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Introduction

The following nine itineraries in the history of mathematical logic do not aim at
a complete account of the history of mathematical logic during the period 1900–
1935. For one thing, we had to limit our ambition to the technical developments
without attempting a detailed discussion of issues such as what conceptions of
logic were being held during the period. This also means that we have not en-
gaged in detail with historiographical debates which are quite lively today, such
as those on the universality of logic, conceptions of truth, the nature of logic
itself etc. While of extreme interest these themes cannot be properly dealt with
in a short space, as they often require extensive exegetical work. We therefore
merely point out in the text or in appropriate notes how the reader can pur-
sue the connection between the material we treat and the secondary literature
on these debates. Second, we have not treated some important developments.
While we have not aimed at completeness our hope has been that by focus-
ing on a narrower range of topics our treatment will improve on the existing
literature on the history of logic. There are excellent accounts of the history
of mathematical logic available, such as, to name a few, Kneale and Kneale
(1962), Dumitriu (1977), and Mangione and Bozzi (1993). We have kept the
secondary literature quite present in that we also wanted to write an essay that
would strike a balance between covering material that was adequately discussed
in the secondary literature and presenting new lines of investigation. This ex-
plains, for instance, why the reader will find a long and precise exposition of
Löwenheim’s (1915) theorem but only a short one on Gödel’s incompleteness
theorem: Whereas there is hitherto no precise presentation of the first result,
accounts of the second result abound. Finally, the treatment of the foundations
of mathematics is quite restricted and it is ancillary to the exposition of the
history of mathematical logic. Thus, it is not meant to be the main focus of our
exposition.1
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1 Itinerary I. Metatheoretical Properties of Ax-
iomatic Systems

1.1 Introduction

The two most important meetings in philosophy and mathematics in 1900 took
place in Paris. The First International Congress of Philosophy met in August
and so did, soon after, the Second International Congress of Mathematicians. As
symbolic, or mathematical, logic has traditionally been part both of mathemat-
ics and philosophy, a glimpse at the contributions in mathematical logic at these
two events will give us a representative selection of the state of mathematical
logic at the beginning of the twentieth century. At the International Congress of
Mathematicians Hilbert presented his famous list of problems (Hilbert 1900a),
some of which became central to mathematical logic, such as the continuum
problem, the consistency proof for the system of real numbers, and the decision
problem for Diophantine equations (Hilbert’s tenth problem). However, despite
the attendance of remarkable logicians like Schröder, Peano, and Whitehead in
the audience, the only other talk that could be classified as pertaining to math-
ematical logic were two talks given by Alessandro Padoa on the axiomatizations
of the integers and of geometry, respectively.

The third section of the International Congress of Philosophy was devoted
to logic and history of the sciences (Lovett 1900–01). Among the contributors
of papers in logic we find Russell, MacColl, Peano, Burali-Forti, Padoa, Pieri,
Poretsky, Schröder, and Johnson. Of these, MacColl, Poretsky, Schröder, and
Johnson read papers that belong squarely to the algebra of logic tradition.
Russell read a paper on the application of the theory of relations to the problem
of order and absolute position in space and time. Finally, the Italian school of
Peano and his disciples—Burali-Forti, Padoa and Pieri—contributed papers on
the logical analysis of mathematics. Peano and Burali-Forti spoke on definitions,
Padoa read his famous essay containing the “logical introduction to any theory
whatever,” and Pieri spoke on geometry considered as a purely logical system.
Although there are certainly points of contact between the first group of logicians
and the second group, already at that time it was obvious that two different
approaches to mathematical logic were at play.

Whereas the algebra of logic tradition was considered to be mainly an ap-
plication of mathematics to logic, the other tradition was concerned more with
an analysis of mathematics by logical means. In a course given in 1908 in
Göttingen, Zermelo captured the double meaning of mathematical logic in the
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period by reference to the two schools:

The word “mathematical logic” can be used with two different mean-
ings. On the one hand one can treat logic mathematically, as it was
done for instance by Schröder in his Algebra of Logic; on the other
hand, one can also investigate scientifically the logical components
of mathematics. (Zermelo 1908a, 1)2

The first approach is tied to the names of Boole and Schröder, the second
was represented by Frege, Peano and Russell.3 We will begin by focusing on
mathematical logic as the logical analysis of mathematical theories but we will
return later (see itinerary IV) to the other tradition.

1.2 Peano’s school on the logical structure of theories

We have mentioned the importance of the logical analysis of mathematics as
one of the central motivating factors in the work of Peano and his school on
mathematical logic. First of all, Peano was instrumental in emphasizing the im-
portance of mathematical logic as an artificial language that would remove the
ambiguities of natural language thereby allowing a precise analysis of mathemat-
ics. In the words of Pieri, an appropriate ideographical algorithm is useful as “an
instrument appropriate to guide and discipline thought, to exclude ambiguities,
implicit assumptions, mental restrictions, insinuations and other shortcomings,
almost inseparable from ordinary language, written as well as spoken, which
are so damaging to speculative research.” (Pieri 1901, 381). Moreover, he com-
pared mathematical logic to “a microscope which is appropriate for observing
the smallest difference of ideas, differences that are made imperceptible by the
defects of ordinary language in the absence of some instrument that magnifies
them” (382). It was by using this “microscope” that Peano was able, for in-
stance, to clarify the distinction between an element and a class containing only
that element and the related distinction between membership and inclusion.4

The clarification of mathematics, however, also meant accounting for what
was emerging as a central field for mathematical logic: the formal analysis of
mathematical theories. The previous two decades had in fact seen much ac-
tivity in the axiomatization of particular branches of mathematics, including
arithmetic, algebra of logic, plane geometry, and projective geometry. This
culminated in the explicit characterization of a number of formal conditions
which axiomatized mathematical theories should strive for. Let us consider first
Pieri’s description of his work on the axiomatization of geometry, which had
been carried out independently of Hilbert’s famous Foundations of Geometry
(1899). In his presentation to the International Congress of Philosophy in 1900,
Pieri emphasized that the study of geometry is following arithmetic in becom-
ing more and more “the study of a certain order of logical relations; in freeing
itself little by little from the bonds which still keep it tied (although weakly) to
intuition, and in displaying consequently the form and quality of purely deduc-
tive, abstract and ideal science” (Pieri 1901, 368). Pieri saw in this abstraction
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from concrete interpretations a unifying thread running through the develop-
ment of arithmetic, analysis and geometry in the nineteenth century. This led
him to a conception of geometry as a hypothetical discipline (he coined the term
‘hypothetico-deductive’). In fact he goes on to assert that the primitive notions
of any deductive system whatsoever “must be capable of arbitrary interpreta-
tions in certain limits assigned by the primitive propositions,” subject only to
the restriction that the primitive propositions must be satisfied by the particu-
lar interpretation. The analysis of a hypothetico-deductive system begins then
with the distinction between primitive notions and primitive propositions. In
the logical analysis of a hypothetico-deductive system it is important not only
to distinguish the derived theorems from the basic propositions (definitions and
axioms) but also to isolate the primitive notions, from which all the others are
defined. An ideal to strive for is that of a system whose primitive ideas are
irreducible, i.e., such that none of the primitive ideas can be defined by means
of the others through logical operations. Logic is here taken to include notions
such as, among others, “individual”, “class”, “membership”, “inclusion”, “rep-
resentation” and “negation” (383). Moreover, the postulates, or axioms, of the
system must be independent, i.e., none of the postulates can be derived from
the others.

According to Pieri, there are two main advantages to proceeding in such an
orderly way. First of all, keeping a distinction between primitive notions and
derived notions makes it possible to compare different hypothetico-deductive
systems as to logical equivalence. Two systems turn out to be equivalent if for
every primitive notion of one we can find an explicit definition in the second one
such that all primitive propositions of the first system become theorems of the
second system, and vice versa. The second advantage consists in the possibil-
ity of abstracting from the meaning of the primitive notions and thus operate
symbolically on expressions which admit of different interpretations, thereby
encompassing in a general and abstract system several concrete and specific in-
stances satisfying the relations stated by the postulates. Pieri is well known for
his clever application of these methodological principles to geometrical systems
(see Freguglia 1985 and Marchisotto 1995). Pieri refers to Padoa’s articles for
a more detailed analysis of the properties connected to axiomatic systems.

Alessandro Padoa was another member of the group around Peano. Indeed,
of that group, he is the only one whose name has remained attached to a specific
result in mathematical logic, that is Padoa’s method for proving indefinability
(see below). The result was stated in the talks Padoa gave in 1900 at the two
meetings mentioned at the outset (Padoa 1901, 1902). We will follow the “Essai
d’une théorie algébrique des nombre entiers, précédé d’une introduction logique
a une théorie déductive quelconque”. In the Avant-Propos (not translated in van
Heijenoort 1967a) Padoa lists a number of notions that he considers as belonging
to general logic such as class (“which corresponds to the words: terminus of the
scholastics, set of the mathematicians, common noun of ordinary language”).
The notion of class is not defined but assumed with its informal meaning. Ex-
tensionality for classes is also assumed: “a class is completely known when one
knows which individuals belong to it.” However, the notion of ordered class
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he considers as lying outside of general logic. Padoa then states that all sym-
bolic definitions have the form of an equality y = b where y is the new symbol
and b is a combination of symbols already known. This is illustrated with the
property of being a class with one element. Disjunction and negation are given
with their class interpretation. The notions “there is,” and “there is not” are
also claimed to be reducible to the notions already previously introduced. For
instance, Padoa explains that given a class a to say “there is no a” means that
the class not-a contains everything, i.e., not-a = (a or not-a). Consequently,
“there are a[’s]” means: not-a 6= (a or not-a). The notion of transformation is
also taken as belonging to logic. If a and b are classes and if, for any x in a,
ux is in b, then u is a transformation from a into b. An obvious principle for
transformations u is: if x = y then ux = uy. The converse, Padoa points out,
does not follow.

This much was a preliminary to the section of Padoa’s paper entitled “Intro-
duction logique a une théorie déductive quelconque.” Padoa makes a distinction
between general logic and specific deductive theories. General logic is presup-
posed in the development of any specific deductive theory. What characterizes
a specific deductive theory is its set of primitive symbols and primitive propo-
sitions. By means of these one defines new notions and proves theorems of
the system. Thus, when one speaks of indefinability or unprovability, one must
always keep in mind that these notions are relative to a specific system and
make no sense independently of a specific system. Restating his notion of def-
inition he also claims that definitions are eliminable and thus inessential. Just
like Pieri, Padoa also speaks of systems of postulates as a pure formal system
on which one can reason without being anchored to a specific interpretation,
“for what is necessary to the logical development of a deductive theory is not
the empirical knowledge of the properties of things, but the formal knowledge of
relations between symbols” (1901, 121). It is possible, Padoa continues, that
there are several, possibly infinite, interpretations of the system of undefined
symbols which verify the system of basic propositions and thus all the theorems
of a theory. He then adds:

The system of undefined symbols can then be regarded as the ab-
straction obtained from all these interpretations, and the generic
theory can then be regarded as the abstraction obtained from the
specialized theories that result when in the generic theory the sys-
tem of undefined symbols is successively replaced by each of the
interpretations of this theory. Thus, by means of just one argument
that proves a proposition of the generic theory we prove implicitly
a proposition in each of the specialized theories. (1901, 121)5

In contemporary model theory we think of an interpretation as specifying a
domain of individuals with relations on them satisfying the propositions of the
system, by means of an appropriate function sending individual constants to
objects and relation symbols to subsets of the domain. It is important to re-
mark that in Padoa’s notion of interpretation something else is going on. An
interpretation of a generic system is given by a concrete set of propositions with
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meaning. In this sense the abstract theory captures all of the individual theo-
ries, just as the expression x+ y = y+ x captures all the particular expressions
of the form 2 + 3 = 3 + 2, 5 + 7 = 7 + 5, etc.

Moving now to definitions, Padoa states that when we define a notion in an
abstract system we give conditions which the defined notion must satisfy. In
each particular interpretation the defined notion becomes individualized, i.e., it
obtains a meaning that depends on the particular interpretation. At this point
Padoa states a general result about definability. Assume that we have a general
deductive system in which all the basic propositions are stated by means of
undefined symbols:

We say that the system of undefined symbols is irreducible with
respect to the system of unproved propositions when no symbolic
definition of any undefined symbol can be deduced from the system
of unproved propositions, that is, when we cannot deduce from the
system a relation of the form x = a, where x is one of the unde-
fined symbols and a is a sequence of other such symbols (and logical
symbols). (1901, 122)

How can such a result be established? Clearly one cannot adduce the failure
of repeated attempts at defining the symbol; for such a task a method for
demonstrating the irreducibility is required. The result is stated by Padoa as
follows:

To prove that the system of undefined symbols is irreducible with
respect to the system of unproved propositions it is necessary and
sufficient to find, for any undefined symbol, an interpretation of the
system of undefined symbols that verifies the system of unproved
propositions and that continues to do so if we suitably change the
meaning of only the symbol considered. (1901, 122)6

Padoa (1902) covers the same ground more concisely but also adds the criterion
of compatibility for a set of postulates:

To prove the compatibility of a set of postulates one needs to find an
interpretation of the undefined symbols which verifies simultaneously
all the postulates.” (1902, 249)

Padoa applied his criteria for showing that his axiomatization of the theory
of integers satisfied the condition of compatibility and irreducibility for the
primitive symbols and postulates.

We thus see that for Padoa the study of the formal structure of an arbi-
trary deductive theory was seen as a task of general logic. What can be said
about these metatheoretical results in comparison to the later developments?
We have already pointed out the different notion of interpretation which in-
forms the treatment. Moreover, the system of logic in the background is never
fully spelled out and in any case it would be a logic containing a good amount
of set-theoretic notions. For this reason, some results are taken as obvious,
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which would actually need to be justified. For instance, Padoa claims that if an
interpretation satisfies the postulates of an abstract theory then the theorems
obtained from the postulates are also satisfied in the interpretation. This is a
soundness principle, which nowadays must be shown to hold for the system of
derivation and the semantics specified for the system. For similar reasons the
main result by Padoa on the indefinability of primitive notions does not satisfy
current standards of rigor. Thus, a formal proof of Padoa’s definability theorem
had to wait until the works of Tarski (1934–35) for the theory of types and
Beth (1953) for first-order logic (see van Heijenoort 1967a, 118–119 for further
details).

1.3 Hilbert on axiomatization

In light of the importance of the work of Peano and his school on the foundations
of geometry, it is quite surprising that Hilbert did not acknowledge their work
in the Foundations of Geometry. Although it is not quite clear to what extent
Hilbert was familiar with the work of the Italian school in the last decade of
the nineteenth century (Toepell 1986), he certainly could not ignore their work
after the 1900 International Congress in Mathematics. In many ways Hilbert’s
work on axiomatization resembles the level of abstractness also emphasized by
Peano, Padoa, and Pieri. The goal of Foundations of Geometry (1899) is to
investigate geometry axiomatically.7 At the outset we are asked to give up
the intuitive understanding of notions like point, line or plane and to consider
any three system of objects and three sorts of relations between these objects
(lies on, between, congruent). The axioms only state how these properties
relate the objects in question. They are divided into five groups: axioms of
incidence, axioms of order, axioms of congruence, axiom of parallels, and axioms
of continuity.

Hilbert emphasizes that an axiomatization of geometry must be complete
and as simple as possible.8 He does not make explicit what he means by com-
pleteness but the most likely interpretation of the condition is that the axiomatic
system must be able to capture the extent of the ordinary body of geometry.
The requirement of simplicity includes, among other things, reducing the num-
ber of axioms to a finite set and showing their independence. Another important
requirement for axiomatics is showing the consistency of the axioms of the sys-
tem. This was unnecessary for the old axiomatic approaches to geometry (such
as Euclid’s) since one always began with the assumption that the axioms were
true of some reality and thus consistency was not an issue. But in the new
conception of axiomatics the axioms do not express truths but only postulates
whose consistency must be investigated. Hilbert shows that the basic axioms of
his axiomatization are independent by displaying interpretations in which all of
the axioms except one are true.9 Here we must point to a small difference with
the notion of interpretation we have seen in Pieri and Padoa. Hilbert defines
an interpretation by first specifying what the set of objects consists in. Then
a set of relations among the objects is specified in such a way that consistency
or independence is shown. For instance, for showing the consistency of his ax-
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ioms he considers a domain given by the subset of algebraic numbers of the
form

√
1 + ω2 and then specifies the relations as being sets of ordered pairs and

ordered triples of the domain. The consistency of the geometrical system is
thus discharged on the new arithmetical system: “From these considerations it
follows that every contradiction resulting from our system of axioms must also
appear in the arithmetic defined above” (29).

Hilbert had already applied the axiomatic approach to the arithmetic of real
numbers. Just as in the case of geometry the axiomatic approach to the real
numbers is conceived in terms of “a framework of concepts to which we are
led of course only by means of intuition; we can nonetheless operate with this
framework without having recourse to intuition.” The consistency problem for
the system of real numbers was one of the problems that Hilbert stated at the
International Congress in 1900:

But above all I wish to designate the following as the most important
among the numerous questions which can be asked with regard to
the axioms: To prove that they are not contradictory, that is, that
a finite number of logical steps based upon them can never lead to
contradictory results. (1900a, 1104)

In the case of geometry the consistency is obtained by “constructing an ap-
propriate domain of numbers such that to the geometrical axioms correspond
analogous relations among the objects of this domain.” For the axioms of arith-
metic, however, Hilbert required a direct proof, which he conjectured could be
obtained by a modification of the arguments already used in “the theory of ir-
rational numbers.”10 We do not know what Hilbert had in mind, but in any
case, in his new approach to the problem in (1905b), Hilbert made considerable
progress in conceiving how a direct proof of consistency for arithmetic might
proceed. We will postpone treatment of this issue to later (see itinerary VI) and
go back to specify what other metatheoretical properties of axiomatic systems
were being discussed in these years. By way of introduction to the next section,
something should be said here about one of the axioms, which Hilbert in his
Paris lecture calls axiom of integrity and later completeness axiom. The axiom
says that the (real) numbers form a system of objects which cannot be extended
Hilbert (1900b, 1094). This axiom is in effect a metatheoretical statement about
the possible interpretations of the axiom system.11 In the second and later edi-
tions of the Foundations of Geometry the same axiom is also stated for points,
straight lines and planes:

(Axiom of completeness) It is not possible to add new elements to
a system of points, straight lines, and planes in such a way that
the system thus generalized will form a new geometry obeying all
the five groups of axioms. In other words, the elements of geometry
form a system which is incapable of being extended, provided that
we regard the five groups of axioms as valid. (Hilbert 1902, 25)

Hilbert commented that the axiom was needed in order to guarantee that his
geometry turn out to be identical to Cartesian geometry. Awodey and Reck
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(2002) write, “what this last axiom does, against the background of the others,
is to make the whole system of axioms categorical. [. . . ] He does not state
a theorem that establishes, even implicitly, that his axioms are categorical; he
leaves it . . . without proofs” (11). The notion of categoricity was made explicit
in the important work of the “postulate theorists,” to which we now turn.

1.4 Completeness and categoricity in the work of Veblen
and Huntington

A few metatheoretical notions which foreshadow later developments emerged
during the early years of the twentieth century in the writings of Huntington
and Veblen. Hungtington and Veblen are part of a group of mathematicians
known as the American Postulate Theorists (Scanlan 1991, 2003). Huntington
was concerned with providing “complete” axiomatizations of various mathemat-
ical systems, such as the theory of absolute continuous magnitudes [positive real
numbers] (1902) and the theory of the algebra of logic (1905). For instance in
1902 he presents six postulates for the theory of absolute continuous magni-
tudes, which he claims to form a complete set. A complete set of postulates is
characterized by the following properties:

1. The postulates are consistent;

2. They are sufficient;

3. They are independent (or irreducible).

By consistency he means that there exists an interpretation satisfying the pos-
tulates. Condition 2 asserts that there is essentially only one such interpretation
possible. Condition 3 says that none of the postulates is a “consequence” of the
other five.

A system satisfying the above conditions (1) and (2) we would nowadays
call “categorical” rather than “complete.” Indeed, the word “categoricity” was
introduced in this context by Veblen in a paper on the axiomatization of geom-
etry (1904). Veblen credits Hungtington with the idea and Dewey for having
suggested the word “categoricity.” The description of the property is interesting:

Inasmuch as the terms point and order are undefined one has a right,
in thinking of the propositions, to apply the terms in connection with
any class of objects of which the axioms are valid propositions. It
is part of our purpose however to show that there is essentially only
one class of which the twelve axioms are valid. In more exact lan-
guage, any two classes K and K ′ of objects that satisfy the twelve
axioms are capable of a one-one correspondence such that if any
three elements A, B, C of K are in the order ABC, the correspond-
ing elements of K ′ are also in the order ABC. Consequently any
proposition which can be made in terms of points and order either is
in contradiction with our axioms or is equally true of all classes that
verify our axioms. The validity of any possible statement in these
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terms is therefore completely determined by the axioms; and so any
further axiom would have to be considered redundant. [Footnote:
Even were it not deducible from the axioms by a finite set of syllo-
gisms] Thus, if our axioms are valid geometrical propositions, they
are sufficient for the complete determination of Euclidean geometry.

A system of axioms such as we have described is called categor-
ical, whereas one to which is possible to add independent axioms
(and which therefore leaves more than one possibility open) is called
disjunctive. (Veblen 1904, 346)

A number of things are striking about the passage just quoted. First of all, we
are used to define categoricity by appealing directly to the notion of isomorphism.12

What Veblen does is equivalent to specifying the notion of isomorphism for struc-
tures satisfying his 12 axioms. However, the fact that he does not make use of
the word “isomorphism” is remarkable, as the expression was common currency
in group theory already in the nineteenth century. The word ‘isomorphism’ is
brought to bear for the first time in the definition of categoricity in Huntington
(1906–07). There he says that “special attention may be called to the discussion
of the notion of isomorphism between two systems, and the notion of a sufficient,
or categorical, set of postulates”. Indeed, on p. 26 of (1906–07), the notion of
two systems being isomorphic with respect to addition and multiplication is in-
troduced. We are now very close to the general notion of isomorphism between
arbitrary systems satisfying the same set of axioms. The first use of the notion
of isomorphism between arbitrary systems we have been able to find is Bôcher
(1904, 128), who claims to have generalized the notion of isomorphism familiar
in group theory. Weyl (1910) also gives the definition of isomorphism between
systems in full generality.

Second, there is a certain ambiguity between defining categoricity as the
property of admitting only one model (up to isomorphism) and conflating the
notion with a consequence of it, namely what we would now call semantical
completeness.13 Veblen, however, rightly states that, in the case of a categorical
theory, further axioms would be redundant even if they were not deducible from
the axioms by a finite number of inferences.

Third, the distinction hinted at between what is derivable in a finite number
of steps and what follows logically displays a certain awareness of the difference
between a semantical notion of consequence and a syntactical notion of deriv-
ability and that the two might come apart. However, Veblen does not elaborate
on the issue.

Finally, later in the section Veblen claims that the notion of categoricity is
also expressed by Hilbert’s axiom of completeness as well as by Huntington’s
notion of sufficiency. In this he reveals an inaccurate understanding of Hilbert’s
completeness axiom and of its consequences. Baldus (1928) is devoted to show-
ing the non-categoricity of Hilbert’s axioms for absolute geometry even when
the completeness axiom is added. It is however true that in the presence of all
the other axioms, the system of geometry presented by Hilbert is categorical
(see Awodey and Reck 2002).
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1.5 Truth in a structure

The above developments have relevance also for the discussion of the notion of
truth in a structure. In his influential (1986), Hodges raises several historical
issues concerning the notion of truth in a structure, which can now be made more
precise. Hodges is led to investigate some of the early conceptions of structure
and interpretation with the aim of finding out why Tarski did not define truth
in a structure in his early articles. He rightly points out that algebraists and
geometers had been studying “Systeme von Dingen” [systems of objects], i.e.,
what we would call structures or models (on the emergence of the terminology
see itinerary VIII). Thus, for instance, Huntington in (1906–07) describes the
work of the postulate theorist in algebra as being the study of all the systems
of objects satisfying certain general laws:

From this point of view our work becomes, in reality, much more
general than a study of the system of numbers; it is a study of any
system which satisfies the conditions laid down in the general laws
of §1.14

Hodges then pays attention to the terminology used by mathematicians of the
time to express that a structure A obeys some laws and quotes Skolem (1933)
as one of the earliest occurrences where the expression ‘true in a structure’
appears.15

However, here we should point out that the notion of a proposition being
true in a system is not unusual during the period. For instance, in Weyl’s (1910)
definition of isomorphism we read that if there is an isomorphism between two
systems, “there is also such a unique correlation between the propositions true
with respect to one system and those true with respect to the other, and we
can, without falling into error, identify the two systems outright” (Weyl 1910,
301). Moreover, although it is usual in Peano’s school and among the American
postulate theorists to talk about a set of postulates being “satisfied” or “verified”
in a system (or by an interpretation), without any further comments, sometimes
we are also given a clarification which shows that they were willing to use the
notion of truth in a structure. A few examples will suffice.

Let us look at what might be the first application of the method for providing
proofs of independence. Peano in “Principii di geometria logicamente esposti”
(1889) has two signs 1 (for point) and c ε ab (c is a point internal to the seg-
ment ab). Then he considers three categories of entities with a relation defined
between them. Finally he adds: “Depending on the meaning given to the unde-
fined signs 1 and c ε ab, the axioms might or might not be satisfied. If a certain
group of axioms is verified, then all the propositions that are deduced from them
will also be true, since the latter propositions are only transformations of those
axioms and of those definitions” (Peano 1889, 77–78).

In 1900 Pieri explains that “the postulates, just like all conditional propo-
sitions are neither true nor false: they only express conditions that can some-
times be verified and sometimes not. Thus for instance, the equality (x+ y)2 =
x2 +2xy+y2 is true, if x and y are real numbers and false in the case of quater-

11



nions (giving for each hypothesis the usual meaning to +, ×, etc.)” (Pieri 1901,
388–389).

In 1906 Huntington: “The only way to avoid this danger [of using more than
is stated in the axioms] is to think of our fundamental laws, not as axiomatic
propositions about numbers, but as blank forms in which the letters a, b, c,
etc. may denote any objects we please and the symbols + and × any rules of
combination; such a blank form will become a proposition only when a definite
interpretation is given to the letters and symbols—indeed a true proposition
for some interpretations and a false proposition for others. . . From this point
of view our work becomes, in reality, much more general than a study of the
system of numbers; it is a study of any system which satisfies the conditions
laid down in the general laws of §1.” (Huntington 1906–07, 2–3)16

In short, it seems that the expression “a system of objects verifies a certain
proposition or a set of axioms” is considered to be unproblematic at the time
and it is often read as shorthand for a sentence, or a set of sentences, being true
in a system. Of course, this is not to deny that, in light of the philosophical
discussion emerging from non-Euclidean geometries, a certain care was exercised
in talking about “truth” in mathematics but the issue is resolved exactly by
the distinction between axioms and postulates. Whereas the former had been
taken to be true tout court, the postulates only make a demand, which might
be satisfied or not by particular system of objects (see also on the distinction
Huntington 1911, 171–172).

2 Itinerary II. Bertrand Russell’s Mathematical
Logic

2.1 From the Paris congress to the Principles of Mathe-
matics 1900–1903

At the time of the Paris congress Russell was mainly familiar with the algebra
of logic tradition. He certainly knew the works of Boole, Schröder, and White-
head. Indeed, the earliest drafts of The Principles of Mathematics (1903; POM
for short) are based on a logic of part-whole relationship that was closely re-
lated to Boole’s logical calculus. He also had already realized the importance of
relations and the limitations of a subject-predicate approach to the analysis of
sentences. This change was a central one in his abandonment of Hegelianism17

and also led him to the defense of absolute position in space and time against
the Leibnizian thesis of the relativity of motion and position, which was the
subject of his talk at the International Congress of Philosophy, held in Paris
in 1900. However, he had not yet read the works of the Italian school. The
encounter with Peano and his school in Paris was of momentous importance
for Russell. He had been struggling with the problems of the foundation of
mathematics for a number of years and thought that Peano’s system had finally
shown him the way. After returning from the Paris congress, Russell familiar-
ized himself with the publications of Peano and his school and it became clear
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to him that “[Peano’s] notation afforded an instrument of logical analysis such
as I had been seeking for years” (Russell 1967, 218). In Russell’s autobiography
he claims that “the most important year of my intellectual life was the year
1900 and the most important event in this year was my visit to the Interna-
tional Congress of Philosophy in Paris” 1989, 12. One of the first things Russell
did was to extend Peano’s calculus with a worked out theory of relations and
this allowed him to develop a great part of Cantor’s work in the new system.
This he pursued in his first substantial contribution to logic (Russell 1901b,
1902b), which constitutes a bridge between the theory of relations developed by
Peirce and Schröder and Peano’s formalization of mathematics. At this stage
Russell thinks of relations intensionally, i.e., he does not identify them with sets
of pairs. The notion of relation is taken as primitive. Then the notion of the
domain and co-domain of a relation, among others, are introduced. Finally, the
axioms of his theory of relations state, among other things, closure properties
with respect to the converse, the complement, the relative product, the union
and the intersection (of relations or classes thereof). He also defines the no-
tion of function in terms of that of relation (however, in POM they are both
taken as primitive). In this work, Russell treats natural numbers as definable,
which stands in stark contrast to his previous view of number as an indefinable
primitive. This led him to the famous definition of “the cardinal number of a
class u” as “the class of classes similar to u.” Russell arrived at it independently
of Frege, whose definition was similar, but apparently was influenced by Peano
who discussed such a definition in 1901 without, however, endorsing it. In any
case, Peano’s influence is noticeable in Russell’s abandonment of the Boolean
leanings of his previous logic in favor of Peano’s mathematical logic. Russell
now accepted, except for a few changes, Peano’s symbolism. One of Peano’s
advances had been a clear distinction between sentences such as “Socrates is
mortal” and “All men are mortal,” which were previously conflated as being of
the same structure. Despite the similar surface structure the first one indicates
a membership relation between Socrates and the class of mortals, whereas the
second indicates an inclusion between classes. In Peano’s symbolism we have
s ε φ(x) for the first and φ(x) ⊃x ψ(x) for the second. With this distinction
Peano was able to define the relation of subsumption between two classes by
means of implication. In a letter to Jourdain in 1910 Russell writes:

Until I got hold of Peano, it had never struck me that Symbolic Logic
would be any use for the Principles of mathematics, because I knew
the Boolean stuff and found it useless. It was Peano’s ε, together
with the discovery that relations could be fitted into his system, that
led me to adopt Symbolic Logic (Grattan-Guinness 1977, 133)

What Peano had opened for Russell was the possibility of considering the math-
ematical concepts as definable in terms of logical concepts. In particular, an
analysis in terms of membership and implication is instrumental in accounting
for the generality of mathematical propositions. Russell’s logicism finds its first
formulation in a popular article written in 1901 where Russell claims that all
the indefinables and indemonstrables in pure mathematics stem from general
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logic: “All pure mathematics—Arithmetic, Analysis, and Geometry—is built
up of the primitive ideas of logic, and its propositions are deduced from the
general axioms of logic” 1901a, 367.

This is the project that informed the Principles of Mathematics (1903).
The construction of mathematics out of logic is carried out by first develop-
ing arithmetic through the definition of the cardinal number of a class as the
class of classes similar to it. Then the development of analysis is carried out
by defining real numbers as sets of rationals satisfying appropriate conditions.
(For a detailed reconstruction see, among others, Vuillemin 1968, Landini 1998,
Rodriguez-Consuegra 1991, Grattan-Guinness 2000). The main difficulty in
reconstructing Russell’s logic at this stage consists in the presence of logical no-
tions mixed with linguistic and ontological categories (denotation, definition).
Moreover, Russell does not present his logic by means of a formal language.

After Russell finished preparing POM he also began studying Frege with care
(around June 1902). Under his influence Russell began to notice the limitations
in Peano’s treatment of symbolic logic, such as the lack of different symbols
for class union and the disjunction of propositions, or material implication and
class inclusion. Moreover, he changed his symbolism for universal and existential
quantification to (x)f(x) and (Ex)f(x). He adopted from Frege the symbol `
for the assertion of a proposition. His letter to Frege of June 16, 1902 contained
the famous paradox, which had devastating consequences for Frege’s system:

Let w be the predicate: to be a predicate that cannot be predicated
of itself. Can w be predicated of itself? From each answer its oppo-
site follows. Therefore we must conclude that w is not a predicate.
Likewise there is no class (as a totality) of those classes which, each
taken as a totality, do not belong to themselves. From this I con-
clude that under certain circumstances a definable collection does
not form a totality. (Russell 1902a, 125)

The first paradox does not involve the notion of class but only that of predicate.
Let Imp(w) stands for “w cannot be predicated of itself,” i.e. ∼w(w). Now we
ask: is Imp(Imp) true or ∼Imp(Imp)? From either one of the possibilities the
opposite follows. However, what is known as Russell’s paradox is the second one
offered in the letter to Frege. In his work Grundgesetzte der Arithmetik (Frege
1893, 1903) Frege had developed a logicist project that aimed at reconstructing
arithmetic and analysis out of general logical laws. One of the basic assumptions
made by Frege (Basic Law V) implies that every propositional function has an
extension, where extensions are a kind of object. In modern terms we could
say that Frege’s Basic Law V implies that for any property F (x) there exists a
set y = {x : F (x)}. Russell’s paradox consists in noticing that for the specific
F (x) given by x /∈ x, Frege’s principle leads to asserting the existence of the
set y = {x : x /∈ x}. Now if one asks whether y ∈ y or y /∈ y from either one
of the assumptions one derives the opposite conclusion. The consequences of
Russell’s paradox for Frege’s logicism and Frege’s attempts to cope with it are
well known and we will not recount them here (see Garciadiego 1992). Frege’s
proposed emendation to his Basic Law V, while consistent, turns out to be
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inconsistent as soon as one postulates that there are at least two objects (Quine
1955a).18

Extensive research on the development that led to Russell’s paradox has
shown that Russell already obtained the essentials of his paradox in the first
half of 1901 (Garciadiego 1992, Moore 1994) while working on Cantor’s set the-
ory. Indeed, Cantor himself already noticed that treating the cardinal numbers
(resp., ordinal numbers) as a completed totality would lead to contradictions.
This led him to distinguish, in letters to Dedekind, between “consistent mul-
tiplicities,” i.e., classes that can be considered as completed totalities, from
“inconsistent multiplicities,” i.e., classes that cannot, on pain of contradiction,
be considered as completed totalities. Unaware of Cantor’s distinction between
consistent and inconsistent multiplicities Russell, in 1901 convinced himself that
Cantor had “been guilty of a very subtle fallacy” 1901a, 375. His reasoning was
that the number of all things is the greatest of all cardinal numbers. However,
Cantor proved that for every cardinal number there is a cardinal number strictly
bigger than it. Within a few months this conundrum led to Russell’s paradox.
In POM we find, in addition to the two paradoxes we have discussed, also a dis-
cussion of what is now known as Burali-Forti’s paradox (Moore and Garciadiego
1981).

In POM Russell offered a tentative solution to the paradoxes: the theory
of types. The theory of types contained in POM is a version of what is now
called the simple theory of types, whereas the one offered in Russell (1908)
(and Principia Mathematica, Whitehead and Russell 1910, 1913) is called the
ramified theory of types (on the origin of these terms see Grattan-Guinness
2000, 496). Russell’s exposition of the theory of types (in 1903 as well as later)
is far from perspicuous and we will simply give the gist of it. The basic idea is
that every propositional function φ(x) has a range of significance, i.e., a range
of values of x for which it can be meaningfully said to be true or false:

Every propositional function φ(x)—so it is contended—has, in addi-
tion to its range of truth, a range of significance, i.e., a range within
which x must lie if φ(x) is to be a proposition at all, whether true
or false. This is the first point in the theory of types; the second
point is that ranges of significance form types, i.e., if x belongs to
the range of significance of φ(x), then there is a class of objects, the
type of x, all of which must also belong to the range of significance
of φ(x), however φ may be varied. (Russell 1903, 523)

The lowest type, type 0, is the type of all individuals (objects which are not
“ranges”). Then we construct the class of all classes of individuals, i.e., type 1.
Type 2 is the class of all classes of classes of type 1, and so on. This gives an
infinite hierarchy of types for which Russell specifies that “in x ε u the u must
always be of a type higher by one than x” (517). In this way x ε x and its nega-
tion are meaningless and thus it is not possible for Russell’s Paradox to arise,
as there are no ranges of significance, i.e., types, for meaningless propositions.
The other paradoxes considered by Russell are also blocked by the postulated
criteria of meaningfulness. The presentation of the theory in POM is vastly
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complicated by the need to take into account relations and by a number of as-
sumptions which go against the grain of the theory, for instance that “x ε x is
sometimes significant” (525).

Russell, however, abandoned this version of the theory of types and returned
to the theory of types only after trying a number of different theories. Russell’s
abandonment of this theory is explained by the fact that the theory does not
assign types to propositions and thus, as Russell pointed out to Frege (letter
of September 29, 1902), this allows for the generation of a paradox through a
diagonal argument applied to classes of propositions. His search for a solution
to the paradoxes played a central role in his debate with Poincaré concerning
impredicative definitions, to which we now turn.

2.2 Russell and Poincaré on predicativity

In the wake of Russell’s paradoxes many more paradoxes were brought to light,19

the most famous being Berry’s paradox concerning the least ordinal number
not definable in a finite number of words, Richard’s paradox (see below), and
the König-Zermelo contradiction. The latter concerned a contradiction between
König’s “proof” that the continuum cannot be well ordered and Zermelo’s (1904)
proof that every set can be well ordered. Many more were added and one
finds a long list of paradoxes in the opening pages of Russell (1908). What the
paradoxes had brought to light was that not every propositional function defines
a class. Russell’s paradox, for instance, shows that there is a propositional
function, or “norm,” φ(x) for which we cannot assume the existence of {x :
φ(x)}. When trying to spell out which propositional functions define classes,
and which do not, Russell proposed in 1906 the distinction between predicative
and non-predicative norms:

We have thus reached the conclusion that some norms (if not all)
are not entities which can be considered independently of their argu-
ments, and that some norms (if not all) do not define classes. Norms
(containing one variable) which do not define classes I propose to call
non-predicative; those which do define classes I shall call predicative.
(Russell 1906b, 141)

At the time Russell was considering various theories as possible solutions to the
paradoxes and in the 1906 article he mentions three of them: the “no-classes”
theory, the “zig-zag” theory, and the “limitation of size” theory. Accordingly,
the Russellian distinction between predicative and non-predicative norms gives
rise to extensionally different characterizations depending on the theory under
consideration. Russell mentions “simplicity” as the criterion for predicativity in
the “zig-zag” theory and “limitation of size” in the “limitation of size” theory.
In the case of the “no-classes” theory no propositional function is predicative
as classes are eliminated through contextual definitions. However, it is only
with Poincaré’s reply to Russell that we encounter the notion of predicativity
that was at the center of their later debate.20 Poincaré’s discussion also takes
its start from the paradoxes but rejects Russell’s suggestion as to what should
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count as a predicative propositional function, on account of the vagueness of
Russell’s proposal. Poincaré suggested that non-predicative classes are those
that contain a vicious circle. Poincaré did not provide a general account, but
he clarified the proposal through a discussion of Richard’s paradox (Richard
1905). Richard’s paradox takes its start by a consideration of the set E of all
numbers that can be defined by using expressions of finite length over a finite
vocabulary. By a diagonal process one then defines (by appealing explicitly
to E) a new number N which is not in the list. As the definition of N is given
by a finite expression using exactly the same alphabet used to generate E it
follows that N is in E. But by construction N is not in E. Thus N is and is not
in E. Poincaré’s way out was to claim that in defining N one is not allowed to
appeal to E, as N would be defined in terms of the totality to which it belongs.
Thus, according to Poincaré, reference to infinite totalities is the source of the
non-predicativity:

It is the belief in the existence of actual infinity that has given birth
to these non-predicative definitions. I must explain myself. In these
definitions we find the word all, as we saw in the examples quoted
above. The word all has a very precise meaning when it is a ques-
tion of a finite number of objects; but for it still to have a precise
meaning when the number of the objects is infinite, it is necessary
that there should exist an actual infinity. Otherwise all these objects
cannot be conceived as existing prior to their definition, and then,
if the definition of a notion N depends on all the objects A, it may
be tainted with the vicious circle, if among the objects A there is
one that cannot be defined without bringing in the notion N itself.
(Poincaré 1906, 194)

Poincaré was appealing to two different criteria in his diagnosis. On the one
hand he considered a definition to be non-predicative if the definiendum in
some way involves the object being defined. The second criterion asserts the
illegitimacy of quantifying over infinite sets.21

Russell, in “Les Paradoxes de la Logique” (1906a), agreed with Poincaré’s
diagnosis that a vicious circle was involved in the paradoxes but he found
Poincaré’s solution to lack the appropriate generality:

I recognize, however, that the clue to the paradoxes is to be found
in the vicious-circle suggestion; I recognize further this element of
truth in M. Poincaré’s objection to totality, that whatever in any
way concerns all or any or some (undetermined) of the members
of a class must not be itself one of the members of a class. In M.
Peano’s language, the principle I want to advocate may be stated:
“Whatever involves an apparent variable must not be among the
possible values of that variable.” (Russell 1973, 198)

Russell’s objection to Poincaré was essentially that Poincaré’s proposal was not
supported by a general theory and thus seemed ad hoc. Moreover, he pointed out
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that in many paradoxes infinite totalities play no role and thus he concluded that
“the contradictions have no essential reference to infinity.” Russell’s position
brought to light the co-existence of different criteria in Poincaré’s notion of
predicativity. However, what exactly the vicious-circle principle amounted to
remained vague also in Russell’s work, which displayed several non-equivalent
versions of the principle. We will resume discussion of predicative mathematics
in the section on set theory and we move now to a discussion of the last element
we need in order to discuss the ramified theory of types, viz., the theory of
denoting.

