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a b s t r a c t

I propose a distinct type of robustness, which I suggest can support a confirmatory role in scientific
reasoning, contrary to the usual philosophical claims. In model robustness, repeated production of the
empirically successful model prediction or retrodiction against a background of independently-
supported and varying model constructions, within a group of models containing a shared causal fac-
tor, may suggest how confident we can be in the causal factor and predictions/retrodictions, especially
once supported by a variety of evidence framework. I present climate models of greenhouse gas global
warming of the 20th Century as an example, and emphasize climate scientists’ discussions of robust
models and causal aspects. The account is intended as applicable to a broad array of sciences that use
complex modeling techniques.
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1. Introduction

Philosophers Zach Pirtle et al. documented the fact that climate
scientists tend to be attracted to robustness and to think it boosts
confirmation of models.2 In a recent qualitative survey of the con-
tents of six leading climate journals since 1990, they found 118
articles in which the authors relied on a rough concept of agree-
ment between climate model predictions/retrodictions to inspire
confidence in their results (Pirtle, Meyer, & Hamilton, 2010, p. 3). I,
too, defended robustness as an empirical strength of the huge
general circulation models,1 GCMs, in earlier discussions of the
variety of evidence supporting those models (Lloyd, 2009, 2010,
2012).

But philosophers of science usually do not consider robustness
to be an empirical or confirmatory virtue, that is, a virtue that in-
dicates that a model or models are more likely to be used to
represent accurate or true claims about the observable world (e.g.,
Calcott, 2011; Houkes & Vaesen, 2012; Orzack & Sober, 1993). In
philosopher Jim Woodward’s recent exploration of four different
types of robustness, including what he calls ‘inferential robustness,’
it is confirmatory only in a very narrow (and admittedly scientifi-
cally extremely unrealistic) range of circumstances: inference to the
robust claim involves the assumption that a “complete” set of
models under consideration includes a “true” model, and the par-
allel in probabilistic terms (2006, pp. 219e224). In Woodward’s
lovely understatement, “its range of applications looks rather
limited” (2006, p. 222).

Here, I pursue a view related to that of Richard Levins (1966),
William Wimsatt (1981, 2007), Michael Weisberg (2006),
Weisberg and Reisman (2008), and Jay Odenbaugh (2011, ms),
(a group henceforth abbreviated as ‘LWWO’), and I expand argu-
ments first made in (Lloyd, 2009). I describe a distinct type of
informal inference using robustness, which I call ‘model robust-
ness.’ It is based not only on the agreement or convergence of the
empirically correct outcomes or predictions/retrodictions of a group
of models, but also on the independent empirical support for the

E-mail address: ealloyd@indiana.edu.
1 A retrodiction is a model result that describes phenomena that have already

occurred. The advantages of modeling past phenomena are many, especially in that
such models can be compared to any empirical measurements, data, or observa-
tions of such phenomena, as well as to observable proxies for any processes or
phenomena that are claimed to have occurred. I will refer henceforth to “pre-
dictions/retrodictions” to remind the reader that the models to which I refer in this
paper all relate to phenomena that have already occurred.

2 In the context of the Pirtle et al. study, they refer to both predictions and
retrodictions.
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variety of assumptions and features of a span of models that all share
a common ‘causal core.’ The ‘causal core’ is a dependency among
key variables or parameters of interest, common to all members of
the model-type (a ‘model-type’ is where the models have in com-
mon a type of structure, sharing general characteristics, in which
“certain parameters are left unspecified” (van Fraassen, 1980, 44)).

A model-type may be first equated, for our purposes, with the
climate scientists’ ‘conceptual model,’ in which key causal con-
nections and processes are envisioned, but the details and/or pa-
rameters are not yet specified. Those causal ideas may be
instantiated in an actual simulation model, (a GCM or simpler
model), which specifies the previously-unspecified parameters,
and which contains details we discuss in Section 3. The causal core
of the model-type, i.e., the causal processes and explanations of
interest, are endorsed directly and indirectly by both the successful
predictions/retrodictions and the empirical support of assumptions
of the models, and they are partly responsible for the predictions/
retrodictions being correct. Thus, ‘model robustness’ involves all
this direct and indirect empirical support for the explanatory causal
core of the model-type, and by means of this causal core, the model
prediction/retrodiction is also empirically supported. Note that this
is very different from other philosophical meanings of ‘robustness,’
which are usually solely defined in terms of the convergent pre-
dictions of a group of possibly (or even preferably) unrelated
models.

2. Introduction to robustness

The key insight comes from biology. Theoretical ecologist
Richard Levins described robustness in a landmark book concern-
ing theoretical biological methodology in 1968. There, he noted
that when there are multiple, varying models of the same phe-
nomenon in nature, the scientist often focuses on a common causal
structure in the models, represented in Fig. 1 by the rough-edged
bursting central node.

This causal core3 reliably relates to a common outcome, T,
regardless of the differing idealizations or assumptions, repre-
sented by the varying arrows, made in the various models. Ulti-
mately, in the hands of philosophers Wimsatt, Weisberg, and Ken
Reisman, Levins’ insight is translated into a claim that a common
structure in the models, the shared bursting node, represents a real
world phenomenon or cause (Calcott, 2011, p. 284; Levins, 1966, p.
431; Weisberg, 2006, p. 737; Weisberg & Reisman, 2008, pp. 114e
115; Wimsatt, 2007, p. 60).

Biologist Steve Orzack and philosopher Elliott Sober argue
against Levins’ view, saying that since his proposed robustness
inference does not involve examining data, it is a distinct and non-
empirical form of confirmation, one that they reject as ineffective
for making predictive inferences (1993, pp. 541e544). Levins, on
the other hand, argues that Orzack and Sober have mis-
characterized robustness analysis, and insists that there are, con-
trary to their claims, central, empirical aspects of robustness.
Specifically, Levins emphasizes the empirical support present for the
common core in the models, as well as for the various assumptions
appearing in the variety of models under investigation (Levins,
1993, p. 554; see Fig. 2).

In sum, Levins-style robustness analysis does indeed involve
empirical evidence, but that observational and experimental evi-
dence focuses on themodel’s assumptions and core structure (Fig. 2),
not its prediction/retrodiction (see Fig. 3).

Thus, we can see that Orzack and Sober had a different target,
namely predictive inference to the model’s outcome, as shown in
Fig. 3, aboutwhich theywere likely correct, although that is a topic for
a different paper. Levins, in contrast, emphasized the key empirical
evidence for themodel structure under consideration from the other
side of the arrow to the model outcome, as shown in Fig. 2. Thus, we
can see that they were talking past one another on this point.

