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Non Classical ConcepRepresentation and Reasoning in Formal Ontologies

Abstract

Formal ontologies are nowadays widely considerestamdard tool for knowledge
representation and reasoning in the Semantic Wethis context, they are expected to
play an important role in helping automated proesd® access information. Namely:
they are expected to provide a formal structuree @bl explicate the relationships
between different concepts/terms, thus allowingliigient agents to interpret, correctly,
the semantics of the web resources improving thdomeances of the search
technologies.

Here we take into account a problem regarding Kedgé Representation in general,
and ontology based representations in particulamety: the fact that knowledge
modeling seems to be constrained between -conflictiequirements, such as
compositionality, on the one hand and the neeepoesent prototypical information on
the other. In particular, most common sense coscegem not to be captured by the
stringent semantics expressed by such formalispn®agsxample Description Logics
(which are the formalisms on which the ontologygiaages have been built). The aim
of this work is to analyse this problem, suggestingossible solution suitable for
formal ontologies and semantic web representations.

The questions guiding this research, in fact, Hsaen: is it possible to provide a formal
representational framework which, for the same epticcombines both the classical
modelling view (accounting for compositional infaation) and defeasible, prototypical
knowledge ? Is it possible to propose a modelliropigecture able to provide different
type of reasoning (e.g. classical deductive reagpfor the compositional component
and a non monotonic reasoning for the prototypooe)?

We suggest a possible answer to these questiopsging a modelling framework able
to represent, within the semantic web languagesnudtilevel representation of
conceptual information, integrating both classiaatl non classical (typicality based)
information. Within this framework we hypothesisa, least in principle, the co-
existence of multiple reasoning processes involvitige different levels of
representation.

This works is organized as follows: in chapter & femantic web languages and the

description logics formalisms on which they areduhare briefly presented. Then, in
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chapter 2, the problem on which this work is foclge=g. conceptual representation) is
illustrated and the general idea of the proposettithayer framework is sketched. In

chapter 3 the psychological theories about condegged on prototypes and exemplars
are surveyed. In this chapter we argue that sustindiion can be useful in our

approach because it allows (i) to have a more cetapkpresentation of the concepts
and (ii) to hypothesise different types of non ntondc reasoning processes (e.g. non
monotonic categorization). In chapter 4 the prepasodeling architecture is presented
and, in chapter 5, it is evaluated on particulémnmation retrieval tasks. The chapter 6

is dedicated to the conclusions.
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Chapter 1.

Ontological Languages and Description Logics

The Semantic Web was originally proposed as ameida to the current Web, as the
way to solve the problem of semantic heterogen@itg. Lee 2001). In this view, the
proposed solution has been that one of adding, @alked semantic layelas an extra
layer built on top of the Web, which makes data oray human processable but also
machine processable thanks to an enriched semaniiesvord “semantics”, in the this
research area, assumes a precise connotation:eiging of the data and documents is
assumed to be codified agetadatai.e. data about data (Giunchiglia et al 2010}his
view, data are organized in different levels of creéasing expressiveness, each
corresponding to a specific representation neeah Sevels correspond to different
representation languages: XML, XML Schema, RDF &F Schema (RDFS) and
OWL. In the section 1.1, we briefly summarize thaimdistinctive elements of the first
four mentioned languages. Then, in 1.2, we intredihe basic elements characterizing
the standard Description Logics (DLs) and, in In8jviduate the connections between
DLs and the semantic web languages. Finally, #seribtion of OWL (Ontology Web
Language) and of its sub languages is demandéxe tparagraph 1.4.

1.2. Semantic Web Languages

XML is designed to represent information using ouoszed tags. Due to this feature,
this language is widely used for information exdaj@ron the Web and elsewhere.
Strictly speaking XML is not a semantic web langeias it codifies no semantics.
However, it is important because all the semantab Manguages are extensions of
XML. Furthermore, it has also a historical impoarbecause, if compared to HTML,

it represents a first step towards the semanticlamduages.
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An example of a XML based representation is thivvahg: let suppose that we have to
represent a statement like “DBpedia was last meditin 28 January 2012". It can be
represented in XML using, for example, the tags fledia”, and “modified”, along
with a statement indicating the specific XML versiof the representation, as shown in
fig. 1.1

<? Xml version="1.0" 7>
<DBpedia>
<modified>28 January 2012</>
</DBpedia>

Fig. 1.1 a XML representation

XML Schema is a XML based format defining the rulleat an XML document must
respect. From an object oriented programming pofnview, XML Schema can be
assimilated to a class, while XML documents coroespto instances of that class. It is
used for exchanging information between parties dlgaee on a particular set of rules.
However, the terms used in XML Schema have, againsemantics. Therefore, it
results to be difficult for machine to accomplisbnomunication between them when
new XML vocabulary terms are introduced. Becauseheflack of semantics, XLM
Schema does not allow to differentiate between gehous concepts/terms and does
not allow to combine the synonymous terms.

RDF language was developed in order to overcomseethienits. RDF is used to
describe information about web resources. This databased description allows to
make information machine processable and “undedatale”. It is designed to provide
flexibility in representing information. RDF is k& on a simple data model that allows
to make statements about web resources, and psotlte capability to perform
inferences on the represented statements. Thenitzdal of RDF is a directed graph
consisting of nodes and edges. Statements abauroes can be represented by using
this graph. The example in figure 1.2 represergsagsertion “Geonames has coverage
of all countries” (from De Virgilio et al 2010, 80). Edges in RDF graph are labeled.
When they connect two nodes, they form a triplee Triples based semantics is one of
the main features of RDF and RDF based languages.oDthe two nodes represents
the subject, the other the object and the edgeesepts the predicate of the statement.
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The direction of the edge is from the subject te tiject. RDF usually uses URIs
references to identify subjects, objects and pegdi(as in fig. 1.2)

NCOPYWWW . JecneEmes.ong

ey purl. orocTenma/ coVerEge

nHpY WWW.DECNaMEs Oncounines,

Figure 1.2. RDF graph based on URIs

A statements such as that of fig. 1.2 can be thestin RDF as shown below:

<? Xml version="1.0" 7>
<rdf:RDF
xImns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xImns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#”
xImns:rdfs=http://www.purl.org/dc/terms#” >
<rdf:Description rdf:about="http://www.geonames.org” >
<dc:coverage rdf:resource="http://www.geonames.org/countries” >
</rdf:Description>
</rdf.RDF>

A limit of RDF is represented by the fact that ded not allow to define a hierarchy
between the represented resources. For this reRfafh,Schema (RDFS) was created.
RDFS is an extension of RDF able to provide a volzly to represent classes,
subclasses, properties and relations between piegefhe capability of representing
classes and subclasses allows users to publisHogie® on the web, but these
ontologies are limited, as RDFS cannot represesjumittion or specific cardinality

values. Furthermore, RDFS presents also otherdisuth as, for example: (i) it is not
possible to localize the range and domain conggr@ha specific property (e.g. it is not

possible to express that the range of hasChilcerisgm when applied to persons and

! However, in such cases some elements within tide tcan be represented without URI. For
example: if the statement to be represented in RDPBpedia was modified on 25 January 2012” we
have the object of the triple (25 January 2012)ctiié a literal. Thus it can be represented withdRit.
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elephant when applied to elephants), (ii) it is mpassible to insert inverse or
symmetrical properties (e.g. it is not possiblesty that hasPart is the inverse of
isPartOf and that the property “touches” is syminaty.

For these reasons, other languages were develespedB@ader et al 2002, Horrocks et
al 2011). One of these is the OWL language. Itaseld on Description Logics and
makes it possible to describe concepts and rektlmetween concepts via logical
axioms. OWL is the result of the integration betwélee OIL and DAML languages.
Similarly to RDF, on which it is based, in OWL date represented as triples: subject,
object and predicate. In particular, it is posstblelistinguish between three basic OWL
languages: OWL Lite, OWL DL and OWL Full. Each dfet is characterized by
different expressivity and computational complexBgfore describing in major detail
these three languages, we will introduce, in theé paragraphs, the main features of the
Description Logics and will try to evidence the nention between description logics
and the Ontology Web Language.

1.2 Description Logics

Description Logics (from now on DLs) are a family dass-based (concept-based)
knowledge representation formalisms (Baader e0@RP They are characterised by the
use of various constructors that allow to build pter classes from simpler ones and
by an emphasis on the decidability and computaticommplexity of some key
reasoning tasks. Description Logics had a strofflyieance on the design of OWL,
particularly on the formalisation of semantics dhe choice of language constructs. A
key feature of Description Logics is that they gics, i.e., formal languages with well
defined semantics. The standard technique for pegithe meaning of a Description
Logic is via a model theoretic approach, whose pseps to explicate the relationship
between the language syntax and the models oatigrbge. As reported in Horrocks et
al. (2011): a model consists of a domain (whichuiually written A'") and an
interpretation function (often writter)); where the domain is a set of objects and the
interpretation function is a mapping from indivitlualass and property names to
elements of the domain, subsets of the domain amarybrelations defined on the

domain, respectively.
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So, for an individual Nicola, Nicola A', for a class Person, PerSanA', and for a
property friend, friend < A' x A'. The interpretation function can be extended from
class names to complex class descriptions in th@ob way. For example, given two
classes Male and Person interpreted as the se& @, b, c} and Persdr {b, c, €},
then the intersection of Male and Person (i.e.,em@rsons) is interpreted as the
intersection of {a, b, ¢} and {b, c, €}, i.e., (Maknd Persoh¥ {b, c} A domain can be
potentially represented by any set of objects. Wisaimportant, in fact, is the
relationship between objects and sets of objeatsa given model, for example, an
individual i is an instance of a class C just iseais interpreted as an element of the
interpretation of C (i.e. i C'), and a class C is a subclass of a class D jusise the
interpretation of C is a subset of the interpretatif D (i.e., C< D").

The main building blocks of DL knowledge bases @wacepts (or classes), roles (or
properties), and individuals. Certain concepts.(say, Person) are atomic. Then, using
a rich set of concept constructors, it is possitdecreate complex concepts, by
describing the conditions on concept membership ekample, the conceghasFather
.Person describes those objects that are relatedgih the hasFather role with an object
from the concept Person.

The general architecture of a DL System is repieskin the figure 1.3 below. Namely:
a DL knowledge base typically consists of a TBoxaind an ABox A. A TBox
(Terminological Box) introduces the terminolog.j.the vocabulary of an application
domain, an contains axioms about the general steiaf all allowed worlds, and is
therefore akin to a database schema. An ABox (#iesal Box) contains assertions
about specific individuals in the terms of the TBexcabulary, and contains axioms
that describe the structure of a particular wdfok example, the TBox axiom (1) states
that each instance of the concept Person mustlaedeby the role hasFather with
another instance of the concept Person. While (@) @) represent the assertional
knowledge within the ABox and state that Nicolai®erson (2), and that Teresa and

Nicola are brothers (3).

2 In this case with the term “property” we indicatéwo argument relation (Rab). However, usually,
the term property is used in order to indicate jwaeds with one argument (Pa). This distinction|l we
known in classical logics, is generally not consédewithin this research area, thus all the typks o
predicates are named “properties”.
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(1) Persore JhasFather .Person
(2) Person(Nicola)
(3) hasBrother (Nicola,Teresa)

4= TBox ™~L .
3 . ‘“xl__.a*"' | “"-a.,_lr" »
IDBE’C”F’I'D“ ] | Reasoning |
-RL_a-"uguagn::f *’ﬁ‘"‘n ..--'l‘x_ i
~ ABox #
KB
Application
Programs | Aules
1

Figure 1.3. DL Knowledge Base architecture (frona&er and Nutt, 2002).

As explained before, the meaning of the expresseus is given by corresponding
constraints on models. For example: if the knowéetgse contains an axiom stating
that Person is a subclass of Animal (written PeSohanimal), then in every model of
the knowledge base the interpretation of Persont ralvgays be a subset of the
interpretation of Animal. The meaning of a knowledgase derives from features and
relationships that are common to all possible n&dél for example, the interpretation
of a class must always be the empty set, thencthas is said to be inconsistent, while
if there are no possible interpretations, the kmeolge base itself is said to be
inconsistent. If the relationship specified by aegi axiom must hold in all
interpretations of a knowledge base, then thatmaxis said to be entailed by the
knowledge base, and if one knowledge base entagls/eaxiom in another knowledge
base, then the first knowledge base is said toilethi@ second knowledge base. A
knowledge base containing the axiom PersoAnimal, for example, entails that the
intersection of Male and Person is also a subdassimal.

A DL system, however, not only stores terminologsesl assertions, but alsdfers

services that reason about them. Typical reasotasggs for a terminology are to
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determine whether a description is satisfiable, (hen-contradictory), or whether one
DL description is more general than another ong. (@hether the first subsumes the
second, Baader et al 2002). Reasoning problemseoaing an ABox are to find out
whether it is consistent (i.e. whether it has a efjpdand whether it entails that a
particular individual is an instance of a given cept description. Satisfiability
checking of descriptions and consistency checkihgets of assertions are useful to
determine whether a knowledge base is meaningfall.aBy performing subsumption
tests, one can organize the concepts of a ternggoido a hierarchy according to their
generality. A concept description can also be cwedeas a query, which describes the
set of objects one is interested in. Thus, withtainse tests, one can retrieve the
individuals or concepts that satisfy the querys(thuery based method will be used in
the evaluation of our proposal - see chapter 5vipel®ne important aspect to keep in
mind when dealing with reasoning in Description losgs that they all follow an open
world assumption (OWA). This is especially impottamce knowledge representation
systems bear a superficial similarity with databssggtems. The TBox is similar to the
database schema and the ABox similar to the datadsin it. The important difference
Is that databases adopt closed-world assumptioes whswering queries. Namely: if in
a database there is no individual that fulfills theery criteria, then the assumption is
that such an individual does not exist and thatdfadement that no such individual
exists is true. On the contrary, in the open-woeasoning of Description Logics, if no
individual fulfills the query criteria, then the piication is that there is a lack of
information. It is not possible to deduce that,csirthe query is not fulfilled, the
negation of the query is true.

The last element showed by the figure 1.3 is timgny application, a DL system is
embedded into a larger environment. External apptio programs interact with the DL
components by querying the knowledge base and bgifyireg it. Furthermore, a
restricted mechanism to add assertions are rulgiesRare an extension of the logical
core formalism, which can still be interpreted tadly. For a detailed description of all

these elements we refer to Description Logic HandboofBaader et al. 2002).
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1.3 Description Logics for Semantic Web Languages

In this section we will briefly present the syntaxdasemantics of the Description
Logics on which OWL (and previous semantic web lages such as OIL,
DAML+OIL) is based. Namely we present the family d#scription logics extending
the S family of DLs. The S family of logics is bdsen an extension of the well known
DL ALC (see Schmidt-Schauld and Smolka, 1991; BaaderR6é0al for details).

In the literature, in order to better understanel &xpressivity of the different DLs, a
standard notation has been adopted, in which esttér forming the name of a DL
corresponds to a specific expressivity requiremBaimnely: the lettefS stands for the
basic ALC DL (equivalent to the propositional modal logic K(mgkxtended with
transitive roles,H stands for role hierarchies (or, equivalently,iriolusion axioms
between roles)D stands for nominals (classes whose extensiorsiisgée individual) |
for inverse roles|j and (possibly qualified) number restriction@ if qualified via
datatypesN otherwise). The correspondence between the |letteighe corresponding

syntax and semantics of each logic of the famiendSHis provided in the figure 1.4

below.
Construet Name | Syntax Semantics
atomic concept A 2 el b
atomic role R T T T
transitive role It Re RI D (RT¢
conjunction onnp N Dt
disjunetion CuD eEupE S
negation = T e
exists restriction | IR.C [r|3y{x)y € R and y € O}
value restriction YR.C | {z|¥y.(x)y e RT implies y € CT}
role hierarchy RC S it C 5L H
nominal fo} {et] &
inverse role i~ {{x)y | {y)xz € Rt} T
number =znP [z | d{y.z)y € Pt} = n} %
restrictions £nl? [z | #{y.(z)y € PT} € n}
qualifying number|zn P.C|{x | t{y. {2}y € PTand y = CT} = n }
restrietinng <nP.C|Hz |ty lziy < P and y € CF) € n} <

Fig. 1.4 Sintax and Semantics of the S familyedddption Logics (from Horrocks at al. 2003)
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In figure 1.4, the syntax and semantics of theatufes is schematized. Namely: A is a
concept name, C and D are concepts, R and S & ®lis the set of transitive roles,

o is an individual name, P is a simple role (iae that is not transitive and has no
transitive sub-roles), and n is a non-negativegeteThese logics can also be extended
with a simple form of concrete domains known asatygies; this is denoted by
appending D) to the name of the logic, e.GHOIN(D)

The OWL languages that we are going to considenajor detail are directly based on
these description logics. Namely: OWL Lite is basadsHIQ DL (it correspond to the
SHOIQ DL without nominals, and with only functional nuerbrestrictions) while
OWL DL is based on th8HOIN (D) where the (D) represent the possibility of iadd

simple form of datatypes on concrete domain (D).

1.4 From Description Logics to Semantic Web languas

As previously mentioned, the OWL language has terg#anguages (OWL Lite, OWL
DL and OWL Full), each with certain characteristi€he first two languages have been
explicitly designed in order to provide the podspiof having decidable inferences,
thus they are based on Description Logics thatigeokmitations on the expressivity of
the language. In OWL Full, instead, all RDF grajpihs allowed. The benefits of this
expansive style include total upward compatibilitigh RDF and a greater expressive
power. The price for this increased expressivityhiswever, that reasoning in OWL
Full is undecidable. In the following we focus imjor detail on the these sublanguages,
trying to put in evidence the main differences wilte above mentioned semantic web
languages (e.g. RDF, RDFs).

Before going into the details, however, we underlime differences that even the more-
limited versions of OWL have with the standard Dgdon Logics. Are, in fact, these
differences that move these versions of OWL fromfthrmal Description Logic world

to the Semantic Web world. Namely they can be gedugs follows:

- OWL uses URI references as names, and construets thRI1 references in the
same manner as RDF. It is thus common in OWL to qusdified names as
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shorthands for URI references, using, for exantpke qualified name owl: Thing
for the URI reference http://www.w3.0rg/2002/07/&Whing.

- OWL gathers information into ontologies, which aenerally stored as Web
documents written in RDF/XML. Ontologies can imparther ontologies,
adding the information from the imported ontologythe current ontology.

- OWL uses the facilities of RDF datatypes and XMLh&woa datatypes to

provide datatypes and data values.

Summing up: what makes OWL a Semantic Web langisaget its semantics, which is
quite standard for a Description Logic, but instdael use of URI references for names,
the use of XML Schema datatypes for data valuesd, the ability to connect to
documents in the World Wide Web.

1.4.1 OWL Lite

OWL Lite allows the use of a subset of OWL and RB)R{ocabulary. The main goal of
this language is to guarantee termination of reagoprocesses. OWL Lite language
prohibits unions and complements, restricts intdiges to the implicit intersections in
the frame-like class axioms, limits all embeddedcd@tions to concept names, does
not allow individuals to show up in descriptionsotass axioms, and limits cardinalities
to 0 or 1. These restrictions make OWL Lite simtlaithe Description LogiSHIFD)
(obtained by adding some constraint 3$6101Q(D)) . Like SHIFD), in fact, key
inferences in OWL Lite can be computed in worstecagponential time (ExpTime).
This improvement in tractability comes with relaiy little loss in expressive power.
Infact, although OWL Lite syntax is more restrictdhn that of OWL DL, it is still
possible to express complex descriptions by intcodunew class names and exploiting
the implicit negations introduced by disjointnesgms (Horrocks 2003, 2011). Using
these techniques, all OWL DL descriptions can h@wad in OWL Lite except those
containing either individual names or cardinalitiggeater than 1. In particular, in OWL
Lite language it is possible to use 35 out of 40108nstructs and 11 of the 33 RDFs
constructs. The list of the 33 RDFs constructs ahthe 40 OWL construct is taken
from Giunchiglia et al. 2010, and is presentedhim Appendixes A and B at the end of
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the chapter. To define a class in OWL Lite one nus&t the OWL construcwl:Class
instead ofrdfs:Classwhich is not allowed. Other not allowed construat®OWL Lite

are:complementQMisjointWith hasValue, oneCindunionOf.

1.4.2 OWL DL

OWL DL is based oiSHOIN(D syntax and semantics. OWL DL language can use, a
OWL Lite language,11 out of the 33 RDFS construchs. addition, in OWL DL is
possible to use all the 40 constructs of OWL. Haevegome of these constructs are
restricted in order to provide the decidability the language. In particular, classes
cannot be used as individuals, and vice versa. Eafihidual (or instance) must be an
extension of a class and must be necessarily a&edan a class (if there is no more
specific class, it must be categorized as belongrtgeowl:Thing class). Furthermore:
individuals cannot be used as properties and \@csay and properties cannot be used as
classes and vice versa. Properties in OWL DL aveled into object properties and
datatype properties. Object properties connectantsls of two classes, datatype
properties connect instances of classes and Btefak restriction in OWL DL allow to
maintain a balance between exspressivity and coautylén fact, even if computational
complexity is higher than OWL LiteSHOIN(D) is an expressive Description Logic
whose worst case complexity is of nondeterminigtkponential time: NExpTime)
reasoning in OWL DL remains decidable and corredpda that one of its

correspondent description logics.

1.4.3 OWL Full

OWL Full is the most expressive OWL language. Li@F and RDFS (with which has
a complete compatibility), it allows classes toused as individuals. OWL Full goes
beyond OWL DL. For example, in OWL Full, it is pdde to impose a cardinality
constraint on rdfs:subClassOf, is desider. Thiglage can use all the 40 constructs
OWL without any restriction imposed on OWL-DL. Moreer the construcr rdfs:class
and owl:Class can be used to define a class. Thalikerence with respect to OWL

DL is that in OWL Full what we can say, e.g. clasggroperties etc, can be used as
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individuals. The penalty to be paid here is twhifd=irst, reasoning in OWL Full is
undecidable. Second, the syntax for OWL DL (Horep&003) is inadequate for OWL
Full, and the official OWL exchange syntax, RDF/XMhust be used.

Appendix A: RDF(S) Constructs

This appendix provides a list of the thirty-threBRS)constructs excluding the sub-
properties of rdfs:member.

