ1 ? C1 Slot1 SlotX … 
 

C3 Slot1 SlotZ … 

 

C2 Slot1 SlotY … 
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that it depends functionally from the relative prototype considered. In fact, since the 

typical representations are supposed to be not connected in this situation, if the 

considered prototype  is, for example, that one of CLEMENTINE 

(http://www.dualontologyarchitecture.net/clementine.rdfs), instead of – let suppose the  

prototype of the concept ORANGE -  therefore the concept which results as “refined” 

would be that one of CLEMENTINE. While, in the opposite case, the refined result 

would be that one of ORANGE. We obtained this kind of results for all the 10 queries 

performed in this situation. 

These answers are not satisfactory from our point of view. Because they do not allow to 

really have a better result in terms of the quality of the information retrieved. In case of 

uncertainty for specific queries, in fact, we believe that the solution provided by the DL 

representation (a list of possible results) can be considered a better choice if compared to 

the answers provided using also the typical component.   

Finally we performed another set of experiment (E.3) in which the typical component 

has been considered as composed by a unique representation instead of multiple, 

federated, representation without any contact among them. The unified representation of 

all the typical categories created for the E3 is available at: 

http://dualontologyarchitecture.net/framesystem.rdfs. In this case we also considered the 

case of multiple shared properties in DL and in the typical representation. The figure 5.9 

graphically shows the situation obtained in E3.   

 

 
 
 
 
 
 
 
 
 
 
                                 
                                                 DL Ontology                                    Typical component 

 

Figure 5.9. E3. Experimental situation 

 

 Nec. Suf. Typic. 

C1 X X Typ1 

C2 X X Typ1 
C3 … … Typ1 

 

Concept with Typ1 ? 

 Slot1 Slot2 Slotn 

C1 X X Typ1 

C2 X X Typ1 
C3 x … … 
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In the E3situation  we obtained, for 30 of 30 queries performed on the DL knowledge 

base and then repeated using the typical component, the same results in both the 

situations. Even the values obtained for the precision and recall are the same. In other 

words the results are fully superimposable. We will comment and analyze in major detail 

this, and the other obtained results, in the next paragraph.  

 

5.2. Evaluation Results in a nuthshell 

 

In the tables below we provide a synoptic summary of the results obtained for the 

different experimental situation illustrated. We do not report the specific number of the 

concept retrieved and or the obtained precision and recall results because, as we 

explained before, the main goal of our evaluation was to observe the behaviour of the 

proposed architecture for different search tasks. Furthermore, the numbers of the concept 

retrieved, and the relative percentage, could not have a valuable relevance because they 

have been obtained on a small knowledge base (modified, as indicated, for each 

experimental situation) with a limited battery of queries. For this reason we use, in the 

table below, some terms in order to indentify the different situations emerging from the 

evaluation. 

Namely: we use the term “null” in order to identify the fact that the result obtained 

through the query corresponds to a situation in which there is not a concept/information 

retrieval; the term “full” to identify that, according to the battery of query launched on 

both the knowledge bases (and according to the representational situation on which this 

query has been run) we obtain a complete information/concept retrieval. Furthermore, 

we use the term “refined” in order to identify the result obtained by the first 

experimental situation in E2.2 in which the support coming from the typical knowledge 

base has been that one of refine the results obtained from the DL component,  improving 

the performance of precision and recall measures and the semantic quality of the 

information extracted. Finally we use the term “limited” in order to identify the second 

situation encountered in E2.2a in which the use of typical component does not enhance 

the quality, and the trust, of the obtained results but only reduce the list of the concepts 

obtained. The problem here is represented by the fact that this reduction depends from 
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the order of interrogation of the typical representations of the concepts and this represent 

an evident limit for the quality of the obtained results.  

 

 

 

 

 

 

 

Table 5.2.Concept Retrieval results 

 

It is important to note that when both the representations are signed with the term full 

therefore it also means that the obtained results are identical (exactly the same concepts 

are retrieved). In the second table represented below we take into account the measures 

of precision and recall for each of the experimental situation individuated. Even in this 

case we do not consider the specific metrics obtained but we simply indicate if the 

different situations proposed present relevant differences for the indicated measures.   