Still, that does little to establish a positive claim on Levins’
behalf. Although the LWWO line of analysis has been extremely
helpful by its frequent insistence on empirical support for as-
sumptions of the model, (but see Odenbaugh & Alexandrova, 2011),
they have not adequately described how or why the inference
works to increase the confidence of the investigator in the causal
core. Philosopher Brett Calcott, commenting on the Levins-Wimsatt
approach, writes that although a series of models might be seen as
robust, “by itself this is not enough to confirm anything. Themodels
must be connected to the world, and this relies on making good on
the resemblance they are meant to have with the phenomena in
question” (Calcott, 2011, p. 287; Houkes & Vaesen, 2012).

In this paper I describe how ‘model robustness,’ in the context of
climate science, providesdagainst the usual philosophical claims,
e.g. Woodward, 2006da confirmatory virtue, through discussing
the case of greenhouse gas models of Twentieth Century warming.4

When we start with a LWWO-type approach, ensure the indepen-
dent empirical support of model assumptions, in addition to the
predictive success of the models, and add a bit of reasoning about
variety of evidence, we can help supply a philosophical confirma-
tory framework for the reasoning about robustness being done by
the climate scientists. Philosophers Wybo Houkes and Krist Vaesen
agree with my previous set up and conclusion that, contrary to the
traditional philosophical view (e.g. Woodward, 2006, etc.), confir-
mation through robustness may occur (2012; Lloyd, 2009, 2010),
but offer no explanation regarding how, as I do here. The result is
intended to apply to many scientific cases, where the structure of
complex model types and causal foci appears.

An interpretive note regarding my treatment of models and
confirmation: When discussing models and modeling, I assume
that the models (and climate simulations, which I treat as large
models, although they may, under different circumstances, be
treated as distinct (Edwards, 2010)) are indicated as similar to, and
intended to represent particular aspects of the real world climate

Fig. 1. Varying nodes with differing assumptions of various models, all predicting T.

3 More correctly, such a structure is a ‘causal focus,’ as it can represent param-
eterizations, parameter values, etc. But I will call it a ‘causal core’ here, as that is a
common use.

4 Weisberg and Reisman, in contrast, in their very useful discussion of the Lotka
Volterra models, are not arguing for a confirmatory virtue (2008, p. 108).
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system, in specific respects and degrees, and also that this repre-
sentationwill be judged as adequate or not, relative to the purposes
of the modelers or those who use the models, as specified by phi-
losophers Wendy Parker (2006), Ronald Giere (2004) and Bas van
Fraassen (2004, p. 794). I use shorthand such as “this climate
model is supported or confirmed by such-and-so evidence,” to
represent these more complicated relationships.

2.1. ‘Measurement robustness’ and ‘model robustness’

As Pirtle et al. (2010) documented, climate scientists may think,
when confronted with results of a set of climate models that agree
on a prediction/retrodiction (or range of such) of global mean
surface temperature, T, that we should have more confidence in
that prediction/retrodiction. So sometimes scientists do appear to
think that robustness is a confirmatory virtue. In fact, they appeal to
just such reasoning in the Nobel Prize-winning Report by the In-
ternational Panel on Climate Change (IPCC)5 in 2007: “models are
unanimous in their prediction of substantial climate warming un-
der greenhouse gas increases, and this warming is of a magnitude
consistent with independent estimates derived from other sources,
such as from observed climate changes and past climate re-
constructions” (Randall et al. IPCC, 2007, p. 601). Note that the
climate scientists include an appeal to the causal core of the climate
models under consideration, i.e., the “greenhouse gas increases,” in
addition to the unanimity of the predicted causal result, this latter
feature being the sole focus of other philosophers’ analyses.

Climate scientist David Randall et al. are here offering
independently-derived and independently-observed empirical ev-
idence to reinforce the robust convergent predictions/retrodictions
based on a particular family of causal (Greenhouse Gas, ‘GHG’)
models under conditions of measured increases in greenhouse
gases. At the very least, this is similar to, but not identical with
Woodward’s ‘measurement robustness’ (see Section 7). ‘Measure-
ment robustness’ refers to using multiple channels to infer and
converge on the correct value (or range of values) of a variable, or
the reduction of error by repetition in independent contexts.

Avogadro’s number is the most familiar example of measure-
ment robustness, sometimes also called ‘heuristic robustness.’ Jean

Perrin used thirteen distinct and independent methods, measure-
ments, reckonings and experiments to establish Avogadro’s num-
ber in the early 20th Century. This was a robust convergence of
outcomes that was taken to be too implausible a coincidence not to
reflect something about the real world. The key to the persua-
siveness of the case centered on the claim that the measurements
were truly from distinct and independent methods and in-
struments (Cartwright, 1991; Salmon, 1984). Sylvia Culp offers
some excellent examples from molecular biology (Culp, 1995).

In an extension of this type of reasoning, we can try to give a
‘climate-model version’ of measurement robustness, and to pose a
set of various climate models as distinct ‘experiments’ or ‘methods’
for arriving at relevantly distinct outcomes, as exemplified by
Hagedorn, Doblas-Reyes, and Palmer (2005, p. 227): “The basic idea
of [collecting multiple climate models to compare outcomes] is to
account for [an] inherent model error in using a number of inde-
pendent and skilful models in the hope of a better coverage of the
whole possible climate phase space.” Here, the climate models
under consideration need to be relevantly independent, as argued
by a number of climate scientists, as well as by philosophers Parker
(2011), Pirtle et al. (2010), Joel Katzav (2011), and Nancy Cartwright
(1991). But it seems clear that many climate models are variants of
others, and not usefully independent for these purposes, thus
placing tight constraints on the climate-model-version of mea-
surement robustness (Annan & Hargreaves, 2011; Edwards, 2010;
Houkes & Vaesen, 2012; Knutti, 2008; Knutti, Abramowitz, et al.,
2010; Knutti, Furrer, Tebaldi, Cermak, & Meehl, 2010; Muller &
Von Storch, 2004, p. 33; Pirtle et al., 2010). Note that the sense in
which differentmeasurementmethods for robustness in the case of
Avogadro’s number are distinct (e.g., they are causally independent;
they have different possible sources of error, etc.), is quite different
from the sense in which different climate models may be
independent.6

More importantly, it is crucial to note that measurement
robustness is usually used in aid of searching for a strong basis from
which to predict future temperatures and other fu climate variables.
I, on the other hand, am pursuing a distinct kind of robustness,
‘model robustness,’ used by climate scientists to support causal
explanations of what has happened in the past history of the sys-
tem. Our chief question is thus not about the robust effect or
outcome alone, but also about causes: we want to know how reli-
able our understanding of the main causes of the robust effect is as
it leads to the robust prediction. I emphasized the difference

Fig. 3. A focus on model predictions/retrodictions.