The RDF(S) constructs are rdf:about, rdf:Alt, rdfd3 rdf:Description, rdf:first, rdf:ID,
rdf:List, rdf:nil, rdf:Object, rdf:predicate, rdfrBperty, rdf:resource, rdf.rest, rdf:Seq,
rdf:Statement, rdf:subject, rdf:itype, rdfivalue, f:XdMLLiteral, rdfs:Class,
rdfs:comment, rdfs:Container, rdfs:ContainerMembigBroperty, rdfs:Datatype,
rdfs:domain, rdfs:isDefinedBy, rdfs:label, rdfs:lcdé rdfs:member, rdfs:range,
rdfs:seeAlso, rdfs:subClassOf, and rdfs:subPropért{petails of the meaning of the
above constructs can be found in the RDF(S) manUalsprovide a few examples,
rdfs:Class allows to represent a concept, rdfs:fagsOf to state that a concept is more
specific than another, rdf:resource to represemsaurce (an instance of a concept),
rdfs:label to represent a human readable labelgfooncept or resource or property),
rdfs:comment to provide a human readable descniptiba concept or resource or

property.

Appendix B: OWL Constructs

This appendix provides the lists of the forty OWanstructs and eleven RDF(S)
constructs that can be used in an OWL representatio

The OWL constructs are owl:AllEferent, owl:allValuesFrom,
owl:AnnotationProperty, owl:backwardCompatibleWitlowl:cardinality, owl:Class,
owl:complementOf, owl:DataRange, owl:DatatypeProperowl:DeprecatedClass,
owl:DeprecatedProperty, owlftierentFrom, owl:disjointWith, owl:distinctMembers,
owl:equivalentClass, owl:equivalentProperty, owhEtionalProperty, owl:hasValue,
owl:imports, owl:incompatibleWith, owl:intersection, owl:

InverseFunctionalProperty, owl:inverseOf, owl:maxfiaality, owl:minCardinality,
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owl:Nothing, owl:ObjectProperty, owl:oneOf, owl:om@perty, owl:Ontology,
owl:OntologyProperty, owl:priorVersion, owl:Restitm, owl:sameAs,
owl:someValuesFrom, owl:SymmetricProperty, owl:Thinowl:TransitiveProperty,
owl:unionOf, and owl.versioninfo. The RDF(S) comstis are rdf:about, rdf:ID,
rdf:resource, rdf:itype, rdfs:comment, rdfs:domaidfs:label, rdfs:Literal, rdfs:range,
rdfs:subClassOf, and rdfs-:subPropertyOf. To prexadew examples of the meaning of
the constructs above, owl:Class can be used tesept a concept, owl:equivalentClass
to state that a concept is equivalent to anothel, Thing to represent an instance of a

concept, owl:sameAs to state that two instances thé same thing.
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Chapter 2.

Representing Non Classical Conceptual Information

After the brief introduction regarding the connentibetween the Description Logics
and the Semantic Web languages, in this chaptentnadluce the problem investigated
in this research. Namely: the problem of conceptegentation. And, more specifically,
the problem of “non classical” concept represeatatwithin the field of formal
ontologies. The computational representation ofcepts is a central problem for the
development of ontologies and knowledge engineerbgncept representation is a
multidisciplinary topic of research that involvesferent disciplines such as Artificial
Intelligence, Philosophy, Cognitive Psychology a@dgnitive Science in general.
However, the notion of concept itself turns oub#&highly disputed and problematic. In
our opinion, one of the causes of this currentestditaffairs is that the very notion of
concept is, to a certain extent, heterogeneous emumpasses different cognitive
phenomena. This results in a strain between canfljic requirements such as
compositionality, on the one hand, and the needgoesent prototypical information on
the other. This has several consequences for ttige of knowledge engineering as
well as the technology of formal ontologies. Instischapter we propose an analysis of
this situation.

The rest of the chapter is organised as followssdation 2.1, we point out some
differences between the way concepts are concaveldilosophy and psychology. In
section 2.2 and 2.3 we introduce the conflictingguieements (such as
compositionality, on the one hand and the nee@poesent prototypical information
on the other) characterizing the history of condegsed representations. Then, in
section 2.4 we argue that Al research in some Vays traces of these contrasting
needs. In particular, the requirement of compasdip logical style semantics
conflicts with the need to represent concepts imseof the typical traits that allow

for exceptions. In section 2.5. we point out theassity for artificial conceptual
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systems to represent and reason on non classigatepts and prototypical
information in order to deal with so called “comm&gnse” concepts. This necessity,
in our opinion, can be covered taking into accosmine evidence from cognitive
analysis of the human way of organizing and prangssformation. In this view, our
basic assumption is that knowledge representatysteimis whose design takes into
account evidence from experimental psychology negyster better performance in
real life applications (e.g. specifically in theelfls of information retrieval and
semantic webs).

In section 2.6, we review several attempts to thice non classical representation and
reasoning in the field of knowledge representatwhile paying particular attention to
description logics. Finally, in section 2.7, we ntley several possible suggestions
coming from different aspects of cognitive resedrcbrder to overcome this problem.
Namely: (i) the distinction between two differengpés of reasoning processes,
developed within the context of the so-called “dpiadcess” accounts of reasoning; (ii)
the proposal to keep prototypical effects sepdrata the compositional representation
of concepts; and (iii) the possibility to developbhd, prototype and exemplar-based
representations of concepts. All these elementesepting the cognitive background
of our approach will be more deeply described ixt cbapters.

2.1 Concepts in Philosophy and Psychology

Within the field of cognitive science, the notiof @ncept is highly disputed and
problematic. Artificial intelligence (from now onlpand, in general, the computational
approach to cognition reflect this current stateafifirs. Conceptual representation
seems to be constrained by conflicting requiremesush as compositionality, on the
one hand and the need to represent prototypicaknrdtion on the other. A first

problem (or, better, a first symptom indicatingtthgroblem exists) lies in the fact that
the use of the term “concept” in the philosophicatlition is not homogeneous with the

use of the same term in empirical psychology (sgel2el’Anna and Frixione 2010).
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Briefly*, we can say that in cognitive psychology a conéepssentially intended as the
mental representations of a category, and the esigpha on processes such as
categorisation, induction and learning. Accordingphilosophers, concepts are above
all the components of thoughts. Even if we leavieleashe problem of specifying
exactly what thoughts are, this requires a moreahelimg notion of concept. In other
words, some phenomena that are classified as “ptuaé by psychologists turn out to
be “nonconceptual” for philosophers. There are,sthmental representations of
categories that philosophers would not consideruigen concepts. For example,
according to many philosophers, concept possessiuamives the ability to make high
level inferences explicit and also sometimes thktyalo justify them (Peacocke 1992;
Brandom 1994). This clearly exceeds the possessitime mere mental representation
of categories. Moreover, according to some philbsog, concepts can be attributed
only to agents who can use natural language (nb: adult human beings). On the
other hand, a position that can be considered messense representative of an
“extremist” version of the psychological attitudewards concepts is expressed by
Lawrence Barsalou in an article symptomaticallyitesat “Continuity of the conceptual
system across species” (Barsalou 2005). He rebekadwledge of scream situations in
macaques, which involve different modality-specsystems (auditory, visual, affective
systems, etc.). Barsalou interprets these datavour of the thesis of a continuity of
conceptual representations in different animal igsedn particular between humans
and non-human mammals: “this same basic archiedturrepresenting knowledge is
present in humans. [...] knowledge about a padicoategory is distributed across the
modality-specific systems that process its propsit(p. 309). Therefore, according to
Barsalou, a) we can also speak of a "conceptudéemsysin the case of non-human
animals; b) low-level forms of categorisation whibdpend on some specific perceptual
modality also belong to the conceptual system. dblith Spelke’s experiments on
infants (see e.g. Spelke 1994; Spelke and Kinz@072 are symptomatic of the
difference in approach between psychologists antbgdphers. These experiments

demonstrate that some extremely general categanéegery precocious and presumably

® Things are made more complex by the fact that wituin the two fields considered separately this
notion is used in a heterogeneous way, as we shallisely see in the following. Consequently, the
following characterisation of the philosophical grgychological points of view is highly schematic.
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innate. According to the author, they show that lmaw babies already possess certain
concepts(e.g., the physical object concept). However, sqidosophers (Bermudez

1995, Bermudez and Cahen 2011) have interpretes th@me data as a paradigmatic
example of the existence nbnconceptuatontents in agents (babies) who have yet to

develop a conceptual system.

2.2 Compositionality

The fact that philosophers consider concepts maialthe components of thoughts has
given greater emphasis tompositionality as well as to other related features, such as
productivity and systematicity, which are oftenoged by the psychological treatment
of concepts. On the other hand, it is well knowat tbompositionality is at odds with
prototypicality effects which are crucial in most psychological charastdions of
concepts (we shall develop this point in greataaitien the next section). Let us first
consider the compositionality requirement. In a compositional system of
representations, we can distinguish between af ggiroitive, or atomic, symboland a
set of complex symbolsComplex symbols are generated from primitive sgisib
through the application of a set of suitable reeersyntactic rules (generally, a
potentially infinite set of complex symbols can generated from a finite set of
primitive symbols). Natural languages are the pagradtic example of compositional
systems: primitive symbols correspond to the elémen the lexicon (or, better, to
morphemes), and complex symbols include the (paigninfinite) set of all sentences.
In compositional systems, the meaning of a complgnbols functionally depends on
the syntactic structure afas well as the meaning of primitive symbols inlrit.other
words, the meaning of complex symbols can be débtesnby means of recursive
semantic rules that work in parallel with syntaatmmposition rules. This is the so-
calledprinciple of compositionality of meaning/hich Gottlob Frege identified as one
of the main features of human natural language<ldssical cognitive science, it is
often assumed that mental representations are tigoal. One of the clearest and
most explicit formulations of this assumption wasgosed by Jerry Fodor and Zenon
Pylyshyn (1988). They claim that the compositiaiyabf mental representations is

mandatory in order to explain some fundamental tvgnphenomena. In the first
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place, human cognition igenerative in spite of the fact that the human mind is
presumably finite, we can conceive and understandirdimited number of thoughts

that we have never encountered before. Moreoversyhtematicityof cognition also

seems to depend on compositionality: the ability ctinceive certain contents is
systematically related to the ability to conceivthes contents. For example, if
somebody can understand the sentgheecat chases a rathen (s)he is presumably
also able to understaradrat chases the caby virtue of the fact that the forms of the
two sentences are syntactically related. We caclaoda that the ability to understand
certain propositional contents systematically dejseon the compositional structure of
the contents themselves. This can easily be aceduor if we assume that mental

representations have a structure similar to a caitipoal language.

2.3 Against "Classical" Concepts

Compositionality is less important for many psyduiéts. In the field of psychology,
most research on concepts moves from the critiquéise so-called classical theory of
concepts, i.e. the traditional point of view accéogdto which concepts can be defined in
terms of necessary and sufficient conditions. Eicglir evidence favours those
approaches to concepts that account for prototigitacts. The central claim of the
classical theory of concepts (i.e.) is that evargaeptc is defined in terms of a set of

features (or conditiond), ...,f, that are individually necessary and jointly suéid for
the application o€. In other words, everything that satisfies featdq{e...,f,, is ac, and
if anything is ac, then it must satisffy, ..., f,,. For example, the features that define the

conceptbachelorcould behuman male adult andnot married the conditions defining
square could be regular polygon and quadrilateral This point of view was
unanimously and tacitly accepted by psychologtdposophers and linguists until the
middle of the 20th century. The first critique ddssical theory is due to a philosopher:
in a well known section from thBhilosophical InvestigationsLudwig Wittgenstein
observes that it is impossible to identify a sehetessary and sufficient conditions to
define a concept such as GAME (Wittgenstein, 13586). Therefore, concepts exist

which cannot be defined according to classical hee. in terms of necessary and
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sufficient conditions. Concepts such as GAME rastaocomplex network ofamily
resemblances Wittgenstein introduces this notion in another pgss in the
Investigations«l can think of no better expression to charastethese similarities than
“family resemblances”; for the various resemblanbesveen members of a family:
build, features, colour of eyes, gait, temperameta, etc.»ipid., 8 67). Wittgenstein's
considerations were corroborated by empirical pshdical research: starting from the
seminal work by Eleanor Rosch (1975), with the psjogical experiments that
showed how common-sense concepts do not obey therement of the classical
theory’: common-sense concepts cannot usually be defineerms of necessary and
sufficient conditions (and even if for some coneeptich a definition is available,
subjects do not use it in many cognitive tasks)ncepts exhibifrototypical effects
some members of a category are considered bestanites than others. For example, a
robin is considered a better example of the categbbirds than, say, a penguin or an
ostrich. More central instances share certain &fgeatures (e.g. the ability of flying for
birds, having fur for mammals) that, in generak aeither necessary nor sufficient
conditions.

Prototypical effects are a well established emalriphenomenon. However, the
characterisation of concepts in prototypical tensidifficult to reconcile with the
compositionality requirement. According to a wetiokvn argument by Jerry Fodor
(1981), prototypes are not compositional (and,esioencepts in Fodor's opinion must
be compositional, concepts cannot be prototypesprief, Fodor's argument runs as
follows: consider a concept like PET FISH. It résulrom the composition of the
concept PET as well as the concept FISH. Howefierptototype of PET FISH cannot
result from the composition of the prototypes offR#hd FISH. For example, a typical
PET is furry and warm, a typical FISH is greyishi la typical PET FISH is neither
furry and warm nor greyish. Moreover, things aredeanore complex by the fact that,
even within the two fields of philosophy and psyicdgy considered separately, the
situation is not very encouraging. In neither oé ttwo disciplines does a clear,
unambiguous and coherent notion of concept seesmerge. Consider for example

psychology. Different positions and theories on tfaure of concepts are available

* On the empirical inadequacy of the classical theord the psychological theories of concepts see
(Murphy 2002).
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(prototype view, exemplar view, theory theory) that can hardlyritegrated. From this
point of view, the conclusions of Murphy (2002) ak great significance, since in
many respects this book reflects the current statusmpirical research on concepts.
Murphy contrasts the approaches mentioned abovelation to different classes of
problems, including learning, induction, lexicaihcepts as well as children’s concepts.
His conclusions are rather discouraging: the resfutbmparing the various approaches
is that “there is no clear, dominant winner” (ibid. 488) and that “[ijn short, concepts
are a mess” (p. 492). This situation persuaded smhelars to doubt whether concepts
constitute a homogeneous phenomenon from the pbiiew of a science of the mind
(see e.g. Machery 2005 and 2009; Frixione 2007).

2.4. Concept Representation in Artificial Intelligence

The situation outlined in the section above issame extent, reflected by the state of
the art in Al and, in general, in the field of camgtional modelling of cognition. This
research area often seems to hesitate betweemnediffeand hardly compatible) points
of view. In Al, the representation of concepts a&dd mainly within the field of
knowledge representation (KR). Symbolic KR systdikRs) are formalisms whose
structure is, broadly speaking, language-like. Tisisally entails assuming that KRs are
compositional. In their early development (histalig corresponding to the late 1960s
and the 1970s), many KRs oriented to conceptuaésemtations attempted to take into
account suggestions from psychological researchaniples are early semantic
networks and frame systems. Frame and semantioretwere originally proposed as
alternatives to the use of logic in KR. The notmiframe was developed by Marvin
Minsky (1975) as a solution to the problem of reprding structured knowledge in Al
system& Both frames and most semantic networks allowedtlie possibility to
characterise concepts in terms of prototypical rmfation. However, such early KRs

were usually characterised in a rather rough angtenoise way. They lacked a clear

®> Note that the so-called prototype view does ninaide with the acknowledgement of prototypical
effects: as stated before, prototypical effects ameell established phenomenon that all psycho#dgic
theories of concepts are bound to explain; theopype view is a particular attempt to explain erigair
facts concerning concepts (including prototypidéas). On these aspects, see again Murphy 2002.

® Many of the original articles describing thesele#Rs can be found in (Brachman & Levesque
1985), a collection of classic papers of the field.
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formal definition, with the study of their meta-tretical properties being almost
impossible. When Al practitioners tried to providestronger formal foundation to
concept oriented KRs, it turned out to be diffictdt reconcile compositionality and
prototypical representations. As a consequencg, dften chose to sacrifice the latter.
In particular, this is the solution adopted in assl of concept-oriented KRs which were
(and still are) widespread within Al, namely thasd of formalisms that stem from the
so-called structured inheritance networks and theONE system (Brachman and
Schmolze 1985). Such systems were subsequentlgdctdirminological logics, and
today are usually known akescription logic§DLs) (Baader et al. 2002). We already
presented in greater detail this class of formaismchapter 1. A standard inference
mechanism for this kind of network isheritance The representation of prototypical
information in semantic networks usually takes foem of allowing exceptions to
inheritance. Networks in this tradition do not atrakceptions to inheritance, and
therefore do not allow for the representation obtgiypical information. In fact,
representations of exceptiomsannot be easily accommodated with other types of
inference defined on these formalisms, first anderftost concept classification
(Brachman 1985). Since the representation of pypical information is not allowed,
inferential mechanisms defined on these networlg (Bheritance) can be traced back
to classical logical inferences. In more recentryeaepresentation systems in this
tradition have been directly formulated as logit@malisms (the above mentioned
description logics, Baader et al., 2002), in whi@rskian, compositional semantics is
directly associated to the syntax of the languagegical formalisms are paradigmatic
examples of compositional representation systends @ a result, this kind of system
fully satisfies the compositionality requirementii§ has been achieved at the cost of
not allowing exceptions to inheritance. However,sm doing, we have forsaken the
possibility to represent concepts in prototypiaairts. From this point of view, such
formalisms can be seen as a revival of the cldsteary of concepts, in spite of its
empirical inadequacy in dealing with most commonsgeconcepts. As we have seen in
the previous chapter, nowadays DLs are widely aabpiithin many application fields,

in particular within that of the representation aftologies. For example, the OWL
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(Web Ontology Language - see sect. 1.4 of chaptewydten} is a formalism in this
tradition that has been endorsed by the World WAleb Consortium for the

development of the semantic web.

2.5 Artificial Systems: Why Prototypical Effects ae Needed

Prototypical effects in categorisation and, in gahen category representation are not
only crucial for the empirical study of human cdgm, but they are also of the greatest
importance in representing concepts in artificigdtems. Let us first consider human
cognition. Under what conditions should we say Hmhebodyknowsthe concept DOG
(or, in other terms, that (s)he possesses an attemquemtal representation of it)? It is not
easy to say. However, if a person does not knowy fomexample, dogs usually bark,
that they typically have four legs and that theady is covered with fur, that in most
cases they have a tail and that they wag it whey tre happy, then we probably
should conclude that this person does not graspcdineept DOG. Nevertheless, all
these pieces of information are neither necessarysufficient conditions for being a
dog. In fact, they are traits that characterisesdagypical (or prototypical) cases. The
problem is exactly the same if we want to repregeantvledge in an artificial system.
Let us suppose that we want to provide a computegrpm with a satisfactory
representation of DOG. Then we probably also wantrépresent the kind of
information mentioned above: for many applicaticasepresentation of DOG that does
not include the information that dogs usually bexla bad representation also from a
technological point of view. Therefore, if a systelmes not allow information to be
represented in typical/prototypical terms (as i ¢hse of standard description logics),
then it is not adequate in this respect. With daat DLs, the only way to tackle this
problem should be the recourse to tricks or addubations (as often happens in many
applications). The concept DOG is not exceptioralnf this point of view. The
majority of everyday concepts behave in this wagr most concepts, a classical
definition in terms of necessary and sufficientditions is not available (or, even if it

is available, it is unknown to the agent). On tkieeo hand, it may be that we know the

" http://www.w3.0rg/TR/owl-features/
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classical definition of @oncept, but typical/prototypical knowledge stilhys a central
role in many cognitive tasks. Consider the follogviexample: nowadays most people
know necessary and sufficient conditions for beWWATER: water is exactly the

chemical substance whose formula is( i.e., the substance whose molecules are

formed by one atom of oxygen and two atoms of hgeno However, in most cases of
everyday life, when we categorise a sample of soimgtas WATER, we do not take
advantage of this piece of knowledge. We use suotofypical traits such as the fact
that (liquid) water is usually a colourless, odesd and tasteless fluid. As a further
example, consider the concept GRANDMOTHER. Everybdeshows a classical
definition for it: x is the grandmother gfif and only if x is the mother of a parent pf
However, in many cases we do not use this defmitm categorise somebody as a
grandmother. We resort to typical traits: grandreathare old women who take care of
children, who are tender and polite with them, aa@n. Once more, the problem is not
different in the case of artificial systems: geligra system that has to categorise
something as WATER cannot perform chemical analysesl it must trust to
prototypical evidence. With these example our @rthat one of pointing out that the
use of prototypical knowledge in cognitive taskstsas categorisation is not a “fault”
of the human mind, as it could be the fact thatppeare prone to fallacies and
reasoning errors (leaving aside the problem ofbéistang whether recurrent errors in
reasoning could have a deeper “rationality” witthie general economy of cognition). It
has to do with the constraints that concern evieitefagent that has a limited access to
the knowledge which is relevant for a given taskisTis the case of both natural and

artificial cognitive systems.