2.3 On Denoting

One of the key elements in the formalization of mathematics given in Principia
is the contextual definition of some of the concepts appearing in mathematics.
In other words, not every single mathematical concept is individually defined.
Rather, there are concepts that receive a definition only in the context of a
proposition in which they appear. The philosophical and technical tools for
dealing with contextual definitions was given by the theory of denoting (Rus-
sell 1905, see de Rouilhan 1996, Hylton 1990). The theory of denoting allowed
Russell to account for denoting phrases without having to assume that denoting
phrases necessarily refer to an object. A denoting phrase is given by a list of
examples. The examples include “a man, some man, any man, every man, all
men, the present King of England, the present King of France”. Whether a
phrase is denoting depends solely on its form. However, whether a denoting
phrase successfully denotes something does not depend merely on its form. In-
deed, although “the present King of England” and “the present King of France”
have the same form only the first one denotes an object (at the time Russell is
writing). Expressions of the form “the so-and-so”, a very important subclass of
denoting expressions, are called definite descriptions. Russell’s theory consisted
in parsing a definite description such as “the present King of France is bald” as
“there exists a unique x such that x is King of France and x is bald”. In this
way “the so-and-so” is meaningful only in the context of a sentence and does
not have meaning independently:

According to the view which I advocate, a denoting phrase is essen-
tially part of a sentence, and does not, like most single words, have
any significance on its own account. (Russell 1905, 1973, 113)

It is hard to overestimate the importance of this analysis for the foundations of
mathematics, as denoting phrases, and definite descriptions in particular, are
ubiquitous in mathematical practice. In Principia, Russell and Whitehead will
talk of “incomplete symbols” which do not have an independent definition but
only a “definition in use”, which determines their meaning only in relation to the
context in which they appear. We are now ready to discuss the basic structure
of the ramified theory of types.
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2.4 Russell’s ramified type theory

Poincaré’s criticism of impredicative definitions forced Russell and Whitehead
to reconsider some of the work they had previously carried out. In particular,
Poincaré had criticized the proof of mathematical induction (due to Russell)
presented in Whitehead (1902). Poincaré found the definition of an inductive
number as the intersection of all recurrent classes (i.e., a class containing zero
and closed under successor) to be impredicative. Russell agreed with Poincaré’s
claim that a vicious circle is present in impredicative definitions and, as we
mentioned, presented several theories as possible solutions for the problems
raised by the paradoxes (Russell 1906b). Among the theories developed in this
period, the substitutional theory (an implementation of the no-classes theory)
has been recently subjected to detailed scrutiny (see de Rouilhan 1996, Landini
1998). However, these theories were eventually abandoned and it was the theory
of types, as presented in (1908) and (1910), that became Russell’s final choice
for a solution to the paradoxes. Let us follow the exposition of Russell 1908 in
order to convey the basic ideas of ramified type theory. Russell begins with a
long list of paradoxes: Epimenides (“the liar paradox”), Russell’s paradox for
classes, Russell’s paradox for relations, Berry’s paradox on “the least integer not
nameable in less than nineteen syllables,” the paradox of “the least undefinable
ordinal,”;Richard’s paradox, and Burali-Forti’s contradiction. Russell detects a
common feature to all these paradoxes, which consists in the occurrence of a
certain “self-reference or reflexiveness”:

Thus all our contradictions have in common the assumption of a
totality such that, if it were legitimate, it would at once be enlarged
by new members defined in terms of itself. (Russell 1908, 155)

Thus, the rule adopted by Russell for avoiding the paradoxes, known as the
vicious circle principle, reads: “whatever involves all of a collection must not
be one of a collection.” Russell gives several formulations of the principle.
A different formulation reads: “If, provided a certain collection had a total,
it would have members only definable in terms of that total, then the said
collection has no total” (Russell 1908, 155).22

Notice that the vicious circle principle implies that “no totality can contain
members defined in terms of itself.” This excludes impredicative definitions.
However, Russell insists that the principle is purely negative and that a satis-
factory solution to the paradoxes must be the result of a positive development
of logic. This development of logic is the ramified theory of types. The second
remark concerns the issue of when collections can be considered as having a
total. By claiming that a collection has no total Russell means that statements
about all its members are nonsense. This leads Russell to a lengthy analysis of
the difference between “any” and “all.” For Russell the condition of possibility
for saying something about all objects of a collection rests on the members of
that collection as being of the same type. The partition of the universe into
types rests on the intuition that in order to make a collection, the objects col-
lected must be logically homogeneous. The distinction between “all” and “any”
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is expressed, roughly, by the use of a universally bound variable—which ranges
over a type—versus a free variable whose range is not bounded by a type.

In this way we arrive at the core of the ramified theory of types. Unfor-
tunately, the exposition of the theory, both in (1908) and in Principia, suffers
from the lack of a clear presentation.23 We will not give a detailed technical ex-
position here, but only try to convey the gist of the theory with reference to the
effect of the theory on the structuring of the universe into types. The distinc-
tion into types, however, can also be applied to propositions and propositional
functions.

A type is defined by Russell as “the range of significance of a propositional
function, that is, as the collection of arguments for which the said function has
values” (Russell 1908, 163). We begin with the lowest type, which is simply the
class of individuals. In (1908) the individuals are characterized negatively as
being devoid of logical complexity, and hence as different from propositions and
propositional functions. This is important in order to exclude the possibility
that quantification over individuals might already involve a vicious circle. Type
2 will contain all the (definable) classes of individuals; type 3 all the (definable)
classes of classes of individuals; and so on. What we have described is a form
of the simple theory of types. This theory already takes care of some of the
paradoxes. For instance if x is an object of type n and y an object of type n+ 1
it makes sense to write x ∈ y, but it makes no sense to write x ∈ x. Thus,
in terms of class existence we already exclude the formation of problematic
classes at the syntactic level by declaring that expressions of the form x ∈ y
are significant only if x is of type n, for some n, and y is of type n + 1. This
significantly restricts the classes that can be formed.

However, the simple theory of types is not enough to guarantee that the
vicious circle principle is satisfied. The complication arises due to the following
possibility. One might define a class of a certain type, say n, by quantifying, in
the propositional function defining the class, over collections of objects which
might be of higher type than the one being defined. It is thus essential to
keep track of the way in which classes are defined and not only, so to speak,
of their ontological complexity.24 This leads to a generalized notion of type
(boldface, to distinguish it from type as in the simple theory) for the ramified
theory. Rather than giving the formal apparatus for capturing the theory we
will exemplify the main intuition by considering a few examples.

Type 0: the totality of individuals.
Type 1.0: the totality of classes of individuals that can be defined using

only quantifiers ranging over individuals (type 0).
Type 2.0: the totality of classes of individuals that can be defined by using

only quantifiers ranging over objects of type 1.0 and type 0.
Type 2.1.0: the totality of classes of classes of individuals of type 1.0 that

can be defined using only quantifiers ranging over elements in type 1.0 and in
type 0

And so on. Let us say that type 0 corresponds to order 0, type 1.0 to order
1, and that type 2.1.0 and type 2.0 are of order 2.
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This system of types satisfies the vicious circle principle, as defining an
object by quantifying over a previously given totality will automatically give a
class of higher type. But this also implies that the development of mathemat-
ics in the ramified theory becomes unnatural. In particular real numbers will
appear at different stages of definition. For instance, given a class of real num-
bers bounded above, the least upper bound principle will, in general, generate a
real number of higher type (as the definition of the least upper bound requires
a quantification over classes containing the given class of reals). In order to
provide a workable foundation for analysis, Russell is then forced to postulate
the so-called axiom of reducibility. For its statement we need the notion of a
predicative propositional function (notice that this notion of predicative is not to
be confused with that which is at stake in impredicative definitions). A propo-
sitional function φ(x) is predicative if its order is one higher than that of its
argument. To use the examples above, type 1.0 and type 2.1.0 are predicative
but type 2.0 is not. The axiom of reducibility says that each propositional
function is extensionally equivalent to a predicative function. Since predicative
functions occupy a well specified place in the hierarchy of types, the axiom
has the consequence of rendering many of the types redundant, at least exten-
sionally. Thus, to go back to our example, the axiom implies that all classes of
type 2.0 are all extensionally equivalent to classes in type 1.0. The net effect
of the axiom for the foundations of the real numbers is that it re-establishes
the possibility of treating the reals as being all at the same level. In particular,
the least upper bound of a class of reals will also be given, extensionally, at
the same level as the class used in generating it. However, it has been often
observed (most notably in Ramsey 1925), that the axiom of reducibility defeats
the purpose of having a ramified hierarchy in the first place. Indeed, with the
axiom of reducibility, the ramified theory is equivalent to a form of simple type
theory.

2.5 The logic of Principia

Russell and Whitehead’s project consisted in showing that all of mathematics
could be developed through appropriate definitions in the system of logic defined
in Principia. One must distinguish here between the development of arithmetic,
analysis, and set theory on the one hand and the development of geometry on the
other hand. Indeed for the former theories the axioms of the theory are supposed
to come out to be logical theorems of the system of logic, thereby showing that
arithmetic, analysis, and set theory are basically developments of pure logic.
However, the logicist reconstruction of these branches of mathematics could only
be carried out by assuming the axioms of choice (“the multiplicative axiom”),
infinity, and reducibility among the available “logical” principles. This is one of
the major reasons for the worries about the prospects of logicism in the twenties
and thirties (see Grattan-Guinness 2000).

The situation for geometry, whose development was planned for the fourth
volume of Principia (never published), is different. The approach there would
have been a conditional one. The development of geometry in the system of
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logic given in Principia would have shown that the theorems of geometry can
be obtained in the system of Principia under the assumption of the axioms
of geometry. As these axioms say something about certain specific types of
relations holding for the geometrical spaces in question, the development of
geometry would result in conditional theorems of the logic of Principia with the
form ‘if A then p’, where A expresses the set of geometrical axioms in question
and p is a theorem of geometry.

In both cases, the inferential patterns must be regulated by a specific set of
inferential rules. The development of mathematical logic presented in Part I of
Principia (85–326) divides the treatment into three sections. Section A deals
with the theory of deduction and develops the propositional calculus. Section
B treats the theory of apparent variables (i.e., quantificational logic for types)
and sections C, D, and E the logic of classes and relations. While the treatment
is supposed to present the whole of logic, its organization already permits one
to isolate interesting fragments of the logic presented. In particular, the axiom-
atization of propositional logic presented in section A of Part I is the basis of
much later logical work. Russell and Whitehead take the notion of negation and
disjunction as basic. They define material implication, A ⊃ B, as ∼A∨B. The
axioms for the calculus of propositions are:

1. Anything implied by a true premiss is true

2. ` : p ∨ p .⊃. p ∨ q

3. ` : q .⊃. p ∨ q

4. ` : p ∨ q .⊃. q ∨ p

5. ` : p ∨ (q ∨ r) .⊃. q ∨ (p ∨ r)

6. ` : . q ⊃ r .⊃ : p ∨ q .⊃. p ∨ r

The sign “`” is the sign of assertibility (taken from Frege) and the dotted
notation (due to Peano) is used instead of the now common parentheses. The
only rule of inference is modus ponens; later Bernays pointed out the need to
make explicit the rule of substitution, used but not explicitly stated in Principia.
The quantificational part cannot be formalized as easily due to the need to
specify in detail the type theoretic structure. This also requires checking that
the propositional axioms presented above remain valid when the propositions
contain apparent variables (see Landini 1998 for a careful treatment).

Among the primitive propositions of quantificational logic is the following:
(9.1) ` : φx .⊃. (∃z).φz
About it, Russell and Whitehead say that “practically, the above primitive

proposition gives the only method of proving “existence-theorems”: in order
to prove such theorems, it is necessary (and sufficient) to find some instance in
which an object possesses the property in question” (1910, 131). This is however
wrong and it will be a source of confusion in later debates (see Mancosu 2002).
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2.6 Further developments

The present itinerary on Russell does not aim at providing a full overview of
either Russell’s development in the period in question nor of the later discus-
sion on the nature of logicism. The incredible complexity of Russell’s system
and the wealth of still unpublished material make the first aim impossible to
achieve here. As evidenced by the citations throughout this itinerary (limited
to the major recent books), in the last decade there has been an explosion of
scholarly work on Russell’s contributions to logic and mathematical philosophy.
Moreover, the history of logicism as a program in the foundations of mathe-
matics in the 1920s would require a book on its own.25 We will thus conclude
with a general reflection on the importance of Principia for the development of
mathematical logic proper.

It is hard to overestimate the importance of Principia as the first worked
out example of how to reconstruct in detail from a limited number of basic
principles the main body of mathematics (even though Principia, despite its
length, does not even manage to treat the calculus in full detail). However, it
became evident that a number of problematic principles—such as infinity, choice
and reducibility—were needed to carry out the reconstruction of mathematics
within logic. These existential principles were not obviously logical and in the
case of reducibility seemed rather ad hoc. The further development of logicism in
the twenties can be seen as an attempt to work out a solution to such problems.
One possible solution was to simply reject the axiom of reducibility and accept
that not all of classical mathematics could be obtained in the ramified theory of
types. This was the strategy pursued by Chwistek in a number of articles from
the early twenties. A second solution was offered by Ramsey’s radical rethinking
of the logicist project. Ramsey (1925) distinguished between mathematical and
semantical antinomies. The former have to do with concepts of mathematics,
which are purely extensional whereas the latter involve intensional notions, like
definability, which do not belong to mathematics. By refusing to consider the
semantical antinomies of relevance to mathematics, Ramsey was able to propose
a simple theory of types which could account for classical mathematics and
which he claimed took care of all the mathematical antinomies. This, however,
came at the cost of excluding intensional notions from the realm of logic.

However, it can be said that despite their interest for the history of logi-
cism, these developments did not, properly speaking, affect the development of
mathematical logic for the period we are considering. What was the influence
of Principia for developments in mathematical logic in the 1910s?

First of all, we have a number of investigations related to the propositional
part of Principia. Among the results to be mentioned are Sheffer’s (re)discovery
(1913) of the possibility of defining all Boolean propositional connectives start-
ing from the notion of incompatibility (Sheffer’s stroke). Using Sheffer’s stroke,
Nicod (1916–1919) was able to provide an axiomatization of the propositional
calculus with only one axiom. This work was generalized in the early twen-
ties in Göttingen by extending it to the quantificational part of the calculus.
This development also marks the beginning of combinatory logic. A systematic
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analysis of the propositional part of Principia was also carried out in Bernays’
Habilitationsschrift (1918). Much of this work required a metamathematical
approach to logic, which was absent from Principia (on all this, see itineraries
V and VIII).26 Principia was also influential in the development of systems
of logic that were strongly opposed to some of the major assumptions therein
contained. In the 1910s the most important work in this direction was Lewis’
development of systems of strict implication (Lewis 1918).

However, the major influence of Principia might simply be that of having
established higher-order logic as the paradigm of logic for the next two decades.
While it is true that first-order logic emerges as a (more or less) natural frag-
ment of Principia (see itinerary IV) most logicians well into the thirties (Car-
nap, Gödel, Tarski, Hilbert–Ackermann) still considered higher-order logic the
appropriate logic for formalizing mathematical theories (see Ferreiros 2001 for
extensive treatment).

3 Itinerary III: Zermelo’s Axiomatization of Set
Theory and Related Foundational Issues

The history of set theory during the first three decades of the twentieth cen-
tury has been extensively researched. One area of investigation is the history
of set theory as a mathematical discipline and its influence on other areas of
mathematics. A second important topic is the relationship between logic and
set theory. Finally, much attention has been devoted to the axiomatizations of
set theory, and even to the pluralities of set theories (näıve set theory, Zermelo,
von Neumann, intuitionistic set theory, etc.). Here we will focus on Zermelo’s
axiomatization.

3.1 The debate on the axiom of choice

At the beginning of the century set theory had already established itself both
as an independent mathematical theory as well as in its applications to other
branches of mathematics, in particular analysis.27 In his address to the math-
ematical congress in Paris, Hilbert singled out the continuum problem as one
of the major problems for twentieth century mathematics. One of the prob-
lems that had occupied Cantor, and which he was never able to prove, was
that of whether every set is an aleph, or equivalently, that every set can be
well ordered. Julius König (1904) presented a proof at the third International
Congress of Mathematicians in Heidelberg claiming that the continuum cannot
be well-ordered. A key step of the proof made use of a result by Felix Bern-
stein claiming that ℵℵβ

α = 2ℵβℵα. But after scrutinizing Bernstein’s result in
the wake of König’s talk, Hausdorff (1904) showed that it holds only when α
is a successor ordinal. Soon thereafter, Zermelo showed that every set can be
well ordered (Zermelo 1904).28 Let us recall that an ordered set F is well or-
dered if and only if every non-empty subset of it has a least element (under the
ordering). Zermelo’s proof appealed to
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. . . the assumption that coverings γ actually do exist, hence upon the
principle that even for an infinite totality of sets there are always
mappings that associate with every set one of its elements, or, ex-
pressed formally, that the product of an infinite totality of sets, each
containing at least one element, itself differs from zero. This logical
principle cannot, to be sure, be reduced to a still simpler one, but is
applied without hesitation everywhere in mathematical deduction.
(Zermelo 1904, 141)29

Let M be the arbitrary set for which a well ordering needs to be established.
A covering γ for M in Zermelo’s proof is what we would call a choice function
which for an arbitrary subset M ′ of a set M yields an element γ(M ′) of M ,
called the distinguished element of M ′. It is under the assumption of existence
of such a covering that Zermelo establishes the existence of special sets called
γ-sets. A γ-set is a set Mγ included in M which is well ordered and such that
if a ∈ Mγ and if A = {x : x ∈ Mγ and x < a in the well ordering of Mγ}, then
a is the distinguished element of M − A according to the covering γ. Zermelo
then shows that the union of all γ-sets, Lγ , is a γ-set and that Lγ = M . Thus
M can be well ordered.

Zermelo’s proof immediately gave rise to a major philosophical and math-
ematical discussion.30 The major exchange was published by the Bulletin de
la Société Mathématique de France in 1905 and consisted of five letters ex-
changed among Baire, Borel, Lebesgue, and Hadamard (1905). Baire, Borel,
and Lebesgue shared certain constructivist tendencies, which led them to object
to Zermelo’s use of the principle of choice, although in their actual mathematical
practice they often made use (implicitly or explicitly) of Cantorian assumptions,
including the principle of choice. For instance, Lebesgue’s proof of the countable
additivity of the measurable subsets of the real line relies on the principle of
choice for countable collections of sets. Hadamard took a more liberal stand.

The debate began with an article by Borel, which appeared in Mathematis-
che Annalen (Borel 1905). Borel claimed that Zermelo’s proof had only shown
the equivalence between the well-ordering problem for an arbitrary set M and
the problem of choosing an arbitrary element from each subset of M . However,
Borel did not accept this as a solution to the first problem, for the postulation of
a choice function required by Zermelo was, if anything, even more problematic
than the problem one began with. He found the application of the principle to
uncountably many sets particularly problematic and allowed for the possibility
that the principle might be allowed when we are dealing with countable collec-
tions of sets. Hadamard’s reply to Borel’s article defended Zermelo’s principle.
In the process of defending Zermelo’s application of the principle Hadamard
drew also a few important distinctions. For instance he distinguished between
reasonings in which each choice depends on the previous ones (dependent choice)
from Zermelo’s principle, which postulated simultaneous independent choices.
Moreover, he objected to Borel that he saw no essential difference between
postulating the principle for a countable or an uncountable collection of sets.
Finally, he also pointed at the fact that one had to distinguish between whether
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the choice could be made “effectively” or simply postulated to exist. He empha-
sized the essential difference between showing that an object (say a function)
exists, without however specifying the object, and actually providing a unique
specification of the object. Hadamard claimed that whether one raises the first
or the second problem essentially changes the nature of the mathematical ques-
tion being investigated. The most radical position was taken by Baire, who
defended a strong finitism and refused to accept one of the basic principles un-
derlying Zermelo’s proof. Indeed, he claimed that if a set A is given it does not
follow that the set of its subsets can also be considered as given. And thus, he
rejected that part of Zermelo’s argument that allowed him to pick an element
from every subset of the given set. Baire claimed that Zermelo’s principle was
consistent but that it simply lacked mathematical meaning. Lebesgue’s point
of view also emphasized the issue of definability of mathematical objects. He
asked: “Can one prove the existence of a mathematical object without defin-
ing it?” He also defended a constructivist attitude and claimed that the only
true claim of existence in mathematics must be obtained by defining the object
uniquely. In the last of the five letters Hadamard rejected the constructivist
positions of Baire, Borel and Lebesgue and claimed that mathematical exis-
tence does not have to rely on unique definability. He clearly set out the two
different conceptions of mathematics that were at the source of the debate. On
one conception, the constructivist one, mathematical objects are said to exist if
they can be defined or constructed. On the other conception, mathematical ex-
istence is not dependent on our abilities to either construct or define the object
in question. While allowing the reasonableness of the constructivist position,
Hadamard considered it to rely on psychological and subjective considerations
which were foreign to the true nature of mathematics.

The debate focused attention not only on the major underlying philosophi-
cal issues but also on the important distinctions that one could draw between
different forms of the principle of choice. The positions of Baire, Borel, and
Lebesgue on definability remained vague but influenced later work by Weyl,
Skolem, and others.

Zermelo’s proof was widely discussed and criticized. In the article “A new
proof of the possibility of a well-ordering” (1908b), Zermelo gave a new proof of
the well-ordering theorem, by relying on a generalization of Dedekind’s chains,
and gave a full reply to the criticism that had been raised against his previous
proof (by, among others, Borel, Peano, Poincaré, König, Jourdain, Bernstein,
and Schoenflies). We will focus on Poincaré’s objections.

Poincaré’s criticism of Zermelo’s proof occurred in his discussion (1906) of
logicism and set theory. In particular, he had objected to the formation of
impredicative sets which occur in the proof. Recall that in the final part of the
first proof Zermelo defined the set Lγ as the union of all γ-sets, i.e.,

Lγ = {x : for some γ-set Y, x ∈ Y }

According to Poincaré, this definition is objectionable since in order to deter-
mine whether an element x belongs to Lγ , one needs to go through all the
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γ-sets. But among the γ-sets is Lγ itself and thus a vicious circle is involved
in the procedure. Zermelo replied to Poincaré claiming that his critique would
“threaten the existence of all of mathematics” (Zermelo 1908b, 198). Indeed,
impredicative definitions and procedures occur not only in set theory but in the
most established branches of mathematics, such as analysis:

Now, on the one hand, proofs that have this logical form are by no
means confined to set theory; exactly the same kind can be found
in analysis wherever the maximum or the minimum of a previously
defined “completed” set of numbers Z is used for further inferences.
This happens, for example, in the well-known Cauchy proof of the
fundamental theorem of algebra, and up to now it has not occurred
to anyone to regard this as something illogical. (Zermelo 1908b,
190–191)

Poincaré claimed that there was an essential difference between Cauchy’s proof
(in which the impredicativity is eliminable) and Zermelo’s proof. This debate
forced Poincaré to be more explicit on his notion of predicativity (see Heinzmann
1985) and contributed to Zermelo’s spelling out of the axiomatic structure of
set theory. After presenting the axioms of Zermelo’s set theory we will return
to the issue of impredicativity.

3.2 Zermelo’s axiomatization of set theory

Another set of objections that were raised against Zermelo’s proof raised the
possibility that Zermelo’s assumption might end up generating the set of all or-
dinals W and therefore fall prey to Burali-Forti’s antinomy.31 Zermelo claimed
that a suitable restriction of the notion of set was enough to avoid the anti-
nomies and that in 1904 he had restricted himself “to principles and devices
that have not yet by themselves given rise to any antinomy” (Zermelo 1908b,
192). These principles were the subject of another article which contains the
first axiomatization of set theory (Zermelo 1908c). Zermelo begins by claiming
that no solution to the problem of the paradoxes has yielded a simple and con-
vincing system. Rather than starting with a general notion of set, he proposes
to distill the axioms of set theory out of an analysis of the current state of the
subject. The treatment has to preserve all that is of mathematical value in the
theory and impose a restriction on the notion of set so that no antinomies are
generated. Zermelo’s solution consists in an axiom system containing seven ax-
ioms. The main intuition behind his approach to set theory is one of “limitation
of size,” i.e., sets which are “too large” will not be generated by the axioms.
This is insured by the separation axiom, which in essence restricts the possibility
of obtaining new sets only by isolating (definable) parts of already given sets.
Following Hilbert’s axiomatization of geometry, Zermelo begins by postulating
the existence of a domain B of individuals, among which are the sets, on which
some basic relations are defined. The two basic relations are equality (=) and
membership (∈). For sets A and B, A is said to be a subset of B if and only if
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every element of A is an element of B. The key definition concerns the notion
of definite property:

A question or assertion E is said to be definite if the fundamental
relations of the domain, by means of the axioms and the universally
valid laws of logic, determine without arbitrariness whether it holds
or not. Likewise a “propositional function” E(x), in which the vari-
able term x ranges over all individuals of a class K, is said to be
definite if it is definite for each single individual x of the class K.
(Zermelo 1908c, 201)

This definition plays a central role in the axiom of separation (see below) which
forms the cornerstone of Zermelo’s axiomatic construction. However, the notion
of a propositional function being “definite” remained unclarified and Zermelo
did not specify what “the universally valid laws of logic” are. This lack of
clarity was immediately seen as a blemish of the axiomatization; it was given a
satisfactory solution only later by, among others, Weyl and Skolem. Let us now
list the axioms in Zermelo’s original formulation.

Axiom I (Axiom of extensionality). If every element of a set M is also an
element of N and vice versa, if, therefore, both M ⊂= N and N ⊂= M , then
always M = N ; or, more briefly: Every set is determined by its elements.
[. . . ]

Axiom II (Axiom of elementary sets). There exists a (fictitious) set, the
null set, 0, that contains no element at all. If a is any object of the domain,
there exists a set {a} containing a and only a as element; if a and b are
two objects of the domain, there always exists a set {a, b} containing as
elements a and b but no object x distinct from both. [. . . ]

Axiom III (Axiom of separation). Whenever the propositional function E(x)
is definite for all elements of a set M , M possesses a subset ME containing
as elements precisely those elements x of M for which E(x) is true. [. . . ]

Axiom IV (Axiom of the power set). To every set T there corresponds a
set UT , the power set of T , that contains as elements precisely all subsets
of T .

Axiom V (Axiom of the union). To every set T there corresponds a set
ST , the union of T , that contains as elements precisely all elements of
the elements of T . [. . . ]

Axiom VI (Axiom of choice). If T is a set whose elements are all sets that
are different from 0 and mutually disjoint, its union ST includes at least
one subset S1 having one and only one element in common with each
element of T . [. . . ]

Axiom VII (Axiom of infinity). There exists in the domain at least one set
Z that contains the null set as an element and is so constituted that to
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each of its element a there corresponds a further element of the form
{a}, in other words, that with each of its elements a it also contains the
corresponding set {a} as an element. (Zermelo 1908c, 201–204)

Let us clarify how Zermelo’s axiomatization manages to exclude the gen-
eration of the paradoxical sets and at the same time allows the development
of classical mathematics, including the parts based on impredicative defini-
tions. Previous developments of set theory operated with a comprehension
principle that allowed, given any property P (x), the formation of the set of
objects satisfying P (x), i.e., {x : P (x)}. This unrestricted use of comprehen-
sion leads to the possibility of forming Russell’s paradoxical “set” of all sets
that do not contain themselves as elements, or the “set” of all ordinals W .
However, the separation principle essentially restricts the formation of sets by
requiring that sets be obtained, through some propositional function P (x), as
subsets of previously given sets. Thus, to go back to Russell’s set, it is not
possible to construct {x : ∼(x ∈ x)} but only, for a previously given set A, a
set B = {x ∈ A : ∼(x ∈ x)}. Unlike the former, this set is innocuous and does
not give rise to an antinomy. In the same way we cannot form the set of all
ordinals but only, for any given set A, the set of ordinals in A. The paradoxes
having to do with notions such as denotation and definability, such as Berry’s or
König’s paradoxes, are excluded because the notions involved are not “definite”
in the sense required for Axiom III. Zermelo’s approach here foreshadows the
distinction, later drawn by (Ramsey 1925), between mathematical and semanti-
cal paradoxes, albeit in a somewhat obscure way. In his essay, Zermelo pointed
out that the entire theory of sets created by Cantor and Dedekind could be
developed from his axioms and he himself carried out the development of quite
a good amount of cardinal arithmetic.

In order to connect our discussion to the debate on impredicative definitions
let us look more closely at the principles of Zermelo’s system which allow the
formation of impredicative definitions. We shall consider one classic example,
namely the definition of natural numbers according to Dedekind’s theory of
chains.

In Was sind und was sollen die Zahlen? (1888), Dedekind had given a
characterization of the natural numbers starting from the notion of a chain.
First he argued, in a notoriously fallacious way, that there are simply infinite
systems (or sets), that is, sets that can be mapped one-one into a proper subset
of themselves. Then he showed that each simply infinite system S contains
an (isomorphic) copy of a K-chain, that is a set that contains 1 and which
is closed under successor. Finally, the set of natural numbers is defined as
the intersection of all K-chains contained in a simply infinite system. This
is the smallest K-chain contained in S. From the logical point of view the
definition of the natural numbers by means of an intersection of sets corresponds
to a universal quantification over the power set of the infinite system S. More
formally, N = {X : X ⊂= S and X is a chain in S}. Equivalently, n ∈ N iff n is
a member of all chains in S.
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In Zermelo’s axiomatization of set theory, the above definition of N is jus-
tified by appealing to three axioms. First of all, the existence of an infinite
simple system S is given through the axiom of infinity. By means of the power
set axiom we are also given the set of subsets of S. Finally, we appeal to the
separation axiom to construct the intersection of all chains in S.

It thus appears that the formalization of set theory provided by Zermelo had
met the goals he had set for himself. On the one hand the notion of set was
restricted in such a way that no paradoxical sets could arise. On the other hand,
no parts of classical mathematics seemed to be excluded by its formalization.
Zermelo’s axiomatization proved to be an astounding success. However, there
were problems left. Subsequent discussion showed the importance of the issue
of definability and further results in set theory showed that Zermelo’s axioms
did not quite characterize a single set-theoretic universe. This will be treated
in the next section.

3.3 The discussion on the notion of “definit”

One important contribution to the clarification of Zermelo’s notion of “definit”
came already in Weyl’s “Über die Definitionen der mathematischen Grundbe-
griffe” (1910). After reflecting on the process of “Logisierung der Mathematik,”
Weyl declares in this paper that from the logical point of view set theory is the
proper foundation of the mathematical sciences. Thus, he adds, if one wants
to give general definitional principles that hold for all of mathematics it is nec-
essary to account for the definitional principles of set theory. First, he begins
his definitional analysis with geometry. Relying on Pieri’s work on the founda-
tions of geometry he starts with two relations, x = y and E(x, y, z). E(x, y, z)
means that y and z are equidistant from x. Then he adds that all definitions in
Pieri’s geometry can be obtained by closing the basic relationships under five
principles:

1. Permutation of variables: if A(x, y, z) is a ternary relation so is A(x, z, y).

2. Negation: if A is a relation then not-A is also a relation.

3. Addition: if A(x, y, z) is a ternary relation then A+(x, y, z, w) is a relation,
which holds of x, y, z, w, iff A(x, y, z) holds.

4. Subtraction: if A(x, y, z) is a relation, then so is B(x, y), which holds iff
there exists a z such that A(x, y, z)

5. Coordination: if A(x, y, z) and B(x, y, z) are ternary relations, so is C(x, y, z),
which holds if and only if both A(x, y, z) and B(x, y, z) hold.

For Weyl, these definitional principles are sufficient to capture all the concepts
of elementary geometry. In the later part of the article Weyl poses the ques-
tion: can all the concepts of set theory be obtained from x = y and x ∈ y by
closing under the definitional principles (1)–(5)? Here his reply is negative. He
claims that the fact that in set theory we have objects that can be characterized
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uniquely, such as the empty set, presents a situation very different from the ge-
ometrical one, where all the points are equivalent. He adds that the definitional
principles 1–5 would have to be altered to take care of this situation. How-
ever the definitional principles still play an important role in connection to the
Zermelian concept of “definit.” After pointing out the vagueness of Zermelo’s
formulation of the comprehension principle he proposes an improvement:

A definite relation is one that can be defined from the basic rela-
tionships = and ∈ by finitely many applications of our definitional
principles modified in an appropriate fashion. (Weyl 1910, 304)

The comprehension principle is then stated not for arbitrary propositional func-
tions, as in Zermelo, but in the restricted form for binary relationships:

If M is an arbitrary set, a an arbitrary object, and A is a definite
binary relationship, then the elements x of M which stand in the
relationship A to the object a constitute a set. (Weyl 1910, 304)

In a note to the text, Weyl also expresses his conviction that without a precise
formulation of the definitional principles the solution of the continuum prob-
lem would not be possible. Weyl’s attempt at making precise the notion of
definite property is important because, despite a few remaining obscure points,
it clearly points the way to a notion of definability based on closure under
Boolean connectives and existential quantification over the individuals of the
domain (definition principle 4). In Das Kontinuum (1918), the analysis of the
mathematical concept formation is presented as an account of the principles
of combination of judgments with minor differences from the account given in
(1910). However, the explicit rejection of the possibility of quantifying over
(what he then calls) ideal elements, i.e., sets of elements of the domain, which
characterizes Weyl’s predicative approach in 1918, brings Weyl’s approach quite
close to an explicit characterization of the comprehension principle in terms of
first-order definability.32

Two very important contributions to the problem of “definiteness” were
given by Fraenkel (1922b) and Skolem (1922). The most influential turned out
to be Skolem’s account. Here is the relevant passage from Skolem’s work:

A very deficient point in Zermelo is the notion “definite proposition.”
Probably no one will find Zermelo’s explanations of it satisfactory.
So far as I know, no one has attempted to give a strict formulation
of this notion; this is very strange, since it can be done quite easily
and, moreover, in a very natural way that suggests itself. (Skolem
1922, 292)

Skolem then listed “the five basic operations of mathematical logic”: conjunc-
tion, disjunction, negation, universal quantification, existential quantification.
His proposal is that “by a definite proposition we now mean a finite expression
constructed from elementary propositions of the form a ∈ b or a = b by means
of the five operations mentioned” (292–293). The similarity to Weyl’s account is

31



striking. Although Skolem does not mention Weyl (1910), he was familiar with
it, as he had reviewed it for the Jahrbuch für die Fortschritte der Mathematik
(Skolem 1912).

One final point should be mentioned in connection to these debates on the
notion of “definit.” Weyl, already in (1910), had pointed out that the appeal
to a finite number of applications of the definitional principles showed that the
notion of natural number was essential to the formulation of set theory, which
however was supposed to provide a foundation for all mathematical concepts
(including that of natural number). In Das Kontinuum, he definitely takes the
stand that the concept of natural number is basic, and that set theory cannot
give a foundation for it (Weyl 1918, 24). Zermelo took the opposite stand.
Analyzing Fraenkel’s account of “definit” in (1929), he rejected it on account
of the fact that an explicit appeal to the notion of finitely many applications
of the axiom was involved. But the notion of finite number should be given a
foundation by set theory, which therefore cannot presuppose it in its formulation
(see also Skolem 1929a).

Thus, two major problems emerged in the discussion concerning a refinement
of the notion of “definit.” The first concerned the question of whether set theory
could be considered a foundation of mathematics. Both Skolem and Weyl (who
had abandoned his earlier position) thought that this could not be the case. The
second problem had to do with the choice of the formal language. Why restrict
oneself to first-order logic as Skolem and Weyl were proposing? Why not use a
stronger language? The problem was of course of central significance due to the
relativization of set-theoretical notions that Skolem had pointed out in his 1922
paper (see itinerary IV). We will not follow this discussion in detail but point at
the fact that Zermelo did propose in “Über Stufen der Quantifikation und die
Logik des Unendlichen” (1931) an infinitary logic with the aim of meeting the
challenge of the relativity of set-theoretical notions exploited by Skolem as an
argument against the notion of set theory as foundation of mathematics (what
Zermelo disparagingly called “Skolemism.”)33 As Ferreiros (1999, 363) argues,
it was only after Gödel’s incompleteness results that the idea of using first-
order logic as the “natural” logical scaffolding for axiomatic set theory became
standard.

3.4 Metatheoretical studies of Zermelo’s axiomatization

In treating set theory as an axiomatic system Zermelo had opened the way for
a study of the metatheoretical properties of the system itself such as indepen-
dence, consistency, and categoricity of the axioms. It should be said from the
outset that no real progress was made on the issue of consistency. A proof of the
consistency of set theory was one of the major goals of Hilbert’s program but it
was not achieved. Of course, much attention was devoted to the axiom of choice.
The Polish set-theorist Sierpinski (1918) listed a long set of propositions which
seemed to require the axiom of choice essentially, or which were equivalent to the
axiom of choice. But was the axiom of choice itself indispensable, or could it be
derived from the remaining axioms of Zermelo’s system?34 While this problem
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was only solved by the combined work of Gödel (1940) and Cohen (1966), an in-
teresting result on independence was obtained by Fraenkel in (1922b). Fraenkel
was able to show that the axiom of choice is independent from the other axioms
of Zermelo’s set theory, if we assume the existence of infinitely many urelements,
i.e., basic elements of the domain B which possess no elements themselves. Un-
fortunately, the assumption of a denumerable set of urelements is essential to
the proof and thus the result does not apply immediately to Zermelo’s system.
Moreover, there were reasons to consider the assumption of urelements as for-
eign to set theory. Fraenkel himself in (1922c) had criticized the possibility of
having urelements as part of the domain B, posited at the outset by Zermelo,
as irrelevant for the goal of giving a foundations of mathematics. The possibil-
ity of having interpretations of set theory with urelements, and others without,
already suggested the inability of the axioms to characterize a unique model.
Skolem (1922) (and independently also Fraenkel in the same year) also discusses
interpretations of Zermelo’s axioms in which there are infinite descending chains
. . . ∈ M2 ∈ M1 ∈ M , which he called a descending ∈-sequence, a fact that had
already been pointed out by Mirimanoff (1917).35 A related shortcoming, which
affects both the completeness and the categoricity of Zermelo’s theory, is related
to the inability of the theory to insure that certain sets, which are used unprob-
lematically in the practice of set-theoreticians, actually exist. Skolem gives the
following example. Consider the set M . By the power set axiom we can form
U(M), then U(U(M)) and so on for any finite iteration of the power set axiom.
However, no axiom in Zermelo’s set theory allows us to infer the existence of
{M,U(M),U(U(M)), . . .}. Skolem gives an interpretation which satisfies all the
axioms of set theory, which contains M and all finite iterations of the power set
of M , but in which {M,U(M),U(U(M)), . . . } does not exist. Both shortcom-
ings, infinite descending chains and lack of closure at “limit” stages, pointed
out important problems in Zermelo’s axiomatization. The existence of infinite
descending chains ran against the intuitive conception of set theory as built up
in a “cumulative” way and the lack of closure for infinite sets showed that gen-
uine parts of the theory of ordinal and cardinal numbers could not be obtained
in Zermelo’s system. The latter problem was addressed by Skolem through the
formulation of what came to be known as the replacement axiom:

Let U be a definite proposition that holds for certain pairs (a, b) in
the domain B; assume further, that for every a there exists at most
one b such that U is true. Then, as a ranges over the elements of a
set Ma, b ranges over all elements of a set Mb. (Skolem 1922, 297)

In other words, starting from a set a and a “definite” functional relationship f(x)
on the domain, the range of f(x) is also a set. The name and an independent
formulation, albeit very informal, of the axiom of replacement is due to Fraenkel
(1922c). It is for this reason that Zermelo (1930, 29) calls the theory Zermelo-
Fraenkel set theory. However, Fraenkel had doubts that the axiom was really
needed for “general set theory.” The real importance of the axiom became
clear with the development of the theory of ordinals given by von Neumann,
who showed that the replacement axiom was essential to the foundation of the
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theory.36 Von Neumann (1923) gave a theory of ordinals in which ordinals
are specific well-ordered sets, as opposed to classes of equivalent well-orderings.
This opened the way for a development of ordinal arithmetic independently of
the theory of ordered sets. The definition he obtained is now standard and it
was captured by von Neumann in the claim that “every ordinal is the set of the
ordinals that precede it.” The formalization of set theory he offered in (1925)
is essentially different from that of Zermelo. Von Neumann takes the notion
of function as basic (the notion of set can be recovered from that of function)
and allows classes in addition to sets. This system of von Neumann was later
modified and extended by Bernays and Gödel, to result in what is known as
NBG set theory.37 The central intuition is a “limitation of size” principle,
according to which there are collections of objects which are too big (we now
call them classes), namely those that are equivalent to the class of all things.
The difference between classes and sets is essentially that the latter but not
the former can be elements of other sets or classes. A very important part of
von Neumann’s (1925) consists in the axiomatic investigation of “models” of
set theory. We will come back to this issue in itinerary VIII. Here it should be
pointed out that von Neumann’s technique foreshadowed the studies of inner
models of set theory.