Fig. 2. Observational evidence (OEi) supporting assumptions, experimental evidence
(EE) supporting core of model, temperature observations confirming predictions of T.

5 The IPCC is an international group of many hundreds of scientists, some hun-
dreds of which are tasked with summarizing, by unanimous agreement among the
authors of each chapter, the current state of climate science every five or six years. 6 Thanks to an anonymous reviewer.
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between using a model for explanatory causal purposes, versus
merely predictive purposes, in (Lloyd, 2009) in an example using
measles. Exposure to the measles virus successfully explains the
cause in every case of a person’s coming downwith the disease, but
it is a very poor predictor of coming down with disease; only some
small percentage of those exposed to the virus, actually come down
with measles. Hence model evaluation for different purposes can
cast a very different light on the situation with any given group of
models. And because of the terrible significance of climate pre-
dictions and projections,7 from models or other calculations, so
much emphasis has been put on projections for the future, that
many have been distracted from evaluating the models for causal
explanations used for predicting/retrodicting past and present
climate change, the focus of our discussion here.

3. Global climate models

Global climate models represent mathematically the physical
movements of gaseous and liquid masses, and the reflection,
transfer and absorption of energy. In the largest, most complex
GCMsdof which there are about 30e45 available todaydthe basic
equations for the atmosphere at the heart of a climate model
involve classical mechanics, thermodynamics, and fluid dynamics:
a series of equations derived from these theories plus a “moisture”
equation represent the atmospheric system in terms of pressure,
temperature, and density. Similar sets of equations are used to
represent the ocean in terms of pressure, temperature, density and
salinity, and so on for the sea ice and land-surface system contri-
butions to the climate system. A climate simulation model is con-
structed from physical and mathematical approximations of these
“basic equations” that are solved by computer (Washington &
Parkinson, 2005).

The greenhouse gas models we are discussing have central en-
ergy absorption and transfer or emission equations, which we can
call “radiative causal cores,” which represent these energetic pro-
cesses (Pers. Comm., climate scientist Jeffrey Kiehl). The notion of a
greenhouse gas ‘causal core’ of a model is a ‘big tent’ idea; there are
many ways of modeling these basic energetic, radiative causal
processes, with different modeling features and equations (see
http://www-pcmdi.llnl.gov/ for schemes of updated models; Kiehl,
2007; Washington & Parkinson, 2005, pp. 79e91).

The state of the climate cannot, however, be fully derived from
the physical theories, since we do not know the full set of physical
processes guiding the system between states. Moreover, only the
largest scale processes are explicitly represented in the model;
smaller-scale processes cannot be modeled directly, and are
handled by ‘parameterizations.’ These parameterizations are basi-
callymini-models that coordinate small-scale parameters8 with the
large-scale variables of the climatemodel; they attempt to take into
account the important impacts of ‘subgrid processes’ without
simulating them explicitly.9 Important examples of parameterized
processes include cloud formation, convection, and ocean mixing,

each of which has significant effects on climate (Edwards, 2010).10

Thus, details and complexity about the ice, vegetation, soil and
water vapor and the ornate interconnectedness of systems are
represented in these GCMs. E.g., modelers can combine general
pieces of theory from fluid dynamics, thermodynamics, and the-
ories regarding radiation with, perhaps, precise ideas and mea-
surements of how water vapor interacts with temperature in the
context of a cloud from a parameterization. Ordinarily, the model
instantiates at least several distinct generalized laws from different
branches of physics, and the unique combination of these laws has
usually never before been assessed. Thus, in climate science, “A
model essentially embodies a theory,” as David Randall and Bruce
Wielicki say (1997, p. 400). Climate simulationmodeling in this case
can be an instance of theory articulation and application. We start
with a model-type as the ‘conceptual model,’ and proceed to
specify the parameterizations and details, in order to get a fully
operational climate simulation model, from which we can deter-
mine whether the projected values conform to our expectations.

4. Robustness: an example from climate science

Let us examine multiple models of the same 20th Century
climate system, keeping an eye on the types of evidence needed to
help confirm a cause of the system’s evolution and changes. A
typical approach is to present six to a dozen or more of the huge
climate modelsdincluding atmospheric, oceanic, and sometimes
ice and/or land componentsdand compare the model results on
specific experiments or parameter values; the models often pro-
duce the same range of outcomes for the specified values, and some
are also supported empirically (Braconnet et al., 2007, p. 226; Gates
et al., 1999; Gleckler, Taylor, & Doutriaux, 2008; Murphy et al.,
2004). These collections of models are convenience-based, since
the models are not generated in an orderly way or designed to
explore specific parts of the possible model-space (Knutti,
Abramowitz, et al., 2010). Such comparisons and compilations
figure prominently in the 2007 IPCC Report (Meehl et al., 2007;
Randall et al., 2007, pp. 594ff).

A clear example of convergence on a result is one in which all of
the available climatemodels that incorporate greenhouse gases as a
cause of climate change produce an increase in global mean surface
temperature (GMST) in the late 20th Century. Fig. 4 shows 14 of
them used in 58 simulations of 20th Century surface global tem-
perature trends (Randall et al. IPCC, 2007, p. 600; see Knutti, Furrer
et al., 2010, p. 7; cf. Parker, 2011).

The GMST change in these simulations is caused by both human
causes like greenhouse gases and particulate pollution (aerosols),

Fig. 4. 14 GHG GCMs, in 58 simulations of 20th Century GMST anomaly trends.

7 A ‘projection’, in contrast to a ‘prediction’, incorporates or reflects information
such as details of greenhouse gas emissions and other socio-economic variables in
its construction, as represented, for instance, in the distinct “low-emissions” vs.
“high emissions scenarios” in the 2007 IPCC report. This information is typically
provided by building “integrated assessment models” or other socio-economic
calculations, which are distinct from the climate models we are discussing here.