2.6 Non-classical Concepts in Computational Ontologs

Within symbolic, logic oriented KR, rigorous appcbas exist that make it possible to
represent exceptions, and that would thereforeabdeast in principle, suitable for
representing “non-classical” concepts. Examplesfazey logics and non-monotonic
formalisms. Therefore, the adoption of logic orezhtsemantics is not necessarily

incompatible with prototypical effects. Neverthalesuch approaches pose various

23



Chapter 2. Representing Non Classical Conceptd@ainration

theoretical and practical difficulties, with manyoplems remaining unsolved. In this
section, we review some recent proposals to extmmtept-oriented KRs, and in
particular DLs, with a view to representing nonssiaal concepts. Recently, different
methods and techniques have been adopted to represe-classical concepts within
computational ontologies. These are based on eastensf DLs as well as standard
ontology languages such as OWL. The different psafsothat have been put forward
can be grouped into three main classes: a) fuzpyoaphes, b) probabilistic and
Bayesan approaches, c) approaches based on noremiarformalisms.

a) As far as the integration dftizzy logicsin DLs and in ontology oriented
formalisms is concerned, see for example Gao and2QD5, and Calegari and Ciucci
2007. Stoilos et al. (2005) propose a fuzzy extensiof OWL,
f-OWL, able to capture imprecise and vague knowdedmd a fuzzy reasoning engine
that lets f-OWL reason about such knowledge. Bohkalhd Straccia (2009) propose a
fuzzy extension of
OWL 2 for representating vague information in setitaweb languages. However, it is
well known (Osherson and Smith 1981) that appraath@rototypical effects based on
fuzzy logic encounter some difficulty with compasitality.

b) The literature offers also sevegaobabilistic generalization®f web ontology
languages. Many of these approaches, as pointednolutikasiewicz and Straccia
(2008), focus on combining the OWL language witblgabilistic formalisms based on
Bayesian networks. In particular, Da Costa and €gq2006) suggest a probabilistic
generalization of OWL, called PR-OWL, whose probatic semantics is based on
multi-entity Bayesian networks (MEBNS); Ding et §2006) propose a probabilistic
generalization of OWL, called Bayes-OWL, which iasbd on standard Bayesian
networks. Bayes-OWL provides a set of rules andqutares for the direct translation
of an OWL ontology into a Bayesian network. A gegroblem of these approaches
could consist in avoiding arbitrariness in assignweights in the translation from
traditional to probabilistic formalisms.

c) The role ofnon monotonic reasoningn the context of formalisms for the
ontologies is actually a debated problem. Accaydio many KR researches, non
monotonic logics are expected to play an importate for the improvement of the

reasoning capabilities of ontologies and of the &&im Web applications. In the field
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of non monotonic extensions of DLs, Baader and wholer (1995) propose an
extension of ALCF system based on Reiter’s defagit®. The same authors, however,
point out both the semantic and computational aiffies of this integration and, for
this reason, propose a restricted semantics fen ajefault theories, in which default
rules are only applied to individuals explicitlypresented in the knowledge base. Since
Reiter’'s default logic does not provide a directywaf modelling inheritance with
exceptions in DLs, Straccia (1993) proposes annsite of H-logics idybrid KL-ONE
style logic$ able to perforndefault inheritance reasonin@ kind of default reasoning
specifically oriented to reasoning on taxonomieEhis proposal is based on the
definition of a priority order between default rslddonini et al. (1998, 2002), propose
an extension of DL with two non monotonic epistelmperators. This extension allows
one to encode Reiter's default logic as well asexpress epistemic concepts and
procedural rules. However, this extension presantather complicated semantics, so
that the integration with the existing systems nexpu significant changes to the
standard semantics of DLs. Bonatti et al. (200@®)ppse an extension of DLs with
circumscription. One of motivating applicationsadfcumscription is indeed to express
prototypical properties with exceptions, and tlsisilone by introducing “abnormality”
predicates, whose extension is minimized. Giordatnal. (2007) propose an approach
to defeasible inheritance based on the introductionthe ALC DL of a typicality
operatorT®, which allows to reason about prototypical proiesrand inheritance with
exceptions. This approach, given the non monotaharacter of thel operator,
encounters some problems in handling inheritanoesample is what the authors call
the problem of irrelevance Katz and Parsia argue that ALCK, a non monotdiic
extended with the epistemic operatdf khat can be applied to concepts or roles) could
represent a model for a similar non monotonic esitenof OWL. In fact, according to
the authors, it would be possible to create “locdised-world assumption conditions,
in order the reap the benefits of non monotoniwityhout giving up OWL'’s open-world

semantics in general.

® The authors pointed out that “Reiter's defaulerapproach seems to fit well into the philosophy of
terminological systems because most of them alrgadyide their users with a form of ‘monotonic’
rules. These rules can be considered as specialiltetiles where the justifications - which make th
behavior of default rules nonmonotonic — are alijsent

° For any concep, T(C) are the instances Gfthat are considered as “typical” or “normal”.

9 The K operator could be encoded in RDF/XML syra&©OWL as property or as annotation property.
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A different approach, investigated by Klinov andd?a (2008), is based on the use
of the OWL 2 annotation properties (APS) in orderépresent vague or prototypical,
information. The limit of this approach is that AR not taken into account by the
reasoner, and therefore have no effect on the enfdl behaviour of the system
(Bobillo and Straccia 2009).

2.7 Some Suggestions from Cognitive Science

Even though a relevant field of research existshenscientific community there is no
agreement on the use of non-monotonic and, in géneon-classical logics in
ontologies. For practical applications, systemd th@ based on classical Tarskian
semantics and that do not allow for exceptionsit(&sthe case of “traditional” DLS),
are still preferred. Some researchers, such asHages (2001), argue that non-
monotonic logics (and, therefore, the non-monotom@achine” reasoning for the
semantic web) can be adopted for local uses onfgraspecific applications because it
is “unsafe on the web”. Nevertheless, the quesdlmout which “logics” must be used in
the semantic web (or, at least, to what degredramdhich cases certain logics could be
useful) is still open.

Empirical results from cognitive psychology shovattimost common-sense concepts
cannot be characterised in terms of necessarymrifi conditions. Classical,
monotonic DLs seem to capture the compositionatetspf conceptual knowledge, but
are inadequate in representing prototypical knogdedHowever, a “non-classical’
alternative, a general DL able to represent comscepprototypical terms still does not
exist.

As a possible way out, we outline a tentative psapdased on several suggestions
from cognitive science. Some recent trends in psipgical research favour the
hypothesis that reasoning is not a unitary cogaifthenomenon. At the same time,
empirical data on concepts seem to suggest thavtppical effects could stem from
different representation mechanisms. To this erajdentify some suggestions that, in
our opinion, could be useful in developing artdiciepresentation systems, namely: (i)
the distinction between two different types of masg processes, which has been

developed within the context of the so-called “dpicess” accounts of reasoning (see
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Chapter 4.2.1); (i) the proposal to keep protatgpieffects separate from the
compositional representation of concepts (sect.2%.2and (iii) the possibility to
develop hybrid, prototype and exemplar-based reptatons of concepts (sect. 4.2.3).
In particular in the next chapter we focus ourrdtten on the prototype and exemplar
theories of concept representation and reasoninglaged in the field of cognitive
psychology. As we will argue, in fact, it is ouriopn that maintain both the
representational level within a unique architedtdramework can improve both the
quality of the information represented within a Whedge base and, at least in principle,
pose the conditions for the realization of a nononatonic reasoning module for
approximate categorization based on both the reptasons.
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Chapter 3.

Models of Cognition: Prototypes and Exemplars to

Explain the Typicality

In the last 30 years, the results coming from tkeearch in cognitive science
demonstrated the inadequacy of the so called ‘icid5sheory of concepts - according
to which concepts can be defined in terms of seteoessary and sufficient conditions
— for the explanation of such processes as conakgdtion, categorization and
common sense reasoning.

The failure of this theory, and of its purely cormsjiional approach to the semantics,
revealed, as counterpart, the role played by tyipjciaits in the above mentioned
processes, thus representing a real shift of paradc the study of both natural and
artificial concept oriented systems.

In this chapter we focus on the models of typigadieriving from the research of the
last 30 years in cognitive science and psycholddter a brief, and necessarily not
exhaustive, review of the main models (section @id)ocus on the differences among
the proposed theories, with a particular attentionprototype and exemplar based
approaches (section 3.2). In the last part ofdbidion we analyze an emerging research
direction trying to provide a unifying approach tgpicality. In section 3.3 we
investigate the dynamics of the processes impljethése two different views. Then, in
section 3.4, we account for the problem of autocnatitegorization in the field of
machine learning, investigating the contact pombag this area and cognitive science
research about conceptual categorization. In #tan we also describe how machine
learning research seems to be going towards aedmifiew of typicality in automatic
classification, following, in a certain sense, thay indicated by psychological

research.
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The main goal of this chapter is to present thertttecal foundations and implications
of typicality in concept representation and reasgnilt is our opinion that the
suggestions coming from such different researclasareas cognitive sciences and
machine learning - could be very fruitful to fadeetproblem of representing and

reasoning on typicality even in the field of knodde representation.

3.1.Theory of Concepts — an overview

Within the field of psychology, different positiorsnd theories on the nature of
concepts are available. Usually, they are groupedhree main classes, namely
prototype views, exemplar views and theory-theofse® e.g. Murphy 2002, Machery
2009). All of them are assumed to account for (saspects of) prototypical effects in
conceptualisation.

According to the prototype view, knowledge aboutegaries is stored in terms of
prototypes, i.e. in terms of some representatiothef‘best” instances of the category.
For example, the concept CAT should coincide witteresentation of a prototypical
cat. In the simpler versions of this approach, qixgtes are represented as (possibly
weighted) lists of features.

According to the exemplar view, instead, a givetegary is mentally represented as a
set of specific exemplars explicitly stored witlmmemory: the mental representation of
the concept CAT is the set of the representatidr{same of) the cats we encountered
during our lifetime.

Theory-theories approaches adopt some form of tloj®int of view about concepts.
According to some versions of the theory-theoresicepts are analogous to theoretical
terms in a scientific theory. For example, the @mcCAT is individuated by the role it
plays in our mental theory of zoology. In othersien of the approach, concepts
themselves are identified with micro-theories ofmgosort. For example, the concept
CAT should be identified with a mentally representecro-theory about cats.

These approaches turned out to be not mutuallyusxa. Rather, they seem to succeed
in explaining different classes of cognitive phemma, and many researchers hold that
all of them are needed to explain psychologicahdéat the following pages a more

detailed overview is presented. We will not focus attention on the theory-theory
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approach, since it is in some sense more vagudilyedieif compared with the other two
points of view and, for this reason, its computagicreatment seems to be less feasible.

3.2 Prototype and Exemplar Theories

Prototypes and exemplars theories represent diffeasgpproaches that have been
developed with the aim of modeling and explainihg aspects of typicality effects in
humans’ conceptualization and categorization. Hisatly these two views have been
seen as contrasting and unconciliable among theamne ivecently, however, there is a
growing trend in cognitive science to consider ¢hego approaches as complementary
in explaining the typicality issues (see the sec8at for further details). Following this
direction, it is our opinion that the two theorigsntly, can be able to cover and explain
some complex aspect of typicality in concept repmégtion and reasoning. Therefore,
both the views can provide a strong background framch to extract many
suggestions. In the following subsections, we gallinto the details of both approaches
with the aim of illustrate their main features, itheespective pros and cons, and the
different assumptions made by the two approachgerdeng the reasoning processes in
which they are involved.

3.2.1 Prototype Theory

In the psychological literature it is possible taividuate different prototype-based
theories. As reported in Machery (2009), they @&pending on how the nature of the
knowledge stored in prototypes is characterizegeldding on the theory, prototypes

can consist of:

(1) knowledge about properties that objects eitherggsser do not possess

(i) knowledge about properties that objects possesséotain degree.
The propertyhaving finsis an example of the first type of property (atitgrcan have

or not have fins). The properbeing saltyinstead is an example of the second type: a

substance can be more or less salty. This secpedafyproperty can also be discrete or
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continuous. According to Smith and Medin (1981ptptype models that focus on the
first type of property are usually callégatural modelswhile models that focus on the
second type of property are usually caliitsiensional modeldvioreover, depending on
the theory, prototypes represent eitherttfpgcal properties of categories, thae-valid
properties or the properties that dmeth cue-valid and typicalln the first case,
prototypes are supposed to store some knowledge Himtypical properties of a class.
A property P is typical of a class C if and onlyh& probability that an object possesses
P given that it is a member of C is high. For exEmpaving four legsis a typical
property of dogs (usually the dogs have four le¢g®)owing which properties are
typical of a class is particularly useful in orderdraw inductions about this class. For
example: let us suppose that we have an elemehatxhas 4 legs and that is a DOG.
The process of induction consists in the infereaceording to which, starting from
these premises, we draw the conclusion that “eldD)G has four legs”. The given
example, and the related inferential mechanism,bearven easily formalized in First

Order Predicate Logic in the following way:

() Known information: usually a Dog has 4legs
4legs(a)
Dog(a)

vx (Dog(x) — 4legs(x))

Of course this inference is nadlid from a logical point of view: it is a non monotoni
defeasible inference, which is cognitively plausifdnd in many cases reliable).
According to other theories, prototypes store s&mewledge about the highly cue-
valid properties of concepts (see e.g., Hampton3)198 property has a high cue
validity if, statistically, it is very informativeabout the class membership. A high-cue
validity feature is one which conveys more inforimatabout the category or class
variable. For examplélo woofis a highly cue-valid property of dogdaving four legs

Is not a highly cue-valid property of dogs eveit i§ a typical trait of being a dog (a lot
of mammals have four legs). Knowing which properéee highly cue-valid for a class
is particularly useful for the reasoning task dfegmrization. For example: if, at a given

element X, it is assigned the propettywoof (which is a high cue-valid property of

31



Chapter 4. A Hybrid Approach to Concept Represantaind Reasoning

dog9, then there is an high degree of probability %a¢ a DOG. Furthermore, there is
also an high degree of probability that humansgmatee, by default, the element X as
DOG. Because the property “woof” (even if it is ther necessary nor sufficient for
being a DOG) represents, from a cognitive pointviefv, a highly informative feature

for that class membership assignment. Thereforayeadave seen in this example,
knowing which properties are cue-valid for a clssgarticularly useful in order to draw
non monotonic forms of categorization about thassl

Finally, according to some approaches, prototygiese both typical and cue
valid properties. In Jones (1983), for example tqixpes are assumed to store some
knowledge about the properties that maximize somighted function of typicality and
cue-validity (fore a more detailed literature oe Bubject see, again, Machery 2009).

A classical, well known, attempt of representingotptypes in Artificial
Intelligence has been developed by Marvin Minsklgowntroduced, in the mid '70s, the
notion offramein the field of Knowledge Representation (Minsk9,75). A frame is a
knowledge representation structure able to repteseiotypical information and to
perform some forms of nhon monotonic reasoning (exgeptions to inheritance). In a
frame based representation, concepts are reprdsaoterding to some prototypical,
and cognitively relevant, traits expressed in teahslots, attributes and values. A slot
is composed by an attribute and a value. The vaagigined to certain attributes can be
default values.

The illustration 3.1 graphically shows the typistalicture of a frame.

Frame 1

Concept 1
Attribute 1 |Value 1

Attribute 2 Value 2
Attribute 3 Value 3

Figure 3.1: Example of a frame
based representation
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3.2.2 Criticisms

In psychological literature many criticisms to thetotype theories of concepts have
been proposed. A first criticism regards how to laxpwhy, among the numerous
typical (or cue-valid) properties of the membersao€ategory, prototypical concepts
represent only some of them. Psychologists andogdilhers have repeatedly
highlighted this issue (Smith and Medin 1981; Magh2009), but answers in this
direction are not yet arrived. Another well knowrticism comes from Pinker and
Prince (1996). They suggest that, in some domaioscepts can be considered as
definitions, while, in other domains, concepts aretotypes or exemplafs. They
argue, for example, that kinship concepts (eugGLE) and legal concepts are well
characterized by the classical theory. Also mathiealaconcepts can be assigned to
this category: e.g. in geometry a TRIANGLE can bsilg defined as a POLIGON with
3 corners and 3 sides. This criticism, howevdhemathan demonstrating the invalidity
of the prototype theory, demonstrates that it camm@oapplied to certain concepts in
specific, well structured, domains. Namely: it does$ apply to such domains in which
there is no space for typicality.

Other criticisms derive from the so-called hetersgey hypothesis or from the hybrid
theory of concepts, according to which a singleceph can have a double level
representation, or it can correspond two diffe@nicepts representing different levels
of information (see the section 3.4 below for fertdetails).

Historically, in the psychological literature a etit antagonist of the prototype theory
was the exemplars based approach. In the nexbsewst provide an overview of the
exemplar theories in order to underline which dre differences between the two

approaches.

1 These authors also concede that to some concaptbe associated both a definition and a

prototype. In these cases, they seem to endorssotivalled “heterogeneity hypothesis”. This positio
will be described in major details in the sectB#.
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3.2.3 Exemplar theory

The exemplar paradigm of concepts is built aroureitlea that concepts asets of
exemplarghat are stored in our long term memadry this perspective, our knowledge
about a certain concept (let consider, for example,concept DOG) comes from the
accumulated knowledge deriving from all the exemsptd dogs encountered during our
lifetime (e.g. Fido, Rin Tin Tin, Lassie etc.). Axemplar represents, in other words,
body of knowledge about the properties possessal grticular member of a class
(Machery, 2009). Exemplar based models have posedtreng emphasis on
categorization process. According to Palmeri anditdar (2004, 294): “Exemplar
models assume that recognition, categorization idedtification depend on stored
instances of experienced objects.”. Similarly Mealivdl Schaffer write (1978, 209-210):
“The general idea of exemplars based models iscttagjorization judgments are based
on the retrieval of stored exemplar information”.

In order to better indicate the way in which exeanplhave been usually represented
according to this theory, we introduce one of thlestbknown exemplar model of
concepts: the Context Model proposed by Medin actthBer’'s (1978). In Medin and
Schaffer's model, the exemplars are representedfobsws: four (independent)
properties or “dimension” (for instance, color) a@igen. For each of them, exemplars
can assume a dichotomic value. For example, calorhave the valuagd or blue So
values can be represented by 0 and 1. Some valaesaoh be specified, because people
may have selectively attended to some properti¢seoéncountered category members.
Thus, Medin and Schaffer represent the exemplarnmdtion in the following way:

111?-A(A 1070-A(A)
00?1-B(B 110?-B(B),

where the question marks indicate that informatr@t would differentiate value 1 and

value 0 on that dimension either has not beendtarecannot be accessed.

In the Context Model, exemplars could thus be regmted as follows:
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Concept A

Exemplar A;

Dimension 1 | Value 1

Dimension 2 | Value 1

Dimension 3 | Value 1

Dimension 4 | Unknown

value

Concept A

Exemplar A;

Dimension 1 | Value 1

Dimension 2 | Value O

Dimension 3 | Unknown

value

Dimension 4 | Value O

Figure 3.2: Exemplars in the Context
Model, adapted from Machery (2009)

A development of this proposal is the Nosofsky#luential Generalized Context
Model of categorization (Nosofsky 1986). It will Ipeesented in the section 3.4.2.1 in
order to show the basic mechanisms implied by elmmpheories in concept
categorization tasks. In such processes, in faig,possible to individuate some of the
main differences between prototype and exemplaroagpes. For this reason the next
sections will be dedicated to the models of categbion proposed within both
prototype and exemplar perspectives.

3.3 Prototype based model of categorization

Prototype-based models proposed in literature shanmge key properties. One of the

most important properties is that cognitive proessare assumed to involve the
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computation of thesimilarity between prototypes and other representations. For
example, the categorization decisions are suppisddpend on the computation of the
similarity between prototypes and the represematib the target concepts. Let us
consider the following example: suppose that wetwarcategorize the element Fido
that has certain characteristics (and supposetladgo-ido is a DOG). The process of
categorizing Fido as a dog results from the protedicated in Figure 3.3. The first
phase starts when we possess some informationefgaet or of some other kind)
concerning Fido. Then the available prototypicaresentations are retrieved from the
long-term memory and compared with the represemtaif Fido the similarity between
these representations is computed (the degreendfasty depends on how many
properties are represented by both the prototygetla@ representation of Fido) and,
finally, the categorization decision that Fido isl@g follows from the high degree of
similarity between the prototype of dog and therespntation of Fido (for a brief
overview of the different ways to calculate the aatrc similarities among concepts.
see chapter 4).

Information about Fido

\

Prototype(s) retrieval

\{

Similarity computation

\{

Categorization decision

Figure 3.3: A Sequential Schema of
Psychological Categorization in Prototype
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Another relevant property of these models is thatdimilarity computation is usually
assumed to benear (Medin and Schaffer, 1978). In linear models, apprty that is
shared by the target and the prototype increasesittilarity between the target and the
prototype independently of whether other properéies shared by them. For example,
the fact that the dog of my neighbor, Fido, hasaperty that matches my prototype of
dog (e.g.barking) increases the similarity between the represamtatdi Fido and the
prototype of dog independently of whether Fido amnydprototype of dog match in other
respects. To put it more technically, propertiesiadependent cuef®r categorization.
Strictly speaking, the linearity of the similarifynction is not required by prototype
models.

Finally, prototype models of cognitive processas, ihstance, prototype models of
categorization, are typicaliptegrative(Berretty et al. 1999). That is, it is assumed that
our cognitive processe®mbineseveral cues to produce their outputs. For instatac
decide whether a target is a dog, we are assumeakéoalways into consideration

severalof its properties.

3.3.1 An example of Prototype-based categorizatiolhe Hampton's model

There exist, in psychological literature, many eli#int models of prototype-based

categorization. These models usually specify:

(i) how the similarity between a prototype and a targebmputed-the similarity
measure -

(i) how the decision to categorize the target is mabe decision rule

Typically, nothing is said about whether the matghiprocess between the
representation of the target and the prototyp®isederially (a property at a time) or in
parallel (all properties at the same time).

A classical, well known, model of prototype basategorization has been proposed by
Hampton (1995). This model consists of three elémenprototypical representation of
concepts, a similarity measure, and a decision e prototypical representation of
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concepts is similar to other models and has a figtadorm (table 3.1). The similarity

measure is the following:
o S(x, C) = f(w(x, 1)),

where S(x, C) is the similarity between the tavrgahd the prototype of the category C,
fis a function that ranges over all the propertegzresented by the prototype, and w(x,
i) is the weight of the value (e.ged) possessed by for the I" attribute (e.g.color).
According to Hampton (1993, p. 74):

“The simplest, and most common assumption for tmection f is a linear
combination rule, such that the similarity is prdpmal to the sum of the
attribute-value weights possessed by an instance.”

Thus,

Sla, C) =N wlx, i)
Pra—

Hampton’s decision rule for categorization is aerdeterministic rule (74):
+ S(x,C)>t- xOC,

where t represent a threshold on the similarity scaleislimportant to note that
Hampton’s model assumes that the same procesmibdusiy evaluation underlies both
typicality judgments (how typical an object is df icategory) and categorization
judgments. Typicality ratings are supposed to hetlstrelated to similarity.

Thus, Hampton’s model of the categorization preces/olves a matching
process between representations as well as a imeasure of the similarity between a
prototype and other presentations. These two tits be considered as the main

trademarks of prototype-based models of cognitreegsses.
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3.3.2 Categorization with exemplars

Like prototype-based models of cognitive processagmplar-based models assume
that cognitive processes involve the computatiorthefsimilarity between exemplars

and other representations. For instance, categiomzpdgments are supposed to result
from the computation of the similarity between eyésms and the representation of the
target. Let us consider an example (from Mache®®92®. when we categorize Fido as a
dog, one or several exemplars of dogs are retridvath our long-term memory

(together, maybe, with exemplars of other relatedegories, such as cats); this
exemplar (or these exemplars) is (are) matched auithrepresentation of Fido. Then,
the similarity between these representations ispeded and, finally, the decision that
Fido is a dog results from the high degree of sinty between the retrieved

exemplar(s) of dog(s) and the representation ob.Fiigure 3.4 summarizes these

processes.

