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Categorical logic, as its name indicates, is logic in the setting of category the-
ory. But this description does not say much. Most readers would probably find
more instructive to learn that categorical logic is algebraic logic, pure and simple.
It is logic in an algebraic dressing. Just as algebraic logic encodes propositional
logic in its different guises (classical, intuitionistic, etc.) by their Lindenbaum-
Tarski algebras (Boolean algebras, Heyting algebras and so on), categorical logic
encodes first-order and higher-order logics (classical, intuitionistic, etc.) by cate-
gories with additional properties and structure (Boolean categories, Heyting cate-
gories and so on). Thus, from the purely technical point of view, categorical logic
constitutes a generalization of the algebraic encoding of propositional logic to first-
order, higher-order and other logics. Furthermore, we shall present and discuss
arguments (given by the main actors) to show that this encoding constitutes the
correct generalization of the well-known algebraic encoding of propositional logics
by the Lindenbaum-Tarski algebras.

The proper algebraic structures are not only categories, but also morphisms
between categories, mainly functors and more specially adjoint functors. A key
example is provided by the striking fact that quantifiers, which were the stumbling
block to the proper algebraic generalization of propositional logic, can be seen to
be adjoint functors and thus entirely within the categorical framework. As is
usually the case when algebraic techniques are imported and developed within
a field, e.g. geometry and topology, vast generalizations and unification become
possible. Furthermore, unexpected concepts and results show up along the way,
often allowing a better understanding of known concepts and results.

Categorical logic is not merely a convenient tool or a powerful framework.
Again, as is usually the case when algebraic techniques are imported and used
in a field, the very nature of the field has to be thought over. Furthermore, var-
ious results shed a new light on what was assumed to be obvious or, what turns
out to be often the same on careful analysis, totally obscure. Thus, categorical
logic is philosophically relevant in more than one way. The way it encodes logical
concepts and operations reveals important, even essential, aspects and properties
of these concepts and operations. Again, as soon as quantifiers are seen as ad-
joint functors, the traditional question of the nature of variables in logic receives
a satisfactory analysis.

Furthermore, many results obtained via categorical techniques have clear and
essential philosophical implications. The systematic development of higher-order
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logic, type theory under a different name, and various completeness theorems are
the most obvious candidates. But there is much more. Many important questions
concerning the foundations of mathematics and the very nature of mathematical
knowledge are inescapable. In particular, issues related to abstraction and the
nature of mathematical objects emerges naturally from categorical logic.

This paper covers the period that can be qualified as the birth and the consti-
tution of categorical logic, that is the time span between 1963 and 1977. No one
will deny that categorical logic started with Bill Lawvere’s Ph.D. thesis written in
1963 under S. Eilenberg’s supervision and widely circulated afterwards. (It is now
available on-line on the TAC web-site.) In his thesis, Lawvere offered a categorical
version of algebraic theories. He also suggested that the category of categories
could be taken as a foundation for mathematics and that sets could be analyzed
in a categorical manner. In the years that followed, Lawvere tried to extend his
analysis and sketched a categorical version of first-order theories under the name
of elementary theories. Then, in 1969, in collaboration with Myles Tierney, Law-
vere introduced the notion of an elementary topos, making an explicit connection
with higher-order logic and type theories. Both Lawvere and Tierney were aim-
ing at an elementary, that is first-order, axiomatic presentation of what are now
called Grothendieck toposes, a special type of categories introduced by Alexandre
Grothendieck in the context of algebraic geometry and sheaf theory. Soon after,
connections with intuitionistic analysis, recursive functions, completeness theo-
rems for various logical systems, differential geometry, constructive mathematics
were made. We have decided to end our coverage in 1977 for the following rea-
sons. First, we had to stop somewhere, otherwise we would have to write a book.
Second, and this is a more serious reason, three independent events in 1977 mark
more or less a turning point in the history of categorical logic. First, the book
First-Order Categorical Logic, by Makkai and Reyes appears, a book that more
or less codifies the work done by the Montreal school in the period 1970-1974 and
now constitutes the core of categorical first-order logic. Second, the same year
witnesses the publication of Johnstone’s Topos Theory, the first systematic and
comprehensive presentation of topos theory as it was known in 1974-75. (The
reader should compare this edition with Johnstone’s recent Sketches of an Ele-
phant, a comprehensive reference on topos theory in three volumes.) Third, 1977
was also the year of the Durham meeting on applications of sheaf theory to logic,
algebra and analysis, whose proceedings were published in 1979. We submit that
around the end of the nineteen seventies, categorical logic was on firm ground and
could be developed in various directions, which is precisely what happened, from
theoretical computer science, modal logic and other areas.

The usual warnings, caveat and apologies are now necessary. It is impossible to
cover, even in a long article such as this one and for such a short time period, all
events involved in the history of categorical logic. This paper is but a first attempt
at a more precise and detailed history of a complicated and fascinating period in
the history of ideas. We hope that it will stimulate more work on the topic. We
hasten to add that it also reflects our interests and (hopefully not too limited)
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knowledge of the field. It is our hope that it will nonetheless be useful to logicians
and philosophers alike. We sincerely apologize to mathematicians, logicians and
philosophers whose names ought to have appeared in this history but have not
because of our ignorance.

1 THE BIRTH OF CATEGORY THEORY AND ITS EARLY
DEVELOPMENTS

Category theory as a discipline in itself and was born in the context of algebraic
topology in the nineteen forties. We will briefly sketch the history of category
theory before the advent of categorical logic and rehearse the fundamental notions
of the theory required for the exposition of the following sections.

1.1 Category theory: its origins

We will here only rehearse the ingredients required for the history of categorical
logic. The reader is referred to [Landry and Marquis, 2005], [Marquis, 2006] and
[Krömer, 2007] for more details.

Category theory made its official public appearance in 1945 in the paper enti-
tled “General Theory of Natural Equivalences” written by Samuel Eilenberg and
Saunders Mac Lane. This “off beat” and “far out” paper, as Mac Lane came
to qualify it later [Mac Lane, 2002, 130], was meant to provide an autonomous
framework for the concept of natural transformation, a concept whose generality,
pervasiveness and usefulness had become clear to both of them during their col-
laboration on the clarification of an unsuspected link between group extensions
and homology groups. Such a general, pervasive and conceptually useful notion
seemed to deserve a precise, rigorous, systematic and abstract treatment.

Eilenberg and Mac Lane decided to devise an axiomatic framework in which the
notion of natural transformation would receive an entirely general and autonomous
definition. This is where categories came in. Informally, a natural transformation
is a family of maps that provides a systematic “translation” or a “deformation”
between two systems of interrelated entities within a given framework. But in
order to give a precise definition of natural transformations, one needs to clarify
the systematic nature of these deformations, that is, one has to specify what these
deformations depend upon and how they depend upon it. Eilenberg and Mac Lane
introduced what they called functors — the term was borrowed from Carnap —
so that one could say between what the natural transformations were acting: a
natural transformation is a family of maps between functors. Clearly, one has
to define the notion of a functor: the concept of category was tailored for that
purpose. The systematic nature of natural transformations was also made clear
by categories themselves. Thus categories were introduced in 1945 and, as Mac
Lane reported (see [Mac Lane, 2002]), Eilenberg believed that their paper would
be the only paper written on “pure” category theory.
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As we have already mentioned, Eilenberg and Mac Lane gave a purely axiomatic
definition of category in their original paper. It is worth mentioning that they
explicitly avoided using a set-theoretical terminology and notation in the axioms
themselves. Here is how their definition unfolds (only with a slightly different
notation):

A category C is an aggregate of abstract elements X , called the objects of the
category, and abstract elements f , called mappings of the category. Certain pairs
of mappings f, g of C determine uniquely a product mapping g ◦ f , satisfying the
axioms C1, C2, C3 below. Corresponding to each object X of C, there is a unique
mapping, denoted by 1X satisfying the axioms C4 and C5. The axioms are:

C1 The triple product h ◦ (g ◦ f) is defined if and only if (h ◦ g) ◦ f is defined.
When either is defined, the associative law

h ◦ (g ◦ f) = (h ◦ g) ◦ f

holds. This triple product will be written as h ◦ g ◦ f .

C2 The triple product h◦ g ◦f is defined whenever both products h◦ g and g ◦f
are defined. A mapping 1 of C will be called an identity of C if and only
if the existence of any product 1 ◦ f and g ◦ 1 implies that 1 ◦ f = f and
g ◦ 1 = g.

C3 For each mapping f of C there is at least one identity 1r such that f ◦ 1r is
defined, and at least one identity 1l such that 1l ◦ g is defined.

C4 The mapping 1X corresponding to each object X is an identity.

C5 For each identity 1 of C there is a unique object X of C such that 1X = 1.

The last two axioms “assert that the rule X // 1X provides a one-to-one cor-
respondence between the set of all objects of the category and the set of all its
identities. It is thus clear that the objects play a secondary role, and could be
entirely omitted from the definition of a category. However, the manipulation
of the applications would be slightly less convenient were this done.” [Eilenberg
and Mac Lane, 1945, 238] Thus, from a theoretical point of view, a category is
determined by its mappings, but from a practical point of view, it is convenient
to distinguish the objects from the mappings. Eilenberg and Mac Lane then state
as a lemma that each mapping f has a unique domain (source) X and a unique
codomain (target or range) Y and write f : X // Y .

Eilenberg and Mac Lane proceed to define equivalences in a category, nowadays
called isomorphisms, thus: a mapping f is an isomorphism if it has an inverse, i.e.
if there is a mapping g such that g ◦f and f ◦g are defined and are identities. Two
objects X1 and X2 are said to be isomorphic if there is an isomorphism between
them.

Eilenberg and Mac Lane gave four basic examples of categories: the category Set
of sets with functions between them, the category Top of topological spaces with
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continuous functions, the category TopGrp of topological groups with continuous
homomorphisms and the category Ban of Banach spaces with linear transforma-
tions with norm at most 1. This is a surprisingly short list of examples. They
give more examples by defining the notion of a subcategory in the obvious fash-
ion. Thus, they point out that given a category C, the subcategory composed of
the same objects as C but with mappings only the isomorphisms is a category,
nowadays called a groupoid. The category of finite sets is also mentioned as well
as other subcategories of the category of sets, e.g. for a fixed cardinal k, there
is a category of all sets of power less than k together with all the mappings. By
restricting the mappings between sets to be onto or injective, one obtains different
subcategories of sets. Similarly, if one restricts the continuous maps to open maps
between topological spaces, then one obtains a different subcategory of topological
spaces. In §11 of their paper, Eilenberg and Mac Lane observe that any group G
can be thought of as a category: it has only one object and its mappings are the
elements of the group. They also point out in §20 that any preorder P can be
viewed as a category.

It should be emphasized how truly secondary categories were for Eilenberg and
Mac Lane at that point. In that respect, categories had an ambiguous status. It
is clear that categories are conceptually required for the systematic and rigorous
definition of natural transformations, but at the same time, they cannot be legit-
imate mathematical entities unless certain precautions are taken with respect to
their size. Eilenberg and Mac Lane explicitly recognized this fact in §6 where they
discuss foundational issues related to categories, e.g. the category of all sets is not
a set, thus not a legitimate entity from the standard set-theoretical point of view.

It should be observed first that the whole concept of a category is es-
sentially an auxiliary one; our basic concepts are essentially those of a
functor and of a natural transformation (. . . ). The idea of a category
is required only by the precept that every function should have a def-
inite class as domain and a definite class as range, for the categories
are provided as the domains and ranges of functors. Thus one could
drop the category concept altogether and adopt an even more intuitive
standpoint, in which a functor such as “Hom” is not defined over the
category of “all” groups, but for each particular pair of groups which
may be given. The standpoint would suffice for the applications, inas-
much as none of our developments will involve elaborate constructions
on the categories themselves. [Eilenberg and Mac Lane, 1945, 247]

Although the definition of category was conceptually necessary, categories them-
selves were not doing any mathematical work. They were simply a way of sys-
tematizing the required data. However, it did not take long, approximately ten to
fifteen years, before elaborate constructions on categories themselves became es-
sential and thus the question concerning their nature became more pressing and we
indeed see, for instance, Mac Lane, going back to the problem of the foundations
of categories in the late fifties and early sixties. (See [Mac Lane, 1961].)
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Eilenberg and Mac Lane’s definition of a functor is given for n arguments. We
will give the definition of a functor with one argument.

A functor F between categories C and D is a pair of functions, an object-function
which associates to each object X of C an object Z = F (X) in D and a mapping
function which associates to each mapping f of C a mapping h = F (f), such that

1. F (1X) = 1F (X)

2. F (g ◦ f) = F (g) ◦ F (f)

Such a functor is said to be covariant. Whenever a functor satisfies the equality

2o. F (g ◦ f) = F (f) ◦ F (g)

instead of 2, it is said to be contravariant.
Functors with the same domain category and the same codomain category can

be connected to one another systematically or “naturally”. This is precisely what
the notion of natural transformation captures. Here is Eilenberg and Mac Lane’s
definition, restricted to functors F,G : C //D in one argument.

A natural transformation τ : F // G between functors F,G : C // D is a
function that associates to each object X of C a mapping τX : F (X) //G(X) of
D such that for any mapping f : X // Y , the following diagram commutes

F (Y ) G(Y )
τY

//

F (X)

F (Y )

F (f)

��

F (X) G(X)
τX // G(X)

G(Y )

G(f)

��

that is, G(f) ◦ τX = τY ◦ F (f).
If each τX is an isomorphism, then τ is said to be a natural isomorphism (Eilen-

berg and Mac Lane said natural equivalence).
Given functors and natural transformations, it is possible to define categories

of functors: its objects are functors F : C // D and its mappings are natural
transformations τ : F //G. Eilenberg and Mac Lane find categories of functors
“useful chiefly in simplifying the statements and proofs of various facts about
functors” [Eilenberg and Mac Lane, 1942, 250] and not in themselves. This is one
of the key elements that was about to change drastically in the following years.

Eilenberg and Mac Lane defined two other important notions in their original
paper: the dual Co of a category C in §13 and limits and colimits for directed sets
in §21 and §22. Dual categories play an important conceptual role in category
theory and categorical logic. Given a category C, the dual category Co has as its
objects those of C; the mappings f o of Co are in one-to-one correspondence f→←fo

with the mappings of C. If f : X // Y is in C, then fo : Y //X is in Co. The
composition law is defined by the equation f o ◦ go = (g ◦ f)o, whenever g ◦ f is
defined in C.
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Before we move on, let us now quickly underline what one does not find in
Eilenberg and Mac Lane’s paper. First, although the notion of a subcategory
is clearly defined in the paper, properties of the inclusion functor, or for that
matter, basic properties of functors in general, for instance being faithful, full and
essentially surjective, are not identified.

Although Eilenberg and Mac Lane did define the notion of isomorphism of cate-
gories, they did not define the notion of equivalence of categories. The distinction
between the two concepts might seem to be formally subtle, but it is crucial in the
applications of category theory. The notion of isomorphism between categories is
just the same as the notion of isomorphism between objects in a category: two cat-
egories C and D are said to be isomorphic if there is an isomorphism between them,
that is if there are functors F : C //D and G : D //C such that G◦F = 1C and
F ◦G = 1D, where 1C and 1D denote the obvious identity functors. Two categories
C and D are said to be equivalent if there is an equivalence between them, that
is if there are functors F : C // D and G : D // C and natural isomorphisms
τ : G ◦ F ˜ // 1C and ρ : F ◦ G ˜ // 1D. Thus, in the case of an equivalence,
composing the functors F and G does not yield the identity functors, but there
are systematic translations, namely natural isomorphisms, of the compositions to
the identity functors. From the point of view of category theory, the notion of
equivalence of categories is fundamental.

Although Eilenberg and Mac Lane introduced functor categories, they do not
mention the possibility of a category of categories nor do they notice that natural
transformations compose in two different ways. Of course, they did not need these
concepts and therefore did not have to consider them at all. Interestingly enough,
all these notions — functors with specific properties, equivalence of categories
and, in a certain sense, the category of categories — will play a crucial role in the
development of categorical logic in the nineteen sixties. But it can certainly be
said without hesitation that the construction that will occupy the center stage of
the development of categorical logic is the construction of functor categories.

1.2 Category theory from 1945 until 1963

We will now sketch the development of category theory from 1945 until 1963,
underlying the points that will prove to be indispensable for the development of
categorical logic.

Although, Eilenberg and Mac Lane introduced and defined the basic concepts
of category theory, we believe that it is reasonable to claim that they did not
introduce category theory as such. Category theory started in the late fifties and
early sixties. For the theory to get off the ground, properties of categories and
functors had to be introduced and used systematically. Those arose naturally in
specific applications.

Eilenberg and Steenrod quickly applied category theory to algebraic topology.
Their book Foundations of Algebraic Topology was published in 1952, but it cir-
culated in the form of notes well before that date. It was extremely influential
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in many different ways. First, because it provided a systematic presentation of
algebraic topology and clarified immensely how algebraic topology had to be or-
ganized and developed. Second, many students learned algebraic topology from
their book and thus assimilated basic categorical concepts along the way. Eilen-
berg and Steenrod did not develop category theory itself, all the definitions are
taken directly from Eilenberg and Mac Lane’s paper, but they did use it in such
a way that diagrams became a fundamental tool in the proofs of various results.
Third, homology and cohomology theories were now functors and comparing the-
ories amounted to looking at natural transformations between them. Thus, some
mathematical objects were now best thought of as being functors between cate-
gories.

The same remarks apply to the equally influential book by Cartan and Eilenberg
Homological Algebra, published in 1956. This book more or less created the subject
of homological algebra. It relied heavily on the language of categories and in the
use of diagrams in proofs.

Both books brought a shift of focus with respect to the original paper by Eilen-
berg and Mac Lane. First, it can be said that functors were moving to the front
stage or were at the very least just as important as natural transformations. Sec-
ond, both presented an obvious problem that was about to become a fundamental
and general heuristic principle: to find the appropriate category to define and
develop a certain aspect of mathematics. In the first case, it was the appropriate
setting to express clearly and precisely the duality between homology and coho-
mology theories. In the second case, it was the search for the appropriate setting
for the notion of derived functor. This last heuristic principle led to a second
fundamental shift: categories could now be considered in themselves, not only as
domains and codomains of functors, but as formal contexts with specific categori-
cal properties in which one could identify, define and develop a specific portion of
mathematics.

Thus, these last two problems led to the use of categories within an axiomatic
framework. More precisely, it became imperative to define certain concepts, de-
velop specific theories by stipulating that a category satisfied appropriate categori-
cal properties. [Buchsbaum, 1955], [Grothendieck, 1957] and [Heller, 1958] defined
the notion of an Abelian category in which a large portion of homological algebra
can be carried out from a purely abstract or formal point of view. Furthermore,
functor categories became a prominent tool in various fields: algebraic topology,
especially homotopy theory, homological algebra, algebraic geometry and more
and more constructions on categories were required and seen to be useful. Finally,
in 1958, Daniel Kan introduced the notion of adjoint functor, arguably the core
concept of the whole theory and which plays a key role in categorical logic as well.

Informally and as a rough heuristic guide, adjoint functors can be thought
of as conceptual inverses. The formal definition goes as follows. Two functors
F : C //D and G : D //C together with natural transformations η : 1C

//G◦F
and ξ : F ◦G //1D determine an adjunction if Gξ ◦ ηG = 1G and ξF ◦Fη = 1F ,
that is the following triangles commute:
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G GFG
ηG //G

G

1G

��?
??

??
??

??
??

GFG

G

Gξ

��

F FGF
Fη //F

F

1F

��?
??

??
??

??
??

FGF

F

ξF

��

In the foregoing adjunction the functor F is said to be a left adjoint to G, denoted
by F a G, and G is said to be a right adjoint to F . As is usual in category theory,
adjoints are determined up to a unique isomorphism, that is if F a G and F a G′,
then there is a unique natural isomorphism G //G′.

When Kan introduced the concept of adjoint functor in 1958, he immediately
saw the generality of the concept, its usefulness and power in unifying various and
apparently different results. Many important theorems and almost all fundamental
mathematical constructions can be cast in the frame of adjoint functors. It is also
a surprise to see that many fundamental constructions simply appear as adjoints
to basic functors. (See [Mac Lane, 1998]; [Adamek et al., 1990]; [Taylor, 1999] for
many examples.)

By the time Grothendieck and Kan wrote their seminal papers, in 1955-56,
constructions on categories, and in particular the construction and use of functor
categories, had become pivotal. Their use of functor categories may not be totally
unrelated to the fact that both mathematicians were coming from mathemati-
cal fields, namely functional analysis and homotopy theory respectively, in which
functional spaces and their properties played a key role.

Adjoint functors and functor categories occupied right from the start a central
role in categorical logic. The idea that logical operations, all logical operations,
should appear as adjoints to basic functors was one of Lawvere’s convictions and
motivation.

2 LAUNCHING THE PROGRAM: 1963–1969

When they introduced the theory of categories in 1945, Eilenberg and
Mac Lane suggested the possibility of “functorizing” the study of gen-
eral algebraic systems. The author has carried out the first steps of
this program, making extensive use of the theory of adjoint functors,
as introduced by Kan and refined by Freyd.[Lawvere, 1963, 869]
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2.1 Basic principles

We now turn to logic proper. It is unquestionable that one person sparked the
whole program of thinking about logic and the foundations of mathematics in
general in a categorical spirit: F. William Lawvere. He did so in his very first
work, namely his PhD thesis defended at Columbia under Eilenberg’s supervision
in 1963. It can certainly be said that the thesis already contains all the basic
ideas that have guided Lawvere throughout his career and that have influenced
the categorical community greatly. These ideas are in a nutshell:

1. To use the category of categories as a framework for mathematics, i.e. the
category of categories should be the foundations of mathematics;

2. Every aspect of mathematics should be representable in one way or another
in that framework; in other words, categories constitute the background to
mathematical thinking in the sense that, in this framework, essential features
of that thinking are revealed;

3. Mathematical objects and mathematical constructions should be thought of
as functors in that framework;

4. In particular, sets always appear in a category, there are no such thing as
sets by themselves, in fact there is no such thing as a mathematical concept
by itself;

5. But sets form categories and the latter categories play a key role in the
category of categories, i.e. in mathematics;

6. Adjoint functors occupy a key position in mathematics and in the devel-
opment of mathematics; one of the guiding principles of the development
of mathematics should be “look for adjoints to given functors”; in that way
foundational studies are directly linked to mathematical practice and the dis-
tinction between foundational studies and mathematical studies is a matter
of degree and direction, it is not a qualitative distinction;

7. As the foregoing quote clearly indicates, Lawvere is going back to the claim
made by Eilenberg and Mac Lane that the “invariant character of a mathe-
matical discipline can be formulated in these terms” [i.e. in terms of func-
toriality], [Eilenberg and Mac Lane, 1945, 145]. But now, in order to reveal
this invariant character, extensive use of adjoint functors is made.

8. The invariant content of a mathematical theory is the “objective” content
of that theory; this is expressed at various moments throughout his publica-
tions. To wit:

As posets often need to be deepened to categories to accurately
reflect the content of thought, so should inverses, in the sense of
group theory, often be replaced by adjoints. Adjoints retain the
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virtue of being uniquely determined reversal attempts, and very
often exist when inverses do not. [Lawvere, 1994, 47] (our empha-
sis)

9. Not only sets should be treated in a categorical framework, but also logical
aspects of the foundations of mathematics should be treated categorically,
in as much as they have an objective content. In particular, the logical and
the foundational are directly revealed by adjoint functors.

As we have said, these ideas, as well as others, are more or less implicit in Lawvere’s
thesis. Lawvere’s goal is general in the sense that it aims at incorporating the whole
of mathematics. Furthermore, Lawvere’s usage of categories reflects a change
in their status among category theorists in the sixties and seventies. Lawvere
recognizes explicitly that categories defined axiomatically constitute autonomous
kinds or types and are, as such, independent of any underlying set-theoretical
structures and structure preserving functions. Furthermore, categories become
polymorphic: in addition to their usual role, they become the algebraic descriptions
of formal systems and, as such, can be thought of as formal systems; but they also
provide the underlying framework for semantics and, as such, can be thought of
as universe of interpretations.

A summary of the main results of the thesis was communicated to the Proceed-
ings of the National Academy of Sciences by Mac Lane and published in 1963.
Essentially the same summary was presented at Berkeley in 1963 at a symposium
on model theory and later published in 1965 in the proceedings of the meeting.
Mac Lane also communicated Lawvere’s axiomatization of the elementary theory
of the category of sets in the same Proceedings in 1964. That axiomatization was
not in the thesis as such. The following year, Lawvere presented an explicit ax-
iomatization of the category of categories, published again in the Proceedings in
1966. Another paper, published in 1968, gives an account of the main elements of
the thesis together with some new extensions.

In the early and mid-sixties, a certain methodological shift in attention can
be detected in the work done by many category theorists. Following Kan and
Grothendieck, certain mathematical theories are developed within categories, e.g.
homotopy theory, algebra, and the development of these theories is done using the
properties of categories more directly. (To mention but a few cases, all published
in 1963: Bénabou with his categories with multiplication, C. Ehresmann with his
structured categories and Eckmann and Hilton with their group-like structures in
categories.) At the same time, adjoints receive more attention and are used more
systematically, in particular to define and characterize various structures. Exam-
ples are once again provided by Bénabou’s work on categories with multiplication,
but others, slightly different examples can be found in Eilenberg and Moore and
Kleisli on triples, as well as Eilenberg and Kelly with the notion of closed category.
(See [Bénabou, 1963]; [Eilenberg and Kelly, 1966]; [Kleisli, 1965]). Needless to say,
Grothendieck’s work in algebraic geometry, based on the use of sheaf theory, is
extraordinarily influential, but it is not in pure category theory.
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Going back to his original program of clarifying the conceptual content of se-
mantics, Lawvere realized that certain types of categories can be defined purely by
stipulating that certain adjoint functors to given elementary functors exist. The
definitions can be given by this data and nothing else. In a loose sense, defining
a category via the existence of adjoints amounts to the claim that certain basic
conceptual operations can be represented in that category. This in itself would
probably not be of foundational relevance, were it not for the fact that the cat-
egories so defined correspond in a precise technical sense to logical concepts and
theories. Thus the existence of certain adjoints to specific elementary functors
amounts to a specification of logical structures and resources. With these ideas
and results in his pocket, Lawvere could see that a program of “functorizing” the
study of mathematical concepts in general could be formulated.