8 Parameters are fixed values; variables define the system and can take different
values over time.

9 ‘Subgrid processes’ are those in which the physical processes involve variables
and parameters on a scale smaller than the three-dimensional model grid cell,
which typically may have a size of 100e300 km per side and be 1e10 km thick.
10 See Lloyd (2009, 2010) for an elaboration of the evaluation and confirmation of
complex models that focuses on independent support of all aspects of the model.
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and natural causes such as solar events or volcano eruptions, which
are marked in the graphs with their names. The volcanoes cool the
atmosphere because of aerosol particles from the eruption shield-
ing the earth from the sun. Each run of a model or simulation is
represented by a thin pale line in Fig. 4, while the mean of the 58
runs is represented by the thick, smooth line. This mean model
surface temperature anomaly is compared to the mean calculated
from observational data, represented here by the jagged thick black
line. The results of the modeling exercise include a good match
between the model mean and the observational mean anomaly,
representing a clear increase in temperature over the century of
about 0.8 !C.

Let us consider, briefly, the variation in the model outcomes
appearing in Fig. 4. The models vary in their assumptions and
parameterizationsdsuch as their representations of cloud cover or
densitydand also in some of their magnitudes and types of forcings
(causes of change in the system), such as ozone changes or changes
in land use.11 Despite this model variation, all of the models in this
model family share a core representation of greenhouse gases
(GHG) as a radiative cause. We can consider this the common causal
core shared by this entire GHG model-type under consideration,
namedM.12 Our ultimate focus is on this shared causal core and the
predictions produced from it.

Before proceeding, let us take a peek at what a model family
would look like that does not include GHG radiative causation.
Consider such a model family, which uses only natural causes, i.e.,
the volcano aerosols, called N.

We can see from Fig. 5, that the N model family results also
converge, in that they produce temperature anomaly outcomes
that are routinely lower than M-family results, and are also
routinely empirically incorrect, since they do not track the
measured mean temperature anomalies from the 20th Century.

In both of these model-types, N and M, let us look more closely
at just what the “observed pattern of change,” actually consists in
(Hegerl et al., 2007, p. 702). First, I have oversimplified. The sig-
nificant predictions/retrodictions of the models actually include
complex spatio-temporal patterns of change in temperature, and
vertical profiles (from Earth’s surface to above the stratosphere),
among other details, all of which I will simply call T. The spatio-
temporal, structured temperature evidence will be To (for ‘tem-
perature observations’).

These spatio-temporal patterns and vertical profiles of tem-
perature are extremely important prediction/retrodictions from the
greenhouse model type, M, since they differ sharply and signifi-
cantly from predictions/retrodictions arising if there had been
climate warming from solar or other natural forcings, internal
variability, or stochasticity, and are so distinctive that they are
sometimes referred to as a “fingerprint.” Once these “fingerprints”
in temperature are found across both a range of models and actual
measurements and observations, this is considered confidence-
inducing empirical evidence for increases in greenhouse gases
having causedmuch of the late 20th Centurywarming (Hegerl et al.,
2007; Hegerl & Zwiers, 2011, p. 13; Parker, 2010, p. 1092).

Laboratory experiments done by John Tyndall in the mid-19th
Century established the causal connection between CO2 (and
other greenhouse gases) and an increase in atmospheric tempera-
ture (Hulme, 2009). But questions remained about whether these
laboratory setups resembled the earth’s real atmosphere enough to
provide a causal explanation at the global scale. Today, support for

the GHG explanation for recent raised temperatures comes from a
wide variety of sources; note the repeated mentions of ‘robustness’
in climate scientists Gabriel Hegerl and Francis Zwiers’ summary:
The attribution results for large-scale temperature changes are
supported by a large number of different lines of evidence and are
robust to using very simple to fully complex models. They are also
robust to using different methods and to using different assump-
tions and even approaches that avoid direct use of models alto-
gether. They are also physically consistent with detection and
attribution results from other climate variables, including, for
example, tropopause height, vertical temperature of the atmo-
sphere, atmospheric humidity, and to some extent, precipitation
changes (Hegerl & Zwiers, 2011, p. 18).

Note that there is a broad sense of ‘robust’ being used here, and
only part of this quote refers to what I call ‘model robustness,’
specifically, the phrase “attribution results” refers to the outcomes
of analyses of the causes of recent (20th and 21st C.) global warming
phenomena, including temperature changes. Hegerl and Zwiers
claim that such causal explanations are robust, resistant, or
impervious to all of these “different assumptions,” factors, and
contexts, etc., i.e., that the GHG model-type, configured in a wide
variety of ways, succeeds in tests using a full variety of well-
confirmed model assumptions, as desired for model
robustness (Note that filling these conditions is far more complex
and richly evidential than simple variety of evidence, for which it
might perhaps be mistaken. We will address this difference in
Section 6). In other words climate scientists believe that green-
house gas causation works, and represents a real climate process,
partly because using that causal core in their models produces
simulations with convergent, successful predictions/retrodictions
time and time again, supported by many distinct features of evi-
dence, against a range of independently confirmable and distinct
background causal assumptions. That is, this type of reasoning in-
volves inferring causal processes through ‘model robustness.’ Quite
simply, they believe that the physics are sound andwell-confirmed.

5. Robustness as a confirmatory virtue

We can often see other climate scientists echoing the above
picture of ‘model robustness’ reasoning as an indication that the
models correctly represent a real or adequate causal account in the
climate system. Climate scientist Jeffrey Kiehl, in discussing the fact
that all GHG models simulate the global warming during the 20th
Century with reasonable accuracy, notes, “[t]his is viewed as a
reassuring confirmation that models to first order capture the

Fig. 5. 5 Non-GHG models, natural forcings only, in 19 simulations of 20th Century
GMST anomaly trends.

11 Some models were run multiple times, initiated with different initial
conditions.
12 Model families are not necessarily hierarchical, they may be based also on
sharing of simple parameters or parameterizations (Lloyd, 1994).

E.A. Lloyd / Studies in History and Philosophy of Science 49 (2015) 58e6862



behavior of the physical climate system and lends credence to
applying the models to projecting future climates” (Kiehl, 2007, p.
1).13 Climate scientists Steve Lambert and George Boer also use the
language of “capture” when discussing robust model results. A
small amount of intermodel variance, they say, indicates agreement
among models and “supports the assumption that they are
capturing the processes that govern that variable and hence its
climate” (2001, p. 88; emphasis added). And the reverse indicates
the opposite about causal processes: “A large value of intermodal
scatter, on the other hand, indicates disagreement and unreliabil-
ity” (2001, p. 88). Hence, it is clear that the convergence of model
projections is used as an indicator of the reliability of the causal
processes in the models.