Information about Fido

\/

Exemplar(s) retrieval

\{

Similarity computation

\{

Categorization decision

Figure 3.4: A Sequential Schema of
Psychological Categorization in Exemplars

Another central property of exemplar-based modglghat the similarity measure is
usually supposed to ben-linear In non-linear measures, how much a propertyithat

shared by the target and by an exemplar increagesimilarity between the target and
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this exemplar depends on which other propertieg share. For example: Suppose that
the pet of my neighbors, Fido, has a property (sasking) that is represented by one of
the exemplars of dogs stored in my memory (sayréipeesentation of my own dog,
Lassie). How much the similarity between the repnéstion of Fido and of Lassie is
increased depends on whether Fido and Lassie shiase properties, such akasing
cats Thus, by contrast to linear measures, the degfesimilarity in non-linear
measures is supposed to be a function ofcifiguration of cues. To put it more

technically, properties adependent cuesr categorization.
3.3.2.1 Exemplar categorization: Nosofsky's Model

In order to better explain the categorization psscen exemplar theory, we briefly
describe a well-known exemplar model: the GenezdlizContext Model of
categorization developed by Nosofsky (1986, 1992is model is an extension of
Medin and Schaffer's (1978) Context Model presendddve (section 3.2.3). The
Generalized Context Model consists of an exempladeh of concepts, a similarity
measure and a decision rule. According to this me&#eh exemplar is represented as a
point in a multidimensional space in which each ehsion represents a continuous
property. Thus, an exemplar is represented byeaifsp value for each one of the
dimensions that constitute the dimensional space.

Regarding the similarity measure: in the Generdli@entext Model, each target
is compared to all the exemplars that constitut®rcept. For instance, a dog, Fido,
must be compared to all the exemplars of dogsciastitute my concept of dog as well
as to all exemplars of wolves that constitute myoapt of wolf. The similarity between
Fido and a given exemplar, for instance an exempfadog, is a function of the
psychological distance between Fido and this examflhis psychological distance
depends on the extent to which Fido and the exenmpédch on each of the relevant
dimensions for categorizing Fido. The more différEBido and the exemplar are on a
given dimension, sal,, the further apart they are on this dimension.ntaly, for a

given dimension, the distance between the targkt &nd the exemplar is:

1| Xoo— Xex|
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where X is the value of the target, Fido, on dimensioand »xy is the value of the
exemplar on this dimension. Each psychological dsman is weighted. The weight of
dimensionk, wg, indicates the attention paid ko Greater values of this weight capture
the idea that mismatch along dimensiknincreases the dissimilarity between the
exemplar of a dog and Fido, decreasing, as consequthe likelihood that Fido will be
categorized as a dog. This parameter is assum@&tbbgfsky to be context-dependent.
Dimension weights sum to one: this captures tha itéat decreasing the attention to
one dimension entails increasing the attentiontb@rodimensions. The psychological
distance between Fido and the exemplar of a dogradEpon whether the relevant
dimensions are analyzable (see Ashby and MaddoR)1®&®alyzable dimensions can
be attended independently of one another. Sizenaght are analyzable dimensions of
objects. This means that it is possible to attenthe size of an object, independently of
its weight. By contrast, non-analyzable dimensicaisnot be attended independently of
one another. For example, hue, brightness, andasiatu of colors are non-analyzable
dimensions. When dimensions are non-analyzable, pgychological distance is
computed with a Euclidean metric:

e -"Ili: Wl ey — xpp)”
2 \\' =1

When the dimensions are analyzable, the psychabdgistance is computed with a

city-block metric:

i

A 2 D W | A gk
h—
3.

More generally, the distance between the targetthadcexemplar fon dimensions is

calculated as follows:

L

ey — t‘( > we{ — -k'r:'.'.-""')'

k=1

4.
wherer depends on whether the dimensions are analyzalileta is a parameter that

measures how much the overall psychological distabetween a target and an
exemplar affects their similarity. The similarityetiveent and E is an exponential
function of the psychological distance between thaeget and the exemplar. It is

calculated as follows:
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5. S[E - e—th

Thus, the greater the psychological distance betwee target, Fido, and the exemplar
of dog, the smaller is their similarity. The ovérsimilarity of the target, Fido, to the
concept of dog, that is, to the set of exemplardagfs, is the sum of its similarities to

each exemplar of a dog. Formally,

6. Sc=2elc Se

If two concepts, sapoG andwoLF, have been retrieved from long-term memory, the
probability of classifying Fido as a dog is a fuantof the overall similarity of Fido to
the concept of dog divided by the sum of the oVesiatilarities to the concepts of dog
and of wolf. Formally,

7. P(UA) = Sa/ (Sa + Sg)

where A and B are the two relevant concepts.

Concluding: Nosofsky’s Generalized Context Modetafegorization illustrates
the core ideas of exemplar-based models. In thsge ¢the process of categorization
involves matching the representation of targetd veitemplars and calculating, in a

non-linear way, their similarity.

3.4 Prototypes and Exemplars

A considerable literature exists comparing protetygmd exemplar theories (see e.g.
Dopkins and Gleason, 1998; Lalumera 2009). Theesajpghe comparison has been,
usually, to provide evidence in support or in castrwith one of the two theories, in
order to enhance the proposed empirical models wham categorization and
conceptualization and to establish which theorytebetexplains the typicality
phenomenon. In the following sections our goal asput in evidence the main

differences and similarities among these two appres. In the first part we present
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some results that favour one approach with resjpeitte other one. Then we compare
the two approaches in order to underline their Isimties and their differences. In the
final part, we present a new perspective accortbnghich we can have both prototype
and exemplar based representations, and that weissathem in different situations.
This choice goes in the direction of a Multi Prec@fieory, and contrasts the classical
Unified View of Cognition (for major details on thissue see Lalumera 2009).

3.4.1. In favor of Prototypes: the Random Distortio Pattern Evidence

An element of evidence in favor of prototype thedgrives from the study of Smith
and Minda (2002) regarding the categorization mtexh of random patterns of points.
In the experiment setting proposed by Smith, diiféranswers are expected according
to prototype and exemplar theories. More precisekemplar and prototype theories
make rather similar predictions about the categtion of high-level distortion patterns
of points (1 and 2 in the figure below). Howevéwrit prediction differs for low-level
distortion patterns (3 and 4 in the figure). Exeanpgheories predict that the probability
of classifying low-level distortion patterns of pts should not increase with increasing
typicality, or, equivalently, decreasing distortidrhe prototype theories, instead, make
the opposite prevision. The description of the expent can be summarized in the
following way: there is a starting phase, a tragnphase and a test phase. The starting
phase consists of the creation of a category dépat of points. In the training phase,
training items are patterns of points that areiabtaby distorting the original pattern at
a similar degree . In the test phase, two diffepaiterns of points are proposed to the
subjects of the experiment. In particular, a loweledistortion patterns of points (items
3 and 4 in figure 3.5) and high-level distortiorttpens of points (items 1 and 2 in the
same figure) are showed to the subjects. Exentipdaaries predict that the probability
of classifying low level distortion patterns of pts should not increase with increasing
of typicality or, equivalently, decreasing distorti Therefore, for the exemplar theories
the probability of classifying 4 as a category memgéhould be equal to the probability
of classifying 3. The reason is that, for low-lewBstortion patterns of points, any
change in typicality will increase the similarityittv some exemplars of patterns of

points, but decrease the similarity with otherayieg the overall similarity to the set of
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exemplars unmodified. By contrast, prototype theomredict that the probability of
classifying low-level distortion patterns of poinghould increase with increasing
typicality, or, equivalently, decreasing distortidrhat is, prototype theories predict that
the probability of classifying 4 as a category memBhould be greater than the

probability of classifying 3. Figure 3.5 illustraténis argument.

o Training items:
Original randomly and
pattern equally distorted
[ ] * hd
* [ ]
e 4
" }

Test items: low-
° level distortion

2 Test items: high-
level distortion
1

Figure 3.5: Test and Training Patterns of points
(from Smith & Minda 2002)

Using existing data sets about subjects’ categioizgprofiles in the dot-distortion
classification task, Smith and Minda (2002) showmatt prototype models of

categorization do better at describing the categtdn profiles of normal subjects.

3.4.2. Evidence Against Prototypes

Despite the above mentioned results, in head-td-bhempetition, exemplar models are
in most cases more successful than prototype modeksre are, in fact, numerous
empirical evidences demonstrating this. For examglérst empirical element that is
coherent with the exemplar theory and not with qiggies is the “old-items advantage

effect”. This effect consists in the fact that d@lins are usually more easily categorized
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than new items that are equally typical (for a e@xisee Smith and Minda 1998). For
example: it is easier for me to classify my old p&to as a dog than an unknown dog
that is equally typical. This effect is not preeéidtby prototype theories of concepts.
Prototype theorists assume that people abstracotatype from the stimuli they are
presented with during the learning phase, and oategold as well as new stimuli by
comparing them to the prototype. What matters fategorization is the typicality
degree of the items, not whether they have alrdesiyn seen or not. By contrast, the
old-items advantage falls out from the exemplaagam.

A second type of empirical evidence in favour oémplar theories is the following: it
can happen that a less typical category membeibearategorized more quickly and
more accurately than a more typical category membBearthermore, its category
membership can be learned more quickly than thegoay membership of a more
typical instance if it is similar to previously enmtered exemplars of the category (e.qg.,
Medin and Schaffer 1978). For example, it may lseedor me to categorize as a dog a
three-legged dog than a four-legged one if my ownh gog lost a leg. Medin and
Schaffer's (1978) found evidence that supports rth@iediction. Furthermore, if
compared with prototype models, the exemplar motid to be more conservative
about discarding information. They store a majoroant of information than the
prototypes do. This availability of a wider amowhtinformation facilitates predictions
and exemplar models seems to be better than ppetetyodels in predictions support
(Machery 2009). Another important blow to the ptgpe theory derives from the study
of linear separable categories (Medin and Schwngeif1981). A category is linearly
separable if and only if it is possible to deterenwmhether items belong to this category
by summing the evidence offered by each propertthisfitem. For example, suppose
that two categories are characterized by two dimess These categories are linearly
discriminable if and only if one can determine ta¢egory membership of each item by
summing its value along the x- and y-axes, thaif ia,line can be drawn between the

members of each category (Figure 3.6).
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Fig. 3.6 Linear Separability

The study of Medin and Schwanenflugel (1981) dermratesd that it is not possible to
claim that linearly discriminable categories arsieato learn. This conflicts with the
assumption made by the prototype theory. Accordinthis approach, in fact, people
should find it difficult to form a concept of a ndinearly discriminable category
(Medin and Schwanenflugel 1981; Murphy 2002). Framoperational point of view,
subjects should be faster at learning two categovidaen such categories are linearly
discriminable rather than non-linearly discrimirabExemplar theories, instead, do not
predict that subjects would be better at learningdrly discriminable categories than
categories that are not linearly separable. Inlpsipgical literature this result has been
taken as strong evidence for the exemplar modetsméept learning. All these findings
are clearly problematic for the prototype paradigih concepts, while they are
consistent with the exemplar view. In the next isect brief summary of the main

evidences coming from the comparison of the twa@gghes is drawn.

3.4.3. Prototypes vs Exemplars in short

Prototype and exemplar approaches present sigmifciierences. A brief summary of
such differences is presented here. First of aipglar-based models assume that the
same representations are involved in such diffeiesks as identification (e.g., “this is
the Tower Bridge”) and categorization (Nosofsky @P8This contrasts with the

prototype models, which assume that different kiofisepresentation are involved in
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these cognitive processes. Furthermore prototypgefaantend to capture only some
central, and cognitively founded, aspects of thatuees of a concept, while the
exemplars models representtoto the particular knowledge of a certain entity. Aret
aspect of divergence consists in the treatmerttetategorization process. As we have
seen in the examples of sects. 3.4.1 and 3.412.drder to account for this reasoning
task, both prototype-based and exemplar-based saagdume that theimilarity
between prototypical/exemplars representations tamget representations must be
computed. The decision of whether the target beldogsome category depends on the
result of this comparison. Despite this common mead@m, in the prototype view the
computation of similarity is usually assumed tolinear (a property that is shared by
the target and the prototype increases the simyilagtween the target and the prototype
independently of whether other properties are shagethem)while, according to the
exemplar view, it is assumed to ben-linear(a property that is shared by the target and
the exemplar is considered relevant only if there also other shared properties
between the two representations). Another relevdifference among the two
approaches regards the different assumptions madeuo memory. According to
exemplar theorists, we form memories of many enwyed category members and we
use by default these memories in cognitive tasks. te contrary, according to
prototype theorists, we store in our long-term mgmonly some parameters that
characterize the categories we represent. Thigrdiite involves different memory
costs: if compared to exemplars, prototypes ar¢hsyic representations and occupy a
minor space of memory. On the other hand, the psocd creation of a prototype
requires more time and cognitive effort, while tinere storage of knoweldge about
exemplars is more parsimonious and less consungnguse no abstraction is needed.

The table below summarizes the main traits of Waedpproaches.
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Prototype models Exemplar Models
Memory Storage The prototype of each categMany exemplar encountet
is a sort of “averag@are stored along with t

description of all the exempcategory to which it belongs

experienced.

Memory Costs Not expensive. Prototypes Expensive: the informati
“syntetic” representations. corcerning whole particul

exemplars is stored.

Cognitive Efforts It is expensive to build tlit is parsimonious to use f

prototype. More time exemplars knowledge.

requested
Decision Rule fcLinear Not linear
Categorization
Inferential Prediction Not so good because it doesBetter in support predictio

keep in memory all the traits. based on partial information.

Effects in Categorization Similarity degree based Old Items Advantage Effect
typicality.
Table 3.1 Prototype models vs Exemplar Models

3.4.4. Criticisms to the Exemplar Paradigm and Hybid Approaches

Despite the success of exemplar theories duringBfieeand the '90s of the last century,
different results coming from empirical researck bhown some weakness point of this
approach. Smith and Minda (2000) are the authomefof the most famous articles in
this sense. The authors cast some doubts on tbeg#ir of the evidence for the
exemplar approach to concepts, categorization, camtept learning. The criticisms
have been focused on the fact that many experimirats support the exemplar
paradigm of concepts against the prototype paradiggmbased on the same category
structuré?, which Smith and Minda, called the “5-4 categomusture.” There are 2

categories. Category A consists of 5 elementsgoayeB of 4 elements. Apart from

12 A category structure is an abstract charactedratif categories used in experiments. Four

properties matter from this point of view: (i) hamany categories are used in the experiment, (iigézh
category, how many members belong to it, (iii) hmany properties or dimensions characterize thesitem
used in the experiment,(iv) whether the membeth®tategory possess or not each property.
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these nine training stimuli, there are seven temstimuli. Four binary dimensions

distinguish these 16 items. Each item is charasdrby a value 1 or O along each of
these four dimensions. Table 3.2 summarizes the&tdgory structure (adapted from
Smith and Minda 2000).

Dimensions

D1 D2 D3 D4
Category A
Al 1 1 1 0
A2 1 0 1 0
A3 1 0 1 1
A4 1 1 0 1
A5 0 1 1 1
Category B
Bl 1 1 0 0
B2 0 1 1 0
B3 0 0 0 1
B4 0 0 0 0
Transfer
stimuli
Tl 1 0 0 1
T2 1 0 0 0
T3 1 1 1 1
T4 0 0 1 0
T5 0 1 0 1
T6 0 0 1 1
T7 0 1 0 0

Table 3.2: The 5-4 Category Structure
(Adapted from Smith and Minda 2000
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Let suppose that a prototype 1111 could be absttdobm category A, while category
B would correspond to a prototype 0000. In thisec#ise category A has four members
that share three features with the hypothesizetbiyyge of A and one member that
shares two features with this prototype. As em@eaksby Smith and Minda (2000),
category A has no “exceptional” member, that isember “sharing more features in
common with the opposing prototype,” but an “ambigsi’ member, which shares
“features equally with both prototypes.” Categorynizmbers share 2, 2, 3, and 4
properties with the hypothesized prototype of B.ughcategory B contains two
ambiguous members, and no exceptional member. Savbrage typicality of the
members of A and of the members of B is the sandéitinally, the authors noted that
natural world categories seem to be more diffeagedi and are not restricted to a few
members. Thus, results found with undifferentiatechall categories may say little
about how we learn concepts and categorize inwedH situations. For these two
reasons, the validity of many experiments assuraeslipport the exemplar paradigm

has been considered at least as controversial.

Moreover, Smith and Minda argue that “subjectsf@@anances in experiments that use
the 5-4 category structure do not support the exangaradigm as clearly as exemplar
theorists would have it. Smith and Minda examin@di3ta sets from eight articles that
were obtained with the 5-4 category structure. Thegfirm that standard prototype

models of categorization do not fit very well thatal sets while, by contrast, the
Context Generalized Model proposed by Nosofskysgmeed in the section 3.4.2.1)
successfully fits the data sets. However they shibat prototype models can be
extended in various ways to fit the categorizabbdataset.

Smith and Minda’s (2000) critique has been veryueftial against the claim that the
exemplar paradigm is supported by an overwhelmoudylof evidence. Moreover, this

criticism finds confirmations in many others expaental results, showing that people
can use either exemplars or prototypes to solvegoaization tasks. This goes in the
direction of a hybrid view of concept representatand reasoning. In the next section

we will do a brief overview on this approach.
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3.5 Towards Hybrid Approaches to Concepts Represeation and Reasoning

Hybrid theories of concepts were first proposed deveral reasons at the end of the
1970s and at the beginning of the 1980s. They wemetimes motivated by the desire
to save the view that concepts consist of defingiqthe “classical” view). The
argument was the following one: if concepts conefstwo parts, a definition and an
additional part, experimental findings that cant@& explained by assuming that
concepts consist of definitions might be explain®d hypothesizing that subjects
behavior relied on this additional knowledge. Farthore, as reported in Lalumera
(2005) and Machery (2009), hybrid theories of caisavere also motivated by the
shortcomings of the new theories of concepts pregas the 1970s, such as the
prototype theories.

Nowadays many psychologists agree that, for martggoaies, we have both a
definition (e.g. a classical representation basedsets of necessary and sufficient
conditions) and another type of representationirfstance, a set of exemplars. Some of
them, for example Ashby and colleagues (1998), ggeghat a definition of a category
and, say, a prototype for this category form twoaepts, instead of being two parts of a
single concept (Ashby et al. 1998; Ashby and EDDO This position is completely
different from that supported by other proposald experimental evidences. Large part
of researchers, in fact, argue that the differgpés of representation should be thought
asparts of the same concept, thus endorsing a hybrid thebconcepts. An example
going in this direction has been proposed by Osimeasid Smith (1981). They propose
that concepts are made of two parts, a core andeatification procedure: the core of a
concept consists of a definition, while the idaoéifion procedure consists of a
prototype (1981, 57):

“[W]e can distinguish between a concepttge and itsidentification procedure
the core is concerned with those aspects of a pbticat explicate its relation to
other concepts, and to thoughts, while the iderdifon procedure specifies the
kind of information used to make rapid decisionswbmembership (...). We
can illustrate with the conceptoman Its core might contain information about

the presence of a reproductive system, while #gsmtification procedure might
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contain information about body shape, hair lengthd voice pitch. Given this
distinction, it is possible that some traditiondkedry of concepts correctly
characterize the core, whereas prototype theoryactexizes an important

identification procedure.”

Osherson and Smith proposed also that some cogratmpetences involve only one
of these two parts. Particularly, concept compaosiis assumed to involve exclusively
the core while other competences, such as categoriz involve both the definition
and the prototype: Categorization is underwritteyn tivo distinct processes—a
prototype-based process and a definition-basedepsodccording to the authors we
categorize objects by means of the prototype whemeed to identify quickly their
category membership. This categorization is rediallut defeasible. We categorize
objects by means of the definition when we needbéo sure of their category
membership. The idea of a hybrid representationosicepts is presented also in the
Nosofsky's and colleagues (1994) model called “BXL - which stands for “rules
plus exemplars”. According to RULEX a concept cetsbf two parts, a rule and a set
of exemplars. A rule is equivalent to a definitidxn exemplar is a representation of a
category member. During the process of categoomzatihnese two parts are used as
follows. When people have to categorize an objeaine of two categories, A and B,
they first apply a rule that discriminates most rbens of A from most members of B.
Then, they check out whether this object is not@inde instances that are known to be

exceptions to the rule (Figure 3.7).

Does the object have the properties P and Q?

yes N

Is it the object O* that has the properties Is it the object ®that has the properties
P, Q and R? T and Z, but not P and Q?

Vw VN
A B A B

Figure 3.7: the Categorization Procedure of RULEX
(from Machery, 2009)
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In other words, this model assumes that a singlegoaization process uses both parts
of our concepts (rule and exemplars), so that #ms f a given concept do not produce
inconsistent categorization judgments. Therefordéferéntly from what has been

proposed by Osherson and Smith, they propose Besiategorization process on a dual

representatation.

Another important psychological study supporting itiea of multi-process theory was
done by Malt (1989). Her study had the aim of itigading if people categorize and
learn categories according to the exemplar appesachto the prototype based models.
Her work, done using behavioral measures suchassgarization probability and
reaction time, demonstrates that not all subjestiseve exemplars to categorize. Some
use exemplars; a few rely on prototypes, and otlagseal to exemplars and to
prototypes. A protocol analysis of subjects’ dgstwn of their categorization strategy
confirms this interpretatidit Malt writes (1989, 546-547):

“Three said they used only general features ifdaegory in classifying the
new exemplars. Nine said they used only similatyld exemplars, and eight
said that they used a mixture of category featumed similarity to old
exemplars. If reports accurately reflect the stig® used, then the data are

composed of responses involving several differectsion processes”

This suggests that people can use either prototgpesxemplars to solve Malt's
categorization task. These findings are consistétht other well known studies such as
Smith et al.’s (1997) and Smith and Minda’s (19@&periments carried out with
artificial stimuli. Smith et al. (1997), in factpdind that the performances of half of the
subjects of their experiments were best fitted bypratotype model, while the
performances of the other half were best fittedbyxemplar model. This suggests that
people can learn at least two different types ofcepts—prototypes and exemplars—

and that they can follow at least two strategieatiegorization. Smith and Minda

13 A protocol analysis consist in the recording ofawthe subjects of an experiment say after the

experiment about the way in which they performezldghsigned tasks.
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(1998) replicated these findings. Additionally, yhéound that during the learning

phase, subjects’ performances are best fitted tigreint models, suggesting that, when
they learn to categorize artificial stimuli, sulifecan switch from a strategy involving

prototypes to a strategy involving exemplars. Thkp found that the learning path is
influenced by the properties of the categoriesestibjare presented with. For example,
they show that categories with few, dissimilar menskpromoted the use of exemplar-
based categorization strategies. Thus, psycholbgiddence suggests that we have at
least two different mechanisms for categorizingeSéh mechanisms rely on different

types of knowledge: prototypes and exemplars.
3.6. Prototypes and Exemplar Theories in Machine Larning: a brief overview

The theories of human categorization based on tym#e or exemplars have been
considered not only in the field of psychology apdilosophy but also in such
disciplines as machine learning and automatic ifieston™* (Witten, Frank, 2005).
Machine learning is the field of artificial intedience that is concerned with the design
of programs that can learn from experience and ongrtheir performance (Russel,
Norvig 2002). In the subfield ofupervised learningthe problem of classification
concerns the construction of classifier systemg #fter a suitable training, can assign
instances or objects assumed in input to the prdpes among a set of possible classes.
Categorization process in a classification systeearried out in two steps: the first one
consists of a learning, or training, phase, andste®nd one is the categorization phase
In a strict sense.