The presentation of these fundamental facts and the program that ensued were
made at various conferences in the mid-sixties, published in the form of abstracts
in 1966 and a series of papers published in 1969 and 1970. Among the latter, the
paper entitled Adjoints in Foundations deserves special attention for its general
philosophical orientation. It contains the seeds of a categorical program in logic
and the foundations of mathematics. [Lawvere, 1969a] Two other papers of that
period also contain important parts of that program: first the paper on diagonal
arguments presented in 1968 and published in 1969 and the paper on quantifiers
and the comprehension schema as adjoints also presented in 1968 and published in
1970. [Lawvere, 1969b; Lawvere, 1970a] The two abstracts published in 1966 are
also revealing and influential, for they concentrate on first-order logic. [Lawvere,
1966; Lawvere, 1967] Finally, the discovery of the notion of elementary topos in
collaboration with Tierney in 1969/70 provided the general framework in which
the whole program could be cast and opened vast and rich possibilities that were
unforeseen.[Lawvere, 1970b]

We will now look more carefully at the details of this program. We will start
with Lawvere’s study of algebraic categories, look briefly at the elementary theory
of the category of sets and then move to the so-called elementary theories. We will
ignore Lawvere’s axiomatization of the category of categories, since it did not have
a direct impact on the development of categorical logic. Lawvere’s work on the
category of categories and the category of sets did not have the same fate as his
work on universal algebra. Despite the fact that Lawvere’s work on the category
of categories suffered from a slight technical flaw, both it and his work on the
category of sets were essentially metamathematical and category theory was not
yet seen as a potentially useful framework for the latter. Studies on the category of
categories that followed Lawvere’s pioneering work were mathematically motivated
and we speculate that no one saw what to do with the category of sets. It simply
did not have a clear function. His work on algebraic theories, however, inspired
much of what was to follow in logic, including Lawvere’s own work, and it still
constitutes the starting point of what are now called “doctrines”, a term suggested
to Lawvere by John Beck, in categorical logic and the categorical approach to
universal algebra.
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2.2 Lawvere’s thesis: 1963

Lawvere’s imaginative thesis at Columbia University, 1963 contained
his categorical description of algebraic theories, his proposal to treat
sets without elements and a number of other ideas. I was stunned when
I first saw it; in the spring of 1963, Sammy and I happened to get on
the same airplane from Washington to New York. He handed me the
just completed thesis, told me that I was the reader, and went to sleep.
I didn’t. ([Mac Lane, 1988, 346].)

Essentially, algebraic theories are an invariant notion of which the usual
formalism with operations and equations may be regarded as “presen-
tation”. [Lawvere, 1963, ii]

The main concept of Lawvere’s thesis is the notion of algebraic category. The
main result of the thesis is a categorical characterization of algebraic categories.
Together with algebraic categories, Lawvere also introduced algebraic theories and
algebraic functors. The three notions are intimately connected to one another. As
Lawvere pointed out himself, there is a strong analogy between the way his work
is developed and the theory of sheaves that had been just introduced at that time:
in the same way that Grothendieck had provided an abstract characterization of
categories of sheaves on topological spaces, Lawvere’s goal was to characterize
algebraic categories in a similar manner. The main tool of the thesis and what
provides the key to the connections between these notions are adjoint functors.
Thus, they constitute the methodological core of the thesis and of the whole ap-
proach. The framework is presented as a new foundation for universal algebra. In
the very first chapter of the thesis, thus the underlying context of the work, there
is a sketch of a first-order theory of the category of categories. Within that con-
text sets are defined in categorical terms, the notion of equivalence of categories is
given, as well as the category of small categories, the category of large categories,
the category of finite sets, the category of small sets, and the category of large sets.
A categorical version of the Peano postulates is also given.1 But the bulk of that
chapter is occupied by the presentation and development of the notions of adjoint
functors and limits. In the second chapter, algebraic theories are introduced and
the category of algebraic theories is defined and various properties of the category
are proved, e.g. the existence of an adjoint that corresponds to the existence of
free algebraic theories. Chapter three deals with algebraic categories (and here
Lawvere explicitly exploits the analogy with sheaves). The notions of algebraic
semantics and algebraic structure are defined and a categorical characterization of
algebraic categories is given. Chapter IV deals with algebraic functors and their
adjoints. Finally, in chapter V, particular cases and extensions are considered.

Let us look at the central concepts and results of the thesis and see how the
invariant content of universal algebra is analyzed.

1These axioms are sometimes called the Peano-Lawvere axioms. See for instance [Birkhoff
and Mac Lane, 1967, 67].
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First comes the notion of an algebraic theory. A group is usually thought of as a
set together with some specified operations, e.g. multiplication, inverse and unit,
satisfying certain identities, e.g. associativity, unit law and inverses. Formally,
this is encoded by a signature, e.g. (×, (−)−1, e) or some other, with the standard
axioms. But it is clear that the signature can in general vary and so does the
choice of axioms. These choices determine, though, the same theory, in the sense
that all the definable operations and all the theorems are the same.2 Lawvere’s
idea is to define a category which will encode all the information at once, thus
independently of the choice of signature and axioms and call that category the
theory. Thus, the latter category would in some sense be the objective encoding
of the theory, independent of any presentation of it. This is in stark contrast with
the traditional logical approach in which a theory T depends directly on a choice
of primitive symbols, its signature, and a choice of axioms. Strictly speaking,
changing the axioms changes the theory, although, for instance we still talk about
the theory of groups.

Here is the general definition:3

Definition: an algebraic theory is a (small) category A such that:

(i) the objects of A is a denumerable set {A0, A1, A2, . . . , An, . . .} of distinct
objects;

(ii) each object An is the product of A1 with itself n times; thus, for each n, the

projection maps π
(n)
i : An //A, for i = 0, 1, . . . , n− 1, exist;

(iii) for any n morphism Am
ϑi−→ A, for i = 0, 1, . . . , n− 1, in A, there exists ex-

actly one morphismAm
〈ϑ0,ϑ1,...,ϑn−1〉
−−−−−−−−−−→ An such that π

(n)
i ◦〈ϑ0, ϑ1, . . . , ϑn−1〉 =

ϑi, for i = 0, 1, . . . , n− 1.

The arbitrary morphisms An
η
−→ A are the n-ary operations of A.

Thus, the theory, thought of as a category, contains all the possible operations
systematically.

The underlying motivation is very simple and makes perfect sense once the
notion of an algebra of type A, also called an A-algebra, has been given: it is
simply a product preserving functor from an algebraic theory to the category of
sets, F : A // Set. Thus, F (A) picks a set, and F (An) is simply an n-fold

product of F (A), i.e. F (A)× · · · ×F (A) n-times. An operation An
η
−→ A becomes

a standard set-theoretical operation F (A) × · · · × F (A)
F (η)
−−−→ F (A). Notice that

2The second author recalls that in one of his courses in the late 60’s at Berkeley, Tarski told
the class that there wasn’t such a thing as the theory of groups, but there were infinitely many
theories of groups.

3We are here presenting the direct definition given by Lawvere in his published papers. In
his thesis, Lawvere defines the category of algebraic theories as a subcategory of the category of
finite sets, which is itself a category in the category of categories. Pareigis’ presentation is, in
this respect, more faithful to Lawvere’s original work. See [Pareigis, 1970].
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an algebra of type A is a functor. It is also called a model of the theory A. Thus,
in particular, if A is the theory of groups, then each and every group is a functor.

Two categories can now be defined: 1. The category = of algebraic theories
whose objects are algebraic theories, morphisms are functors preserving products
and taking 1 to 1; 2. The functor category Set(A) of all product preserving functors
A // Set, which can be thought of as the category of models of the theory A.
The latter category is called an algebraic category.

A morphism f : A // B of algebraic theories induces a functor Set(f) :
Set(B) // Set(A) by composition. The latter functor is called an algebraic func-
tor. Furthermore, for any algebraic category Set(A), there is an obvious forgetful
functor UA : Set(A) //Set which sends to each object F (An) the underlying set
and to each morphism the underlying set map. Notice that the forgetful functor
is an algebraic functor.

Algebraic functors lead to another construction, named algebraic semantics :it
assigns to each algebraic theory A, the forgetful functor UA and to each morphism
f : A //B of algebraic theories the algebraic functor Set(f) : Set(B) //Set(A).
This is in fact itself a functor, sometimes called the semantic functor,

S : =op // K

where K is the category of algebraic categories.
With these definitions, Lawvere’s main results are:

1. Every algebraic functor has a (left) adjoint. This is the conceptual and
unified formulation of various constructions in universal algebra, e.g. free
algebras, tensor algebras, monoid rings, etc.

2. Algebraic semantics has a (left) adjoint, which can be called algebraic struc-
ture. This means that it is possible to recover an algebraic theory from the
semantics, i.e. from the category of models.

3. The categorical characterization of algebraic categories: if C is a category
with finite limits, has an abstractly finite regular projective generator G and
every precongruence in C is a congruence, then there is an algebraic theory
A and an equivalence Φ : C // Set(A). (There is no need to specify what
the second and third conditions mean here. They are technical conditions
that we do not have to look into.)

These results were not only remarkable for what they accomplished, but also for
the research avenues they opened. These three points in themselves will become
guidelines in categorical logic. There were some obvious generalizations that were
taken up rapidly by others and not so obvious generalizations that had to wait for
other concepts to be fully worked out.

1. The obvious generalization was to consider infinitary operations and related
work in universal algebra. This was done quickly by Linton. (See [Linton,
1966b], [Linton, 1966a].)
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2. One of the great advantages of the categorical language is that it is possible
to replace the category Set of sets by an arbitrary category C with appropri-
ate properties. [Eilenberg and Moore, 1965] and [Barr and Beck, 1966] used
triples (monads) to extend Lawvere’s work over an arbitraty base category.
[Bénabou, 1968] considered the case of many-sorted theories. The identifica-
tion of the properties of C required to do the work, expressed in categorical
terms, leads to a classification of logical categories in categorical terms. The
category Set of sets becomes a special, but very important, case of a type
of category defined abstractly. Lawvere has given a characterization of alge-
braic categories. Further work lead to characterizations of similar categories,
i.e. categorical characterization of semantic frameworks.

3. An algebraic theory as defined by Lawvere can be thought of as a data
type.4 Lawvere’s work shows how syntactical information of a specific kind
can be encoded by categories. The search for a proper generalization to
cover all types of logical theories, not only the algebraic or equational case,
is irresistible. More specifically, the task is to find a general procedure to
move from a theory written in a given formal system to a category that would
be the invariant formulation of the latter. The notion of algebraic theory
was specifically tailored for algebraic structures and it is not clear how one
can go from there to other cases, e.g. cases with quantifiers and relations.
In particular, Lawvere considered single-sorted theories and a generalization
to many-sorted seems natural, although in traditional logical presentations,
we are used to the single-sorted case.

4. Once an element of one or all the previous points have been settled, the next
task consists in looking at the various adjoint situations and see what one
can obtain from them. For instance, it appears clearly from Lawvere’s work
that the adjoint situation is a special case of an algebraic duality and its
importance is due to the fact that it is the very first case of such a duality
where the category of sets appears as the dualizing object.

Mathematicians and logicians took up these tasks soon after Lawvere’s thesis. Im-
portant results were obtained in the late sixties by Lawvere himself, but also by
Lambek, Freyd, Linton, Isbell and by Gabriel and Ulmer. (See [Gabriel and Ulmer,
1971].) Parallel and independent developments were obtained by Ehresman and
his students, most notably Bénabou, also during that period. Ehresman’s motiva-
tion was different and was mainly oriented towards the foundations of differential
geometry, but it lead him to the notion of sketch which was developed by his stu-
dents C. Lair and R. Guitart in the seventies and independently rediscovered by
M. Makkai and R. Paré in the eighties. (See [Makkai and Paré, 1989].)

4This is more than a metaphor. There is indeed a formal connection with data bases. See for
instance [Plotkin, 2000].
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2.3 The Elementary theory of the category of sets

Let us now briefly turn to Lawvere’s axiomatization of the category of sets.
We should emphasize right from the start the fact that Lawvere never tried to

eliminate sets altogether from the foundational landscape, but rather he tried to
provide a categorical analysis of sets, that is a characterization of the category of
sets. Mac Lane, for one, at first thought that the idea was absurd.

. . . and then [Lawvere] conceived the idea of giving a direct axiomatic
description of the category of all categories. In particular, he proposed
to do set theory without using the elements of a set. His attempt
to explain this idea to Eilenberg did not succeed; I happened to be
spending a semester in New York (at the Rockefeller University), so
Sammy asked me to listen to Lawvere’s idea. I did listen, and at
the end I told him “Bill, you can’t do that. Elements are absolutely
essential to set theory.” After that year, Lawvere went to California.
[Mac Lane, 1988, 342]

Lawvere’s basic insight is that, even for sets, one can know them by looking at the
invariant content of the category of sets.

Thus we seem to have partially demonstrated that even in founda-
tions, not Substance but invariant Form is the carrier of the relevant
mathematical information. [Lawvere, 1964, 1506]

Some years ago I began an introductory course on Set Theory by at-
tempting to explain the invariant content of the category of sets, for
which I had formulated an axiomatic description. [Lawvere, 1994, 5]

(our emphasis)

Let us briefly look at this invariant content, at least as Lawvere saw it in the early
sixties.

Lawvere assumes the standard axioms for a category and then postulates that
the category of sets has a terminal object 1, an initial object 0, binary products
and coproducts, equalizers and coequalizers, thus all finite limits and colimits
(axiom 1). He also assumes that it is Cartesian closed, i.e. that the object BA,
together with the known morphism and universal property, exist for any A and B
(axiom 2). These two axioms are “structural” and are satisfied by many categories.
Thus, as such they do not characterize a category of sets.

The next axiom is known as the Peano-Lawvere characterization of the natural
numbers. It is therefore an axiom of infinity, but it contains more when it is
assumed with the previous axioms.

Axiom 3: There is an object N together with morphisms 1
z
−→ N

s
−→ N such

that given any object X together with mappings 1
x0−→ X

s
−→ X, there

is a unique morphism N
x
−→ X such that x0 = z ◦ x and x ◦ t = s ◦ x.
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This is now the standard characterization of the natural number system by a
universal property. A theorem on primitive recursion follows from it and the
preceding axioms. However, Lawvere points out that it is satisfied, as well as the
first two axioms, by the category 1, i.e. the category with one object and one
morphism. Thus, more is needed, both structurally and in terms of existence.

The next axiom is false in the category of categories, for it says that the terminal

object 1 is a generator, i.e. if the morphisms A
f
−→
−→
g

B are different, then there is

a morphism x : 1 //A such that f ◦ x 6= g ◦ x. In more colloquial language, this
axiom states that if f and g are different, then there is an element x, or a point,
in A such that f and g are different on that element.

The fifth axiom is the axiom of choice. The last three axioms are not expressed
in a categorical fashion. Surprisingly perhaps, Lawvere reintroduced the ∈ nota-
tion in his axiomatization. Since there is a one-to-one correspondence between
the morphisms x : 1 // A and the elements x ∈ A in the universe of sets, it
seems reasonable to say that x is an element of A if and only if x : 1 //A. The
remaining axioms are then expressed as follows:

Axiom 6: If A is not an initial object, then A has elements.

Axiom 7: An element of a sum is a member of one of the injections.

Axiom 8: There exists an object with more than one element.

Lawvere underlined the fact that the first seven axioms are satisfied by the
category 1 with one morphism, thus the need for the eighth axiom. One could
certainly object to the introduction of the ∈ relation and the notion of element in
a categorical framework and claim that this part of the axiomatization does not
capture the invariant form of the category of sets.

Be that as it may, the claim that the invariant form of the concept of set is cap-
tured by the axioms is substantiated by a metatheorem and its corollary. Indeed,
the metatheorem asserts that any two categories satisfying the eight axioms are
equivalent, thus in particular any (complete) category satisfying the eight axioms
is equivalent to the category of sets. Lawvere is in a position to state precisely
what it means to be “the” category of sets: the properties are (mainly) expressed in
categorical terms and the invariance amounts to the claim that any other category
satisfying these properties is equivalent to it.

Lawvere’s work did not open the door to further investigation along similar
lines. The category of sets was not taken as a foundational framework. It was
not studied and explored. Although there is no clear explanation of this fact,
Johnstone suggested that the category of sets is simply too “rigid”:

In retrospect, the answer is that Lawvere’s axioms were too specialized:
the category of sets is an extremely useful object to have as a foun-
dation for mathematics, but as a subject of axiomatic study it is not
(pace the activity of Martin, Solovay et al.!) tremendously interesting
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— it is too “rigid” to have any internal structure. [Johnstone, 1977,
xiii]

It is not exactly clear why it is such “an extremely useful object to have as
a foundation for mathematics” if nothing is developed in it and no one proceeds
to do more research within it. It seems that one of the most common reactions
at the time was that ETCS was merely a translation in categorical terms of the
standard axioms of set theory and that, as such, did not provide any genuinely
new insight into the nature of sets (in contrast with the analysis provided with
the axioms of elementary toposes, which was about to appear). Sociological and
historical factors must probably be invoked also. Lawvere’s paper appeared in
1964, very shortly after Cohen’s proof of the independence of the continuum hy-
pothesis was published. (See [Cohen, 1963].) Cohen’s result, and probably most
notably his method of forcing, deservedly attracted much attention. There is very
little doubt that one of the key advantages of topos theory over ETCS is precisely
that the former bridges the gap between a categorical description of sets and the
method of forcing, whereas the latter is a category of sets satisfying the axiom of
choice. It should be recorded that Miles Tierney’s proof of the independence of
the continuum hypothesis in a topos theoretical setting is done with respect to
Lawvere’s ETCS. The latter is taken to be the categorical expression of ZF set
theory, reinforcing the impression that ETCS is nothing more than a translation.

Although the ETCS did not attract much attention, the general program was
launched and it did not take long for Lawvere and others to see how logic could
be and perhaps should be developed in a categorical setting.

2.4 Categorical logic: the program

Categorical logic, in a very broad sense, can be seen to derive from
the completeness and exactness properties of the category of sets, in
a manner paralleling the earlier development of Abelian categories.
[Makkai and Paré, 1989, 5]

Lawvere pursued his work in the categorification of logic and presented two
papers at the Meeting of the Association of Symbolic Logic, one in 1965 and the
other in 1966. Abstracts of these talks were published in The Journal of Symbolic
Logic in the following year. The first one was received the 17 August 1965 and the
second almost a year later, the 12 August 1966. They were published a year later.
(See [Lawvere, 1966; Lawvere, 1967].) The second note offers a simplification of
the first attempt. It is entirely clear that Lawvere is trying to extend his results
obtained for algebraic theories to first-order theories in general. In these two notes,
three elements stand out. First, it is the first time in print that the existential
quantifier is presented as an adjoint. Second, every first-order theory with equality
corresponds to a category with certain properties that Lawvere calls an elementary
theory. In particular, certain elements of how semantics of first order languages
ought to be done in a category are suggested. Third, in the second abstract,
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Lawvere sketches a categorical proof of the completeness theorem that amounts to
the existence of specific adjoint functors. These abstracts were in fact influential
and did serve as guides in the late sixties and early seventies for a categorical
analysis of first-order logic. Here are the essential elements.

We will here present the notions as they are defined in 1966, for it is the latter
that were referred to by various logicians who followed Lawvere’s footsteps.

An elementary theory T is a small category with finite products, including the
empty product 1, satisfying three conditions:

1. There is a distinguished object B together with two morphisms 1
>
−→
−→
⊥

B

such that for all objects X , the morphisms 〈1X ,>X〉 : X // X × B and

〈1X ,⊥X〉 : X //X×B, where >X : X −→ 1
>
−→ B and ⊥X : X −→ 1

⊥
−→

B, constitute a categorical coproduct ofX with itself, that isX×B = X+X ;
it follows that for each object X of T, the functor Hom(X,B)5 is in fact a
Boolean algebra;

2. For any f : X // Y, ϕ : X // B, there is a morphism ∃f [ϕ] : Y // B
such that for all ψ : Y // B, ∃f [ϕ] ≤Y ψ if and only if ϕ ≤X ψ ◦ f ;

3. There is a second distinguished object A of T such that every object X of T
has a unique representation of the form An × Bk, where n, k are finite non
negative integers.

Morphisms An //A are thought of as n-ary terms and morphisms An //B
are thought of as n-ary formulas. In particular, HomT(1, B) is the set of sentences
of T. A model of T is any product preserving functor M : T // Set which takes
B to a two-element sets and which takes each ∃f [ϕ] to the image of ϕ under f ,
that is if, as above f : X //Y and ϕ : X //B, then identifying M(B) with the
two-elements set 2, we have that an element y ∈M(Y ) is in M(∃f [ϕ])−1(1) if and
only if there exists x ∈M(ϕ)−1(1) such that M(f)(x) = y. The set M(A) is called
the universe of the model. Morphisms of models are natural transformations, thus
yielding a categoryModSet(T) of set-models. Notice that the category Set satisfies
all the axioms, with the only exception that it is not small. A morphism of theories
I : T //T′ is a product preserving functor that preserves quantification. Lawvere
notices that there is an induced functor I∗ : ModSet(T

′) // ModSet(T) which
preserves universes.

In his first abstract, Lawvere extends the claim we find in his thesis to ele-
mentary theories as follows. Let T be the category of elementary theories with
morphisms of theories I : T // T′ and M the category of set-models. Then, as
indicated in the foregoing paragraph, there is a functor Φ : Top // M, called el-
ementary semantics and Lawvere claims that it has an adjoint, called elementary
structure. No details are given.

5Hom(X, Y ) denotes the collection of morphisms from X to Y in the category.



The History of Categorical Logic: 1963–1977 21

The main claim of the second abstract is a completeness theorem. The precise
statement of the theorem is not given in the abstract. Lawvere enumerates three
conditions that constitute the core of the proof of the theorem: it sketches how,
given an elementary theory T, a model M of T can be constructed.

As we will see, the notion of an elementary theory served as a guide in the search
for the correct categorical characterization of first-order logic. Also, the description
of the quantifiers as adjoints to substitution, more generally the description of the
logical operations as adjoints and the basic element of the semantics left a definitive
impact. Interestingly enough, Lawvere himself suggests, in his first abstract, that
a given theory T, as a category, could be thought of as the “Sinn” of a theory
presented in a first order language, and the category ModSet(T) could be thought
as the “Bedeutung” of the theory. Whether this can be defended and how it
compares to other analyses of sense and reference, for instance Frege’s, remains
to be clarified and as far as we know, no one took it up afterwards. (But look
at Bell’s Epilogue in his textbook on topos theory, i.e. [Bell, 1988, chapter 8].
Awodey’s paper on structuralism is also relevant here, [Awodey, 1996].)

Here is how quantifiers can be thought of as adjoints to substitution.Recall that
if f : X //Y is a function between sets and B ⊆ Y , then the pullback of B along
f is the subset of X defined by f∗(B) = {x ∈ X : f(x) ∈ B}. By considering B
as a predicate of Y , say B(y), the pullback may be considered as the predicate of
X obtained from B(y) by substituting f(x) for y. Lawvere’s remark was that the
pull-back formation

f∗ : ℘(Y ) // ℘(X)

which is a functor between posets has a left adjoint and a right adjoint

∃f a f
∗ a ∀f

Indeed, one can easily check that

∃f (A) = {y ∈ B : ∃xf(x) = y and x ∈ A} and
∀f (A) = {y ∈ B : ∀xf(x) = y implies x ∈ A}.

This was a key observation that convinced many mathematicians that this was
the right analysis of quantifiers. They arise naturally as adjoints to an elementary
operation, namely substitution, which appears as the basic operation of first-order
logic, contrary to the classical view which defines this operation by recursion, as
a derived one. By the way, this recursive definition is not universally valid. In
particular, it gives wrong results in some non-classical logics (e.g. co-Heyting).
Again, apart from the intrinsic interest of the conceptual analysis it provides,
this point of view generalizes to categories other than the category of sets. Once
the categorical properties of sets used in the characterization have been identified
and defined, it is possible to transpose the analysis in new contexts, i.e. in other
categories.

After 1966, Lawvere’s own published work extends the connections between
categories and logic. Three papers published in 1969 and 1970 are extremely
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important since they contain the seeds and the statement of a vast foundational
program which was taken up and is still alive. One of the surprising features of
these papers is that none of them contain a bibliography. There is no reference to
other papers, books or earlier related work, which we believe can be taken as an
sign of the originality of the work presented. Here are the basic methodological
elements underlying this program.

1. The use of adjoint functors is emphasized both in practice and also from a
more general point of view. In his paper Diagonal arguments and Cartesian closed
categories, Lawvere defines a CC category as a category C equipped with three
kinds of right adjoints:

1. a right adjoint 1 to the unique C // 1;

2. a right adjoint (−×−) to the diagonal functor ∆ : C // C × C;

3. and for each objectA in C, a right adjoint (−)A to the functor A×− : C //C,
[Lawvere, 1969b]].

Before that paper, adjoints were used by Lawvere to show that any category
satisfying certain specifications was equivalent to a fixed category of interest or
to establish certain properties of given functors in a context. In this Lawvere was
following the examples of Abelian categories and sheaves. As we have seen, the
axioms for the category of sets did not mention adjoints explicitly and the notion
of elementary theories stipulated the existence of two distinguished objects of a
category. Right from the beginning, Lawvere emphasized the fact that Cartesian
closed categories are algebraic versions of type theories. Notice two important facts
in the foregoing characterization of a CC category: first, the first two adjoints are
adjoints to basic functors or structural functors and as such arise “naturally” and
express fundamental connections; second, the third adjoint depends on the second
and, in this way, there is a hierarchy or an order in the way the fundamental
operations are defined or related to one another. This is a key element of the
analysis of logical operations in a categorical setting.

2. In connection with the role of adjoint functors, there is an explicit recogni-
tion of the levels of abstraction introduced by category theory, more specifically
the fact that category theory now allows for purely abstract characterizations of
mathematical domains.

More recently, the search for universals has also taken a conceptual
turn in the form of Category Theory, which began with viewing as a
new mathematical object the totality of all morphisms of the mathe-
matical objects of a given species A, and then recognizing that these
new mathematical objects all belong to a common non-trivial species
C which is independent of A. [Lawvere, 1969a, 281]. (our emphasis)

What is described by Lawvere should be clear : in the beginning, mathematicians
started with already defined mathematical objects and structure-preserving func-
tions and moved to a new object, namely the category of these objects of species A.
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But it was soon realized that such a category participated in a different species,
namely a category of type C, which can be described independently of A. The
first historical example of this phenomenon was provided by Abelian categories:
one started with Abelian groups (or modules over a commutative ring), the latter
constituting the objects of species A, moved to the category of Abelian groups
(or modules over a commutative ring) and then to an Abelian category, which
is a category of type C. From a conceptual and as well as a foundational point
of view, the crucial step is that the latter can be described independently of the
former. Thus, although a category of type C arises from given structures, and in
the last century, that meant more often than not, structured sets with structure-
preserving functions between them, once the abstract description has been given,
it is possible to develop mathematics directly from categories of type C. Lawvere
makes a bold generalization: he sees this case as a general phenomenon, even
as a framework that should guide the development and analysis of mathematics.
Of course, Abelian categories did not constitute his only example, e.g. algebraic
theories and categories, Cartesian closed categories and hyperdoctrines, etc.

3. Lawvere uses Cartesian closed categories to present an analysis of well-known
diagonal arguments, i.e. those of Cantor, Russell, Gödel and Tarski.The moti-
vation is similar to the one indicated in the foregoing paragraph: these diagonal
arguments are similar and thus seem to form a species of argument. Lawvere
hopes to be able to disclose the common abstract structure underlying them. This
abstract structure takes the form of a fixed point theorem based on the properties
of Cartesian closed categories. (For an excellent presentation of these results to-
gether with work inspired by Lawvere along these lines, see [Yanofsky, 2003].) In
the process of his analysis, Lawvere introduces an object of truth-values 2, for this
object appears in one way or another in all the arguments. This object, which will
be called the object of truth-values and had already been introduced in the con-
text of elementary theories, as well as the Cartesian closed structure, will become
pivotal in his characterization of the notion of elementary topos in 1969. However,
the object of truth-values will constitute an obstacle for the characterization of
first-order logic.