It is only with von Neumann that a new axiom intended to eliminate the
existence of descending ∈-sequences (and finite cycles) was formulated (1925,
1928) (although Mirimanoff had foreshadowed this development by means of
his postulate of “ordinariness” meant to eliminate “extraordinary” sets, that is
infinite descending ∈-sequences). This was the axiom of well-foundedness (von
Neumann 1928, 498), which postulates that every (non-empty) set is such that
it contains an element with which it has no element in common. The axiom
appears in Zermelo (1930) as the Axiom der Fundierung :

Axiom of Foundation: Every (descending) chain of elements, each
member of which is an element of the previous one, breaks up with
a finite index into an urelement. Or, what is equivalent: Every
subdomain T (of a ZF-model) contains at least one element t0, that
has no element t in T . 1930, 31

Thus by 1930 we have all the axioms that characterize what we nowadays call
ZFC, i.e. Zermelo-Fraenkel set theory with choice. However, the formulation
given by Zermelo in (1930) is not first-order, as it relies on second-order quan-
tification in the statement of the axioms of separation and replacement. Even
the second formulation of the axiom of foundation contains an implicit quantifi-
cation over models of ZF.38

During the thirties there were several competing systems for the foundations
of mathematics such as, in addition to Zermelo’s extended system, simple type
theory and NBG. It was only in the second half of the 1930s that the first-order
formulation of ZFC became standard (see Ferreiros 1999, 2001).
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4 Itinerary IV. The Theory of Relatives and Löwenheim’s
Theorem

4.1 Theory of relatives and model theory

Probably, the most important achievements of the algebraic tradition in logic are
the axiomatization of the algebra of classes, the theory of relatives and the proof
of the first results of a clearly metalogical character. The origin of the calculus
of classes is found in the works of Boole. De Morgan was the first logician to
recognize the importance of relations to logic, but he did not develop a theory
of relations. Peirce established the fundamental laws of the calculus of classes
and created the theory of relatives.39 Schröder proposed the first complete
axiomatization of the calculus of classes and expanded considerably the calculus
and the theory of relatives. This theory was the frame that made possible the
proof by Löwenheim of the first metalogical theorem. “Über Möglichkeiten im
Relativkalkül” (1915), the paper in which Löwenheim published these results,
is now recognized as one of the cornerstones in the history of logic (or even in
the history of mathematics) due to the fact that it marks the beginning of what
we call model theory.40

The main theorems of Löwenheim’s paper are (stated in modern terminol-
ogy): (1) not every first-order sentence of the theory of relatives is logically
equivalent to a quantifier-free formula of the calculus of relatives (proved by
Korselt in a letter to Löwenheim), (2) if a first-order sentence has a model, then
it has a countable model, (3) there are satisfiable second-order sentences which
have no countable model, (4) the unary predicate calculus is decidable, and (5)
first-order logic can be reduced to binary first-order logic.

Nowadays, we use the term “Löwenheim-Skolem theorem” to refer to theo-
rems asserting that if a set of first-order sentences has a model of some infinite
cardinality, it also has models of some other infinite cardinalities. The mathe-
matical interest of these theorems is well known. They imply, for example, that
no infinite structure can be characterized up to isomorphism in a first-order
language. Theorem (2) of Löwenheim’s paper was the first one of this group
to be proved and, in fact, the first in the history of logic which established a
non-trivial relation between first-order formulas and their models.

Löwenheim’s theorem poses at least two problems to the historian of logic.
The first is to explain why the theory of relatives made it possible to state and
prove a theorem which was unthinkable in the syntactic tradition of Frege and
Russell. The second problem is more specific. Even today, Löwenheim’s proof
raises many uncertainties. On the one hand, the very result that is attributed to
Löwenheim today is not the one that Skolem—a logician raised in the algebraic
tradition—appears to have attributed to him. On the other hand, present-day
commentators agree that the proof has gaps, but it is not completely clear which
they are. We deal with these questions in the following pages.41

Schröder was interested in the study of the algebras of relatives. As Peirce
and he himself conceived it, an algebra of relatives consists of a domain of rela-
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tives (the set of all relatives included in a given universe), the inclusion relation
between relatives (denoted by ⊂=), six operations (union, intersection, comple-
mentation, relative product, relative sum and inversion) and four distinguished
elements called modules (the total relation, the identity relation, the diversity
relation and the empty class). Schröder’s objective was to study these struc-
tures with the help of a calculus. He could have tried to axiomatize the calculus
of relatives, but, following Peirce, he preferred to develop it within the theory
of relatives. The difference between the theory and the calculus of relatives is
roughly this. The calculus permits the quantification over relatives, but deals
only with relatives and operations between them. The theory of relatives, on the
other hand, is an extension which also allows the quantification over individuals.
The advantage of the theory over the calculus is that the operations between
relatives can be defined in terms of individuals and these definitions provide a
simpler and more intuitive way of proving certain theorems of the calculus.

Neither Peirce nor Schröder thought that the theory of relatives was stronger
than the calculus. Schröder in particular was convinced that all logical and
mathematical problems could be addressed within the calculus of relatives (Schröder
1898, 53). So, he focused on developing the calculus and viewed the theory as a
tool that facilitated his task. Schröder did not address problems of a metalogical
nature, in that he did not consider the relation between the formulas of a formal
language and their models. Arguments or considerations of a semantic type are
not completely absent from Vorlesungen über die Algebra der Logik (henceforth
Vorlesungen), but they occur only in the proofs of certain equations, and so we
cannot view them as properly metalogical.

Schröder posed numerous problems regarding the calculus of relations, but
very few later logicians showed any interest in them, and the study of the al-
gebras of relatives was largely neglected until Tarski. In (1941), his first paper
on the subject, Tarski claimed that hardly any progress had been made in the
previous 45 years and expressed his surprise that this line of research should
have had so few followers.42

Schröder was not interested in metalogical questions, but the theory of rel-
atives as he conceived it made it possible to take them into consideration. As
a preliminary appraisal, we can say that in the theory of relatives two interpre-
tations coexist: an algebraic interpretation, and a propositional interpretation.
This means that the same expressions can be seen both as expressions of an
algebraic theory and as formulas of logic (i.e., as well-formed expressions of a
formal language which we may use to symbolize the statements of a theory in
order to reflect its logical structure). We do not mean by this that the whole
theory admits of two interpretations, because not all the expressions can be read
in both ways, but the point is that some expressions do.

One way of viewing the theory of relatives that gives a fairly acceptable
idea of the situation is as a theory of relations together with a partly algebraic
presentation of the logic required to develop it.43 The theory constitutes a
whole, but it is important to distinguish the part that deals with the tools
needed to construct and evaluate the expressions that denote a truth value
(i.e., the fragment that concerns logic) from the one that deals specifically with
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relatives. So, in order to prove his theorem, Löwenheim had to think of logic
as a differentiated fragment of the theory of relatives and delimit the formal
language at least to the extent required to state and prove the theorem.

With the exception of the distinction between object language and meta-
language (an absence that needs emphasizing as it causes many problems in
the proof by Löwenheim of his theorem), the basic components of model theory
are found in one way or another in the theory of relatives. On the one hand,
the part of the theory dealing with logic contains more or less implicitly the
syntactic component of a formal language with quantification over relatives: a
set of logical symbols with its corresponding propositional interpretation and a
syntax borrowed from algebra. On the other, the algebraic interpretation sup-
plies a semantics for this language in the sense that it is enough to evaluate
the expressions of this language. In this situation, all that remains to be done
in order to obtain the first results of model theory is: first, to become aware
that the theory does include a formal language and to single it out; second, to
focus on this language and, in particular, on its first-order fragment; and third,
to investigate the relationship between the formulas of this language and the
domains in which they hold. As far as we know, Löwenheim was the first in the
history of logic to concentrate on first-order logic and to investigate some of its
non-trivial metalogical properties.

4.2 The logic of relatives

In order to understand Löwenheim’s proof and the relationship between his
paper and the theory of relatives, we need first to present the logic of relatives
(i.e., the fragment of the theory that concerns logic).44 In our exposition, we will
distinguish syntax from semantics, although such a distinction is particularly
alien to the logic of relatives. Consequently, the exposition should no be used to
draw conclusions about the level of precision found in Schröder or in Löwenheim.

Strictly speaking, relatives denote relations on the (first-order) domain and
they are the only non-logical symbols of the logic of relatives. However, as a
matter of fact, in the writings of the algebraists the word relative refers both to
a symbol of the language and to the object denoted by it. The only relatives
usually taken into account are binary, on the assumption that all relatives can
be reduced to binary.45

What we would call today logical symbols are the following: a) indices; b)
module symbols: 1′ and 0′; c) operation symbols: +, · and –; d) quantifiers: Σ
and Π; d) equality symbol: =; and e) propositional constants: 1 and 0.

Indices play the role of individual variables. As indices the letters h, i, j, k
and l are the most frequently used.

In the theory of relatives, the term module is used to refer to any of the
four relatives 1, 0, 1′ and 0′. The module 1 is the class of all ordered pairs
of elements of the (first-order) domain; 0 is the empty class; 1′ is the identity
relation on the domain; and 0′ is the diversity relation on the domain. In the
logic of relatives, 1′ and 0′ are used as relational constants and 1 and 0 are not
viewed as modules, but as propositional constants denoting the truth values.
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There are six operations on the set of relatives: identical sum (union, de-
noted by +), identical product (intersection, denoted by ·), complement (–),
relative sum, relative product and inversion. None of these operations belongs
to the logic of relatives. The symbols corresponding to the first three operations
are used ambiguously to refer also to the three well-known Boolean operations
defined on the set {0, 1}. This is the meaning they have in the logic of relatives.

If i and j are elements of the domain and a is a relative or a module, then aij

is a relative coefficient. For example, the relative coefficients of z in the domain
{2, 3} are z22, z23, z32 and z33. Relative coefficients can only take two values:
the truth values (1 and 0). That is, if aij is a relative coefficient, then

aij = 1 or aij = 0.

Relative coefficients admit of a propositional interpretation: aij expresses
that the individual i is in the relation a with the individual j. This interpreta-
tion allows us to regard relative coefficients as atomic formulas of a first-order
language, but in the logic of relatives they are considered as terms.

If A and B are expressions denoting a truth value, so are (A + B), (A · B)
and A; for example, (aij + bij), (aij · bij) and (aij) are meaningful expressions
of this sort. Terms denoting a truth value admit a propositional reading when
the symbols +, · and occurring in them are viewed as connectives.

The symbols Σ and Π have different uses in the theory of relatives and they
cannot be propositionally interpreted as quantifiers in all cases. We will restrict
ourselves to their use as quantifiers. If u is a variable ranging over elements (or
over relatives) and Au is an expression denoting a truth value in which u occurs,
then

Σ
u
Au and Π

u
Au

are respectively the sum and the product of all Au, where u ranges over the
domain (or over the set of relatives). From the algebraic point of view, these
expressions are terms of the theory, because they denote a truth value. They
also admit a propositional reading, Σ can also be interpreted as the existential
quantifier and Π as the universal one. For example, Σ

i
Π
j
zij can also be read as

“there exists i such that for every j, i is in the relation z with j”.46

The canonical formulas of the theory of relatives are the equations, i.e., the
expressions of the form A = B, where both A and B are terms denoting either
a relative or a truth value. As a special case, A = 0 and A = 1 are equations.47

The logic of relatives only deals with terms that have a propositional inter-
pretation, that is, with terms denoting a truth value. A first-order term is a
term of this kind whose quantifiers (if any) range over elements (not over rel-
atives). In his presentation of the logic of relatives (1915), Löwenheim uses
the word Zählausdruck (first-order expression) to refer to these terms, and the
word Zählgleichung (first-order equation) to refer to the equations whose terms
are first-order expressions.48 In order to move closer to the current terminol-
ogy, in what follows we will use the word “formula” for what Löwenheim calls
Zählausdruck.
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The set over which the individual variables range is the first-order domain
(Denkbereich der ersten Ordnung) and is denoted by 11. The only condition
that this domain must fulfill is to be non-empty. Schröder insists that it must
have more than one element, but Löwenheim ignores this restriction. Rela-
tive variables range over the set of relations on 11. The second-order domain
(Denkbereich der zweiten Ordnung), 12, is the set of all ordered pairs whose
coordinates belong to 11. In this exposition we are using the word domain as
shorthand for “first-order domain”.

The current distinction between the individual variables of the object lan-
guage and the metalinguistic variables ranging over the elements of the domain
does not exist in the logic of relatives. From the moment it is assumed that
an equation is interpreted in a domain, the indices play simultaneously the role
of variables of the formal language and that of variables of the metalanguage.
The canonical names of the elements of the domain are then used as individual
constants having a fixed interpretation. Thus, the semantic arguments that we
find in the logic of relatives are better reproduced when we think of them as
arguments carried out in the expanded language that results from adding the
canonical names of the elements to the basic language.

Interpreting an equation means fixing a domain and assigning a relation on
the domain to each relative occurring in it. We can say that an interpretation
in a domain D of an equation (without free variables) is a function that assigns
a relation on D to each relative occurring in the equation. The interpretation
of a relative z can also be fixed by assigning a truth value to each coefficient
of z in D, because, in the theory of relatives, for every a, b ∈ D, 〈a, b〉 ∈ z if
and only if zab = 1. Thus, an interpretation of an equation in a domain D can
also be defined as an assignment of truth values to the coefficients in D of the
relatives (other than 1′ and 0′) occurring in the equation.

The most immediate response to an equation is to inquire about the systems
of values that satisfy it. This inquiry has a clear meaning in the context of the
logic of relatives and it does not require any particular clarification in order
to understand it. The equations of the logic of relatives are composed of terms
which in a domain D take a unique value (1 or 0) for each assignment of values to
the coefficients in D of the relatives occurring in them. An equation is satisfied
by an interpretation I in a domain if both members of the equation take the
same value under I. There is no essential difference between asking if there is
a solution (an interpretation) that satisfies the equation A = 1 and asking if
the formula A is satisfiable in the modern sense.49 In this way, in the logic of
relatives semantic questions arise naturally, propitiated by the algebraic context.
There is no precise definition of any semantic concept, but the meaning of these
concepts is clear enough for the proof of theorems such as Löwenheim’s.

4.3 Löwenheim’s theorem

The simplest versions of the Löwenheim-Skolem theorem can be stated as fol-
lows: for every first-order sentence A,
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a) if A is satisfiable, then it is satisfiable in some countable domain;

b) if an interpretation I in D satisfies A, there exists a countable subdomain
of D such that the restriction of I to the subdomain satisfies A.

Version (b) (the subdomain version) is stronger than version (a) (the weak
version) and has important applications in model theory. Some form of the
axiom of choice is necessary to prove the subdomain version, but not to prove
the weak one.

All modern commentators of Löwenheim’s proof agree that he proved the
weak version, and that it was Skolem who in (1920) first proved the subdomain
version and further generalized it to infinite sets of formulas. By contrast,
Skolem (1938, 455), a logician trained in the algebraic tradition, attributed
to Löwenheim the proof of the subdomain version and in our opinion, this
attribution must be taken seriously. The fact that Löwenheim’s proof allows
two readings so at variance with each other shows patently his argument is far
from clear.

As far as the correctness of the proof is concerned, no logician of Löwenheim’s
time asserts that the proof is incorrect, or that it has major gaps. The only
inconvenience mentioned by Skolem is that the use of fleeing indices complicates
the proof unnecessarily.50 Herbrand thought that Löwenheim’s argument lacks
the rigor required by metamathematics, but considered it “sufficient in mathe-
matics” (Herbrand 1930, 176). The most widely held position today is that the
proof has some important gaps, although commentators differ as to precisely
how important they are. Without actually stating that the proof is incorrect,
van Heijenoort maintains that Löwenheim does not account for one of the most
important steps. Dreben and van Heijenoort (1986, 51) accept that Löwenheim
proved the weak version, but state that their reading of the proof is a charitable
one. For Vaught (1974, 156), the proof has major gaps, but he does not specify
what they are. Wang (1970, 27 and 29) considers that Löwenheim’s argument
is “less sophisticated” than Skolem’s in 1922, but does not say that it has any
important gaps. Moore’s point of view is idiosyncratic (see Moore 1980, 101
and Moore 1988, 121–122). In his opinion, the reason why Löwenheim’s argu-
ment appears “odd and unnatural” to the scholars just mentioned is that they
consider it inside standard first-order logic instead of considering it in the frame
of infinitary logic.

This diversity of points of view makes manifest the difficulty of understand-
ing Löwenheim’s argument and at the same time the necessity to provide a new
reading of it.

Theorem 2 of Löwenheim’s paper is :

If the domain is at least denumerably infinite, it is no longer the case
that a first-order fleeing equation is satisfied for arbitrary values of
the relative coefficients. (Löwenheim 1915, 235)
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A fleeing equation is an equation that is not logically valid, but is valid in
every finite domain. Löwenheim’s example of a fleeing equation is:

Σ
l

Π
i,j,h

(zhi + zhj + 1′ij)zliΣ
k
zki = 0.

For the proof of the theorem, he assumes without any loss of generality that
every equation is in the form A = 0. This allows him to go from equations
to formulas, bearing in mind that “A = 0 is valid” is equivalent to “A is not
satisfiable”. Thus, Löwenheim’s argument can also be read as a proof of

Theorem. If a first-order sentence (a Zählausdruck) is satisfiable but not sat-
isfiable in any finite domain, then it is satisfiable in a denumerable domain.

Löwenheim’s proof can be split into two lemmas. We will state them for
formulas (not for equations) and will comment on their proof separately.

Lemma 1 Every sentence of a first-order language is logically equivalent to a
sentence of the form ΣΠF , where Σ stands for a possibly empty string of exis-
tential quantifiers, Π stands for a possibly empty string of universal quantifiers
and F is a quantifier-free formula.

The central step in the proof of this lemma involves moving the existential
quantifiers in front of the universal quantifiers, preserving logical equivalence.
Löwenheim takes this step by applying the equality

Π
i
Σ
k
Aik = Σ

ki

Π
i
Aiki

, (1)

which is a notational variant of a transformation introduced by Schröder (1895,
513–516). According to Löwenheim, Σ

ki

is an n-fold quantifier, where n is the

cardinality of the domain (n may be transfinite).51 For example, if the domain
is the set of natural numbers, then

Σ
ki

Π
i
Aiki

(2)

can be developed in this way:

Σ
k1,k2,k3,...

A1k1A2k2A3k3 . . .

Löwenheim warns, however, that this development of (2) contravenes the stip-
ulations on language, even if the domain is finite.

Löwenheim calls terms of the form ki fleeing indices (Fluchtindizes) and
says that these indices are characterized by the fact that their subindices are
universally quantified variables, but in fact, he also gives that name to the
indices generated by a fleeing index when its universally quantified variables
take values on a domain (k1, k2, k3, . . . in the example).
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Schröder’s procedure for changing the order of quantifiers is generally con-
sidered to be the origin of the concept of the Skolem function, and

∀x∃yA(x, y) ↔ ∃f∀xA(x, fx)

as the current way of writing (1).52 Even if we subscribed to this assertion, we
should notice that neither Schröder nor Löwenheim associated the procedure
for changing the order of quantifiers with the quantification over functions (as
Goldfarb notes). Skolem did not make this association either. In addition, the
interpretation of (2) in terms of Skolem functions does not clarify why Schröder
and Löwenheim reasoned as they did, nor does it explain some of Skolem’s
assertions as this one: “But his [Löwenheim’s] reasonings can be simplified by
using the ‘Belegungsfunktionen’ (i.e., functions of individuals whose values are
individuals)” (Skolem 1938, 455–456). Finally, it is debatable whether fleeing
indices are functional terms or not.

The usual way of interpreting Löwenheim’s explanation of the meaning of
(2) can be summarized as follows: (2) is a schema of formulas which produces
different formulas depending on the cardinality of the domain under consider-
ation; when the domain is infinite the result of the development is a formula
of infinite length; in each case, (2) should be replaced by its development in
the corresponding domain.53 Against this interpretation the above mentioned
warning could be cited and also the fact that, strictly speaking, no step in
Löwenheim’s proof consists of the replacement of a formula by its development.

The main characteristic of fleeing indices is their ability to generate a dif-
ferent term for each element of the domain. If a is an element of the domain
and ki is a fleeing index, then ka is an index. The terms generated by a fleeing
index behave like any “normal” index (i.e. like any individual variable). Thus,
Löwenheim can assert that ka, unlike ki, stands for an element of the domain.

In our view, Löwenheim’s recourse to the development of quantifiers in a
domain is a rather rough and ready way of expressing the semantics of formulas
with fleeing indices. The purpose of the development of (2) is to facilitate the
understanding of this kind of formulas. Today’s technical and expressive devices
allow us to express the meaning of (2) without recourse to developments. If for
the sake of simplicity let us suppose that (2) has no free variables, then

(3) Σ
ki

Π
i
Aiki

is satisfied by an interpretation I in a domain D if

and only if there is an indexed family 〈ka | a ∈ D〉 of elements
of D such that for all a ∈ D : Aiki

is satisfied by I in D when
i takes the value a and ki the value ka.

This interpretation of (2) is what Löwenheim attempts to express and is
all we need to account for the arguments in which (2) intervenes. Löwenheim
(unlike Schröder) does not see (2) as a schema of formulas. The developments
are informal explanations (informal, because they contravene the stipulation of
language) whose purpose is to facilitate the understanding of quantification over
fleeing indices. Löwenheim has no choice but to give examples, because the lim-
itations of his conceptual apparatus (specifically, the lack of a clear distinction
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between syntax and semantics) prevents him from giving the meaning of (2) in
a way analogous to (3). Many of Schröder’s and Löwenheim’s arguments and
remarks are better understood when they are read in the light of (3). In par-
ticular, some of these remarks show that they did not relate quantification over
fleeing indices with quantification over functions, because they did not relate
the notion of indexed family with that of function.

In the proof of Lemma 1, Löwenheim aims to present a procedure for ob-
taining a formula of the form ΣΠF logically equivalent to a given formula A.
One of the most striking features of Löwenheim’s procedure is that the order
in which he proceeds is the opposite of the one we would follow today. First he
moves the existential quantifiers of A in front of the universal ones, and then
obtains the prenex form. This way of arriving at a formula of the form ΣΠF
introduces numerous, totally unnecessary complications. One of the most un-
fortunate consequences of the order that Löwenheim follows is that the prenex
form cannot be obtained in a standard first-order language, because the formula
that results from changing the order of the quantifiers will contain quantified
fleeing indices. Thus, in order to obtain the prenex form we need equivalences
that tell us how to deal with these expressions, and how to resolve the syntactic
difficulties that they present. Löwenheim ignores these problems.

The proof of the lemma presents some problems, but its first part, the one in
which existential quantifiers are moved in front of universal ones, is an essentially
correct proof by recursion. Löwenheim is not aware of the recursion involved,
but his proof shows that he intuits the recursive structure of a formal language.

Lemma 2 If ΣΠF is satisfiable but not satisfiable in any finite domain, then
it is satisfiable in a denumerable domain.

First of all, Löwenheim shows with the aid of examples that for this proof
we can ignore the existential quantifiers of ΣΠF . He notes that a formula of
the form ΠF is satisfiable in a domain D if there exists an interpretation of the
relatives occurring in F and an assignment of values (elements in D) to the free
variables of F and to the indices generated by the fleeing indices when their
subindices range over the domain. But this is precisely what it means to assert
that ΣΠF is satisfiable in D.

The proof proper begins with the recursive definitions of a sequence (Cn,
n ≥ 1) of subsets of C = {1, 2, 3, . . .} and of some sequences of formulas as
follows:

1) If ΠF is a sentence, C0 = {1}. If {j1, . . . , jm} are the free variables of ΠF,
then C0 = {1, . . . ,m}. Let ΠF ′ be the result of replacing in ΠF the constant n
(1 ≤ n ≤ m) for the variable jn. Let F1 be the product of all the formulas that
are obtained by dropping the quantifiers of ΠF ′ and replacing the variables that
were quantified by elements of C0. For example, if ΠF = Π

i
F (i, j1, j2, ki) then,

C0 = {1, 2} and
F1 = F (1, 1, 2, k1) · F (2, 1, 2, k2).

If F1 has p fleeing indices, we enumerate them in some order from m + 1
to m + p. P1 is the result of replacing in F1 the individual constant n for the
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fleeing index tn (m+ 1 ≤ n ≤ m+ p) and C1 is the set of individual constants
of P1, that is, C1 = {1, 2, . . . ,m, . . . ,m + p}. If ΠF and, therefore, F1 has no
fleeing indices, then P1 = F1 and C1 = C0. If in our example, the fleeing indices
are enumerated from 2 onwards in the order in which they occur in F1, then

P1 = F (1, 1, 2, 3) · F (2, 1, 2, 4).

At this point Löwenheim makes the following claim:

Claim 2.1 If P1 is not satisfiable, then ΠF is not satisfiable.

In order to determine whether P1 is satisfiable or not, Löwenheim takes iden-
tity into account and considers all possible systems of equalities and inequalities
between the constants that occur in P1.54 He implicitly assumes that we choose
a representative of each equivalence class of each equivalence relation. Then,
for each system of equalities between the constants of P1, we obtain the formula
resulting from

i) replacing each constant of P1 by the representative of its class; and

ii) evaluating the coefficients of 1′ and 0′. This means that in place of 1′ab, we
will write 1 or 0, depending on whether a = b or a 6= b, and analogously
for the case of 0′ab. Thus, each system of equalities determines the values
of the relative coefficients of 1′ and 0′ and this allows us to eliminate these
coefficients.

Since C1 is finite, we obtain by this method a finite number of formulas:

P 1
1 , P

2
1 , . . . , P

q
1 .

Following Skolem’s terminology (1922, 296), we will use the expression formulas
of level 1 to refer to these formulas.

Löwenheim goes on by stating:

Claim 2.2 If no formula of level 1 is satisfiable, then ΠF is not satisfiable.

He could now have applied the hypothesis of the theorem in order to conclude
that there are satisfiable formulas at level 1, but instead of doing so, he argues
as follows: if no formula of level 1 is satisfiable, we are done; if some formula is
satisfiable, we proceed to the next step of the construction.

2) Let F2 be the product of all the formulas that are obtained by dropping the
quantifiers of ΠF ′ and replacing the variables that were quantified by elements
of C1. Evidently, the fleeing indices of F1 are also fleeing indices of F2. Suppose
that F2 has q fleeing indices that do not occur in F1. Enumerate these new
fleeing indices in some order starting at m + p + 1. Now, P2 is the result of
replacing in F2 each individual constant n for the corresponding fleeing index
tn (m + 1 ≤ n ≤ m + p + q) and C2 is the set of individual constants of P2,
that is, C2 = {1, 2, . . . ,m + p + q}. If ΠF and, therefore, F1 has no fleeing
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indices, then P2 = P1 and C2 = C1. If in our example, the fleeing indices are
enumerated from 4 onwards in the order in which they occur in F1, then

P2 = F (1, 1, 2, 3) · F (2, 1, 2, 4) · F (3, 1, 2, 5) · F (4, 1, 2, 6).

As before, we take into account all possible systems of equalities between the
elements of C2, and for each of these systems, we obtain the formula resulting
from replacing each constant by the representative of its class and from eval-
uating the coefficients of 1′ and 0′. Let the formulas obtained by this method
(the formulas of level 2) be:

P 1
2 , P

2
2 , . . . , P

r
2 .

If no formula of level 2 is satisfiable, we are done; if any of them is satisfiable,
we repeat the process in order to construct P3, C3 and the formulas of level 3. By
repeatedly applying this method, we can construct for each n ≥ 1, the formula
Pn, the subset Cn and the associated formulas of level n.

We will emphasize a number of points that will be important in the final
part of the proof.

a) The number of formulas at each level is finite, since for each n, Cn is
finite.

b) Let us say that a formula A is an extension of a formula B, if A is of the
form B · B′. Löwenheim assumes that for every n, Fn+1 is an extension of Fn.
Thus, if n < m, Pm is an extension of Pn, and each formula Q of level m is an
extension of one and only one formula of level n. The relation of extension on
the set of all formulas occurring at some level (the formulas P r

n obtained from
P1, P2, . . .) is a partial order on the set of all formulas. This kind of partial
order is what we today call a tree.

c) Since what we said about the formulas of level 1 goes for any n > 1 as
well, the following generalization of Claim 2.2 can be considered as proven:

Claim 2.3 If there exists n such that no formula of level n is satisfiable, then
ΠF is not satisfiable.

We will now present the last part of Löwenheim’s argument. We will de-
liberately leave a number of points unexplained—points which, in our opinion,
Löwenheim does not clarify. In the subsequent discussion we will argue for our
interpretation and will explain all the details.

By the hypothesis of the theorem, there is an interpretation in an infinite
domain D that satisfies ΣΠF and, therefore, ΠF . As as consequence, at each
level there must be at least one true formula under this interpretation and,
therefore, the tree of formulas constructed by following Löwenheim’s procedure
is infinite. Among the true formulas of the first level which, we recall, is finite,
there must be at least one which has infinitely many true extensions (i. e., one
which has true extensions at each of the following levels). Let Q1 be one of
these formulas. At the second level, which is also finite, there are true formulas
which are extensions of Q1 and which also have infinitely many true extensions.
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Let us suppose that Q2 is one of these formulas. In the same way, at the third
level there must be true formulas which are extensions of Q2 (and, therefore,
of Q1) and which have infinitely many true extensions. Let Q3 be one of these
formulas. In this way, there is a sequence of formulas Q1, Q2, Q3, . . . such that
for each n > 0 : Qn+1 is a true extension of Qn. Consequently,

Q1 ·Q2 ·Q3 · . . . = 1. (4)

The values taken by the various kind of indices whose substitution gives rise to
the sequence Q1, Q2, Q3, . . . determine a subdomain of D on which ΠF has the
same truth value as Q1 · Q2 · Q3 · . . .. Since this subdomain cannot be finite,
because ΠF is not satisfiable in any finite domain, we conclude that ΠF = 1 in
a denumerable domain. This ends the proof of the theorem.

Basically, this part of Löwenheim’s argument is the proof of a specific case
of what we know today as the infinity lemma proved later with all generality
by Denes König (1926, 1927). The proof of this lemma requires the use of some
form of the axiom of choice, but when the tree is countable (as in this case)
any enumeration of its nodes allows us to choose one from each level without
appealing to the axiom of choice. Since Löwenheim does not choose the formulas
on the basis of any ordering, we can assume that he is implicitly using some
form of the axiom of choice.

Modern commentators have seen in the construction of the tree an attempt
to construct an interpretation of ΠF in a denumerable domain. Van Heijenoort
(1967a, 231) reads the final step in this way: “for every n, Qn is satisfiable;
therefore, Q1 · Q2 · Q3 · . . . is satisfiable”. This step is correct but, as the
Compactness Theorem had not been proven in 1915 and Löwenheim does not
account for it, van Heijenoort concludes that the proof is incomplete. Wang
considers that Löwenheim is not thinking of formulas, but of interpretations.
According to his reading, the tree that Löwenheim constructs should be seen
as if any level n were formed by all the interpretations in D (restricted to the
language of Pn) that satisfy Pn. The number of interpretations at each level is
also finite, although it is not the same as the number of formulas that Löwenheim
considers. Thus, when Löwenheim fixes an infinite branch of the tree, it should
be understood that he is fixing a sequence of partial interpretations such that
each one is an extension of the one at the previous level. The union of all
these partial interpretations is an interpretation in a denumerable domain that
satisfies Pn for every n ∈ N , and therefore ΠF .

The main difference between these readings of Löwenheim’s argument and
the version above is that instead of constructing the sequence Q1, Q2, Q3, . . .
with satisfiable formulas or interpretations we do so with formulas that are true
under the interpretation that, by hypothesis, satisfies ΠF in D. Obviously,
this means that we subscribe to the view that Löwenheim meant to prove the
subdomain version of the theorem.

The aim of Löwenheim’s proof is to present a method for determining a
domain. The determination is made when all the possible systems of equalities
are introduced. In a way, it is as if the satisfiable formulas of a level n represented
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all the possible ways of determining the values of the constants occurring in Pn.
Thus, when Löwenheim explains how to construct the different levels of the tree,
what he means to be explaining is how to determine a domain on the basis of an
interpreted formula; consequently, when the construction is completed he states
that he has constructed it.

In Löwenheim’s view the problem of determining the system of equalities be-
tween numerals is the same (or essentially the same) as that of fixing the values
taken by the summation indices of ΠF (the free variables, and the indices gen-
erated by the fleeing indices). Each system of equalities between the numerals
of Pn is biunivocally associated to a formula of level n. The formulas of any level
n represent, from Löwenheim’s perspective, all the possible ways of determining
the values taken by the numerals that occur in Pn and, in the last resort, the
values taken by the indices replaced by the numerals (i.e. the free variables in
ΠF and the indices generated when their fleeing indices range over the set of
numerals occurring in Pn−1). Thus, any assignment of values to these indices
is represented by a formula of level n. Now, if ΠF is satisfiable, at each level
there must be at least one satisfiable formula. In the same way, if ΠF is true
in a domain D, at each level there must be at least one true formula (in other
words, for each n there exists an assignment of elements of D to the numerals
of Pn that satisfies Pn, assuming that the relative coefficients are interpreted
according to the interpretation that, by hypothesis, satisfies ΣΠF in D). The
infinite branches of the tree represent the various ways of assigning values to
the summation indices of ΠF in a denumerable domain. The product of all the
formulas of any infinite branch can be seen as a possible development of ΠF in
a denumerable domain. This assertion is slightly inexact, but we think this is
how Löwenheim sees it, and for this reason he claims without any additional
clarification that for the values of the summation indices that give rise to the
sequence Q1, Q2, Q3, . . ., the formula ΠF takes the same truth value as the
product Q1 ·Q2 ·Q3 · . . . . Thus, showing that the tree has an infinite branch of
true formulas (in the sense just described) amounts, from this perspective, to
constructing a subdomain of D in which ΠF is true, and this is what Löwenheim
set out to do.

One of the reasons for seeing in Löwenheim’s argument an attempt to con-
struct an interpretation in a denumerable domain is probably that when it is seen
as a proof of the subdomain version of the theorem, the construction of the tree
appears to be an unnecessary complication. He could, it seems, have offered a
simpler proof which would not have required that construction and which would
have allowed him to reach essentially the same conclusion. Löwenheim reasons
in the way he does because he lacks the conceptual distinctions required to pose
the problem accurately. The meaning of ΠF and the relation between this for-
mula and ΣΠF cannot be fully grasped without the concept of assignment or, at
least, without sharply distinguishing between the terms of the language and the
elements they denote. From Löwenheim’s point of view, the assumption that
ΠF is satisfied by an interpretation in D does not imply that the values taken
by the summation indices are fixed. All he manages to intuit is that the prob-
lem of showing that ΣΠF is satisfiable is equivalent to the problem of showing
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that ΠF is satisfiable. He then proceeds essentially as he would with ΣΠF , but
without the inconvenience of having to eliminate the existential quantifiers each
time that a formula of the sequence P1, P2, . . . is constructed: he assumes that
the non-logical relatives (i.e., relatives other than 1′ and 0′) of ΠF have a fixed
meaning in a domain D and proposes fixing the values of summation indices
in a denumerable subdomain of D. This means that in practice Löwenheim is
arguing as he would do if the prefix had the form ΠΣ.

Löwenheim’s strategy is then as follows: first he presents a procedure of
a general nature to construct a tree of a certain type, and then (without any
warning, and without differentiating between the two ideas) he applies the hy-
pothesis of the theorem to the construction. The reason for the style that he
adopts in the construction of the tree probably lies in his desire to make it clear
that the technique he is presenting is applicable to any formula in normal form
and not only to one that meets the conditions of the hypothesis. If the starting
formula is not satisfiable, we will conclude the construction in a finite number of
steps because we will reach a level at which none of the formulas is satisfiable; if
the starting formula is satisfiable in a domain D, then, according to Löwenheim,
this construction will allow us to determine a finite or denumerable subdomain
of D in which it is satisfiable.

We must distinguish between what Löwenheim actually constructs and what
he thinks is constructing. On the one hand, the tree (which he constructs) nat-
urally admits a syntactic reading and can be viewed as a method of analyzing
quantified formulas. This proof method was later used by Skolem, Herbrand,
Gödel and more recently by Quine (though he related it with Skolem and not
with Löwenheim) (Quine 1955b and 1972, 185ff.). On the other hand, it is
obvious that, contrary to Löwenheim’s belief, the process of constructing the
sequence Q1, Q2, Q3, . . . does not represent the process of constructing a subdo-
main, because neither these formulas nor their associated systems of equalities
can play the role of partial assignments of values to the summation indices. If
we wanted to reflect what Löwenheim is trying to express, we should construct
a tree with partial assignments rather than with formulas and modify his argu-
ment accordingly. Thus, Löwenheim’s proof is not completely correct, but any
assessment of it must take into account that he lacked the resources that would
allow him to express his ideas better.

4.4 Skolem’s first versions of Löwenheim’s theorem

Although Skolem did not explicitly state the subdomain version until (1929a),
this was the version that he proved in (1920). At the beginning of this paper
1920, 254, Skolem asserts explicitly that his aim is to present a simpler proof of
Löwenheim’s theorem which avoids the use of fleeing indices. He then introduces
what today we know as Skolem normal form for satisfiability (a prenex formula
with the universal quantifiers preceding the existential ones), and then shows
the subdomain version of the theorem for formulas in that form. This change
of normal form is significant, because Löwenheim reasons as if the starting
formula were in the form ΠΣF (as remarked above) and, therefore, the recourse
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to ΠΣ formulas seems to be the natural way of dispensing with fleeing indices.
Skolem’s construction of a countable subdomain is, in essence, the usual one.
Let us suppose that Πx1 . . .Πxn

Σy1 . . .Σym
Ux1...xny1...ym

(his notation) is the
ΠΣ formula which is satisfied by an interpretation I in a domain D. By virtue
of the Axiom of Choice, there is a function h that assigns to each n-tuple
(a1, . . . , an) of elements in D the m-tuple (b1, . . . , bm) of elements in D such
that Ua1...anb1...bm

is satisfied by I in D. Let a be any element in D. The
countable subdomain D′ is the union

⋃
n
Dn, where D0 = {a} and for each n,

Dn+1 is the union of Dn and the set of elements in the m-tuples h(a1, . . . , an)
for a1, . . . , an ∈ Dn.

In (1922), Skolem proved the weak version of the theorem, which allowed him
to avoid the use of the Axiom of Choice. The schema of Skolem’s argument is as
follows: 1) he begins by transforming the starting formula A into one in normal
form for satisfiability which is satisfiable if and only if A is; 2) he then constructs
a sequence of formulas which, in essence, is Löwenheim’s P1, P2, . . . , and, for
each n, he defines a linear ordering on the finite set of (partial) interpretations
that satisfy Pn in the set of numerals of Pn; and 3) after observing that the
extension relation defined in the set of all partial interpretations is an infinite
tree whose levels are finite, Skolem fixes an infinite branch of this tree; this
branch determines an interpretation that satisfies A in set of natural numbers
(assuming that A is formula without identity).

Skolem’s proof in (1922) seems similar to Löwenheim’s in certain aspects, but
the degree of similarity depends on our reading of the latter. If Löwenheim was
attempting to construct a subdomain, the two proofs are very different: each
one uses a distinct notion of normal form, fleeing indices do not intervene in
Skolem’s proof and, more important, the trees constructed in each case involve
different objects (in Löwenheim’s proof the nodes represent partial assignment
of values to the summation indices, while in Skolem’s the nodes are partial
interpretations). These are probably the differences that Skolem saw between
his (1922) proof and Löwenheim’s. The fact is that in (1922) he did not relate
one proof to the other. This detail corroborates the assumption that Skolem did
not see in Löwenheim’s argument a proof of the weak version of the theorem.

In 1964 Gödel wrote to van Heijenoort:

As for Skolem, what he could justly claim, but apparently does not
claim, is that, in his 1922 paper, he implicitly proved: “Either A
is provable or ¬A is satisfiable” (“provable” taken in an informal
sense). However, since he did not clearly formulate this result (nor,
apparently, had he made it clear to himself), it seems to have re-
mained completely unknown, as follows from the fact that Hilbert
and Ackermann (1928) do not mention it in connection with their
completeness problem. (Dreben and van Heijenoort 1986, 52).

Gödel made a similar assertion in a letter to Wang in 1967 (Wang 1974, 8).
Gödel means that Skolem’s argument in (1922) can be viewed as (or can easily be
transformed into) a proof of a version of the completeness theorem (see itinerary
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VIII). This is so because the laws and transformations used to obtain the normal
form of a formula A, together with the rules employed in the construction of the
sequence P1, P2, . . . associated with A and the rules used to decide whether a
formula without quantifiers is satisfiable can be viewed as an informal refutation
procedure. From this point of view, to say that Pn (n ≥ 1) is not satisfiable is
equivalent to saying that the informal procedure refutes it. Now, we can define
what to be provable means as follows:

1. A formula A is refutable if and only if there exists n such that the informal
procedure refutes Pn;

2. A formula A is provable if and only if ¬A is refutable.

With the aid of these two definitions, the lemma

Lemma 3 If for every n, Pn is satisfiable, then A is satisfiable

whose proof is an essential part of Skolem proof, can be stated in the following
way:

Lemma 4 If A is not satisfiable, then A is refutable.