In short, the process can be summarized as followshe first phase a set of labeled
data, called théraining set is considered, in order to learn the function akhmaps

data to classes. In the second phase, the clasmificfunction learned during the

4 In the machine learning literature, the termssifasition and categorization are usually used as

synonyms. However, the two terms can refer to differeasoning processes. For example, in the dield
DLs, classification is a (deductive) reasoning psscin which superclass/subclass (i.e., ISA) mlatare
inferred from implicit information encoded in a KBlore in general, in cognitive science, categoiimat
is usually an inferential process through whichpact#fic entity is assigned as an instance to aatert
class. In non-monotonic categorization class asség is a non deductive inferential process, based
typicality. In this section, respecting the termlogy of machine learning community, we will use the
terms as synonyms whose intended meaning is thatrepresented by the term “categorization” in
psychological literature.
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training phase is used to classify new data, forckvithe appropriate classification is
still unknown.

In the last years many classifier systems and dilgos have been developed following
both the psychological theories of prototypes amx@éngplars. There are models
developed following the assumption of prototype rapphes (e.g. the PRT model
proposed by Reed (1972), and exemplar based madetategorization, such as
ALCOVE (Attention Learning COVEring map) developéy Kruscke (1992) (see
Leon and Galea (2007) for major details).

Particularly, in the machine learning area knownl@stance based learning, it is
possible to individuate different types of classi$i. For example, there is the Nearest
Prototype Classifier (NPC), based on prototyped, the Nearest Neighbour Classifier
(NNC) based on exemplars. Before explaining in mdgtail the main characteristics
of these two classifiers, we briefly characterizee tinstance Based Learning
methodology in general. Instance based learnif@asscally founded on four elements:
the definition of similarity between observatioriee representation of classes, the
learning algorithm and the classification algoritisee, again, Gagliardi 2011 for
further details). In the following we briefly sunamze them:

A Similarity: is formalized through a definition of a metric the space of all
possible observations, by which it is possible targify the distance between
objects and thus also between the new instancestl@ndones stored as
representative of the classes.

A Classes representatiaonsists of a set of couples composed by an iostand
the relative class. It is created by the learnifgprdhm and is used by the
classification algorithm.

A Thelearning algorithmuses the training set to construct a set of reptasive
instances.

A Classification algorithmassigns a class to each new observed instanckeon t

base of a criterion of greater similarity to thpresentative instances.
In instance-based learning systems the knowleddeat®&d from the training set

consists of the storage of directly observed otrabsinstances belonging to the set of

all possible observations. These instances whi@& saved in memory form the
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categories representation. Classification is peréal comparing a new instance, for
which the class is unknown, with the labeled insé@nin memory. According to
Gagliardi (2008 pag. 2)

“the instances based representation, unlike othdelyw used representations in
machine learning (e.g. rules, decision trees, ,etc.)he only coherent with both
the prototypes and exemplars theories and henceacoordance with the
“typicality view” on categorization, is the one twe used in order to develop
classifier systems characterized by cognitive phality. Other representations
(e.g. Classification rules) can be only related the classical theory of

categorization, and therefore, they lack a trulgrative plausibility”.

3.6.1. Instance-based Classifier Systems

As mentioned above, there are different instancedbalassifier systems that are based
on different categorization theories. For example Nearest Prototype Classifier
(NPC) is one of the simplest classification systemd it is based on the assumptions of
prototype theories (Kuncheva, Bezdek, 1998) (Beadealt., 1998). In NPC the learning
algorithm constructs a single representative irtgafor every class. Each of these
instances is called thprototype of the relative class, and it is calculated as the
barycentre of the instances belonging to that clelseNPC assigns any new observed
instance to the class whose prototype is the nieares
A different approach to automatic categorizatiorgiigen by theNearest Neighbour
Classifier(NNC), which is exemplars-basetihe Nearest Neighbour Classifiés based
on the plain comparison between the new instancdsttee training set. The learning
phase igde factoabsent because the set of the representativenaestaoincides with
the entire training set. For this reason this di@sss calledmemory basedThe NNC
assigns to any new instance the class of the ¢logg®sentative instance.

Recently, in the instance based learning reseaneh, different new proposals
have been presented. Some of them are modifietbwess NPC — for example this is
the case of the NMPC (Nearest Multiple Prototypas€ifier) in which the numbers of

prototypes for each class is increased. Other padpare modified versions of NNC.
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These algorithms are variations of the prototypa @inthe exemplar based approaches
respectively.

Another interesting and promising solution goesthie direction of creating
hybrid classifiers, in order to consider prototyrel exemplar based theories not as two
conflicting alternatives, but as two limit casedlué Instance Based Learning technique.
Hybrid algorithms allow this “unified view” of typality because they use a mixed
representation of classes, composed by both ppeetgnd exemplars. And, moreover,
they usually have the interesting property of ekimfp as special cases exactly the
behavior of NPC and NNC, being able to vary in @issible intermediate cases.
Therefore, they seem to be able to satisfy the mdesl more inclusive approach to
categorization. In our opinion, as we shall showthie next chapter, such a hybrid
approach could be fruitful also to face the problehrepresenting and reasoning on

typicality within the field of formal ontologies.
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Chapter 4.

A Hybrid Approach to Concept Representation and

Reasoning

As anticipated in the chapter 2, the representatioprototypical information and the
mechanisms of reasoning on “typicality” have beeidely debated in the field of
Knowledge Representation. Historically these nelkdge been contrasted with the
requirement of compositionality and the need tdigser deductive reasoning. These
two groups of requirements have often been vieveaiod conciliable, and this dualism
determined, in various domains, the realizatiofpaftial systems”, limited both for the
type of information expressed and for their reasgmiapabilities.

Our proposal is to provide a general architectuske do take into account, in an
integrated perspective, these two elements of tmenwon sense knowledge, with the
aim of overcome the dichotomy typicality vs compiosiality within the ontology
based systems. In this sense, we propose a hyppmbach based on a two-layer
structure for knowledge representation and reagonifhis architecture has a
psychological background (see section 4.2 for mdginils) based on three different
approaches. Namely: (i) the dual theories of reiagpmand rationality, stating that
human reasoning is the result of the interactiortvad different types of cognitive
systems (ii) the pseudo-fodorian idea of takingasated the different knowledge
components based on compositional and typical mmédion, (iii) the prototype and
exemplar theories of concept.

Following this ideas, we propose a model combirdngodule for classical ontological
representation and reasoning with a second oneemgiting reasoning on prototypical
information and information about exceptions. Witkihe semantic web languages, this
integration is now made easier because the linkeh alata better support (e.g. via
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URI, sameAs and other OWL linking statements) thienection of multiple knowledge
modules providing different types and/or levelsndbrmation for the same concept.

4.1 General Description

The proposed architecture consists of two mainrgéoteected elements, representing
the modules of the dual structure, and correspgnttinthe two types of cognitive
system hypothesized by the dual process theornh Buawledge modules are:

- a compositional part, in which concepts are repnéed in an Ontology Web
Language, and described in terms of necessary rasafficient conditions. Such
component provides well known types of deductivasoming such as classical
classification, consistency checking and deductimeegorization. See chapter 2 for

further details.

- A “typical” part, which can represent both prigtaical or exemplar-based knowledge
concerning a certain concept (the different waysvimch prototypical and exemplar
information are represented will be discussed m fibllowing pages), and in which
some forms of non deductive reasoning can be addethe classical inferences

performed by the compositional knowledge bases.

In the general architecture of the system, a cdiorebetween these two knowledge
modules is provided. This connection representsuimproposal, a kind of “integration
with some limitation” of the two modules. In ouew, in fact, the two representations
must be kept independent even if interconnecteds $éparation is motivated by the
fact that each representation is associated te@afsptype of reasoning. Compositional
representation and deductive reasoning must bedegatrated from typical information
and approximate reasoning. One of the reasonsi®fsdparation is to keep safe the
results obtained by deductive reasoning in the bbvkedge-base from the results that
can be provided only with the second “typical” pdrhis solution presents a relevant
advantage: it does not cause inconsistencies igabke in which the different forms of
reasoning would draw to different conclusibh$his form of “separation within the

'3 It could be possible to obtain different resulavileen monotonic and non monotonic reasoning
processes
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integration” is possible thanks to the realizatodra cascade model, in which one of the
components of the system is assumed to have aitprion the other. We can

individuate the following general procedural stépthe architecture behavibt

1) Perform deductive reasoning on the DL knowledgelule (e.g. classification,
consistency checking, monotonic categorization) etc.

2) Save the obtained results

3) Run specific task tests on the DL system (eugrigs on the KB)

4) If the obtained results are “satisficing” foruygpourpose then stop, else execute the

same tasks on the “typical” knowledge-base and tlagkieresults.

According with the above mentioned assumption Jitilebetween the two layers of the
architecture is assumed to be unidirectional. Bxdase mentioned before, in fact, it is
only possible to proceed from the compositional [phart to the typical part and not
vice versaln other words: the results obtained with thé tests executed at the step 3
can only be enriched and /or be substituted, ie tasy are considered as not relevant,
with the results coming from the typical module.t Bsinot possible to operate in the
opposite direction. This condition is necessargrnter to avoid the overlapping of the
two representations and of the relative reasoninggsses. However, as we will see in
the following pages, in some tasks (for examplgkgan which the results provided by
the typical module are heuristically more relevand “smarter” than those obtained by
classical reasoning) , in order to obtain certgpes of results closer to the human way
of categorizing the world and retrieve informatidgnjs possible to assume that this
procedure can be modified assuming that the atimmeamong the knowledge layers
is still unidirectional, but in the opposite sentee starting point is represented by the
results coming from the typical part, and the infation enrichment process proceed
from the typical part to the DL one. Some exampiegarding these situations are
presented in the section 4.3. The image in figure dgraphically represents the
“canonical” direction of the interconnection betwehe two layers (from compositional

to the typical part).

'® The task to execute in the third step can varpmitiog to the specific application and purpose for
which the system is used. In our approach, as lvéllexplained later, we consider applications to
information retrieval and information discoverykas
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Figure 4.1. General canonical model of the architee

4.1.1 Compositional Module

The compositional knowledge module of the architexts supposed to represent, when
possible, concepts in terms of necessary and/diciemt conditions. In the case of an
ontology based system, the description of conceptsbe expressed using a standard
Description Logics formalism, and can be represkrdecording to the classical
elements of an OWL ontology (e.g. classes, proggrinstances etc., see chapter 2).
For example the concept BACHELOR (not married pgrsan be easily formalized in

the following way in a DL knowledge base:

() BACHELOR € PERSON

(i) BACHELOR = MaleAdultPERSON\ - Married
(i) BACHELOR(Giordano, Bruno,..}Y

This information can be easily expressed in an GMfology, representing the concept
PERSONS with the above mentioned properties (eMarsied) and with the indication
of class membership (e.g. in the example GiordambBruno are instances of the class
BACHELOR). This module represents, in our archiieet the “first choice”, the first

" The expressions in (i) and (ii) belong to the TB@&minological box) in a typical DL system.

(iif) belongs to the Abox (assertional box) of #reowledge-base.
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element to be processed, and on which classicadbdled reasoning processes must be
performed (step 1 of the above described procedBrejhermore, this module is also
the one on which, in a next phase (step 3) of ttwequlure, specific tests on the
knowledge base can be performed, such as query festlized to information
discovery and retrieval. In the case in which theutts obtained at the step 3 are
satisficing the system stops; otherwise, the scondule based on “typicality” is

activated.
4.1.2 Typical Knowledge Module — Prototypes and Exeplars

According to our proposal, the typical knowledge dule can represent typical

information using both prototype and “exemplarseaisrepresentations. Prototypes
describing concepts according to typicality tragisould be implemented as data
structures that are external to the DL knowledgeeb&uch structures could be lists of
(possibly weighted) attribute/value pairs that larked to the corresponding concept in
the DL module. Some attributes of the list correspto attributes of the DL concept,

for which the value is further specified. Otheribtites of the prototype could be absent
from the corresponding DL concept. The exemplaeta®presentation, instead, are
assumed to be internal to the DL module, even rith&r levels and or “pieces” of

related information can be stored in external gatactures. They represent the specific
traits of a certain entity. The representation led exemplar Fido, belonging to the
concept DOG, for example, could contain such perigh characteristics as the

information that Fido has got distemper. The prgimial representation of DOG, on the
contrary, will describe the concept DOG accordim@ subset of cognitively central and

relevant traits associated to dogs: e.g. they wbefy wag tail, and so on.

In our view, prototype based representation of eptgcan be described according to
the classical “format” of a frame (Minsky 1975) . ffame can be considered as a
cognitive founded model of a specific concept.alh cepresent a single conceptual class
or can be related to other frame representatiarsjifg, in this case, the so called

frame system. Usually a single frame is composethige main elements: slots, values
and facets. The slots represent the attribute regigp a concept. They correspond to

the “properties” (named binary relations betweencepts) of a DL representation.
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Facets constrain the values taken on by skish as, for example, the minimum or
maximum value of a slot. The values specify a pumictnformation for a specific

attribute.

On the other hand, exemplar based representatkpness a specific information within
a wider and more general DL knowledge-Base. Acogrdo our hypothesis, it is not
possible that exemplar information is in contraghwhat one more general provided in
the compositional module. The presence of conttadicbetween these two levels
represent, in our perspective, a symptom of a wrondeling. Let us consider a typical
example from medicine (Motik et. al 2006): suppts the knowledge to be modeled
is the following “the people have the heart on th#&, but some people (called
dextrocardiacs) have it on the right”. In their papotik et al. state that such a domain
cannot be modeled in a classical compositional OkMdbwledge base because the
axioms: Humanc HeartOnLeft, Dextrocardiacce Human, and Dextrocardiac
-HeartOnLeft make the concept Dextrocardiac unfgie and produce a
contradiction. In our opinion, it would be an ertormodel the domain in these teffhs
The correct way, that allows to account for thecéption” represented by the concept
dextrocardiac, would be the following one: the sl&giman is represented in terms of
necessary and sufficient conditions in the DL medtieartOnLeft is represented as a
prototypical properties of human beings (and, tloeeg it is represented in the typical
part of the concept Human), while the “atypicakustion of being a dextrocardiac can
be modeled both linking this state to a spectkiereplar within the DL knowledge base
(representing the state of being dextrocardiac apegific property of an exemplar
within the knowledge base) or creating a class eardiac defined as: Dextrocardiac
€ Human and with HeartOnRight as a necessary arfitisut condition for a being
dextrocardiac. This example allows us also to stt@wvay in which both prototypical

and exemplar representations interact among theheigeneral presented framework.

4.2 Cognitive Background

¥ An important remark: Motik et al consider this &inf KB in ontology web language profiles with a low

expressivity while we move at the expressivityelesf OWL Full profile.
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The empirical results coming from cognitive psydgy show that most common-sense
concepts cannot be characterised in terms of naggsgfficient conditions. Classical,
monotonic DLs seem to capture the compositionatetspf conceptual knowledge, but
are inadequate to represent prototypical knowleddewever a “non classical”
alternative able to represent concepts in protoglgerms does not still emerge.

Some recent trends of psychological research fatlh@ihypothesis that reasoning is not
an unitary cognitive phenomenon. At the same tenapirical data on concepts seem to
suggest that prototypical effects could stem fraffexent representation mechanisms.
In this spirit, we individuate some point of refiece from cognitive sciences that, in our
opinion, could be useful for the development offiarél representation systems and
seems to go in the direction prospected with tlopgsed architecture. Namely: (i) the
distinction between two different types of reasgniprocesses, which has been
developed within the context of the so-called “dpabcess” accounts of reasoning
(sect. 4.2.1 below); (ii) the proposal to keep tptypical effects separate from
compositional representation of concepts (sect.24)2 and (iii) the possibility to

develop hybrid, prototype and exemplar-based reptatons of concepts (sect. 4.2.3).
4.2.1 Dual Process Approach

Cognitive research about concepts seems to suthgestoncept representation does not
constitute an unitary phenomenon from the cognipgmt of view. In this perspective,
a possible solution should be inspired by the arpmmtal results of empirical
psychology, in particular by the so-called dual gess theories of reasoning and
rationality (Stanovich and West 2000, Evan and Ksim2008). In such theories, the
existence of two different types of cognitive sysseis assumed. The systems of the
first type (type 1) are phylogenetically older, anscious, automatic, associative,
parallel and fast. The systems of the type 2 areem&cent, conscious, sequential and
slow, and are based on explicit rule following.duar opinion, there are good prima
facie reasons to believe that, in human subjedéssification, a monotonic form of
reasoning which is defined on semantic networkd, &hich is typical of DL systems,
Is a task of the type 2 (it is a difficult, slovgcgiential task). On the contrary, exceptions
play an important role in processes such as cagg@n and inheritance, which are
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more likely to be tasks of the type 1: they ard,fastomatic, usually do not require
particular conscious effort, and so on.

Therefore, a reasonable hypothesis is that a conmegpesentation system should
include different “modules™. a monotonic moduletgpe 2, involved in classification
and in similar “difficult” tasks, and a non-monotonmodule involved in the
management of exceptions. This last module shoaila weak" non monotonic system,
able to perform only some simple forms of non monat inferences (mainly related to
categorization and to exceptions inheritance). Boisition goes in the direction of a
“dual” representation of concepts within the ongis, and the realization of hybrid
reasoning systems (monotonic and non monotonickenantic network knowledge

bases.

4.2.2 A “Pseudo-Fodorian” Proposal

Fodorian theory also represents an important pofnteference for our proposal.
According to Fodor, concepts cannot be prototypregresentations, since concepts
must be compositional, and prototypes do not comp®s the other hand, in virtue of
the criticisms to “classical” Aristotelian theorstéting that concepts can be described in
terms of necessary and sufficient conditions), epte cannot be definitions. Therefore,
Fodor argues that (most) concepts are atomsargesymbols with no internal structure.
Their content is determined by their relation te torld, and not by their internal
structure and/or by their relations with other apts (Fodor 1987, 1998). Of course,
Fodor acknowledges the existence of prototypic&ces. However, he claims that
prototypical representations are not part of cotedprototypical representations allow
to individuate the reference of concepts, but tmesst not be identified with concepts.
Consider for example the concept DOG. Of coursepumn minds there is some
prototypical representation associated to DOG ,(edggs usually have fur, they
typically bark, and so on). But this representatioes not the coincide with the concept
DOG: DOG is an atomic, unstructured symbol.

We borrow from Fodor the suggestion that compasdtiorepresentations and
prototypical effects are demanded to different congmts of the representational

architecture. We assume that there is a compoaltioomponent of representations,
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which admits no exceptions and exhibits no protioglpeffects, and which can be
represented, for example, in the terms of somesicials DL knowledge base. In
addition, a prototypical representation of categ®is responsible for such processes as
categorisation, but it does not affect the infeenbehaviour of the compositional
component.

It must be noted that our present proposal is mtitedy “Fodorian”, at least in the
following three senses:

i. We leave aside the problem of the nature of sgimacontent of conceptual
representations. Fodor endorses a causal, infanetiheory of meaning, according to
which the content of concepts is constituted by esaromic mind-world relation. We
are in no way committed to such an account of séim@&ontent. (In any case, the
philosophical problem of the nature of the intenéib content of representations is
largely irrelevant to our present purposes).

ii. Fodor claims that concepts are compositionat that prototypical representations,
in being not compositional, cannot be concepts.d&@ot take position on which part
of the system we propose must be considered ag ‘ttohceptual”. Rather, in our
opinion the notion of concept is spurious from tugnitive point of view. Both the
compositional and the prototypical components douate to the “conceptual
behaviour” of the system (i.e., they have some moléhose abilities that we usually
describe in terms of possession of concepts).

iii According to Fodor, the majority of concepteatomic. In particular, he claims that
almost all concepts that correspond to lexicaliesthave no structure. We maintain
that many lexical concepts, even though not defeab the terms classical theory,
should exhibit some form of structure, and thathssitucture can be represented, for

example, by means of a DL taxonomy.
4.2.3 Prototypes and Exemplars

As anticipated in the chapter 3, within the fieldpgychology, different positions and
theories on the nature of concepts are availaliiey Bre generally grouped into three
main classes, namely prototype views, exemplar ¥ieawd theory-theories (see e.g.
Murphy 2002, Machery 2009). All of them succee@atounting for (some aspects of)

the prototypical effects in conceptualisation. Acliog to the prototype view,
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knowledge about categories is stored in terms otopypes, i.e. in terms of some
representation of the “best” instances of the aategror example, the concept CAT
should coincide with a representation of a prota@cat. In the simpler versions of

this approach, prototypes are represented as fpsaighted) lists of features.

According to the exemplar view, a given categorynsntally represented as a set of
representations of specific exemplars explicitlpratl within memory: the mental
representation of the concept CAT is the set ofrépeesentations of (some of) the cats

we have encountered during our lifetime.

Theory-theories approaches adopt a holistic a#ittmvards concepts. According to
some versions of the theory-theories, conceptsaaatogous to theoretical terms in a
scientific theory. For example, the concept CATdentified by the role it plays in our
mental theory of zoology. In other versions of #pmproach, concepts themselves are
identified with micro-theories of some sort. Forample, the concept CAT should be

identified with a mentally represented micro-theabput cats.