4. In all three papers, Lawvere suggests extensions of his earlier work on alge-
braic theories to theories written in higher-order type theories and, as a special
case, first-order theories. We should point out immediately that he was no longer
alone in looking for connections between categories and logic. Lambek’s work on
categorical analysis of deductive systems has to be mentioned at this stage. (See
[Lambek, 1968a; Lambek, 1969; Lambek, 1972].) We will get back to Lambek’s
work later.) Lawvere’s extensions are based on the following fundamental facts:

1.1. As we have already seen, the logical quantifiers can be presented as adjoint
functors to the simple and fundamental operation of substitution (the anal-
ysis is extended in [Lawvere, 1969c; Lawvere, 1970a]);

1.2. The comprehension principle can be presented as an adjoint functor in a
proper context [Lawvere, 1969a; Lawvere, 1970a];
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1.3. Lawvere sketches how one can construct a category from a given theory
formalized in higher-order logic [Lawvere, 1969b; Lawvere, 1970a].

We have to underline the fact once more that a categorical analysis of logical
systems not only provided a novel and unifying understanding of logical operations
and systems, but by the same token, it initiated a shift in the status of categories
themselves. It is now possible to identify a type of category with a type of deductive
system. The claim that category theory can be seen as a language can now be made
more precise: category theory can be seen as a formal language for mathematics.
However, it should also be emphasized that in 1969, these were all programmatic
claims.

5. All these constructions are incorporated in a general framework that constitutes
nothing less than the scaffolding of categorical logic as it developed afterwards.6

This framework is presented in very broad strokes at the beginning and the end
of the papers entitled “Adjointness in Foundations” and is itself of considerable
philosophical interest.

Lawvere identified two aspects, which he qualifies as being “dual”, since they
appear to obey some sort of general duality inherent to mathematics, namely the
Formal and the Conceptual. The Formal is more or less identified with the manip-
ulation of symbols, either in deduction or calculations, whereas the Conceptual is
identified with the content of these symbols, the subject matter of the Formal or
what they refer to. Thus, at first sight, Lawvere’s terminology coincides with the
classical distinction between the syntax and the semantics of formal languages.
However, Lawvere has the actual practice of mathematics in mind and therefore
does not equate his distinction with the fundamental metamathematical distinc-
tion. In fact, he sees foundational research as being part of mathematics: “Being
itself part of Mathematics, Foundations also partakes of the Formal-Conceptual
duality.” [Lawvere, 1969a, 281]. Thus, the syntax of a logical system is part of
the Formal, whereas the semantics is part of the Conceptual. However, his pre-
sentation of the semantics is somewhat odd: “Naturally the formal tendency in
Foundations can also deal with the conceptual aspect of mathematics, as when the
semantics of a formalized theory T is viewed itself as another formalized theory
T′, or in a somewhat different way, as in attempts to formalize the study of the
category of categories.” [Lawvere, 1969a, 281]. Category theory is clearly put on
the conceptual side of mathematics and, in fact, one can see that Lawvere sees his
work on the foundations of universal algebra and the subsequent work on Carte-
sian closed categories and extensions thereof as being part of the conceptualization
of the formal aspect of mathematics.7 Indeed, he claims explicitly that “Foun-
dations may conceptualize the formal aspect of mathematics, leading to Boolean
algebras, cylindric and polyadic algebras, and certain of the structures discussed

6At least before categorical logic became a standard tool in theoretical computer science. But
even in this context, one can see the influence of Lawvere’s suggestions.

7Indeed, in the nineties Lawevere published, in collaboration with Steve Schanuel, a book
entitled “Conceptual Mathematics” (see [Lawvere and Schanuel, 1997]).
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below.” [Lawvere, 1969a, 282]. At the center of this conceptualization appear
adjoint functors.

Adjoints are present in Foundations in two senses.

1. Lawvere introduces Cartesian closed categories and what he calls hyperdoc-
trines in that paper. The main property of these two concepts is that they are
entirely given by adjoint functors. However, as we have already mentioned,
Cartesian closed categories and hyperdoctrines correspond in a precise tech-
nical sense to logical frameworks. Thus, both Cartesian closed categories
and hyperdoctrines are categorical codifications of logical structures, the al-
gebraic counterpart of these structures. Adjoint functors are used to define
the conceptual content of foundations;

2. However, adjoint functors also play a more general role. The Formal and the
Conceptual mentioned above should be, but we are clearly at a programmatic
stage here, related by adjoint functors. Lawvere is in fact more precise in
the way these adjoints should show up and here we see Lawvere generalizing
the work contained in his thesis. First, Lawvere suggests that one should
consider categories of models of a theory, thus framing model theory in the
context of category theory.8 More specifically, a model, in the standard
model theoretic sense, can de described as a functor from a category T to
the category Set of sets. The category of such models is then a subcategory

of the functor category SetT, or also written Mod(T, Set) or, ModSet(T) as
we have already done. Second, the category T is the categorical encoding
of a given formal theory. In Lawvere’s own term “The invariant notion
of theory here appropriate has, in all cases considered by the author, been
expressed most naturally by identifying a theory T itself with a category
of a certain sort” [Lawvere, 1969a]. We emphasize the fact that Lawvere
is looking, once again, for an invariant notion of a theory and that this
invariant notion is provided by a category. Third, and adjoint functors enter
the picture explicitly at this stage, in principle there ought to be an adjoint
pair of functors encapsulating the general duality expressed above

Theoriesop
semantics
−→
←−

structure
Conceptual.

The conceptual is identified with the category of models of T.9 However, the
formal is not identified with the invariant formulation of the theory, since clearly
there are aspects of the formal, e.g. specific rules of computation or derivation,
that are inherent to a formal framework. Therefore, Lawvere suggests that there

8We have to point out that Freyd had made explicit connections between category theory and
model theory before. See [Freyd, 1965].

9We are not entirely faithful to Lawvere here. He takes the conceptual to be the functor

category Mod(Cat, [SetT]), which is of course slightly more general than what we have been
describing.
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is a further adjoint situation, left unspecified this time

Formal −→←− Theories

which describes “the presentation of the invariant theories by means of the formal-
ized languages appropriate to the species” [Lawvere, 1969a, 295]. Since adjoint
functors compose, one should get a family of adjoint functors

Formalop −→←− Conceptual

which we started with.
As such, this description is completely programmatic. It is clearly a bold gen-

eralization of Lawvere’s thesis. It is given as a completely general framework for
foundational research. It is taken as being faithful to the essential elements of
mathematical knowledge. Logicians who were about to enter the scene picked up
that program and started to develop it systematically. It lead to what were called
afterwards “categorical doctrines” and is presented as such by Kock and Reyes in
their survey paper (see [Kock and Reyes, 1977]). Thus, we strongly disagree with
the claim made by Corry:

Lawvere himself proposed in an article of 1969 to connect the concept
of duality, and other categorical concepts, with the epistemological
issues related to the philosophy of mathematics. In order to do that,
he identified two “dual aspects” of mathematical knowledge — the
conceptual and the formal aspects — which appear in many domains
of mathematics. . . . . Now Lawvere proposed to dedicate efforts to
develop the second aspect, the conceptual one, embodied in category
theory. This proposal, however, remained at the programmatic level
and no one seems to have developed it further. [Corry, 1996, 388].

It is true that different mathematicians may have interpreted the formal and the
conceptual according to their own convictions, but the mathematical content of
Lawvere’s proposal, including the sketch of the mathematical duality involved,
lead very quickly to a host of important results. The fact is, no one had to quote
Lawvere explicitly or say that their work was part of that program — and in
fact, no one did quote Lawvere’s paper —, for in a sense the program was already
implicit in the manner Lawvere had set up his own work on universal algebra and
that work, as we have seen, called for various generalizations and expansions that
were taken up by various mathematicians.

6. One has to contrast categorical logic with other attempts at developing an
algebraic framework for logic around the same time, e.g. Halmos’s polyadic alge-
bras and Tarski et. al.’s cylindrical algebras. The advantages of the categorical
approach over the latter have been explicitly argued by Joyal and Reyes in the
mid-seventies:

1. the concept of category is used in all branches of mathematics,
whereas the structure of polyadic algebra is exotic. Thus, we may
hope to extend the application of logic in mathematics
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2. certain categories, used in different fields of mathematics are in
fact theories and is useful [sic!] to consider them as such;

3. as we shall see in this paper, constructions which are actually
used in model theory are specializations of general categorical
constructions (hence logic is no exception to the generalized use
of categories in mathematics). [Joyal and Reyes, 1976?, 5]

These considerations boil down to one fundamental fact: whereas cylindric alge-
bras and polyadic algebras are isolated in the conceptual realm of mathematics,
categories are omnipresent. The heuristic gain of using categories is therefore clear
and powerful.

There are indications that the gain of categorical logic is more than heuristic. It
is well known that the algebraic expression of propositional logic is given by lattice
theory and in the latter adjoint functors are usually called Galois connections. Dis-
agreements appear when higher-order operations like quantifiers are considered, in
other words, disagreements appear as to how to generalize the algebraic framework
to higher-order logical operations. The fact that categories are a generalization of
posets suggests that they might yield the correct generalization. Indeed:

i. Concepts and results about propositional logic are special cases of concepts
and results in the categorical setting;

ii. It is possible to extend naturally proofs in the propositional setting to the
categorical setting;

iii. It is possible to obtain new results in the categorical setting;

iv. It is possible to make contacts with other areas of mathematics either by using
results of different fields in the new context or by applying the new results in
different fields.

It is a remarkable fact that the categorical machinery introduced for algebraic
topology, homological algebra, homotopy theory and algebraic geometry consti-
tutes at the same time the proper setting for an algebraic analysis of logic.

Thus, towards the end of the sixties and early seventies, the following ‘dictio-
nary’ was being elaborated:
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Logic Category Theory
(many-sorted) theory category
Sort Object (of a category)
(sorted) formula Sub-object
(sorted) term Morphism
Interpretation Functor
Set-theoretical model Functor into Sets
Homomorphism Natural transformation

In this table, category refers to categories with finite limits (pull-backs and
terminal object) with possibly further structure satisfying some exactness condi-
tions. This extra structure is determined by the choice of the logical connectives
considered, as we will see.

3 1969–1970 ELEMENTARY TOPOS THEORY

From the logical point of view, Lawvere’s thesis and subsequent work had intro-
duced a starting point in two senses. First, it is the first systematic attempt to give
a categorical version of logical concepts and second, the theories at first captured
by Lawvere were purely equational theories. When Lawvere and Tierney intro-
duced the concept of elementary topos, they introduced, in some sense, the other
end of the spectrum, namely higher order theories or type theories. Of course, the
relationships between elementary toposes and type theories still had to be clarified
fully, but it was clear to everyone that there were intermediate cases to consider
and characterize, or as they became called at that time, there were ‘doctrines’ to
be defined categorically, in particular, the doctrine of first-order logic.

3.1 Elementary topos theory: 1969–1970

The unity of opposites in the title is essentially that between logic
and geometry, and there are compelling reasons for maintaining that
geometry is the leading aspect. At the same time, in the present joint
work with Myles Tierney there are important influences in the other
direction. . . [Lawvere, 1970b, 329]

The program of investigating the connections between algebraic geom-
etry and “intuitionistic” logic under the guidance of the form of ob-
jective dialiectics known as category theory was discussed and moved
forward at a conference in January 1971 at Halifax, . . . . (. . . ) Briefly
we may say that the notion of topos summarizes in objective categori-
cal form the essence of “higher-order logic” (we will explain below how
the logical operators become morphisms in a topos) with no axiom of
extensionality. This amounts to a natural and useful generalization
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of set theory to the consideration of “sets which internally develop”.
In a basic example of algebraic geometry, the development may be
viewed as taking place along a parameter which varies over “rings of
definition”; in a basic example from intuitionistic logic, the parameter
is interpreted as varying over “stages of knowledge”. [Lawvere, 1972,
1–3].

As the first sentence of the first foregoing quote indicates, in the early seventies,
Lawvere insisted again and again on the dual nature of toposes: a geometric
aspect and a logical aspect. As the quote suggests clearly, the geometric aspect
was thought to be more important than the logical aspect at the beginning and
that, to a certain extent, it subsumed the logical aspect. Even to this day, Lawvere
presents the situation in similar terms:

In spite of its geometric origin, topos theory has in recent years some-
times been perceived as a branch of logic, partly because of the contri-
butions to the clarification of logic and set theory which it has made
possible. However, the orientation of many topos theorists could per-
haps be more accurately summarized by the observation that what is
usually called mathematical logic can be viewed as a branch of alge-
braic geometry, and it is useful to make this branch explicit in itself.
[Lawvere, 2000, 717].

Going back to the first quote above, an explicit ideology associated with category
theory can be discerned. Indeed, Lawvere himself talks about “unity of opposites”
and of the “form of objective dialectics”. This paper, published in the Actes du
Congrès International des Mathématiciens 1970, was the first public presentation
of elementary topos theory. In the bibliography, for this paper contains a short and
cryptic bibliography, the first reference is to Mao Tsetung and his work entitled
On contradiction — Where do correct ideas come from? Notice also that the title
of the paper — Quantifiers and Sheaves — does not refer directly to toposes. This
was probably not the original or the intended title of the paper, for as we have
seen the first sentence of the paper refers to “the unity of opposites in the title”.
It is worth quoting a short passage of the first paragraph, for it weaves all these
elements together in an interesting manner.

We first sum up the principal contradictions of the Grothendieck-
Giraud-Verdier theory of topos in terms of four or five adjoint functors,
significantly generalizing the theory to free it of reliance on an external
notion of infinite limit (in particular enabling one to claim that in a
sense logic is a special case of geometry). (our emphasis)

Notice that the axiomatization of the notion of elementary topos is not only seen
as a significant generalization of the notion introduced by Grothendieck, but also
as a way of giving the concept an autonomy, as a way of liberating the notion of
topos from its reliance on an external notion.
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For Lawvere, then, category theory was the objective form of dialectical materi-
alism and adjoint functors were the exact formulation of principal contradictions.
Lawvere felt that the logical and the geometric aspects of toposes were its main
contradictions. Geometry was considered to be progressive and Logic was, at least
for some time and in some circles, considered to be reactionary. Thus, many cat-
egory theorists came to the conclusion that it was preferable to avoid the logical
aspect altogether, by subsuming it under the geometrical aspect. This was cer-
tainly not Lawvere’s own proposal if only because it would not be faithful to a
dialectical outlook, it became natural to think that way in the early seventies. In
particular, using logical techniques to solve a problem was sometimes considered
to be reactionary or fascist. It is even said that set theory was considered to be
essentially bourgeois since it is founded on the relationship of belonging. This
background ideology might partly explain the difficult relationships that category
theorists developed with the other parts of the mathematical and logical com-
munities. Political ideas are rarely thought of as being inherent to mathematical
theories.

Nowadays, people recognize that two faces are simply not enough to capture
toposes, that toposes are multifaceted objects with many complementary aspects.
(See, for instance, the introduction in [Johnstone, 2002].) The geometric aspect of
toposes comes directly from their origins: Grothendieck defined toposes in the early
sixties in the context of algebraic geometry via the use of sheaves. Grothendieck
presented them as a generalization of the concept of topological spaces and, in
fact, as potentially being the real object of study of topology. Grothendieck had
already noted that a topos inherited many of the properties of the category of sets
and, as such, could be considered to be a generalization of the latter. Thus, a
topos was at the same time a generalization of the idea of a topological space and
of the idea of a category of sets. However, Grothendieck and his students did not
see or perhaps pay attention to its logical aspect.

Lawvere suggested thinking of a topos as a universe of variable sets, among
which the standard sets are conceived as being without variation, or constant. He
later suggested thinking of the standard sets as being abstract. (See [Lawvere,
1975a; Lawvere, 1976; Lawvere, 1994; Lawvere, 2003].) Once this viewpoint is
adopted, one starts looking at the elementary properties of a topos as a universe
of variable sets. As we have seen, Lawvere had already tried to axiomatize the
universe of sets, or of constant sets. He had a larger class of universes to capture.

When the main contradictions of a thing have been found, the scientific
procedure is to summarize them in slogans which one then constantly
uses as an ideological weapon for the further development and transfor-
mation of the thing. Doing this for “set theory” requires taking account
of the experience that the main pairs of opposing tendencies in mathe-
matics take the form of adjoint functors, and frees us of the mathemat-
ically irrelevant traces (∈) left behind by the process of accumulating
(∪) the power set (P ) at each stage of a metaphysical “construction”.
Further, experience with sheaves, permutation representations, alge-
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braic spaces, etc., shows that a “set theory” for geometry should apply
not only to abstract sets divorced from time, space, ring of definition,
etc., but also to more general sets which do in fact develop along such
parameters. [Lawvere, 1970b, 329].

The hope was that these “geometric sets”, or sets for geometry, would provide an
adequate foundation for analysis, in particular functional analysis, as is illustrated
by the very last sentence of the same paper: “In any topos satisfying (ω) [an
additional condition satisfied by the topos of the so-called evolutive sets] each
definition of the real numbers yields a definite object, but it is not yet known
what theorems of analysis can be proved about it.” [Lawvere, 1970b, 334].

Already in 1967, Lawvere was moving towards the notion of an elementary topos
(as can be witnessed in his 1969 paper on diagonal arguments). As he himself
made clear, his motivation was coming from continuum mechanics, whereas Myles
Tierney’s motivation was coming from sheaf theory.

What was the impetus which demanded the simplification and general-
ization of Grothendieck’s concept of topos, if indeed the applications to
logic and set theory were not decisive? Tierney had wanted sheaf the-
ory to be axiomatized for efficient use in algebraic topology. My own
motivation came from my earlier study of physics. The foundation
of the continuum physics of general materials, in the spirit of Trues-
dell, Noll, and others, involves powerful and clear physical ideas which
unfortunately have been submerged under a mathematical apparatus
including not only Cauchy sequences and countably additive measures,
but also ad hoc choices of charts for manifolds and of inverse limits of
Sobolev Hilbert spaces, to get at the simple nuclear spaces of inten-
sively and extensively variable quantities. But, as Fichera lamented, all
this apparatus may well be helpful in the solution of certain problems,
but can the problems themselves and the needed axioms be stated in a
direct and clear manner? And might this not lead to a simpler, equally
rigorous account? [Lawvere, 2000, 726].

Thus in 1969, in collaboration with Myles Tierney, the correct axiomatization of
the notion came about. Although the axioms given by Lawvere in 1970 at the Nice
Congress are redundant, for the assumption that a topos has all finite colimits will
be shown quickly afterwards to be a consequence of the other axioms, it contains
the key ingredients of the characterization. In a nutshell, an elementary topos is
a Cartesian closed category E with a subobject classifier. Formally, the definition
is as follows.

DEFINITION
An elementary topos is a category E such that

1. it has pullbacks;

2. it has a terminal object 1;
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3. the functor X×− : E //E has a right adjoint, denoted by (−)X : E //E ;

4. it has an object Ω, called the subobject classifier, together with a monic arrow
> : 1 � Ω such that for any monic m : A � X there is a unique morphism
φ : X // Ω in E for which the following square is a pullback:

X Ω
φ

//

A

X

��

m

��

A 1
! // 1

Ω

��

>

��

The morphism φ : X // Ω is called the characteristic morphism of A and we
will sometimes denote it by φA.

The third axiom could be replaced by the following:

(3′) it has, for each objectX , an object PX and an arrow ∈X : X×PX //Ω such
that for every arrow f : X ×Y // Ω there is a unique arrow g : Y //PX
for which the following diagram commutes:

Y

P (X)

g

��
X × P (X) Ω

εX
//

X × Y

X × P (X)

1×g

��

X × Y Ω
f // Ω

Ω

Notice that the definition can be given entirely in terms of the existence of
adjoint functors to given functors. The notion of being a Cartesian closed category,
as we have already mentioned, was introduced earlier by Lawvere in this spirit.
The existence of the subobject classifer Ω can also be presented via the existence of
an adjoint functor to a given functor. Since the adjoints whose existence is required
by the axioms are adjoints to “structural” functors whose nature is fundamental or
elementary, depending on the point of view, the notion of elementary topos ought
to be seen as arising naturally from elementary constraints. We have to emphasize
this fact once again: in a categorical set up, certain notions arise naturally from
elementary functors in a hierarchical manner. They are not ad hoc nor do they
depend on complicated contraptions. This is taken by many as being an indication
of the fundamental character of the analysis provided by categorical logic and of
the notions themselves.

Examples of toposes abound. The category of sets, as defined by the axioms
of ZFC for instance, is a topos. Given a set X , the functor X × − is defined in
the obvious way and its right adjoint is given by the set XY = {f : Y // X}.
The subobject classifier Ω can be taken to be the set 2 = {0, 1} together with the
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map > : 1 // 2, defined by >(∗) = 1. It should be observed that these sets are
canonical choices and that from a purely categorical point of view, any isomorphic
set with the appropriate function would do just as well. Thus, there is nothing
special about the set 2 = {0, 1}, any two elements set would do just as well (with
an appropriate function picking out an element into it).

The other examples of toposes are more involved, but there is a class of examples
that have the same general form: given a topos E and a small category C (“small”
in a sense that can be made precise with respect to the topos E) the functor
category EC

op

is a topos. Notice that it is a functor category. Specific important
cases of this construction are the following. Let E be the category Set of sets and
C be the lattice of open sets O(X) of a topological space X . The functor category
SetO(X)op

is a topos, called the topos of presheaves over X . There is an important
subcategory of SetO(X)op

, denoted by Sh(X), the category of sheaves over X and
it can also be shown to be a topos (we will come back to sheaves in a very short
while). A related class of toposes, especially important from the point of view of
the history of logic, are those of the form SetP

op

, where P is a poset. Lawvere and
Tierney saw that the usual models of intuitionistic logic and mathematics known
at that time as well as the forcing method of Cohen were specific cases of these
toposes. Finally, let C be a group G or, more generally a groupoid, then the functor
category SetG

op

, also denoted by BG and called the category of representations of
G, can also be shown to be a topos. These examples were all mentioned by Lawvere
in his conference at the International Congress of Mathematicians held in Nice in
1970 (see [Lawvere, 1970b]).

Lawvere emphasized right from the start the logical structure of toposes. First,
for any category C with finite limits, it is possible to define an internal lattice
object L of C as an object of C together with two morphisms making certain
diagrams commute. (See, for details, [Mac Lane and Moerdijk, 1994, IV.8].) If,
furthermore, there is an additional binary morphism ⇒: L × L // L satisfying
the usual identities, then L is an internal Heyting algebra. It can be shown that for
any object X of a topos E , the power object PX is an internal Heyting algebra. In
particular, it follows from the definition that Ω ≈ P1 and thus that the subobject
classifier Ω is also an internal Heyting algebra. (See [Mac Lane and Moerdijk, 1994,
201] for details.) Thus all the propositional operations are definable in a topos E

as morphisms of the subobject classifier: 1
>
−→ Ω, Ω

¬
−→ Ω, ⊥ = ¬ ◦ > : 1 −→ Ω,

Ω×Ω
∧
−→ Ω, Ω×Ω

⇒
−→ Ω, Ω×Ω

∨
−→ Ω. Furthermore, for any morphism f : X //Y

of E , there is a morphism Pf : PY // PX and the latter has a left adjoint
∃f : PX // PY and a right adjoint ∀f : PX // PY or, equivalently, for any

morphism f : X // Y of E , there are morphisms ΩX
∀f
−→ ΩY and ΩX

∃f
−→ ΩY .

Hence, quantifiers are also definable in any elementary topos. Needless to say, the
logic of an arbitrary topos E is intuitionistic.

In certain specific toposes E , the power object PΩ can be shown to be a Boolean
algebra. In this case, we say that E is Boolean. Lawvere and Tierney noted that
this condition is equivalent to the following:
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1. the negation operator Ω
¬
−→ Ω satisfies ¬ ◦ ¬ = 1Ω;

2. for every object X of E , the Heyting algebra PX is a Boolean algebra;

3. every suboject is complemented, i.e. for every AX in E , A ∨ ¬A = X ;

4. the morphisms 1
>
−→ Ω and 1

⊥
−→ Ω induce an isomorphism 1 + 1 ' Ω, which

means that the subobject classifier is two-valued.

In 1971, Radu Diaconescu gave a sufficient condition for a topos E to be Boolean.
We say that a topos satisfies the axiom of choice (AC) if every epimorphism p :
X // Y has a section s : Y // X , that is p ◦ s = 1Y . It can easily be seen
that this is only a different way of formulating the usual axiom of choice expressed
in term of the existence of a choice function defined on a family of disjoint sets.
Diaconescu showed that any topos E satisfying AC is necessarily Boolean. It was
quickly observed afterwards that this statement has an “internal” version, in the
sense that this property can be expressed solely in terms of the internal language of
the topos. (We will come back to the internal language later.) A topos E satisfies
the internal axiom of choice (IAC) if for any epimorphism p : X // Y and for
any object Z of E , the morphism XZ // Y Z is also an epimorphism. Any topos
E satisfying AC also satisfies IAC, but the converse is false. It was shown that any
topos E satisfying IAC is necessarily Boolean.

Given the foregoing definition of an elementary topos, it is natural to define a
morphism of toposes as a functor preserving all the specified structure. Lawvere
and Tierney called these morphisms logical morphisms. More specifically, a functor
T : E // E ′ which preserves, up to isomorphism, all finite limits, the subobject
classifier and the exponential is a logical morphism. Such morphisms preserve the
logical structure of a topos “on the nose”.

However, Lawvere and Tierney considered and used primarily a different class
of morphisms between toposes, those coming from the geometric side of toposes
and already defined and heavily used by the Grothendieck school. The definition,
directly lifted from sheaf theory, goes thusly: a geometric morphism f : F // E
between toposes is a pair of functors f ∗ : E // F and f∗ : F // E such that
f∗ a f∗ and f∗ is left exact, that is it preserves all finite limits. The functor
f∗ : E // F is called the inverse image part of the geometric morphism and the
functor f∗ : F // E is called the direct image part of the geometric morphism.

Lawvere and Tierney then claimed that any geometric morphism f : F // E
between toposes can be factored into

F

E ′

f ′

��?
??

??
??

??
??

F E
f // E

E ′

??

f ′′

��
��

��
��

��
�
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where f ′ and f ′′ are geometric morphisms such that f ′′
∗ is full and faithful while

f ′∗ reflects isomorphisms. Lawvere and Tierney observed that the geometric mor-
phism f ′′ is entirely determined by a single morphism j : Ω // Ω in E . This
morphism, in turn, determines what Lawvere and Tierney called a Grothendieck
topology, now also known as a Lawvere-Tierney topology. The formal definition is
as follows.

DEFINITION
Let E be a topos and Ω be its subobject classifier. A Lawvere-Tierney topology on
E is a morphism j : Ω // Ω in E satisfying the following three properties:

(i) j ◦ > = >;

(ii) j ◦ j = j;

(iii) j ◦ ∧ = ∧ ◦ (j × j).