On sociologist of science Simon Shackley’s analysis, there is a
type of climate scientist who is pursuing a complete and realistic
simulation model of climate, including the “capture” or represen-
tation in the models of basic predictive causal forces involved in
changing climate, such as greenhouse gases, or volcanoes. I would
add that they use, in addition to convergence of outcomes, the
confirmation and variety of assumptions of various models, to
support inferences involving such capture of causal forces (Hegerl
et al., 2007; Lloyd, 2010; Shackley, 2001).

This type of inference was first characterized, to my knowledge,
by ecologists. Richard Levins describes using assemblages of
ecological models that share a common or “constant” core of as-
sumptions, but also differ as widely as possible in other “variable”
assumptions, andwrites, “then themore the variable part spans the
range of plausible assumptions, the more valid the claim that the
conclusions shared by all of them depend on the constant part”
(1993, pp. 554e555). He continues: “If we also have confidence that
the constant part is true, thenwe have strong support for the claim
that the conclusion is generally true” (1993, p. 555; see Weisberg &
Reisman, 2008, pp. 119e120). This is an exact parallel description to
model robustness in the greenhouse gas case.

In sum, the existence of convergence of key outcomes as well as
empirical success of varied assumptions of a model is often seen as
evidence in favor of a sort of rough or everyday realist interpreta-
tion of the model-type’s causal core structures, or the reasonably
accurate representation of specific causal processes described in
themodels (Calcott, 2011; Hegerl et al., 2007;Wimsatt, 2007, p. 60).
As Weisberg writes, with a very realist bent, with robust outcomes
and a common causal core among varied models, it is “very likely”
that the real world has a “corresponding causal structure” (2006, p.
739). Thus, I urge extending the usual analytical philosophical focus
on “robustness” from the product or outcome of the models to the
models themselves (Lloyd, 2010). And although this line of emphasis
has been alive ever since Levins and Wimsatt first wrote, and
continues into recent discussions such as those by Weisberg and
Odenbough, many are fuzzy about describing how or why such
emphasis is desirable (e.g., Houkes & Vaesen, 2012). Explicating
these lines of reasoning is useful not just for climate science, but for
the many types of scientific inquiry that now involve complex and
computational models, including aspects of ecology, evolutionary
biology, engineering design, physics, economics and social sciences
(Cartwright, 1991; Levins, 1993, 2006; Lloyd, 2009, 2010;
Odenbaugh, 2011; Odenbaugh & Alexandrova, 2011; Rykiel, 1996;
Winsberg & Lenhard, 2010;).

6. Model robustness

Thus, let us describe model robustness more specifically, using
our example.

We start with ourmodel type,M, which has greenhouse gases as
a component in its causal core, GHG, robustly giving us increases in
global mean temperature, T (as a spatio-temporally structured
variable). Members of the family of model type,M, namely M1, M2,
. Mn, are each different, but all are built with some GHG causal
core. Each of these models also has an array of different parame-
terizations, parameter values, and assumptions, represented as, Ai,
indexed assumptions, such as parameterizations of clouds or ocean
mixing, and different parameter values or causes.

For simplicity, let us take a set of three distinct members of
model type M: M1, M2, M3, all of which converge on robust pre-
diction/retrodiction T, and say that M1 contains certain assump-
tions and aspects, Ai, which includes cloud parameterization C1
and oceanmixing parameterization OM1, among other aspects, and
likewise M2 contains cloud parameterization C2 and ocean mixing
parameterization OM2, among other aspects, etc. (The C and OM
families of parameterizations are all types of minimodels, that also
usually incorporate some empirical data into the minimodel, which
are in turn embedded into the Ms (Edwards, 2010).)

Because of the variety of parameters, variables, and parame-
terizations used in the construction of M1.Mn, there is also awide
variety of empirical evidence that can be brought to bear on the
assumptions, Ais, of these individual models, in addition to scoring
its empirical success in producing accurate global mean surface
temperatures, T. For instance, one model may rely on empirical
evidence supporting its parameter values in its modeling of the El
Nino Southern Oscillation (ENSO), while another may rely heavily
on the empirical support for a number of details, such as moisture
content, drop size, etc., of its cloud parameterization. Yet another
model’s empirical success may rely firmly on its modeling of the
thermodynamics in the causal core, along with ocean heating dy-
namics, and so on. Because the details of empirical support for
these assumptions of the individual modelsdthe values relating to
parameterizations, variables, parameter values, and model struc-
turesddiffer in the case of each individual model or model appli-
cation, it is necessary to construct individualized sets of confirming
empirical evidence for each model application in the set of robust
models of the model family. Thus, the different Ais are each sup-
ported by their own bodies of empirical evidence, even while they
produce competing or conflicting detailed climate systems (Parker,
2006; Edwards, 2010; Rykiel, 1996; Odenbaugh, 2011). This
collection of observational (OE) and experimental evidence (EE) for
the model assumptions, parameterizations, etc., is called OEi,
where i is the given model.

This last assumption about the availability of evidence for con-
flicting aspects of the different models may come as a surprise to
many philosophers, but it is extremely plausible in the science (see
Parker, 2006 for an excellent discussion of the fact that climate
scientists pursue multiple, incompatible models simultaneously;
compare Houkes & Vaesen, 2012, p. 351). The primary reason for
this is that observations are incomplete, and there may not be
enough observations to favor one of the versions of C1eC3 above
the others, although there are generally data supporting each
version. Thus, different observations support the distinct, and often
incompatible, parameterizations. In addition, there are many distinct
ways to measure and characterize most climate variables and pa-
rameters, leading to a multiplicity of different and conflicting de-
scriptions of the same system. Finally, different theoreticians and
modelers make different choices about the simplification and
descretation (for computation) of the basic equations of the system
they are modeling. There is no ‘true’ or ‘right’ way to simplify the
system, but choices need to be made in order to build a model and
represent the system (Giere, 2006; van Fraassen, 2008). This is
simply how modeling must be done, given our human finitude.