These approaches turn out to be not mutually exelusThey seem to succeed in
explaining different classes of cognitive phenomemal many researchers hold that all
of them are needed in order to explain psycholdgieda. In this perspective, we
propose integrating some of them in computatioeplesentations of concepts. More
precisely, we propose combining prototypical anéneglar based representations in
order to account for category representation a$ agethe prototypical effects (for a
similar, hybrid prototypical and exemplar basedposal developed in the field of
machine learning, see Gagliardi 2008). We do nk¢ iato consideration the theory-
theories approach, since it is in some sense mageely defined when compared to
both prototypes and exemplar based approaches. Asnsequence, at present its

computational treatment seems to be more problemati
4.3 Adaptation of the proposed cascade procedure

At a first view, a difference between our propoaatl one of the above mentioned
psychological theory (namely: the dual process mhesection 4.2.1) can be
individuated. In the procedure described in sécl, the various steps seem do not
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completely respect the assumption made by the p&ygical theory. In fact, in our
proposal, the knowledge module associated to the monotonic, typicality based
categorization is only assumed to be used in anskpbase of the process (Step 4). This
approach has been preferred in order to use theatyynowledge only as an extension
of the compositional one. It is, in a certain se@smore conservative approach because
it minimizes the risk of errors since it considassstrict propriety the trustful and sure
results coming from the DL part and from classreasoning. However, according to
the "dual theory”, the typical component is asstinebe the “faster” and automatic
module of the cognitive system. In our opinionstkituation can be, in certain cases,
plausibly hypothesized within the proposed arclitex Let consider, for example, the
following situation: the individual Anna is an useastomer of a cinema. According to
the management board of the cinema she has tosigned to a predefined class of
customers (a cluster) in order to plan the exenutibtargeted promotional activities
when new movies arrivE. Let suppose that Anna, and all the clients ofdhema, are
described (in the DL KB) with properties registerithe previously watched movies.
And let even suppose, for sake of simplicity, thaha watched in that cinema only two
movies regarding superheroes. She 5 therefore ridedc as:
haswatchedSupermanMovie, haswatchedSpidermanMBellawing the dual process
theory then a non monotonic categorization procesast be performed. Let assume
that, in this case, the instance/exemplar Anna &sigaed to the class
“LoversOfSuperHeroesMovies” that we suppose to dggasented within the typical
component of the systéfh Of course this assignment is based on a non ronitoand
also defeasible reasoning (e.g. Anna could dighike genre and have seen that movies
only because, in that situations, she was withchddren that likes the super heroes).

However, according to the limited amount of datailable, the drawn conclusion

% Targeted activities have a major percentage afesscand minor costs because they are specifically
performed on targets (e.g. groups of persons) wtéchbe potentially interested to the promotedvigti
and not to all the possible audience. For exanipla:book store if a customer is assigned to thescof
“Lovers of Science Fiction genre” ha can be comt@dhrough a target activity when a new book of the
genre is available. Of course this contact has jammpaiobability of success (the success, in thsecaan
be measured by the numbers of book sold to the remtf the target class) if compared with the
probability of success of the same contact presetd another cluster of customers/readers (etg. le
suppose the readers belonging to the class “Lafethe romance level genre”).

% This typical class can be characterized by typitaperties representing, for example, the fadt tha
the instances belonging to that class usually watchies whose based on super heroes stories.
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seems to be plausible. What follows from this ditrais that if we perform a concept
retrieval task based on query such as: Does Ark&s Isuper heroes movies? (this
query corresponds to instance checking task teawiv further describe in section 4.8)
then an answer can be only provided by the tygioaiponent (in the case of the above
mentioned example the answer would be affirmative)is however, possible to
hypothesize a successive check even on the claksmaledge base in order to control
if the result obtained from the typical componentdonfirmed” (in the case in which
the exemplar is categorized in the same class ievére DL?Y) or not. In this last case
the unique possibility of keeping trace of this dertain but plausible) information is
demanded exclusively to the typical component. &loee, in these situations, we claim
that it is more plausible to start from the propmybased knowledge and not from the
classical one. In cases such as that one in them@®athe procedure describing the

system behaviour would be, therefore, differentiams as follow:

* Perform non deductive reasoning on the typical Kadge-module (e.g. non
monotonic categorization)

» Save the results obtained from the typical part

* For information retrieval task such as instanceckimg (see paragraph 4.8)

consider as priority the results obtained by the mmnotonic categorization.

e If the obtained results are “satisficing” then stagse perform deductive
reasoning on the DL component (e.g. classificatioonsistency checking,
deductive categorization) and execute the sames taskhe “DL” knowledge-
base.

« If the results are the same stop. If the resultsdifferent (e.g. the concept X is
categorized in different manners in the two knowkbases) then take the result
coming from the prototypes if you want to adoptresKy” strategy offering
uncertain but plausible (and potentially smart)vaars. Otherwise consider the

results coming from the DL.

L Of course we hypothesize that the same classtppitally represented to which the instance has
been assigned is even represented within the Dwlktlge base with a classical description.
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Summarizing: in the presented procedure in atiitg non monotonic categorization of
instances in the typical component is performecerltine obtained results are “saved”
and for certain tests such as, for example, instaitecking (whose objective is to
check whether an instance belongs to a certairs)glélse system retrieve, as first
choice, the results obtained by the non monotoategorization. Only at a second step
it accesses, if needed, to the results obtainatkdyctive reasoning processes.

Therefore in cases like these, in which both appmaie reasoning and typical
knowledge level are taken in consideration, thec@daral process completely follow
the suggestions coming from the psychological thelbris important to note that this
procedure can drive to errors and can be maybeesteg) for technology (such as, for
example, search technologies) in which is not alu@ have, at the first attempt, the
correct answer; while, conversely, the accessnmafsanswers” obtained thanks to non
monotonic reasoning - even if not valid from a ta&jipoint of view - could really

improve the system performance in terms of useeespce.
4.4 Implementation

In the field of web ontology languages, the develept of the architecture sketched
above appear nowadays, technologically easier pterment. Within the Semantic Web
research community, in fact, the Linked Data pestpe is assuming a prominent
position (Bizer et al. 2009). According to this wiein recent years, one of the main
goals of the Semantic Web community is the integmatof different data
representations (often stored in different datarcs) within a unique, semantically
linked, representational framework. The main tecéihiresult coming from this
integration is represented by the possibility oflaeging the answer-space of a query
through the realization of “semantic bridges” beswelifferent pieces of data (and,
often, data sources). Such integration is madeilesthrough constructs provided by
Semantic Web languages, such as OWL, or schemhsasuBKO¥ etc. According to
Bizer et al (2009, p. 2) “Linked Data provides dlmhing paradigm in which not only
documents, but also data, can be a first claszeaitof the Web, thereby enabling the

extension of the Web with a global data space basedpen standards - the Web of

22 hitp://lwww.w3.0rg/2004/02/skos/
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Data”. Publishing a data set as Linked Data onWited involves the following three
basic steps (T.B.Lee 2006):

. Assign URIs to the entities described by the dagd and provide for
dereferencing these URIs over the HTTP protocal RDF representations.

. Set RDF links to other data sources on the Welthaoclients can navigate the
Web of Data as a whole by following RDF links.

. Provide metadata about published data, so thattslican assess the quality of

published data and choose between different mdaarcess.

An indication of the range and scale of the Welbafa originating from the Linking
Open Data project is provided in Figure 4.2 bel@awérsion updated to September
2011 is available at: richard.cyganiak.de/20074d)/I
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Figure 4.2. Relations between published Linked Opa&ta (from Bizer et al. 2009)

As is possible to see, the content of the cloudivisrse in nature comprising data about

geographic locations (Geonames), people (FOAF), peones (IBM), scientific

publications (DBLP), images (Flickr), etc.

The arcs in the figure indicates the links betwederconnected data sets. In our case,

the way in which Linked Data allows to expand thesveer space of a query is

represented by the fact they represent other dessépresentations of a certain

concept. This representations are interrogable &yd- can extend the knowledge of -

different knowledge bases via the RDF based linggrésented, in the figure 4.3 below

by the black arrow).
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4.3. Answer space extension through the intercdroreof different KB

An example of RDF links, stating that the URIs ubject and object correspond to the

same entity, is provided below:

SUBJECT :http://dbpedia.org/page/Venus
PREDICATE:http:/imww.w3.0rg/2002/07/owl#sameAs
OBJECT :http://dbpedia.org/page/Phosphorus_(morning_star)

Consider now the opposition between exemplar antbfype theories (see sect. 4.2.3
and the chapter 3 above). Both theories can becimmgaited in a representation system

using the Linked Data perspective.

Let us consider first the case of prototype thedrydual” representation of concepts
and reasoning mechanisms appears to be possibtghttbe following approach: first a
concept is represented in a formal ontology based alassical, compositional DL
system. Concepts in the compositional module (esga@ with DL formalisms) are
represented as in fig. 4.4. Every concept can lswsued by a certain number of
superconcepts, and it can be characterised inetinestof a number of attributes, that
relate it to other concepts. Concepts correspondre-argument predicates, and
attributes to two-argument relations. To eachlaits, it can be associated a restriction
on the number of possible fillers. Concept/supecepn relations and attributes are
assumed to correspond to necessary conditionshémpplication of a concept. DL
formalisms allow to specify which of such conditsoare also as sufficient conditions.

Every concept can have one or more individual msga.
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SUPERCONCEPT 1 SUPERCONCEPT
attribute 1 CONCEPT :
/ attributem
CONCEPT 1 \
CONCEPTm

INSTANCE 1 INSTANCEk

Fig. 4.4. Concept representation in the compos#ianodule

As an example, consider fig. 4.5. The concept D®@dscribed as a subconcept of
MAMMAL. DL concepts express only necessary andldfisient conditions; therefore,
some details must be very loose. So, for examglegrding to fig, YYY, a DOG can
have or have not a tail (this is the expressedhayntumber restriction 0/1 for the
attribute has_tail), and has an unspecified nurobémbs (some dogs could have lost
some limbs, and teratological dogs could have rtwae four limbs). LASSIE and RIN
TIN TIN are represented as individual instanceBOfG (of course, concepts describing
individual instances can be further described,eicmple by specifying the values of

attributes inherited from parent concepts).
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LIMB

MAMMAL
has limb ﬁ has tail
P - DOG - | TAIL

O/n 0/1

Fig. 4.5. Example of a concept description in thepositional module

At a second step the prototypical representatiothefsame concept is implemented

using the Open Knowledge-Base Connectivity (OKBfoYgqcol. The knowledge model

of the OKBC protocol is supported and implemented the so called Frame

Ontologie$® that represent a possible solution for the prgiosl representations of

concepts and, if compared with other possible gnigt present the advantage of being

easily interoperable with the classical DL systdfollowing the above mentioned

example, we can suppose to represent a prototy@dxG in a frame ontology

characterised by such slots as: hasFur, hasTailWoaf. A fragment of code a frame

ontology about DOG is presented below.

<class>

<name>Dog</name>
<type>:STANDARD-CLASS</type>
<own_slot_value>
<slot_reference>:ROLE</slot_reference>
<value value_type="string">Concrete</value>
</own_slot_value> <superclass>:THING</superclass>
<template_slot>Fur</template_slot>
<template_slot>Tail</template_slot>
<template_slot>Woof</template_slot>
</class>

23

Protege Frames is an an ontology editor that stppioe building of Frame Ontologies and that

implements the knowledge model of the OKBC protocol
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According to the classical format of the frame esgntation, each conceptual frame is
represented in terms of slots, facets and valubsioDsly each slot can be, and should
be, further specified, as in the example below ihictv the information that “a
prototypical DOG has usually exacly 1 Tail” is eepsed stating that the Slot Tail has
MaxCardinality = MinCardinality = 1.

<slot>
<name>Tail<iname>
<type>:STANDARD-SLOT </type>
<pwn_slot_ value>
<slot_reference>: SLOT-MAXIMUM-
CARDINALITY </slot_reference>
<value value_type="integer’>1<halue>
</own_slot_value»
<own_slot_value>
<slot_reference>SLOT-MINIMUM.-
CARDINALITY </slot_reference>
<value valuz type="nieger’>1<halue>
</own_slot_value

Fragment Code of a Frame ontology specifying caliiy constraints

Since it is possible to export (without losing tk@totypical information) the Frame
Ontologies in OWL language, the connection betwibentwo types of representation
can be done using the standard formalisms provigethe Semantic Web community
within the linked data perspective (e.g. using thel:sameAs or other “linking”

constructs). In the case of sameAs, the model ®fctinnection that can be provided

between the DL representation and the prototyminalis the following:
<owl:Class rdf:ID="Dog">;; DL CLASS representingetikoncept DOG

<owl:sameAs rdf:resource="URI_FrameOntology/#Clas&mmeDOG"/>;; URI of the
external frame based representation of the cori2©G

</owl:Class3*

In a similar way, an exemplar based informatiom gfiven concept can be expressed in
a Linked Data format, and be connected to a DL logtcal representation. Returning

to the example before: the specific representatibnhe exemplar Fido (a specific

4 Please note that, in this case, is assumed Wt Eull language is used.
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DOG) can be linked via URI to an external resourggresenting, for example, the
image of Fido it self (as shown in the figure 4efdw)™.

owl:Thing

http://URIFidoimage.j

v

Figure 4.6. Ex. of connection between and exengidrthe relative concept in DL.

In this way, according to our hypothesis, differéypes of reasoning processes can
follow different paths. For example, classificatimmd other classical forms of reasoning
could involve only the DL ontology, while differetypes of reasoning (such as non

monotonic categorization) could involve exemplard/ar prototypical information.
4.5 Performing Heuristic Categorization

The main goal of the introduction of this type @asoning regards the attempt of

modeling a KRs able, in a certain measure, to gasalts more similar to those of

% It is important to note that this type of represgion, made possible by the integration betwéen t
dual architecture and the linked data approach—tatdeast in principle - important consequencethé
world of search technologies. In fact, the conmectf different pieces of data for the same concept
allows, in such fields in which the technology Ieeady mature, to rethink the notion of search.tdp
now, in fact, this notion is mostly related to #adtsearch. Even when we search images, for example
are forced to type text in a search box and tharmetl results are given according to the textual
description of the image. With this type of infoioa architecture, instead, is possible to thirds, f
example, at an image retrieval in which the inputdpresented by an image itself and not by a text
referred to an image. In fact, assuming the ugeafniques of image processing and pattern redognit
(well known in Artificial Visions and Robotics), dran interface supporting the upload of photo amd /
of other types of data, is possible to imagine @edali connection between the external information
provided via URI (containing, in our example, amage of a specific exemplar) and the “multimedia”

input provided in the query process.
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human cognition. Within common sense reasoning,amsroften draw non deductive
conclusions that are heuristically relevant in big;, and “rational” within the general
economy of cognition. Non monotonic categorizati@g. the assignment of an
individual to a class according to incomplete andeutain information) is one of these
cases, and the introduction of the possibility edvdng heuristic categorization in
ontological knowledge-bases would represent a aslevimprovement for these
systems. In the following pages we will proposeoasible approach to this problem,
taking into account suggestions coming from thddfief machine learning and
automatic categorization. In particular, within e learning, two approaches have
been adopted for the realization of different dfEss?® the Nearest Prototype Classifier
(NPC), based on prototypes, and the Nearest NeighGtassifier (NNC), based on
exemplars (Gagliardi 2010). Recently, different gosals of hybrid classifiers have
been developed, in order to overcome the dichotdmyween prototypes and
exemplars, and to take advantage from both appesadh our opinion, such a hybrid
approach could be fruitful to face the problemedgsoning on typicality within the dual

architecture proposed above.

In particular, we shall take into account tREL-C algorithhm Prototype-Exemplar
Learning Classifier developed by Gagliardi (Gagliardi 2008, 2009, 20The PEL-C

is a hybrid machine learning algorithm able to awtofor typicality in the
categorization process, using both prototype areingkar based representations. It is
based on the nearest neighbourgh (NN) classifieatigorithm, according to which any
new observed instance is assigned to the clashefnearest instance among the
representative ones (RI). The PEL-C algorithm wakdollow: in the starting step of
the learning phase prototype for every conceps calculated using a barycentric
measure, then the distance between the trainingTSgtand representative instances
(RI) is calculated. For any new learning iteratitime instance of the training set (TS)
that is farthest from the individuated prototypeadded as candidate instance and
compared with the prototype it self. This instanmay or may not undergo to an

abstraction process according to which the prottgan be re-calculated. If the

2 Note that in the field of machine learning tteems classification and categorization are often

sSynonymous.
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abstraction takes place, the considered instaneesrgte a new prototypical concept
otherwise it is stored as an exemplar belonginghi® prototypical concept. The
termination conditions of the classifier can beigda priori (e.g. in the case in which
the number of learning iteration is known or, adegy, during the its own
performance. The learning algorithm proposed byl@aly is presented below. TS
indicates the training set, RI the representatrgtaince set and C(k) the items of a class
K.

Table 4.1. The learning algorithm proposed by Gadli

1. Initialize RI with the barycenter of the class C(k)
2. WHILE NOT (Termination Condition)
[Find a new candidate instance]
2.1 Calculate the distance between every instance of TS and every instance of RI
2.2 Among the misclassified instances of TS, find the new instance which is the
farthest from the nearest instance of Rl belonging to class C(k)
2.3 Add X to RI
[Update RI]
2.4 Consider only the instances of Rl and TS belonging to C(k). Call them RI(k) and
TS(K) respectively
2.5 Update the position of Rl using the k-means clustering algorithm applied only to
TS(K) with starting conditions Ri(k):
2.5.1 Apply the Nearest Neighbor rule to the items of TS(k) respect to the RI(k)
2.5.2 lteratively re-calculate the locations of instances of RI(k) by updating the
barycenters calculated respect to the subclasses determined with the NN rule

3. END

The application of this algorithm requires the ceodf a metric of semantic similarity
between concepts within the prototype and exemplased component of the
architecture. In the next paragraph | give an aeenof the ways of calculating concept
similarities in ontologies. Some of these meashea® been taken into account in order
to propose an adaptation of the PEL-C algorithrnmuist be noted that PEL-C is in
certain sense more general if compared to our preseds. For example, some steps of
the learning phase are not needed because botprthetypes and exemplars are
already available. Therefore, there is no needaloutate (at the initial stage) and

recalculate (during the learning phase) the “pyqet of the representation.

4.6. Concepts Similarities in Ontology KB
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Different methodsind techniques have been developed to calculatargensimilarity
between concepts within the ontologies. A firstetypf methods is based on the
calculation of the geometric distance between qotscelhis model is also known as
edge counting model or network model because ceémcaqe arranged in a graph
structures (see Rada et al. 1989). In this persedimilarity calculation is performed
by counting the number of edges that need to versad to get from one concept to the
other. In this approach, the less is the distatiue,greater is the concept similarity.
However, this method is rather simple, and it mardnsiders the “is-a” relationship
that cannot accurately reflect other semantic dspef similarity between concepts.
Furthermore it depends on arbitrary aspects ofrépeesentation: among the concept
DOG and the concept ANIMAL there can be an arbjtraumber of intermediate
concepts and this depend from contingent factaas dio not deal with the similarity
between concepts.. The techniques based on linktioguwvere already criticized in the
KL-ONE systems.

A different method is based on information contalgiorithms (Resnik 1999). In this
approach the semantic similarity between two cotscep determined taking into
account both the amount of information that the t@acepts have in common in their
last common ancestor - called Most Specific Commbstraction (MSCA) - and the
probability of concept occurrence in the same cerpAccording to the information
content approach, similarity is obtained calculgtihe entropy of concepts. The more
information two concepts have in common, the clasamantics they have. A major
drawback of this method (as reported in Zhang and 010), is represented by the
fact that it is entirely dependent by the statisti¢ occurrences of the corplisather
than on the analysis of the characteristics ofloggodefinitions.

Semantic similarity methods are in their turn ubualistinguished between single
ontology similarity methods, which assume that tenpared concepts are from the
same ontology, and cross ontology similarity methaghich compare concepts from
two different ontologies. Edge counting and infotima content methods work by
exploiting structure information of the conceptdhe hierarchy (i.e., position of terms)

and are best suited for comparing concepts froms#me ontology, while, for cross

2T The ontology can be seen as vocabularies andfoher®s lexical corpora of defined terms.
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ontology concept similarity, hybrid approaches taifed through a mix of different

methods - are used.

Another method for concept similarity calculatios based on the lexical based
matchmaking algorithms. They work directly on treeme of the elements to compare
(Williams et al. 2003) through the so called EdistABnce (ED), a basic function that
calculates the number of substitutions which amessary to transform the first word
into the second one. This method do not considesémantic of the concepts but only
the string of characters composing the words. kample: for the words LOGIC and

LOGICIAN the ED (LOGIC, LOGICIAN) = 3 since threetters have to be added the
transform the first word into the second one. EDgsally incorporated into a weighted
formula, which takes into account also the lengtlthe shorter of the two words. So,

the resulting formula is the following

similarity(L1, L2) = max0, min (L1, [L2]) - ED(LL, L2)) )
min((|L1], W2

This formula gives a similarity measure includedwsen 0 and 1, where 0O is a bad
match and 1 is a perfect match. So, in the abowmple, the complete similarity

measure would be the following:

similarity(Logic, Logician) = max (0, (5-3)/3) = 2/3.

Despite its simplicity, this method present a lIbtlisadvantages because it completely
ignores the semantics of the terms and, therefine,semantics of the concepts
represented by that terms. For example differemtisvpairs such as (DOG, DOGS) and
(ACE, FACE) result to have the same semantic sityl@vent if their similarity it is

not the same.
Another well known approach is based on dictiomaatchmaking. The difference with

the previous method is represented by the factrtbat there is a common vocabulary

used as reference for the concept comparison. @nleeomost used vocabularies is
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Wordnet®. The relations expressed in Wordnet representbétsés for the similarity
measurement, which is calculated analogously to aheve mentioned network
approach (the number of the relations to be trakets go from one concept to another
is counted). In addition, each type of relationdiferently weighted (Castano et al
2003). For example: two words connected via synoaysiations have 1 as similarity
value, while words connected via the hyperonymtieiehave a lower similarity value,
e.g. 0.7. The problem of this approach is relateth¢ usage of the synset in Wordnet.
In Wordnet, in fact, the same word often has déifiersynonyms, but it may happen that
not all the members of the synset are synonymé&ensame way. Let us consider an
example taken by Hall (2006): consider the word ESR. FORESTS has WOOD and
WOODS as synonyms. But the problem here is that W@®d FOREST do not have
exactly the same meaning. WOOD, in fact, is a ghoofttrees that is smaller then a
FOREST. In addition, the word WOODS usually denarsarea that is much larger
than a WOOD. These differences are totally losiuther problem is that the principles
on which the semantic relations are constructeatiea different for each concept.