This lemma (which is equivalent to Gödel’s formulation: Either A is prov-
able or ¬A is satisfiable) asserts the completeness of the informal refutation
procedure.55

Since the laws and rules used by Löwenheim in his proof can also be trans-
formed into an informal refutation procedure (applicable even to formulas with
equality), it is interesting to ask whether he proves Lemma 3 (for ΠF formulas).
The answer to this question depends on our reading of his proof. If we think,
as van Heijenoort and Wang do, that Löwenheim proved the weak version, then
we are interpreting the last part of his argument as an (incomplete or unsatis-
factory) proof of Lemma 3. Thus, if we maintain that Löwenheim proved the
weak version, we have to accept that what Gödel asserts in the quotation above
applies also to Löwenheim as well. In our view, Löwenheim did not try to con-
struct an interpretation, but a subdomain. He did not set out to prove Lemma
3 and, as a consequence, Gödel’s assertion is not applicable to him.

5 Itinerary V: Logic in the Hilbert School

5.1 Early lectures on logic

David Hilbert’s interests in the foundations of mathematics began with his work
on the foundations of geometry in the 1880s and 1890s (Hilbert 1899, 2004). Al-
though he was then primarily concerned with geometry, he was interested more
broadly in the principles underlying the axiomatic method, and in Dedekind’s
work (1888). A number of factors worked together to persuade Hilbert around
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1900 that a fundamental investigation of logic and its relationship to the foun-
dation of mathematics was needed. These were his correspondence with Frege
(1899–1900) on the nature of axioms, the realization that his formulation of
geometry was incomplete without an axiom of completeness. They were man-
ifest in his call for an independent consistency proof of arithmetic in his 1900
address, and in his belief that every meaningful mathematical problem had a
solution (“no ignorabimus”).

Although the importance of logic was clear to Hilbert in the early years of
the 1900s, he himself did not publish on logic. His work and influence then
consisted mainly in a lecture course he taught in 1905 and a number of admin-
istrative decisions he made at Göttingen. The latter are described in detail in
Peckhaus (1990, 1994, 1995), and include his involvement with the appointment
of Edmund Husserl and Ernst Zermelo at Göttingen.

Hilbert’s first in-depth discussion of logic occurred in his course “Logical
Principles of Mathematical Thought” in the Summer term of 1905. The lec-
tures centered on set theory (axiomatized in natural language, just like his
axiomatic treatment of geometry), but in Chapter V, Hilbert also discussed a
basic calculus of propositional logic. The presentation is influenced mainly by
Schröder’s algebraic approach.

Axiom I. If X ≡ Y then one can always replace X by Y and Y by
X.
Axiom II. From 2 propositions X, Y a new one results (“additively”)

Z ≡ X + Y

Axiom III. From 2 propositions X, Y a new one results in a different
way (“multiplicatively”)

Z ≡ X · Y

The following identities hold for these “operations”:

IV. X + Y ≡ Y +X VI. X · Y ≡ Y ·X
V. X + (Y + Z) ≡ (X + Y ) + Z VII. X · (Y · Z) ≡ (X · Y ) · Z

VIII. X · (Y + Z) ≡ X · Y +X · Z
[. . . ] There are 2 definite propositions 0, 1, and for each proposition
X a different proposition X is defined, so that the following identities
hold:

IX. X +X ≡ 1 X. X ·X ≡ 0
XI. 1 + 1 ≡ 1 XII. 1 ·X ≡ X. (Hilbert 1905a, 225–8)

Hilbert’s intuitive explanations make clear that X, Y , and Z stand for propo-
sitions, + for conjunction, · for disjunction, · for negation, 1 for falsity, and 0
for truth. In the absence of a first-order semantics, neither statement nor proof
of a semantic completeness claim could be given. Hilbert does, however, point
out that not every unprovable formula renders the system inconsistent when
added as an axiom, i.e., the full function calculus is not (what we now call)
Post-complete.
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5.2 The completeness of propositional logic

Hilbert’s work on the foundations of logic begins in earnest with a lecture course
on the principles of mathematics he taught in the Winter semester 1917/18
(1918b). These form the basis of Hilbert and Ackermann (1928) (see 5.5 and Sieg
1999), and contain a wealth of material on propositional and fiorst-order logic,
as well as Russell’s type theory. We will focus here on the development of the
propositional calculus in these lectures. Syntax and axioms are modelled after
the propositional fragment of Principia Mathematica (Whitehead and Russell
1910). The language consists of propositional variables [Aussage-Zeichen] X,
Y , Z, . . . , as well as signs for particular propositions, and the connectives ·
(negation) and × (disjunction). The conditional, conjunction, and equivalence
are introduced as abbreviations. Expressions are defined by recursion:

1. Every propositional variable is an expression.
2. If α is an expression, so is α.
3. If α and β are expressions, so are α× β, α→ β, α+ β and α = β.
Hilbert introduces a number of conventions, e.g., that X × Y may be ab-

breviated to XY , and the usual conventions for precedence of the connectives.
Finally, the logical axioms are introduced. Group I of the axioms of the function
calculus gives the formal axioms for the propositional fragment (unabbreviated
forms are given on the right, recall that XY is “X or Y ”):

1. XX → X XXX
2. X → XY X(XY )
3. XY → Y X XY (Y X)
4. X(Y Z) → (XY )Z X(Y Z)((XY )Z)
5. (X → Y ) → (ZX → ZY ) XY (ZX(ZY ))
The formal axioms are postulated as correct formulas [richtige Formel ], and

we have the following two rules of derivation (“contentual axioms”):

a. Substitution: From a correct formula another one is obtained by replacing
all occurrences of a propositional variable with an expression.

b. If α and α→ β are correct formulas, then β is also correct.

Although the calculus is very close to the one given in Principia Mathe-
matica, there are some important differences. Russell uses (2′) X → Y X and
(4′) X(Y Z) → Y (XZ) instead of (2) and (4). Principia also does not have an
explicit substitution rule.56 The division between syntax and semantics, how-
ever, is not quite complete. The calculus is not regarded as concerned with
uninterpreted formulas; it is not separated from its interpretation. (This is also
true of the first-order part, see Sieg 1999, B3.) Also, the notion of a “correct
formula” which occurs in the presentation of the calculus is intended not as a
concept defined, as it were, by the calculus (as we would nowadays define the
term “provable formula” for instance), but rather should be read as a semantic
stipulation: The axioms are true, and from true formulas we arrive at more true
formulas using the rules of inference.57 Read this way, the statement of modus
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ponens is not that much clearer than the one given in Principia: “Everything
implied by a true proposition is true.” (*1.1)

Hilbert goes on to give a number of derivations and proves additional rules.
These serve as stepping stones for more complicated derivations. He proves a
normal form theorem, just as he did in the 1905 lectures, to establish decidability
and completeness. In the new propositional calculus, however, Hilbert has to
establish that arbitrary subformulas can be replaced by equivalent formulas, that
is, that the rule of replacement is a dependent rule. He does so by establishing
the admissibility of rule (c): If ϕ(α), α → β, and β → α are provable, then
so is ϕ(β). With that, the admissibility of using commutativity, associativity,
distributivity, and duality inside formulas is quickly established, and Hilbert
obtains the normal form theorem just as he did for the first propositional calculus
in the 1905 lectures. Normal forms again play an important role in proofs of
decidability and now also completeness.

5.3 Consistency and completeness

“This system of axioms would have to be called inconsistent if it were to derive
two formulas from it which stand in the relation of negation to one another”
(Hilbert 1918b, 150). Hilbert proves that the system of axioms is not incon-
sistent in this sense using an arithmetical interpretation. The propositional
variables are interpreted as ranging over the numbers 0 and 1, × is just mul-
tiplication and X is 1 − X. One sees that the five axioms represent functions
which are constant equal to 0, and that the two rules preserve that property.
Now if α is derivable, α represents a function constant equal to 1, and thus is
underivable.

Hilbert then poses the question of completeness in the syntactic sense for
the propositional calculus in the following way:

Let us now turn to the question of completeness. We want to call the
system of axioms under consideration complete if we always obtain
an inconsistent system of axioms by adding a formula which is so far
not derivable to the system of basic formulas. (Hilbert 1918b, 152)

This is the first time that completeness is formulated as a precise mathematical
question to be answered for a system of axioms. Before this, Hilbert (1905a,
p. 13) had formulated completeness as the question of whether the axioms suffice
to prove all “facts” of the theory in question. The notion of completeness is of
course related to the axiom of completeness. This axiom was missing from
the first edition of Grundlagen der Geometrie, but was added in subsequent
editions. Hilbert also added such an axiom to his axiomatization of the reals in
(1900b); it states that it is not possible to extend the system of real numbers
by adding new entities so that the other axioms are still satisfied. Following the
formulation of the completeness axiom in (Hilbert 1905a), we read:

This last axiom is of a general kind and has to be added to every
axiom system whatsoever in some form. It is of special importance
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in this case, as we shall see. Following this axiom, the system of
numbers has to be so that whenever new elements are added con-
tradictions arise, regardless of the stipulations made about them. If
there are things which can be adjoined to the system without con-
tradiction, then in truth they already belong to the system. (Hilbert
1905a, 17)

The formulation of completeness can be seen to arise directly out of the com-
pleteness axioms of Hilbert’s earlier axiomatic systems, only that this time com-
pleteness is a theorem about the system instead of an axiom in the system. The
completeness axiom stated that the domain cannot be extended without pro-
ducing contradictions; the domain of objects is the system of real numbers in
one case, the system of provable propositional formulas in the other.58

The completeness proof in the 1917/18 lectures itself is an ingenious ap-
plication of the normal form theorem: Every formula is interderivable with a
conjunctive normal form. As has been proven earlier in the lectures, a conjunc-
tion is provable if and only if each of its conjuncts is provable. A disjunction
of propositional variables and negations of propositional variables is provable
only if it represents a function which is constant equal to 0, as the consistency
proof shows. A disjunction of this kind is equal to 0 if and only if it contains a
variable and its negation, and conversely, every such disjunction is provable. So
a formula is provable if and only if every conjunct in its normal form contains
a variable and its negation. Now suppose that α is an underivable formula. Its
conjunctive normal form β is also underivable, so it must contain a conjunct γ
where every variable occurs only negated or unnegated but not both. If α were
added as a new axiom, then β and γ would also be derivable. By substituting
X for every unnegated variable and X for every negated variable in γ, we would
obtain X as a derivable formula (after some simplification), and the system
would be inconsistent.59

In a footnote, the result is used to establish the converse of the charac-
terization of provable formulas used for the consistency proof: every formula
representing a function which is constant equal to 0 is provable. For, supposing
there were such a formula which was not provable, then adding this formula to
the axioms would not make the system inconsistent, by the same argument as
in the consistency proof. This would contradict syntactic completeness (Hilbert
1918b, 153).

We have seen that the lecture notes to Principles of Mathematics 1917–18
contain consistency and completeness proofs (relative to a syntactic complete-
ness concept) for the propositional calculus of Principia Mathematica. They
also implicitly contain the familiar truth-value semantics and a proof of se-
mantic soundness and completeness. In his Habilitationsschrift (Bernays 1918),
Bernays fills in the last gaps between these remarks and a completely modern
presentation of propositional logic.

Bernays introduces the propositional calculus in a purely formal manner.
The concept of a formula is defined and the axioms and rules of derivation are
laid out almost exactly as done in the lecture notes. §2 of (Bernays 1918) is

54



entitled “Logical interpretation of the calculus. Consistency and completeness.”
Here Bernays first gives the interpretation of the propositional calculus, which is
the motivation for the calculi in Hilbert’s earlier lectures (Hilbert 1905a, 1918b).
The reversal of the presentation—first calculus, then its interpretation—makes it
clear that Bernays is fully aware of a distinction between syntax and semantics, a
distinction not made precise in Hilbert’s earlier writings. There, the calculi were
always introduced with the logical interpretation built in, as it were. Bernays
writes:

The axiom system we set up would not be of particular interest,
were it not capable of an important contentual interpretation.

Such an interpretation results in the following way:
The variables are taken as symbols for propositions (sentences).
That propositions are either true or false, and not both simulta-

neously, shall be viewed as their characteristic property.
The symbolic product shall be interpreted as the connection of

two propositions by “or,” where this connection should not be under-
stood in the sense of a proper disjunction, which excludes the case
of both propositions holding jointly, but rather so that “X or Y ”
holds (i.e., is true) if and only if at least one of the two propositions
X, Y holds. (Bernays 1918, 3–4)

Similar truth-functional interpretations of the other connectives are given as
well. Bernays then defines what a provable and what a valid formula is, thus
making the syntax-semantics distinction explicit:

The importance of our axiom system for logic rests on the follow-
ing fact: If by a “provable” formula we mean a formula which can
be shown to be correct according to the axioms [footnote in text:
It seems to me to be necessary to introduce the concept of a prov-
able formula in addition to that of a correct formula (which is not
completely delimited) in order to avoid a circle], and by a “valid”
formula one that yields a true proposition according to the interpre-
tation given for any arbitrary choice of propositions to substitute
for the variables (for arbitrary “values” of the variables), then the
following theorem holds:

Every provable formula is a valid formula and conversely.
The first half of this claim may be justified as follows: First one

verifies that all basic formulas are valid. For this one only needs
to consider finitely many cases, for the expressions of the calculus
are all of such a kind that in their logical interpretation their truth
or falsehood is determined uniquely when it is determined of each
of the propositions to be substituted for the variables whether it is
true or false. The content of these propositions is immaterial, so one
only needs to consider truth and falsity as values of the variables.
(Bernays 1918, 6)
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We have here all the elements of a modern discussion of propositional logic: A
formal system, a semantics in terms of truth values, soundness and complete-
ness relative to that semantics. As Bernays points out, the consistency of the
calculus, follows from its soundness. The semantic completeness of the calculus
is proved in §3, along the lines of the footnote in (Hilbert 1918b) mentioned
above. The formulation of syntactic completeness given by Bernays is slightly
different from the lectures and independent of the presence of a negation sign: it
is impossible to add an unprovable formula to the axioms without thus making
all formulas provable.60 Bernays sketches the proof of syntactic completeness
along the lines of Hilbert’s lectures, but leaves out the details of the derivations.

Bernays also addresses the question of decidability. In the lecture notes,
decidability was not mentiond, even though Hilbert had posed it as one of the
fundamental problems in the investigation of the calculus of logic. In his talk
in Zürich in 1917, he said that an axiomatization of logic cannot be satisfactory
until the question of decidability by a finite number of operations is understood
and solved (Hilbert 1918a, 1143). Bernays gives this solution for the proposi-
tional calculus by observing that

[t]his consideration does not only contain the proof for the complete-
ness of our axiom system, but also provides a uniform method by
which one can decide after finitely many applications of the axioms
whether an expression of the calculus is a provable formula or not.
To decide this, one need only determine a normal form of the expres-
sion in question and see whether at least one variable occurs negated
and unnegated as a factor in each simple product. If this is the case,
then the expression considered is a provable formula, otherwise it is
not. The calculus therefore can be completely trivialized. (Bernays
1918, 15–16)

Consistency and independence are the requirements that Hilbert laid down for
axiom systems of mathematics time and again. Consistency was established—
but the “contributions to the axiomatic treatment” of propositional logic could
not be complete without a proof that the axioms investigated are independent.
In fact, however, the axiom system for the propositional calculus, slightly mod-
ified from the postulates in (*1) of Principia Mathematica, is not independent.
Axiom 4 is provable from the other axioms. Bernays devotes §4 of the Ha-
bilitationsschrift to give the derivation, and also the inter-derivability of the
original axioms of Principia (2′) and (4′) with the modified versions (2) and (4)
in presence of the other axioms.

Independence is of course more challenging. The method Bernays uses is not
new, but it is applied masterfully. Hilbert had already used arithmetical inter-
pretations in Hilbert (1905a) to show that some axioms are independent of the
others. The idea was the same as that originally used to show the independence
of the parallel postulate in Euclidean geometry: To show that an axiom α is
independent, give a model in which all axioms but α are true, the inference rules
are sound, but α is false. Schröder was the first to apply that method to logic.
§12 of his Algebra of Logic (Schröder 1890) gives a proof that one direction of
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the distributive law is independent of the axioms of logic introduced up to that
point (see Thiel 1994). The interpretation he gives is that of the “calculus of
algorithms,” developed in detail in Appendix 4. Bernays combines Schröder’s
idea with Hilbert’s arithmetical interpretation and the idea of the consistency
proof for the first propositional calculus in Hilbert (1918b) (interpreting the
variables as ranging over a certain finite number of propositions, and defining
the connectives by tables). He gives six “systems” to show that each of the five
axioms (and a number of other formulas) is independent of the others. The
systems are, in effect, finite matrices. He introduces the method as follows:

In each of the following independence proofs, the calculus will be
reduced to a finite system (a finite group in the wider sense of the
word [footnote: that is, without assuming the associative law or
the unique invertability of composition]), where for each element a
composition (“symbolic product”) and a ”negation” is defined. The
reduction is given by letting the variables of the calculus refer to
elements of the system as their values. The “correct formulas” are
characterized in each case as those formulas which only assume val-
ues from a certain subsystem T for arbitrary values of the variables
occurring in it. (Bernays 1926, 27–28)

We shall not go into the details of the derivations and independence proofs;
see Section 8.2.61 Bernays’s method was of some importance in the investiga-
tion of alternative logics. For instance, Heyting (1930a) used it to prove the
independence of his axiom system for intuitionistic logic and Gödel (1932b) was
influenced by it when he defined a sequence of sentences Fn so that each Fn is
independent of intuitionistic propositional calculus together with all Fi, i > n
(see Section 7.1.7).62

5.4 Axioms and inference rules

In the final section of his Habilitationsschrift, Bernays considers the question
of whether some of the axioms of the propositional calculus may be replaced
by rules. This seems like a natural question, given the relationship between
inference and implication: For instance, axiom 5 suggests the following rule of
inference: (Recall that αβ is Hilbert’s notation for the disjunction of α and β.)

α→ β
γα→ γβ

c

which Bernays used earlier as a derived rule. Indeed, axiom 5 is in turn derivable
using this rule and the other axioms and rules. Bernays considers a number of
possible rules

α→ β
β → γ
α→ γ

d
αα
α

r1
α
αβ

r2
αβ
βα

r3
α(βγ)
(αβ)γ

r4

ϕ(αα)
ϕ(α)

R1
ϕ(αβ)
ϕ(βα)

R3
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and shows that the following sets of axioms and rules are equivalent (and hence,
complete for propositional logic):

1. Axioms: 1, 2, 3, 5; rules: a, b

2. Axioms: 1, 2, 3; rules: a, b, c

3. Axioms: 2, 3; rules: a, b, c, r1

4. Axioms: 2; rules: a, b, c, r1, R3

5. Axioms: XX; rules: a, b, c, r1, r2, r3, r4

Bernays also shows, using the same method as before, that these axiom systems
are independent, and also the following independence results:63

6. Rule c is independent of axioms: 1, 2, 3; rules: a, b, d (showing that in
(2), rule c cannot in turn be replaced by d);

7. Rule r2 is independent of axioms: 1, 3, 5; rules: a, b, (thus showing that
in (1) and (2), axiom 2 cannot be replaced by rule r2);

8. Rule r3 is independent of axioms: 1, 2; rules: a, b, c (showing similarly,
that in (1) and (2), rule r3 cannot replace axiom 3);

9. Rule R3 is independent of axioms: XX, 3; rules: a, b (showing that R3 is
stronger than r3, since 3 is provable from R3 and XX );

10. Rule R1 is independent of axioms: XX, 1; rules: a, b (showing that R1 is
stronger than r1, since 1 is provable from XX and R1);

11. Axiom 2 is independent of axioms: XX, 1, 3, 5; rules: a, b, and

12. Axiom 2 is independent of axioms: XX; rules: a, b, c, r1, R3 (showing
that in (5), XX together with r2 is weaker than axiom 2).

The detailed study exhibits, in particular, a sensitivity to the special status
of rules like R3, where subformulas have to be substituted. The discussion
foreshadows developments of formal language theory in the 1960s. Bernays also
mentions that a rule (corresponding to the contrapositive of axiom 2), allowing
inference of ϕ(α) from ϕ(αβ) would be incorrect (and hence, “there is no such
generalization of r2”).

Bernays’s discussion of axioms and rules, together with his discussion of ex-
pressibility in the “Supplementary remarks to §2–3”, shows his acute sensitivity
for subtle questions regarding logical calculi. His remarks are quite opposed to
the then-prevalent tendency (e.g., Sheffer and Nicod) to find systems with fewer
and fewer axioms, and foreshadow investigations of relative strength of various
axioms and rules of inference, e.g., of Lewis’s modal systems, or more recently
of the various systems of substructural logics.
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At the end of the “Supplementary remarks,” Bernays isolates the positive
fragment of propositional logic (i.e., the provable formulas not containing nega-
tion; here + and → are considered primitives) and claimed that he had an
axiomatization of it. He did not give an axiom system, but stated that it is
possible to choose a finite number of provable sentences as axioms so that com-
pleteness follows by a method exactly analogous to the proof given in §3. The
remark suggests that Bernays was aware that the completeness proof is actually
a proof schema, in the following sense. Whenever a system of axioms is given,
one only has to verify that all the equivalences necessary to transform a formula
into conjunctive normal form are theorems of that system. Then completeness
follows just as it does for the axioms of Principia.

In his next set of lectures on the “Logical Calculus” given in the Winter
semester of 1920 (Hilbert 1920a), Hilbert makes use of the fact that these
equivalences are the important prerequisite for completeness. The propositional
calculus we find there is markedly different from the one in Hilbert (1918b)
and Bernays (1918), but the influences are clearly visible. The connectives are
all primitive, not defined, this time. The sole axiom is XX, and the rules of
inference are:

X
XY

b2
X
Y

X + Y
b3

plus the rule (b4), stating: “Every formula resulting from a correct formula
by transformation is correct.” “Transformation” is meant as transformation ac-
cording to the equivalences needed for normal forms: commutativity, associativ-
ity, de Morgan’s laws, X and X, and the definitions of → and = (biconditional).
These transformations work in both directions, and also on subformulas of for-
mulas (as did R1 and R3 above).64 One equivalence corresponding to modus
ponens must be added, it is: (X +X)Y is intersubstitutable with Y .

Anyone familiar with the work done on propositional logic elsewhere might
be puzzled by this seemingly unwieldy axiom system. It would seem that the
system in Hilbert (1920a) is a step backward from the elegance and simplicity
of the Principia axioms. Adjustments, if they are to be made at all, it would
seem, should go in the direction of even more simplicity, reducing the number of
primitives (as Sheffer did) and the number of axioms (as in the work of Nicod and
later  Lukasiewicz). Hilbert was motivated by different concerns. He was not only
interested in the simplicity of his axioms, but in their efficiency. Decidability,
in particular, supersedes considerations of independence and elegance. The
presentation in Hilbert (1920a) is designed to provide a decision procedure which
is not only efficient, but also more intuitive to use for a mathematician trained in
algebraic methods. Bernays’s study of inference rules made clear, on the other
hand, that such an approach can in principle be reduced to the axiomatics of
Principia. The subsequent work on the decision problem is also not strictly
axiomatic, but uses transformation rules and normal forms. The rationale is
formulated by Behmann:

The form of presentation will not be axiomatic, rather, the needs of
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practical calculation shall be in the foreground. The aim is thus not
to reduce everything to a number (as small as possible) of logically
independent formulas and rules; on the contrary, I will give as many
rules with as wide an application as possible, as I consider appro-
priate to the practical need. The logical dependence of rules will
not concern us, insofar as they are merely of independent practical
importance. [. . . ] Of course, this is not to say that an axiomatic
development is of no value, nor does the approach taken here pre-
empt such a development. I just found it advisable not to burden an
investigation whose aim is in large part the exhibition of new results
with such requirements, as can later be met easily by a systematic
treatment of the entire field.(Behmann 1922, 167)

Such a systematic treatment, of course, was necessary if Hilbert’s ideas regarding
his logic and foundation of mathematics were to find followers. Starting in
(1922c) and (1923), Hilbert presents the logical calculus not in the form of
Principia, but by grouping the axioms governing the different connectives. In
(1922c), we find the “axioms of logical consequence,” in (1923), “axioms of
negation.” The first occurrence of axioms for conjunction and disjunction seems
to be in a class taught jointly by Hilbert and Bernays during Winter 1922–23,
and in print in Ackermann’s dissertation (Ackermann 1924). The project of
replacing the artificial axioms of Principia with more intuitive axioms grouped
by the connectives they govern, and the related idea of considering subsystems
such as the positive fragment, is Bernays’s. In 1918, he had already noted that
one could refrain from taking + and → as defined symbols and consider the
problem of finding a complete axiom system for the positive fragment. The notes
to the lecture course from 1922–23 (Hilbert and Bernays 1923a, 17) indicate
that the material in question was presented by Bernays. In 1923, he gives a talk
entitled “The role of negation in propositional logic,” in which he points out
the importance of separating axioms for the different connectives, in particular,
giving axioms for negation separately. This emphasis of separating negation
from the other connectives is of course necessitated by Hilbert’s considerations
on finitism as well. Full presentations of the axioms of propositional logic are
also found in Hilbert (1928a), and in slightly modified form in a course on logic
taught by Bernays in 1929–30. The axiom system we find there is almost exactly
the one later included in Hilbert and Bernays (1934).

I. A→ (B → A)
(A→ (A→ B)) → (A→ B)
(A→ (B → C)) → (B → (A→ C))
(B → C) → ((A→ B) → (A→ C))

II. A&B → A
A&B → B
(A→ B) → ((A→ C) → (A→ B & C))

60



III. A→ A ∨B
B → A ∨B
(B → A) → ((C → A) → (B ∨ C → A))

IV. (A ∼ B) → (A→ B)
(A ∼ B) → (B → A)
(A→ B) → ((B → A) → (A ∼ B))

V. (A→ B) → (B → A)
(A→ A) → A

A→ A
A→ A65

Bernays (1927) claims that the axioms in groups I–IV provide an axiomatization
of the positive fragment, and raises the question of a decision procedure. This
is where he first follows up on his claim in (1918) that such an axiomatization
is possible.

5.5 Grundzüge der theoretischen Logik

Hilbert and Ackermann’s textbook Grundzüge der theoretischen Logik (Hilbert
and Ackermann 1928) provided an important summary to the work on logic
done in Göttingen in the 1920s. Although (as documented by Sieg 1999), the
book is in large parts a polished version of Hilbert’s 1917–18 lectures (Hilbert
1918b), it is important especially for the influence it had in terms of making the
work available to an audience outside of Göttingen. Both Gödel and Herbrand,
for instance, became acquainted with the methods developed by Hilbert and his
students through it.

In addition, Grundzüge contained a number of minor, but significant, im-
provements over (Hilbert 1918b). The first is a much simplified presentation of
the axioms of the predicate calculus. Whereas Hilbert (1918b) listed six axioms
and three inference rules governing the quantifiers, the formulation in Hilbert
and Ackermann (1928) consisted simply in:

e) (x)F (x) → F (y)

f) F (y) → (Ex)F (x)

with the following form of the rule of generalization. If A → B(x) is provable,
and x does not occur in A, then A → (x)B(x) is provable. Similarly, if B(x) → A
is provable, then so is (Ex)B(x) → A.

Another important part of Grundzüge concerns the semantics of the predi-
cate calculus and the decision problem. The only publication addressing the de-
cision problem had been Behmann (1922); Bernays and Schönfinkel (1928), and
Ackermann (1928a) appeared the same year as Grundzüge (although Bernays
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and Schönfinkel’s result was obtained much earlier). Thus, the book was impor-
tant in popularizing the decision problem as a fundamental problem of mathe-
matical foundations. In a similar vein, although the completeness of the propo-
sitional calculus had been established already in 1918 by Bernays and in 1920
by Post, the Post-completeness and semantic completeness of predicate logic
remained an open problem. Ackermann solved the former in the negative; this
result is first reported in Grundzüge. It motivates the question of semantic
completeness, posed on p. 68:

Whether the axiom system is complete at least in the sense that all
logical formulas, which are correct for every domain of individuals
can be derived from it, is still an unsolved question.

This offhand remark provided the motivation for Gödel’s landmark completeness
theorem (see Section 8.4).

5.6 The decision problem

The origin of the decision problem in Hilbert’s work is no doubt his conviction,
expressed in his 1900 address to the Paris Congress, that every mathematical
problem has a solution:

This conviction of the solvability of every mathematical problem is
a powerful incentive to the worker. We hear within us the perpetual
call: There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus. (Hilbert 1900a,
1102)

A few years later, Hilbert first explicitly took the step that this no ignorabimus
should be reflected in the decidability of the problem of whether a mathematical
statement is derivable from the axiom system for the domain in question:

So it turns out that for every theorem there are only finitely many
possibilities of proof, and thus we have solved, in the most primitive
case at hand, the old problem that it must be possible to achieve
any correct result by a finite proof. This problem was the original
starting point of all my investigations in our field, and the solution
to this problem in the most general case[,] the proof that there can
be no “ignorabimus” in mathematics, has to remain the ultimate
goal.66

Hilbert’s emphasis on the axiomatic method was thus not only motivated by
providing a formal framework in which questions such as independence, con-
sistency, and completeness could be given mathematical treatment, but also
the question of the solvability of all mathematical problems. In “Axiomatic
Thought” 1918a, 1113, the problem of “decidability of a mathematical question
in a finite number of operations” is listed as one of the fundamental problems
for the axiomatic method.
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Without a semantics for first-order logic in hand, it is not surprising that
the formulation of the problem as well as the partial results obtained only made
reference to derivability from an axiom system. For instance, as discussed above,
Bernays draws the decidability of the propositional calculus in this sense as
a consequence of the completeness theorem. The development of semantics
for first-order logic in the following years made it possible to reformulate the
decision problem as a question of validity (Allgemeingültigkeit) or, dually, as
one of satisfiability:

The decision problem is solved, if one knows a procedure which al-
lows for any given logical expression, to decide whether it is valid or
satisfiable, respectively. (Hilbert and Ackermann 1928, 73).

Hilbert and Ackermann (1928) call the decision problem the main problem of
mathematical logic. No wonder that it was pursued with as much vigour as the
consistency problem for arithmetic.

5.6.1 The decision problem in the tradition of algebra of logic

In the algebra of logic, results on the decision problem were obtained in the
course of work on elimination problems. The first major contribution to the
decision problem was Löwenheim’s (1915) result. His Theorem 4,

There are no fleeing equations between singulary relative coefficients,
not even when the relative coefficients of 1′ and 0′ are included as
the only binary ones, (Löwenheim 1915, 243)

amounts to the proposition that every monadic first-order formula, if satisfiable,
is satisfiable in a finite domain. Recall from Itinerary IV that a fleeing equation
is one that is not valid, but valid in every finite domain. If there are no fleeing
equations between singulary relative coefficients (i.e., monadic predicates), then
every monadic formula valid in every finite domain is also valid.

It should be noted that both Löwenheim (1915) and Skolem (1919), who
gave a simpler proof, state the theorem as a purely algebraic result. Neither
draw the conclusion that the result shows that monadic formulas are decidable,
indeed, this only follows by inspection of the particular normal forms they give
in their proofs. In particular, the proofs do not contain bounds on the size of
the finite models that have to be considered when determining if a formula is
satisfiable.

Löwenheim (1915) proved a second important result, namely that validity
of an arbitrary first-order formulas is equivalent to a formula with only binary
predicate symbols. This means that dyadic predicate logic forms a reduction
class, i.e., the decision problem for first-order logic can be reduced to that of
dyadic logic. Löwenheim, of course, did not draw this latter conclusion, since
he was not concerned with decidability in this sense. He does, however, remark
that
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[s]ince, now, according to our theorem the whole relative calculus
can be reduced to the binary relative calculus, it follows that we
can decide whether an arbitrary mathematical proposition is true
provided that we can decide whether a binary relative equation is
identically satisfied or not. (Löwenheim 1915, 246)

A related result is proved in (Skolem 1920, Theorem 1). A formula is in (satisfi-
ability) Skolem normal form if it is prenex formula and all universal quantifiers
precede all existential quantifiers, i.e., it if of the form

(∃x1) . . . (∃xn)(∀y1) . . . (∀ym)A(x1, . . . , xn, y1, . . . , ym).

Skolem’s result is that for every first order formula there is a formula in Skolem
normal form which is satisfiable if and only if the original formula is. From this,
it follows that the formulas in Skolem normal form are a reduction class as well.

5.6.2 Work on the decision problem after 1920

The word “Entscheidungsproblem” first appears in a talk given by Behmann
to the Mathematical Society in Göttingen on May 10, 1921, entitled “Entschei-
dungsproblem und Algebra der Logik.”67 Here, Behmann is very explicit in the
kind of procedure required, characterizing it as a “mere calculational method,”
as a procedure following the “rules of a game,” and stating its aim as an “elim-
ination of thinking in favour of mechanical calculation.”

The result Behmann reports on in this talk is that of his Habilitationss-
chrift (Behmann 1922), in which he proves, independently of Löwenheim and
Skolem, that monadic second-order logic with equality is decidable. The proof
is by a quantifier elimination procedure, i.e., a transformation of sentences of
monadic-second order logic (with equality) into a disjunctive normal form in-
volving expressions “there are at least n objects” and “there are at most n
objects.”

The problem was soon taken up by Moses Schönfinkel, who was a student in
Göttingen at the time. In December 1922, he gave a talk to the Mathematical
Society in which he proved the decidability of validity of formulas of the form
(∃x)(∀y)A, where A is quantifier-free and contains only one binary predicate
symbol (Schönfinkel 1922). This result was subsequently extended by Bernays
to apply to formulas with arbitrary many predicate symbols (Bernays and
Schönfinkel 1928). The published paper also discusses Behmann’s (1922) result
and gives a bound on the size of finite models for monadic formulas, as well as the
cases of prenex formulas with quantifier prefixes of the form ∀∗A, ∃∗A and ∀∗∃∗.
In particular, it is shown there that a formula (∀x1) . . . (∀xn)(∃y1) . . . (∃ym)A
is valid iff it is valid in all domains with n individuals. In its dual formula-
tion, the main result is that satisfiability of prenex formulas with prefix ∃∗∀∗
(the Bernays-Schönfinkel class) is decidable. The result was later extended by
Ramsey (1930) to include identity; along the way, Ramsey proved his famous
combinatorial theorem.
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The result dual to Bernays and Schönfinkel’s first, namely the decidability
of satisfiability of formulas of the form (∀x)(∃x)A was extended by Ackermann
(1928a) to formulas with prefix ∃∗∀∃∗. The same result was proved indepen-
dently later the same year by Skolem (1928); this paper as well as the follow-up
(1935) also prove some related decidability results.

Herbrand (1930, 1931b) draws some important conclusions regarding the
decision problem from his theorème fondamental (see below) as well, giving
new proofs of the decidability of the monadic class, the Bernays-Schönfinkel
class, the Ackermann class, and the Herbrand class (prenex formulas where the
matrix is a conjunction of atomic formulas and negated atomic formulas).

The last major partial solution of the decision problem before Church’s
(1936a) and Turing’s (1937) proofs of the undecidability of the general problem
was the proof of decidability of satisfiability for prenex formulas with prefix
of the form ∃∗∀∀∃∗. This was carried out independently by Gödel (1932a),
Kalmár (1933), and Schütte (1934a, 1934b). Gödel (1933b) also showed that
prenex formulas with prefix ∀∀∀∃∗ form a reduction class.68

5.7 Combinatory logic and λ-calculus

In the early 1920s, there was a significant amount of correspondence between
Hilbert and his students (in particular, Bernays and Behmann) and Russell on
various aspects of Principia (see Mancosu (1999a, 2003)). One of the things
Russell mentioned to Bernays was Sheffer’s (1913) reduction of the two prim-
itive connectives ∼ and ∨ of Principia to the Sheffer stroke. In 1920, Moses
Schönfinkel extended this reduction to the quantifiers by means of the operator
|x, where φ(x) |x ψ(x) means “for no x is φ(x) and ψ(x) both true.” Then
(x)φ(x) can be defined by (φ(x) |y φ(x)) |x (φ(x) |y φ(x)). This led Schönfinkel
to consider further possibilities of reducing the fundamental notions of the logic
of Principia, namely those of propositional function and variables themselves.

In a manuscript written in 1920, and later edited by Behmann and published
as (1924), Schönfinkel gave a general analysis of mathematical functions, and
presented a function calculus based on only application and three basic functions
(the combinators). First, Schönfinkel explains how one only needs to consider
unary functions: A binary function F (x, y), for instance, may be considered
instead as a unary function which depends on the argument x, or, equivalently,
as a unary function of the argument x which has a unary function as its value.
Hence, F (x, y) becomes (fx)y; fx now is the unary function which, for argument
y has the same value as the binary function F (x, y). Application associates to
the left, so that (fx)y can more simply be written fxy.

Just as functions in Schönfinkels system can have functions as values, they
can also be arguments to other functions. Schönfinkel introduces five primitive
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functions I, C, T , Z, and S by the equations

Ix = x

(Cx)y = x

(Tφ)xy = φyx

Zφχx = φ(χx)
Sφχx = (φx)(χx)

I is the identity; its value is always simply its argument. C is the constancy
function: Cx is the function whose value is always x. T allows the interchange
of argument places; Tφ is the function which has as its value for xy the value
of φyx. Z is the composition function: Zφχ is the function which takes its
argument, first applies χ, and then applies φ to the resulting value. The fusion
function S is similar to composition, but here φ is to be thought of as a binary
function F (x, y): Then Sφχx is the unary function F (x, χx).

So far this constitutes a very general theory of functions. In applying this
to logic, Schönfinkel obtains a very elegant system in which formulas without
free variables can be written without connectives, quantifiers, or variables at
all. In light of the reduction to unary functions, first of all relations can be
eliminated; e.g., instead of a binary relation R(x, y) we have a unary function r
from arguments x to functions which themselves take individuals as arguments,
and whose value is a truth value. Then, instead of |x, Schönfinkel introduces a
new combinator, U : Ufg = fx |x gx—note that in the expression on the left
the bound variable x no longer occurs. Together with the other combinators,
this allows Schönfinkel to translate any sentence of even higher-order logic into
an expression involving only combinators. For instance, (f)(Eg)(x)fx& gx first
becomes, using |x:

[(fx |x gx) |g (fx |x gx)] |f [(fx |x gx) |g (fx |x gx)]

Now replacing |x and |g by the combinator U , we get

[U(Uf)(Uf)] |f [U(Uf)(Uf)]

To remove the last |f , the expressions on either side must end with f ; however,
U(Uf)(Uf) = S(ZUU)Uf , and so finally we get U [S(ZUU)U ][S(ZUU)U ].

Schönfinkel’s ideas were further developed in great detail by Haskell Curry,
who wrote a dissertation under Hilbert in 1929 (1929, 1930).69

Similar ideas led Church (1932) to develop his system of λ-calculus. Like
Schönfinkel’s and Curry’s combinatory logic, the λ-calculus was intended in the
first instance to provide and alternative to Russellian type theory and to set
theory as a foundation for mathematics. Like combinatory logic, the λ-calculus
is a calculus of functions with application (st) as the basic operation; and like
Curry, Church defined a notion of equality between terms in terms of certain
conversion relations. If t is a term in the language of the calculus with free
variable x, the λ operator is used to form a new term λx.t, which denotes a
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function with argument x. A term of the form (λx.t)s converts to the term
t(x/s) (t with all free occurrences of x replaced by s). This is one of three basic
kinds of conversion; a term on which no conversion can be carried out is in
normal form.

Unfortunately, as Kleene and Rosser (1935) showed, both Curry’s and Church’s
systems were inconsistent and hence unsuitable in their original formulation to
provide a foundation for mathematics. Nevertheless, combinatory logic and λ-
calculus proved incredibly useful as theories of functions; in particular, versions
of the λ-calculus were developed as systems of computable functions. In fact,
Church’s (1936b, 1936a) (negative) solution to the decision problem essentially
involved the λ-calculus. Church (1933) and Kleene (1935) found a way to define
the natural numbers as certain λ-terms n̄ in normal form (Kleene numerals).
The notion of λ-definability of a number theoretic function is then simply: a
function f is λ-definable if there is a term t such that t applied to the Kleene
numeral n̄ converts to a normal form which is the Kleene numeral of the value
of f(n). Church (1936b) showed that λ-definability coincides with (general)
recursiveness and that the problem of deciding whether a term converts to a
normal form is not general recursive. Church (1936a) uses this result to show
that the decision problem is unsolvable.