13 Kiehl goes on to critique this sort of inference to the models’ goodness.

E.A. Lloyd / Studies in History and Philosophy of Science 49 (2015) 58e68 63



Now let us consider our predictions/retrodictions using models,
M1-M3, which all include GHG forcings. We can run the simula-
tions using identical inputs of greenhouse gas levels, and let us say
that we obtain GMST, vertical temperature profiles, and spatio-
temporal patterns, T, for the present day, or deep or recent past.
And now we test T against the observations, To, and we discover
that T is, to within our needs and purposes, accurate, as shown in
Fig. 7. In such real-life inferences, we must be careful to propagate
the uncertainties. For example: how much variation in the pre-
diction/retrodiction is dependent on fitting the cloud model to the
cloud data and its uncertainties? And similarly for any other pa-
rameterizations and their uncertainties. Still, we find we have a
small set of models, M1-M3, that predict T in an empirically
adequate way, and use the same GHG radiative core, but very
different processes and Ais to do so. That is, we have sampled a
variety of processes in coordination with that common GHG radi-
ative causal core, and no matter which ones we use with it, we still
get T as an outcome.14 Thus, M turns out to be a pretty strong
model-type, and the Ais and core are well-supported by other
observational and experimental evidence, OEi (see Raisenen, 2007;
Randall et al., 2007; Hegerl & Zwiers, 2011; Lloyd, 2009, 2010,
2012). Levins noted that the variety of assumptions may be
considered as representing a “space of possible models” (1968, p. 7;
thanks to an anonymous reviewer for the reference).” (It may
appear, upon examining the ‘model robustness’ of the GHGmodels,
that the various Ais do not make any difference, because no matter
which Ai is used, the result, T, is always coordinated with the causal
core. But in actuality, if, say, the troublesome cloud parameteriza-
tions would be removed from the models, the models would ‘blow
up’ (in modeling terms), producing no atmosphere or climate sys-
tem at all. Thus, the variety of models in the model-type require the
seemingly extra parameterizations and assumptions in order to
run; they are neither optional nor functionless.)

In sum, we have so far (looking at Figs. 6 and 7):

(a) Given a model-type M, which is characterized by the inclu-
sion of the GHG causal core, there is variety of different as-
sumptions and parameterizations Ais (including, e.g., Ci and
OMi) composing the rest of the model, such that (M & Ais)
implies conclusion T;

(b) There is independent experimental and observational evi-
dence for the GHG radiative causal core relationship with T
embedded in M;

(c) There is independent empirical evidence, To, for T;
(d) There is some evidence for each Ai, but we do not know

which Ai is the best;
(e) In sum, T is a robust result under the combination of the

variety of assumptions and parameterizations, Ais, which are
themselves usually empirically supported, combined with
any individual Mi, which includes the GHG causal radiative
core, (Mi & Ais).

With model robustness, we can thus identify the patterns of
evidence that support a model-type and its causal core, while
tracking the processes of reasoning used in climate modeling and
the confirmation of climate models. Model robustness involves
both the causal core of the individual models and the convergence
of the model outcomes. The causal core is robust in that even if we
change the parameterizations or details of the other aspects of the
models, they are well supported empirically to specified degrees by

multiple aspects of the observational evidence. More generally, it is
against the background of differing model constructions, M1, M2,
. Mn, within the model family, M, that the radiative causal core,
GHG, occurs and causes the robust property, T, to appear, and it is
the degree of this variety-of-instances (the differing model con-
structions) for which the model has been verified, that affects how
confident we should be in the causal connection, and its perfor-
mance in accurate, and robust, prediction/retrodiction of T.

Ultimately, the notion of ‘model robustness’ is used in climate
science in a nesting fashion. Robust model-types such as the GHG
models discussed above utilize, in turn, robust mini-model-types as
their internal parameterizations, e.g., cloud and convection pa-
rameterizations, and within each of these, there may be more
robust model-types.15 The fact that the GHGmodel-type utilizes, in
its structure, such a set of robust assumptions (mini-model-types),
makes it the strongest and most robust model-type currently
available in climate science, and especially suitable to illustrate the
concept of ‘model robustness.’

Here we must pause to sort out a vexed issue, specifically, that
the concepts of ‘variety of evidence’ and ‘robustness’ are very
frequently confounded in the philosophical literature. A variety of
evidence usually involves the support of multiple avenues of evi-
dence for a single hypothesis or empirical claim. For example, the
evolutionary hypothesis that birds descended from dinosaurs is
supported not only by the fossil and embryological evidence, but
also by repeated DNA data and analyses; thus, the bird descent
hypothesis is supported by a variety of evidence, that is, multiple
and distinct lines of evidence (Coyne, 1999). In our case, a single
model is supported by a substantial variety of evidence. For
example (see Fig. 2), the individual model, M2, is confirmed not just
by its success in predicting T, by To, but also, crucially, by inde-
pendent observational support for its parameterizations, among
them, C2 and OM2, as well as experimental support for the GHG
causal process itself, through Tyndall’s and later laboratory exper-
iments (Hulme, 2009). There is a variety of observational and
experimental evidence supporting model M2, in Fig. 2.16 Such an
array of evidence is widely understood to offer increased support
for such a model, all things being equal.

Fig. 6. Three models of model-type M with some Ais specified: parameterizations of
Clouds, Ci, and Ocean Mixing, OMi.

14 See Weisberg and Reisman (2008), on varying the parameter values with
“parameter robustness analysis,” and varying the laws with “structural robustness
analysis.”

15 Thanks due to climate scientist and statistician Doug Nychka.
16 This is shorthand for the claim that this bundle of evidence supports: “Model
M2 represents specific aspects of the real world, say, various structures contributing
to and predicting/retrodicting global mean temperature, to specified degrees, for
purposes x, y, or z.”
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So, what exactly do we add to confirmation by including more
models? In other words, if we already have a variety of evidence for
a particular model, what good does robustness do?

Suppose we really want to know about the reliability of the
model-type itself, especially the value of the causal core of a model-
type of which the individual model is a member? Having a variety
of evidence for a good model is a strong start. One issue, though, is
that we have a whole collection of such good models. But in
addition, one standard answer to the question about the value of a
model-type’s causal core itself, is that we can test the causal core in
a variety of different contexts, with different parameterizations and
causal assumptions, Ais, which builds confidence in the core’s ef-
ficacy, accuracy and reality, as noted by Hegerl and Zwiers (2011;
Weisberg, 2006; Wimsatt, 2007; Hegerl et al., 2007; Knutti, Fur-
rer et al., 2010). This treatment simultaneously gives us reasons to
think that when models predict/retrodict and converge on T, the
causal core of the model is also confirmed indirectly. It is tricky,
because part of this sort of ‘model robustness’ inference may, in
specific cases, fit more naturally as a subtype of variety-of-evidence
inferences, taking each Mi as a randomly chosen member of the
specific model-type under consideration, M. Note that we are
frequently not considering an entire model-type here, but only a
well-defined subset of it.