This definition was central to Lawvere and Tierney since it allowed them to
make the connection to sheaf theory and Grothendieck toposes and, thus, putting
the geometry at the forefront of the theory. For, one would not be able to see from
the axioms of a topos alone that they have this essentially geometric character. (In
the same way, perhaps, that one would not be able to see the geometric content of
Lie groups from their axioms alone.) After all, the properties stated in the axioms
are very much set-like or logical : taking products and finite limits in general,
having the possibility to classify subobjects and forming function spaces (or power
sets, depending on the choice of axioms). The definition of a Lawvere–Tierney
topology does not look geometrical either. Since the subobject classifier Ω can
be thought of as an object of truth-values, the morphism j can be viewed in a
loose sense as a modal operator. However, the main examples of such topologies
are given by sheaves of sets over a site, the latter being a category equipped
with a Grothendieck topology which, in turn, is a categorical generalization of
the notion of topology. It is precisely this connection between logic and algebraic
geometry that Lawvere and Tierney were trying to capture: to give an elementary
characterization of toposes in terms of adjoint functors that would allow them
to recover Grothendieck’s toposes. But not all examples of such topologies are
geometrical in that sense. A more logical example is the double negation topology:
as we have mentioned, any topos E has a negation operator Ω

¬
−→ Ω and it is easy

to verify that the double negation Ω
¬◦¬
−−−→ Ω is a Lawvere-Tierney topology.

Before we give the definition of a j-sheaf, recall that a sheaf is, informally, a
tool that allows one to look at a concept of local character from a global point of
view. In other words, an object is a sheaf if it is possible to extend a local notion
to the whole space in which it is defined.

The formal connection with sheaves comes in two steps. First, the morphism j
determines a closure operator on the subobjects of each object X of E . Given a
subobject A //X , its j-closure Ā is given by the following pullback:
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X Ω
j◦φA

//

Ā

X
��

Ā 1// 1

Ω

>

��

It can be shown that j is a Lawvere–Tierney topology if and only if the closure
operator A 7→ Ā has the following properties for all subobjects A, B of X : A∧Ā =
A, ¯̄A = Ā, A ∧ B = A ∧ B.

Second, the closure operator allows us to characterize ‘concepts of a local char-
acter’ as follows. Given a monomorphism i : A // X , we say that i is a dense
monomorphism if Ā = X . Whenever such a dense monomorphism exists, the sub-
object A is said to be dense in X . A dense subobject represents a concept of local
character. A j-sheaf is an object F of E such that any representation of a concept
of local character in it can be extended to the whole space in which the concept
lies. Formally, we say that an object F of E is a j-sheaf (for the Lawvere–Tierney
topology) if for every dense monomorphism i : A //X in E and every morphism
f : A // F , there is a unique morphism g : X // F making the following
diagram commute:

A X
i //A

F

f

��?
??

??
??

??
??

X

F

g

��

The full subcategory ShjE of j-sheaves of E can be shown to be a topos. As
Lawvere and Tierney have indicated, every Grothendieck topos arises in this way.
Moreover, there is a geometric morphism ShjE // E .

At that point, Lawvere indicates in his paper how Cohen’s proof of the inde-
pendence of the continuum hypothesis from the axioms of ZF could be translated
into the language of topos theory. It was left to Tierney to present the full proof
of this translation in 1972. (See [Tierney, 1972].)

This was the first public and printed presentation of elementary topos theory.
The study and presentation of elementary toposes were taken up quickly afterwards
by various mathematicians: Peter Freyd, Jean Bénabou, Gavin Wraith, Anders
Kock, André Joyal, Chris Mikkelsen.

It is interesting to see what the first volume published in 1972 and dedicated
to toposes, algebraic geometry and logic contains. (See [Lawvere, 1972].) Apart
from Lawvere’s introduction, which goes over the basic definition and concepts
we have mentioned and Tierney’s paper on the independence of the continuum
hypothesis in the topos theoretical framework, there is nothing about the inter-
actions between toposes, algebraic geometry and logic! The remaining papers are



The History of Categorical Logic: 1963–1977 37

in order of appearance: Giraud on the classifying topos (not in the logical sense
of that expression), Lambek on deductive systems and categories, Goodman and
Myhill on a formalization of Bishop’s constructive mathematics, Scott’s paper on
continuous lattices , Bucur on the applications of formalism of duality in algebraic
geometry and Illusie on cotangent complex and deformations of torsors and group
schemes . All these papers touch on issues that are clearly relevant and will even
become important in their own right, e.g. classifying toposes or domain theory,
but they do not constitute direct contributions to the subject at hand. This was
about to change rapidly.

4 FOCUSING ON FIRST-ORDER LOGIC

Part I of this volume consists of three of the first papers on functorial
model theory, developing concretely the approach to algebraic logic
according to which a “theory” (understood in a sense invariant with
respect to various “presentations” by means of particular atomic for-
mulas and particular axioms) is actually a category T having certain
properties P and a model of T is any set-valued P -preserving functor.
As a rough general principle, one could choose for P any collection of
categorical properties which the category of sets satisfies, the choice
determining the “doctrine” of theories of kind P , which is thus a (non-
full) subcategory of the category of small categories. For example, the
doctrine of universal algebra thus springs from the fact that the cat-
egory of sets has the property P of having finite Cartesian products,
while the doctrine of higher-order logic springs from the property of
being a topos. [Lawvere, 1975a, 3].

Lawvere had emphasized right from the start the idea of replacing the category of
sets by an arbitrary topos to develop mathematics, in particular analysis. The first
publication on the application of topos theoretical methods to analysis appeared in
1974, but the ideas had been presented already in 1972. (See [Kock and Mikkelsen,
1974].) At the same time, there was a lot of work to do. Very quickly, presenta-
tions of topos theory became available. (See [Freyd, 1972; Kock and Wraith, 1971;
Wraith, 1975] (presented in 1973)].) Since the axioms of topos theory are very
much set-like, early works were concerned with clarifying the relationships be-
tween toposes and set theory. Of course, in this case, it is necessary to add axioms
to the theory, e.g. an axiom of infinity and an axiom to guarantee that the toposes
considered were Boolean. Thus, J. C. Cole and W. Mitchell both explored cate-
gories of sets and models of set theory independently and about the same time (see
[Cole, 1973], in fact his PhD thesis defended at the University of Sussex in 1971;
[Mitchell, 1972] (also presented in 1971)) and Osius followed closely. (Osius pre-
sented his results in 1973; they were published in 1974 and 1975.) As we will see,
Mitchell introduced a method that had a direct impact on the development of cat-
egorical logic. Around the same time, Marta Bunge gave a topos theoretical proof
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of the independence of Souslin hypothesis in set theory and Kock, Lecouturier and
Mikkelsen investigated the concepts of finiteness in toposes. (See [Bunge, 1974]

and [Kock et al., 1975].)

As far as logic, and in particular first-order logic, is concerned, the development
of its history is extremely difficult to document accurately. When Gray wrote his
history of sheaf theory, he already lamented on the situation:

Perhaps the main aspect which is difficult to document in published
works is the connection with logic. The best sources are Lawvere [1975]
and [1976], together with Reyes [1974; 1975], and [1976], Lambek [un-
published when Gray wrote] and Makkai and Reyes [1976] and [1977],
and also the articles in this volume. Unfortunately one of the most
influential figures in this development, A. Joyal, has thus far not given
us a written record of his work; however see [Labelle, 1971]. Besides
topics discussed at the present meeting, future developments seem to
be going in the directions of Bénabou [1975] . . . , and recent unpub-
lished work of Cole and Tierney on pseudolimits in the category of
topoi. [Gray, 1979, 63].

This was presented in 1977 and published in 1979! When one consults the biblio-
graphical sources mentioned in this paragrah, one discovers how poor and inacces-
sible these sources are in general. Lawvere’s papers are important in themselves
and do refer to Joyal, Bénabou, Reyes and others, but they do not allow one
to reconstruct precisely who did what when and while [Reyes, 1974] and [Reyes,
1977] were easily available, [Reyes, 1975/1976] was not. Labelle [1971] was just
as difficult to obtain, although Labelle’s long exposition was influential among
students at Montreal in the early seventies. Bénabou’s paper was about fibered
categories and, although relevant, could certainly not constitute an introduction
to, or a survey of, his work in the area. The Makkai and Reyes papers published in
1976 already build up on previous material, only sketch proofs and they certainly
do not constitute and entry point to the field. The fact is, two of the main actors,
namely Jean Bénabou in Paris and André Joyal in Montréal, never even wanted
to publish their results. It seems that they simply did not believe in publishing at
that time. Recall that we are in the late sixties and early seventies and events like
Mai 68 in Paris and the Crise d’octobre in 1970 in Québec were still very much
in the air. Bénabou and Joyal did present their results during colloquia, seminars
and at informal gatherings and thus people learned and knew what they had done,
but the details of these contributions and the manner in which they were done are
not available. What we do have is a list of talks given by Bénabou and Joyal
during this period, collected from various bibliographical sources, mostly theses
written during that period. First, here is the list of talks given by Bénabou and
his students.

indexCeleyrette, J.

Here is the list of Joyal’s talks:
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Bénabou and
Celeyrette

Généralités sur les topos de Law-
vere et Tierney

Paris 1971

Bénabou Structures syntaxiques Montreal April 1973
Catégories et logiques faibles Oberwolfach April 1973

Michel Coste Logique du premier ordre dans les
topos élémentaires

Paris 1973

Logique d’ordre supérieur dans les
topos élémentaires

Paris November
1973

The lists are not complete. Notice that these talks, except for the first one in
Joyal’s list, were given after the introduction of elementary topos theory. There
was work done before, as we will see. Some of this work, for instance Joyal’s
recursive universes (also called ‘arithmetic universes’), have simply vanished for
a long period of time (they are now coming back in circulation). They are men-
tioned en passant in some of Lawvere’s papers, but there is no available systematic
exposition of what they were and how they were developed.

There was a particularly important period in April 1973. Lawvere was in Mon-
treal for that month, away from Perugia. Dana Schlomiuk had invited many
category theorists for a month during which there were many seminars and dis-
cussions. It was an intense informal gathering and not an organized, planned and
disciplined meeting. Another decisive event for the dissemination of categorical
logic was the meeting of the summer of 1974, called Séminaire de mathématiques
supérieures, organized by Shuichi Takahashi. During this meeting, André Joyal
gave a series of talks on all the topics mentioned above, Gonzalo Reyes gave a
series of talks on what was to become his collaborative book with Mihaly Makkai,
Jean Bénabou gave a series of talks on fibered categories. Freyd presented tau-
categories, what were to become allegories much later. (See [Freyd and Scedrov,
1990].) Eilenberg started a “bilingual’ talk: one sentence in french, one sentence
in english and alternating between the languages until the audience pleaded him
to stick to one language. Also in the audience, a contingent of Italians coming
with Lawvere: Meloni, Carboni, Riccioli (Feit). As far as we know, there is no
official record of that meeting either.

The first published results appeared in 1973, although the work was done in
1970: one of Lawvere’s student, Hugo Volger, presented a categorical version of
a first-order logic and of the completeness theorem by following the leads given
earlier by Lawvere himself, e.g. [Lawvere, 1966; Lawvere, 1967]; also in 1971,
Orville Keane, in his PhD thesis (under Freyd’s supervision at the University of
Pennsylvania), gave a categorical characterization of universal Horn theories. (See
[Keane, 1975].)
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Joyal Dogmes Booléens Montreal 4 talks,
December
1969,
January
1970

Topos Montreal 24 April
1971

Topos et Logique Montreal 5 October
and 27
October
1971

Théorèmes de descente finitaire;
théorème de complétude

Montreal Summer
1972

Indépendance de l’hypothèse du
continu

Montreal 7 Novem-
ber 1972

Une méthode uniforme pour
démontrer les théorèmes de Gödel,
Kripke, Freyd, Mitchell, Barr

Montreal 14
November
1972

Homotopie dans les topos (le
théorème de Giraud)

Montreal 28
November
1972

Qu’est-ce qu’une théorie
équationnelle générale?

Montreal January
1973

Modèle universel d’une théorie
équationnelle générale

Montreal January
1973

Théorie catégorique des fonctions
récursives

Montreal February
1973

Forcing=Interprétation dans un
Topos (I et II)

Montreal 23 Febru-
ary and
2 March
1973

Univers récursifs Montreal March
1973

Sans titre (distributive lattices and
topology without points)

Montreal 5 March
1973

Une nouvelle preuve du théorème
de Barr

Montreal 24 April
1973
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Joyal Théorème d’incomplétude de Gödel
et Univers arithmétique

Amiens 9 July
1973

Le théorème d’incomplétude de
Gödel

Montreal 9 and 16
October
1973

Nouveaux fondements de l’analyse Montreal 12 Decem-
ber 1973

Sur un sujet non-déterminé Montreal 9 March
1974

Théorie formelle des topos et lan-
gage d’ordre supérieur

Montreal 2 April
1974

Algèbre constructive Montreal 15
November
1974

Algèbre constructive et théorie des
faisceaux

Montreal 2 Decem-
ber and 9
December
1974

Théorème de Chevalley-Tarski Montreal 10 July
1975

4.1 Volger’s work

It is instructive to look more closely at Volger’s work, for although he obtained
significant results, the community did not adopt them. Many category theorists
felt that the notions defined were not the “right” notions, mostly because his
results were not easily generalizable to non-Boolean cases. Volger modified the
definitions given in the first paper “because my friends in Aarhus insisted that the
construction should work in this [e.g. non-Boolean] more general case” [Volger,
1975b, 87]. Alas for Volger, the modified definitions suffered the same fate as the
original ones.

In his first paper, Volger introduced three types of categories: logical categories,
elementary theories and semantical categories. Elementary theories were meant
to be the categorical encoding of first-order theories with equality, as Lawvere had
already presented them. Logical categories were introduced to allow a generaliza-
tion to higher-order logic and, finally, semantical categories were supposed to play
the role of categories of sets, but the notion is weaker than the concept of topos.
We will restrict ourselves to the notion of logical categories, for it contains the
seeds of the demise of these notions and even of Volger’s subsequent attempt to
rescue them.

Volger’s definition is based on Lawvere’s notion of an elementary theory. How-
ever, Volger added two further conditions, for his “proof of the completeness the-
orem requires the addition of two new conditions to the original definition of
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elementary theories.” [Volger, 1975a, 52]. A category C is said to be logical if it
satisfies the following conditions:

i. C has finite products (in particular a terminal object 1);

ii. C has an object Ω which is a Boolean algebra with mappings 1
>
−→
−→
⊥

Ω;

iii. For every f : X //Y in C, there is a functor ∃f : HomC(X,Ω) //HomC(Y,Ω),
left adjoint to the functor Hom(f,Ω) : Hom(Y,Ω) // Hom(X,Ω);

iv. Given the following pullback

Y X × Y
∆Y

//

X

Y

f

��

X X × Y
(X,f) // X × Y

X × Y

f×Y

��

then we have that ∃(X,f) [1Y f ] = ∃∆Y
[1Y ] (f × Y ), where 1Y = >◦!Y and

given the other pullback

X × Y Y
πY

//

X × Z

X × Y

1X×g

��

X × Z Z
πZ // Z

Y

g

��

then we have that ∃πY
[ϕ] g = ∃πZ

[ϕ (X × g)].

v. a) Let eY = ∃∆Y
[1Y ] denote the equality on Y. If eY (f1, f2) = 1X , then

f1 = f2;

b) eΩ =⇔, where ⇔ denotes the bi-implication.

This is Volger’s working definition, for all the results in his paper are for logical
categories. Notice that the distinguished object A, what was meant to become the
universe of interpretation, has now disappeared. The only distinguished object left
is the Boolean algebra Ω. Notice that the category S of sets is a logical category
but that an arbitrary topos E is not (which is somewhat disappointing given the
inherent logical structure of an arbitrary topos). A functor F : C //D between
logical categories is said to be logical if it preserves finite products, the Boolean
algebra object Ω together with 0, 1, ¬, ∧ and quantification. A Set-model of a
logical category C is a logical functor M : C //Set and a natural transformation
α : M // N between two Set-models is called a C-embedding.
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However, Volger also gives a slightly modified definition of elementary theories.
An elementary theory T is a category such that

i) T has two basic objects A and Ω such that every object X different from Ω
has a specified representation as a finite power An of A, and HomT(Ω, X) is
empty.

ii) HomT(An,Ω) is a Boolean algebra for every object An and HomT(f,Ω) is a
Boolean homomorphism for every f : An // Am.

iii) For every f : An // Am in T, there exists an existential quantifier ∃f which
satisfies the conditions iii), iv) and v) of the definition of a logical category.

Although all the results are given for logical categories, Volger remarks that all
the proofs given still hold, provided that appropriate but slight modifications are
made. The most important result, naturally, is the completeness theorem for
logical categories, formulated as follows:

THEOREM.
Let C be a small logical category such that ⊥X 6= >X and ∃!X [>X ] = > for every
object X of C.

1. For every pair of morphisms f, g : X //Y there exists a Set-model M such
that M(f) 6= M(g)

2. There exists a Set-model M such that card(M(X)) ≤card(C) for every
object X of C.

The proof is a categorical adaptation of Henkin’s completeness proof to a cat-
egorical framework along the lines indicated by Lawvere in his second abstract.
The basic idea is to construct an extension I : C // C′ for the given logical
category C for which HomC′(1,−) : C′ // Set has a model, in fact a canonical
model. One obtains the required model by composition. It is shown that a logical
category C has a canonical model if and only if 1) it is maximally consistent, that
is HomC(1,Ω) = {0, 1} and 2) it is rich, that is for every ϕ : X // Ω such that
∃!X [ϕ] = >, there exists k : 1 //X with ϕ ◦ k = >.

As we have mentioned, Volger’s proposal, although technically irreproachable,
was not received favorably. The main problem was that it was too contrived,
perhaps too ad hoc. While Volger was following Lawvere’s path and suggestions,
André Joyal together with Gonzalo Reyes were looking at categorical logic from a
slightly different perspective.

4.2 The Montreal school

Category theory had a distinctive status in Montreal in the late sixties and early
seventies. Joachim Lambek, who graduated from McGill under Zassenhaus in
1950, was already a distinguished algebraist at McGill in the sixties. He had spent
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his 1965–66 sabbatical year in Zurich at the ETH, where Beno Eckmann had asked
him to give a graduate seminar in category theory, a subject that he was learning
at the time. In his audience, he found Fritz Ulmer, John Beck, John Gray and
Bill Lawvere. Also showing up were Eckmann himself, Peter Hilton, Pierre André
and Paul Bernays. His seminar led to his Springer Lecture Notes Completion
of Categories published in 1966. It is also during period that Lambek wrote
his first paper on category theory, a generalization of Tarski’s fixpoint theorem to
categories. (See [Lambek, 1968b].) Before coming back to McGill, he invited one of
the post-doctoral students at the ETH, Marta Bunge, who came in the fall of 1966
and was soon to join faculty. She had officially worked under Freyd’s supervision
but she had in fact been supervised both by Freyd and Lawvere and done category
theory right from the start. Michael Barr, who started as an homological algebraist
under the supervision of David Harrison at the University of Pennsylvania, had
spent two years at Columbia as a post-doctoral fellow where he met Eilenberg
before moving to Urbana where he found John Beck, John Gray, Alex Heller and
Max Kelly and then spent the fall of 1967 in Zurich with Eckmann. He joined the
McGill faculty in the fall of 1968. The logician Mihàly Makkai, who contributed
rapidly to the development of categorical logic, arrived in Montreal in the fall of
1973 at the Centre de recherches mathématiques of the Université de Montréal and
joined the McGill mathematics faculty in the fall of 1974.

At the Université de Montréal, one finds an unusual, interesting and perhaps
unique combination of algebraic logic and category theory that might explain
in part why Lawvere’s ideas quickly found a good reception. Maurice Labbé,
a student of Church from Princeton in the early fifties, acted as chair of the
department during most of the sixties. Another student from Princeton, also
supervised by Church and who graduated in 1959, Aubert Daigneault, took interest
in Lawvere’s approach right from the beginning. Léon LeBlanc, who graduated in
1960 from Chicago under Halmos’ supervision in algebraic logic, was there in the
early sixties until his untimely death in 1968. Thus, in the sixties, Daigneault and
Leblanc were active in algebraic logic. Gonzalo Reyes, after completing his thesis in
model theory at Berkeley under Craig’s supervision, was hired by the Université de
Montréal in 1967, in replacement of Léon Leblanc. In the late sixties, there was also
an important number of category theorists. Jean Maranda, who graduated from
McGill in 1953 under Zassenhaus, was closely following developments in category
theory and had published some papers on the subject in the sixties, but died
in 1971. (See [Maranda, 1962; Maranda, 1965; Maranda, 1966].) Two students
who had written Ph.D. theses on category theory under Lambek’s supervision
were also hired in the sixties: first, Pierre Berthiaume in 1964 and then Dana
Schlomiuk in 1967. When Reyes arrived, André Joyal was a graduate student at
the same institution. Joyal arrived in 1963 as an undergraduate student and did his
masters between 1967 and 1969, under Q.I. Rahman’s supervision. Joyal joined the
mathematics faculty of the Université du Québec à Montréal (UQAM) in 1970.
Also important for his influence on colleagues was Shuichi Takahashi who was
interested in category theory, topos theory and logic, among other things, already
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in the sixties. (See, for instance [Takahashi, 1965; Takahashi, 1969; Takahashi,
1974].) There were also a number of post-doctoral students, for instance Michel
Jean who had also graduated from Berkeley under Henkin and Craig’s supervision
and Diana Dubrovsky, a student of Yiannis Moschovakis coming from UCLA,
participating in the seminars.

There was an intense activity in Montreal in the seventies. McGill University,
the Université de Montréal and the Université du Québec à Montréal, had their
own seminars in category theory and there was also a Montreal Category The-
ory research seminar held at that time during weekends. Freyd, Lawvere, Beck,
Tierney and, sometimes, even Eilenberg would show up at the latter seminar.
Often, when no one was ready to speak, Joyal would go to the blackboard and
present new ideas, new results and new theories. Although a student of Adrian
Mathias at Cambridge, Robert Seely spent the year 1974–1975 in Montréal and
interacted with Joyal, Reyes, Makkai, Lambek and their students. He came back
to Montréal in 1977. Philip Scott, who had written his thesis under the supervi-
sion of Denis Higgs at the University of Waterloo, came to McGill in the fall of
1976 as a post-doctoral student. Reflecting all this activity, eight theses, Master’s
and PhDs, were written on categorical logic between 1973 and 1977 at the Uni-
versité de Montréal. Thus, categorical logic was a very active field in Montreal
from the early seventies until about 1977, the year of the publication of Makkai
and Reyes book on categorical logic and of the Durham meeting on applications
of sheaves. Afterwards, for reasons that are not entirely clear, there are very few
theses submitted in categorical logic. André Joyal concentrated his efforts on the
conceptual foundations of combinatorics, leading to his beautiful and influential
work on species of structures. (See [Joyal, 1981].) Gonzalo Reyes, in collaboration
with Anders Kock, started to work actively in synthetic differential geometry. (See,
for instance, [Kock and Reyes, 1979].) Logic moved from the French speaking part
of Montreal to the English speaking universities, mainly McGill University where
Makkai, Lambek, Scott and Seely continued to do original and important work.
(Scott left for Ottawa in 1982.) Reyes came back to logic in the late eighties and
nineties in collaboration with the psychologist John Macnamara and Joyal also
returned to foundational issues in the nineties, mainly in collaboration with Ieke
Moerdijk [Macnamara and Reyes, 1994]; [Joyal and Moerdijk, 1997]. However, in
contrast with the situation that prevailed in the seventies, few graduate students
followed.

The influence of Grothendieck’s work on logical research done during the seven-
ties has to be underlined, and this, for two completely different reasons. The first
reason is purely conceptual: many of the logical concepts developed were aimed
at finding a purely logical translation of concepts of algebraic geometry. Thus, for
instance, we read in the introduction of Makkai and Reyes:

Finally, our treatment of categorical logic is geared towards establish-
ing a link with Grothendieck’s theory of (Grothendieck) topoi as it is
exposed in SGA4. One of our main points is that some of the fun-
damental properties of notions in this theory (notably the notions of
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topos, coherence of, and in, topoi and pretopos) are purely logical. . . .
It is a very interesting fact that notions originally developed for the
purposes of (abstract) algebraic geometry turn out to be intimately
related to logic and model theory. Compared to other existing ver-
sions of algebraic logic, categorical logic has the distinction of being
concerned with objects that appear in mathematical practice. [Makkai
and Reyes, 1977, 3].

Thus, Grothendieck’s work was seen as central to development of algebraic geom-
etry (and coincidentally to homological algebra, sheaf theory and category theory
itself) and was part of the development of mathematics. Key notions of categor-
ical logic were directly related to these developments, in fact they were seen as a
conceptual clarification of some of it, e.g. coherent topos or the notion of a site,
and thus justified almost as such.

The second reason is sociological but just as important: while category the-
orists were developing topos theory and categorical logic with toposes in mind,
in France, Grothendieck had quit the mathematical scene altogether in 1970 and
his successors were in fact playing down the importance of some of his mathe-
matical ideas, in particular the concept of (Grothendieck) topos. Whereas the
notion of schemes, Grothendieck’s analysis of the foundations of algebraic geome-
try, slowly but surely came to constitute the bedrock of algebraic geometry — as
witnessed by [Shafarevich, 1974; Hartshorne, 1977] and more recently [Eisenbud
and Harris, 2000] —, toposes were more or less banished from the mathematical
establishment, even from algebraic geometry. Indeed, they are not even defined in
Shafarevich and Hartshorne. Thus, although categorical logic was directly linked
to important ideas of Grothendieck’s program, it was not linked to the ideas that
the mathematical community was judging as being central. Hence, in a sense, the
attempt to build bridges between logic and algebraic geometry did not bear its
fruits, although mostly it seems, for sociological reasons.

4.3 The background

Let us come back to the late sixites and early seventies. Among Joyal’s multiple
interests in late sixties was Algebraic Geometry that he was studying by himself in
the formidable treatise EGA, Éléments de géométrie algébrique, of Grothendieck
and Dieudonné and SGA, Séminaire de Géométrique Algébrique, in particular
SGA4 on topos theory, which was held in 1963/64 and circulated in limited form
before its publication by Springer in the Lecture Notes. Sheaf theory and more
generally category theory were omnipresent in these treatises. Reyes learned cate-
gory theory including early work of Lawvere (along with some algebraic geometry)
from Joyal, who in turn learned model theory à la Berkeley, in particular some
of the results and ideas included in his PhD thesis, from Reyes. There are some
indirect indications of the work done in 1969 and 1970, before the introduction of
the notion of elementary topos hit the community.
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We have already indicated that in 1968, Aubert Daigneault had started to look
for relationships between Lawvere’s elementary theories and polyadic and cylindric
algebras. He considered both approaches in a categorical framework and proved
some equivalences the category of elementary theories and the category of polyadic
algebras. As far as we know, Daigneault’s paper is the only published paper whose
purpose is to investigate properties of Lawvere’s elementary theories. Daigneault’s
motivation, in this paper, was explicitly “to call attention to Lawvere’s important
contribution to Algebraic Logic”. [Daigneault, 1969/1970, 307]. Thus, Lawvere’s
contribution is ackowledged as being a contribution to algebraic logic. It is worth
mentioning that Volger refers explicitly to Daigneault’s paper in the introduction
of his article on logical categories. In fact, Daigneault’s proof of the equivalence
between elemetary theories and polyadic algebras is taken by Volger as evidence
in favor of the algebraic character of Lawvere’s work.

This concept of an elementary theory may also be viewed as an al-
gebraization of first-order logic by categorical means in the following
sense. The elementary theory and the structure preserving functors
between them correspond to polyadic algebras and homomorphisms
between them. . . . The connections between elementary theories and
polyadic algebras have been studied by Daigneault. . . . [Volger, 1975a,
51–52].