5.8 Structural inference: Hertz and Gentzen

Another important develpment in logic that came out of Hilbert’s school was
the introduction of sequent calculus and natural deduction by Gentzen. This
grew out of the logical work of Paul Hertz. Hertz was a physicist working
in Göttingen between 1912 and 1933. From the 1920s onwards, he was also
working in philosophy and in particular, logic. In a series of papers (Hertz
1922, 1923, 1928, 1929), he developed a theory of structural inference based on
expressions of the form a1, . . . , an → b. Hertz calls such expressions sentences;
the signs on the left are the antecedents, the sign on the right the succedent. It
is understood that in the antecedents each sign occurs only once. The two rules
which he considers are what he calls syllogism:

a1
1, a

1
2, . . . → b1

a2
1, a

2
2, . . . → b2

...
a1, a2, . . . , b1, b2 → c

a1
1, a

1
2, . . . , a

2
1, a

2
2, . . . , a

1, a2 → c

and direct inference:

a1, a2, . . . → b
a1, a2, . . . , a1, a2, . . . → b

In the syllogism, the premises on the left are called lower sentences, the premise
on the right the upper sentence of the inference.
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A set of sentences is called closed if it is closed under these two rules of
inference. Hertz’s investigations concern in the main criteria for when a closed
system of sentences has a set of independent axioms—a concern typical for the
Hilbert school. Hertz’s other concern, and this is his lasting contribution, is
that of proof transformations and normal forms. We cannot give the details of
all these results, but a statement of one will give the reader an idea: A sentence
is called tautological, if it is of the form a→ a. An Aristotelian normal proof is
one in which each inference has a non-tautological upper sentences which is an
initial sentence of the proof (i.e., not the conclusion of another inference). For
instance, the following is an Aristotelian normal proof:

a→ b b→ c
a→ c c→ m

a→ m m, b→ d
a, b→ d

Hertz proves that every proof can be transformed into an Aristotelian normal
proof.

Gentzen’s first contribution to logic was a continuation of Hertz’s work. In
(1933b), Gentzen shows a similar normal form theorem, as well as a complete-
ness result relative to a simple semantics which interprets the elements of the
sentences as propositional constants. A sentence a1, . . . , an → b is interpreted
as: either one of ai is false or b is true. Gentzen’s result is that if a sentence
S follows from (is a tautological consequence of) some other sentences S1, . . . ,
Sn, then there is a proof of a certain normal form of S from S1, . . . , Sn.70

The basic framework of sentences and inferences, as well as the interest in
normal form theorems, was contined in Gentzen’s more important work on the
proof theory of classical and intuitionistic logic. In Gentzen (1934), Gentzen
extended Hertz’s framework from propositional atoms to formulas of predicate
logic. Sentences are there called sequents, and the succedent is allowed to con-
tain more than one formula (for intuitionistic logic, the restriction to at most
one formula on the right stands). Hertz’s direct inference is now called “thin-
ning;” there is an analogous rule for thinning the succedent: The antecedent
and succedent of a sequent are now considered sequences of formulas (denoted
by uppercase Greek letters). Thus, Gentzen adds rules for changing the order
of formulas in a sequent, and for contracting two of the same formulas to one.
Syllogism is restricted to one lower sentence; this is the cut rule:

Γ → Θ, A A,∆ → Λ
Γ,∆ → Θ,Λ

To deal with the logical connectives and quantifiers, Gentzen adapts the axiom
systems developed by Hilbert and Bernays in the 1920s by turning the axioms
governing a connective into rules introducing the connective in the antecedent
and succedent of a sequent. For instance, axiom group (III) above,

III. A→ A ∨B
B → A ∨B
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(B → A) → ((C → A) → (B ∨ C → A))

results in the rules

OES:
Γ → Θ, A

Γ → Θ, A ∨B
Γ → Θ, B

Γ → Θ, A ∨B OEA:
A,Γ → Θ B,Γ → Θ

A ∨B,Γ → Θ

The rules, together with axioms of the form A → A, result in the system LK
for classical logic, and LJ for intuitionistic logic, where LJ is like LK with the
restriction that each sequent can contain at most one formula in the succedent.
The soundness and completeness of these systems is proved in the last section of
the paper, by showing that they derive the same formulas as ordinary axiomatic
presentations of Hilbert (1928a) and Glivenko (1929) (for the intuitionistic case).

Gentzen’s main result in (1934) is the Hauptsatz. It states that any deriva-
tion in LK (or LJ) can be transformed into one which does not use the cut
rule; thus it is now also called the cut-elimination theorem. It has some impor-
tant consequences: it establishes the decidability of intuitionistic propositional
logic, and provides new proofs of the consistency of predicate logic as well as the
non-derivability of the principle of the excluded middle in intuitionistic proposi-
tional calculus. Gentzen also proves an extension of the Hauptsatz, now called
the midsequent theorem: Every derivation of a prenex formula in LK can be
transformed into one which is cut-free and in which all propositional inferences
precede all quantifier inferences. An important consequence of this theorem is
a form of Herbrand’s theorem (see Section 6.4).

The second main contribution of Gentzen (1934) is the introduction of calculi
of natural deduction. It was intended to capture actual “natural” reasoning
more accurately than axiomatic systems do. Such patterns of reasoning are for
instance the methods of conditional proof (in order to prove a conditional, give
a proof of the consequent under the assumption that the antecedent is true) and
dilemma (if a conclusion C follows from both A and B individually, it follows
from A∨B). In natural deduction then, a derivation is a tree of formulas. The
uppermost formulas are assumptions, and each formula is either an assumption,
or must follow from preceding formulas according to one of the rules:

A B
A&B

A&B
A

A&B
B

A
A ∨B

B
A ∨B

A ∨B
[A]
C

[B]
C

C

Fa
∀xFx

∀xFx
Fa

Fa
∃xFx

∃xFx
[Fa]
C

C
[A]
B

A ⊃ B
A A ⊃ B

B

[A]∧
¬A

A ¬A∧ ∧
D

In the above rules, the notation [A] indicates that the sub-proof ending in
the corresponding premise may contain any number of formulas for the form A
as assumptions, and that the conclusion of the inference is then independent of
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these assumptions. A derivation is a proof of A, if A is the last formula of the
derivation and is not dependent on any assumptions.

6 Itinerary VI: Proof Theory and Arithmetic

6.1 Hilbert’s Program for consistency proofs

The basic aim and structure of Hilbert’s program in the philosophy of mathe-
matics is well known: In order to put classical mathematics on a firm foundation
and to rescue it from the attempted Putsch of intuitionism, two things were to
be accomplished. First, formalize classical mathematics in a formal system;
second, give a direct, finitistic consistency proof for this formal system. This
project is first outlined in Hilbert (1922c) and received its most popular presen-
tation in “On the infinite” (1926). The project has an important philosophical
aspect, which we cannot do justice here. This philosophical aspect is the fini-
tist standpoint—the methodological position from which the consistency proofs
were to be carried out. At its most basic, the finitist standpoint is characterized
as the domain of reasoning about sequences of strokes (the finitist numbers),
or sequences of signs in general. From the finitist standpoint, only such finite
objects, which, according to Hilbert, are “intuitively given” are admissible as
objects of finitist reflection; specifically, the finitist standpoint cannot operate
with or assume the existence of completed infinite totalities such as the set of
all numbers. Furthermore, only such methods of construction and inference are
allowed which are immediately grounded in the intuitive representation we have
of finitist objects. This includes, e.g., definition by primitive recursion and in-
duction as the basic method of proof. A consistency proof for a formal system,
in particular, has to take roughly the following form: Give a finitist method
by which any given proof in the formal system of classical mathematics can be
transformed into one which by its very form cannot be a derivation of a contra-
diction such as 0 = 1. Such a finitist consistency proof not only grounds classical
mathematics, it can also be taken as a reductio of one of the intuitionist’s mo-
tiviations, viz., that classical reasoning may lead to outright contrdictions, since
the finitist methods themselves are acceptable intuitionistically.

Hilbert envisaged the consistency proof for classical mathematics to be ac-
complished in stages of consistency proofs for increasingly strong systems, start-
ing with propositional logic and ending with full set theory. The crucial devel-
opment that enabled Ackermann and von Neumann to give partial solutions to
the consistency problem was the invention of the ε-calculus around 1922.71 The
ε-calculus is an extension of quantifier-free logic and number theory by term
forming ε-operators: if A(a) is a formula, then εaA(a) is a term, intuitively,
the least a such that A(a) is true. Using such ε-terms, it is then possible to
define the quantifiers by (∃a)A(a) ≡ A(εaA(a)) and ∀a)A(a) ≡ A(εaA(a)). The
axioms governing the ε-operator are the so-called transfinite axioms

A(a) → A(εa(A(a))) and
εaA(a) 6= 0 → A(δεaA(a)).

70



The first axiom allows the derivation of the usual axioms for ∃ and ∀; the second
derives the induction axiom (δ is the predecssor function). The ε-substitution
method used by Ackermann and von Neumann goes back to an idea of Hilbert:
in a given proof, replace the ε-terms by actual numbers so that the result is a
derivation of the same formula; then apply the consistency proof for quantifier-
free systems.

Let us now trace the origins and development of the technical aspects of
Hilbert’s program.

6.2 Consistency proofs for weak fragments of arithmetic

Around 1900, Hilbert began championing the axiomatic method as a founda-
tional approach, not only to geometry, but also to arithmetic. He proposed the
axiomatic method in contradistinction to the genetic method, by which the reals
were constructed out of the naturals (which were taken as primitive) through
the usual constructions of the integer, rational, and finally real numbers through
constructions such as Dedekind cuts. In Hilbert’s opinion, the axiomatic method
is to be preferred for “the final presentation and the complete logical grounding
of our knowledge [of arithmetic]” (Hilbert 1900b). The first order of business,
then, is to provide an axiomatization of the reals, which Hilbert first attempted
in “Über den Zahlbegriff” (1900b). To complete the “logical grounding,” how-
ever, one would also have to prove the consistency (and completeness) of the
axiomatization. For geometry, consistency proofs can be given by exhibiting
models in the reals; but a consistency proof of arithmetic requires a direct
method. Hilbert considered such a direct proof of consistency the most impor-
tant question that has to be answered for the axiomatization of the reals, and he
formulated it as the second of his “Mathematical problems” (Hilbert 1900a). At-
tempts at such a proof were made in (Hilbert 1905b) and his course on “Logical
principles of mathematical thought” (1905a). It became clear that a success-
ful direct consistency proof requires a further development of the underlying
logical systems. This development was carried out by Russell and Whitehead,
and following a period of intense study of the Principia between 1914 and 1917
in Göttingen (see Mancosu 1999a, 2003), Hilbert renewed his call for a direct
consistency proof of arithmetic in “Axiomatic thought” (1918a). This was fol-
lowed by an increased focus on foundations in Göttingen. Until 1920, Hilbert
seems to have been sympathetic to Russell’s logicist approach, but soon became
dissatisfied by it. In his course “Problems of mathematical logic,” he explains:

Russell starts with the idea that it suffices to replace the predicate
needed for the definition of the union set by one that is extension-
ally equivalent, and which is not open to the same objections. He is
unable, however, to exhibit such a predicate, but sees it as obvious
that such a predicate exists. It is in this sense that he postulates the
“axiom of reducibility,” which states approximately the following:
“For each predicate, which is formed by referring (once or multiple
times) to the domain of predicates, there is an extensionally equiv-
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alent predicate, which does not make such reference.
With this, however, Russell returns from constructive logic to

the axiomatic standpoint. [. . . ]
The aim of reducing set theory, and with it the usual methods

of analysis, to logic, has not been achieved today and maybe cannot
be achieved at all. (Hilbert 1920b, 32–33)

Precipitated by increasing interest in Brouwer’s intuitionism and Poincaré’s and
Weyl’s predicativist approaches to mathematics (Weyl 1918, 1919), and espe-
cially Weyl’s (1921) conversion to intuitionism, Hilbert finally formulated his
own celebrated approach to mathematical foundations. This approach com-
bined his previous aim at providing a consistency proof which does not proceed
by exhibiting a model, or reducing consistency to the consistency of a different
theory, with a philosophical position delineating the acceptable methods for a
direct consistency proof. In the same course on “Problems of mathematical
logic,” he presented a simple axiom system for the naturals, consisting of the
axioms

1 = 1
(a = b) → (a+ 1 = b+ 1)

(a+ 1 = b+ 1) → (a = b)
(a = b) → ((a = c) → (b = c))
a+ 1 6= 1

An equation between terms containing only 1’s and +’s is called correct if it is
either 1 = 1, results from the axioms by substitution, or is the end formula of
a proof from the axioms using modus ponens. The system was later extended
by induction, but for the purpose of describing the kind of consistency proof
he has in mind, Hilbert observed that the axiom system would be inconsistent
in the sense of deriving a formula and its negation iff it were possible to derive
a substitution instance of a + 1 = 1. In this case, then, a direct consistency
proof requires a demonstration that no such formula can be the end formula of
a formal proof, and in this sense is the task of a theory of proofs:

Thus we are led to make the proofs themselves the object of our
investigation; we are urged toward a proof theory, which operates
with the proofs themselves as objects.

For the way of thinking of ordinary number theory the numbers
are then objectively exhibitable, and the proofs about the numbers
already belong to the area of thought. In our study, the proof itself is
something which can be exhibited, and by thinking about the proof
we arrive at the solution of our problem.

Just as the physicist examines his apparatus, the astronomer his
position, just as the philosopher engages in critique of reason, so
the mathematician needs his proof theory, in order to secure each
mathematical theorem by proof critique.72
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This is the first occurrence of the term “proof theory” in Hilbert’s writings.73

This approach to consistency proofs is combined with a philosophical position
in Hilbert’s address in Hamburg in July 1921, (1922c), which emphasizes the
distinction between the “abstract operation with general concept-scopes [which]
has proved to be inadequate and uncertain,” and contentual arithmetic which
operates on signs. In a famous passage, Hilbert makes clear that the immediacy
and security of mathematical “contentual” thought about signs is a precondition
of logical thought in general, and hence is the only basis upon which a direct
consistency proof for formalized mathematics must be carried out:

[. . . A]s a precondition for the application of logical inferences and for
the activation of logical operations, something must already be given
in representation: certain extra-logical discrete objects, which exist
intuitively as immediate experience before all thought. If logical
inference is to be certain, then these objects must be capable of being
completely surveyed in all their parts, and their presentation, their
difference, their succession (like the objects themselves) must exist
for us immediately, intuitively, as something that cannot be reduced
to something else. [. . . ] The solid philosophical attitude that I think
is required for the grounding of pure mathematics—as well as for all
scientific thought, understanding, and communication—is this: In
the beginning was the sign. (Hilbert 1922c, 1121–22)

Just as a contentual mathematics of number signs enjoys the epistemological
priority claimed by Hilbert, so does contentual reasoning about combinations
of signs in general. Hence, contentual reasoning about formulas and formal
proofs, in particular, contentual demonstrations that certain formal proofs are
impossible, are the aim of proof theory and metamathematics. This philosophi-
cal position, together with the ideas about how such contentual reasoning about
derivations can be applied to prove consistency of axiomatic systems—ideas out-
lined in the 1920 course and going back to 1905—make up Hilbert’s Program
for the foundation of mathematics.

In the following two years, Hilbert and Bernays elaborate the research project
in a series of courses and talks (Hilbert 1922a, Hilbert and Bernays 1923b,
Bernays 1922, Hilbert 1923). The courses from 1921–22 and 1922–23 are most
important. It is there that Hilbert introduces the ε-calculus in 1921–22 to deal
with quantifiers and the approach using the ε-substitution method as a proof
of consistency for systems containing quantification and induction. The system
used in 1921–22 is given by the following axioms (Hilbert and Bernays 1923b,
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17, 19):

1. A→ B → A 2. (A→ A→ B) → A→ B
3. (A→ B → C) → (B → A→ C) 4. (B → C) → (A→ B) → A→ C
5. A&B → A 6. A&B → B
7. A→ B → A&B 8. A→ A ∨B
9. B → A ∨B 10. (A→ C) → (B → C) → A ∨B → C
11. A→ A→ B 12. (A→ B) → (A→ B) → B
13. a = a 14. a = b→ A(a) → A(b)
15. a+ 1 6= 0 16. δ(a+ 1) = a

Here, ‘ + 1’ is a unary function symbol. In Hilbert’s systems, Latin letters are
variables; in particular, a, b, c, . . . , are individual variables and A, B, C, . . . ,
are formula variables. The rules of inference are modus ponens and substitution
for individual and formula variables.

The idea of the consistency proof is this: suppose a proof of a contradiction
is available. (We may assume that the end formula of this proof is 0 6= 0.)

1. Resolution into proof threads. First, we observe that by duplicating part
of the proof and leaving out steps, we can transform the derivation to one
where each formula (except the end formula) is used exactly once as the
premise of an inference. Hence, the proof is in tree form.

2. Elimination of variables. We transform the proof so that it contains no
free variables. This is accomplished by proceeding backward from the end
formula: The end formula contains no free variables. If a formula is the
conclusion of a substitution rule, the inference is removed. If a formula is
the conclusion of modus ponens it is of the form

A A → B

B′

where B′ results from B by substituting terms (functionals, in Hilbert’s
terminology) for free variables. If these variables also occur in A, we
substitute the same terms for them. Variables in A which do not occur in
B are replaced with 0. This yields a formula A′ not containing variables.
The inference is replaced by

A′ A′ → B′

B′

3. Reduction of functionals. The remaining derivation contains a number of
terms which now have to be reduced to numerical terms (i.e., standard
numerals of the form (. . . (0 + 1) + · · · ) + 1). In this case, this is done
easily by rewriting innermost subterms of the form δ(0) by 0 and δ(n + 1)
by n. In later stages, the set of terms is extended by function symbols
introduced by recursion, and the reduction of functionals there proceeds
by calculating the function for given numerical arguments according to
the recursive definition.
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In order to establish the consistency of the axiom system, Hilbert suggests, we
have to find a decidable property of formulas (konkret feststellbare Eigenschaft)
so that every formula in a derivation which has been transformed using the
above steps has the property, and the formula 0 6= 0 lacks it. The property
Hilbert proposes to use is correctness. This, however, is not to be understood
as truth in a model: The formulas still occurring in the derivation after the
transformation are all Boolean combinations of equations between numerals.
An equation between numerals n = m is correct if n and m are equal, and the
negation of an equality is correct if m and n are not equal.

If we call a formula which does not contain variables or functionals
other than numerals an “explicit [i.e., numerical] formula”, then
we can express the result obtained thus: Every provable explicit
formula is end formula of a proof all the formulas of which are explicit
formulas.

This would have to hold in particular of the formula 0 6= 0, if it
were provable. The required proof of consistency is thus completed
if we show that there can be no proof of the formula which consists
of only explicit formulas.

To see that this is impossible it suffices to find a concretely deter-
minable [konkret feststellbar ] property, which first of all holds of all
explicit formulas which result from an axiom by substitution, which
furthermore transfers from premises to end formula in an inference,
which however does not apply to the formula 0 6= 0. (Hilbert 1922b,
part 2, 27–28)

This basic model for a consistency proof is then extended to include terms con-
taining function symbols defined by primitive recursion, and terms containing
the ε-operator. Hilbert’s Ansatz for eliminating ε-terms from formal deriva-
tions is first outlined in the 1921–22 lectures and in more detail in the 1922–23
course:74

Suppose a proof involves only one ε-term εaA(a) and corresponding critical
formulas

A(ki) → A(εaA(a)),

i.e., substitution instances of the transfinite axiom

A(a) → A(εaA(a)).

We replace εaA(a) everywhere with 0, and transform the proof as before by
rewriting it in tree form (“dissolution into proof threads”), eliminating free
variables and evaluating numerical terms involving primitive recursive functions.
Then the critical formulas take the form

A(zi) → A(0),

where zi is the numerical term to which ki reduces. A critical formula can now
only be false if A(zi) is true and A(0) is false. If that is the case, repeat the
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procedure, now substituting zi for εaA(a). This yields a proof in which all initial
formulas are correct and no ε terms occur.

If critical formulas of the second kind, i.e., substitution instances of the
induction axiom,

εaA(a) 6= 0 → A(δεaA(a)),

also appear in the proof, the witness z has to be replaced with the least z′ so
that A(z′) is true.

The challenge is to extend this procedure to (a) cover more than one ε-
term in the proof, (b) take care of nested ε-terms, and lastly (c) extend it to
second-order ε’s and terms involving them, i.e, εfAa(f(a)), which are used in
formulations of second-order arithmetic. This was attempted in Ackermann’s
(1924) dissertation.

6.3 Ackermann and von Neumann on epsilon substitution

Ackermann’s dissertation (1924) is a milestone in the development of proof
theory. The work contains the first unified presentation of a system of second-
order arithmetic based on the ε-calculus, a complete and correct consistency
proof of the ε-less fragment (an extension of what is now known as primitive
recursive arithmetic PRA), and an attempt to extend Hilbert’s ε-substitution
method to the full system.

The consistency proof for the ε-free fragment extends a sketch of a consis-
tency proof for primitive recursive arithmetic contained in Hilbert and Bernays’s
1922–23 lectures. For primitive recursive arithmetic, the basic axiom system is
extended by definitional equations for function symbols which define the corre-
sponding functions recursively, e.g.,

ψ(0,~c) = a(~c)
ψ(a+ 1,~c) = b(a, ψ(a,~c),~c)

To prove consistency for such a system, the “reduction of functionals” step has
to be extended to deal with terms containing the function symbols defined by
evaluating innermost terms with leading function symbol ψ according to the
primitive recursion specified by the defining equations. It should be noted right
away that such a consistency proof requires the possibility of evaluating an
arbitrary primitive recursive function, and as such exceeds primitive recursive
methods. This means that Hilbert, already in 1922, accepted non-primitive
recursive methods as falling under the methodological, “finitary” standpoint of
proof theory. Ackermann’s dissertation extends this consistency proof by also
dealing with what might be called second-order primitive recursion. A second
order primitive recursive definition is of the form

φ~bi
(0, ~f(~bi),~c) = a~bi

(~f(~bi),~c)

φ~bi
(a+ 1, ~f(~bi),~c) = b~bi

(a, φ~di
(a, ~f(~di),~c), ~f(~bi))

76



The subscript notation used above indicates that the λ-abstraction; in modern
notation the schema would more conspicuously be written as

φ(0, λ~bi. ~f(~bi),~c) = a(λ~bi. ~f(~bi),~c)

φ(a+ 1, λ~bi. ~f(~bi),~c) = b(a, φ(a, λ~di. ~f(~di),~c), λ~bi. ~f(~bi))

Second-order primitive recursion allows the definition of the Ackermann func-
tion, which was shown by Ackermann (1928b) to be itself not primitive recursive.

The first consistency proof given by Ackermann is for this system of second-
order primitive recursive arithmetic. While for PRA, the reduction of function-
als only requires the relatively simple evaluation of primitive recursive terms,
the situation is more complicated for second-order primitive recursion. Ack-
ermann locates the difficulty in the following: Suppose you have a functional
φb(2, b(b)), where φ is defined by

φb(0, f(b)) = f(1) + f(2)
φb(a+ 1, f(b)) = φb(a, f(b)) + f(a) · f(a+ 1)

Here, b(b) is a term which denotes a function, and so there is no way to replace
the variable b with a numeral before evaluating the entire term. In effect, the
variable b is bound (in modern notation, the term might be more suggestively
written φ(2, λb.b(b)).) In order to reduce this term, we apply the recursion
equations for φ twice and end up with a term like

b(1) + b(2) + b(0) · b(1) + b(1) · b(2).

The remaining b’s might in turn contain φ, e.g., b(b) might be φc(b, δ(c)), in
which case the above expression would be

φc(1, δ(c)) + φc(2, δ(c)) + φc(0, δ(c)) · φc(1, δ(c)) + φc(1, δ(c)) · φc(2, δ(c)).

By contrast, reducing a term ψ(z) where ψ is defined by first-order primitive
recursion results in a term which does not contain ψ, but only the function
symbols occurring on the right-hand side of the defining equations for ψ.

To overcome this difficulty, Ackermann defines a system of indexes of terms
containing second-order primitive recursive terms and an ordering on these
indexes. Ackermann’s indexes are, essentially, ordinal notations for ordinals
< ωωω

, and the ordering he defines corresponds to the ordering on the ordinals.
He then defines a procedure to evaluate such terms by successively applying the
defining equations; each step in this procedure results in a new term whose index
is less than the index of the preceding term. Since the ordering of the indexes
is well-founded, this constitutes a proof that the procedure always terminates,
and hence that the process of reduction of functionals in the consistency proof
comes to an end, resulting in a proof with only correct equalities and inequal-
ities between numerical terms (not containing function symbols).75 This proof
very explicitly proceeds by transfinite induction up to ωωω

, and foreshadows
Gentzen’s (1936) use of transfinite induction up to ε0. Ackermann was com-
pletely aware of the involvement of transfinite induction in this case, but did
not see in it a violation of the finitist standpoint:
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The disassembling of functionals by reduction does not occur in the
sense that a finite ordinal is decreased each time an outermost func-
tion symbol is eliminated. Rather, to each functional corresponds
as it were a transfinite ordinal number as its rank, and the theorem,
that a constant functional is reduced to a numeral after carrying out
finitely many operations, corresponds to the other [theorem], that if
one descends from a transfinite ordinal number to ever smaller or-
dinal numbers, one has to reach zero after a finite number of steps.
Now there is naturally no mention of transfinite sets or ordinal num-
bers in our metamathematical investigations. It is however interest-
ing, that the mentioned theorem about transfinite ordinals can be
formulated so that there is nothing transfinite about it any more.
(Ackermann 1924, 13–14).

The full system for which Ackermann attempted to give a consistency proof
in the second part of the dissertation consists of the system of second-order
primitive recursive arithmetic together with the transfinite axioms:

1. A(a) → A(εaA(a)) Aa(f(a)) → Aa((εfAb(f(b))(a)))
2. A(εaA(a)) → πaA(a) = 0 Aa(εfAb(f(b))(a)) → πfAa(f(a)) = 0
3. A(εaA(a)) → πaA(a) = 1 Aa(εfAb(f(b))(a)) → πfAa(f(a)) = 1
4. εaA(a) 6= 0 → A(δ(εaA(a)))

The intuitive interpretation of ε and π, based on these axioms is this: εaA(a)
is a witness for A(a) if one exists, and πaA(a) = 1 if A(a) is false for all a,
and = 0 otherwise. The π functions are not necessary for the development of
mathematics in the axiom system. They do, however, serve a function in the
consistency proof, viz., to keep track of whether a value of 0 for εaA(a) is a
“default value” (i.e., a trial substitution for which A(a) may or may not be
true) or an actual witness (a value for which A(a) has been found to be true).

To give a consistency proof for this system, Ackermann first has to extend
the ε-substitution method to deal with proofs in which terms containing more
than one ε-operator (and corresponding critical formulas) occur, and then argue
(finitistically), that the procedure so defined always terminates in a substitu-
tion of numerals for ε-terms which transform the critical formulas into correct
formulas of the form A(t) → A(s) (where A, t, and s do not contain ε-operators
or primitive recursive function symbols). To solve the first, task Ackermann has
to deal with the various possibilities in which ε-operators can occur in the scope
of other ε’s. For instance, an instance of the transfinite axiom might be

A(t, εyB(y)) → A(εxA(x, εyB(y)), εyB(y))

To find a substitution for εxA(x, εyB(y))) here, it is necessary to first have a
substitution for εyB(y). This case is rather benign, since the value for εyB(y)
can be determined independently of that for εxA(x, εyB(y)). If εyB(y) occurs
in the term t on the left-hand side, the situation is more complicated. We might
have, e.g., a critical formula of the form

A(εyB(y, εxA(x))) → A(εxA(x))
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With an initial substitution of 0 for εxA(x), we can determine a value for
εyB(y, εxA(x)), i.e., for εyB(y, 0). With this value for εyB(y), we then find
a value for εxA(x). This, however, now might change the “correct” substitution
for εxA(x), say to n, and hence the initial determination of the value of the
term on the left-hand side changes: we now need a value for εyB(y, n).

The procedure proposed by Ackermann is too involved to be discussed here
(see Zach 2003 for details). In short, what is required is an ordering of terms
based on the level of nesting and of cross-binding of ε’s, and a procedure based
on this ordering which successively approximates a “solving substitution,” i.e.,
an assignment of numerals to ε-terms which results in all correct critical formu-
las. In this successive approximation, the values found for some ε-terms may
be discarded if the substitutions for enclosed ε-terms change. A correct consis-
tency proof would then require a proof that this procedure does in fact always
terminate with a solving substitution. Unfortunately, Ackermann’s argument
in this regard is opaque.

The system to which Ackermann applied the ε-substitution method, as indi-
cated above, is a system of second-order arithmetic. Ackermann (and Bernays)
soon realized that the proposed consistency proof had problems. Already in the
published version, a footnote on p. 9 restricts the system in the following way:
Only such terms are allowed in substitutions for formula and function variables,
in which are allowed in which individual variables do not occur in the scope of
a second-order ε. von Neumann (1927) clarified the restriction and its effect:
In Ackermann’s system, the second-order ε-axiom A(f) → εfA(f) does duty
for the comprehension principle. In this system, the comprehension principle
is (∃f)(∀x)(f(x) = t), where t is a term possibly containing ε-terms. Under
Ackermann’s restriction, only such instances of the comprehension principle are
permitted in which x is not in the scope of a second-order ε-operator; essentially
this guarantees the existence of only such f ’s which can be defined by arithmeti-
cal formulas. Von Neumann remarked also that Ackermann’s restriction makes
the system predicative; it is roughly of the strength of the system ACA0.

This restriction alone restricts the consistency proof to a system much weaker
than analysis; however, other problems and lacunae were known to Ackermann,
one being that the proof does not cover ε-extensionality,

(∀f)(A(f) ↔ B(f)) → εfA(f) = εfB(f)

which serves as the ε-analogue of the axiom of choice. Ackermann continued to
work on the proof, amending and correcting the ε-substitution procedure even
for first-order ε-terms. These corrections used ideas of von Neumann (1927),
which was completed already in 1925. Von Neumann (1927) used a different
terminology than Ackermann, and the precise connection between Ackermann’s
and von Neumann’s proofs is not clear. Von Neumann’s system does not include
the induction axiom explicitly, since induction can be proved once a suitable
second-order apparatus is available. Hence, the consistency proof for the first-
order fragment of his theory does not deal with induction, whereas Ackermann’s
system has an induction axiom in the form of the second ε-axiom, and his
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substitution procedure takes into account critical formulas of this second kind.
Another significant feature of von Neumann’s proof is the precision with which
it is executed: von Neumann gives numerical bounds for the number of steps
required until a solving substitution is found.76

Ackermann gave a revised ε-substitution proof, using von Neumann’s ideas,
and communicated it to Bernays in 1927. Both Ackermann and Bernays believed
that the new proof would go through for full first-order arithmetic. Hilbert
reported on this result in his lectures in Hamburg 1928 (1928a) (see also Bernays
1928b) and Bologna (Hilbert 1928b, 1929). Only with Gödel’s (1930, 1931)
incompleteness results did it become clear that the consistency proofs did not
even go through for first-order arithmetic. Bernays later gave an analysis of
Ackermann’s second proof in (Hilbert and Bernays 1939) and showed that the
bounds obtained hold for induction restricted to quantifier-free formulas, but
not for induction axioms of higher complexity. Ackermann eventually, using
ideas from Gentzen, gave an ε-substitution proof for full first-order arithmetic
in (1940).

6.4 Herbrand’s Theorem

Herbrand’s (1930) thesis “Investigations in proof theory” marks another mile-
stone in the development of first-order proof theory. Herbrand’s main influences
in this work were Russell and Whitehead’s Principia, from which he took the
notation and some of the presentations of his logical axioms, the work of the
Hilbert school, which provided the motivations and aims for proof theoretic re-
search; and Löwenheim’s (1915) and Skolem’s (1920) work on normal forms. The
thesis contains a number of important results, among them a proof of the deduc-
tion theorem and a proof of quantifier elimination for induction-free successor
arithmetic (no addition or multiplication). The most significant contribution,
of course, is Herbrand’s Theorem.

Herbrand’s Theorem shares a fundamental feature with Hilbert’s approaches
to proof theory and consistency proofs: consistency for systems including quan-
tifiers (ε-terms) are to be effected by removing them from a proof, reducing
proofs containing such “ideal elements” to quantifier-free (essentially, proposi-
tional) proofs. Herbrand’s Theorem provides a general necessary and sufficient
condition for when a formula of the predicate calculus is provable by reducing
such provability to the provability of an associated “expansion” in the propo-
sitional calculus. The way such an expansion is obtained is closely related to
the obtaining a Skolem normal form of the formula. The Löwenheim-Skolem
theorem reduces the validity of a formula in general to its validity in a canonical
countable model. Skolem’s and Löwenheim’s methods, however, were semantic,
and used infinitary methods, both features which make it unsuitable for em-
ployment in the framework of Hilbert’s finitist program. Herbrand’s Theorem
can thus be seen as giving finitary meaning to the Löwenheim-Skolem theorem.

Let us now give a brief outline of the theorem. We will follow (Herbrand
1931b), which is in some respects clearer than the original (1930). Suppose
A is a formula of first-order logic. For simplicity, we assume A is in prenex
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normal form; Herbrand gave his argument without making this restriction. So
let P be (Q1x1) . . . (Qnxn)B(x1, . . . , xn), where Qi is either ∀ or ∃, and B is
quantifier-free. Then the Herbrand normal form H of A is obtained by removing
all existential quantifiers from the prefix of A, and replacing each universally
quantified xi by a term fi(xj1 , . . . , xjn

), where xj1 , . . . , xjn
are the existentially

quantified variables preceding xi. In (1931a), Herbrand calls this the elementary
proposition associated with P , and fi is the index function associated with xi.

In order to state the theorem, we have to define what Herbrand calls canon-
ical domains of order k. This notion, in essence, is a first-order interpretation
with the domain being the term model generated from certain initial elements
and function, and the terms all have height ≤ k. (The height of a term is defined
as usual: constants have height 0, and a term fj(t1, . . . , tk) has height h + 1 if
h is the maximum of the heights of t1, . . . , tk.) Herbrand did not use terms
explicitly as objects of the domain, but instead considered domains consisting of
letters, such that each term (of height ≤ k) has an element of the domain associ-
ated with it as its value and such that if terms t1, . . . , tk have values b1, . . . , bk,
and the value of fi(b1, . . . , bk) is c, then the value associated with f(t1, . . . , tk)
is also c. A domain is canonical if it furthermore satisfies the condition that any
two distinct terms have distinct values associated with them (i.e., the domain is
freely generated from the initial elements and the function symbols). Lastly, a
domain is of order k, if each term of height ≤ k with constants only from among
the initial elements has a value in the domain, but some term of height k + 1
does not.

The canonical domain of order k associated with P then is the canonical
domain of order k with some nonempty set of initial elements and the functions
occurring in the Herbrand normal form H of P . P is true in the canonical
domain, if some substitution of elements for the free variables in H makes H
true in the domain, and false otherwise. Herbrand’s statement of the theorem
then is:

1. If [for some k] there is no system of logical values [truth-value
assignment to the atomic formulas] making P false in the associated
canonical domain of order k, then P is an identity [provable in first-
order logic].

2. If P is an identity, then there is a number k obtainable from
the proof of P , such that there is no system of logical values making
P false in every associated canonical domain of order equal to or
greater than k. (Herbrand 1931b, 229)

By introducing canonical domains of order k, Herbrand has thus reduced
provability of P in the predicate calculus to the validity of H in certain finite
term models. If H1, . . . , Hnk

are all the possible substitution instances of H in
the canonical domain of order k, then the theorem may be reformulated as: (1)
If

∨
Hi is a tautology, then P is provable in first-order logic; (2) If P is provable

in first-order logic, then there is a k obtainable from the proof of P so that
∨
Hi

is a tautology.
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Herbrand’s original proof contained a number of errors which were found by
Peter Andrews and corrected by Dreben, Andrews, and Aanderaa (1963); Gödel
had independently found a correction (see Goldfarb 1993; Andrews 2003 gives a
detailed account of the discovery of the errors). Gentzen (1934) gave a different
proof based on the midsequent theorem, which, however, does only apply to
prenex formulas and does not provide a bound on the size of the Herbrand
disjunction

∨
Hi. The first complete and correct proof was given by Bernays

(Hilbert and Bernays 1939), using the ε-calculus.
Herbrand was able to apply the Fundamental Theorem to give consistency

proofs of various fragments of arithmetic, including the case of arithmetic with
quantifier-free induction. The idea is to reduce the consistency of arithmetic
with quantifier-free induction to induction-free (primitive recursive) arithmetic.
This is done by introducing new primitive recursive functions that “code” the
induction axioms used. The proof of Herbrand’s Theorem then produces finite
term models for the remaining axioms, and consistency is established (Herbrand
1931a).

6.5 Kurt Gödel and the incompleteness theorems

Hilbert had two main aims in his program in the foundation of mathematics:
first, a finitistic consistency proof of all of mathematics, and second, a precise
mathematical justification for his belief that all well-posed mathematical prob-
lems are solvable, i.e., that “in mathematics, there is no ignorabimus.” This
second aim resulted in two specific convictions: that the axioms of mathemat-
ics, in particular, of number theory, are complete in the sense that for every
formula A, either A or ∼A is provable,77 and secondly that the validities of
first-order logic are decidable (the decision problem). The hopes of achieving
both aims were dashed in 1930, when Gödel proved his incompleteness theorems
(1930, 1931). The summary of his results (Gödel 1930) addresses the impact of
the results quite explicitly:

I. The system S [of Principia] is not complete [entscheidungsdefinit ];
that is, it contains propositions A (and we can in fact exhibit such
propositions) for which neither A nor A is provable and, in particu-
lar, it contains (even for decidable properties F of natural numbers)
undecidable problems of the simple structure (Ex)F (x), where x
ranges over the natural numbers.

II. Even if we admit all the logical devices of Principia mathe-
matica [. . . ] in metamathematics, there does not exist a consistency
proof for the system S (still less so if we restrict the means of proof
in any way). (Gödel 1930, 141–143)

Soon thereafter, Church was able to show, using some of the central ideas in
Gödel (1931), that the remaining aim of proving the decidability of predicate
logic was likewise doomed to fail (1936a, 1936b)

Gödel obtained his results in the second half of 1930. After proving the
completeness of first-order logic, a problem posed by Hilbert and Ackermann
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(1928), Gödel set to work on proving the consistency of analysis (recall that
according to Hilbert (1929), the consistency of arithmetic was already estab-
lished). Instead of directly giving a finitistic proof of analysis, Gödel attempted
to first reduce the consistency of analysis to that of arithmetic, which led him
to consider ways to enumerate the symbols and proofs of analysis in arith-
metical terms. It soon became evident to him that truth of number-theoretic
statements is not definable in arithmetic, by reasoning analogous to the liar
paradox. By the end of Summer 1930 he had a proof that the analogous fact
about provability is formalizable in the system of Principia, and hence that
there are undecidable propositions in Principia. At a conference in Königsberg
in September 1930, Gödel mentioned the result to von Neumann, who inquired
whether the result could be formalized not only in type theory, but already in
first-order arithmetic. Gödel subsequently showed that the coding mechanism
he had come up with could be carried out with purely arithmetical methods
using the Chinese remainder theorem. Thus the first incompleteness theorem,
that arithmetic contains undecidable propositions, was established. The second
incompleteness theorem, namely that in particular the statement formalizing
consistency of number theory is such an undecidable arithmetical statement,
was found shortly thereafter (and also independently by von Neumann).78

Let us now give a brief outline of the proof. The system P Gödel considers
is a version of simple type theory in addition to Peano arithmetic. In order
to carry out the formalization of predicates about formulas and proofs, Gödel
introduces what is now known as “Gödel numbering.” To each symbol of the
system P a natural number is associated. A finite sequence of symbols a (e.g., a
formula) can then be coded by Φ(a) = 2n1 · 3n2 · · · pnk

k , where k is the length of
the sequence, pk is the k-th prime, and ni is the Gödel code of the i-th symbol
in the sequence. Similarly, a sequence of formulas (i.e., a sequence of sequences
of numbers) with codes n1, . . . , nk is coded by 2n1 · 3n2 · · · pnk

k .
In order to carry out the metamathematical treatment of formulas and proofs

within the system, Gödel next defines the class of primitive recursive functions
and relations of natural numbers (he simply calls them “recursive”) and proves
(theorems I–IV) that primitive recursive functions and relations are closed un-
der composition, the logical operations of negation, disjunction, conjunction,
bounded minimization, and bounded quantification. Using this characteriza-
tion, he then shows that a collection of 45 functions can be defined primitive
recursively. The functions are those necessary to carry out simple manipulations
on formulas and proofs, or represent predicates about formulas and proofs. For
instance, (31) is the function Sb(xv

y), the function the value of which is the code
of a formula A (with code x) where every free occurrence of the variable with
code v is replaced by the term with code y; (45) is the primitive recursive rela-
tion xBy which holds if x is the code of a proof of a formula with code y. (46),
finally is Bew(x), expressing that x is the code of a provable formula with code
x. Bew(x) is not primitive recursive, since it results from xBy by unbounded
existential generalization: Bew(x) ≡ (Ey)yBx. Gödel then proves (theorem
V) that every recursive relation is numeralwise representable in P , i.e., that if
R(x1, . . . , xn) is a formula representing a recursive relation (according to the
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characterization of recursive relations given in theorems I–IV), then:

1. if R(n1, . . . , nk) is true, then P proves Bew(m), where m is the code of
R(n1, . . . , nk), and

2. if R(n1, . . . , nk) is false, then P proves Bew(m), where m is the code of
∼R(n1, . . . , nk).