 

 

Table 5.3. Precision and Recall results. Synthetic table.  

 

In the first experimental situations (E1 and E2.1) we do not calculate precision and recall 

measures because these tasks have been based on a single concept retrieval. Therefore 

the denominator of both measures would, unnaturally, have assumed only one of the 

value of 0 and 1.   

In the control situation E2.2, instead, we obtained an improvement of both precision and 

recall measures guaranteed by the access to the typical component. 

 Precision DL Recall DL Precision Dual 
KB 

Recall Dual KB 

E1 Not calculated Not calculated Not calculated Not calculated 
E2.1.1 (first situation) Not calculated Not calculated Not calculated Not calculated 
E2.1a (second situat.) Not calculated Not calculated Not calculated Not calculated 

E2.2.1 (first sit.) Calculable Calculable Improved Improved 
E2.2a (second sit.) Calculable Calculable Improved Improved 

E3 Calculable Calculable Same Same 

 Concept 
retrieval in DL 

Concept retrieval 
in Typical 

Component 
E1 Null Full 

E2.1.1 (first situation) full Full 
E2.1a (second situat.) full Full 

E2.2.1 (first sit.) full Refined 
E2.2a (second sit.) full Limited 

E3 full Full 
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In the second situation E2.2a, we also noted an improvement of the precision and recall 

values. This fact depends from the structure of the situation described. In fact, in E.2.2, 

we always assist to the passage from a list of results to a unique concept obtained by the 

typical component. Improving, in this way, always the considered metrics but, as we 

have seen, not the quality of the information extracted. 

Finally, in E3, we obtained the same values of precision and recall results for both the 

compared representational solutions. In the next paragraph the presented results are 

commented and discussed. 

 

5.3. Discussion and Analysis 

 

The results obtained through the evaluation shows some pros and cons of the proposed 

architecture in a real situation. As before mentioned, the main aim of our analysis has 

been that one of making a comparison between the proposed approach and the classical 

way of representing concepts in formal ontologies.  

The general insight emerging from the obtained results seems to suggest, at a first 

glance, that in the major part of the experimental situation investigated there is not an 

improvement of the concept retrieval mechanisms.  

More specifically: one could argue that, in E1, the contraposition among the obtained 

results (null vs full) is, in a certain sense, encoded within the representation itself. 

Continuing: it is evident that, in E2.1 (for both the control situations) and in E3, the 

results obtained by the two modeling approaches are the same (the concept retrieval 

gives the same results). Finally, the results obtained in the second subcondition 

individuated in E2.2 (e.g. E2.2a, see figure 6.5) can be considered better in the classical 

approach than in the proposed one.  

In the following we try to provide arguments in order to interpret the emerging results in 

a different perspective. We suggest, in fact, that certain situations between the two 

approaches appearing as “neutral” are not neutral at all, and that, therefore, the proposed 

modeling approach for the representation of non classical concepts presents many 

advantages even when it express the same results of the classical one.    

Going more into the details: in the case of E1, E2.1 and E3, we claim that the proposed 

approach represent an improvement with respect to classical one. The advantage is given 
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by the fact that the architectural solutions presented in these situations are much more 

closer to the real world scenarios (in which different levels of information for the same 

concept are stored in different data sources) than the classical approach (in which a 

single, monolithic, block of representation is demanded to represent all the needed 

information for a certain set of concepts). Thus, the fact of obtaining the same retrieval 

results in a more realistic scenario represent, in our opinion, a plus in favour of the 

proposed approach. In addition, we argue that another relevant advantage is given by the 

fact that the typical components of our architecture are expressed according to the 

Linked Data format. This means that they are usable and interrogable by other data 

sources, providing different modeling view for the same concept, improving the 

interoperability and the level of re-use of the knowledge bases. This issue, which is 

related to the aspects of knowledge and data integration, represent nowadays one of the 

main objective within the Semantic Web research community.   