We can imagine that each model is an “experiment” for pur-
poses of a variety of evidence argument. These “experiments” are in
the form of random, distinct, independently confirmed, models,
M1, M2, . Mn, and their supporting observational and experi-
mental evidence, in which GHG is part of the radiative causal core,
and other assumptions, Ais, such as formulations of equations,
values of forcings, or parameterizations, of the individual models
vary. Significantly, each random model is well-supported by a va-
riety of empirical and experimental evidence, making it a satis-
factory candidate to serve as evidence or an “experiment.” This
situation includes, as we have discussed, that many of the Ais are
often independently empirically supported, as well as the causal
core itself having independent experimental and/or observational
evidence of its own.

It is also important that these models have to be distinct, or
“heterogeneous enough,” as Weisberg and Levins emphasized. But
they usually are, as eachMi uses both distinct causes in conjunction
with GHG, as well as distinct parameterizations. Even small dif-
ferences in parameterizations are enough to cause relatively large
differences in model outputs, due to feedbacks and nonlinear

effects (Houghton et al., 2001). For example, as the climate warms,
the (parameters representing the) amount of snow and ice cover
decrease, which leads to more sunlight being absorbed because of
the loss of reflectivity of the surface, thus establishing a positive
feedback of warming in the climate system; a small variable change
leads to a small parameter change which has a relatively large ef-
fect. Characteristically, as well, parameterizations of clouds make a
variety of very different assumptions about the distribution of
different types of clouds in a grid-box, thus representing cloud
phenomena very differently in themodels, for a variety of purposes,
all of which can have radically different effects on the outcomes of
the GCM as a whole (IPCC 2007; http://www-pcmdi.llnl.gov/
projects/cloud_feedbacks/index.php).

There may also be a concern that the variety of models in the
robustness analysis above is constrained to a particular model-type,
i.e., with a GHG causal core, and then constrained further by
requiring empirical support for values of assumptions in the
models. But the climate scientists do not need to supply an espe-
cially rich variety to the causal core hypothesis. If they supply any
variety at all, it is confirmatory. This grants more confirmatory po-
wer to robustness than non-LWWO philosophers of science have
granted in detailed discussions before, e.g., with their scientifically
unrealistic requirement of the guarantee of truth and completeness
among the models (Orzack & Sober, 1993; Woodward, 2006).17

In sum, this is away inwhich the GHG causal core itself can have
its confidence and reliability raised through its repeated successes
in producing accurate predictions/retrodictions of late 20th and
early 21st C. global mean temperature, T, in conjunction with a
variety of independently empirically supported model assump-
tions. Model robustness describes a pattern of models and evi-
dence, which is described within a variety-of-evidence inference,
as telling us more than any given piece or subset of pieces of evi-
dence as used in these inferences, and as giving us increased con-
fidence first in the causal core, and ultimately in the model
outcomes. This increased confidence resulting from a variety-of-
evidence inference can be interpreted according to the aims of
the scientific endeavor: the empirical virtues of the independently
well-confirmed models that vary (in our case, they are sketched by
the Mis, supported by the OEis, see Fig. 7), where the models can
play the role of evidential “experiments,” raise the confidence
connecting the causal core, GHG, of the model-type, M, to the 20th
and early 21st Century warming outcomes, to specified degrees and
respects, and assuming a particular purpose (see Section 1).18 This
contradicts Houkes and Vaesen’s conclusion that robustness cannot
add “credibility for the model family and, therefore, warrant for the
instantiation of the causal structure” (2012, p. 351; see pp. 351e
354).

Thus, we can add a further point to our previous summary list.
From points (a) through (e), we had concluded that generally, it is
against the background of differing model constructions, M1, M2,
. Mn, within the model family, M, that the radiative causal core,
GHG, occurs and causes the robust property, T, to appear, and it is
the degree of this variety-of-instances (the differing model con-
structions) for which the model has been verified, that affects how
confident we should be in the causal connection, and its perfor-
mance in accurate, and robust, prediction/retrodiction of T. Now,

Fig. 7. GHG models, M, with a variety of evidence.

17 In Weisberg’ view, robustness analysis “does not confirm robust theorems; it
identifies hypotheses whose confirmation derives from the low-level confirmation
of the mathematical framework” (2006, 741). Still, I see my proposal as a friendly
extrapolation of the LevinseWimsatteWeisberg and Odenbaugh approaches cited
above, especially when we focus on the causal core of the model-type.
18 Note that we still need to keep variety of evidence separate from model
robustness. Model robustness is not equivalent to variety of evidence, rather it is
supported by variety of evidence reasoning in part of its inferences.
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we add: (f) Model robustness involves inferences from patterns of
models and evidence: we infer from the facts that a number of
randomly chosen, distinct, independently well-confirmed models
share a common causal factor or core, and all have some common
consequence T, where T is found to be empirically supported by
observations, to the increased belief or confidence that T is an
empirically adequate description for given purposes in a given
context, and that T is (partially) caused by or attributable to the
common causal factor or core, in combination with any of the
various independently-supported assumptions, Ais, of a given
model.

7. Alternative types of philosophical robustness

Let us finally compare the proposed ‘model robustness’ with
other ideas. Woodward, in his very useful (2006) review of varieties
of robustness, writes of ‘inferential robustness,’which may seem to
closely resemble part of what I describe here. The issue concerning
‘inferential robustness’ starts with a set of data, D, which we would
like to use to reach some conclusion, S, “about the truth of some
hypothesis or the value of some parameter of interest” (Woodward,
2006, p. 219). Woodward writes, “[s]uppose that doing so requires
use of additional assumptions, that there are a number of different,
competing possibilities Ai regarding these assumptions, and that
available background knowledge provides no strong reason to
prefer one of the Ai over the others.” Woodward notes that many
authors have argued that if for a range of Ais, the dataset D reliably
produces S, then this is a strong reason to believe S, which he takes
as a case of his ‘inferential robustness.’ Earlier, I called cases like
this, ‘climate-model-versions’ of ‘measurement robustness,’ since a
variety of models were used to infer a result without reference to a
causal core. In either case, it is clear that the central difference with
‘model robustness’ is that ‘inferential robustness’ centers around
convergent model predictions or parameter values, without also
focusing on the causal cores of models and especially the observa-
tional evidence supportingmodel assumptions or the causal cores In
model robustness, all of the causal cores, empirical support, and
predictions are considered.

Let us now consider Woodward’s ‘derivational robustness,’ in
which we have a model that predicts observed facts, T. The model
contains some assumption, A, which might concern the value of a
parameter, x, or the relation between two parameters, x and y, and
A is involved in the derivation of T.