Then Gödel proves the main theorem,

Theorem VI. For every ω-consistent recursive class κ of formulas
there are recursive class signs r such that neither v Gen r nor
Neg(vGen r) belongs to Flg(κ) (where v is the free variable of r.
(Gödel 1931, 173)

Here κ is the recursive relation defining a set of codes of formulas to be consid-
ered as axioms, r is the code of a recursive formula A(v) (i.e., one containing
no unbounded quantifiers) with free variable v, vGen r is the code of the gener-
alization (v)A(v) of A(v), Neg(v Gen r) the code of its negation ∼(v)A(v), and
Flg(κ) is the set of codes of formulas which are provable in P together with κ.
We may thus restate theorem IV somewhat more perspicuously thus: If Pκ is an
ω-consistent theory resulting by adding a recursive set of axioms κ to P , then
there is a formula A(x) such that neither (x)A(x) nor ∼(x)A(x) is provable in
Pκ. The requirement that Pκ is ω-consistent states that for no formula A(x)
does Pκ prove both A(n) for all numerals n and ∼(x)A(x); Rosser (1936) later
weakened this requirement to the simple consistency of Pκ.

In the following sections, Gödel sharpens the result in several ways. First,
he shows that (theorem VII) primitive recursive relations are arithmetical, i.e.,
that the basic functions +, and × of arithmetic suffice to express all primitive
recursive functions (this is where the Chinese remainder theorem is used). From
this, theorem VIII follows, i.e., that not only are there undecidable propositions
of the form (x)A(x) with A recursive (in particular, possibly using exponen-
tiation xy), but even with A(x) arithmetical (i.e., containing only + and ×).
Finally, in section 4, Gödel states the second incompleteness theorem,

Theorem XI. Let κ be any recursive consistent class of formulas;
then the sentential formula stating that κ is consistent is not
κ-provable; in particular, the consistency of P is not provable in
P , provided P is consistent (in the opposite case, of course, every
proposition is provable). (Gödel 1931, 193)

Although theorems VI and XI are formulated for the relatively strong system
P , Gödel remarks that the only properties of P which enter into the proof of
theorem VI are that the axioms are recursively definable, and that the recursive
relations can be defined within the system. This applies, so Gödel, also to
systems of set theory as well as to number theoretical systems such as that of
von Neumann (1927).

Gödel’s result is of great importance to the development of mathematical
logic after 1930, but its most immediate impact at the time consisted in the
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doubts it cast on the feasibility of Hilbert’s program. Von Neumann and Bernays
immediately realized that the result shows that no consistency proof for a formal
system of mathematics can be given by methods which can be formalized within
the system—and since finitistic methods presumably were so formalizable in
relatively weak number theoretic systems already, no finitistic consistency proofs
could be given for such systems. This led Gentzen (1935, 1936), in particular, to
rethink the role of consistency proofs and the character of finitistic reasoning;
following him, work in proof theory has concentrated on, in a sense, relative
consistency proof.

From [Gödel’s incompleteness theorems] it follows that the consis-
tency of elementary number theory, for example, cannot be estab-
lished by means of part of the methods of proof used in elementary
number theory, nor indeed by all of these methods. To what extent,
then, is a genuine reinterpretation [Zurückführung ] still possible?

It remains quite conceivable that the consistency of elementary
number theory can in fact be verified by means of techniques which,
in part, no longer belong to elementary number theory, but which
can nevertheless be considered to be more reliable than the doubtful
components of elementary number theory itself. (Gentzen 1936, 139)

Gentzen’s proof uses transfinite induction on constructive ordinals < ε0, and
argues that these methods in fact are finitary, and hence “more reliable” than
the infinitistic methods of elementary number theory.79

7 Itinerary VII: Intuitionism and Many-valued
Logics

7.1 Intuitionistic logic

7.1.1 Brouwer’s philosophy of mathematics

One of the most important positions in philosophy of mathematics of the 1920s
was the intuitionism of Luitzen Egbertus Jan Brouwer (1881–1966).80 Although
our emphasis will be on the logical developments that emerged from Brouwer’s
intuitionism (as opposed to his philosophy of mathematics or the development of
intuitionistic mathematics), it is essential to begin by saying something about his
position in philosophy of mathematics. The essay “Intuitionism and Formalism”
(1912b) contains many of the theses characteristic of Brouwer’s approach. In
it Brouwer discusses on what grounds one can base the conviction about the
“unassailable exactness” of mathematical laws and distinguishes the position
of the intuitionist from that of the formalist. The former, represented mainly
by the school of French analysts81 (Baire, Borel, Lebesgue), would posit the
human mind as the source of the exactness; by contrast the formalist, by which
Brouwer also means realists such as Cantor, would say that the exactness resides
on paper. This rough and ready characterization of the situation, although
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objectionable, is very typical of Brouwer’s style and perhaps contributed to the
appeal of his radical proposal. Brouwer traces the origins of the intuitionist
position back to Kant.82 For Kant, time and space were the forms of our
intuition, which shaped our perception of the world. He famously defended
the idea that geometry and arithmetic are synthetic a priori. Brouwer only
retains part of the Kantian intuitionism, in that he rejects the aprioricity of
space but preserves that of time. The foundation of the Brouwerian account of
mathematics is to be found in fact in the basal intuition of time:

The neo-intuitionism considers the falling apart of moments of life
into qualitatively different parts, to be reunited only while remaining
separate by time, as the fundamental phenomenon of the human
intellect, passing by abstracting from its emotional content into the
fundamental phenomenon of mathematical thinking, the intuition of
the bare two-oneness. (Brouwer 1912a, 80)

The rest of mathematics is, according to Brouwer, built out of this basal
intuition. Together with the emphasis on the centrality of intuition, Brouwer
denigrates the use of language in mathematical activity and reserves to it only
an auxiliary role. Talking about the construction of (countable) sets he writes:

And in the construction of these sets neither the ordinary language
nor any symbolic language can have any other role than that of
serving as a non-mathematical auxiliary, to assist the mathematical
memory or to enable different individuals to build up the same set.
(Brouwer 1912a, 81)

This is at the root of Brouwer’s skeptical attitude toward a foundational rôle
for formal work in logic and mathematics. Thus, the intuitionist position finds
itself at odds with formalists, logicists, and Platonists, all guilty, according to
Brouwer, of relying on “the presupposition of the existence of a world of math-
ematical objects, a world independent of the thinking individual, obeying the
laws of classical logic and whose objects may possess to each other the ‘relation
of a set to its elements’.” It is for this reason that Brouwer criticized, among
other things, the foundation of set theory provided by Zermelo and eventu-
ally produced (starting in 1916–17) his own intuitionist set theory. While in
the realm of the finite there is agreement in the results (although not in the
method) between intuitionists and formalists, the real differences emerge in the
treatment of the infinite and the continuum. There is an important develop-
ment in Brouwer’s ideas here. Whereas in the 1912 essay he thought of real
numbers as given by laws, later on (starting in 1917) he developed a very origi-
nal conception of the continuum based on choice sequences.83 This will lead him
to the development of an alternative construction of mathematics, intuitionis-
tic mathematics. Brouwer presented his new approach in two papers entitled
“Foundation of set theory independent from the logical law of the excluded
middle” (1918) and in the companion paper “Intuitionist set theory” (1921).
As already mentioned, the new approach to mathematics was characterized by
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the admission of ‘free choice’ sequences, i.e., procedures in which the subject is
not limited by a law but can also proceed freely in the generation of arbitrary
elements of the sequence. These sequences are seen as being generated in time
and thus as “growing” or “becoming.” This new conception of mathematics
with the inclusion of free growth and indeterminacy goes hand in hand with one
of the major claims of Brouwer’s intuitionism, that is the denial of the idea that
mathematical entities and properties are always completely determined. The
latter assumption is embodied, according to Brouwer, in the logical law of the
excluded middle:

The use of the principle of the excluded middle is not permissible as
part of a mathematical proof. It has only scholastic and heuristic
value, so that the theorems which in their proof cannot avoid the
use of this principle lack all mathematical content. (Brouwer 1921,
23)

Thus, for the intuitionist the only acceptable mathematical entities and prop-
erties are those which are constructed in thought; mathematical objects and
properties do not have an independent existence. As a consequence, this leads
to an abandonment of the unrestricted validity of the principle of the excluded
middle and thus to a restriction of the available means of proof in classical math-
ematics. However, intuitionistic mathematics is not simply a subset of classical
mathematics obtained by eliminating the excluded middle but rather a different
development, due to the fact that the admission of “incomplete entities” such
as free-choice sequences leads to a new and original theory of the mathematical
continuum. One of the new concepts introduced by Brouwer is that of Species.
This is the intuitionist equivalent of “property” in the classical setting. The
constructive interpretation of property is presented by Brouwer in opposition to
the principle of comprehension formulated by Cantor and in a restricted form
by Zermelo. While in the classical setting any well formed formula partitions
the universe into the set of objects that satisfy the formula and those which
do not, the new interpretation of property, or “Species,” is obtained by limit-
ing its domain to the entities whose constructions has already been achieved.
However, the Species does not partition the already constructed entities into
those that satisfy the Species and those which do not. An entity will belong to
the Species if one can successfully carry out a proof that the constructed entity
does indeed have the property in question (in Brouwer’s terminology, “fitting
in”). An entity will not belong if one can successfully carry out a construction
that will show that the assumption of its belonging to the Species generates
a contradiction. However, it is clear that the alternatives to a demonstration
of “fitting in” can be twofold: either the demonstration of the absurdity of a
“fitting in” or the absence of a demonstration either of “fitting in” or of its
absurdity. The consequences of this strict interpretation of negation are that
Brouwer has to produce a reconstruction of mathematics in which the principles
of double negation and the principle of the excluded middle do not hold. The
intuitionistic reconstruction of mathematics cannot be given here;84 our focus
will be on the logical aspects of the situation.
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7.1.2 Brouwer on the excluded middle

From the beginning of his publishing career, Brouwer gave pride of place to the
mental mathematical activity and downplayed the foundational rôle of language
and logic in mathematics. The system of logical laws is then seen as a mere
linguistic edifice that at best can only accompany the communication of success-
ful mathematical constructions. In (1908), Brouwer expresses doubts as to the
validity of the principle of the excluded middle, since he claims that it is not the
case that for an arbitrary statement S, we either have a proof of S or we have
a proof of the negation of S. Of course, this already presupposes a constructive
interpretation of the logical connectives. But issues about the excluded mid-
dle became central once Brouwer developed his new conception of mathematics
based on the admissibility of “becoming” entities (such as choice sequences)
and constructive properties (Species) for which, as we have seen, there is more
than one alternative to the successful “fitting’ of a constructed object to the
Species. After the publication of “The Foundations of set theory independent
of the logical principle of the excluded middle”, which develops parts of math-
ematics without appeal to the excluded middle, he wrote a number of essays in
which he analyzed the logic of negation implicit in the new reconstruction of
mathematics. In “On the significance of the excluded middle in mathematics,
especially in function theory” (1923b) Brouwer proposes a positive account of
how we illegitimately move from the excluded middle on finite domain to infinite
domains:

Within a specific finite “main system” we can always test (that is,
either prove or reduce to absurdity) properties of systems [. . . ] On
the basis of the testability just mentioned, there hold, for proper-
ties conceived within a specific finite main system, the principle of
excluded middle, that is, the principle that for every system every
property is either correct or impossible, and in particular the prin-
ciple of the reciprocity of the complementary species, that is, the
principle that for every system the correctness of a property follows
from the impossibility of the impossibility of this property. (Brouwer
1923b, 335)

However, the validity on finite domains was arbitrarily extended to mathematics
in general:

An a priori character was so consistently ascribed to the laws of
theoretical logic that until recently these laws, including the principle
of excluded middle, were applied without reservation even in the
mathematics of infinite systems. (Brouwer 1923b, 336)

7.1.3 The logic of negation

In “Intuitionistic Splitting of the Fundamental Notions of Mathematics” (1923a),
Brouwer for the first time engages in an analysis of the consequences of his
viewpoint, in particular, his conception of negation as contradiction, for logic
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proper. Brouwer begins by pointing out that the “the intuitionist conception
of mathematics not only rejects the principle of the excluded middle altogether
but also the special case, contained in the principle of reciprocity of comple-
mentary species, that is, the principle that for any mathematical system infers
the correctness of a property from the absurdity of its absurdity” (1923a, 286).
The rejection of the principle of the excluded middle is then argued by means
of an example, which is paradigmatic of what are now called (weak) Brouw-
erian counterexamples.85 Let k1 be the least n such that there is a sequence
0123456789 appearing between the n-th place and the (n + 9)-th place of the
decimal expansion of π, and let

cn =

{
(−1/2)k1 if n ≥ k1

(−1/2)n otherwise.

Then the sequence c1, c2, c3, converges to a real number r. We define a real
number g to be rational if one can calculate two rational integers p and q whose
ratio equals g. Then r cannot be rational and at the same time the rationality
of r cannot be absurd. This is because if r were rational we could compute
the two integers thereby solving a problem for which no computation is known
(i.e., finding k1). On the other hand, it is not contradictory that it be rational,
because in that case k1 would not exist and thus r would be 0, i.e., a rational
after all. In fact, the problem giving rise to the weak counterexample used by
Brouwer has now been solved. But one can use other unsolved problems to
generate similar counterexamples.

The counterexample shows that intuitionistically we cannot assert (until
the problem is solved) “r is either rational or irrational”, something which is
of course perfectly legitimate from the classical point of view. However, the
argument goes through only if one grants that the property of being rational
requires the explicit computation of the integers p and q, which is of course not
required in the classical setting. The consequences for the logic of negation are
stated by Brouwer in the following principles:

1. Intuitionistically, absurdity-of-absurdity follows from correctness but not
vice versa;

2. However, intuitionistically, the absurdity-of-absurdity-of absurdity is equiv-
alent with absurdity.

As a consequence of these principles, any finite sequence of absurdity predicates
can be reduced either to an absurdity or to an absurdity-of-absurdity.

It should be pointed out in closing this section that the notion of absurdity
obviously involves the notion of a “contradiction” or “the impossibility of fitting
in” or an “incompatibility.” However, all these notions presuppose negation or
difference, but Brouwer never spells out with clarity how to avoid the potential
circularity involved here, although he refers to a primitive intuition of difference
(not definable in terms of classical negation) in (1975, 73).
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7.1.4 Kolmogorov

Kolmogorov’s contribution to the formalization of intuitionistic logic and its
properties date from “On the principle of the excluded middle” (1925), which
however was not known to many logicians until much later, undoubtedly due to
the fact that it was written in Russian. Thus, the debate that we will describe
in section 7.1.5, on the nature of Brouwer’s logic, does not refer to Kolmogorov.
In the introduction to his article, Kolmogorov states his aim as follows:

We shall prove that every conclusion obtained with the help of the
principle of the excluded middle is correct provided every judgment
that enters in its formulation is replaced by a judgement asserting
its double negation. We call the double negation of a judgement
its “pseudotruth.” Thus, in the metamathematics of pseudotruth it
is legitimate to apply the principle of the excluded middle. (Kol-
mogorov 1925, 416)

Kolmogorov’s declared goal in the paper was to show why the illegitimate use
of the excluded middle does not lead to contradiction. His results predate
similar results by Gentzen (1933a) and Gödel (1933a), which are known as
double negation interpretations or negative translations. Kolmogorov’s points
of departure are Brouwer’s critique of classical logic and the formalization of
classical logic given by Hilbert in (1922c). He introduces two propositional
calculi: B and H.

Calculus B:

1. A→ (B → A)

2. {A→ (A→ B)} → (A→ B)

3. {A→ (B → C)} → {B → (A→ C)}

4. (B → C) → {(A→ B) → (A→ C)}

5. (A→ B) → {(A→ B) → A}

Calculus H is obtained by adding to B the axiom

6. A→ A

Rules of inference for both calculi are substitution and modus ponens.
It has been argued that Kolmogorov anticipated Heyting’s formalization of

intuitionistic propositional calculus (see Section 7.1.6 below). This is almost
true. The system B (known after Johansson as the minimal calculus) differs
from the negation-implication fragment of Heyting’s axiomatization only by the
absence of axiom

h. A ⊃ (¬A ⊃ B)
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H is equivalent to the formalization of classical propositional calculus given in
Hilbert (1922c). We find in Kolmogorov also an attempt at a formalization of
the intuitionistic predicate calculus, although he is not completely formal on
this point. He regards as intuitive the rule “whenever a formula S stands by
itself [i.e., is proved], we can write the formula (a)S” (433; rule P) and states
the following axioms:

I. (a){A(a) → B(a)} → {(a)A(a) → (a)B(a)}

II. (a){A→ B(a)} → {A→ (a)B(a)}

III. (a){A(a) → C} → {(Ea)A(a) → C}

IV. A(a) → (Ea)A(a)

Adding to system B the axioms I–IV and rule P would result in a complete
system for intuitionistic predicate logic (Heyting 1930b) if axiom h and the
following axiom

g. (a)A(a) → A(a)

were also added. Kolmogorov considered axiom g to be true (see Wang 1967).
He conjectured that B is complete with respect to its intended interpretation
(“the intuitively obvious” class of propositions) but he cautiously observed that
“the question whether this axiom system is a complete axiom system for the
intuitionistic general logic of judgments remains open” (422).

Whereas calculus B corresponds, according to Kolmogorov, to the “general
logic of judgments,” calculus H corresponds to the “special logic of judgments,”
since its range of application is narrower (it produces true propositions only
when the propositional variables range over a narrower class of propositions). In
section III of his paper, Kolmogorov individuates a class of judgments with the
property that “the judgment itself follows [intuitively] from its double negation.”
Finitary judgments are of such type. Let A•, B•, C•, . . . denote judgments of
the mentioned kind. Then (A• → B•) → (A• → B•) and A• → A• are provable

in B. Moreover, for every negative formula A, B proves A→ A. It is also shown
that substitution for propositional variables, modus ponens and the axioms of
H are all valid for this class of propositions. This shows that the system H is
intuitionistically correct if we restrict it to the class of judgments of the form A•.
Thus, the domain for which the calculus H is valid is the class of propositions
which follow (intuitively) from their double negation, and this includes finitary
statements and all negative propositions. This amounts to showing that all of
propositional logic is included in intuitionistic propositional logic, if the domain
of propositions is restricted to propositions of the form A•. In section IV,
Kolmogorov introduces a translation from formulas of classical mathematics to
formulas of intuitionistic mathematics:

We shall construct alongside of ordinary mathematics, a “pseudo-
mathematics” that will be such that to every formula of the first
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there corresponds a formula of the second and, moreover, that every
formula of pseudomathematics is a formula of type A• (Kolmogorov
1925, 418)

The translation is defined as follows: if A is atomic then A∗ = A; A
∗

= A∗; and
(A→ B)∗ = A∗ → B∗. Thus, if A1, . . . , Ak are axioms of classical mathematics
(comprising the logical axioms) then we have A1, . . . , Ak proves A in H iff A∗

1,
. . . , A∗

k proves A∗ in B. The theorem is proved by showing that applications of
substitution and of modus ponens remain derivable in B under the ∗-translation,
using the results about double negations previously established. Moreover, the
∗-translations of the logical axioms are derivable in B.

Kolmogorov did not extend the result to predicate logic but the extension
is straightforward. It should be pointed out that Komogorov asserts (IV, §5-6)
that every axiom A of classical mathematics is such that A∗ is intuitionistically
true. But this would imply that all of classical mathematics is intuitionisti-
cally consistent, a result which is not established, for analysis and set theory,
even to this day. However, as Wang remarks, “it seems not unreasonable to as-
sert that Kolmogorov did foresee that the system of classical number theory is
translatable into intuitionistic number theory and therefore is intuitionistically
consistent” (Wang 1967, 415). We will return to these results after describing
the discussion on Brouwer’s logic in the West.

7.1.5 The debate on intuitionist logic

In 1926, Wavre published an article contrasting “logique formelle” (classical)
and “logique empiriste” (intuitionist). This was, apart from Kolmogorov (1925),
the first attempt to discuss systematically the features of “Brouwer’s logic.”
Whereas classical logic is a logic of truth and falsity, “empirical “ logic is a
logic of truth and absurdity, where true means “effectively demonstrable” and
absurd “ effectively reducible to a contradiction.” Wavre begins by listing similar
principles between the two logics:

1. ((A ⊃ B) & (B ⊃ C)) ⊃ (A ⊃ C)

2. From A and A ⊃ B, one can infer B

3. ¬(A& ¬A)

4. (A ⊃ (B & ¬B)) ⊃ ¬A

Among the different principles Wavre mentions the excluded middle and double
negation. He then shows that ¬A is equivalent, in empirical logic, to ¬¬¬A.
Moreover he observed that in empirical logic the converse of (4) does not hold,
unless B is a negative proposition. Much of Wavre’s article only restated obser-
vations that were, implicitly or explicitly, contained in Brouwer (1923b). How-
ever, it had the merit of opening a debate in the Revue de Metaphysique et de
Morale on the nature of intuitionistic logic which saw contributions by Wavre,
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Levy, and Borel. However, this debate did not directly touch on the princi-
ples of intuitionistic logic.86 By contrast, Barzin and Errera (1927) claimed
that Brouwerian logic was inconsistent, thereby sparking a long debate on the
possibility of an intuitionistic logic, which saw contributions by Church, Levy,
Glivenko, Khintchine and others. Barzin and Errera incorrectly interpreted
Brouwer’s talk of undecided propositions (i.e., those for which there is neither
an effective proof of their validity nor an effective proof of their absurdity) as
claiming that there are propositions which are neither true nor false. These
propositions are “tierce”. Their aim was then to show that the admission of a
“tierce” led to formal contradictions. They interpreted these “third” proposi-
tions not as a state of objective ignorance but rather as an “objective logical
fact”. They denoted “p is tierce” by p′. With this notation in place they stated
a principle of “quartum non datur”: p∨¬p∨ p′ and claimed that Brouwer must
accept it, if “tierce” is defined as being “neither true nor false”. Finally, the
equivalent of the principle of non contradiction, which they claimed Brouwer
must admit, is that no proposition can be true and false, or true and tierce,
or false and tierce. Under these assumptions they claimed to show that one
could prove the collapse of the truth values, that is that in the calculus one
could prove that every proposition that is true is also tierce, and every propo-
sition that is tierce is also false. The proof is however inconclusive. First of
all, there is a constant confusion between the object level and the metalevel of
analysis; moreover, the proof makes use of principles that are classically but not
intuitionistically valid.

Of the many replies to Barzin and Errera (1927), we will discuss only
Church’s (1928).87 In “On the law of the excluded middle” Church discussed,
and rejected, the claims by Barzin and Errera by making essentially three points.
First, he points out that the easiest alternative to a system that includes the
law of the excluded middle is a system in which the excluded middle is not
assumed “without assertion of any contrary principle.” Thus, since this is a
subsystem of the original one no contradictions can be derived that could not
be derived in the original system. In order to generate a contradiction we must
admit a new principle that is not consistent with the law of the excluded middle.
Second, one can drop the principle of the excluded middle and “introduce the
middle ground between true and false as an undefined term” in which case it
might be that “making the appropriate set of assumptions about the existence
and properties of tiers propositions, we can produce a system of logic which is
consistent with itself but which becomes inconsistent if the law of the excluded
middle be added.”88 This possibility had already been proven by  Lukasiewicz
in developing many-valued logics (see below), but Church does not mention
 Lukasiewicz. Third, the argument by Barzin and Errera fails because they in-
troduce the “tierce” propositions by defining them as being neither true nor
false and this leads to an inconsistency. The argument by Barzin and Errera
works only if one admits the faulty definition of a ‘tierce’ (rather than leaving
the notion undefined) and the principle of the excluded fourth, which again is
defended using the faulty definition. Finally, Church argued that Barzin and
Errera’s argument is ineffective against those who simply drop the principle of
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the excluded middle, as “the insistence that one who refuses to accept a propo-
sition must deny it can be justified only by an appeal to the law of the excluded
middle.”

7.1.6 The formalization and interpretation of intuitionistic logic

Glivenko (1928) already contributed an article on intuitionistic logic in which he
showed that Brouwerian logic could not admit a “tierce.” But of great technical
interest is Glivenko (1929) which contains the following two theorems:

1. If a certain expression in the logic of propositions is provable in classical
logic, it is the falsity of the falsity of this expression that is provable in
Brouwerian logic.

2. If the falsity of a certain expression in the logic of propositions is prov-
able in classical logic, that same falsity is provable in Brouwerian logic
(Glivenko 1929, 301)

Although Glivenko’s results do not yet amount to a translation of classical logic
into intuitionistic logic they certainly paved the way for the later results by
Gödel and Gentzen (see Troelstra 1990 and van Atten 2005). By far the most
important contribution in this period is the work of Heyting to the formalization
of intuitionistic logic. Heyting’s contributions were motivated by a prize ques-
tion published in 1927 by the Dutch Mathematical Society on the formalization
of the principles of intuitionism. Heyting was awarded the prize in 1928 but his
result appeared in print only in 1930. Heyting (1930a) contains a formalization
of the laws of intuitionistic propositional logic; (1930b) moves on to intuitionis-
tic predicate logic and arithmetic; and finally, (1930c) investigates intuitionistic
principles in analysis.

Heyting distilled the principles of intuitionistic logic by going through the list
of axioms in Principia Mathematica and retaining only those that admitted of
an intuitionist justification (letter to Becker, September 23, 1933; see Troelstra
1990). The axioms for the propositional part were the following.

1. A ⊃ (A ∧A)

2. A ∧B ⊃ B ∧A

3. (A ⊃ B) ⊃ ((A ∧ C) ⊃ (B ∧ C))

4. ((A ⊃ B) ∧ (B ⊃ C)) ⊃ (A ⊃ C)

5. B ⊃ (A ⊃ B)

6. (A ∧ (A ⊃ B)) ⊃ B

7. A ⊃ A ∨B

8. A ∨B ⊃ B ∨A
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9. ((A ⊃ C) ∧ (B ⊃ C)) ⊃ (A ∨B ⊃ C)

10. ¬A ⊃ (A ⊃ B)

11. ((A ⊃ B) ⊃ (A ⊃ ¬B)) ⊃ ¬A

In the appendix Heyting proves that all the axioms are independent, exploiting
a technique used by Bernays for proving the independence of the propositional
axioms of Principia (see 5.3). In (1930b), Heyting also gives a an axiomatization
for principles acceptable in intuitionistic first-order logic. In (1930a) he only
states the admissible principles and proved theorems from them but he was
not explicit on the meaning of the logical connectives in intuitionistic logic.
However, in (1930d) he did provide an interpretation for intuitionistic negation
and disjunction. The interpretation depends on interpreting propositions as
problems or expectations:

A proposition p like, for example, “Euler’s constant is rational” ex-
presses a problem, or better yet, a certain expectation (that of find-
ing two integers a and b such that C = a/b), which can be fulfilled
or disappointed. (Heyting 1930d, 307)

This interpretation is influenced by Becker’s treatment of intuitionism in Math-
ematische Existenz (1927) where, appealing to distinctions found in Husserl’s
Logical Investigations, Becker distinguishes between the fulfillment of an inten-
tion (say a proof of “a is B”), the frustration of an intention (a proof of “a is
not B”) and the non-fulfillment of an intention (i.e., the lack of a fulfillment).
Indeed, Heyting (1931) explicitly refers to the phenomenological interpretation
and claims that “the affirmation of a proposition is the fulfillment of an inten-
tion” (1931, 59). He mentions Becker in connection with the interpretation of
intuitionistic negation:

A logical function is a process for forming another proposition from
a given proposition, Negation is such a function. Becker, following
Husserl, has described its meaning very clearly. For him negation
is something thoroughly positive, viz., the intention of a contradic-
tion contained in the original intention. The proposition “C is not
rational” therefore, signifies the expectation that one can derive a
contradiction from the assumption that C is rational. (Heyting 1931,
59)

Disjunction is interpreted as the expectation of a mathematical construction
that will prove one of the two disjuncts. In Heyting (1934) it is specified that
the mathematical construction fulfilling a certain expectation is a proof. Under
this interpretation A ⊃ B signifies “the intention of a construction that leads
from each proof of A to a proof of B.” This interpretation of the intuitionistic
connectives is now known as the Brouwer-Heyting-Kolmogorov interpretation.
The presence of Kolmogorov stems from Kolmogorov’s interpretation of the
intuitionistic calculus as a calculus of problems in his (1932). In this interpreta-
tion, for instance, ¬A is interpreted as the problem “to obtain a contradiction,
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provided the solution of A is given.” Although the two interpretations are dis-
tinct they were later on treated as essentially the same and Heyting (1934, 14)
speaks of Kolmogorov’s interpretation as being closely related to his.89

7.1.7 Gödel’s contributions to the metatheory of intuitionistic logic

Glivenko’s work had shown that classical propositional logic could be interpreted
as a subsystem of intuitionistic logic, and thus to be intuitionistically consistent.
We have also seen that Kolmogorov (1925) implicitly claimed that classical
mathematics is intuitionistically consistent. A more modest, but extremely
important, version of this unsupported general claim was proved by Gödel and
Gentzen in 1933. Gödel states:

The goal of the present investigation is to show that something simi-
lar [to the translation of classical logic into intuitionistic logic] holds
also for all of arithmetic and number theory, delimited in scope by,
say, Herbrand’s axioms. Here, too, we can give an interpretation
of the classical notions in terms of the intuitionistic ones so that all
propositions provable from the classical axioms hold for intuitionism
as well.” (Gödel 1933c, 287–289)90

Gödel distinguished the classical connectives from the intuitionistic connectives:
¬, ⊃, ∨, ∧ are the intuitionistic connectives; the corresponding classical connec-
tives are ∼, →, ∨, ·. Gödel’s translation ′ from classical propositional logic into
intuitionistic logic is defined as follows: p′ = p, if p is atomic; let (∼p)′ = ¬p′,
(p · q)′ = p′ ∧ q′; (p ∨ q)′ = ¬(¬p′ ∧ ¬q′); (p→ q)′ = ¬(p′ ∧ ¬q′).

He then shows that classical propositional logic proves a sentence A if and
only if intuitionistic propositional logic proves the translation A′. The result
is then extended to first order arithmetic by first extending the translation to
cover the universal quantifier so that (∀xP )′ = ∀xP ′. Letting H ′ stand for in-
tuitionistic first order arithmetic and Z for first-order arithmetic (in Herbrand’s
formulation), then Gödel showed that a sentence A is provable in Z iff its trans-
lation A′ is provable in H ′.

From the philosophical point of view, the importance of the result consists
in showing that, under a somewhat deviant interpretation, classical arithmetic
is already contained in intuitionistic arithmetic. Therefore, this amounts to an
intuitionistic proof of the consistency of classical arithmetic. It was this re-
sult that once and for all brought clarity into a systematic confusion between
finitism and intuitionism, which had characterized the literature on the foun-
dation of mathematics in the 1920s.91 What Gödel’s result makes clear is that
intuitionistic arithmetic is much more powerful than finitistic arithmetic.

Two more results by Gödel on the metatheory of intuitionistic logic have to
be mentioned. The first (1933a) consists in an interpretation of intuitionistic
propositional logic into a system of classical propositional logic extended by an
operator B (“provable,” from the German “beweisbar”). It is essential that
provability here be taken to mean “provability in general” rather than prov-
ability in a specified system. The logic of the system B turns out to coincide

96



with the modal propositional logic S4. The system S4 is characterized by the
following axioms:

1. Bp→ p

2. Bp→ (B(p→ q) → Bq)

3. Bp→ BBp

The translation † works as follows: atomic sentences are sent to atomic sen-
tences; (¬p)† = ∼Bp†; (p ⊃ q)† = Bp† → Bq†; (p ∨ q)† = Bp† ∨ Bq†;
(p ∧ q)† = p† · q†. Gödel showed that if A is provable in intuitionistic propo-
sitional logic then A† is provable in S4. This result was important in that it
showed the connections between modal logic and intuitionistic logic and paved
the way for the development of Kripke’s semantics for intuitionistic logic, once
the semantics for modal logic had been worked out.

One final result by Gödel concerns intuitionistic logic and many-valued logic.
Gödel (1932b) proved that intuitionistic propositional logic cannot be identified
with a system of many-valued logic with finitely many truth values. Moreover,
he showed that there is an infinite hierarchy of finite-valued logics between
intuitionistic and classical propositional logic.92

7.2 Many-valued logics

The systematic investigation of systems of many-valued logics goes back to Jan
 Lukasiewicz.93  Lukasiewicz arrived to many-valued logics as a possible way out
of a number of philosophical puzzles he had been worrying about. The first
concerns the very foundation of classical logic, i.e., the principle that every
proposition p is either true or false. This he called the law of bivalence 1930,
53. The principle had already been the subject of debate in ancient times and
Aristotle himself expressed doubts as to its applicability for propositions con-
cerning future contingents (“there will be a sea battle tomorrow”). The wider
philosophical underpinnings of such debates had to do with issue of determin-
ism and indeterminism, which  Lukasiewicz explored at length (see for instance
 Lukasiewicz 1922). In all such issues the notion of possibility and necessity are
obviously central. Indeed, in his presentation of many-valued logic  Lukasiewicz
motivates the system by a reflection on modal operators, such as “it is possible
that p.” The first presentation of the results goes back to two lectures given
in 1920: “On the concept of possibility” (1920b) and “On three valued-logic”
(1920a). Let us follow these lectures. In the first lecture,  Lukasiewicz considers
the relationship between the following sentences:

i. S is P

ii. S is not P

iii. S can be P

iv. S cannot be P
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v. S can be non P

vi. S cannot be non P (i.e., S must be P )

He distinguishes three positions that can be held with respect to the logical
relationship between the above sentences:

a. If S must be P (vi), then S is P (i)

b. If S cannot be P (iv), then S is not P (ii)

When no further relationships hold between (i)–(vi) this corresponds to the
point of view of traditional logic. The second position, corresponding to onto-
logical determinism, consists of the theses (a) and (b) plus the implications

c. If S is P (i), then S must be P (vi)

d. If S is non P (ii), then S cannot be P (iv).

Finally the third position, corresponding to ontological indeterminism, consists
of (a), (b), and the implications

e. If S can be P (iii), then S can be non P (v)

f. If S can be non P (v), then S can be P (iii).

All these theses have, according to  Lukasiewicz, a certain intuitive obviousness.
However, he shows that if one reasons within the context of classical logic there
is no way to consistently assign truth values 0 and 1 to (i)–(vi) so that all of
(a)–(f) will get value 1. However, this becomes possible if one introduces a new
truth-value, 2, which stands for “possibility.” This gives rise to the need for the
study of “three-valued logic.”

In the second lecture,  Lukasiewicz defines three-valued logic as a system of
non-Aristotelian logic and defines the truth tables for equivalence and implica-
tion based on three values in such a way that the tables coincide with classical
logic when the values are 1 and 0 but satisfy the following laws when the value
2 occurs. For the biconditional one stipulates that the values for 02, 20, 21, and
12 is going to be 2; for the material conditional the value is 1 for 02, 21, and
22 and it is 2 for 20 and 12. From the general analysis, it is also clear that for
negation the following holds: if p is assigned value 2 then ∼p is also 2.

While all tautologies of three valued-logic are tautologies of classical propo-
sitional (two-valued) logic, the converse is not true. For instance, p ∨∼p is not
a tautology in three valued logic, since if p is assigned the value 2, the value of
p ∨ ∼p is also 2.

In Post (1921) we also find a study of many-valued logics. However, Post
studies these systems purely formally, without attempting to give them an intu-
itive interpretation. It is perhaps on account of this fact that he was the first to
develop tables for negation known as “cyclic commutation” tables. In the case
of  Lukasiewicz’s system negation is always defined by a “mirror” truth-table,
i.e., the value of negation is that of its opposite in the order of truth (the value
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of ∼p is 1 minus the value of p). In the case of Post, the truth table for negation
is defined by permuting the truth-values cyclically. Here is a comparison of the
tables for the two types of negations in three-valued logic:

 Lukasiewicz Post
p ∼p p ∼p
0 1 0 1

2
1
2

1
2

1
2 1

1 0 1 0

Post was motivated by issues of functional completeness and in fact one of
the results in his (1921) is that the system of m-valued logic he introduces, with
a “cyclic commutation” table for negation, and a disjunction table obtained
by giving the disjunction the maximum of the truth-values of the disjuncts, is
truth-functionally complete. The table for negation, with values 1 to m, is as
follows:

p 1 2 . . . m
∼p 2 3 . . . 1

 Lukasiewicz generalized his work from three-valued logics to many-valued
logics in (1922). At first he looked at logics with n truth values and later he
considered logics with ℵ0 values. All these systems can be expressed as follows.
Let n be a natural number or ℵ0. Assume that p and q range over a set of
n numbers from the interval [0, 1]. As usual at the time let us standardize the
values to be k/(n−1) for 0 ≤ k ≤ n−1 when n is finite and k/l (0 ≤ k ≤ l) when
n is ℵ0. Define p→ q to have value 1 whenever p ≤ q and value 1−p+q whenever
p > q. Let ∼p have value 1 − p. If we select only 0 and 1 we are back in the
classical two-valued logic. If we add to 0 and 1 the value 1

2 we get three-valued
logic. In similar fashion one can create systems of n-valued logic. If p and q
range over a countable set of values one obtains an infinite-valued propositional
calculus. Many Polish logicians investigated the relationships between systems
of many-valued logic (see Woleński 1989). One of the first problems was to
study how the sequence of logics Ln (n > 1) behaves. It was soon shown that all
tautologies of Ln are also tautologies of L2 but the converse does not hold. While
Lℵ0 turns out to be contained in all finite Ln the relationship between any two
finite Lm and Ln is more complicated.  Lukasiewicz and Tarski (1930) attribute
to Lindenbaum the following result (theorem 19): For 2 ≤ m and 2 ≤ n (m, n
finite) we have: Lm is included in Ln iff n− 1 divides m− 1. Among the early
results concerning the axiomatization of many-valued logics one should mention
Wajsberg (1931), which contains a complete and independent axiomatization
of three-valued logic. However, the system is not truth-functionally complete.
S lupecki (1936) proved that if one adds to the connectives ⊃ and ∼ in three-
valued logic, the operator T such that Tp is always 1

2 (for p = 1, 0, or 1
2 ), then

the system is truth-functionally complete. In order to provide an axiomatization
one needs to add some axioms for T to the axioms given by Wajsberg. Thus,
the axiomatization provided by S lupecki is given by the following six axioms:

1. p ⊃ (q ⊃ p)
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2. (p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r))

3. (∼p ⊃ ∼q) ⊃ (q ⊃ p)

4. ((p ⊃ ∼p) ⊃ p) ⊃ p

5. Tp ⊃ ∼Tp

6. ∼Tp ⊃ Tp94

The axiomatizability of Lℵ0 was conjectured by  Lukasiewicz in 1930, who put
forth the (correct) candidate axioms, but a proof of the result was only given
by Rose and Rosser (1958).

Let us conclude this exposition on many-valued logic in the twenties and
the early thirties by mentioning some relevant work on the connection between
intuitionistic logic and many-valued logic. We have seen that Gödel in 1932
showed that intuitionistic logic did not coincide with any finite many-valued
logic. More precisely, he showed that no finitely valued matrix characterizes
intuitionistic logic. Theorem I of Gödel (1932b) reads:

There is no realization with finitely many elements (truth values) for
which the formulas provable in H [intuitionistic propositional logic],
and only those, are satisfied (that is, yield designated truth values
for an arbitrary assignment). (Gödel 1932b, 225)

In the process he identified an infinite class of many-valued logic, now known
as Gödel logics. This is captured in the second theorem of the paper:

Infinitely many systems lie between H and the system A of the
ordinary propositional calculus, that is, there is a monotonically
decreasing sequence of systems all of which include H as a subset
and are included in A as subsets. (Gödel 1932b, 225)

The previous result gave the first examples of logics that are now studied under
the name of intermediate logics. One important result that should be mentioned
in this connection was obtained by Jaśkowski (1936), who provided an infinite
truth-value matrix appropriate for intuitionistic logic.

8 Itinerary VIII: Semantics and Model-theoretic
Notions

8.1 Background

During the previous itineraries we have come across the implicit and explicit
use of semantic notions (interpretation, satisfaction, validity, truth etc.). In
this section we will retrace, in broad strokes, the main contexts in which these
notions occurred in the first two decades of the twentieth century. This will
provide the background for an understanding of the gradual emergence of the
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formal discipline of semantics (as part of metamathematics) and, much later, of
model theory.

The first context we have encountered in which semantical notions make their
appearance is that of axiomatics (see itinerary I). A central notion in the analy-
sis of axiomatic theories is that of “interpretation,” which of course has its roots
in nineteenth century work on geometry and abstract algebra (see Guillaume
1994 and Webb 1995). The development of analysis, algebra and geometry in
the nineteenth century had led to the idea of an uninterpreted formal axiomatic
system. We have seen that Pieri (1901) emphasized that the primitive notions
of any deductive system “must be capable of arbitrary interpretations,” with
the only restriction that the primitive sentences are satisfied by the particular
interpretation. The axioms are verified, or made true, by particular interpreta-
tions. Interpretations are essential for proofs of consistency and independence
of the axioms. However, as we said, the semantical notions involved (satisfac-
tion, truth in a system) are used informally. Moreover, all these developments
took place without a formal specification of the background logic. With minor
modifications from case to case, these remarks apply to Peano’s school, Hilbert,
and the American postulate theorists.

8.1.1 The algebra of logic tradition

A second tradition in which semantic notions appear quite frequently is that
of the algebra of logic. It is to this tradition that we owe what is considered
the very first important result in model theory (as we understand it today, i.e.
a formal study of the relationship between a language and its interpretations).
This is the Löwenheim-Skolem theorem. As stated by Skolem:

In volume 76 of Mathematische Annalen, Löwenheim proved an in-
teresting and very remarkable theorem on what are called “first-
order expressions” [Zählausdrücke]. The theorem states that every
first-order expression is either contradictory or already satisfiable in
a denumerably infinite domain. (Skolem 1920, 254)

As we have already seen in itinerary IV, the basic problem is the satisfaction
of (first-order) equations on certain domains. Domain and satisfaction are the
key terminological concepts used by Löwenheim and Skolem (who do not talk
of interpretations). However, all these semantical notions are used informally.