Furthermore, continuing our analysis, let consider the results coming from the first 

situation encountered in E2.2 (figure 6.4). In this case the proposed approach present a 

relevant improvement both on the side of the quality of retrieved information (there is an 

improvement of the recall value) and on that one of the quantity. The external typical 

component, in fact, has basically a pruning function and produce, from a list of possible 

answers, the result which can be considered cognitively more relevant. Thus improving 

the capabilities and the intelligent behavior of the system.  

The last, and unique, condition in which the proposed architecture obtained results that 

can be interpreted as negative with respect to the classical one, is the second 

experimental situation encountered in E2.2a. In this case, in fact, even if the obtained 

structural values registered a better performance (because the precision and recall 

assumed enhanced values), the fact that the obtained results depend from the casual 

order of the considered prototypical concepts represent a minus from the point of view 

of the trust of the information retrieved. 

As a possible extenuating circumstance we assume that this situation is oversized by our 

experimental evaluation. Despite this fact, however, this remain a negative situation for 

our approach.    

Going deeper in our analysis it is important to point out some limits of the evaluation. A 

first one is represented by the fact that is has been not performed on existing well known 
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large ontological knowledge bases. The main reason of this situation is represented by 

the difficulty of recovering, from ontological search engines (such as Swoogle: ) 

ontologies in http://swoogle.umbc.edu/) which represent, in our approach, the language 

to use for the DL representation. The reason of this lack of available OWL Full 

ontologies is given by the fact that all the ontologies shared and used in large semantic 

applications are, for computational complexity reasons, in OWL DL. However, we try to 

mitigate this cons providing, on the links mentioned in the experimental situations 

section, the knowledge bases on which we performed our experiments. Furthermore, the 

experimental conditions described both in E2.1 and E2.2 situations have been realized 

exactly to identify and to test our model with that the modeling approach mainly used in 

large ontological representations.  
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Chapter 6.  

Conclusions 

 

 

 

In this work we presented a cognitively inspired modelling approach aimed at facing the 

problem of non classical concept representation and reasoning in formal ontologies. 

Many other approaches have been developed in literature in order to face these 

problems; however, as presented in the chapter 2 (section 2.6), they  pose various 

theoretical and practical difficulties, with many problems remaining unsolved.  

The proposed modelling approach has been illustrated in the chapter 4. The main 

element characterizing this approach can be summarized as follows: 

 

(i) Division between the representations of the compositional and typical 

components 

(ii)  Possibility of integrate these representations using the Linked Data 

approach and specific linking constructs provided by the ontological 

languages. 

(iii) Division of the type of reasoning processes operating on the 

interconnected knowledge base.   

 

Our theoretical proposal has been partially implemented and evaluated. More properly: 

the implemented part has been that one regarding the representational modules of the 

architecture and the corresponding links between the two conceptual components.  

This part has been evaluated on an information retrieval task concerning property 

checking based on prototypical information. The results obtained have been presented 

and discussed in the chapter 5. They seems to suggest that, in the major part of the 

situations, the proposed approach obtain the same or, in certain cases, enhanced results 

for the task considered for the evaluation. Furthermore, the proposed approach presents 

the advantage of presenting real world scenarios characterized by distributed 



                                                                                                                             Chapter 6. Conclusions  
 

112 
 

information systems and federated knowledge bases. However, some critical points are 

a matter of discussion and shall be further investigated and developed. The principal one 

is represented by the fact that the reasoning module able to perform certain forms of 

approximate reasoning (such as the non monotonic instance categorization) has been, at 

the current state of the art, theorized but not yet realized. So its implementation and 

testing represents a future work plan to be done in order to complete the evaluation. 

Despite that, however, we claim that the proposed approach presents relevant insights 

also about the reasoning processes. The presented hybrid approach, in fact, allows, at 

least in principle, to hypothesize the co-existence of different reasoning procedures (one 

classical and deductive and another one non monotonic logics) providing a cascade 

model able to avoid possible inconstistencies caused by eventual discordant results. 

In this view, this work can be considered as an initial step aimed at the realization of a 

complete modeling framework including both the representational and reasoning 

aspects of typicality. The road traced seems to be encouraging but it still needs to be 

further investigated. 
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