Daigneault uses Lawevere’s second characterization of elementary theories to con-
struct the relevant categories and the equivalence between them. Recall that in
Lawvere’s analysis, Boolean algebras play a key role and the existential quantifier
is part of the data. Daigneault reformulates Lawvere’s completeness theorem (and
uses it) as follows:

THEOREM.
For any elementary theory T and ϕ : 1 //B, where B is the distinguished Boolean
algebra (Volger’s Ω) in T such that ϕ 6= ⊥, there exists a model M of T such that
M(ϕ) = >.

Daigneault also gives the representation theorem for polyadic algebras. Let X
be a non-empty set and I a denumerably infinite set (taken to represent individual
variables). Then it is noted that the Boolean algebras of all functions X I // 2
is a polyadic algebra CX . The representation theorem is then:

Theorem: For any polyadic algebra P and any q ∈ P such that q 6= 0 (the small-
est element of P ), there exists a non empty set X and a 2-valued representation
f : P // CX such that f(q) = 1.

Although Daigneault uses Lawvere’s theorem in his paper, he points out that
Lawvere’s completeness theorem could be reduced to the representation theorem
for polyadic algebras and ultimately to the ordinary completeness theorem for
polyadic algebras. Thus, already in 1968, one can see the connections between the
various theorems, a theme that will become central in the early 1970’s.

A second paper of Daigneault deserves to be looked at carefully, for it contains
a key component of what is about to come. It is his paper entitled Injective
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Envelopes, published in the American Mathematical Monthly in 1969. [Daigneault,
1969]. In this paper, Daigneault gives conditions that are sufficient to ensure the
existence of injective envelopes in a category. The existence of enough injectives
played a key role in the development of abelian categories ten years earlier. In
his paper, Daigneault gives a list of six equivalent conditions on a category C that
are sufficient in order that, for any object of C, there exists an injective essential
extension. The first of these conditions is that for each morphism f : X // Y ,
there exists an epi-mono factorization, i.e. there is an epimorphism g : X // Z
and a monomorphism h : Z // Y such that f = h ◦ g. This condition is satisfied
by any abelian category. But it is satisfied in some non-additive categories as well.
In particular, Daigneault considers the category of Boolean algebras with unit
preserving homomorphism and shows that it satisfies the given conditions. (It
should be mentioned at this point that the Stone duality theorem, and thus the
category Stone of Stone spaces, is used to prove that surjective homomorphisms
are indeed epimorphisms.) It is also shown that the injectives are precisely the
complete Boolean algebras. Although Daigneault’s paper makes no connection
with Lawvere’s elementary theories nor to polyadic algebras, it is known that the
concept of an extension of a map played a role in the latter. The proof that
complete Boolean algebras are injectives is attributed to Vincent Papillon, Reyes’
first graduate student.

Vincent Papillon Master’s thesis is entitled Quelques aspects de l’enveloppe in-
jective d’une algèbre de Boole. [Papillon, 1969] The first chapter of the thesis starts
off by presenting the results of the foregoing paper. In the remaining two chapters
of the thesis, Papillon gives two different constructions of the injective envelope of
a Boolean algebra: one follows Reyes’s alternative definition of a complete ring of
quotients of a ring A and the other follows Joyal’s suggestion of using the Stone
space associated to the Boolean algebra A. The thesis was submitted in April
1969.

We mention Daigneault’s work and Papillon’s thesis for two reasons. First,
it shows that certain categories, which were not necessarily abelian, satisfying
certain simple exactness conditions like the existence of images, had interesting
consequences, e.g. the existence of injective envelopes. Furthermore, the conditions
revealed here are directly linked to the category of Boolean algebras, certainly
relevant for classical propositional logic. Indeed, if one were to start with classical
propositional theories, construct their Lindenbaum–Tarski algebras and consider
the resulting category of such algebras, one would obtain a category satisfying these
exactness conditions. Second, as Papillon’s thesis shows clearly, Joyal and Reyes
were probably aware of Lawvere’s elementary theories and they were immersed in
category theory, Boolean algebras and Stone spaces.

Indeed, in August of 1969, the Notices of the American Mathematical Society re-
ceived an abstract from Joyal entitled Boolean algebras as functors. A γ-complete
Boolan algebra, for γ an infinite regular cardinal, is a Booleal algebra closed un-
der sups of power less than γ. A γ-field is a Boolean algebra isomorphic to a
γ-complete field of sets. A γ-representable Boolean algebra, is a Boolean algebra
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isomorphic to a quotient of a γ-field by a γ-ideal. Let Setγ denote the full sub-
category of the category Set of sets, generated by sets of power less than γ. The
functor category SetSetγ where the functors Setγ // Set commute with limits
is equivalent to the category of γ-fields with γ-isomorphisms. When limits are
restricted to diagrams of power less than γ, then there is an equivalence between
the functor category SetSetγ and the category of γ-representable Boolean algebras
(and γ-homomorphisms). Joyal obtains a similar equivalence between the category
of complete Boolean algebras with a functor category SetSetγ , thus showing that
Boolean algebras can be described as functors. A particular case of this result is
attributed to Lawvere. What is interesting here is the kind of result Joyal is after:
to be able to represent certain fundamental mathematical concepts as functors.
As we have seen in the foregoing sections, this was very much in the spirit of
Lawvere’s work.

Approximately one year later, on November 4 1970, the same Notices receive
five abstracts from Joyal. Three of them are put in the section of algebra and two
of them are placed in the section on logic and foundations. The first three are enti-
tled Spectral Spaces and Distributive Lattices, Spectral Spaces II and Cohomology
of Spectral Spaces respectively. They are directly related to Grothendieck’s work
in algebraic geometry, in particular to results about schemes and sheaves. The two
abstracts on logic and foundations are entitled Polyadic Spaces and Elementary
Theories and Functors which preserve elementary operations. Thus, Joyal indeed
knew about Lawvere’s elementary theories from early on and was pursuing their
study. Despite the fact that they were inserted in different sections by the editors
of the Notices and that their titles suggest that they are about different topics
altogether, they are in fact related to one another, illustrating how, already before
the advent of elementary toposes, Joyal was connecting algebraic geometry and
logic together. Furthermore, it is clear that Joyal’s earlier work on Boolean alge-
bras and Stone spaces played a role in his subsequent work. Let us start with the
two abstracts on logic and foundations. The first abstract is about polyadic spaces,
not algebras, and elementary theories. Let Set0 be the category of finite sets. A
polyadic space is a functor E : Setop0

// Stone, where Stone is the category of
Stone spaces and continuous maps such that

i) For each f : n //m in Set0, E(f) : E(m) // E(n) is open and

ii) E transforms push-out squares in Set0 into quasi pull-back squares in Stone.

A morphism α : E //E′ of polyadic spaces is a natural transformation such that
for any f : n // m in Set0, the square

E′(m) E′(n)
E′(f)

//

E(m)

E′(m)

αm

��

E(m) E(n)
E(f) // E(n)

E′(n)

αn

��
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is a quasi pull-back. (Recall, that given a category C with pullbacks, a square

X Z//

P

X
��

P Y// Y

Z
��

if the morphism P //X ×Z Y is an epimorphism.)
Given a finite set X , Joyal defines a polyadic space X̃ by X̃(n) = β(Xn), the

Stone-C̆ech compactification of Xn, and a model of a polyadic space E(based on

X) to be a morphism X̃ // E. He then claims that it is possible to associate
canonically a polyadic space to an elementary theory and vice-versa. No details
are given. It is asserted that under this correspondence, the two concepts of model
coincide and that classical theorems of logic are interpreted and proven. We are
not told which classical theorems of logic are interpreted and proven. Finally, and
this is an important remark, it is claimed, without any detail, that polyadic spaces
arise naturally in algebraic geometry.

The second abstract does not mention polyadic spaces. But it contains a fun-
damental result that will turn out to be central later on. Consider the category
E = SetSet with functors Set // Set preserving finite limits and finite (disjoint)
sums. It is claimed that these functors are precisely those preserving elementary
operations of first-order logic. We are not told precisely what the latter operations
are, except for projection and complement. But this is not the result reported, it
is simply mentioned in the opening sentence of the abstract. The statement of the
main result requires additional data. Let U denote the category whose objects are
pairs (I,F), with F an ultrafilter over the set I and whose morphisms are mappings
preserving ultrafilters. Given two objects (I,F) and (J,G), define an equivalence
relation on morphisms (I,F) // (J,G) by f ≡ g if and only if ∃F ∈ F such that
f |F = g|F . Let UP , called the category of ultrapoints, be the quotient category
U/ ≡. The main theorem is that there is an equivalence between Eop and the
category of pro-objects of UP of ultrapoints. This is in itself an interesting duality
theorem, but Joyal points out immediately afterwards that “the straightforward
proof of this theorem can be adapted to prove a theorem of Keisler on elementary
extensions of complete structures” [Joyal, 1971b, 967]. The theorem refered to
here appeared in 1960 and states that an elementary class K is closed with re-
spect to colimits if and only if K is characterized by a set of sentences constructed
from finite conjunctions, finite disjunctions and existential quantifiers. We will
give a more precise statement of the theorem later. Keisler’s proof is model the-
oretical whereas Joyal’s result stated here is purely categorical. The reference to
the category of pro-objects is revealing, for the latter construction was introduced
by Grothendieck and Deligne in SGA4, thus showing that Joyal was already well
versed in Grothendieck toposes and related constructions.

This work was seen by Joyal and Reyes as being part of the search for an
algebraic approach to logic. Indeed, in his paper published in 1972, Reyes used
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Joyal’s work on Boolean algebras and talks about “Joyal’s functorial approach to
algebraic logic”, which refers to the first abstract quoted above. In the bibliography
of the same paper, Reyes announced a paper in preparation entitled “Éléments de
logique algébrique”, which never saw the day.

Let us now turn to the three abstracts in algebraic geometry. A spectral space
X is a topological space satisfying two conditions: i) the quasi-compact open
subsets of X form a base closed under finite (possibly empty) intersections; ii)
every irreducible closed subset F possesses one and only one generic point x, i.e.
{x} = F . A morphism of spectral spaces is a quasi-compact mapping. A theorem
asserting that a topological space X is a spectral space if and only if X is a limit
of finite T0-spaces is stated. The main theorem is, once more, an equivalence of
categories between the opposite of the category DLat of distributive lattices and
the category Sp of spectral spaces. Nowadays, the so-called category of coherent
locales is used instead of the category of spectral spaces to prove the duality
theorem. (See [Johnstone, 1982, 65].) The link to Stone’s duality theorem is
immediate. Furthermore, as Joyal mentions himself, the underlying space of a
quasi-compact quasi-separated scheme is a spectral space, making explicit once
more the connection with algebraic geometry à la Grothendieck, this time with
EGA.

The second abstract is exactly in the same vein: the main theorem asserts the
existence of a right adjoint to the inclusion functor Stone // Sp. Furthermore,
there is a covariant full embedding from the category of spectral spaces and the
category of ordered Stone spaces. Finally, Joyal claims that a Stone space is
ordered if and only if it is a limit of finite partially ordered sets. (See [Johnstone,
1982, 75] for details.)

Only the last abstract is directly related to algebraic geometry: in it, Joyal
generalizes results of Grothendieck on the cohomology of quasi-compact schemes
to spectral spaces.

What these abstracts show clearly is that Joyal was juggling with three con-
ceptual realms during this period: algebraic geometry, including Grothendieck
toposes, Stone-type dualities and Lawvere’s elementary theories in the spirit of
algebraic logic. Thus, when Lawvere and Tierney introduced the concept of ele-
mentary topos, Joyal already had results that could easily be seen to be directly
related to that development. The notion of elementary topos simply provided the
general framework to develop these ideas systematically.

Joyal, but not Reyes, was present at the meeting held at Dalhousie between
January 16 and January 19 1971. The goal of this meeting, according to Lawvere,
was to investigate

. . . the connecctions between algebraic geometry and “ intuitionistic ”
logic under the guidance of the form of objective dialectics known as
category theory. . . .

Our own hopes in the success of the above general program were
strengthened by initial progress in carrying out a more special program
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which will be outlined in the introduction. This is the development on
the basis of elementary (first-order) axioms of a theory of “ toposes ”
just good enough to be applicable not only to sheaf theory, algebraic
spaces, global spectrum, etc. as originally envisaged by Grothendieck,
Giraud, Verdier, and Hakim but also to Kripke semantics, abstract
proof theory, and the Cohen-Scott-Solovay method for obtaining inde-
pendence results in set theory. [Lawvere, 1972, 1].

According to Lawvere, seventy mathematicians participated in this meeting,
among others Jean Bénabou, Marta Bunge, Jim Lambek, William Mitchell, Dana
Schlomiuk, Dana Scott, Hugo Volger, to mention but those who are directly in-
volved in our story. In the concept of elementary topos, geometry and logic are
woven together in one structure, thus providing a natural setting for logic and
algebraic geometry.

Let us now look carefully at the characterization of first-order logic developed
by Joyal and Reyes.

4.4 From logical theories to categories

Joyal and Reyes realized that Volger’s mistake had been to include the object Ω in
the data of a logical category. They came to the conclusion that this object does
not belong to first-order logic, neither in its syntax nor in its semantics. The key
methodological insight was to start from a logical theory and build a category from
it. The beauty of this approach is that in this way, one introduces, simultaneously,
a hierarchy of logical theories together with a hierarchy of categories. Furthermore,
the very first type of category thus obtained turned out to be an important type of
abstract categories that had just been introduced and developed by Michael Barr
for entirely different purposes, namely regular categories. (See [Barr et al., 1971].)
In addition, Joyal and Reyes made connections with elementary toposes and Joyal
gave a uniform categorical treatment of the various completeness theorems. In
fact, Lawvere reported that much himself in the introduction of the volume where
Volger’s papers were published. Indeed, in the very first page of the introduction,
we read that the “much-researched intermediate doctrine of (classical) first-order
logic corresponds to the fact P that the category of sets has finite limits, com-
plements of subsets, and images of mappings (related by the condition of being a
“regular” category. . . ).” [Lawvere, 1975a, 3]. Volger himself acknowledges Joyal’s
work and remarks that Joyal has shown that his semantical categories are regular
categories. (See [Volger, 1975a, 82].)

Joyal and Reyes started a joint paper that was finally published under Reyes’s
name in 1974, but a preliminary version of it was already circulating in 1972.
(See [Reyes, 1974].) This is one of the very few published articles that present
Joyal’s work during that period. In the introduction, Reyes explicitly acknowledges
Joyal’s contribution. However, there is more literature that gives a portrait of the
situation: as we have already mentioned, eight theses, Master’s and PhDs, were



The History of Categorical Logic: 1963–1977 53

written at the Université de Montréal on categorical logic between 1973 and 1977.
Here is the complete list with the authors, subject, supervisors, degree and year:
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Name Title Supervisor Degree and year
Jean Dionne Des théories élémentaires

aux categories con-
ceptuelles

Gonzalo
Reyes

MSc July 1973

André Boileau Les multiples splendeurs
du forcing

Gonzalo
Reyes

MSc December
1973

Christiane
Rousseau

Triples, localization et
topos

Pierre
Berthiaume

MSc July 1974

Roch Ouellet Axiomatization de la
logique interne du premier
ordre des topos, version
inclusive et multisorte

Aubert
Daigneault

PhD August
1974

Monique
Robitaille-
Giguère

Modèles d’une catégorie
logique dans des topos
de préfaisceaux et
d’ensembles de Heyt-
ing

Gonzalo
Reyes

MSc January
1975

Wedad Anto-
nius

Théories cohérentes et
prétopos

Gonzalo
Reyes

MSc June 1975

André Boileau Types versus Topos Gonzalo
Reyes

PhD July 1976

Christiane
Rousseau

Théorie des topos et anal-
yse complexe

Dana
Schlomiuk

PhD April 1977

We assume that the work presented in Dionne, Ouellet, Robitaille-Giguère,
Antonius and Boileau’s Ph.D. thesis roughly reflects the chronological development
and assimilation of the work done by Joyal and Reyes, although with a time shift.
Also relevant are Reyes’ later publications in 1977 and 1978 as well as Makkai and
Reyes’s papers published in 1976 which builds on the work done by Reyes and
Joyal. Boileau’s thesis is particularly interesting since it gives a general portrait
of the work done in categorical logic at the time. Indeed, he refers to almost all
the results presented in the theses by his colleagues.

Joyal and Reyes’s strategy was to start with a first-order theory T, construct a
small category CT from it and then characterize in an abstract manner the type
of category thus obtained. One of the goals was then to work with categorical
methods to obtain significant results about the theory T or the underlying logic.
There was an additional philosophical motivation. The very first formal step in
the construction is to identify formulas of a theory T in a given language relative
to their logical strength. More specifically, given a language L and a theory T in
L, one defines an equivalence relation between formulas of L by

ϕ ∼ ψ if and only if T ` (∀x1) · · · (∀xn)(ϕ↔ ψ)

where x1, . . . , xn are the free variables of ϕ and ψ. The objects of the con-
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structed category are the equivalence classes determined by the equivalence re-
lation. One quickly recognizes that this construction is the categorical extension
of the usual Lindenbaum–Tarski construction for propositional logic. One of the
key insights here, which builds on Lawvere’s work on quantifiers, is the fact that
the Lindenbaum-Tarski construction can be lifted in a natural way so that when
applied to first-order logic, it yields a category. Since categories are, among other
things, generalizations of partial orders, this constitutes evidence that categorical
logic provides a natural setting for the algebraic treatment of logic. From the
point of view of Joyal, Reyes and other categorical logicians of that period, one
of the underlying motivations was that logically equivalent formulas “mean” the
same thing, that is we are dealing with concepts instead of their specific linguistic
expressions. For that reason, these categories were labeled conceptual categories
or categories of concepts (or sometimes syntactical categories). Morphisms be-
tween concepts are also equivalence classes of functional relations definable in the
language.

As Jean Dionne underlies in the introduction of his thesis, it was believed that
by replacing the theory T by the category CT, the object of study would be at the
same time simpler and more complete. The latter fact amounts to the claim that
categories allow for more relations between concepts than the usual set-theoretical
inclusion. Furthermore, models of theories can now be taken in various categories,
in particular in toposes. The very last sentence of Dionne’s thesis summarizes the
belief that a categorical presentation CT of a theory T in a given formal system
allows logicians to concentrate on the conceptual aspects of a theory and less on
the syntactical details of a chosen presentation:

Our method is therefore general enough to apply to a large variety of
languages and we can conclude that it constitutes the true link between
logic in the traditional sense and categorical logic : with the advantage
that we can now work without using the axioms, rules of inference,
formal demonstrations and the rest. We can even forget about vari-
ables, which were always inconvenient. Moving to categories, we can
do logic in an “ abstract ” fashion in terms of objects, arrows, functors
and diagrams, which is, among all the advantages mentioned in this
work, not the least, since the logician is naturally more interested by
concepts than by the indices to give to variables. [Dionne, 1973, 110]

(our translation)

Thus, in the early seventies, the belief was that categorical methods were more
objective or invariant than logical methods and that they would fruitfully replace
logical methods. As far as we can tell, it was in April 1973, while he was in
Montreal, that Bénabou showed that in some cases logical methods, via the so-
called internal language, were more simple and direct than categorical methods to
prove categorical properties of categories, in particular of certain toposes.

As we have already said, Joyal and Reyes’ approach lead to a hierarchy of
conceptual categories, the first of which resulting from the weakest first-order log-
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ical language yielding a category in the foregoing construction: regular categories.
It was also quickly conjectured that the converse would be true, i.e. that one
could start from a regular category C and obtain a theory TC in the appropri-
ate language. Furthermore, it was common at that point to consider logic in a
many-sorted language. (Indeed, Lawvere, Lambek, Bénabou and as we will see
Mitchell had already indicated that many-sorted languages were natural a cat-
egorical context.) For the presentation of many-sorted languages, Dionne refers
to Feferman’s lecture notes in proof theory published a few years earlier. (See
[Feferman, 1968].) The same reference is found in [Makkai and Reyes, 1976b;
Reyes, 1977; Makkai and Reyes, 1977]. We will here essentially follow [Boileau,
1976], for he gives a general and unified presentation that, as we have indicated,
constitutes in our opinion a comprehensive synthesis of the work done by Joyal and
Reyes between 1971 and 1973 approximately. (For a slightly different presentation
and terminology, see [Johnstone, 2002].)

A (first-order) primitive language L0 is given by:

1. A set S of sorts. The set T of types is build from the set of sorts as follows:

(a) if S ∈ S, then S ∈ T ;

(b) if S1, ..., Sn ∈ T , then S1×· · ·×Sn ∈ T , where n can be 0; whenever it
is 0, we denote it by the symbol 1; (notice that S1 × · · · × Sn is merely
a formal expression, not a product);

(c) nothing else is a type.

2. A set F of function symbols, to each function symbol f , we associate its type
S1×· · ·×Sn×S (with the last sort having a distinguished status); we write
f : S1 × · · · × Sn // S to indicate the type of f . Whenever n is 0, f is a

constant of type S and we write 1
f
−→ X .

3. A set R of relation symbols, each such relation symbol R has a type S1×· · ·×
Sn; we write R � S1 × · · · × Sn to indicate that R has type S1 × · · · × Sn.

Terms and formulas are defined by recursion as follows:

Definition of terms:

1. Every variable of type S is a term of type S;

2. If f : S1 × · · · × Sn // S is a function symbol and t1, . . . , tn are terms of
type S1, . . . , Sn respectively, then f(t1, . . . ., tn) is a term of type S; (if f is
a constant, we simply write f);

Definition of formulas:

1. If t1 and t2 are terms of type S, then t1 = t2 is a formula;
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2. If R � S1 × · · · × Sn is a relation symbol and t1, . . . , tn are terms of type
S1, . . . , Sn, then R(t1, . . . , tn) is a formula;

3. > is a formula (‘true’ is a formula);

The notions of free variable, bound variable, closed formula and closed terms are
defined in the usual manner. This completes the definition of L0. There are no
logical connectives so far. But there are logical rules associated to it, as we will
see.

However, interpreting logical systems in a categorical framework forced categori-
cal logicians to reconsider basic and simple assumptions in a different light. Indeed,
in a set-theoretical setting, sorts are assumed to be non-empty. In a categorical
setting, the situation is different. For one thing, in certain toposes, in particular
toposes of sheaves, there are objects without elements that are nonetheless inhab-
ited. To illustrate the situation, consider the simple case of the topos Set2 whose
objects are pairs 〈X,Y 〉 of sets and a morphism 〈f, g〉 : 〈X,Y 〉 // 〈V,W 〉 is given
by a pair of functions f : X // V and g : Y //W . Consider now any object of
the form 〈∅, X〉 where X is any non-empty set. Such an object is not empty (nor
is it an initial object in the language of categories), but it is not like an arbitrary
object 〈X,Y 〉 either. From the categorical point of view, an element x of a set

X corresponds to a morphism 1
x
−→ X from the terminal object 1, that is any

singleton set, to the set X in the category Set of sets. It is therefore reasonable
to generalize this fact to categories with a terminal object (or finite limits in gen-

eral): a (global) element of an object X in a category C is a morphism 1
x
−→ X .

In the topos Set2, the terminal object is the pair 〈1, 1〉 and there is no morphism
〈1, 1〉 // 〈∅, X〉. In this sense, we can say that the latter object does not have
any (global) element, although it is not empty. In his introduction to the volume
on model theory and toposes, Lawvere underlines this fact and comments rather
harshly on the classical solution:

Since a variable set may be partly empty and partly non-empty, the tra-
ditional model-theoretic banishment of empty models cannot be main-
tained, bringing to light a certain difficulty which the banishment ob-
scured. Some claim that this difficulty is the “fact” that “entailment
is not transitive”, contrary to mathematical experience. However, the
actual “difficulty” is that the traditional logical way of dealing with
variables is inappropriate and hence should be abandoned. This tradi-
tional method (which by the way is probably one of the reasons why
most mathematicians feel that a logical presentation of a theory is an
absurd machine strangely unrelated to the theory or its subject mat-
ter) consists of declaring that there is one set I of variables on which
all finitary relations depend, albeit vacuously on most of them; . . .
[Lawvere, 1975b, 5]

Various people, among others Mostowski, Hailperin in the fifties, and Bénabou
and Joyal in 1973, had observed the failure of the transitivity of entailment with
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empty sorts. (See [Mostowski, 1951; Hailperin, 1953].) A simple case is as follows:
the following two sequents are always valid, no matter what:

∀xP (x) ` P (x)

P (x) ` ∃xP (x)

Thus, by transitivity of entailment, we obtain:

∀xP (x) ` ∃xP (x)

which is an invalid entailment when interpreted in an empty sort. Mostowski
suggested to simply dropping the transitivity of entailment. Hailpering gave an
axiomatization in which entailments are restricted to sentences. Ideally, one would
keep the transitivity of entailments and give a presentation of a logical system for
arbitraty formulas.

As far as we can tell, the current solution to the problem was first presented
in print in Roch Ouellet’s PhD thesis defended at the Université de Montréal in
1974. [Ouellet, 1974] (See also [Ouellet, 1981].) He explicitly attributes the key
observation leading to the solution to Joyal. The solution consists in introducing
the notion of the support of a sequent or what is now called a context : a context
is a finite list ~x = x1, . . . , xn of distinct variables. Notice that a context can be
empty, i.e. n can be 0. The type of a context ~x is the string of (not necessarily
distinct) sorts of the variables appearing in it. A term-in-context is an expression
of the form ~x ·t where t is a term and ~x is a context containing all the free variables
of t. Similarly, a formula-in-context is an expression of the form ~x · φ, where φ is
a formula and ~x is a context containing all the free variables occurring in φ.

The notion of logical consequence is then defined with respect to a context ~x. A
sequent is a sequence of symbols of the form (φ `~x ψ), where φ and ψ are formulas
and ~x is a context containing all the free variables of φ and ψ. It is now easy to
see that the foregoing failure of transitivity is eliminated, since the sequent of the
conclusion, namely ∀xP (x) ` ∃xP (x), has an empty context whereas the premises
do not. Hence, if we require, as we will do, that entailments have to be done over
uniform contexts or that a change of context has to obey certain restrictions, the
conclusion will not follow. It should be emphasized that, as is done by Ouellet
himself in his thesis, the process of finding a solution was guided all along by
categorical semantics. Thus, in this case, the correct syntactical constraint was
derived from categorical constraints.

Recall that in a sequent calculus, a deductive rule has the form Γ
α
(R), where

Γ is a (possibly empty) list of sequents and α is a sequent. The horizontal bar
means that the rule R allows the move from Γ to α. The intended meaning is that
whenever the sequents of Γ are valid, then α is valid. When Γ is empty, then in
this case α is a logical axiom. Here are the axioms and rules of L0, which are in
fact the rules of equational logic:

1. Structural rules:
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1.1. φ `~x φ (identity axiom)

1.2.
φ `~x ψ ψ `~x θ

φ`~xθ
(cut)

1.3. φ`~xψ
φ[~s/~x]`~yψ[~s/~x] (substitution) where ~s = s1, . . . , sn is a list of (not nec-

essarily distinct) terms of the same length and type as the context ~x,
φ [~s/~x] denotes the usual operation of simultaneous substitution with
the usual proviso and ~y is any string of variables including all the vari-
ables occurring in the terms ~s.

2. Logical rule:

2.1. φ `~x >;

3. Rule for equality:

3.1. > `~x x = x.

The next step consists in introducing logical connectives in a certain order. The
first extension of L0 is denoted by L1 by Boileau, but we will denote it by Lreg
for regular logic.