It can safely be asserted that the clarification of semantic notions was not
seen as a goal for mathematical axiomatics. In 1918, Weyl gestures toward
an attempt at clarifying the meaning of ‘true judgment’ but he does so by
delegating the problem to philosophy (Fichte, Husserl). An exception here is
Ajdukiewicz (1921), who however was only accessible to those who read Polish.
Ajdukiewicz stressed the issues related to a correct interpretation of the notions
of satisfaction and truth in the axiomatic context. This was to leave a mark on
Tarski, who was thoroughly familiar with this text (see Section 8.7).
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8.1.2 Terminological variations (systems of objects, models, and struc-
tures)

Throughout the 1910s the terminology for interpretations of axiomatic systems
remains rather stable. Interpretations are given by systems of objects with
certain relationships defined on them. Bôcher (1904) suggests the expression
“mathematical system” to “designate a class of objects associated with a class
of relations between these objects” (128). Nowadays, however, we speak just as
commonly of models or structures. When did the terminology become common
currency in axiomatics?

“Model,” as an alternative terminology for interpretation, makes its ap-
pearance in the mathematical foundational literature in von Neumann (1925),
where he talks of models of set theory. However, the new terminology owes
its influence and success to Weyl’s “Philosophy of Mathematics and Natural
Science” (1927). In introducing techniques for proving independence, Weyl de-
scribes the techniques of “construction of a model [Modell ]” (18) and described
both Klein’s construction of a Euclidean model for non-Euclidean geometry and
the construction of arithmetical models for Euclidean geometry (or subsystems
thereof) given by Hilbert.95 Once introduced in the axiomatical literature by
Weyl, the word “model” finds a favorable reception. It occurs in Carnap (1927,
2000 [1927–29], 1930), Kaufmann (1930), and in articles by Gödel (1930), Zer-
melo (1929, 1930) and Tarski (1936a). The usage is however not universal. The
word “model” is not used in Hilbert and Ackermann (1928) (but it is found in
Bernays 1930). Fraenkel (1928) speaks about realizations or models (353) as
does Tarski (1936a). The latter do not follow Carnap in drawing a distinction
between realizations (concrete, spatio-temporal interpretations) and models (ab-
stract interpretations). “Realization” is also used by Baldus (1924) and Gödel
(1929).

As for “structure” it is not used in the twenties as an equivalent of “math-
ematical system.” Rather, mathematical systems have structure. In Principia
Mathematica (Whitehead and Russell 1912, part iv, *150ff) and then in Russell
(1919, Ch. 6) we find the notion of two relations “having the same structure.”96

In Weyl (1927, 21), two isomorphic systems of objects are said to have the same
structure. This process will eventually lead to the idea that a “structure” is what
is captured by an axiom system: “An axiom system is said to be monomorphic
when exactly one structure belongs to it [up to isomorphism]” (Carnap 2000
[1927–29], 127; see also Bernays 1930).

Here it should be pointed out that the use of the word “structure” in the
algebraic literature was not yet widespread, although the structural approach
was. It seems that ‘structure’ was introduced in the algebraic literature in
the early 30s by Øystein Ore to denote what we nowadays call a lattice (see
Vercelloni 1988 and Corry 2004).
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8.1.3 Interpretations for propositional logic

A major step forward in the development of semantics is the clarification of the
distinction between syntactical and semantic notions made by Bernays in his
Habilitationsschrift of 1918 (see itinerary V). We have seen that Bernays clearly
distinguished between the syntax of the propositional calculus and its interpre-
tations, a distinction that was not always clear in previous writers. This allowed
him to properly address the problem of completeness for the propositional cal-
culus. Bernays distinguished between provable formulas (obtainable from the
axioms by means of the rules of inference) from the valid formulas (which yield
true propositions for any substitution of propositions for the variables) and
stated the completeness problem as follows: “Every provable formula is a valid
formula and conversely.” It would be hard to overestimate the importance of
this result, which formally shows the equivalence of a syntactic notion (provable
formula) with a semantic one (valid formula) (In the Section 8.4 we will look at
the emergence of the corresponding notions for first-order logic). Post (1921)
also made a clear distinction between the formal system of propositional logic
and the semantic interpretation in terms of truth-table methods, and he also
established the completeness of the propositional calculus (see Section 8.3).

In this way logic becomes an object of axiomatic investigation for which one
can pose all the problems that had traditionally been raised about axiomatic
systems. In order to get a handle on the problems researchers first focused on
the axiomatic systems for the propositional calculus and then moved on to wider
systems (such as the “restricted functional calculus,” i.e., first-order predicate
logic). Here we will focus on the metatheoretical study of systems of axiomatic
logic rather than the developments of mathematical axiomatic theories (models
of set theory, arithmetic, geometry, various algebraic structures etc.).

8.2 Consistency and independence for propositional logic

We have seen that the use of interpretations to provide independence results was
exploited already in the nineteenth century in several areas of mathematics.
Hilbert, Peano and his students, and also the American postulate theorists
put great value in showing the independence of the axioms for any proposed
axiomatic system. Most of these applications concern specific mathematical
theories. Applications to logic appear first in the tradition of the algebra of logic.
For instance, in “Sets of independent postulates for the algebra of logic” (1904),
Huntington studied the “algebra of symbolic logic” as an independent calculus,
as a purely deductive theory. The object of study is given by a set K satisfying
the axioms of what we would now call a Boolean algebra. Huntington provides
three different axiomatizations of the “algebra of logic” of which we present the
first, built after Whitehead’s presentation in Universal Algebra (1898). Possible
interpretations for the system are the algebra of classes and the algebra of
propositions. Huntington claims originality in the extensive investigation of the
independence of the axioms. The first axiomatization states the properties of a
class K of objects on which are defined two operations ⊕ and ⊗ satisfying the
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following axioms:

Ia. a⊕ b is in the class whenever a and b are in the class;

Ib. a⊗ b is in the class whenever a and b are in the class;

IIa. There is an element
∧

such that a⊕
∧

= a, for every element a.

IIb. There is an element
∨

such that a⊗
∨

= a, for every element a.

IIIa. a⊕ b = b⊕ a whenever a, b, a⊕ b, and b⊕ a are in the class;

IIIb. a⊗ b = b⊗ a whenever a, b, a⊗ b, and b⊗ a are in the class;

IVa. a⊕ (b⊗c) = (a⊕b)⊗ (a⊕c) whenever a, b, c, a⊕b, a⊕c, b⊗c, a⊕ (b⊗c),
and (a⊕ b)⊗ (a⊕ c) are in the class;

IVb. a⊗ (b⊕c) = (a⊗b)⊕ (a⊗c) whenever a, b, c, a⊗b, a⊗c, b⊕c, a⊗ (b⊕c),
and (a⊗ b)⊕ (a⊗ c) are in the class;

V. If the elements
∧

and
∨

in postulates IIa and IIb exist and are unique,
then for every element a there is an element a such that a ⊕ a =

∨
and

a⊗ a =
∧

.

VI. There are at least two elements, x and y, in the class such that x 6= y.

The consistency of the set of axioms is given by a finite table consisting of two
objects 0 and 1 satisfying the following:

⊕ 0 1
0 0 1
1 1 1

⊗ 0 1
0 0 0
1 0 1

The reader will notice that if we interpret ⊕ as conjunction of propositions and
⊗ as disjunction we can read the above table as the truth table for conjunction
and disjunction of propositions (letting 0 stand for true and 1 for false). Similar
tables are used by Huntington to prove the independence of each of the axioms
from the remaining ones. In every case one provides a class and tables for ⊕
and ⊗ which verify all of the axioms but the one to be shown independent. For
instance IIIa can be shown to be independent by taking two objects 0 and 1
with the following tables:

⊕ 0 1
0 0 0
1 1 1

⊗ 0 1
0 0 0
1 0 1

All the axioms are satisfied but a ⊕ b = b ⊕ a fails by letting a = 0 and b = 1.
Similarly for a⊗ b.

These techniques were not new and were used already in connection to the
algebra of propositions by Peirce and Schröder. An application of this algebraic
approach to the propositional calculus of Principia Mathematica was given by
Sheffer (1913). Sheffer showed that one could study an algebra on a domain K
with a binary K-rule of combination | satisfying the following axioms:
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1. There are at least two distinct elements of K.

2. a | b is in K whenever a and b are in K.

3. (a | a) | (a | a) = a whenever a is an element of K and all the indicated
combinations of a are in K.

4. a | (b | (b | b)) = a | a whenever a and b are elements of K and all the
indicated combinations of a and b are in K.

5. (a | (b | c)) | (a | (b | c)) = ((b | b) | a) | ((c | c) | a) whenever a, b, and c
are elements of K and all the indicated combinations of a, b, and c are in
K.

Sheffer showed that this set of postulates implies Huntington’s set by letting
a = a | a; a ⊕ b = (a | b) | (a | b) and a ⊗ b = (a | a) | (b | b). Conversely,
by defining a | b as a ⊗ b, Huntington’s set implies Sheffer’s set of axioms.
The application to Principia is now immediate. One can substitute a single
connective p | q defined as ∼(p ∨ q).

This work leads us to Bernays, Bernays’s (1918, 1926) studies of the inde-
pendence of the axioms of the propositional fragment of Principia. Actually
Bernays was unaware of Sheffer’s work until Russell mentioned it to him in
1920 (see Mancosu 2003). Bernays’s (1926) formulation of the propositional
logic (“theory of deduction”) of Principia is given by

Taut. `: p ∨ p. ⊃ .p

Add. `: q. ⊃ .p ∨ q

Perm. `: p ∨ q. ⊃ .q ∨ p

Assoc. `: p ∨ (q ∨ r). ⊃ .q ∨ (p ∨ r)

Sum. `: .q ⊃ r. ⊃: p ∨ q. ⊃ .p ∨ r

One also has rules of substitution and modus ponens.
The proof of independence of the axioms of the propositional calculus of

Principia, with the exclusion of associativity, shown by Bernays to be derivable
from the others, was given by appropriate interpretations in the style of the
independence proofs we have looked at in the work of Huntington. However,
one also has to show that the inference rules, and in particular modus ponens,
preserve the right value. The technique is that of exhibiting “finite systems”
consisting in the assignment of 3 or 4 finite values to the variables. One (or
several) of these values are then singled out as distinguished value(s).

The proof of consistency of the calculus is given by letting propositions
range over {0, 1} and interpreting ∼p as the numerical operation 1−p and p∨ q
(disjunction) as the numerical operation p × q. It is easy to check that the
axioms always have value 0 and that substitution and modus ponens lead from
formulas with value 0 to other formulas with value 0. This shows the calculus
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to be consistent, for were a contradiction provable, say (p& ¬p), then it would
take the value 1.

The technique of proving independence of the axioms is similar (“Methode
der Aufweisung”). Consider the axiom Taut. We give the following table with
three values a, b, c with a distinguished value, say a.

∨ a b c ∼
a a a a b
b a b c a
c a c a c

It is easy to check that Add, Perm and Sum always have value a but not Taut
as (c ∨ c) ⊃ c has value c (6= a). Bernays also proved completeness by using
the technique of normal forms (see Section 5.3 for details on this and Bernays’s
independence proofs in 1918). Since Bernays’s work did not appear in print
until 1926, Post’s paper (1921) contained the most advanced published results
on the metatheory of the propositional calculus by the early 1920s. Similar
results were also obtained by  Lukasiewicz around 1924 (see Tarski 1983, 43).

8.3 Post’s contributions to the metatheory of the propo-
sitional calculus

Post (1921) represent a qualitative change with respect to the previous studies of
axiomatic systems for the propositional calculus by Russell, Sheffer, and Nicod.
Post begins by explicitly stating the difference between proving results in a
system and proving results about a system. He emphasizes that his results are
about the system of propositional logic, which he takes in the version offered
in Principia but regards it as a purely formal system to be investigated.97 A
basic concept introduced by Post is that of a truth-table development. Post
claims no originality for the concept, which he attributes to previous logicians.
He denotes the truth value of any proposition p by + if p is true and by − if p
is false.

The notion of truth table is then applied to arbitrary functions of the form
f(p1, p2, . . . , pn) of n propositions built up from p1, p2, . . . , pn by means of
arbitrary applications of ∼ and ∨. As each of the proposition can assume either
+ or − as values there are 2n possible truth configurations for f(p1, p2, . . . , pn).
In general there will be 22n

possible truth-tables for functions of n arguments.
Let us call such truth-tables of order n. Post proves first of all that for any n,
to every truth table of order n there is at least one function f(p1, p2, . . . , pn)
which has it for its truth-table. He then distinguishes three classes of functions:
positive, negative, and mixed. Positive functions are those that always take +
(this is the equivalent of Wittgenstein’s propositional tautologies as defined in
the Tractatus (1921, 1922), say p ∨ ∼p, negative functions those that always
take − (say, ∼(p ∨ ∼p)), and mixed are those functions those that take both
+’s and −’s (e.g., p ∨ p).

Post’s major theorem then proves that a necessary and sufficient condition
for a function f(p1, p2, . . . , pn) to be a theorem of the propositional system of

106



Principia is that f(p1, p2, . . . , pn) be positive (i.e., all its truth values be +).
In our terminology, f(p1, p2, . . . , pn) is a theorem of propositional logic if and
only if f(p1, p2, . . . , pn) is a tautology. The proof makes use of the possibility of
transforming sentences of the propositional calculus into special normal forms.
Post emphasizes that the proof of his theorem gives a method both for deciding
whether a function f(p1, p2, . . . , pn) is positive and for actually writing down
a derivation of the formula from the axioms of the calculus. Nowadays the
property demonstrated by Post is called (semantic) completeness but Post uses
the word completeness in a different sense. He uses the word to discuss the
adequacy of a system of functions to express all the possible truth-tables (this
is nowadays called truth-functional completeness). In this way he shows not
only that through the connectives of Principia (∼ and ∨) one can generate
all possible truth-tables but also that there are only two connectives which
can, singly, generate all the truth tables. One is the Sheffer stroke and the
other is the binary connective that is always false except in the case when both
propositions are false. The techniques used by Post are now standard and we
will not rehearse them here. Rather we would like to mention another important
concept introduced by Post. Post needed to introduce a concept of consistency
for arbitrary systems of connectives (which therefore might not have negation as
a basic connective). Since an inconsistent system brings about the assertion of
every proposition, he defined a system to be inconsistent if it yields the assertion
of the variable p (which is equivalent to the derivability of every proposition if
the sustitution rule is present). From this notion derives our notion of Post-
completeness: a system of logic is Post-complete if every time we add to it a
sentence unprovable in it, we obtain an inconsistent system. Post proved that
the propositional system of Principia is thus both semantically complete and
Post-complete.

Another powerful generalization was offered by Post in the last part of his
article. There he defines m-valued truth systems, i.e. system of truth values
where instead of two truth values (+ and −) we have finitely many values. This
development is, together with ( Lukasiewicz 1920b), one of the first studies of
many-valued logics (see itinerary VII).

One final point about Post. Although the truth-table techniques he devel-
oped belong squarely to what we call semantics, this does not mean that Post
was after an analysis of logical truth or a “semantics.” Rather, his interest
seems to have been purely formal and aimed at finding a decision procedure for
provability (see Dreben and van Heijenoort 1986, 46).

To sum up: by 1921 the classical propositional calculus has been shown
to be consistent, semantically complete, Post-complete, and truth-functionally
complete. Moreover, Bernays improved the presentation of the calculus given
in Principia by showing that if one deletes associativity from the system one
obtains an axiomatic systems all of whose axioms are independent.
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8.4 Semantical completeness of first-order logic

With the work by Bernays (1918, 1926) and Post (1921) the notions of Post-
completeness and semantic completeness had been spelled out with the required
precision. After the recognition of first-order logic (“functional calculus” or
“restricted functional calculus”) as an important independent fragment of logic,
due in great part to Hilbert’s 1917–18 lectures and Hilbert and Ackermann
(1928), the axiomatic investigation of first-order logic could also be carried out.

Chapter 3 of (Hilbert and Ackermann 1928) became the standard exposition
of the calculus. In section 9 of the chapter, Hilbert and Ackermann show that
the calculus is consistent (by giving an arithmetical interpretation with a domain
of one element). Then it is shown, crediting Ackermann for the proof, that the
system is not Post-complete. In order to pose the completeness problem for
first-order logic it was necessary to identify the appropriate notion of validity
[Allgemeingültigkeit ]. This notion seems to be have been defined for the first
time by Behmann (1922). It turns out that Behmann’s approach to the decision
problem led to the notion of validity for first-order formulas (with variables for
predicates) and for second-order formulas. This is well captured in Bernays’s
concise summary of the work:

In the decision problem we have to distinguish between a narrower
and a wider formulation of the problem. The narrower problem con-
cerns logical formulas of the “first order,” that is those in which
the signs for all and exist (universal and existential quantifiers) refer
only to individuals (of the assumed individual domain); the logical
functions occurring here are variables, with the exception of the rela-
tion of identity (“x is identical with y”), which is the only individual
[constant] relation admitted. The task consists in finding a general
procedure which allows to decide, for any given formula, whether it
is valid [allgemeingültig ], that is whether it yields a correct assertion
[richtige Aussage] for arbitrary substitutions of determinate logical
functions.

One arrives to the wider problem by applying the universal and
the existential quantifiers in connection to function variables. Then
one considers formulas of the “second order” in which all variables
are bound by universal and existential quantifiers, in whose meaning
therefore nothing remains undetermined except for the number of
individuals which are taken as given at the outset. For an arbitrary
given formula of this sort one must now decide whether it is correct
or not, or for which domains it is correct.” (Bernays 1928a, 1119–
1120)

A logical formula, in this context, is one that is expressible only by means of
variables (both individual and functional), connectives and quantification over
individual variables, i.e., there are no constants (see Hilbert and Ackermann
1928, 54). With this in place the problem of completeness is posed by Hilbert
and Ackermann as the request for a proof that every logical formula (of the
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restricted functional calculus) which is correct for every domain of individuals
[Individuenbereich] be shown to be derivable from the axioms by finitely many
applications of the rules of logical inference (68).98

Hilbert and Ackermann also posed the problem to show the independence of
the axioms for the restricted functional calculus. Both problems were solved in
1929 by Kurt Gödel in his dissertation and published in “The completeness of
the axioms of the functional calculus of logic” (1929, 1930). The solution to the
completeness problem is the most important one. As there exist already several
expositions of the proof (Kneale and Kneale 1962, Dreben and van Heijenoort
1986) we can simply outline the main steps of the demonstration. Let us begin
with the axioms for the system:

1. X ∨X → X

2. X → X ∨ Y

3. X ∨ Y → Y ∨X

4. (X → Y ) → (Z ∨X → Z ∨ Y )

5. (x)F (x) → F (y)

6. (x)[X ∨ F (x)] → X ∨ (x)F (x)

Rules of inference:

1. From A and A→ B, B may be inferred.

2. Substitution for propositional and functional variables.

3. From A(x), (x)A(x) may be inferred.

4. Individual variables (free or bound) may be replaced by any others (with
appropriate provisos).

A valid formula [allgemeingültige Formel ] is one that is satisfiable in every do-
main of individuals. Gödel’s completeness theorem is stated as:

Theorem I. Every valid formula of the restricted functional calculus
is provable.

If a formula A is valid, then A is not satisfiable. By definition “A is refutable”
means “A is provable”. This leads Gödel to restate the theorem as follows:

Theorem II. Every formula of the restricted functional calculus is
either refutable or satisfiable (and, moreover, satisfiable in the de-
numerable domain of individuals).

Suppose in fact we have shown Theorem II. In order to prove Theorem I assume
that A is universally valid. Then A is not satisfiable. By Theorem II, it is
refutable, i.e. it is provable that A. Thus, it is also provable that A.
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We can thus focus on the proof of Theorem 2 and, without loss of generality,
talk about sentences rather than formulas. The first step of the proof consists
in reducing the complexity of dealing with arbitrary sentences to a special class
in normal form. The result is an adaptation of a result given by Skolem in
1920. Gödel appeals to the result (from Hilbert and Ackermann 1928) that for
each sentence S there is an associated normal sentence S∗ such that S∗ has all
the quantifiers at the front of a quantifier free matrix, and it is provable that
S∗ ↔ S. Gödel then focuses on sentences that in addition to being in prenex
normal form are such that the prefix of the sentence begins with a universal
quantifier and ends with an existential quantifier. Let us call such sentences
K-sentences.

Theorem III establishes that if every K-sentence is either refutable or satis-
fiable, so is every sentence. This reduces the complexity of proving Theorem II
to the following:

Every K-sentence is either satisfiable or refutable. The proof is by induction
on the degree of the K-sentence, where the degree of a K-sentence is defined
by counting the number of blocks in its prefix consisting of universal quantifiers
that are separated by existential quantifiers. The inductive step is quite easy
(Theorem IV). The real core of the proof is showing the result for K-sentences
of degree 1:

Theorem V. Every K-sentence of degree 1 is either satisfiable or
refutable.

Proof: assume we have a K-sentence of degree 1 of the form

(P )M = (x1) . . . (xr)(Ey1) . . . (Eys)M(x1, . . . , xr, y1, . . . , ys).

For the sake of simplicity, let us fix r = 3 and s = 2.
Select a denumerable infinity of fresh variables z0, z1, z2, . . . . Consider

all 3-tuples of z0, z1, z2, . . . obtained by allowing repetitions of the variables
and ordered according to the following order: 〈zk1 , zk2 , zk3〉 < 〈zt1 , zt2 , zt3〉 iff
(k1 + k2 + k3) < (t1 + t2 + t3) or (k1 + k2 + k3) = (t1 + t2 + t3) and 〈k1, k2, k3〉
precedes 〈t1, t2, t3〉 in the lexicographic ordering. In particular, the enumeration
begins with 〈z0, z0, z0〉, 〈z0, z0, z1〉, 〈z0, z1, z0〉, etc. Let wn be the n-th triple in
the enumeration.

We now define an infinite sequence of formulas from our original sentence as
follows:

M1 = M(z0, z0, z0; z1, z2)
M2 = M(z0, z0, z1; z3, z4) &M1

. . . . . .

Mn = M(wn; z2(n−1)+1, z2n) &Mn−1.

(Recall that our example works with s = 2).
Notice that the variables appearing after the semicolon are always fresh

variables, that have neither appeared before the semicolon nor in previous Mi’s.
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Moreover, in each Mi except M1 all the variables appearing before the semicolon
have also appeared previously.

Now define (Pn)Mn to be (Ez0)(Ez1) . . . (Ez2n)Mn. Thus, (Pn)Mn is a
sentence all of whose variables are bound by the existential quantifiers in its
prefix.

With the above in place, Gödel proves (Theorem VI) that for every n, (P )M
implies (Pn)Mn. The proof, which we omit, is by induction on n and exploits
the specific construction of the Mn’s. The important point here is that the
structure of the Mn’s is purely propositional. Thus each Mn will be built out
of functional variables P1(xp1 , . . . xq1), . . .Pk(xpk

, . . . , xqk
) (of different arity)

and propositional variables X1, . . . , Xl, (the elementary components, all of
which are already in M) by use of “or” and “not.” At this point we associate
with every Mn a formula Bn of the propositional calculus obtained by replacing
all the elementary components by propositional variables in such a way that
to different components we associate different propositional variables. Thus,
we can exploit the completeness theorem for the propositional calculus. Bn is
either satisfiable or refutable.

Case 1. Bn is refutable. Then (Pn)Mn is also refutable and so is

(x1) . . . (xr)(Ey1) . . . (Eys)M(x1, . . . , xr; y1, . . . , ys).

Case 2. No Bn is refutable. Thus they are all satisfiable. Thus for each
n, there are systems of predicates defined on the integers {0, . . . , ns} and truth
values t0, . . . , tl for the propositional variables such that a true proposition
results if in Bn we replace the Pi’s by the system of predicates, the variables zi

by the natural numbers i, and the Xi by the corresponding ti.
Thus, for each Mn we have been able to construct an interpretation, with

finite domain on the natural numbers, which makes Mn true. The step that
clinches the proof consists in showing that since there are only finitely many
alternatives at each stage n (given that the domain is finite) and that each in-
terpretation that satisfies Mn+1 makes true the previous Mn’s, it follows that
there is an infinite sequence of interpretations S1, S2, etc. such that Sn+1 con-
tains all the preceding ones. This follows from an application of König’s lemma,
although Gödel does not explicitly appeal to König’s result. From this infinite
sequence of interpretations it is then possible to define a system satisfying the
original sentence (x1) . . . (xr)(Ey1) . . . (Eys)M(x1, . . . , xr; y1, . . . , ys) by letting
the domain of interpretation be the natural numbers (hence a denumerable do-
main!) and declaring that a certain predicate appearing in M is satisfied by an
n-tuple of natural numbers if and only if there is at least an n such that in Sn

the predicate holds of the same numbers. Similarly the propositional variables
occurring in M are given values according to whether they are given those values
for at least one Sn. This interpretation satisfies (P )M .

This concludes the proof. Gödel generalizes the result to countable sets of
sentences and to first order logic with identity. The former result is obtained as
a corollary to Theorem X, which is what we now call the compactness theorem:
For a denumerably infinite system of formulas to be satisfiable it is necessary
and sufficient that every finite subsystem be satisfiable.99
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8.5 Models of first order logic

Although we have already discussed the notion of Allgemeingültigkeit in the
presentation of the narrow functional calculus in Hilbert, it will be useful to go
back to it in order to clarify how models are specified for such languages.

One first important point to notice is that both in Hilbert and Ackermann
1928 and in Bernays and Schönfinkel (1928), the problem of Allgemeingültigkeit
is that of determining for logical expressions which have no constants whether
a correct expression results for arbitrary substitution of values for the (predi-
cate) variables. As a result, an interpretation for a logical formula becomes the
assignment of a domain together with a system of individuals and functions.
For instance (x)(F (x) ∨ F (x)) is, according to Bernays-Schönfinkel, “allgeme-
ingültig” for every domain of individuals (i.e., by substituting a logical function
for F one obtains a correct sentence). (Tarski 1933b, 199, n. 3) points out that
what is at stake here is not the notion of “correct or true sentence in an indi-
vidual domain a” since the central concept in Hilbert-Ackermann and Bernays-
Schönfinkel is that of sentential functions with free variables and not that of
sentence (Tarski implies that one can properly speak of truth of sentences only;
this is also in Ajdukiewicz 1921). For this reason, Tarski says, these authors use
allgemeingültig, as opposed to “richtig” or “wahr.” This is, however, misleading
in that “richtig” and “wahr” are used by the above-mentioned authors all over
the place. Tarski is nevertheless right in pointing out that when, for a specific
individual domain, we assign an interpretation to F , say the predicate X (a
subset of the domain), we are still not evaluating the truth of (x)(F (x)∨F (x)),
since the latter expression is not a sentence but only a formula.100

In Gödel’s dissertation we find the following presentation of the notion of
satisfaction in an interpretation:

Let A be any logical expression that contains the functional variables
F1, F2, . . . , Fk, the free individual variables x1, x2, . . . , xl, the
propositional variables X1, X2,. . . , Xm, and otherwise, only bound
variables. Let S be a system of functions f1, f2, . . . , fk (all defined
in the same universal domain), and of individuals (belonging to the
same domain), a1, a2, . . . , al, as well as propositional constants, A1,
A2, . . . , Am.

We say that this system, namely (f1, f2, . . . fk, a1, a2, . . . , al, A1,
A2, . . . , Am) satisfies the logical expression if it yields a proposition
that is true (in the domain in question) when it is substituted in the
expression. (Gödel 1929, 69).101

We see that also in Gödel’s case the result of substituting objects and functions
into the formula is seen as yielding a sentence, although properly speaking one
does not substitute objects into formulas. Unless what he means is that symbols
denoting the objects in the system have to be substituted in the formula. Lack
of clarity on this issue is typical of the period.
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8.6 Completeness and categoricity

In the introductory remarks to his “Untersuchungen zur allgemeinen Axiomatik”,
written around 1927–29, Carnap wrote:

By means of the new investigations on the general properties of
axiomatic systems, such as, among others, completeness, monomor-
phism (categoricity), decidability [Entscheidungsdefinitheit ], consis-
tency and on the problems of the criteria and mutual relationships
between these properties, it has become more and more clear that
the main difficulty lies in the insufficient precision of the concepts
applied” (Carnap 2000 [1927–29], 59)

Carnap’s work remained unpublished at the time, except for the program-
matic (1930), but the terminological and conceptual confusion reigning in logic
had been remarked by other authors. Let us first pursue the development of the
notions of completeness and categoricity in the 1920s and early 30s.

Recall the notion of completeness found in the postulate theorists (see Sec-
tion 1.4): a complete set of postulates is one such that its postulates are consis-
tent, independent of each other, and sufficient, where “sufficiency” means that
only one interpretation is possible.

According to contemporary terminology, a system of axioms is categorical
if all its interpretations (or models) are isomorphic. In the early part of the
twentieth century it was usually mentioned, for example, that Dedekind had
shown that every two interpretations of the axiom system for arithmetic are
isomorphic. One thing on which there was already clarity is that two isomor-
phic interpretations make the same set of sentences true. We know today that
issues of categoricity are extremely sensitive to the language and logic in which
the theory is expressed. Thus the set of axioms for first-order Peano arith-
metic is not categorical (an immediate consequence of the Löwenheim-Skolem
Theorem and/or of Gödel’s Incompleteness Theorem) but second-order arith-
metic is categorical (at least with respect to standard second order models).
This sheds light on some of the early confusions. One such confusion was the
tendency to infer the possibility of incompleteness results from the existence
of non-isomorphic interpretations. Consider Skolem (1922): “Since Zermelo’s
axioms do not uniquely determine the domain B, it is very improbable that all
cardinality problems are decidable by means of these axioms.”

As an example he mentions the continuum-problem.102 The implicit assump-
tion here is that if a system is not categorical then there must be sentences A and
¬A such that one of the interpretations makes A true and the other makes ¬A
true. That the situation is not as simple became clear only very late. In (1934),
Skolem proved that there are non-isomorphic countable models of first-order
Peano arithmetic which make true exactly the same (first-order) sentences. In
later developments the notion of elementary equivalent models was introduced
to capture the phenomenon (see below).

In order to gauge what the issue surrounding a proper understanding of cat-
egoricity were let us look at how von Neumann deals with categoricity in his
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(1925). In the first part of his article von Neumann discusses the Löwenheim-
Skolem theorem which shows that every set of first-order sentences which is sat-
isfied by an infinite domain can also be satisfied in a denumerable domain. This
immediately implies that no first-order theory which admits a non-denumerable
interpretation can be categorical (in our sense). And this should settle the prob-
lem of categoricity for the axioms being discussed by von Neumann. Indeed,
von Neumann draws the right conclusion concerning the system of set theory:

We now know that, if it is at all possible to find a system S satisfying
the axioms, we can also find such system in which there are only de-
numerably many I-objects and denumerably many II-objects. (von
Neumann 1925, 409)

Why then, in the following section (§6), does he discuss the issue of categoricity
again? A careful reading shows that he is appealing to categoricity as non-
disjunctiveness (see Veblen 1904), i.e., an axiom system is categorical if it is not
possible to add independent axioms to it.

An early attempt to provide a terminological clarification concerning dif-
ferent meanings of completeness is found in the second edition of Einleitung
in die Mengenlehre (1923), where Fraenkel distinguishes between completeness
in the sense of categoricity and completeness as decidability (Entscheidungs-
definitheit).103 Both concept of completeness are also discussed in Weyl (1927),
but Weyl rejects completeness as decidability (for every sentence A, one should
be able to derive from the axioms either A or ¬A) as a “philosopher’s stone.”104

The only meaning of completeness that he accepts is the following:

The final formulation is thus the following: An axiom system is
complete when two (contentual) interpretations of it are necessarily
isomorphic. (Weyl 1927, 22)

In this sense, he adds, Hilbert’s axiomatization of geometry is complete.
In the third edition of Einleitung in die Mengenlehre (1928), Fraenkel adds a

third notion of completeness, the notion of Nichtgabelbarkeit (“non-forkability”),
meaning essentially that every two interpretations satisfy the same sentences.
Carnap (1927) claims that the first two notions are identical and, in (1930),
he claimed to have proved the equivalence of all three notions (which he calls
monomorphism, decidability and non-forkability). The proofs were supposed to
be contained in his manuscript “Untersuchungen zur allgemeinen Axiomatik”
but his approach there is marred by his failure to distinguish between object
language and metalanguage, and between syntax and semantics, and thus to
specify exactly to which logical systems the proofs are supposed to apply (for
an analysis of these issues see Awodey and Carus (2001); Carnap’s unpublished
investigations on general axiomatics are now edited in Carnap 2000 [1927–29]).
Gödel, however, had access to the manuscript and, in fact, Gödel’s (1929) disser-
tation acknowledges the influence of Carnap’s investigations (as does Kaufmann
1930). Awodey and Carus (2001, 23) also point out that Gödel’s first presenta-
tion of the incompleteness theorem (Königsberg 1930; see Gödel 1995a, 29 and
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the introduction by Goldfarb) was aimed specifically at Carnap’s claim. Indeed,
when speaking of the meaning of the completeness theorem for axiom systems,
he pointed out that in first-order logic monomorphicity (Carnap’s terminology)
implies (syntactic) completeness (Entscheidungsdefinitheit). If syntactic com-
pleteness also held of higher-order logic then (second-order) Peano arithmetic,
which by Dedekind’s classical result is categorical, would also turn out to be
syntactically complete. But, and here is the first announcement of the incom-
pleteness theorem, Peano’s arithmetic is incomplete (Gödel 1930, 28–30).

An important result concerning categoricity was obtained by Tarski in work
done in Warsaw between 1926 and 1928. He showed that if a consistent set of
first-order propositions does not have finite models then it has a non-denumerable
model (upward Löwenheim-Skolem). This shows that no first-order theory
which admits of an infinite domain can be categorical (kategorisch). The re-
sult was mentioned publicly for the first time in 1934 in the editor’s remarks
at the end of (Skolem 1934). A proof by Malcev stating that, under the as-
sumptions, the theory has models of every infinite cardinality was published
in (1936);105 this result was apparently also obtained by Tarski in his Warsaw
seminar (see Vaught 1974, 160). Other results that Tarski obtained in the pe-
riod (1927–1929) include the result that a first-order theory that contains as an
extra-logical symbol “<” and that is satisfied in the order type ω is also satisfied
in every set of order type ω+ (ω∗ +ω)τ , where ω∗ is the reverse of the standard
ordering on ω and τ is an arbitrary order type. This was eventually to lead to
the notion of elementary equivalence, defined for order types in the appendix to
(Tarski 1936a). This allowed Tarski to give a number of non-definability results.
In the same appendix he shows that, using η for the order type of the rationals,
every order type of dense order is elementarily equivalent to one of the following
types: η, 1 + η, η + 1 and 1 + η + 1 (which are not elementary equivalent to
each other). He thus concluded that properties of order types such as continuity
or non-denumerability cannot be expressed in the language of the elementary
theory of order. Moreover, using the elementary equivalence of the order types
ω and ω + (ω∗ + ω), he also showed that the property of well-ordering is not
expressible in the elementary theory of order (Tarski 1936a, 380).

One of the techniques investigated in Tarski’s seminar in Warsaw was what
he called the elimination of quantifiers. The method was originally developed in
connection to decidability problems by Löwenheim (1915) and Skolem (1920).
It basically consists in showing that one can add to the theory certain formulas,
perhaps containing new symbols, so that in the extended theory it is possible
to demonstrate that every sentence of the original theory is equivalent to a
quantifier-free sentence of the new theory. This idea was cleverly exploited by
Langford to obtain, for instance, decision procedures for the first-order theories
of linear dense orders without endpoints, with first but no last element and
with first and last element (1927a) and for the first-order theory of linear dis-
crete orders with a first but no last element (1927b). As Langford emphasizes
at the beginning of (1927a), he is concerned with “categoricalness”, i.e., that
the theories in question determine the truth value of all their sentences (some-
thing he obtains by showing that the theory is syntactically complete). Many
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such results were obtained afterwards, such as Presburger’s (1930) elimination
of quantifiers for the additive theory of the integers and Skolem’s (1929b) for
the theory of order and multiplication (but without addition!) on the natural
numbers. Tarski himself announced in 1931 to have obtained, by similar tech-
niques, a decision procedure for elementary algebra and geometry (published
however only in 1948). Moreover, he extended the results by Langford to the
first-order theory of discrete order without a first or last element and for the
first-order theory of discrete order with first and last element. This work is
relevant to the study of models in that it allows the study of all the complete
extensions of the systems under consideration and leads naturally to the no-
tion of elementary equivalence between relational structures (for order types)
that Tarski developed in his seminar. This work also dovetails with Tarski’s
“On certain fundamental concepts of metamathematics” (1930b), where for in-
stance he proves Lindenbaum’s result that every consistent set of sentences has
a complete consistent extension. For reason of space, Tarski’s contributions to
metamathematics during this period cannot be discussed in their full extent and
we will limit ourselves here to Tarski’s definition of truth.106

Another important result concerning categoricity, or lack thereof, was ob-
tained by Skolem (1933, 1934) (Skolem speaks of “complete characterizability”).
The results we have mentioned so far, the upward and downward Löwenheim-
Skolem Theorems are consistent with the possibility that, for instance, there is
only one countable model, up to isomorphism, for first-order Peano arithmetic.
What Skolem showed was, in our terminology, that there exist countable mod-
els of Peano arithmetic that are not isomorphic. He constructed a model N∗

of (classes of equivalence of) definable functions (hence the countability of the
new model) which has all the constant functions ordered with the order type of
the natural numbers and followed by non-standard elements, which eventually
majorize the constant functions, for instance the identity function (for details
see also Zygmunt 1973). Indeed, Skolem’s result states that no finite (in 1933)
or countable (in 1934) set of first-order sentences can characterize the natural
numbers. The 1934 result implies that N∗ can be taken to make true exactly
those sentences that are true in N .

8.7 Tarski’s definition of truth

The most important contribution to semantics in the early thirties was made by
Alfred Tarski. Although his major work on the subject, “The concept of truth
in formalized languages,” came out in 1933 in Polish (1935 in German), Tarski
said that most of the investigations contained in it date from 1929. However,
the seeds of Tarski’s reflection on truth were planted early on by the works of
Ajdukiewicz (1921) and the lectures of Lesńiewski.107

Tarski specifies the goal of his enterprise at the outset:

The present article is almost wholly devoted to a single problem—the
definition of truth. Its task is to construct—with reference to a given
language—a materially adequate and formally correct definition of
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the term “true sentence”. (Tarski 1933a, 152)

A materially adequate definition is one that for each sentence specifies under
what conditions it must be considered true. A formally correct definition is
one that does not generate a contradiction. One should not expect the defini-
tion to give a criterion of truth. It is not the role of the definition to tell us
whether “Paris is in France” is true but only to specify under what conditions
the sentence is true.

Tarski begins by specifying that the notion of truth he is after is the one
embodied in the classical conception of truth, where a sentence is said to be
true if it corresponds with reality. According to Tarski, the definition of truth
should avoid appeal to any semantical concepts, which have not been previously
defined in terms of non-semantical concepts. In Tarski’s construction truth is a
predicate of sentences. The extension of such a predicate depends on the specific
language under consideration; thus the enquiry is to take the form of specifying
the concept of truth for specific individual languages. The first section of the
paper describes at length the prospects for defining truth for a natural language
and concludes that this is a hopeless task. Let us see what motivates this
negative conclusion. Tarski first proposes a general scheme of what might count
as a first approach toward a definition of the expression “x is a true sentence”:

(*) x is a true sentence if and only if p

Concrete definitions are obtained by substituting for ‘p’ any sentence and for ‘x’
the name of the sentence. Quotation marks are one of the standard devices for
creating names (but not the only one). If p is a sentence we can use quotation
marks around p to form a name for p. Thus, a concrete example of (*) could be

(**) “It is snowing” is a true sentence if and only if it is snowing.

The first problem with applying such a scheme to natural language is that
although (*) looks innocuous, one needs to be wary of the possibility of the
emergence of paradoxes, such as the liar paradox. Tarski rehearses the paradox
and notices that at a crucial point one substitutes in (*) for ‘p’ a sentence, which
itself contains the term “true sentence.” Tarski does not see a principled reason
for why such substitutions should be excluded, however. In addition, more
general problems stand in the way of a general account. First of all, Tarski claims
that if one treats quotation-mark names as syntactically simple expressions the
attempt to provide a general account soon runs into nonsense. Therefore, he
points out that quotation-mark names have to be treated as complex functional
expressions, where the argument is a sentential variable, p, and the output is a
quotation-mark name. The important fact in this move is that the quotation-
mark name ‘p’ now can be seen to have structure. According to Tarski, however,
even in this case new problems emerge, e.g., one ends up with an intensional
account, which might be objectionable (even if p and q are equivalent, their
names, ‘p’ and ‘q’, will not be). This leads Tarski to try a new strategy by
attempting to provide a structural definition of true sentence which would look
roughly as follows:
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A true sentence is a sentence which possesses such and such struc-
tural properties (i.e. properties concerning the form and arrange-
ment in sequence of the single part of the expression) or which can
be obtained from such and such structurally described expressions by
means of such and such structural transformations. (Tarski 1933a,
163)

The major objection to this strategy is that we cannot, due to the open nature
of natural languages, specify a structural definition of sentence, let alone of true
sentence. Moreover, natural languages are “universal”, i.e. they contain such
terms as “true sentence,” “denote,” “name” etc., which allow for the emergence
of self-reference such as the ones leading to the liar antinomy. Tarski concluded
that:

If these observations are correct, then the very possibility of a consis-
tent use of the expression ‘true sentence’ which is in harmony with
the laws of logic and the spirit of everyday language seems to be very
questionable, and consequently the same doubt attaches to the possi-
bility of constructing a correct definition of this expression. (Tarski
1933a, 165)

Thus, the above considerations explain a number of essential features of Tarski’s
account. First of all, the account will be limited to formal languages. For such
languages it is in fact possible to specify the syntactic rules that define exactly
what a well formed sentence of the language is. Moreover, such languages are
not universal, i.e., one can keep the level of the object language and that of the
metalanguage (which is used to describe the semantic properties of the object
language) separate. When we talk about theories specified in a certain language,
then we distinguish between the theory and the metatheory, where the latter is
used to study the syntactic and semantic properties of the former.