Suppose that A were replaced by a different assumption, A0 , as
shown above in Fig. 8, such as a different value for x, or (x and y). Is
it still possible to derive the same result, T (or approximately T)? Or
would the model, with A0 , derive a different outcome, T’? If the
former, then the model might be thought of as “providing a ‘robust’
derivation” of T. If the latter, then the “model might be thought of as
sensitive or non-robust with respect to the derivation of [T] from A00

(Woodward, 2006, p. 232). This approach comes closer to my
notion of ‘model robustness’ and LWWO’s notions, since it involves
varying parameters of the model; nevertheless, because it does not
emphasize or discuss independent empirical evidence for those
varied parameter values, it differs fundamentally from the pro-
posed ‘model robustness.’19

Moreover, we can see, from Fig. 8, that Woodward is using the
same model for the comparisons of the assumptions, not different
models, as I do in ‘model robustness.’ (Compare with Fig. 6.) Also,
Woodward does not discuss a core of the model, because he is not

discussing a model-type. Finally, the focus is on comparing the
predictions or retrodictions of the two models; this is indeed one
aspect of model robustness, but it also focuses on the causal focus
or core of the model-type, all absent in Woodward’s derivational
robustness.

These individual points may be best appreciated with further
reflection on Fig. 8. With derivational robustness, one model has
assumption A, the other has assumption A0 , and still both models
may produce T as their outcomes. So far, the two types of robust-
ness, derivational and model robustness seem identical. But here
the analysis for derivational robustness officially stops: themodel is
called ‘derivationally robust.’ But the model robustness type of
reasoning and analysis goes several steps further: first, the empir-
ical, observational, or experimental evidence for assumptions A and
A0 are collected, if available; the prediction/retrodiction of the
model, T, is tested for empirical validity; both models are analyzed,
to determine if there is any shared causal factor (or ‘core’) which is
essential to model robustness; and any observational and experi-
mental evidence for this model ‘core’ is collected, if there is one.
This evidence for the twomodels and their common core, if there is
one, is then evaluated using any and all available tools, including a
variety of evidence approach. Inferences may then be made
regarding the common core of the twomodels, if there is one, based
on the available evidence from all of successful predictions/retro-
dictions and independent evidence for the model assumptions, A
and A0 , and a core. We can see, then, that model robustness involves
a great deal more evidential and structural detail about the models
than does derivational robustness.

In concluding this section, let us return to measurement
robustness, i.e., the reduction of error by repetition in independent
contexts, where the exemplar case is Avogadro’s number. As we
discussed, in order for reasoning about measurement robustness to
go through, in the case of climate modeling, the models under
consideration need to be relevantly distinct or independent (see
Section 2). Model robustness, in contrast, does not require an
equivalent level of independence as the much-discussed mea-
surement robustness, and in fact, expects a certain level of con-
formity, in that, e.g., all models in the model family must share the
GHG causal core. In fact, we might anticipate increased unity and
accuracy in their portrayal of this causal core, as models develop
over time. Still, differences between the various models from
different modeling groups are sometimes inevitable, given the
entrenched nature within groups of some of the aspectsdsuch as
certain parameterizationsdof the models. In other words, certain
levels of both model independence, as well as model conformity

Fig. 8. Derivational robustness (Woodward, 2006, pp. 231e233).

19 Kuorkikoski and Lehtinen (2009) explore the confirmatory properties of deri-
vational robustness, which under their analysis shares its inferential virtues with
measurement robustness (pp. 559ff).
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and dependence, are assured due to the social and epistemic con-
ditions of model construction (Gates et al., 1999; Gleckler et al.,
2008; Hegerl et al., 2007; Knutti, 2008; Muller & Von Storch, 2004).

8. Conclusion

Let us begin our conclusion by looking further atwhat the climate
scientists themselves say. In a paper on best modeling practices as
guidelines for the IPCC, a panel of top climate scientists, ledbyKnutti,
Abramowitz, et al. (2010),20 advised that a robust or convergent
outcome from a collection of models may not necessarily indicate
truth or empirical strength, echoing the philosophers. Nevertheless,
they stated that if a group of models represents relevant processes in
truly differentways, and thesemultiple models still produce the same
outcome, e.g., T, then “confidence in a result [i.e., model outcome] may
increase”21 (Knutti, Abramowitz, et al., 2010, p. 10, emph. added).
Confidence will also increase in cases when the processes “that
determine the result are well understood,” where this “under-
standing” includes empirical support for this robust modeling of the
causal processes, such as in the case of greenhouse gases (Knutti,
Abramowitz, et al., 2010, p. 10). These are precisely the sorts of
informal inferences I have characterized as ‘model robustness.’

In essence, ‘model robustness’ involves the standard conver-
gence of predictions/retrodictions of multiple instantiations of
variants of the model-type, as well as exploration and empirical
confirmation of an array of empirical model assumptions, which
can be seen as aspects of random, well-supported experiments,
when we use variety of evidence inferences to support the core
structure. Thus, a confirmational aspect of robustness, tyingmodel
robustness to the reliability of causal aspects of the model, as well
as to successful predictions or retrodictions, may be in place. This
model robustness I have outlined is exemplified in distinctive,
common, and significant types of inference in climate science. It is
also appropriate for evolutionary and ecological models (Levins,
1966, 2006; Odenbaugh, 2011), and for other sciences such as
physics and economics, especially when their models appeal to
empirical evidence for the model assumptions (Cartwright, 1991;
Odenbaugh & Alexandrova, 2011).

Within philosophy of science, robustness has most frequently
been considered a heuristic but non-confirmatory virtue. Yet the
practice of contemporary climate science has increasingly relied on
robustness inferences. This practice presents a worthwhile chal-
lenge for philosophers of science, to analyze whether robustness in
some forms and contexts can be confirmatory. Here, I have
sketched how the reasoning from climate scientists about both
convergent results concerning past and present climate, and the
causal cores of the models producing those convergent results, can
be understood as a case of variety-of-evidence inference using the
independently well-supported, varied models as random, experi-
ments, in order to affirm its confirmatory power. I focus on one set
of examples of such reasoning, in which the shared and empirically
sound predictions/retrodictions of a family of diverse and
independently-supported greenhouse gas models based on an
independently-and experimentally-supported common causal core
are taken to increase confidence in that causal core as a good
explanation of the robust and verified model predictions/retro-
dictions (Knutti, Abramowitz, et al., 2010). I conclude that philos-
ophers should break the habit of denying that robustness is

confirmatory, and understand and analyze this case as confirma-
tory, just as the climate scientists do.
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