Definition of formulas of Lreg : formulas of Lreg consist of formulas of L0 to-
gether with the following additional clauses:

4. If φ and ψ are formulas, then (φ ∧ ψ) is a formula;

5. If φ is a formula, then ∃xφ is formula (where x is variable of some type; we
sometimes write (∃x : S)φ to indicate the type of x).

Axioms and rules of Lreg : the axioms and rules of Lreg are those of L0 together
with:

2. Logical rules:

3. φ ∧ ψ `~x φ φ ∧ ψ `~x ψ
φ `~x ψ φ `~x θ

φ`~xψ∧θ
;

4.
φ `~x,y ψ

∃yφ `~x ψ
where y is not free in ψ and where a double line indicates that

we can go either way;

5. φ ∧ ∃yψ `~x ∃y (ϕ ∧ ψ) where y is not free in φ.

6. Rule for equality:

3.2. ((x1 = y1) ∧ . . . ∧ (xn = yn)) ∧ φ `~z φ [~y/~x] where ~z is a context con-
taining ~x, ~y and the free variables of φ.
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A regular theory T is a set of regular sequents, i.e. sequents in which the formulas
are all regular formulas. The elements of T are called the axioms of T. There are
no examples of regular theories in [Dionne, 1973], nor in [Reyes, 1974]. Of course,
there are numerous examples of regular categories.

The next extension quickly became the center of attention because of its met-
alogical properties. It is the language Lcoh, labeled L2 by Boileau, of coherent
logic.

Definition of formulas of Lcoh: formulas of Lcoh consist of formulas of Lreg
together with the additional clauses:

6. ⊥ is a formula (‘false’ is a formula);

7. If φ and ψ are formulas, then (φ ∨ ψ) is a formula.

Axioms and rules of Lcoh are those of Lreg together with:

2. 2.1. ⊥ `~x φ;

2.2. φ `~x φ ∨ ψ ψ `~x φ ∨ ψ
φ `~x θ ψ `~x θ

φ∨ψ`~xθ
;

2.3. φ ∧ (ψ ∨ θ) `~x (φ ∧ ψ) ∨ (φ ∧ θ).

A coherent theory T is a set of coherent sequents. Although the language of co-
herent logic might seem to be rather weak at first, it was quickly seen that many
mathematical theories are in fact axiomatized in that language. Thus, every equa-
tional theory is coherent, e.g. the theory of groups, the theory of rings, Boolean
algebras, etc., provided one writes the axioms appropriately. The theory of fields
of characteristic p, p ≥ 0, is coherent, as well as the theory of algebraically closed
fields. It was proved that any classical theory can be translated in the language of
coherent logic provided that the latter is enriched with sufficiently many relational
symbols. The latter claim is a corollary of the proof of the completeness theorem
for coherent theories attributed to Makkai by Antonius. (See [Antonius, 1975,
35–36].) Coherent logic was seen has having an interesting position with respect
to intuitionistic logic and classical logic. In the words of Reyes:

If the reader looks at the formal system for coherent logic . . . , he will
notice that all axioms as well as rules of inference are intuitionistically
valid (. . . ) as well as classically valid. The distinction between the
intuitionistic and classical interpretations of logical operations become
irrelevant for this “absolute” logic.

Furthermore, this logic besides being a part [sic], may be considered
as a generalization of classical logic. Indeed, any classical theory may
be rendered coherent by extending the language [Antonius]. The idea
is trivial and may be seen from the following example : take

∃x∃y(x 6= y)
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as our theory. Adding a new binary relation symbol D (to be thought
of as 6=), the desired coherent theory is

> ` ∃x∃yD(x, y)
> ` x = y ∨D(x, y)
x = y ∧D(x, y) ` ⊥

The point is : the models which respect the coherent logic of the new
theory are the usual classical models (respecting the full logic) of the
old one. [Reyes, 1977, 23].

(Reyes did not specify the support of the sequents.) As we can see from the
last sentence, the charms of coherent logic were particularly obvious from the
model-theoretic point of view. But we should point out that the insistence on the
formal system itself is something that came during the academic year 1973–74, for
absolutely nothing is said about it before that date. As we have already pointed
out, they were merely used as a springboard in order to rise to the categorical
level.

The next two levels are the intuitionistic and the classical levels.
Definition of formulas of Lint (Boileau’s L3): the formulas of Lint are those of

Lcoh together with:

8. If φ and ψ are formulas, then (φ⇒ ψ) is a formula;

9. If φ is a formula, then ∀xφ is formula (or (∀x : S)φ).

Axioms and rules of Lint are those of Lcoh together with:

2.8
φ ∧ ψ `~x θ

ψ `~x φ⇒ θ

2.9
φ `~x,y ψ

φ `~x ∀yψ
where y is not free in φ.

Intuitionistic theories are defined in the obvious manner.
Finally, we come to classical first-order logic LBool (Boileau’s L4). We now

allow formulas of the form ¬φ, which can be defined as φ⇒ ⊥.
Axioms and rules of LBool are those of Lint together with:

2.10
φ ∧ ψ `~x ⊥

ψ `~x ¬φ
; a special case of the rule 2.8;

2.11 > `~x φ ∨ ¬φ.

A proof in these systems is defined in the usual fashion. We will write T `: α,
where α is a sequent φ `~x ψ, to indicate that there is a proof of α from the axioms
of T. Whenever we will have to specify the underlying logic, we will write for
instance T `:

coh
α, meaning that the proof is in coherent logic.

Dionne 1973 describes these languages for one-sorted systems and sketches the
extension to many-sorted systems in the conclusion of his thesis. Furthermore,
coherent logic does not receive a name: it is simply called regular logic with stable
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sup (for reasons that will appear clear once we look at categories corresponding to
this language). This is also how they are called in Reyes [1974]. (Remember that
the latter was already circulating in 1972.) This does suggest that in 1972 and
1973, coherent logic had not quite acquired its status or at least no one thought
that it deserved to receive a name.

There is an obvious partial order between the foregoing logical systems: define
Li ≤ Lk if and only if Li ⊆ Lk and for any set of sequents T ∪ α of Li, we have
T`:

Li

α if and only if T `:
Lk

α. It can be proved that resulting order relation is:

L0 Lreg Lcoh

Lint��������

Lbool
??

??
??

??

From a given theory T in a formal system Li, 0 ≤ i ≤ 4, a category of con-
cepts CT can be built. The construction of CT always follows the same pattern.
(It should be pointed out that Makkai and Reyes introduced a slightly different
construction later on, although the result is equivalent. See [Antonius, 1975, 14–
15]. In their book, Makkai and Reyes sketch a method that uses a completeness
theorem proved earlier but claim that the construction is described in great detail
in Dionne’s thesis, whereas the latter proceeds in a purely syntactic manner. See
[Makkai and Reyes, 1977, 241–242]. As we have already indicated, the objects of
CT are equivalence classes of formulas, where the equivalence relation is defined
by:

φ(~x) ∼ ψ(~x) if and only if φ(~x) `~x ψ(~x) and ψ(~x) `~x φ(~x) are derivable sequents
of T.

The equivalence class of φ(~x) is denoted by [φ(~x)] and it is sometimes called a
formal set.

A morphism of formal sets is a formal function. Informally, a formal func-
tion is given by a formula that defines, in each model of the theory T, an actual
morphism between the interpreted formal sets. In particular, when the theory is
interpreted in the category of sets, it defines a set-theoretical function between
sets. Specifically, let [φ(~x)] and [ψ(~y)] be two formal sets such that the contexts
~x and ~y are disjoint and let ρ be a formula with free variables in the context ~x; ~y.
Then we say that ρ(~x, ~y) defines a formal function from [φ(~x)] to [ψ(~y)], denoted
by 〈~x 7→ ~y : ρ〉 : [φ(~x)] // [ψ(~y)], if

1. ρ(~x, ~y) `~x,~y (ϕ(~x) ∧ ψ(~y))

2. ρ(~x, ~y) ∧ ρ(~x, ~z) `~x,~y,~z ~y = ~z

3. ϕ(~x) `~x ∃~yρ(~x, ~y)).
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To finish the definition of morphisms, we identify formal functions that are prov-
ably equivalent: that is, whenever we have

ρ(~x, ~y) `~x,~y o(~x, ~y) and o(~x, ~y) `~x,~y ρ(~x, ~y)

where (~x, ~y, o) defines a function from [φ(~x)] to [ψ(~y)], then (~x, ~y, ρ) and (~x, ~y, o)
belong to the same equivalence class 〈~x 7→ ~y : ρ〉 : [φ(~x)] // [ψ(~y)]. In a nutshell,
the morphisms of CT are equivalence classes of formulas that are provably equiv-
alent functional relations of T. Composition of morphisms is defined by following
the same general strategy. Given formal sets and formal functions

[φ(~x)]
〈~x7→~y:ρ〉
−→ [ψ(~y)]

〈~y 7→~z:o〉
−→ [θ(~z)]

the composition 〈~y 7→ ~z : o〉 ◦ 〈~x 7→ ~y : ρ〉 : [φ(~x)] // [θ(~z)]is given by the formal
function 〈~x 7→ ~z : κ〉 where κ = ∃~y(ρ∧o). The verifications that composition is as-
sociative and that the identity morphisms exist and satisfy the required properties
are extremely tedious. The moral is that one obtains a genuine small category CT
for each theory T in a given language. The results can be summarized with the
following table:

If T is in then CT is a

Lreg Regular category
Lcoh Coherent category
Lint Heyting category
LBool Boolean category

The foregoing construction can be seen to be a direct generalization of the
standard Lindenbaum–Tarski algebra for a propositional theory. Indeed, it can be
seen that if T is a propositional coherent theory, then CT is a preorder, in fact
a distributive lattice. In the general case of a coherent theory T, the standard
Lindenbaum-Tarski algebra is simply a part of CT, that is the part restricted to
sentences, e.g. formulas in the empty context. This provides further evidence to
the claim that categorical logic is algebraic logic.

Notice, and this is an important philosophical point, that a category of con-
cepts CT is not a category of structured sets and structure preserving functions:
morphisms are equivalence classes of morphisms. Thus, one of the main tools of
categorical logic is the construction of categories that are in a sense very different
from the categories arising in the practice of mathematics, e.g. the category of
groups or the category of vector spaces.

Whereas Dionne’s thesis consists in a detailed description of the constructions
of conceptual categories from theories and a proof, in each case, that the resulting
category has the appropriate properties, Reyes 1974 starts right from the start with
a description of the categories. Of course, as we have already emphasized, within
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the categorical community, it was assumed that replacing a theory T by its cate-
gory of concepts CT was not only mathematically fruitful but also philosophically
motivated. One of the goals was to give a purely categorical characterization of
these categories and then work with these instead of the syntactical presentations
of the theories.

4.5 Algebraic logic: from regular to Boolean categories

Regular categories are categories in which any morphism factors uniquely as a
(regular) epimorphism followed by a monomorphism. In contrast with Volger’s
logical categories and elementary theories, any topos E turns out to be a regular
category and, furthermore, first-order logic becomes completely integrated in the
overall framework at the center of which sits the notion of topos.

In order to state the definition of a regular category, we need to recall a few

simple notions. The pullback of a pair of equal morphisms X
f
−→ Y

f
←− X , when

it exists, is called the kernel pair of f . Given two parallel morphisms X
f
−→
−→
g

Y ,

a coequalizer of 〈f, g〉 is a morphism q : Y // E such that q ◦ f = q ◦ g and for
any morphism h : Y // Z such that h ◦ f = h ◦ g, there is a unique morphism
h′ : E //Z such that h′ ◦ q = h. A morphism f : X //Y is said to be a regular
epimorphism when it is the coequalizer of a pair of arrows.

Definition: a category C is said to be regular if it satisfies the following proper-
ties:

1. It has all finite limits;

2. Coequalisers of kernel pairs exist;

3. Regular epimorphisms are stable under pullback.

The last condition simply means that if f : X //Y is a regular epimorphism and
g : Z // Y is a morphism of C, then the morphism g′ : X ×Y Z //X obtained
by pulling back f along g as in the following diagram

X Y
f

//

X ×Y Z

X

g′

��

X ×Y Z Z
f ′

// Z

Y

g

��

is also a regular epimorphism.
The category Set of sets is a regular category and, in fact, so is any elementary

topos E .
This is not the definition given by Reyes in Reyes [1974], but it is equivalent to

it. In Reyes’ paper, a regular category is a category with finite limits, finite sups of
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subobjects of a given object and images, which we will define. As we have already
indicated, one of the main properties of a regular category is that any morphism
f : X // Y can be factored uniquely, up to isomorphism,

X

E

e

��?
??

??
??

??
??

X Y
f // Y

E

??

m

��
��

��
��

��
�

where e : X //E is a regular epimorphism and m : E //Y is a monomorphism.
The latter monomorphism is called the direct image of f and is denoted Im(f).
Im(f) is defined only up to a unique isomorphism, but as such it determines a
unique subobject of Y , which we denote ∃f (X). The choice of terminology is
not a coincidence. Given any momomorphism i : A � X , we can define ∃f (A) =
Im(f ◦i) and in this way ∃f is a well defined morphism from the subobjects of X to
the subobjects of Y and it can be shown that, in fact, for any arrow f : X // Y
of a regular category C, ∃f a f∗. Properties of the existential quantifier then
follow immediately. In particular, what is now called the Frobenius identity holds
in any regular category C: for any morphism f : X // Y and monomorphisms
iA : A � X , iB : B � Y , ∃f (A ∧ f∗B) = ∃fA ∧ B, where both sides of the
equality are subobjects of Y .

Notice how the latter characterization weaves together Lawvere’s characteriza-
tion of elementary theories and Daigneault’s characterization of the condition for
the existence of injective envelopes.

It is natural to consider regular functors between regular categories: a functor
F : C //D between regular categories is said to be regular if it preserves finite lim-
its and coequalizers of kernel pairs. We can therefore define the category RegCat
with objects (small) regular categories and with morphisms regular functors. (We
should point out that it was immediately clear that it is a 2-category.)

Joyal and Reyes then introduced regular categories with stable ∨, now called
coherent categories, but they were also called logical categories from 1974 until
1977 inclusively. It should be emphasized that all these categories are regular
categories with additional properties and not additional structure.

A category C is said to be a coherent category if:

1. It is a regular category;

2. For each object X of C, Sub(X) has finite sups;

3. The inverse image morphism f∗ : Sub(Y ) // Sub(X) preserves finite sups,
i.e. finite sups are stable under pullbacks.

A functor F : C // D between coherent categories is said to be coherent if it is
regular and if it preserves finite sups. Again, we can consider the category Coh of
coherent categories and coherent functors between them.
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A category C is said to be a Heyting category if:

1. It is a regular category;

2. For every morphism f : X // Y , the inverse image morphism
f∗ : Sub(Y ) // Sub(X) has a right adjoint ∀f : Sub(X) // Sub(Y );

3. For every object X of C, Sub(X) is a lattice with smallest element.

It should be noted that the existence of the right adjoint ∀f , for every f , implies
the existence of the operation ⇒ of implication in every lattice of subobjects. A
Heyting functor between Heyting categories is a regular functor preserving ∀f and
the lattice operations (in fact, supremums and implication suffice). The category
of Heyting categories and Heyting functors will be denoted by Heyt.

A category C is said to be a Boolean category if

1. It is a Heyting category;

2. For every object X of C, Sub(X) is a Boolean algebra.

A Boolean functor is a Heyting functor preserving all the lattice operations. The
category of Boolean categories and Boolean functors will be denoted by Bool.

Thus, a theory T in a language Li is now replaced by an i-category CT. The
goal is now to use concepts and methods of category theory to obtain results about
logic. As usual, in a categorical framework, one first investigates the existence of
adjoint functors to naturally given functors. Thus, there are obvious forgetful
functors (in fact 2-functors):

Bool //Heyt // Coh //Reg.

Two questions arise immediately: 1. Are there adjoints to these natural forgetful
functors? 2. How are these categories related to toposes? In other words, what
are the functors between these categories and the category of toposes?

These questions are in part answered in Reyes 1974. Let us now summarize the
content of that paper, since it reflects in part the knowledge of the field as of 1971-
1972 approximately. The first section, written essentially by Joyal, defines the
various foregoing categories and proves some of their important properties. The
second section, written by Reyes, gives a definition of Grothendieck toposes, proves
that every Grothendieck topos is a Heyting category and defines the category Top
of toposes with geometric morphisms as functors. Section three of the paper
investigates the links between Grothendieck toposes and logic, in particular the
existence of (left-)adjoints to forgetful functors from Top to other logical categories.
Reyes attributes to Joyal the observation that there is a left adjoint Sh(−) :
Coh // Top to the forgetful functor Top //Coh defined by: for each coherent
category C, Sh(C) is the topos of sheaves for the so-called finite cover topology

and for any regular functor C
u
−→ D, we get a geometric morphism of toposes û
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given by the pair of adjoints Sh(C)
u∗

−→
←−
u∗

Sh(D). Furthermore, and this is the key

observation that will lead to important concepts and results, although it is not
emphasized nor put in perspective in the paper, the functor Sh(−) satisfies the
following universal property: for every coherent functor u : C // E into a topos,

there is a unique (up to isomorphism) morphism of topos Sh(−)
u∗

−→
←−
u∗

E such that

the triangle

C Sh(C)
h //C

E

u

��?
??

??
??

??
??

Sh(C)

E

u∗

��

commutes, where the functor h : C //Sh(C) is the standard Yoneda embedding.
As we will see, this result introduces without naming it what will be called the
classifying topos of C.

It is then shown in the next paragraph that there is no such left adjoint between
the category of toposes and the category of Heyting categories. There is however
a left adjoint to the forgetful functor from the category of Boolean toposes and the
category of Boolean categories, provided that the functors in the latter category,
that is the Boolean functors, preserve arbitrary sups.

In the last section of the paper, Reyes presents Joyal’s completeness theorem
for Boolean categories and explores links with models of non-standard analysis.
We will only comment the completeness theorem.

Here is the formulation given in the paper: Let C be a small Boolean category.
If X is distinct from the smallest object of ℘(X), then there is a Boolean model
M : C // Set such that M(X) 6= ∅. Three points have to be underlined. First,
notice the similarity between this formulation and Daigneault’s formulation of the
completeness theorem and, thus, with Lawvere’s formulation. Second, the proof of
the completeness theorem given in the paper relies on what is essentially the same
construction as the one stated in the second abstract on logic and foundations in
the Notices, although there is no mention of pro-objects in the 1974 paper. This
strongly suggests that Joyal had a proof of the completeness theorem by purely
categorical means already in the fall of 1970. Third, although it is not worded
in this manner in the paper, the theorem amounts to the following representa-
tion theorem: let C be a (small) coherent category. Then there is a set I and a
conservative coherent functor M : C // SetI . Being “conservative” means, in
this context, that M reflects isomorphisms, that is if M(f) is an isomorphism in
SetI , then f is an isomorphism in C. Notice here the similarity with the represen-
tation theorem for polyadic algebras, as formulated by Daigneault. It is striking
that the set X in the latter formulation is replaced by the category Set of sets in
this new formulation. Although the theorem is strictly speaking a representation



68 Jean-Pierre Marquis and Gonzalo E. Reyes

theorem, it implies the completeness theorem, since the coherent category C is a
conceptual category, i.e. a theory. Furthermore, since coherent functors between
Boolean categories are in fact Boolean, a fact used explicitly by Joyal in his proof,
the representation theorem for Boolean categories is a special case the theorem
for coherent categories. Thus, one obtains directly the completeness theorem for
classical first-order logic.

When compared to Volger’s attempt at characterizing the doctrine of first-order
logic, two elements standout in Joyal and Reyes’s work. First, the elegance and
simplicity of the hierarchy of categories defined, starting with regular categories,
reveals a global conceptual coherence, no pun intended, of logical categories. Sec-
ond, as we have already pointed out, regular categories also have an important
status in category theory in general and thus their classification establishes impor-
tant links between logical notions and categorical notions. Third, the approach
seems to be at the right level of generality and flexibility, in contrast with Volger’s
work. In particular, it did not presuppose the existence of a subobject classifier,
or an object of truth-value and still fitted in perfectly with toposes. The key was
to find a way to articulate together fragments of first-order logic that would allow
a categorical passage from one type of category to another and in such a way that
one would not have to import additional structure, in the way Volger had done.
It was certainly seen as an important gain that only properties were added to
move from one level to the next. Finally, the connections with toposes made it
possible to construct a dictionary between algebraic geometry and logic and one
could hope that results and methods from both fields could interact and yield new
and useful insights. Thus, a central piece of the puzzle of algebraic logic was now
in place. The other parts were being added quickly. One of the pieces, already
hinted at in Dionne’s thesis, was to find a way to construct a theory TC from a
category C in such a way that there is a canonical interpretation of TC in C. But
for the latter, one needs to have a general notion of interpretation of a theory in a
category, which is the second piece. Once these have been defined appropriately,
they fit together smoothly and the general conceptual picture emerging is of great
beauty.

4.6 Constructing theories from categories

As early as 1971, the idea of interpreting a logical theory in a topos appeared in
William Mitchell’s work on the relation between Boolean toposes and set theory. In
his paper, communicated by Mac Lane in October 1971 and published in 1972, he
explicitly introduced a language L(E) for a topos E and two types of interpretations
of L(E) : an external interpretation and an internal interpretation. The internal
interpretation would soon become the internal language of a topos and it would
be used like any other deductive system to prove results in that specific theory,
whereas the external interpretation would amount to using certain toposes as
models of certain specified theories of sets. Both methods evolved quickly, but
it seems clear that Bénabou, in his talk at Oberwolfach and Joyal in his talk in
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Montreal, both in early 1973, found a way to define the internal language L(C) for
a weaker category C. Makkai and Reyes quickly used these methods in 1973 and
1974. Their first joint papers were presented in November 1974 and published in
1976.

Before we look at the internal language of a category C, we have to consider
the notion of an interpretation M of a many-sorted language L in a category C
with finite limits. The basic idea was to lift to categories the traditional Tarskian
semantics as defined with sets. The translation requires, as usual, that clauses
stated in terms of elements and subsets be reformulated in terms of morphisms
and subobjects.

Assume C is a category with finite limits and L0 is defined as above. A C-
interpretation M of L0 consists of:

1. an object MS of C for each sort S;

2. a morphism Mf : MS1 × · · · × MSn // MS for each function symbol

f : S1 × · · · × Sn // S; in particular, when n = 0 a morphism 1
f
−→MS;

3. a subobject MR � MS1 × · · · ×MSn for each relation symbol R � S1 ×
· · · × Sn.

Notice immediately that when C is the category Set of sets, then a Set-interpre-
tation is an ordinary many-sorted structure of similarity type L0. Homomorphisms
h : M //N between interpretations are defined in the obvious fashion, i.e. they
preserve the interpretations of functions and relations. As usual, interpretations
are extended to all terms and formulas of the language Li, where the value of
i, 0 ≤ i ≤ 4, will be clear from the context below. Let ~x = x1, . . . , xn be a
context with types S1, . . . , Sn respectively, t a term of type S and ~x · t a term-
in-context over Li. To every such term-in-context ~x · t, we assign a morphism
[[~x · t]]M : MS1 × · · · ×MSn // MS by recursion as follows:

1. If t is a variable, then it is a variable xi of type Si, and thus [[~x · t]]M = 1Si
◦πi

(we are being pedantic: a variable is interpreted as the appropriate identity
morphism on the relevant type, the projection morphism πi is there to get
rid of the ‘dummy’ variables in the context);

2. If t is f(t1, . . . , tm), ti terms of type Ti, then by induction we have that
[[~x · ti]]M : MS1×· · ·×MSn //MTi for each ti, and [[~x · f(t1, . . . , tm)]]M is

the composite MS1×· · ·×MSn
〈[[~x·t1]]M ,...,[[~x·tm]]M〉
−−−−−−−−−−−−−−→MT1×· · · ×MTm

Mf
−−→

MS;

3. In particular, when t is a constant f , then [[~x · t]]M is the composite morphism

MS1 × · · · ×MSn −→ 1
Mf
−−→MS.

A formula-in-context ~x ·φ is interpreted as a subobject [[~x · φ]]M � MS1×· · ·×
MSn as follows:
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1. If φ is (t1 = t2), and t1 and t2 are of type T , then [[~x · φ]]M is the equalizer

of MS1 × · · · ×MSn
[[~x·t1]]
−−−→
−−−→
[[~x·t2]]

MT

2. If φ is R(t1, . . . , tm) with t1, . . . , tm of types T1, . . . , Tm respectively, [[~x · φ]]M
is the pullback

MS1 × · · · ×MSn MT1 × · · · ×MTm
<[[~x·t1]],...,[[~x·tm]]>

//

[[~x · φ]]

MS1 × · · · ×MSn

��

��

[[~x · φ]] MR// MR

MT1 × · · · ×MTm

��

��

3. If φ is >, then [[~x · φ]]M is MS1×· · ·×MSn or equivalently, the top element
of Sub(MS1 × · · · ×MSn);

4. If φ is (ψ ∧ θ), then [[~x · φ]]M is the pullback (in this case, since we are dealing
with subobjects, it is the intersection or the inf)

[[~x · θ]] MS1 × · · · ×MSn// //

[[~x · φ]]

[[~x · θ]]

��

��

[[~x · φ]] [[~x · ψ]]// // [[~x · ψ]]

MS1 × · · · ×MSn

��

��

5. If φ is ⊥ and C is a coherent category, then [[~x · φ]]M is the bottom element
of Sub(MS1 × · · · ×MSn);

6. If φ is (ψ ∨ θ) and C is a coherent category, then [[~x · φ]]M is the union of the
subobjects [[~x · ψ]]M and [[~x · θ]]M ;

7. If φ is (ψ ⇒ θ) and C is a Heyting category, then [[~x · φ]]M is the implication
[[~x · ψ]]M ⇒ [[~x · θ]]M is the Heyting algebra Sub(MS1 × · · · ×MSn);

8. If φ is ¬ψ (which is the same as (ψ ⇒ ⊥)), and C is a Heyting category, then
[[~x · φ]]M is the Heyting negation ¬[[~x · ψ]]M ;

9. If φ is (∃y)ψ, where y is a sort T , and C is a regular category, then [[~x · φ]]M =
∃π [[~x, y · ψ]]M which is the image of the composite

[[~x, y · ψ]] � MS1 × · · · ×MSn ×MT
π〈1,...,n〉
−−−−−→MS1 × · · · ×MSn
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where ‘~x · y’ denotes the context resulting from the juxtaposition of y to the
list ~x;

10. If φ is (∀y)ψ, where y is a sort T , and C is a Heyting category, then
[[~x · φ]]M = ∀π[[~x, y · ψ]]M where π is the projection

MS1 × · · · ×MSn ×MT
π〈1,...,n〉
−−−−−→MS1 × · · · ×MSn.

Again, when C is the category Set of sets, then all these definitions translate into
Tarski’s usual semantics for a many-sorted first-order language. With all these
definitions at hand, we define the notion of satisfaction and model as follows.

Let M be a C-interpretation. We say that M is a model of a sequent σ = (φ `~x
ψ) or that σ is satisfied in M , and write as usual M |=C σ or simply M |= σ, if
[[~x · φ]]M ≤ [[~x · ψ]]M in Sub(MS1 × · · · ×MSn). We say that M is a model of a
theory T if all the axioms of T are satisfied in M .