A different approach is based on structural matdtingg It uses the ontology structures
to calculate the concept similarity. The basic itethat similar concepts have a similar
set of surrounding concepts. In its simplest versgmilarity is calculated taking into
account the number of children, of parents andropgrties that the two concepts have
(Maedche and Staab 2002, Castano et al. 2005). Wowihe idea that similar concepts
have similar surrounding concepts is based on thengvassumption that different
people model the same domain in a similar way.tBigtis not always the case. There
are, in fact, a lot of modeling differences for #@ne domain depending by the specific
modeling needs, or simply by idiosyncratic choiokthe modellers. As a consequence,
the same concept is often represented with a diitestructure in different knowledge
bases. Such differences make this methods quiteeoige. Moreover, the structural
matchmaking completely ignores the semantics ottdmeepts to be compared.

2 WordNet is an on line lexical database for the IBhganguage developed by Miller since the

1995 (Miller 1995). It categorize the words accoglito four syntactic categories (nouns, verbs,
adjectives, and adverbs) and represent the sematdiions between the terms expressing: synonymic
relations, hyponymic/hyperonimic relation, merongfblonymic relations, entailment relations,
antonymic relations, troponymic relations.
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Another relevant method is the Description Logretchmaking (Paolucci et al. 2002).
This approach is useful when concepts are encadedtology languages based on DLs
and belong to different KBs. The Description Logieatchmakers works as follows: it
attempts to use subsumption to insert the concept 6ne knowledge base in the other
one. Depending on whether and if the concept franst KB is inserted into the
hierarchy of the second KB, different levels of amag are distinguished. There is an
exact match in the case in which the reasoner deted the equivalence from a DL
point of view (Klen at al 2004, and Horrocks 2Q0tere is a plug-in match if the
concept from the first ontology is subsumed bydbecept of the second ontology (in
this case the concepts are connected via an ISHiaeland, even if that is not
completely correct, are assumed to be similarhéndpposite case of the plug-in match
(i.e., when the concept of the first ontology subes the concept of the second one),
there is a subsume match. This match is considdradower level with respect to the
plug in match because the relation concept vs stpacept is seen as asymmetric: the
sub concept is more similar to the super concean tthe super concept to the sub
concept. The intersection match is when the coscepinnot be arranged in a
subsumption hierarchy but are not formally in cmbfbetween them (Li and Horrocks
2004). Finally, a disjoint match is when the ddfons of the two concept are in conflict
among them (see Li and Horrocks 2004, Lemmens aadas 2004).

If compared with the other approaches, the DL nabtiakies into account the semantics
of the concepts, represented by the DL descripliefining their meaning. The others
are mainly based on schema comparison. However tdre different problems also
with this type of algorithms. The first one is repented by the situation in which a
concept of the first ontology is subsumed by (i@ tlase of plug-in match) or subsumes
(in the case of subsume match) more than one cooné¢pe other ontology.. Namely:
for the plugin match a problem emerge if there &e.example, two target concepts
that subsumes the source concept and that areraogad in some king of is-a relation.
In this case the algorithm can only assume thatiwlteconcept target have the same
similarity with the source concept- However, on@aapt could be very specific and
almost the same as the source concept and the ateecould be more abstract (see
Hall 2006 for details). For the subsume match, @éagen the case in which the source

concept subsumes more than one target concepsdletwo concepts) it is nearly
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impossible to say which of two subsume matchegiteh Another problem regards the
intersection match. Here the basic assumptioneftforithm is that two concepts that
are not in a subsumption relation probably are verty similar. However, many
concepts are not in a hierarchy relation betweemthnd can be very similar. Finally,
another drawback of the DL approach is that it onbiculates the number of
definitional parts that match and those that not,ibdoes not say anything about how
closely the matching parts match and which is gerantic distance” between the non

matching parts. Let us consider, for example, ttuaton sketched below:

Lake = WaterArea V hasWater.(Standing Fresh)
Inland Water = WaterArea vV hasWater.Inland

Water = WaterArea

In this case the DL based algorithm will find th&tKE and WATER are more similar
than LAKE and INLAND WATER even if LAKE and INLANDNVATER give more
information on the type of water that they contaimd are intuitively closer among
them. This because the definition of the type ofewa&ontained conflicts from a DL
point of view (it is not possible for the algoritsnto compare the two types) while
LAKE and WATER are fully compatible.

A completely different approach for the calculat@inconcept similarities is based on
cognitive models. Here the basic assumption is seatantic similarity measures in
artificial systems should give results analogousthose given by human experts.
Therefore, it assumed that the calculation of graantic similarities between concepts
must be based on a cognitive model.

A first well known model is the Feature Based Mogebposed by Amos Tversky
(1977). The basic assumption behind this approacthat concepts are defined by
unstructured lists of features that, together, cosepheir description. The similarity of
two concepts C1 and C2 is a function of the feate@mmon to C1 and C2, of those in
C1 but notin C2, and of those in C2 but not in @lis the formula for the similarity of
two concepts.
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_Phared features]

2. sim(C1;C2) = [Shared features] + [Features oml€1] + [Features only in C2]

In order to evaluate pros and cons of this approlethus consider the simple example

reported below:

Forest = (Vegetation, Trees)

Coniferous Forest = (Vegetation, Coniferous Trees)

According to the Tversky's algorithm, the similgrdtetween the two concepts would be

1/3 because:

1

sim(Forest; Coniferous Forest) = 1+1+1

Unfortunately, as soon as one concept is comparédd or more other concepts, then
problems in the similarity measure become evideot.example, if we compare a third

concept Scrub Vegetation = (Vegetation, Scrulihéotwo concepts of table 1, then the
similarity between the first two concepts turns twbe equal to that between the first
and the third concepts, in spite of the fact thatest is more similar to Coniferous
forest than to Scrub vegetation

An additional problem is that the comparison betwkatures is limited to the fact that
they have or have not the same name. So, for exaiting fact that a Coniferous Tree is
a Tree cannot be modeled, and thus the comparitdiorest to Coniferous and to

Scrub vegetation produces the same value. Thidgamoban be solved by extending the
definitions as shown in the table 4.2 below so that hierarchy (and its relations) is

represented in the feature list.
Forest = (Vegetation, Trees)

Coniferous Forest = (Vegetation, Trees, Coniferbiees)

Scrub Vegetation = (Vegetation, Scrub)
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2

sim(Forest; Coniferous Forest) = 2+1+1 = %
1

sim(Forest; Scrub Vegetation) = 1+1+1 = 1/3

Table 4.2. Example of the extension of a definitiotme Tversky’s algorithm

Another cognitive method is based on the theoryCofjnitive Spaces proposed by
Gardenfors (Gardenfors 2000, 2004). In the cogmisipaces model, concepts are points
or areas in a hyperspace. Each property or asp#dut goncept is modeled as a separate
dimension, and each dimension can in its turn haventernal structure. Such an
internal structure allows the cognitive space mddetlosely reflect human cognitive
abilities. Similarity in conceptual spaces is detineither as city block or Euclidean
distance. City block metric is used for those digiens that are separable and do not
influence each other, while the Euclidean metriased for the inseparable dimensions.
Additionally the conceptual spaces model also donstaveights for the different
dimensions, so that the relative relevance of tfferdnt dimensions can be considered

in the similarity calculation.

The problems with the cognitive space model arefdldo First, it cannot model
relations between concepts. So, SAUSAGE DOG cabhadaescribed as a DOG with
certain characteristics. This could be modeled rather domain but does not fully
capture the semantics of the concept. In additibdimensions apply to the complete
concept. It is not possible to define that a certhmension is only relevant for parts of
the concept. For example the fact that in a mixedsing/park urban area the type of
building is only relevant for the housing part canbe modeled.

The second problem is that it is often hard to ftifgrthe internal structure of the
dimensions. For some dimensions it is easy to destheir structure, as in the case of a
conceptual space describing the human colour sppaterms of hue, luminosity and
saturation (figure 4.7).
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Figure 4.7. Representation of colours in terms oh&eptual Spaces

Unfortunately, for a large number of dimensiongsitvery hard to have a correct
description. In addition, it is not quite clear htmwhandle concepts that have no definite
values for a certain dimension.

These problems represent, at the current state, dgha main obstacles to employing the
cognitive spaces model in an integration scenatmwvever, if these problems will be
fixed, this approach represent a really powerfuldetofor taking into account the
cognitive aspects of concept similarities in ongyldoased structures. Progress, in this
sense, have been made with the development of IMLGConceptual Space Markup
Language) language- - (a XML based representasinguage, see Abams and Raubaul
2009, 2010). However this developments are stdira¢arly stage.

In conclusion, the best method for concept simiksi calculation suitable for our
proposal seems to be the feature based model.elmeéRkt paragraph we propose to

integrate this approach developing an adaptatiagheoPEL-C algorithm.

4.7 Proposed adaptation of the PEL-C algorithm
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As mentioned in the previous paragraph, the PElgGrahm as proposed by Gagliardi
need an adaptation in order to be used in the ahglitecture context. In facts, in our
proposal, the prototypes of the concept are alreadgn (in the typical knowledge
part), and there is no need of the learning phdséh@ algorithm, in which the
prototypes of concepts are calculated. In a cegairse, such prototypes represent the
“barycenter” of the concepts. From them, the sermahstance of the new instances is
calculated, and this allows to determine if thejobg to the prototypical class or not.
An important aspect to take into account is thehmetor the calculation of the concept
similarities. Here we propose to follow the modespired by the Tversky's feature
theory (see paragraph above), according to whietsitmilarity of two concepts can be
calculated as the ratio between the shared featmgghose features that are only in
one or the other concept. In this way, the adapeeaning phase of the PEL-C
algorithm is provided introducing what we call Guiey Set (CS) instead of the
classical Training Set (TS) item. CS representsiteof the instances (new or already
presented in KB but not assigned to a class) teatino be categorized. The adapted

algorithmic procedure result to be the following:

1. Consider the representation in the typical component (TC) as the barycenter of the
concept C

2. WHILE NOT (Termination Condition)
[Find a new candidate instance]

2.1 Calculate the distance (using the Tversky's feature model) between every instance of the
Category set (CS) and the prototypical concepts of the typical component (TC)

2.2 Create a list containing the results of the semantic similarity between concepts in CS and
in TC.

2.3 For each concept in CS: IF the semantic similarity result is OVER a predefined threshold
THEN [assign the concept Ck(S) to the prototypical concept in TC]

ELSE [do not categorize the concept Ck(S) as belonging to the typical concept
in TC]

3. END
Table 4.3. Proposed adaptation of the learning athm
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The termination conditions here is determined k& ¢hd of the of the categorization
process between the concepts in CS and the coniceft€. Please note that if the
typical component is composed only by a singlertied the algorithm only perform a
one to one comparison between the prototypicalesgtation and the candidate
instances. The result of this process consists nninstantiation task performed
according to non monotonic reasoning. It, in fagtbased on the Tversky’s cognitive
model and on its relative algorithms. As we wilesa the paragraph below, the result
of this non monotonic categorization turn out to useful for the improvement of

certain types of performances related to the mt&tahecking task.

4.8. Expected Results

The general presented architecture can be rediwedifferent purposes and tested in
different ways. In our case we focus our attentonthe information retrieval and on
the reasoning processes performed on ontology leunel bases. Therefore, it is our
intention to evaluate our proposal by comparing pexformance with that of a
traditional ontology based system representingsdrae domain. What we expect is a
double result (Frixione M., Lieto 2011). From thdarmation retrieval point of view
we expect an enriched query-answering mechanisoshioauld take advantage from the
integration of different types and/or levels of arthation provided for the same
concept. The evaluation t&SKor this issue is based on a control known as perty
checking”. It consists answering such question&laes the class A have the property
b?”. In the following example we explain in whichnse a better result is expected. Let
us suppose that an user runs an informational glery a “dual” knowledge base
representing information concerning fruit in order know which kind of citrus is
yellow (that is an indirect formula to ask: "doasyecitrus have the property of being
yellow?”). The expected answer that fits the infational needs of the user is “lemon”.

However, does not exist in the compositional kremlgle base any kind of citrus that

2 The evaluation tasks that are proposed are eefeiv the step 3 of the above mentioned

procedures of the system behavior.

According with the Information Retrieval litera¢) informational queriesare different form
transactionalandnavigationalqueries. Irinformational queries the user intention is to obtain a specific
information concerning a given object (see Jansah2008).
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has the property of being yellow as a defining ¢omal Being yellow is not a
necessary condition for being a lemon and, theeeftiis property is not represented
into the class lemon of a DL ontology. However ineperty “to be yellow” is relevant
from a cognitive point of view to characterize twncept “lemon”, and, according to
our hybrid approach, can be represented into tbtotypical component of the class
“lemon”. In this way is possible to retrieve thestted information from the
prototypical and/or exemplar part of the repred@ma So, given a query on the

knowledge base such as:

SELECT? citrus

WHERE {?citrus :has colour : YELLOW }

the result returned from the DL representation &hdae null, while the “correct”
answer (correct with respect to the intention o tiser) will be generated from the
prototypical component of the representation. Imprg, in this way, the answering

mechanism of the system.

Another expected result is based on the improverénhe inferential mechanisms
provided by ontology based systems. Our cognitiviaegpired architecture, in fact,
would make possible to consider a new type of mr@agowith the introduction of a non
monotonic, heuristic, process of categorizatigrerformed as indicated in the previous
section. In this case the evaluation tasks comsiste “instance checking” control based
on the interrogation of the knowledge base. Ingarieecking aims to answer at such
guestions as “is a particular instance member gif@n concept?”. We expect that, the
prototypical and exemplar based representationsforpging a non monotonic
reasoning process, could provide a different andgftveompared to a traditional DL
ontology. For example: it could result that anamse A is not a member of the Class
A* in the DL component while it is an instance betClass A** in the prototypical
representation of the same concept. This resul dok cause inconsistencies or create

any problem because of the separation of reprasamtand reasoning process and, in

¥ While monotonic categorization is already perfedmon classical DL ontologies, non

monotonic categorization is not yet performed anddasted.
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addition, it gives to the system the possibility aifnsidering an enlarged space of
answer provided through non deductive and cogmytivéounded reasoning

mechanisms.

4.9. Prototype and Exemplars Representation

In the previous chapter we introduced the prototgpd exemplar theories of concept
representation and suggested that the use of betfotms of representation, within the
proposed modeling approach, can provide interesgtisights.

In the following we try to argument why, in our apn, it is important to keep both
these representational forms. A first motivationrépresented by the possibility of
improving the representational capabilities of dmtology based systems allowing, for
example, to attach prototypical information to éhemplars of a specific class. More in
general we claim that the possibility of represamtprototypical information at the
exemplars level allows to take into account of maspects within a representation,
augmenting the quantity and the quality of dataeredhilable.

The importance of keeping multiple views (classiqaiototype based and exemplar
based) on the same representation can be explajndte fact that they allow to have
artificial representation which are closer to taality.

A simple example of different possible views foretlsame concept is taken by
Lukyanenko and Parsons (2011): when professor& #idout its students each student
retains a plethora of individual features. Somelestils may require more attention than
others. The distribution of attention for each snidmay also change over time.
However, a classical university domain ontologyyagng this information, typically
defines a Student class using the same set of piegpeAnd, furthermore, this
representation usually does not include any inféionaregarding the individual
differences between each stud@ntEven if this representational choice is
understandable and seems to reasonable undemaqetspective, we claim that, with
this modeling approach, some information on indrgidexemplars differences is lost.

Namely what is lost is the information regarding tigpical features of the exemplars.

%2 |tis important to note that the individual diféerces can be mainly described in terms of typical

properties (e.g. the Student 1 can described ag/fuhe Student as shy etc.).
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However, this information can turn out to be veseful in many circumstances as
expressed in the example of Anna and the cinemadad in the chapter 4.3. As we
have seen, in fact, in that case the presence tf the representations within the
proposed modeling framework allows, at least imgpgle, the retrieval of prototypical
information which is linked to the exempl&ts In our opinion there are other cases able
to illustrate why a dual, prototype and exemplasdah representation of concepts could
turn out to be useful for the representation of mtassical concepts in ontological
knowledge bases also from a technological pointiedv. In the first place, there are
kinds of concepts that seem to be more suited tepesented in terms of exemplars,
and concepts that seem to be more suited to bes@amted in terms of prototypes. For
example, in the case of concepts with a small nunolbenstances, which are very
different from one another, a conceptual represemntan terms of exemplars should be
more convenient. An exemplar based representatialtd e more suitable also for non
linearly separable concepts (see the previousosgctiOn the other hand, for concepts
with a large number of very similar instances, presentation based on prototypes
seems to be more appropriate. Consider for exaarpktificial system that deals with
apples (for example a fruit picking robot, or ateys for the management of a fruit and
vegetable market). Since it is no likely that aimitbn based on necessary/sufficient
conditions is available or adequate for the cono®PPLE, then the system must
incorporate some form of representation that exhifypicality effects. But probably an
exemplar based representation is not conveniethiisncase: the systems has to do with
thousands of apples, which are all very similar anether. A prototype would be a
much more natural solution. Thus, the presenceotli b prototype and an exemplar
based representation seems to be appropriate.sLebnsider the concept BIRD (fig.
4.8). And let us suppose that a certain numbenditidualsb;, ...., b, are known by the
systems to be instances of BIRD (i.e., the systeows for surethatb,, ...., b, are
birds). Let us suppose also that one of the&e(sayby) is a penguin. Then, a prototype
Psirp IS extracted from exemplabs, ...., bn, and it is associated with the concept BIRD.

Exemplarby concurs to the extraction of the prototype, buices penguins are rather

3 The cautelative expression “in principle” is nesay in this case because in that example, the
retrieval is subordinate to the realization of & maonotonic categorization process operating trensgly
among the two layers.

92



Chapter 4. A Hybrid Approach to Concept Represantaind Reasoning

atypical birds, it will result to be rather disslarifrom Ryrp. Let us suppose now that a
new exemplamy, of penguin must be categorized. If the categdomaprocess were
based only on the comparison between the targethengrototype, theh;, (which in its
turn is rather dissimilar fromdgp) would be categorized as a bird only with a low
degree of confidence, in spite of the fact thatgoems are birds in all respects. On the
other hand, let us suppose that the process ofjadation takes advantage also of a
comparison with known exemplars. In this cdsgdue to its high degree of similarity to
by, will be categorized as a bird with full confidend herefore, even if a prototype for a
given concept is available, knowledge of specikeraplars should be valuable in many
tasks involving conceptual knowledge. On the othand, the prototype should be

useful in many other situations.

——=p
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=
=

Figure 4.8. Exemplars and Prototypes for the coh&RD

Beyond the representational advantages, therasasadlleast one reason that goes in the
direction of suggesting this double level of repraation (which is made possible by
proposed modeling framework). It is related to tle&soning issues. In fact, as
mentioned in the chapter 3, there are differentadyios involving the process of
categorization for exemplar and prototype basedesgmtations. Therefore, in certain
cases, for the non monotonic categorization tas&ould result to be better to have a
categorization process involving the new item am@xemplar, while (in other cases) it
could result to be more useful to have a comparisetwveen the new item and the

prototype. Moreover, following the proposed modgliapproach, it is possible to
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hypothesize the realization of different reasommgdules operating independently, on
the different representations. The interestingassaii this level, is represented by the fact
that this independence cannot be cause of conti@wcbecause the reasoning modules
can be run on different pieces of knowledge acogrdio the “cascade model” proposed
in section 4.1. However, this part regarding thbagicement of reasoning processes
trough the realization of a non monotonic reasommaglule able to take into account of
aspects of typicality, has been at this moment tmdprized but not yet implemented,
tested and optimized. In the next chapter an etialueof the proposed modeling

approach is provided and the obtained results amalyzed and discussed
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Chapter 5. Evaluation and Discussions

An evaluation study has been conducted in ordediothe behavior of the proposed
architecture and to compare its results with thasoobtained by a standard DL
based representation. The main aim of the evaluaggarded the observation and
the analysis of the answers provided by the praposeodeling approach
considering different representational configumasio In the section 5.1 the
experimental set-up created for the evaluation @sapresented. In 5.2 the obtained

results are summarized and in section 5.3 thediapeissed.
5.1. Evaluation

The evaluation has been done on an informationevetr task. The system
performance, in fact, has been tested throughapsiality of retrieving information
starting from apparently unrelevant traits for agrt defined concepts. The
importance of retrieving information starting fratypicality traits is given by the
fact that this represent one of the most commomd-saiccessful - heuristics of
search used by humans. Humans, in fact, often eisgheral, secondary and typical
traits in order to retrieve and or acquire inforimaton a specific domain. These
traits, even if not formally relevant for the infoation definition and structuring,
represent, usually, central features from a cogmipoint of view and are very
useful for information extraction and retrieval.rRbese reasons, the goal of our
evaluation is to reflect on the behavior of thegmsed architecture for a particular
well known kind of query named - in IR literatureinformational query (see
footnote 30 of the previous chapter for details).

The evaluation test on this task has been reala#dthe following experimental
setup: in a first phase a toy DL knowledge basebeas built and connected with a
typical representations of the concepts.

The created toy knowledge base is composed of |&3as, 10 attributes and 10

instances. It has been built according to the mogekquirements provided by the
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proposed approach. Namely: the concepts in DL ary oepresented, when
possible, as sets of necessary and sufficient tondj while the representation of
prototypical traits are demanded to an externaicipcomponent realized as a
Frame Ontology following the Linked Data approathh@s been published as a
RDF based statements available and interrogabtkeoweb).

The fact that the experimental KB respects the rninagleequirements proposed in
our approach is not secondary. In fact, many exgsiiL knowledge bases are based
on approaches which mix, in a unique DL based smpriation, different types of
information using the same formalism. In this sermsgypical example of a wrong
modeling is represented by the case of the corfdegtrocardiac” presented in the
section 4.1.2 by Motik et al. (2006).

The entire knowledge base used in the pilot stgdgviailable on the web at the

following addresshttp://www.dualontologyarchitecture.net/ontologyloWis a KB
representing specific types of fruits, in which ttencepts (such as, for example
LEMON and ORANGE) have been modeled in a distridutey according to the
proposed approach. The classes of the ontologyhforclassification of different
types of fruits (and, in particular, different typef citrus) are represented in Fig.
5.1.

owl . Thing
[ < AN
CiﬁUS Poncirus_Trifoliata Fortunella
! ) [
s 5 P Py 4 q B A A
Mapo Grapefruit @Tangerifie LiTE Bitter_Orange @Lemon @ Orange @ Clementine Pomelo Combo Ligo

E §F B 8 B P @ B BB @

Figure 5.1. Taxonomy of a toy DL knowledge-base
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Other non domain dependent classes (such as Cotitgl of Use, Vitamins etc.) are
represented in the KB, in order to allow, jointlyjthvobject properties such as contains,
is_contained_in, is_produced in etc., to representexample, that LEMONSs contain
Vitamine C and are produced, with a certain peaggstin certain specific countries.
The instances in the KB belongs to the classeaniitgVitamine_A, Vitamine_B etc.)
and Country (Brazil, Spain, Italy etc.).