Tarski provides then the definition of truth for a specific language, i.e. the
calculus of classes, but the treatment is extended in the later sections of the
essay to provide a definition of truth for arbitrary languages of finite type. One
important point stressed by Tarski is that the definition of truth is intended
for “concrete” deductive systems, i.e., deductive systems which are interpreted.
For purely formal systems, Tarski claims that the problem of truth cannot be
meaningfully raised.

The calculus of classes is a subtheory of mathematical logic that deals with
the relationships between classes and the operation of union, intersection and
complement. There are also two special classes, the universal class and the
empty class. The intuitive interpretation of the theory which Tarski has in
mind is the standard one with the individual variables ranging over classes of
individuals. In the following we will give an (incomplete) sketch of the struc-
ture of the language L of the calculus of classes (with only instances of the
axioms) and of the metalanguage, ML, in which the definition of truth is given.
It should be pointed out that Tarski does not completely axiomatize the met-
alanguage, which is presented informally, and that he uses the Polish notation
in his presentation.

118



The language of the calculus of classes
Variables: x′, x′′,x′′′, . . .
Logical constants: N [negation], A [disjunction], Π [universal quantifier];

Relational Constant: I [inclusion]
Expressions and formulas are defined as usual.
Logical axioms: ANAppp [∼(p ∨ p) ∨ p], etc.
Proper axioms: Πx1Ix1x1 [every class is included in itself];

Πx′x′′x′′′ANIx′x′′ANIx′′x′′′Ix′x′′′ [transitivity of I], etc.
Rules of inference: substitution, modus ponens, introduction and elimination

of Π.
The Metalanguage
Logical constants: not, or, for all

Relational Constants: ⊆
Class theoretical terms: ∈, individual, identical (=), class, cardinal number,

domain, etc.
Terms of the logic of relations: ordered n-tuple, infinite sequence, relation,

etc.
Terms of a structural descriptive kind: ng [for N ]; sm [for A], un [for

∏
], vk

[the k-th variable], x _ y [the expression that consists of x followed by y], etc.
These form names of object-language expressions in the metalanguage.

Auxiliary symbols are introduced to give metatheoretical short-hands for
whether an expression is an inclusion, a negation, a disjunction, or a universal
quantification. They are: x = ιk,l iff x = (in _ vk) _ vl, x = y iff x = ng _ y;
x = y + z iff x = (sm _ y) _ z); x = ∩ky iff x = (un _ vk) _ y.

Variables:

1. a, b [names for classes of an arbitrary character]

2. f , g [sequences of classes]

3. k, l, m, n [natural numbers and sequences of natural numbers]

4. t, u, w, x, y, z [expressions]

5. X, Y [sequences of expressions]

The metatheory:
Logical axioms: (y + y) + y, etc.
Axioms of the theory of classes: ∩1(ι11) etc.
Proper axioms: several axioms characterizing the notion of expression. In-

tuitively, this is the smallest class X containing ng, sm, ∩, ι, vk, such that if x,
y are in X then x _ y is in X.

With the above in place we can give names in ML to every expression in L.
For instance, NIx′x′′ is named in ML by ((ng _ in) _ v1) _ v2 or ι12. We
can now define the notions of

Sentential function (Definition 10): Sentential functions are obtained by the
closure of expressions of the form ιik under negation, disjunction and universal
quantification.
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Sentence: A sentential function with no free variables is a sentence.
Axioms: A sentence is an axiom if it is the universal closure of either a

logical axiom or of an axiom of the theory of classes.
Theorems: A sentence is a theorem if it can be derived from the axioms using

substitution, modus ponens, introduction and elimination rules for universal
quantifier.

With the above machinery in place (all of which is purely syntactical), Tarski
proceeds to give a definition of truth for the calculus of classes. The richness of
the metalanguage provides us both with a name of the sentence and a sentence
with the same meaning (a translation into the meta-language) for every sentence
of the original calculus of classes. For instance, to ‘Πv′Iv′v′’ in L corresponds
the name ∩1ι11 and the sentence “for all a, a ⊆ a.” The schema (*) should now
be recaptured in such a way that for any sentence of the calculus of classes its
name in the meta-language appears in place of x and in place of p we have the
equivalent sentence in the metalanguage:

∩1ι11 is a true sentence if and only if for all a, a ⊆ a.
What is required of a satisfactory truth definition is that it contains all such

equivalences in its extension. More precisely, let Tr denote the class of all true
sentences and S the class of sentences. Then Tr must satisfy the following
convention.

Convention T: A formally correct definition of the symbol ‘Tr ’
formulated in the metalanguage, will be called an adequate definition
of truth if it has the following consequences:

(α) all sentences which are obtained from the expression ‘x ∈ Tr if
and only if p’ by substituting for the symbol ‘x’ a structural-
descriptive name of any sentence of the language in question
and for the symbol ‘p’ the expression which forms the transla-
tion of this sentence into the metalanguage;

(β) the sentence ‘for any x, if x ∈ Tr then x ∈ S’ (in other words,
Tr ⊆ S). (Tarski 1933a, 188)

Ideally, one would like to proceed in the definition of truth by recursion on the
complexity of sentences. Unfortunately, on account of the fact that sentences are
in general not obtained from other sentences but rather from formulas (which,
in general, may contain free variables), a recursive definition of “true sentence”
cannot be given directly. However, complex formulas are obtained from formulas
of smaller complexity and here the recursive method can be applied. For this
reason Tarski defines first what it means for a formula to be satisfied by given
objects. Actually, for reasons of uniformity, Tarski defines what it means for an
infinite sequence of objects to satisfy a certain formula. Definition of satisfaction
(Definition 22):

Let f be an infinite sequence of classes, and fi the i-th coordinate. Satis-
faction is defined inductively on the complexity of formulas (denoted by x, y,
z).

Atomic formulas: f satisfies the sentential function (ιk,l) iff (fk ⊂ fl)
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Molecular formulas:

(a) for all f , y: f satisfies y iff f does not satisfy y;

(b) for all f , y, z: f satisfies y + z iff f satisfies y or f satisfies z;

(c) for all f , y, k: f satisfies ∩ky iff every sequence of classes which differs
from f at most in the k-th place satisfies the formula y.

This definition is central to Tarski’s semantics, since through it one can define
the notions of denotation (the name ‘c’ denotes a, if a satisfies the propositional
function c = x), definability, and truth. A closer look at the definition of
satisfaction shows that whether a sequence satisfies a formula depends only
on the coordinates of the sequence corresponding to the free variables of the
formula. When the formula is a sentence there are no free variables and thus
either all sequences satisfy it or no sequence satisfies it. Correspondingly, we
have the definition of truth and falsity for sentences given in Definition 23: x is
a true sentence iff x is a sentence and every infinite sequence of classes satisfies
x. Tarski then argues that the definition given is formally correct and satisfies
Convention T.

Among the consequences Tarski draws from the precise definition of the class
of true sentences is the fact that the theorems of the calculus of classes are a
proper subset of the truths of the calculus (under the intended interpretation).

Nowadays such definitions of satisfaction and truth are given by first speci-
fying what the domain of the interpretation is, but Tarski does not do that. He
speaks of infinite sequences of classes as if these sequences were taken from a
universal domain. Indeed, on p. 199 of his essay Tarski contrasts his approach
with the relativization of the concept of truth to that of “correct or true sentence
in an individual domain a.” This is the approach, he points out, of the Hilbert
school in Göttingen and contains his own approach as a special case. Of course,
Tarski claims to be able to give a precise meaning of the notions (Definitions 24
and 27) that were used only informally by the Hilbert school.108

The remaining part of the essay sketches how to generalize the approach to
theories of finite order (with a fixed finite bound on the types) and points out
the limitations in extending the approach to theories of infinite order. However,
even in the latter case Tarski establishes that “the consistent and correct use of
the concept of truth is rendered possible by including this concept in the sys-
tem of primitive concept of the metalanguage and determining its fundamental
properties by means of the axiomatic method” (266).

By far the most important result of the final part of the essay is Tarski’s
celebrated theorem of the undefinability of truth, which he obtained after read-
ing Gödel’s paper on incompleteness.109 Basically, the result states that there
is no way to express Tr(x) as a predicate of object languages (under certain
conditions) without running into contradictions. In particular, for systems of
arithmetic such as Peano Arithmetic this says there is no arithmetical formula
Tr(x) such that Tr(x) holds of a code of a sentence just in case that sentence
is true in the natural numbers.
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We have seen that Tarski emphasized that through the notion of satisfac-
tion other important semantic notions, such as truth and definability, can be
also defined. Thus, the work on truth also provided an exact foundation for
(1930a) and (1931), on definable sets of real numbers and the connection be-
tween projective sets and definable sets, and to the general investigation on the
definability of concepts carried out by in Tarski in the mid-1930s.

One of the most important applications of the new semantic theory was the
notion of logical consequence in (1936b). Starting from the intuitive observation
that a sentence X follows from a class of sentences K if “it can never happen
that both the class K consists only of true sentences and the sentence X is
false” (414), Tarski made use of his semantical machinery to give a definition
of the notion of logical consequence. First he defined the notion of model.
Starting with a class L of sentences, Tarski replaces all non-logical constants by
corresponding variables, obtaining the class of propositional sentences L′. Then
he says:

An arbitrary sequence of objects which satisfies every sentential func-
tion [formula] of the class L′ will be called a model or realization of
the class L of sentences (in just this sense one usually speaks of an
axiom system of a deductive theory). (Tarski 1936b, 417)

From this he obtains the notion of logical consequence:

The sentence X follows logically from the sentence of the class K
if and only if every model of the class K is also a model of the
sentence X. (Tarski 1936b, 417)

The interpretation of what exactly is going on in Tarski’s theory of truth and
logical consequence is a hotly debated issue, which cannot be treated adequately
within the narrow limits of this exposition.110

In any case, the result of Tarski’s investigations for logic and philosophy
cannot be overestimated. The standard expositions of logic nowadays embody,
in one form or another, the definition of truth in a structure, which ultimately
goes back to Tarski’s article. Tarski’s article marks also an explicit infinitistic
attitude to the metatheoretical investigations, in sharp contrast to the finitistic
tendencies of the Hilbert school. In the construction of the metatheory Tarski
entitles himself to transfinite set theory (in the form of type theory). As a
consequence the definition of truth is often non-constructive. Often, but not
always: in the particular case of the calculus of classes Tarski shows that from
the definition of truth one also can extract a criterion of truth; but he also
remarks that this depends on the specific peculiarities of the theory and in
general this is not so. Finally, Tarski’s definition of truth and logical consequence
have shaped the discussion of these notions in contemporary philosophy and are
still at the center of current debates.

Notes

1. Each author has been responsible for specific sections of the essay: PM for I–III, VII,
and VIII; RZ for itineraries V and VI; and CB for itinerary IV. While responsibility for the
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content of each section rests with its author, for the sake of uniformity of style we use “we”
rather than “I” throughout. A book length treatment of the topics covered in itinerary IV is
Badesa (2004). Itinerary V contains passages from Richard Zach, “Completeness before Post:
Bernays, Hilbert, and the development of propositional logic,” The Bulletin of Symbolic Logic
5 (1999) 331–366, c©1999, Association for Symbolic Logic, which appear here with the kind
permission of the Association for Symbolic Logic. Itinerary VI contains passages from Richard
Zach, “The practice of finitism: Epsilon calculus and consistency proofs in Hilbert’s program,”
Synthese 137 (2003) 79–94, c©2003, Kluwer Academic Publishers, which appear here with the
kind permission of Kluwer Academic Publishers.
2. On Zermelo’s contribution to mathematical logic during this period see Peckhaus (1990,
Chapter 4); see also Peckhaus (1992).
3. In 1914, Philip Jourdain drew the same distinction but related it to two different concep-
tions of logic:

We can shortly but very accurately characterize the dual development of the
theory of symbolic logic during the last sixty years as follows: The calculus ra-
tiocinator aspect of symbolic logic was developed by Boole, DeMorgan, Jevons,
Venn, C. S. Peirce, Schröder, Mrs Ladd Franklin and others; the lingua char-
acteristica aspect was developed by Frege, Peano and Russell. (Jourdain 1914,
viii)

Couched in the Leibnizian terminology we thus find the distinction of logic as calculus vs.
logic as language, which van Heijenoort (1967b) made topical in the historiography of logic.
4. On Peano’s contributions to logic and the foundations of mathematics and that of his
school the best source is Borga et al. (1985), which also contain a rich bibliography. For
Peano’s contributions to logic and the axiomatic method see especially Borga (1985), Grattan-
Guinness (2000), and Rodriguez-Consuegra (1991). See also Quine (1987).
5. This idea of Padoa is at the root of a widespread interpretation of axiomatic system
as propositional functions, which yield specific interpreted theories when the variables are
replaced by constants with a definite meaning. This view is defended in Whitehead (1907),
Huntington (1913), Korselt (1913), Keyser (1918b, 1922), and Ajdukiewicz (1921). In the last
itinerary we will see how such an interpretation influences the development of the theory of
models in Carnap and Tarski.
6. A similar result is stated which shows that the set of basic propositions of a system is
irreducibile, i.e., that no one of them follows for the others:

To prove that the system of unproved propositions [P ] is irreducible it is nec-
essary and sufficient to find, for each of these propositions, an interpretation of
the system of undefined symbols that verifies the other unproved propositions
but not that one. (1901, 123)

7. See also Hilbert’s lectures on geometry Hilbert (2004).
8. On the various meanings of completeness in Hilbert see Awodey and Reck (2002, 8–15)
and Zach (1999).
9. On the debate that opposed Hilbert and Frege on this and related issues see Demopoulos
(1994).
10. Padoa later criticizes Hilbert for claiming that there might be other ways of proving the
consistency of an axiom system. After Hilbert’s talk in 1900, Peano claimed that Padoa’s
lecture would give a solution to Hilbert’s second problem. Hilbert was not present at the
lecture but the only proof of consistency given by Padoa for his system of integers was by
interpreting the formal system in its natural way on the domain of positive and negative
integers. It is hard to believe that this led to an acrimonious article in which Padoa (1903)
attacked Hilbert for not acknowledging that his second problem was only a “trifle.” After a
refusal to buy into the hierarchical conception of mathematics displayed by the reduction of the
consistency of geometry to arithmetic, Padoa stated that Hilbert could modify at will all the
methods which are used in the theory of irrational numbers but that this would never give him
a consistency proof. Indeed, only statements of inconsistency and dependence could be solved
by means of deductive reasonings, but not issues of consistency or independence. According
to Padoa, a consistency proof could only be obtained by displaying a specific interpretation
satisfying the statements of the theory. Hilbert never replied to Padoa; in a way the problem
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Padoa had raised was also a result of the vague way in which Hilbert had conjectured how it
could be solved. It should be pointed out that (Pieri 1904) takes position against Padoa on
this issue remarking that perhaps one could find a direct proof of consistency for arithmetic
by means of pure logic.
11. On the realtionship between the axiom of completeness and the metalogical notion of
completeness, see Section 5.3.
12. I will follow, for consistency, Awodey and Reck (2002) when providing the technical
definitions required in the discussion. An axiomatic theory T is called categorical (relative to
a given semantics) if for all models T are isomorphic.
13. An axiomatic theory is called semantically complete (relative to a given semantics) if
any of the following four equivalent conditions hold:

1. For all formulas ϕ and all models M , N of T , if M |= ϕ, then N |= ϕ.

2. For all formulas ϕ, either T |= ϕ or T |= ¬ϕ.

3. For all formulas ϕ, either T |= ϕ or T ∪ {ϕ} is not satisfiable.

4. There is no formula ϕ such that both T ∪ {ϕ} and T ∪ {¬ϕ} are satisfiable.

14. This idea is expressed quite clearly in Bôcher (1904, 128).
15. “Suppose we express a law by a formal sentence S, and A is a structure. Different writers
have different ways of saying that the structure A obeys the law. Some say that A satisfies S,
or that A is a model of S. Many writers say that the sentence S is true in the structure A.
This is the notion in the title of my talk. This use of the word true seems to be a little over
fifty years old. The earliest occurrence I find is “wahr in N∗” in a paper of Skolem (1933) on
non-standard models of arithmetic (Padoa in (1901) has “vérifie” (p. 136))” (Hodges 1986,
136).
16. A few more examples. “The assignment of an admissible meaning, or value, to each of
the undefined elements of a postulate system will be spoken of as an interpretation of the
system. By ‘admissible’ meanings are meant meanings that satisfy the postulates or that, in
other words, render them true propositions” (Keyser 1918a, 391)
“Each different progression will give rise to a different interpretation of all the propositions of
traditional pure mathematics; all these possible interpretations will be equally true” (Russell
1919, 9)
“The logical structure of axiomatic geometry in Hilbert’s sense—analogously to that of group
theory—is a purely hypothetical one. If there are anywhere in reality three systems of objects,
as well as determined relationships between these objects, such that the axioms hold of them
(this means that by an appropriate assignment of names to the objects and relations the
axioms turn into true statements [die Axiome in wahre Behauptungen übergehen]), then all
theorems of geometry hold of these objects and relationships as well.” (Bernays 1922, 192)
17. For Russell’s abandonment of idealism see Hylton (1990).
18. For recent work on reconstructing Frege’s system without Axiom V, see Demopoulos
(1995) and Hale and Wright (2001).
19. For an overview of the role of paradoxes in the history of logic see Cantini (200?). See
the previous references for extensive analyses of the paradoxes.
20. For a survey of the history of predicativity see Feferman (2004a).
21. For Poincaré on predicativity see Heinzmann (1985).
22. See Chihara (1973), de Rouilhan (1996), and Thiel (1972) for detailed analyses of the
various versions of the vicious circle principle.
23. There is even disagreement as to whether the types are linguistic or ontological entities
and on the issue of whether the type distinction is superimposed on the orders or vice versa;
see Landini (1998) and Linsky (1999).
24. On Russell’s reasons for ramification see also Goldfarb (1989).
25. See the extensive treatment in Grattan-Guinness (2000), and also Potter (2000) and
Giaquinto (2002). Recent work has also been directed at studying the differences between the
first and second edition of Principia; see Linsky (2004) and Hazen and Davoren (2000). The
reader is also referred to the classic treatment by Gödel (1944). Hazen (2004) has pursued
Gödel’s suggestion that there is a new theory of types in the second edition.
26. We disagree with those who claim that metatheoretical questions could not be posed by
Russell on account of his “universalistic” conception of logic. However, a detailed discussion
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of this issue cannot be carried out here. For this debate, see van Heijenoort (1967b), Dreben
and van Heijenoort (1986), Hintikka (1988), Goldfarb (1979), de Rouilhan (1991), Tappenden
(1997), Rivenc (1993) and Goldfarb (2001).
27. On the development of set theory see, among others, Dauben (1971), Ferreiros (1999),
Garciadiego (1992), Grattan-Guinness (2000), Kanamori (2003), Hallett (1984), and Moore
(1982).
28. On Zermelo’s role in the development of set theory and logic see also Peckhaus (1990).
29. It should be pointed out that Russell had independently formulated a version of the
axiom of choice in 1904.
30. The best treatment of the debate about the axiom of choice and related debates is Moore
(1982).
31. On the antinomy see Garciadiego (1992). The antinomy is a transformation of an argu-
ment of Burali-Forti, made by Russell. If there were a set Ω of all ordinals then it can be well
ordered. Thus it is itself an ordinal, i.e., it belongs and it does not belong to itself.
32. On the connection between Weyl (1910) and (1918), see Feferman (1988).
33. On Zermelo’s reaction to Skolem’s paradox see van Dalen and Ebbinghaus (2000).
34. Studies on the independence of the remaining axioms of set theory were actively pursued.
See for instance Fraenkel (1922a).
35. On Mirimanoff see the extended treatment in Hallett (1984).
36. On replacement see Hallett (1984).
37. On von Neumann’s system and its extensions see Hallett (1984) and Ferreiros (1999).
38. Zermelo investigated the metatheoretical properties of his system, especially issues of
categoricity (see Hallett 1996).
39. In (1870), Peirce used the word “relative” in place of “relation” employed by De Mor-
gan. In 1903, 367, n. 3, Peirce called De Morgan his “master”, and regretted his change of
terminology.
40. To our knowledge, van Heijenoort was the first to grasp the real historical interest of
Löwenheim’s paper. In “Logic as Calculus and Logic as Language” (1967b) he noted the
elements in Löwenheim’s paper that made it a pioneering work, deserving a place in the
history of logic alongside Frege’s Begriffsschrift and Herbrand’s thesis. For the history of
model theory, see Mostowski (1966), Vaught (1974), Chang (1974), the historical sections of
Hodges (1993), and Lascar (1998).
41. For a detailed exposition and defense of the thesis presented in this contribution, see
Badesa (2004).
42. On Tarski’s suggestion, McKinsey (1940) had given an axiomatization of the theory of
atomic algebras of relations. The 45 years that Tarski mentions is the time elapsed between
the publication of the third volume of Vorlesungen and McKinsey’s paper. A brief historical
summary of the subsequent developments can be found in Jónsson (1986) and Maddux (1991).
43. It cannot be said to be totally algebraic, given the absence of an algebraic foundation of
the summands and productands that range over an infinite domain.
44. Traditionally, “logic of relatives” is used to refer to the calculus or, depending on the
context, to the theory of relatives. Our use of this expression is not standard.
45. Schröder showed how to develop the logic of predicates within the logic of binary relatives
in his Vorlesungen 1895, §27. The proof that every relative equation is logically equivalent to a
relative equation in which only binary relatives occur is due to Löwenheim (1915, Theorem 6).
46. Quantifiers were introduced in the algebraic approach to logic by Peirce in 1883, 464.
The word quantifier was also introduced by him 1885, 183.
47. Expressions of the form A ⊂= B (called subsumptions) are also used as formulas, but the
canonical statements are the equations. Depending on the context, the subsumption symbol
(⊂=) denotes the inclusion relation, the usual ordering on {0, 1} or the conditional. Löwenheim
does not consider this symbol to belong to the basic language of the logic of relatives; this
explains why he does not take it into account in the proof of his theorem.
48. In (1920) Skolem used Zählaussage instead of Löwenheim’s Zählausdruck. Gödel erro-
neously attributes the term Zählaussage to Löwenheim (Gödel 1929, 61–62).
49. In fact, Skolem (1922, 294) used the term Lösung (solution) to refer to the assignments
of truth values to the relative coefficients that satisfy a given formula in a domain.
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50. He probably intended not only to simplify the proof, but also to make it more rigorous,
but he did not doubt its correctness. See, for example: Skolem (1920, 254; 1922, 293; and
1938, 455–456).
51. Löwenheim also generalized (1) to the case of formulas with multiple quantifiers, but this
generalization is trivial. For typographical reasons, we use Σ in place of Löwenheim’s double
sigma.
52. See van Heijenoort (1967a, 230), Wang (1970, 27), Vaught (1974, 156), Goldfarb (1979,
357) and Moore (1988, 122).
53. See van Heijenoort (1967a, 229–230) and Moore (1988, 121).
54. Which the possible systems are depends on whether the fleeing indices are functional
terms or not. More exactly, certain alternatives are only possible when fleeing indices are
not functional terms. For example, a system of equalities in which 1 = 2 and 3 6= 4 is not
compatible with a functional interpretation of the fleeing indices, because 3 = k1 and 4 = k2.
Löwenheim repeatedly insists that two different numerals can denote the same element without
placing restrictions on this, but he does not explicitly clarify which systems of equalities are
admissible.
55. In (1929a), Skolem proved again the weak version of the theorem. In this paper,
Skolem corrects some deficiencies of his previous proof in (1922) (Wang 1974, 20ff) and in-
troduces the functional form. As it is well-known, the functional form of a formula such as
∀x∃y∀z∃uA(x, y, z, u) is ∀x∀zA(x, f(x), z, g(x, z)). In (1929a), Skolem states explicitly the in-
formal procedure to which Gödel refers to, but some of his assertions reveal that he lacks a
clear understanding of the completeness problem.
56. The use of substitution is indicated at the beginning of *2. A substitution rule was
explicitly included in the system of Russell (1906b), and Russell also acknowledged its necessity
later (e.g., in the introduction to the second edition of Principia). For a discussion of the origin
of the propositional calculus of Principia and the tacit inference rules used there, see O’Leary
(1988).
57. This becomes clear from Bernays (1918), who makes a point of distinguishing between
correct and provable formulas, in order “to avoid a circle.” In (Hilbert 1920a, p. 8), we read:
“It is now the first task of logic to find those combinations of propositions, which are always,
i.e., without regard for the content of the basic propositions, correct.”
58. This connection between the completeness theorem and the completeness axiom is tenu-
ous: Hilbert’s completeness axioms do not in general guarantee the categoricity of the axiom
systems, nor its completeness in the sense that the system proves or disproves every state-
ment. See Baldus (1928) for a counterexample and Awodey and Reck (2002) for more detailed
discussion.
59. Note that here, as indeed in Post (1921), syntactic completeness only holds if the rule of
substitution is present.
60. Post (1921) gives the same definition and establishes similar results; see Section 8.3.
61. The interested reader may consult Kneale and Kneale (1962, 689–694), and, of course,
Bernays (1926). The method was discovered independently by  Lukasiewicz (1924), who an-
nounced results similar to those of Bernays. Bernays’s first system defines  Lukasiewicz’s
3-valued implication.
62. Gödel (1932b) quotes the independence proofs given by Hilbert (1928a).
63. These results extend the method of the previous sections insofar as the independence
of rules is also proved. To do this, it is shown that an instance of the premise(s) of a rule
always takes designated values, but the corresponding instance of the conclusion does not.
This extension of the matrix method for proving independence was later rediscovered by
Huntington (1935).
64. This is not stated explicitly, but is evident from the derivation on p. 11.
65. Paul Bernays, notes to “Mathematische Logik,” lecture course held Winter semester
1929–30, Universität Göttingen. Unpublished shorthand manuscript. Bernays Nachlaß, WHS,
ETH Zürich, Hs 973.212. The signs ‘&’ and ‘∨’ were is first used as signs for conjunction and
disjunction in (Hilbert and Bernays 1923b). The third axiom of group I and the second axiom
of group V are missing from the system given in (Hilbert and Bernays 1934). The first (Simp),
third (Comm), and fourth axiom (Syll) of group I are investigated in the published version of
the Habilitationsschrift (Bernays 1926), but not in the original version (1918).
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66. Hilbert (1905a, 249); see Zach (1999, 335–6) for discussion.
67. See Mancosu (1999a) for a discussion of this talk.
68. For extensive historical data as well as an annotated bibliography on the decision prob-
lem, both for classes of logical formulas as well as mathematical theories, see Börger et al.
(1997).
69. On Curry’s work, see Seldin (1980).
70. For more details on the work of Hertz and Gentzen, see Abrusci (1983) and Schröder-
Heister (2002).
71. On the ε-calculus, see Hilbert and Bernays (1939) and Avigad and Zach (2002).
72. Hilbert (1920b, 39–40)39–40. Almost the same passage is found in Hilbert (1922c, 1127–
1128).
73. In a letter to Hilbert dated June 27, 1905, Zermelo mentions that he is still working on a
“theory of proofs” which, he writes, he is trying to extend to “‘indirect’ proofs, ‘contradictions’
and ‘consistency’” (Hilbert Papers, NSUB Göttingen, Cod Ms Hilbert 447:2). Unfortunately,
no further details on Zermelo’s theory are available, but it seems possible that Zermelo was
working on a direct consistency proof for Hilbert’s axiomatic system for the arithmetic of the
reals as discussed by Hilbert (1905a).
74. Hilbert developed a second approach to eliminating ε-operators from proofs around the
same time, but the prospects of applying this method to arithmetic were less promising. The
approach was eventually developed by Bernays and Ackermann and was the basis for the proof
of the first ε-theorem in Hilbert and Bernays (1939). On this, see Zach (2004).
75. See Zach (2004) for an analysis of this proof and a discussion of its importance.
76. Von Neumann (1927) is remarkable for a few other reasons. Not only is the consistency
proof carried out with more precision than those of Ackermann, but so is the formulation of
the underlying logical system. For instance, the set of well-formed formulas is given a clear
inductive definition, application of a function to an argument is treated as an operation, and
substitution is precisely defined. The notion of axiom system is defined in very general terms,
by a rule which generates axioms (additionally, von Neumann remarks that the rules used in
practice are such that it is decidable whether a given formula is an axiom). Some of these
features von Neumann owes to König (1914).
77. This is problem IV in Hilbert (1929).
78. See Gödel’s recollections reported by Wang (1996, 82–84).
79. On the reception of Gödel’s incompleteness theorems more generally, see Dawson (1989),
and Mancosu (1999b, 2004).
80. On Brouwer’s life and accomplishments see van Atten (2003), van Dalen (1999), and van
Stigt (1990). For an account of the foundational debate between Brouwer and Hilbert see
Mancosu (1998a) and the references contained therein.
81. A good account of the French intuitionists is found in Largeault (1993b, 1993a).
82. On the Kantian themes in Brouwer’s philosophy see Posy (1974) and van Atten (2003,
Ch. 6).
83. Troelstra (1982) gives a detailed account of the origin of the idea of choice sequences.
84. On Brouwer’s intuitionistic mathematics see van Atten (2003), van Dalen (1999), Dum-
mett (1977), Franchella (1994), van Stigt (1990), and Troelstra and van Dalen (1988).
85. Indeed, in intuitionistic mathematics one can actually prove the negation of certain valid
classical principles. For instance, one can prove in intuitionistic analysis that “it is not the
case that every real number is either rational or irrational.” These counterexamples are called
strong counterexamples and they are consequences of mathematical principles, such as the con-
tinuity principle, which are proper to intuitionism (as opposed to other forms of constructive
mathematics or classical mathematics). Brouwer gave the above-mentioned counterexample
in his 1928. On the continuity principle in intuitionistic analysis see van Atten (2003, Ch. 3),
and on the difference between weak and strong counterexamples see van Atten (2003, Chs. 2,
4, 5).
86. The best historical account of the debates surrounding intuitionism in the 1920s is Hes-
seling (2003).
87. We refer the reader to Thiel (1988), Mancosu and van Stigt (1998) and Hesseling (2003)
for a more detailed treatment.
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88. In Mancosu (1998a, 280) it was stated by mistake that Church had committed a faux
pas at this juncture.
89. We should remark that Kolmogorov (1925) rejects the principle “ex falso sequitur quoli-
bet” which he however accepts in 1932. There is some contemporary discussion on whether
the principle is intuitionistically valid. For a first introduction see van Atten (2003, 24–25).
90. Gentzen (1933a) (in collaboration with Bernays) had arrived at the same result, but
Gentzen withdrew the article from publication after Gödel’s paper appeared in print. The
similarity between Gödel’s and Gentzen’s articles is striking. This parallelism can be explained
by noting that both of them relied on the formalization of intuitionistic logic given by Heyting
(1930a) and the axiomatization of arithmetic given by Herbrand (1931a).
91. See Mancosu (1998b) on finitism and intuitionism in the 1920s.
92. On all the above contributions see the useful introductions by Troelstra in (Gödel 1986).
93. On  Lukasiewicz’s logical accomplishments and the context in which he worked see Woleński
(1989).
94. S lupecki, like  Lukasiewicz, used the Polish notation; for the reader’s benefit, we have
used the Principia notation in this section.
95. Among the few variations one can mention “concrete representation” (Veblen and Young
1910, 3; Young 1917, 43). It should be pointed out here that while the word “model” was
widespread in physics (see, e.g., “dynamical models” in Hertz 1894) it is not as common in the
literature on non-Euclidean geometry, where the terminology of choice remains “interpreta-
tion” (as in Beltrami’s 1868 interpretation of non-Euclidean geometry). However, “Modelle,”
i.e., desktop physical models, of particular geometrical surfaces adorned the German mathe-
matics departments of the time. Many thanks to Jamie Tappenden for useful information on
this issue.
96. Following Russell, structure-theoretic terminology is found all over the epistemological
landscape. See for instance Carnap’s Der logische Aufbau der Welt (1928).
97. A similar approach is found in Lewis (1918, 355).
98. See Dreben and van Heijenoort 1986, 47–48 for a clarification of some delicate points in
Hilbert and Ackermann’s statement of the completeness problem.
99. In the 1929 dissertation the result for countable sentences is obtained directly and not
as a corollary to compactness. For the history of compactness see Dawson (1993).
100. The notion of “allgemeingültig” can be relativized to specific types of domains. So,
for instance, (Ex)F (x)∨ (x)F (x) is “allgemeingültig” for those domain consisting of only one
element. See Bernays and Schönfinkel (1928, 344).
101. Gödel did not provide the above explanations in the published version of the thesis
(1930), but the same definition occurs in later published works (Gödel 1933b, 307), where the
same idea is used to define the notion of a model over I (a domain of individuals).
102. An early case is Weyl (1910) and concerns the continuum-problem. Weyl says (p. 304)
that the continuum-problem will not admit a solution until one adds to the system of set
theory an analogue of the opposite of Hilbert’s completeness axiom: from the domain of
Zermelo’s axioms one cannot cut out a subdomain which already makes all the axioms true.
103. Nowadays we call the first notion “semantic completeness” and the second notion “syn-
tactic completeness.” As the notion of categoricity as isomorphism is already found, among
other places, in Bôcher (1904), Huntington (1906–07), and Weyl (1910) (also, Weyl 1927),
we cannot agree with Howard (1996, 157), when he claims that Carnap (1927) is “the first
place where the modern concept of categoricity, or monomorphism in Carnap’s terminology,
is clearly defined and its relation to issues of completeness and decidability clearly expounded.
Moreover, it was through Carnap’s relations with Kurt Gödel and Alfred Tarski that the con-
cept of categoricity later made its way into formal semantics.” The first conjunct is made false
by the references just given, the second by the fact that Carnap’s claims as to the equivalence
of categoricity and decidability turned out to be unwarranted. As for Carnap’s influence, it is
certainly the case that Tarski was familiar with the concept of categoricity before he knew of
Carnap’s investigations (see Tarski 1930b, 33). Howard’s article is to be recommended for ex-
ploring the relevance of the issue of categoricity for the natural sciences. On completeness and
categoricity see Awodey and Carus (2001), Awodey and Reck (2002), and also Read (1997).
104. Weyl’s reflection on Entscheidungsdefinitheit are related to the great attention given
to this notion in the phenomenological literature, including Husserl, Becker, Geiger, London,
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and Kaufmann.
105. See the review by Rosser (1937).
106. Scanlan (2003) deals with the influence of Langford’s work on Tarski. See Zygmunt
(1990) on Presburger’s life and work. Tarski’s early results are discussed by Feferman (2004b),
who uses them to reply to some points by Hodges (1986). On Tarski’s quantifier elimination
result for elementary algebra and geometry, see the extensive study by Sinac.eur (2006). For a
treatment of the main concepts of the methodology of deductive sciences according to Tarski
see Czelakowski and Malinowski (1985) and Granger (1998).
107. One should also not forget the possible influence of  Lukasiewicz; see Woleński (1994).
On the Polish school see Woleński (1989, 1995).
108. For the interpretation of the differences between the original article (1933b) and the
claims made in the postscript in (1935) see de Rouilhan (1998).
109. Gödel was aware of the result before Tarski published it; see the discussion in Murawski
(1998). However, the author makes heavy weather of Gödel’s use of the word “richtig” as
opposed to “wahr.” To this it must be remarked that “richtig” is used in opposition to
“falsch” throughout the writings of the Hilbert school. Moreover, Gödel himself speaks of
“wahr” in his dissertation (Gödel 1929, 68–69). See also Feferman (1984).
110. On the issue of whether Tarski defines truth in a structure see Hodges (1986) and
Feferman (2004b). On logical consequence see, among the many contributions, Etchemendy
(1988, 1990), Ray (1996), Gomez-Torrente (1996), Bays (2001), and Mancosu (2005).
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English translation in Moore (1982, Appendix 1).

Baldus, Richard. 1924. Formalismus und Intuitionismus in der Mathematik. Karlsruhe:
Braun.

Baldus, Richard. 1928. Zur Axiomatik der Geometrie I: Über Hilberts
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Gödel (1986, 130–235).
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eines mathematisches Kolloquiums 4: 39–40. Reprinted and translated in Gödel (1986,
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Hertz, Paul. 1929. Über Axiomensysteme für beliebige Satzmengen. Mathematische Annalen
101: 457–514.

Hesseling, Dennis E. 2003. Gnomes in the Fog. The reception of Brouwer’s Intuitionism in
the 1920s. Birkhäuser.
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Hilbert, David. 1926. Über das Unendliche. Mathematische Annalen 95: 161–90. Lecture
given Münster, 4 June 1925. English translation in van Heijenoort (1967a, 367–392).

Hilbert, David. 1928a. Die Grundlagen der Mathematik. Abhandlungen aus dem Seminar
der Hamburgischen Universität 6: 65–85. English translation in van Heijenoort (1967a,
464-479).

Hilbert, David. 1928b. Probleme der Grundlegung der Mathematik. In Atti del Congresso
Internazionale dei Matematici. 3–10 September 1928, Bologna, ed. Nicola Zanichelli,
135–141.

Hilbert, David. 1929. Probleme der Grundlegung der Mathematik. Mathematische Annalen
102: 1–9. Lecture given at the International Congress of Mathematicians, 3 September
1928. English translation in Mancosu (1998a, 266–273).

Hilbert, David. 1935. Gesammelte Abhandlungen, vol. 3. Berlin: Springer.
Hilbert, David. 2004. David Hilbert’s Lectures on the Foundations of Geometry, 1891–1902,

eds. Ulrich Majer and Michael Hallett. New York: Springer.
Hilbert, David and Wilhelm Ackermann. 1928. Grundzüge der theoretischen Logik. Berlin:
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 Lukasiewicz, Jan. 1922. O determiniźmie (On determinism). English translation in McCall
(1967, 19–39).

 Lukasiewicz, Jan. 1924. Démonstration de la compatibilité des axiomes de la théorie de la
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Compte rendu du deuxième congrès international des mathematicians tenu à Paris du 6
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Poincaré, Henri. 1906. Les mathématiques et la logique. Revue de métaphysique et de

morale 14: 294–317. English translation in Ewald (1996, 1038–1052).
Post, Emil L. 1921. Introduction to a general theory of elementary propositions. American

Journal of Mathematics 43: 163–185. Reprinted in van Heijenoort (1967a, 264–283).
Posy, Carl J. 1974. Brouwer’s constructivism. Synthese 27: 125–159.
Potter, Michael. 2000. Reason’s Nearest Kin. Oxford: Oxford University Press.
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Thiel, Christian. 1994. Schröders zweiter Beweis für die Unabhängigkeit der zweiten

Subsumtion des Distributivgesetzes im logischen Kalkül. Modern Logic 4: 382–391.
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Logic, 1897–1931. Cambridge, Mass.: Harvard University Press.

van Heijenoort, Jean. 1967b. Logic as calculus and logic as language. Boston Studies in the
Philosophy of Science 3: 440–446.

van Stigt, Walter P. 1990. Brouwer’s Intuitionism. Amsterdam: North-Holland.
Vaught, Robert L. 1974. Model theory before 1945. In Henkin et al. (1974), 153–172.
Veblen, Oswald. 1904. A system of axioms for geometry. Transactions of the American

Mathematical Society 5: 343–384.
Veblen, Oswald and John Wesley Young. 1910. Projective Geometry. Boston: Ginn and

Company.
Vercelloni, Luca. 1988. Filosofia delle Strutture. Florence: La Nuova Italia.
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Métaphysique et de Morale 15: 34–39.
Whitehead, Alfred North and Bertrand Russell. 1910. Principia Mathematica, vol. 1.

Cambridge: Cambridge University Press.
Whitehead, Alfred North and Bertrand Russell. 1912. Principia Mathematica, vol. 2.

Cambridge: Cambridge University Press.
Whitehead, Alfred North and Bertrand Russell. 1913. Principia Mathematica, vol. 3.

Cambridge: Cambridge University Press.
Wittgenstein, Ludwig. 1921. Logisch-philosophische Abhandlung. Annalen für

Naturphilosophie 14: 198–262. Reprinted with English translation in Wittgenstein (1922).
Wittgenstein, Ludwig. 1922. Tractatus logico-philosophicus. London: Kegan Paul.
Woleński, Jan. 1989. Logic and Philosophy in the  Lvov-Warsaw School. Dordrecht: Kluwer.
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