We denote the category of models of T in C by ModC(T). An important feature
of this framework is that it is possible to transfer models of T in C in an appro-
priate category D along appropriate functors. More specifically, if T is a (regular,
coherent, etc.) theory, then any (regular, coherent, etc.) functor F : C // D
induces a functor Mod(F ) : ModC(T) // ModD(T) in the obvious way.

Let C be a category with finite limits. Then the internal language LC of C
is given as follows: for each object X of C, there is a sort pXq, the name of
X ; for each morphism f : X1 × · · · × Xn

// Y in C, a function symbol pfq :
pX1q×· · ·×pXnq

//pY q and for each subobject R � X1×· · ·×Xn, a relation
symbol pRq � pX1q× · · · × pXnq. (This is called the extended internal language
in Makkai & Reyes 1977.) In other words, the language LC is nothing less than
C. There is a canonical interpretation of LC in C, which is nothing less than the
identity interpretation: each sort pXq is sent to the object X named by it, each
function symbol pfq : pX1q × · · · × pXnq

// pY q is sent to the morphism f :
X1×· · ·×Xn

//Y it denotes and each relation symbol pRq � pX1q×· · ·×pXnq

is sent to the subobject R � X1 × · · · × Xn it refers to. A sequent σ over LC

will therefore have a canonical interpretation in C. Whenever the sequent σ is
verified in C, we write C |= σ. Thus, diagrams of C can be replaced by sequents
over LC . The theory TC of C is given by the collection of sequents of the internal
language that are verified in C by the canonical interpretation. This is of course the
purely model-theoretical point of view of a theory. The point of this apparently
tautologous game is that it is possible to use the appropriate deductive system
introduced above to prove properties of C. More specifically, we can reproduce the
foregoing system of theories as follows. Let C be a category. Then, the internal
language LC is a special case of a primitive language L0. We can construct the
theory TC , denoted by T0(C) by Boileau, by taking the axioms

i) > ` f(a) = a whenever f : A //A is an identity morphism in C;

ii) > ` g(f(a)) = h(a) whenever
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A

B

f

��?
??

??
??

??
??

A C
h // C

B

??

g

��
��

��
��

��
�

is a commutative triangle in C.

If C is a regular category, then, to the axioms of T0(C), the axioms

iii) > ` ∃a(a = a) and > ` a1 = a2 whenever A is a terminal object of C;

iv) > ` ∃a(h(a) = b ∧ k(a) = c) and h(a1) = h(a2) ∧ k(a1) = k(a2) ` a1 = a2

whenever

C
k
←− A

h
−→ B

is a product diagram in C;

v) f(b) = g(b) ` ∃a(h(a) = b), ∃a(h(a) = b) ` f(b) = g(b) and h(a1) = h(a2) `
a1 = a2 whenever

A
h
−→ B

f
−→
−→
g

C

is an equalizer diagram in C

to obtain the theory T1(C). By adding the appropriate axioms, we associate a
specific theory Ti(C) to coherent, Heyting and Boolean categories.

Using the appropriate rules, together with the axioms of TC , one can deduce
formally results about C. Proceeding in this manner, we obtain the following table:

If C is a Then LC is And TC is
Category L0(C) T0(C)
Regular category L1(C) T1(C)
Coherent category L2(C) T2(C)
Heyting category L3(C) T3(C)
Boolean category L4(C) T4(C)

It is straightforward to prove a soundness theorem for the various logical systems
involved. More specifically, given a (regular, coherent, Heyting, Boolean) theory,
M a model of T in a (regular, coherent, Heyting, Boolean) category C, if σ is
a sequent (in the appropriate fragment of the first-order language L) which is
provable in T, then M |=C σ.
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4.7 Building bridges

The resulting situation was somewhat surprising and to some, perhaps, uncom-
fortable. Whereas we saw Dionne constructing categories from logical theories in
order to apply categorical methods and obtain in this manner results about the
original theories, it became possible to use logical methods to obtain results about
categories. In a sense, the frontier between logical theories as categories and cat-
egories as logical theories is thereby vanishing. When Mihály Makkai arrived in
Montreal in the fall of 1973, he solved some of the problems considered by Joyal
and Reyes by using purely logical methods. These results lead to two joint papers
with Reyes submitted in the fall of 1974. The first paragraph of their second paper
is revealing in this respect:

Here, just as in [9] [their previous paper], our method consists in trans-
lating any given problem for categories into a purely logical problem
via the mechanism described in Sec. 1 in [9], and then using familiar
methods developed in logic. (. . . )

Our point of view here is that categories provide an algebraic formula-
tion of logic, in the spirit of equating theories with categories and mod-
els with certain (“logical”) functors. We contend that much of logic
(model theory) can and should be expressed this way. On the other
hand, we freely use methods tied to the concrete “presentations”, i.e.,
to primitive symbols, formulas, etc., usually employed in model theory;
in fact, this is the novelty of our approach from the point of view of
the category theorist. There is an obvious analogy to abstract groups
versus groups defined by generators and relations. Just as in groups,
the abstract formulation (categories) may (and does) point up exam-
ples of “theories” in branches of mathematics quite distant from logic.
[Makkai and Reyes, 1976a, 385].)

Thus, we see again the claim that a category is the abstract algebraic expression of
theory presented in a specific language with specific axioms. The main advantage
underlined here, however, is that the abstract expression opens up unforeseen
connections with other branches of mathematics. But the tension was certainly still
present. In a paper written in 1975-76 while he was on sabbatical from Montreal,
Reyes opens with the following claims:

The goal of topos theory is to develop a language and an efficient
method for the study of concepts of local character (as well as con-
structions on such concepts) that are found in diverse branches of
mathematics : topology, algebraic geometry, analytic geometry, . . . .

To the geometric aspect (or topological), which is the dominant as-
pect, another is dialectically opposed : the logical aspect.([Reyes, 1978,
156].)(our translation)
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We are back to the early rhetoric with the emphasis, once again, on the geometric
aspect, although at this stage it is clear that there is some sort of dictionary
between the two. It is more as if the geometric and the logical are two faces of the
same coin (but in fact, there are other faces as well, so it is more a cube than a
coin).

But developing the logical machinery required to present Makkai and Reyes’
results has its costs. Presenting all the preliminary details and the proofs contained
in the first paper published in 1976 will constitute the bulk of the chapters 2, 3,
4, 5 and 6 (out of 9) of their book published in 1977. Chapters 7, 8 and 9 present
the proofs of the second paper.

Here are the key results presented in the two papers presented in 1974 by Makkai
and Reyes.

Having presented the foregoing notion of interpretation, of the internal lan-
guage and the theory TC of a category C, Makkai and Reyes proved the following
completeness theorems for categories.

Theorem: i) let C be a small category with finite limits and with finite stable
sups (i.e. each finite family of subobjects of an object has a stable sup). Then
there is a complete Boolean algebra B and a functor

M : C // Sh(B)

such that M preserves all finite limits, (finite or infinite) stable sups, stable images
(finite or infinite), distributive infs, and distributive ∀f (C)’s, and such that M is
conservative.

ii) If C has finite limits only, the same conclusion holds without the clauses for
infs and ∀f ’s.

The proof rests entirely on logical methods. In the paper, it is barely sketched.
It proceeds by replacing C by TC and then using properties of the canonical in-
terpretation adapting completeness results in the literature, e.g. Mansfield 1972
and an unpublished manuscript of Higgs.We should emphasize at this stage the
importance of Higgs’s (still) unpublished manuscript, widely read and extremely
influential at the time, on a categorical version of Boolean-valued models.

The theorem has, among others, the following corollaries:
Corollary 1 (an improvement of Barr’s theorem): every Grothendieck topos E

has a surjective Boolean point, i.e. there is a complete Boolean algebra B and a
geometric morphism p : Sh(B) // E of toposes such that p∗ : E // Sh(B) is
faithful. Moreover, and this is the improvement, B and p can be chosen so that p∗

preserves all (finite or infinite) distributive infs and all distributive ∀f (C)’s in E .
Corollary 2: (i) Let C be a coherent category. Then there is a set Y and a

functor M

M : C // Sh(℘(Y )),

where ℘(Y ) denotes the Boolean algebra of subsets of Y , such that M is as in the
foregoing theorem except that the sups and infs to be preserved by M are only
the finite stable (distributive) ones.
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The main theorem implies, together with a compactness argument, Deligne’s
theorem: every coherent topos E has a surjective Boolean point p : Sh(℘(Y )) //E
for some set Y . In chapter six of their book, the formulation of the theorem takes
the more eloquent form: if E is a coherent topos, then there is a conservative model
M : E // SetI into a Boolean topos of the form SetI , with I a set. In the third
chapter, the theorem is stated for coherent categories as follows:

Let C be a (small) coherent category. Then:

1. If A and B are two subobjects of X in C such that A � B, then there is a
coherent functor M : C // Set such that M(A) � M(B) as subobjects of
M(X).

2. There is a set I and a faithful coherent functor M : C // SetI .

The foregoing results follow from the main theorem in which one considers dis-
tributive infs and distributive ∀’s. When one turns to models that preserve all infs
and all ∀’s, then one obtains similar results for intuitionistic logic. The results
become:

Theorem: For every Grothendieck topos E there is a complete Heyting algebra
H and a surjective H-valued point p : Sh(H) // E such that p∗ : E // Sh(H)
preserves all (finite or infinite) infs and all ∀f (C)’s in E .

Theorem: If the topos E has a surjective Boolean point of the form
Sh(℘(Y )) // E

for a set Y , then the topos Sh(H) can be taken to be the category of sheaves over
a topological space.

These are completeness results for intuitionistic logic. Again the proofs use
purely logical methods. (See chapter 6.3 of Makkai & Reyes 1977.) In this setting,
Joyal’s completeness theorem, closely related to Kripke’s completeness theorem
for intuitionistic logic, takes the following form:

Theorem (Joyal, as we saw, probably in 1970): Let C be a coherent category
and let ModSet(C) the category of coherent functors C //Set, thus the category
of set-models of C. There is a small full subcategory P of ModSet(C) such that the
evaluation functor ev : C // SetP is conservative and preserves all finite limits,
stable finite sups, stable images and stable ∀f (C) existing in C.

Some important remarks are in order. First, it is now possible to see that
completeness theorems for certain logical theories are equivalent to representa-
tion theorems for categories. Thus, for instance, the completeness theorem for
first-order classical theories is equivalent to the representation theorem for co-
herent categories. As we have already pointed out, the key construction for the
implication from the representation theorem to the completeness theorem is the
construction of the category of concepts of a theory. To prove the other direction,
one uses the internal theory TC of a small coherent category C. Thus, one can say
that the completeness theorem and the representation theorem are translation-
equivalent to one another. Second, Joyal’s theorem has a remarkable feature: the
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link between a theory and its category of models is provided by a canonically de-
fined functor, the evaluation functor. Given two categories C and D, the evaluation

functor ev : C //D(DC) is always definable by ev(X,F ) = F (X) (and similarly
for morphisms). Furthermore, the fact that, whenever C and D are coherent cate-
gories, ev is a coherent functor follows by abstract general nonsense. The specific
observation is that it is also conservative.

In the early sixties, Lubkin-Freyd-Mitchell-Héron proved an important represen-
tation theorem for Abelian categories. The latter are categories satisfying certain
abstract properties sufficient for the development of a large part of homological
algebra. It is fair to say that Abelian categories together with the representation
theorem just mentioned occupied a central position in the development of category
theory in the sixties. Not only were they extremely powerful in their applications,
but they also served as a model of the power of category theory itself. It should
be mentioned at this point that the category Set is not an Abelian category. The
typical example of an Abelian category is the category of Abelian groups or a
category of modules over a (commutative) ring. Michael Barr, then at McGill
University, was looking for non-additive versions of the Abelian notion as well
as the corresponding representation theorem. As we have already mentioned, he
succeeded in this attempt and introduced regular and exact categories in 1970 to-
gether with a representation theorem for exact categories, from which the known
representation theorem for Abelian categories can be deduced. In contrast with
the situation found with Abelian categories, the category Set is regular and exact.
A fascinating fact is that a category is Abelian if and only if it is both additive
and exact. It should be pointed out immediately that the notion of an exact cat-
egory is simply a strengthening of the notion of a regular category and that only
the latter property was used in Barr’s proof of the representation theorem. Thus
the category Set is regular (as well as coherent, Heyting, Boolean and a topos.)
Barr’s representation theorem for regular categories turns out to be equivalent to
a completeness theorem for coherent logic when it is looked at from the proper
angle.

First, the property of being conservative is crucial and captures a form of com-
pleteness. To understand this, it is imperative to see what the property of re-
flecting isomorphisms means in this particular case. The category Set is coherent
and thus so is the category SetModSet(C). Thus, the latter category inherits all
its coherent properties from the category Set. Furthermore, the property of re-
flecting isomorphisms of the functor e : C // SetModSet(C) implies that whatever
coherent property the category SetModSet(C) has, so does the category C. Hence
the property of reflecting isomorphisms implies that any coherent category C has
all coherent properties that Set has.

Second, the latter claim has to be compared with the Stone representation
theorem for distributive lattices and Boolean algebras. The usual formulation of
the Stone representation theorem is that any distributive lattice has an embedding
into a power-set algebra. This statement can be shown to be equivalent to the claim
that for any distributive lattice D, there is a 2-valued homomorphism f : D //2
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that reflects the order, i.e. if f(x) ≤ f(y), then x ≤ y. This last statement can
be interpreted as saying that any distributive lattice shares all the universal Horn
properties of the 2-element lattice. Thus, moving from the propositional case to
the first-order case requires that we replace the 2-element lattice by the category
Set.

Finally, let us see how the representation theorem is equivalent to a complete-
ness theorem. Assume the representation theorem for coherent categories and let
C be the conceptual category [T]coh for some coherent theory T. Then the repre-
sentation theorem yields automatically the completeness theorem. For the other
direction, assume we have a coherent category C and let TC be its internal theory.
Applying the classical completeness theorem for TC , we get the representation the-
orem for C, since the coherent functors C // Set are identical to the models of
the internal theory TC .

Let us come back to the evaluation functor e : C // SetModSet(C). Joyal
showed that the functor e preserves all the existing Heyting structure that happens
to exist in SetModSet(C). In other words, if C is a Heyting category, then e is
automatically a conservative Heyting functor. Hence, a representation theorem
for Heyting categories is obtained for free: every small Heyting category has a
conservative Heyting functor to a Heyting category of the form SetP , where P
is a small category (it has to be extracted from the large category ModSet(C)).
Kripke’s completeness theorem for first-order intuitionistic logic can be deduced
from Joyal’s theorem.

Let us close this section by coming back to Barr’s representation theorem for
regular categories. Joyal showed that Barr’s theorem is equivalent to the claim

that the evaluation functor e : C // SetModSet(C) is full and faithful for any
small regular category C and where ModSet(C) is the category of regular functors
C // Set. This is of course equivalent to a completeness result for first-order
logic.

The second paper published in 1976 is important not only for the results it
contains, but also for the question it asks. Indeed, one can argue that only a
categorical formulation of logic allows the question to be stated precisely. Thus, in
this case, it is not only the fact that we obtain a new result, but the very statement
could not have been formulated without the categorical framework.

Since Lawvere’s thesis, it was common to consider functors I : T1
// T2

between theories and the induced functors between models of theories
I∗ : Mod(T2) // Mod(T1).

One of the questions that can be asked in this context is this: how are properties
of I∗ reflected in I? If the “logical” properties of I∗ are indeed reflected in I ,
then certainly this is a kind of completeness. Since, T1 and T2 are thought of
as categories of concepts, it becomes natural to talk about a form of conceptual
completeness whenever one can recover the properties of I from those of I∗. Let
us now see how these are stated in Makkai and Reyes’s paper.

First, they fix the categories they are working with: T1 and T2 are assumed
to be small coherent categories and I : T1

// T2 is assumed to be a coherent
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functor. Furthermore, the categoryMod(T) is the category of all coherent functors

F : T // Set, it is a full subcategory of SetT. Thus we have the usual induced
functor I∗ : Mod(T2) // Mod(T1). The following results, although interesting
in themselves, are used to prove what will be call the conceptual completeness
theorem. The first theorem is an application of the completeness theorem obtained
in their first paper:

Theorem 1A: Assume I∗ is surjective, that is for every model M in Mod(T1)
there is a model N in Mod(T2) such that I∗(N) ' M . Then I is injective on
subobjects, i.e. if X1 � X and X2 � X in T1 and I(X1) ≤ I(X2) (in the
ordering of subobjects of I(X)), then X1 ≤ X2. In particular, I is faithful.

Theorem 1B (Beth definability theorem): Assume that T1 and T2 are Boolean
categories. Assume also that if f : I∗(N1) // I∗(N2) is an isomorphism, then
there is a morphism g : N1

//N2 such that I∗(g) = f . Then I is full with respect
to subobjects, i.e. if Y � I(X) in T2, then there is X1 � X in T1 such that
Y ' I(X1).

Theorem 1.1: if I∗ is full, then I is full with respect to subobjects. If in addition
I∗ is surjective, then I is full.

Whereas theorem 1B is closely related to the Beth definability theorem, theorem
1.1 comes naturally in a categorical framework and does not require that the
theories be Boolean. (See [Makkai and Reyes, 1977, 195–197] to see how theorem
1B is related to the classical Beth definability theorem.)

The conceptual completeness theorem is formulated for pretoposes, a notion
introduced by Grothendieck in the sixties. A pretopos is a small coherent category
having finite disjoint sums (coproducts), and effective equivalence relations.

Theorem (conceptual completeness): Assume T1 is a pretopos, T2 is coherent
and I : T1

//T2 is a coherent functor. Then, if I∗ is an equivalence of categories,
then so is I .

Two facets of the result have to be emphasized. First, the conceptual complete-
ness theorem provides a characterization of pretoposes among coherent categories.
Indeed, the result fails whenever T1 is not a pretopos. Second, the theorem can
be read as follows: suppose that I : T1

// T2 is thought of an interpretation and
that T2 is considered to be an extension of T1. One could say that I is strongly
conservative whenever I* is an equivalence. Then the theorem asserts that pre-
toposes and only pretoposes do not have proper strongly extensions. Still put
differently, one could say that although T2 is an extension of T1, it has the same
category of models. The result shows, and this was in fact part of the motivation
underlying the original conjecture formulated by Reyes, that finite disjoint sums
of formulas and quotients of a formula by a provable (in the theory) equivalence
relation are coherent logical operations (although not representable in ordinary
logic), but there are no others, whence the conceptual completeness. It should be
emphasized, once more, that all the proofs rely on logical methods. Andrew Pitts
gave purely categorical proofs of these results in the eighties. (See [Pitts, 1987;
Pitts, 1989].)
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The next theorem is Keisler’s theorem, but now stated explicitly for coherent
logic.

Theorem 2.1. Let K be an elementary class, i.e. defined by any set of sentences
in L2. Then the following are equivalent:

1. K is the class of models of a coherent theory over L2.

2. CatK , the category generated by K, i.e. whose objects are the many-sorted
structures of similarity type L2 and homomorphisms between them, is the
dual of the category of points of some coherent topos.

3. K contains the colimit of any directed family taken from CatK .

It is pointed out that the equivalence between (1) and (3) was proven by Keisler.
It is not mentioned that the equivalence with (2), although formulated differently
and using different means, was announced by Joyal in 1970. Makkai and Reyes’
proof relies on the notion of classifying topos.

4.8 Classifying topos and generic model of a theory

The notion of classifying topos has its own complex history. The first appearance
of the concept is usually attributed to Monique Hakim in the sixties, but her work
was published only in 1972. (See [Hakim, 1972].) The term explicitly appears
in Giraud’s contribution to the first meeting dedicated to elementary toposes in
Dalhousie in the winter of 1971. In this paper, Giraud presents three different
constructions of what he calls the classifying topos of a stack C and states a
universal property characterizing classifying toposes in the bicategory of toposes.
Needless to say, in this form, the notion has no explicit connection with logic.
As we have already mentioned, an implicit version of the notion also appeared
in Reyes 1974, this time having a direct connection to logic. Thus, the notion
was implicitly used by Joyal and Reyes already in 1971-1972. Myles Tierney and
Jean Bénabou also discovered a version of the notion in the spring of 1975, as
reported by Tierney himself in 1976. (See [Tierney, 1976, 211, 216 and 217]. See
also [Bénabou, 1975], where the notion is mentioned but not defined.) Johnstone
and Wraith introduced particular cases of the notion independently also in 1974.

To introduce the concept of classifying topos, we digress and recall some im-
portant facts of ring theory. Up until the middle of the 19th century, even
people like Gauss, Galois and Abel took for granted that any polynomial with
coefficients in a ring A had a zero somewhere, in an extension of A, although
this had not been proved. Kronecker, following the lead of Cauchy, pointed
out that the ring A [X ]/(p) contains the ‘generic’ zero G = X + (p). Further-
more, this solution is universal in the sense that (taking A = Z to simplify),
G∗ : RING(Z [X ]/(p), R) ' ZeroR (p), where G∗(ϕ) is the obvious zero of p in R
obtained from ϕ, namely ϕ(G). Clearly, all of this can be generalized to ideals of
polynomials, rather than single polynomials.
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This result may be interpreted as showing that although the ‘domain’ A may
fail to have a zero of a proper ideal I ⊂ A [X1, X2, . . . , Xn] there is an extension
of this ‘domain’ namely A [X1, X2, . . . , Xn]/I which results from A by adding the
generic zero G of I .

These ideas underline a far reaching analogy stressed by Joyal between rings
and toposes and which can be summarized in the following table:

Ring theory Categorical logic
Ring Topos
Finitely presented ring Coherent topos
Z Set
Ideal Theory
Zero Model
Proper ideal Consistent theory
Generic zero Generic model

Notice, once more, the algebraic inspiration underlying the analogy. The cat-
egory Set plays a role analogous to the ring of integers Z in ring theory. The
various constructions to be developed in topos theory are analogous to fundamen-
tal operations of ring theory, especially constructing from the data generic zero’s
to polynomials.

The classifying topos provided the context in which the notion of generic model
could be defined and developed. Joyal and Reyes showed in the early seventies
that for any coherent theory T, there is a topos B(T) and a generic model G of T
in B(T) satisfying the universal property: G∗ : TOP(E ,B(T)) ' ModE(T) where
G∗ is the functor which sends a geometric morphism (p∗, p∗) into a model p∗ ◦G
of T in E .

The topos B(T) is called the classifying topos of the theory T and it is a co-
herent topos in the sense of Grothendieck, that is roughly a topos defined by a
topology having the property that every covering family is finite. The analogy
with Kronecker’s construction should be obvious. On the basis of this analogy we
may view the classifying topos of T as the ‘universe’ B(T) which results from Set
by forcing the existence of a generic model of T.

One construction of B(T) proceeds as follows. First, given T, construct the
category of concepts [T]coh. Define a Grothedieck topology J in [T]coh by taking
all finite families {fi : Xi

// X : 1 ≤ i ≤ n} such that the union of the images
of the fi is the whole of X . This yields a site

(
[T]coh , J

)
and the topos of

sheaves Sh
(
[T]coh , J

)
. The latter is the classifying topos B(T) of T. The Yoneda

embedding [T]coh
// Sh

(
[T]coh , J

)
can be shown to be a coherent functor and

it automatically yields the generic model G.
It turns out that every coherent topos is the classifying topos of a coherent

theory (the details of this claim were worked out in Makkai & Reyes 1977). One
of the first and important examples is the classifying topos of the theory of local
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rings, also called the Zariski topos. (This example goes back to Monique Hakim,
although not from a logical point of view. See Hakim 1972.) Remember that the
theory of local rings may be axiomatized by the following coherent theory. We
add to the axioms for the theory of commutative rings with unity, the following
two coherent axioms:

{
i. 0 = 1 `[] ⊥
ii. (∃z)((x+ y)z = 1) `x,y ((∃z)(xz = 1) ∨ (∃z)(yz = 1))

The topology of the site can be described explicitly and a description of the generic
local ring can also be given explicitly.

A different but equally important example was given by Joyal. Joyal has shown
that the topos of simplicial sets is the classifying topos of the theory of linear
orders with different bottom and top elements. (See Mac Lane & Moerdijk 1994
for details.) Other examples have appeared in several investigations.

An important tool to find the coherent theory classified by a coherent topos is
the conceptual completeness theorem mentioned above. In more detail, if T is a co-
herent theory which has a coherent model M in a coherent topos E such that there
is an equivalence of categories given by the obvious functor M ∗ : TOP(E , Set) '
ModSet(T), then E is equivalent to B(T).

From the existence of the classifying topos and its ‘converse’, it follows that any
coherent topos results from Set by adding a generic model of a suitable coherent
theory in strict parallel to the fact that any finitely presented ring may be obtained
as a quotient of a ring of polynomials with coefficients in Z divided by a suitable
ideal.

The classifying topos theorem has an infinitary extension, as Makkai and Reyes
have shown in their book. In fact, it turns out that every geometric theory has also
a classifying topos and, furthermore, that every topos is the classifying topos of a
geometric theory. Thus, every Grothendieck topos appears as the extension of Set
obtained by adding a generic model of a suitable geometric theory; in complete
analogy with the representation of an arbitrary ring as a ring of polynomials (in
a possibly infinite number of indeterminates) modulo some ideal, showing how
fruitful the analogy between topos theory and ring theory is. And it is far from
clear that it has been fully exploited. For instance, is there any topos theoretical
analog to Hilbert’s celebrated Nullstellensatz?

All this work brought to the forefront the logical aspects of the work done by
the Grothendieck School. For instance, as shown by Makkai and Reyes in their
book, Deligne’s theorem that coherent toposes have enough points turns out to
be, modulo the theory of classifying toposes, equivalent to Gödel’s completeness
theorem for first order logic. Apart from Deligne’s proof, there is a purely cate-
gorical proof given by Joyal that has strong similarities to Henkin’s proof of the
completeness theorem. Another result of Grothendieck about point of a topos
being obtained as colimits of a set of points is a consequence of the downward
Löwenheim-Skolem-Tarski theorem.

Here is the version presented by Makkai and Reyes in November 1974. Consider
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the functor category EE0 of all geometric functors u∗ : E0 //E , called the category
of all E-models of E0 and denoted by Mod(E0, E). Let T be a coherent theory and
CT its corresponding conceptual category. A E-model of T in a topos E can be
taken to be a coherent functor M : CT

// E . Let Mod(T, E) denote the full

subcategory of the functor category ET whose objects are the E-models of T. As

usual, any E0-model M0 : T // E0 induces a functor M∗
0 : Mod(E0, E) // ET.

Now, E0 is a classifying topos of T with canonical model M0 : T // E0 if the
induced functor M∗

0 : Mod(E0, E) // Mod(T, E) is an equivalence of categories,
for any topos E .

A slightly weaker definition of a classifying topos is given in their book: E0 is
a classifying topos of T with canonical model M0 : T // E0 if for every E-model
M : T // E , for any topos E , there is an E-model of E0 and a unique (up to
isomorphism) geometric functor u∗ : E0 // E such that the diagram

T E0
M0 //T

E

M

��?
??

??
??

??
??

E0

E

u∗

��

commutes. The main fact is that every coherent theory T has a classifying topos
E0 together with a canonical model, also called a generic model in their book, M :
T //E0. In the paper, it is stated that the classifying topos E0 can be constructed
in a purely syntactical manner. The first part of the construction consists in
constructing the small coherent category CT from T. One then constructs, by
formal means, a pretopos ET and a coherent functor I : CT

// ET satisfying the
universal property for pretoposes. It can then be shown that the pretopos ET is
in fact a topos.