Concepts such as LEMON and ORANGE are also repiedes prototypes in a Frame
Ontology, modeling only typical information such: d@sas_colour, has_dimension,
has_form etc. The screenshot below shows how tkethiree slots have been filled
with default values in the case of LEMON. For exénghe representation of a typical

LEMON contains the information that usually a Lem®rYellow and has an oval form.

Classes | B Slots = Farms # Instances Queries

4
b
[ ] Lemon  {instance of :5TANDARD-CLASS)

THING Lemon
> SYSTEM-CLASS
Lemon

Concrete -

Mame Cardinality Type
M Has_Colour required single  String default="rellcw
M Has_Dimension required multipl... Integer default=10
M Has_Form required single  String default=Cral

A similar representation has been produced forother concepts. The full list of the
prototypes created for the experiment is available the following address:

http://www.dualontologyarchitecture.net/typicalrepentations.txt

Prototypes are linked to the correspondent conadeptse DL knowledge base via the
owl:sameAsconstruct. A battery of queries has been run firstthe classical DL
representation alone, and then on the represemtabbtained through the
interconnection of both the prototypes and the Bmponent. The queries performed
on the two KB have the following SPARQL form:
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SELECT ? CONCEPT
WHERE {?CONCEPT :has typical PROPERTY : Typid#hlue of the typical
PROPERTY .

}
Fig 5.2. Typology of query performed in the expenm

This type of query correspond to the “property &g’ task explained in chapter 4.8.
In this case, the way in which the query has beaiit Bhows that the information
extraction request is based on the typical featofése concepts. This evidence comes
out from the WHERE clause inserted into the querstean. The full list of query
performed on the DL KB and then repeated on thé dtchitecture during the pilot

study is presented herdattp://dualontologyarchitecture.net/sparqgl.txthe obtained
results have been evaluated using precision arall leeasures and, in some cases,
using a simple yes/no counting approach regardiagsticcess/unsucces of the concept
retrieval task.

Precision and recall are two standard measuresmilie information retrieval field.
They are used, for instance, to evaluate the effy of a search engine in order to
understand if the retrieved information is relevatith respect to the information need

of the user. They are usually calculated as follow:

. PRECISION= Relevant Retrieved/ retrieved (R,RRR\R,R)
. RECALL= Relevant Retrieved/ relevant (R,R/ (R,RMR)

RELEVANT NOT RELEVANT

RETRIEVED
NOTRETRIEVED

R,NR NR,NR

Table 5.1. Precision and recall
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In other words, precision is the ratio betweenrtevant retrieved information and the
totality of all retrieved information; recall (whicis a coverage measure) is the ratio
between the retrieved relevant information andttheality of relevant information that
is retrievable in principle.

In our case, we calculate the precision value fepecific query Q, as the number of
relevant concepts that have been retrieved diviethe total number of the retrieved
concept. Recall, instead, is the number of retderadevant concepts divided by the
total number of relevant concepts.

Four main experimental situations have been corsidéor the evaluation (we have
called them E1, E2.1, E2.2 and E3). To each of thes been associated a specific
configuration of the two representations (the cosmmmal one and the typical one)
composing the proposed architecture. In certase€éE2.1, E2.2) we individuated two
control situations within the experimental situatibself. As we will see further, the
analysis of these situations, within the same gdrsat-up of the experiment, allowed
us to explain in which representational cases tbpgsed architecture obtained good or
bad results if compared to classical representtidhe four experimental situations
and the relative data emerging from the evaluatiwe,described in major detail in the
following pages. The general picture of the diffgrexperimental set-up considered is
schematized in the figure 5.3 below. The main erpental situations are represented
by the blocks E1, E2 and E3. The four control situes investigated in E2 are
represented by E2.1.1, E2.1a, E2.2.1 and E2.1acteply.

[ Experimental Set-up ]

'd 'd
E2.1.1 ] E2.2.1 ]

|\ |\

( E2.1a ] ( E2.2a ]

|\

|\

Figure 5.3. Experimental set-up situation for tivaleation task
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In the first experiment E1, the prototypical prdf@s have been not represented in the
DL ontology, and have been completely demandedhéo external component. For
example, in El the DL ontology
(http://www.dualontologyarchitectures.net/ontolamyyl) represents definitional
properties such as: contains, is_contained_in (daégg the chemical composition of the
fruits) et cetera, while it does not represent props such as has_colour,
has_dimension, has_taste etc. The general struciuthe E1 knowledge base is

represented in the figure 5.4 below.

Typicality based Query

@ Prototypel

Concepts with
Necessary and Prototypez
Sufficient Conditions »>
Prototyp&?'
DL Ontology Typical companhe

Figure 5.4. E1 experimental situation

In the case of E1, the obtained results are inwith the expected ones. In fact, on a
battery of 30 queries based on typical featureggstilted to be impossible to retrieve
such information from the DL component because sofciimation was not represented
in it (we have 30 “concept not found” results). e other hand, for the same battery
of queries, it was possible to retrieve, the desimformation from the prototype

representation using both a simple query rewrifidgptation process and the
owl:sameAgonstruct as a semantic bridge between the tweseptations (these two

“linking elements” are represented by the blackwrin fig. 6.1). Thus, in this case, we
had 30/30 of “concepts found results”. Since intB4 frames representing prototypes

are isolated (e.g., frame representing the proetfdl.EMON is not connected with the
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frame representing the prototype of ORANGE, andipwe use a binary metric in
order to evaluate the results based on the sucosssfcess of the retrieval. In this case,
in fact, does not have sense to calculate precehrecall because the denominator of
both measures would always assume a value betwaed Q (in E1, in fact, it is only
possible a single concept retrieval).

In the second experiment E2, we inserted in the KDbwledge base properties
considered as “typical” (e.g. the property of “pipellow”, was inserted in the DL
representation of LEMON). These properties havenpetcourse, represented even in
the typical component as “slots” of the frames.cdxding to our analysis, this way of
modelling concepts is not correct. However, it esgnts one of the most common
approaches in the development of ontology baseiksentations. In E2 we divided a
first experiment in two control situations. In thiest one (E2.1.1) each typical property
represented in the DL component was only appliedni® concept within the ontology
(e.g. the typical property has colour: Yellow igphgd only to the DL concept LEMON
and not to other DL concepts). Moreover, the typicamponent has been still
considered as composed by single, independentefta®ed ontologies.

The figure 5.5 shows this particular control sitiat In particular it shows the
mechanisms activated by the query on the dual keayd base. The mechanism is the
following: the query is firstly executed on the Bhowledge base, where the concept
C1 is retrieved, and then it is rewritten and refolated on the typical component of
C1. Due to the fact that the property Typl is repnéed also in the typical component
of C1 (as Slotl), then the obtained answers frarwlo representation are identical and
correspond to the same concept (C1, in the example)

The result obtained from the 30 queries executetiéncontrol situation E2.1.1 consist
in an exact match between the concept obtainetidpt. and that ones obtained by the
external knowledge base. This result put in evidethe fact that if the typical property
inserted in the DL module has a unique countenpéh the corresponding slot of the
prototype, therefore the obtained results fromtthe components cannot be different

(they are necessarily the same).
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Concept with Typl ? [ci] Slot1] Slotn] ..]

T [c2] slot2] sSlotn] ..]

v

[ c3] Slot3] Slotn] .|

Mntology Typical compaohe

Figure 5.5 First control situation E2.1.1

Within the same experimental situation E2 we predidnodifying the initial knowledge
base used in E2.1.1, a second control situationlé4dn which the typical property
Typl in DL (corresponding to Slotl in the prototgperesulted to be represented in
different concepts within the typical componeng(en concept C1, C2 etc.). Despite
this representational difference, even in the seé@amtrol situation, we obtained, for all
the 20 queries executed, the same result from thetlcompared representations. This
thanks to the link between the two representatiergressed via th@wl:sameAs
construct. This construct, in fact, allows to defthat the concept C1 in DL is the same
of C1 in the typical component, thus identifying tlnique path that the query rewriting
process have to follow in order to interrogate tipical component. Without this
element the two knowledge bases could provide dised results.

Concept with Typl ?

[c1]sSlotl] Slot2] ...]

_-

[C2] Slotl] Slot2]

[C3T Shil] Slot2]

\/

@ntology Typical compaonhe

Figure 5.6. Second control situation E2.1a

102



Chapter 5. Evaluation and Discussions

After these first experiments, a new experimentabtion (E2.2), has been individuated
for the evaluation. In E2.2 the typical properiieserted into the DL ontology have been
considered to be applied to multiple domains (#g.propertyhas_colour :ORANGE
has been applied to different concepts within the ddtology such as, for example,
BITTER ORANGE, ORANGE and so on).

More precisely: in E2.2 situation 5 typical propesthave been considered as “multiple”
and inserted into the DL knowledge base as belgntpn3 different concepts. These
choice, even if arbitrary (one can imagine thatdame property can be shared by more
and more concept within a knowledge base), has beesidered only in order enhance
the manageability of the evaluation. Our aim, ictfédhas been mainly finalized at
discovering the different dynamics of the architeetbehaviour when the same type of
search stimulus (the typicality based query) isosed to different representational
situations. The new DL knowledge base obtainedutiinahe mentioned modifications
is available athttp://www.dualontologyarchitecture.net/ontologyE®wl. Thus, in E2.2

it has been possible to calculate Precision andalRbecause the possible retrieved
concepts can be > 1 (in other words it is posdiblbave, as answer, a list of possible
results.). Even in this condition we maintained thssumption of the typical
representations as isolated blocks.

A first control situation (E2.2.1) investigated f&2.2 is illustrated in the figure 5.7
below.

Concept with Typl ?

[C1] Shoti] Slotx] ]

[c2] Slot2] Sloty] ...

[ c3] Slot3] Slotz] ...

@ntology Typical compaohe

Figure 5.7. E2.2.1 First control situation
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This situation is characterized by the fact thatsame typical property (Typl) is shared
by a set of DL concepts (C1, C2 and C3 in figure) & also represented as slot only in
one of the external representations of the tymioatponent. We tested this experimental
situation and, with 20 queries and, for all thefgened queries (20/20), we obtained a
better precision and recall values through theafigke typical knowledge base (in these
specific case the improvement has been of the 66 %)

For a second list of query we considered a diffecentrol situation (E2.2a) which has

been illustrated in the figure 5.8 below.

Concept with Typl ? [ci] Slot1] Slotx] ...]

[C2] Sloti] SlotY] ..]

[c3] Slot1] Slotz] ...]

@ntology Typical compaohe

Figure 5.8 Second control situation E2.2a

The figure 5.8 shows that the same property (Typ&lts to be distributed in the DL
ontology and even in the typical component of thehiéecture. In this case the result
provided by the proposed architecture is uncert@in.better, it depends functionally
from the first prototype considered after the quegyformed on the DL ontology.

In order to better explain the dynamics of theaitn in E2.2a, we provide a simple
example. Let's consider the case of the propersiritp orange” (e.g.:Has_colour:
Orange”). In E2.2a ontology this information hagmassociated to 3 different concepts
within the DL ontology: ORANGE, BITTER ORANGE and EMENTINE. Therefore
for the query Q1 “find all the citrus that are agah the query answer mechanism
recover all the concepts in DL having this chanasties (for a total of 3 concepts
retrieved). In this case the function of the typiegpresentation is that one of refine the
obtained results from the DL ontology. Of course groblem of this “refinement” is
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that it depends functionally from the relative ptgpe considered. In fact, since the
typical representations are supposed to be notembad in this situation, if the
considered prototype is, for example, that one G&LEMENTINE

(http://www.dualontologyarchitecture.net/clementidés), instead of — let suppose the

prototype of the concept ORANGE - therefore thacept which results as “refined”
would be that one of CLEMENTINE. While, in the opjtte case, the refined result
would be that one of ORANGE. We obtained this kafdesults for all the 10 queries
performed in this situation.

These answers are not satisfactory from our pdintev. Because they do not allow to
really have a better result in terms of the quadityhe information retrieved. In case of
uncertainty for specific queries, in fact, we bedid¢hat the solution provided by the DL
representation (a list of possible results) candiesidered a better choice if compared to
the answers provided using also the typical compone

Finally we performed another set of experiment Ex3which the typical component
has been considered as composed by a unique rmetatize instead of multiple,
federated, representation without any contact antioegy. The unified representation of
all the typical categories created for the E3 s ailable at:

http://dualontologyarchitecture.net/framesystens.rtif this case we also considered the

case of multiple shared properties in DL and intyipécal representation. The figure 5.9

graphically shows the situation obtained in E3.

Concept with Typl ?

Slotl Slot2 Slotn
et x X Typl
ST c2.lx-""1X Typl
- - [e3 e
@ntology Typical compaohe

Figure 5.9. E3. Experimental situation
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In the E3situation we obtained, for 30 of 30 geemperformed on the DL knowledge
base and then repeated using the typical compotleatsame results in both the
situations. Even the values obtained for the pi@tiand recall are the same. In other
words the results are fully superimposable. We edlhment and analyze in major detalil

this, and the other obtained results, in the nexagraph.

5.2. Evaluation Results in a nuthshell

In the tables below we provide a synoptic summadryhe results obtained for the
different experimental situation illustrated. We mlat report the specific number of the
concept retrieved and or the obtained precision awdll results because, as we
explained before, the main goal of our evaluatiaas wo observe the behaviour of the
proposed architecture for different search taskghérmore, the numbers of the concept
retrieved, and the relative percentage, could agtha valuable relevance because they
have been obtained on a small knowledge base (mddifs indicated, for each
experimental situation) with a limited battery afegies. For this reason we use, in the
table below, some terms in order to indentify tifeecent situations emerging from the
evaluation.

Namely: we use the term “null” in order to identiflye fact that the result obtained
through the query corresponds to a situation irctvithere is not a concept/information
retrieval; the term “full” to identify that, accard) to the battery of query launched on
both the knowledge bases (and according to theseptational situation on which this
guery has been run) we obtain a complete informatancept retrieval. Furthermore,
we use the term “refined” in order to identify thresult obtained by the first
experimental situation in E2.2 in which the suppmaining from the typical knowledge
base has been that one of refine the results @atdrom the DL component, improving
the performance of precision and recall measures the semantic quality of the
information extracted. Finally we use the term ‘ited” in order to identify the second
situation encountered in E2.2a in which the ustypical component does not enhance
the quality, and the trust, of the obtained reshbitsonly reduce the list of the concepts
obtained. The problem here is represented by ftttetlat this reduction depends from
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the order of interrogation of the typical repres¢ions of the concepts and this represent

an evident limit for the quality of the obtainedués.

Concept Concept retrieval
retrieval in DL in Typical
Component
E1l Null Full
E2.1.1 (first situation full Full
E2.1a (second situat]) full Full
E2.2.1 (first sit.) full Refined
E2.2a (second sit.) full Limited
E3 full Full

Table 5.2.Concept Retrieval results

It is important to note that when both the représtons are signed with the term full
therefore it also means that the obtained resudtsdentical (exactly the same concepts
are retrieved). In the second table representemivbele take into account the measures
of precision and recall for each of the experimesitaation individuated. Even in this
case we do not consider the specific metrics obthinut we simply indicate if the

different situations proposed present relevanediffices for the indicated measures.

Precision DL Recall DL Precision Dudl Recall Dual KB
KB
El Not calculated Not calculated Not calculated badtulated
E2.1.1 (first situation) Not calculated Not calculateg Not calculated Ndtdated
E2.1a (second situat.) Not calculated Not calculateg Not calculated Ndtdated
E2.2.1 (first sit.) Calculable Calculable Improved Improved
E2.2a (second sit.) Calculable Calculable Improveq Improved
E3 Calculable Calculable Same Same

Table 5.3. Precision and Recall results. Synthete.

In the first experimental situations (E1 and E2vé)do not calculate precision and recall
measures because these tasks have been basedngte a@ncept retrieval. Therefore
the denominator of both measures would, unnatyralye assumed only one of the

value of O and 1.
In the control situation E2.2, instead, we obtainadmprovement of both precision and

recall measures guaranteed by the access to tivaltgpmponent.
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In the second situation E2.2a, we also noted amawgment of the precision and recall

values. This fact depends from the structure ofsiheation described. In fact, in E.2.2,

we always assist to the passage from a list olteeBua unique concept obtained by the
typical component. Improving, in this way, alwaye tconsidered metrics but, as we
have seen, not the quality of the information eottrd.

Finally, in E3, we obtained the same values of istec and recall results for both the

compared representational solutions. In the nexagraph the presented results are

commented and discussed.

5.3. Discussion and Analysis

The results obtained through the evaluation shawsespros and cons of the proposed
architecture in a real situation. As before mergthnthe main aim of our analysis has
been that one of making a comparison between thgoped approach and the classical
way of representing concepts in formal ontologies.

The general insight emerging from the obtained ltesseems to suggest, at a first
glance, that in the major part of the experimesilation investigated there is not an
improvement of the concept retrieval mechanisms.

More specifically: one could argue that, in E1, twmtraposition among the obtained

results (null vs full) is, in a certain sense, atenb within the representation itself.

Continuing: it is evident that, in E2.1 (for bothet control situations) and in E3, the

results obtained by the two modeling approachestteesame (the concept retrieval

gives the same results). Finally, the results abkthiin the second subcondition

individuated in E2.2 (e.g. E2.2a, see figure 64&1) be considered better in the classical
approach than in the proposed one.

In the following we try to provide arguments in erdo interpret the emerging results in
a different perspective. We suggest, in fact, tetain situations between the two

approaches appearing as “neutral” are not neutil,and that, therefore, the proposed
modeling approach for the representation of norssotal concepts presents many
advantages even when it express the same restiits ofassical one.

Going more into the details: in the case of E11Ehd E3, we claim that the proposed

approach represent an improvement with respedassical one. The advantage is given
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by the fact that the architectural solutions présgénn these situations are much more
closer to the real world scenarios (in which digfarlevels of information for the same
concept are stored in different data sources) thanclassical approach (in which a
single, monolithic, block of representation is dewshed to represent all the needed
information for a certain set of concepts). Thixg fact of obtaining the same retrieval
results in a more realistic scenario represenpun opinion, a plus in favour of the
proposed approach. In addition, we argue that anodtevant advantage is given by the
fact that the typical components of our architextare expressed according to the
Linked Data format. This means that they are usabl@ interrogable by other data
sources, providing different modeling view for tlsame concept, improving the
interoperability and the level of re-use of the wiexlge bases. This issue, which is
related to the aspects of knowledge and data iatiegr; represent nowadays one of the
main objective within the Semantic Web researchroomity.

Furthermore, continuing our analysis, let consittex results coming from the first
situation encountered in E2.2 (figure 6.4). In ttése the proposed approach present a
relevant improvement both on the side of the qualitretrieved information (there is an
improvement of the recall value) and on that onghef quantity. The external typical
component, in fact, has basically a pruning funcaod produce, from a list of possible
answers, the result which can be considered ceghjtmore relevant. Thus improving
the capabilities and the intelligent behavior @& fystem.

The last, and unique, condition in which the praubarchitecture obtained results that
can be interpreted as negative with respect to dlassical one, is the second
experimental situation encountered in E2.2a. Is dase, in fact, even if the obtained
structural values registered a better performarmmxause the precision and recall
assumed enhanced values), the fact that the obtaewmilts depend from the casual
order of the considered prototypical concepts igrea minus from the point of view
of the trust of the information retrieved.

As a possible extenuating circumstance we assuatehis situation is oversized by our
experimental evaluation. Despite this fact, howettes remain a negative situation for
our approach.

Going deeper in our analysis it is important tonp@ut some limits of the evaluation. A

first one is represented by the fact that is han bt performed on existing well known
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large ontological knowledge bases. The main reafdhis situation is represented by
the difficulty of recovering, from ontological sear engines (such as Swoogle: )

ontologies inhttp://swoogle.umbc.eduivhich represent, in our approach, the language

to use for the DL representation. The reason of thck of available OWL Full
ontologies is given by the fact that all the ongiés shared and used in large semantic
applications are, for computational complexity mes in OWL DL. However, we try to
mitigate this cons providing, on the links mentidni@ the experimental situations
section, the knowledge bases on which we perforonecxperiments. Furthermore, the
experimental conditions described both in E2.1 BAX® situations have been realized
exactly to identify and to test our model with thia modeling approach mainly used in

large ontological representations.
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Chapter 6.

Conclusions

In this work we presented a cognitively inspiredd@iting approach aimed at facing the
problem of non classical concept representation r@adoning in formal ontologies.
Many other approaches have been developed in tliteran order to face these
problems; however, as presented in the chaptere&ids 2.6), they pose various
theoretical and practical difficulties, with mangoplems remaining unsolved.

The proposed modelling approach has been illustratethe chapter 4. The main

element characterizing this approach can be sumethds follows:

(i) Division between the representations of the contjposil and typical
components

(i) Possibility of integrate these representations qudime Linked Data
approach and specific linking constructs providedthe ontological
languages.

(i) Division of the type of reasoning processepemting on the

interconnected knowledge base.

Our theoretical proposal has been partially impletee and evaluated. More properly:
the implemented part has been that one regardmgegresentational modules of the
architecture and the corresponding links betweerilo conceptual components.

This part has been evaluated on an informatioriexetl task concerning property
checking based on prototypical information. Theultssobtained have been presented
and discussed in the chapter 5. They seems to stugjgd, in the major part of the
situations, the proposed approach obtain the sapig oertain cases, enhanced results
for the task considered for the evaluation. Furtteee, the proposed approach presents

the advantage of presenting real world scenarioaracterized by distributed
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information systems and federated knowledge ba$esever, some critical points are

a matter of discussion and shall be further ingastid and developed. The principal one
is represented by the fact that the reasoning meodhle to perform certain forms of

approximate reasoning (such as the non monotosiarnie categorization) has been, at
the current state of the art, theorized but notrgatized. So its implementation and

testing represents a future work plan to be donerder to complete the evaluation.

Despite that, however, we claim that the propoggutaach presents relevant insights
also about the reasoning processes. The preseweid lapproach, in fact, allows, at

least in principle, to hypothesize the co-existeoicdifferent reasoning procedures (one
classical and deductive and another one non moirotogics) providing a cascade

model able to avoid possible inconstistencies ahbgesventual discordant results.

In this view, this work can be considered as atainstep aimed at the realization of a
complete modeling framework including both the esgntational and reasoning

aspects of typicality. The road traced seems terlm®uraging but it still needs to be

further investigated.
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