Two other important facts about classifying toposes are stated. First, if E is a
coherent topos, as defined by Grothendieck, then there is a coherent theory T such
that ET ' E . In other words, every coherent topos is the classifying topos of some
coherent theory. It is for this reason that Makkai and Reyes claimed that the notion
of coherent topos is a logical notion. Second, let E be a coherent topos and Coh(E)
be the pretopos of coherent objects of E . (See, for instance, Makkai & Reyes 1977,
p. 276 for a definition of coherent objects.) Let M be an interpretation of L2 in

Coh(E). Suppose that M induces an equivalence M̂ : Mod(E ,S) //Mod(T,S).
Then M is a Coh(E)-model of T and E is the classifying topos for T with canonical
model M . This result is usually interpreted as saying that points are enough for
classifying.

Makkai and Reyes, following suggestions given by Mulvey and Lawvere, used
the above results to prove results of Hakim, which amounts to the claim that the
so-called Zariski topos is the classifying topos for the coherent theory of nontrivial
local rings and that the Etale topos is the classifying topos for the coherent theory
of separably closed local rings.
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The second paper does not end there. The last section mentions that some of
the results obtained have an obvious generalization to models preserving infinite
sups, a generalization to certain infinitary sentences. It is worth mentioning that
when Makkai arrived in Montreal, he was already an expert in infinitary logic,
more specifically model theory of formulas with denumerably long disjunctions and
denumerably long conjunctions. Furthermore, Reyes’ thesis was partly dedicated
to infinitary languages.10 However, the full presentation of the generalization to
what is now called geometric logic will only be introduced in their book. Their
paper contains only one illustration of the generalization, a special case of the
conceptual completeness theorem that we will not state here. (For the statement
of the theorem and the complete proof, see Makkai & Reyes 1977, 217-236.)

Although it was not mentioned explicitly in their papers, the completeness result
for coherent logic, in fact as we will see for geometric logic, had an interesting and
potentially very useful metalogical consequence. Here is how Reyes formulated it
later:

Let T be a coherent theory in a language L and σ the universal closure of a
formula ϕ⇒ ψ, where ϕ and ψ are coherent. Then if T |= σ in the classical sense
(every set-model of T is a set-model of σ), then for any Grothendieck topos E , σ
is valid in any E-model of T. (Reyes, 1978, 166.)[our translation.]

The result means that to check that a first-order coherent sequent is valid in-
tuitionistically, it is enough to check its validity in the topos of sets. Thus, the
metatheorem allows direct and potentially interesting generalizations from a clas-
sical setting, where presumably the computations are easy and straightforward, to
an arbitrary intuitionistic context. Reyes himself gives an application by proving
that Swan’s theorem is valid in any topos by giving a coherent formulation of it
and verifying it in the topos Set. In fact, the metatheorem is true for geometric
logic as well, to which we now turn.

4.9 Geometric logic

The notion of geometric logic appeared in print, although not as a full-blown
formal system, in Reyes’s paper on sheaves and logic in which it is presented as
the logic of sheaves. Lawvere mentioned the idea in his conference in 1973 and in
the published version of that conference. Underlying the idea of geometric logic is
the concept of geometric morphisms between toposes introduced in the sixties by
Grothendieck and was emphasized right from the start by Lawvere in 1970. In a
nutshell, geometric logic is the logic preserved by a geometric morphism between
toposes. Let us first give a precise definition of geometric logic.

Let L0 be as above. Then the class of geometric formulas Lgeo over L0 is the
class closed under those of coherent logic except that infinitary disjunctions ∨i∈Iϕi
are now admitted. The infinitary rules are the obvious generalizations of the finite

10In a paper published in 1972, Reyes proved that every theory in Lµ,ω is equivalent to a
theory in Lω1,ω in a specific technical sense that we won’t clarify. Interestingly enough, Reyes
used Joyal’s Polyadic Spaces to prove his result. See [Reyes, 1972].
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cases:
φ `~x ∨i∈Iφi if φ ∈ {φi}i∈I and

φ `~x θ ∨i∈Iφi `~x θ
∨j∈Jφj`~xθ

where {φj}j∈J = {φ} ∪ {φi}i∈I .

A sequent φ `~x ψ is geometric if both φ and ψ are geometric formulas. A
geometric theory T is a theory in which all sequents are geometric. Two interesting
examples of geometric theories are the theory of torsion Abelian groups and the
theory of finite sets.

Many of the results obtained by Joyal, Reyes and Makkai generalize to the
case of geometric logic. Certainly the most important result is that any geometric
theory T has a classifying topos ET together with a generic model M0 : T //ET.
Furthermore, every topos E is the classifying topos of a geometric theory, that is
for any topos E , there is a geometric theory TE such that E ' ETE .

5 HIGHER-ORDER LOGIC AND TOPOSES

As we have already mentioned, the very axioms of elementary toposes point to-
wards a certain conception of sets or more naturally a type theory. Accordingly,
connections between previous set theories and elementary toposes were explored
immediately showing that it is possible to construct models of a weak set theory
from various extensions of elementary toposes. For that purpose and already in
1971, W. Mitchell, Cole and Osius developed an internal language for toposes.
Here is how Osius characterizes the situation in 1973 at the Colloque sur l’algèbre
des catégories in Amiens in France.

Concerning the relationship between set theory and elementary topoi
we consider two problems :

1. Find a general procedure of proving set-theoretical results inter-
nally in a topos (internal aspect).

2. Characterize certain topoi as “ the category of sets ” arising from
certain types of models for set theory, thus generalizing the well-
known results of Cole, W. Mitchell, Osius (external aspect). ([Os-
ius, 1974b, 157])

In his lectures on elementary toposes given in the fall of 1973, Gavin Wraith writes:

There are certain developments, due to J. Bénabou, which I should
have liked to have included. Until recently, when one wished to carry
out a construction in an elementary topos that was well enough under-
stood in S, the category of sets and functions, one had to wrestle with
pullback diagrams and the like. Bénabou’s formal language permits
one to dispense with these problems, and to proceed directly to the
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construction from its formal description. I believe that these methods
must displace the older, clumsier ones. ([Wraith, 1975, 115–116])

Thus Bénabou had also developed a method that allowed the use of a language
to prove results about toposes. It goes without saying that Wraith’s opinion that
this new method should replace the older, clumsier one was polemical at the time.
But, indeed, it appeared quickly that the use of logical methods could be of real
value in the development of topos theory. In some cases, the geometrical methods
were convoluted, long and difficult to follow and their logical counterpart were
direct, simple and almost immediate. Thus, there was a practical dimension to
the problem that seemed to be worth developing fully. Since an elementary topos
E can be thought of as a universe of sets, although not the usual sets of ZF in
general, it should be possible to treat it as such, that is to use a topos E in the
same way that one uses the category of sets. In particular, one would like to treat
objects of E as sets with “elements” and write down definitions just as in the
category of sets with the usual set-theoretical language.

As we have said, various people gave a positive answer to this question. But
Bénabou and his student Michel Coste, Michael Fourman and André Joyal in
collaboration with André Boileau, all in 1973-1974, are usually credited with the
introduction of a full, rigorous description of an appropriate formal system. The
striking fact is that the resulting higher-order type theory is purely algebraic.

5.1 Interpreting higher-order logic in toposes

We will first present Boileau and Joyal’s approach, based on Joyal’s talk given in
April 1974, expanded and developed by Boileau in his Ph.D. thesis submitted in
1976 and then in a joint paper received by the editors of the Journal of Symbolic
Logic in july 1977 but published only in 1981. (See [Boileau and Joyal, 1981].)

A (higher-order) similarity type or signature T is given by

1. A set S of sorts (which does not include the symbol Ω). The set T of types
is build from the set of sorts as follows:

(a) if S ∈ S, then S ∈ T ;

(b) if S1, ..., Sn ∈ T , then Ω (S1, . . . , Sn) ∈ T , where n can be 0;

(c) nothing else is a type.

The type Ω( ) is denoted by Ω.

1. A set F of function symbols, to each function symbol f , we associate its type
S1×· · ·×Sn×S (with the last sort having a distinguished status); we write
f : S1 × · · · × Sn // S to indicate the type of f . Whenever n is 0, f is a

constant of type S and we write 1
f
−→ X . Furthermore, a functional symbol

f : S1 × · · · × Sn // Ω with codomain Ω will be called a relational symbol.
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Given a signature T , the language L(T ) consists of the signature, for each type
S, a countable list of variables. Terms and formulas are defined by recursion as
follows:

Definition of terms:

1. every variable of type S is a term of type S;

2. if f : S1 × · · · × Sn // S is a function symbol and t1, . . . , tn are terms of
type S1, . . . , Sn respectively, then f(t1, . . . ., tn) is a term of type S; (if f is
a constant, we simply write f);

3. if φ is a formula and if x1, . . . , xn is a list of distinct variables of type
S1, . . . , Sn, then {(x1, . . . , xn) : φ} is a term of type Ω (S1, . . . , Sn);

Definition of formulas:

1. if t1 and t2 are terms of type S, then t1 = t2 is a formula;

2. if t1, . . . , tn are terms of type S1, . . . , Sn and if t is a term of type Ω (S1, . . . , Sn)
then (t1, . . . , tn) ∈ t is a formula;

3. > is a formula (‘true’ is a formula);

4. if φ and ψ are formulas, then (φ ∧ ψ) is a formula;

The reader will have noticed how the higher-order structure emerges: it is the
recursive nature of 1.b for types that leads to higher types.

The remaining connectives can be defined as follows:
D1. ∀xφ ≡ ({x : φ} = >);
D2. (φ⇒ ψ) ≡ ((φ ∧ ψ) = φ);
D3. (φ ∨ ψ) ≡ ∀w [((φ⇒ w) ∧ (ψ ⇒ w)⇒ w) = >]
D4. ⊥ ≡ ∀w (w = >);
D5. ∃xφ ≡ ∀w [∀x ((φ⇒ w)⇒ w) = >].
Notice that the foregoing definitions are all equational, whence the purely alge-

braic character of logical operations in this framework. A sequent over a signature
T is defined as above, that is as a sequence of symbols of the form (φ `~x ψ), where
φ and ψ are formulas over T and ~x is a context containing all the free variables
of φ and ψ. The deductive system is again a sequent calculus, only shorter since
there are fewer cases to cover.

1. Axiom schemas:
A1. ϕ `~x ϕ.
A2. ϕ `~x >.
A3. > `~x x = x.
A4. ϕ ∧ (x = t) `~x ϕ(t/x) provided t is free for x in ϕ.
A5. ϕ `~y (x1, . . . , xn) ∈ {(x1, . . . , xn) : ϕ}.
A6. (x1, . . . , xn) ∈ {(x1, . . . , xn) : ϕ} `~y ϕ.
2. Rules of inference:
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R1. ϕ`~xψ
ϕ`~x,~yψ

.

R2.
ϕ `~x ψ ψ `~x θ

ϕ`~xθ
.

R3.
ϕ `~x ψ ϕ `~x θ

ϕ`~xψ∧θ
.

R4. ϕ`~xψ∧θ
ϕ`~xψ

ϕ`~xψ∧θ
ϕ`~xθ

.

R5. ϕ`~xψ
ϕ(t/x)`~yψ(t/x)

where t is a term of the same type as ~x, and ~y is any string of variables including
all the variables occurring in the term t.

R6.
φ∧(x1,...,xn)∈t1`~x,~y(x1,...,xn)∈t2 φ∧(x1,...,xn)∈t2`~x,~y(x1,...,xn)∈t1

φ`~yt1=t2

where the distinct variables x1, . . . , xn are not free in φ, t1, t2.
Axioms 5 and 6 are sometimes called “comprehension axioms” and R6 is some-

times referred to as “extensionality”.
This presentation is admittedly somewhat awkward. For instance, it is far from

obvious that we are dealing with an intuitionistic logic. But it was tailored in such a
way that its interpretation in a topos becomes almost direct and, furthermore, the
categorical manipulations to be done afterwards are few and almost trivial. It was
shown by Boileau to be equivalent to the following, more standard, intuitionistic
type theory (see [Kleene, 1952] or [Hatcher, 1968]);

Axioms:
1. A ⊃ (B ⊃ A)
2. (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C) ⊃ (A ⊃ C))
3. A ⊃ (A ∨B)
4. B ⊃ (A ∨ B)
5. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))
6. A ⊃ (B ⊃ (A ∧B))
7. (A ∧B) ⊃ A
8. (A ∧B) ⊃ B
9. (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)
10. ¬A ⊃ (A ⊃ B)
11. ∀xA(x) ⊃ A(t) provided that x is free in A(x) and t is free for x in A(x).
12. A(x) ⊃ ∃xA(x) provided that xis free in A(x)
13. x = x
14. x1 = x2 ⊃ (A(x1) ⊃ A(x2)) provided that x2 is free for x1 in A(x1)
15. QxA ≡ Qx(A ∧ x = x) where Q ∈ {∀, ∃}
16. ∀x1 · · · ∀xn((x1, . . . , xn) ∈ X1 ≡ (x1, . . . , xn) ∈ X2) ⊃ X1 = X2

17. A ≡ (x1, . . . , xn) ∈ {(x1, . . . , xn) : A}.
Rules of inference:

R1.
A A ⊃ B

B
provided that all free variables in A are free in B.

R2. C⊃A
C⊃∀xA provided that xis not free in C.

R3. A⊃C
∃xA⊃C provided that x is not free in C.

The first fourteen axioms are the standard axioms for first-order intuitionistic
logic. Axiom 15 together with the restriction on the rule of modus ponens reflects
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the fact that there may be empty types. The higher-order axioms are also standard.
(See also [Osius, 1975] for what amounts to an equivalent proof of the same claim
and [Fourman, 1977]. We will come back to the later in a short while.)

The interpretation of a language L(T ) in a topos E is an extension of the
interpretation of first-order language in a category of the appropriate type. Thus,
a T -structure or an interpretation M in E consists of:

1. an object MS of E for each sort S of T ; this is extended to types by stipu-
lating that M(Ω(S1, . . . , Sn)) = P (MS1 × · · · ×MSn) where P (X) denotes
the power-object of X in E ;

2. a morphism Mf : MS1 × · · · × MSn // MS for each function symbol
f : S1 × · · · × Sn // S of T ; in particular, when n = 0 a morphism

1
f
−→MS.

Variables-in-context, functional symbols-in-context and conjunction-in-context are
interpreted as in the foregoing section.

1. If t is {(y1, . . . , ym) : φ}, then [[~x · t]]M is the morphism

MS1 × · · · ×MSn // P (MS1 × · · · ×MSn) ;

1. If φ is t1 = t2, and t1 and t2 are of type T , then [[~x · φ]]M is the composite

MS1×· · ·×MSn
〈[[~x·t1]],[[~x·t2]]〉
−→ MT×MT

δMT−→ Ω, where the morphismMT×MT
δMT−→

Ω is the characteristic morphism of the diagonal MT
∆MT−→ MT ×MT ;

1. If φ is (t1, . . . , tm) ∈ tm+1, then [[~x · φ]]M is the composite

MS1×· · ·×MSn
〈[[~x·t1]],...,[[~x·tm]]〉

−→ (MT1 × · · · ×MTm)×P (MT1 × · · · ×MTm)
e
−→ Ω;

1. If φ is >, then [[~x · φ]]M is the composite

MS1 × · · · ×MSn −→ 1
>
−→ Ω.

As is obvious from the definition, every formula in context is interpreted as a
morphism into the subobject classifier Ω.

Let M be a T -structure in a topos E . We say that M is a model of a sequent
σ = (φ `~x ψ) or that σ is satisfied in M , we write as usual M |=E σ or simply
M |= σ, if [[~x · φ]]M ≤ [[~x · ψ]]M in P (MS1×· · ·×MSn). We say that M is a model
of a theory T if all the axioms of T are satisfied in M .

As usual, a soundness theorem can now be proved: if T `: (ϕ `~x ψ), then
T |= (ϕ `~x ψ).

Given a theory T in the language L(T ), it is once again possible to construct the
conceptual category CT and show that it is in fact a topos, which we will denote
by ET. This yields the following:
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Completeness Theorem: Let T be a higher-order type theory of similarity type
T . Then, T has a canonical model M0, the canonical interpretation, in a topos ET
such that T `: (ϕ `~x ψ) if and only if M0 |=ET

(ϕ `~x ψ).

Starting with an elementary topos E , it is possible to define a higher-order
signature TE from E by transposing the foregoing procedure appropriately and
similarly the internal language LE and the type theory TE of E can be defined.
The language LE is defined as follows:

1. To each object X of E , we attribute a sort pXq

2. To each morphism f : X // Y , we associate the function symbol pfq :
pXq // pY q.

3. To each relation (or monomorphism) pRq // pXq.

(There are slight technical difficulties one has to take care of here, in particular
with products, but we will skip these formal details.) There is then a canonical
interpretation M : LE

// E defined in the obvious way, i.e. M(pXq) = X ,
M(pfq : pXq // pY q) = f : X // Y , M(pRq // pXq) = R // X . The
theory TE is also defined in the obvious way, i.e. it is the collection of sequents
ϕ `~x ψ such that M |= ϕ `~x ψ. One could be a little more specific and describe
TE with explicitly definable axioms in such a way that its theorems are precisely
the valid sequents of the canonical interpretation M . For instance, one could take
the collection of sequents of LE obtained from the categorical properties of E with
a dictionary that would include, for instance:

X
f
−→ X is the identity morphism in E is translated into > `x pfq(x) = x, and

so on, as we have seen above.

One can then verify that indeed M |= TE .

It follows from the foregoing procedure, that given any topos E , one can show
that there is a theory, the internal theory of E , such that E |= TE .

Joyal proved in 1974 that every elementary topos E arises from a higher-order
theory (this is called the “théorème d’engendrement” in Boileau & Joyal 1981).
More specifically, the statement is that for any elementary topos E , there is a
higher-order theory, naturally TE such that E is equivalent (as a category) to CTE

,
the category of concepts of TE . In this sense, a topos is nothing but a higher-
order type theory. One can therefore use TE to prove properties of E and working
internally means working in TE . For instance, Boileau shows that any topos E has
finite colimits, exponentiation from TE . He also shows Cantor’s theorem, i.e. if in
a topos E , there is an object X and an epimorphism X � ΩX , then E is trivial,
that is 1 ' 0, from TE .

The reader will have noticed that we have not included an object N of natural
numbers in our theory. This constitutes an extension of the fundamental theory.
Other extensions include being Boolean, being two-valued, or satisfying the axiom
of choice, which can be formulated in different ways.
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We can now see the unity underlying Joyal’s work from regular categories to
elementary toposes. Indeed, we start with the language L0 presented in section 4.4
and define four new higher-order languages: L5, L6, L7 and L8 from L0 as follows.
First, for L5. We close the set of sorts with the operation Ω(−, . . . ,−) to obtain the
set of types. Terms and formulas are defined as before, with the symbols ∃, ∨, ⊥,
⊃, ∀ to form new formulas. The language L6 is defined like L5, except that we now
allow the negation operator ¬ in the construction of formulas. L7 is constructed
from L0 by adding a new sort N and two new functional symbols, 0 and s. Types
and formulas are constructed as in L5. To construct L8, we proceed as with L7,
but by including all types and formulas of L6 instead of L5. The logical systems
corresponding to these languages are then defined in the expected manner, i.e. by
adding the appropriate sequents at each stage. Recall that L0 is purely equational
logic, L1 is regular logic, L2 is coherent logic, L3 is first order intuitionistic logic,
L4 is first order classical logic. As we have seen, L5 is intuitionistic type theory,
L6 is classical type theory, L7 is intuitionistic type theory with N and L8 classical
type theory with N. One can then prove that:

L0 L1 L2

L3�������������������

L5��������

L6

??
??

??
??

L4

??
??

??
??

??
??

??
??

??
?

L7��������

L8

??
??

??
??

Needless to say, one can then move to conceptual categories and construct a
diagram of functors between the respective categories thus obtained.

5.2 Fourman’s approach

Let us now briefly consider Fourman’s approach, since it differs from the foregoing
in important and interesting ways.

Fourman starts with a primitive predicate, denoted by E, called the existence
predicate. Thus, given a term t, one reads “Et” as “t exists”. There is another
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primitive relation, namely a notion of equivalence between terms, i.e. t ≡ s.
Equality of terms is then defined from the two primitive notions by t = s ⇔
(t ≡ s) ∧ Et ∧ Es. The definition of the formal system proceeds as follows. For
convenience, another term is introduced, the definite description Ixϕ, which is
read “the unique x such that ϕ”.

Definition: A higher-order language L is specified by the following data:

1. Two sets Sort and Const of sorts and constants.

2. A power-type map from
⋃
n∈ω Sortn // Sort, written as (S1, . . . , Sn) 7→

[S1, . . . , Sn].

3. A map assigning a sort to each constant, # : Const // Sort.

As in the foregoing case, for each sort S, there is a countable list of variables and
each variable x has a sort #x.

Definition of terms:

1. Every variable of sort S is a term of type S;

2. Every constant c of sort #c is a term;

3. If xis a variable of sort S and ϕ a formula, then Ixϕ is a term of sort S.

Definition of formulas:

1. If t is a term, then Et is a formula;

2. If t1 and t2 are terms of sort S, then t1 ≡ t2 is a formula;

3. If t is a term of sort [S1, . . . , Sn] and t1, . . . , tn are of sorts S1, . . . , Sn respec-
tively, then t (t1, . . . , tn) is a formula;

4. If ϕ and ψ are formulas, then so are (ϕ ∧ ψ) and (ϕ ⊃ ψ);

5. If x is a variable and ϕ is a formula, then ∀xϕ is a formula.

The empty power sort [] can be thought of as consisting of truth-values. Thus if t
is a term of sort [], then t () is a formula and it asserts the proposition t.

The remaining connectives are also definable in this system, but we will skip
the definitions.

1. Axioms
A1. ϕ ⊃ (ψ ⊃ ϕ),
A2. (ϕ ⊃ (ψ ⊃ θ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)),
A3. (ϕ ∧ ψ) ⊃ ϕ
A4. (ϕ ∧ ψ) ⊃ ψ
A5. (ϕ ⊃ (ψ ⊃ (ϕ ∧ ψ)))
A6. (ϕ [y/x] ∧ y ≡ z) ⊃ ϕ [z/x] (Substituvity of equivalents),
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A7. ∀x(x ≡ y ⇔ x ≡ z) ⊃ y ≡ z (Extensionality),
A8. (∀xϕ ∧ Ex) ⊃ ϕ (Universal instantiation),
A9. ∀y(y ≡ Ixϕ⇔ ∀x(ϕ⇔ x ≡ y)) (Description),
A10. EIy∀~x(ϕ⇔ y(~x)) (Comprehension)

A11. y(~x) ⊃ Ey ∧
n
∧
i=1

Exi (Predication).

2. Rules of inference:

R1.
ϕ ϕ ⊃ ψ

ψ
,

R2. ϕ
ϕ[t/x] ,

R3. (ψ∧Ex)⊃ϕ
ψ⊃∀xϕ where xis not free in ψ.

The notion of derivability is defined as usual: Γ ` ϕ means that ϕ is derivable
from the set Γ of formulas. A theory T is a set of formulas such that if T ` ϕ,
then ϕ ∈ T. Also, a theory T has an underlying language denoted by LT.

The reader will have noticed that types haven’t been mentioned. They are in
fact defined: a type is a term of the form Iy∀x(ϕ ⇔ y(x)). If x is of sort X ,
then this term is of sort [X ]. It is abbreviated as {x : ϕ}. Thus, types are seen as
“subsets” of sorts. A type is definable if and only if it is a closed term.

Fourman proceeds to prove that the conceptual category CT of a theory T in
the higher-order language LT is in fact a topos, denoted as usual ET. He explicitly
attributes the construction of CT to Joyal. He then defines the interpretation of a
language L in a topos E and proves soundness and completeness theorems. Finally,
given a topos E , he defines the internal language LE of E and its theory TE and
proves that E ' ETE . Various extensions, including toposes with a natural number
object, are then considered.

5.3 Revising logic : the debate

An interesting debate between Fourman and Boileau & Joyal followed. We will
simply summarize the main points raised in the debate.

Here are Fourman’s arguments in favor of his system:

1. Fourman’s approach contains an original component, namely an existence
predicate;

2. Because their approach lacks this predicate, Boileau and Joyal are forced to
make awkward restrictions on the rule of modus ponens;

3. In the words of Fourman’s himself: “we emphatically do not agree that
because of this [i.e. the modifications to the rule of modus ponens] “the
traditional logical way of dealing with variables . . . should be abandoned”.
The traditional use of variables has much to commend it and there are far
less drastic remedies to hand.” [Fourman, 1977, 1054])

In a nutshell: Fourman insists on the original component of his system, which
allows him to avoid revising the way variables are used in deductions. Still in other



The History of Categorical Logic: 1963–1977 93

words, the basic principles of deduction stay the same and there is an original
component to the theory.

It seems only fair to bring in Dana Scott’s voice to the debate, since he was
Fourman’s thesis advisor and did write on related issues around the same time.
Scott’s position finds its justification in a certain interpretation of intuitionism.

Standard formulations of intuitionistic logic, whether by logicians or by
category theorists, generally do not take into account partially defined
elements. (For a recent reference see Makkai and Reyes 1977, esp. pp.
144-163.) Perhaps there is a simple psychological reason : we dislike
talking of those things not already proved to exist. Certainly we should
not assume that things exist without making this assumption explicit.
In classical logic the problem is not important, because it is always
possible to split the definition (or theorem) into cases according as
the object in question does or does not exist. In intuitionistic logic
this way is not open to us, and the circumstance complicates many
constructions, the theory of descriptions, for example. Many people I
find do not agree with me, but I should like to advocate in a mild way in
this paper what I consider a simple extension of the usual formulation
of logic allowing reference to partial elements. (. . . )

Technically the idea is to permit a wider interpretation of free vari-
ables. All bound variables retain their usual existential import (when
we say something exists it does exist), but free variables behave in a
more “ schematic ” way. Thus there will be no restrictions on the use
of modus ponens or on the rule of substitution involving free variables
and their occurrences. The laws of quantifiers require some modifi-
cation, however, to make the existential assumptions explicit. The
modification is very straightforward, and I shall argue that what has
to be done is simply what is done naturally in making a relativization
of quantifiers from a larger domain to a subdomain.

(. . . )

The idea of schematic free variables is not new for classical logic, and
the literature on “ free ” logic (or logic without existence assumptions)
is extensive. (. . . ) All I have done in this essay is to make what seems to
me to be the obvious carryover to intuitionistic logic, because I think it
is necessary and convenient. For those who do not like this formulation,
some comfort can be taken from the fact that in topos theory both
kinds of systems are completely equivalent, and the domains of partial
elements can be defined at higher types (. . . ). However, in first-order
logic something is lost in not allowing partial elements, as I shall argue
along the way.

(. . . )

Is the existence predicate E an illusion? Was the equality predicate



94 Jean-Pierre Marquis and Gonzalo E. Reyes

an illusion? No. We shall find in the section, with a full statement of
the laws of equality, that E can always be defined in terms of quan-
tification :. . . . However, both in conception and in the models of
(intuitionistic) logic we have in mind, the existence predicate is more
basic than equality and prior to it. [Scott, 1979, 660–662])

The psychological reason can probably be dismissed altogether. From an an-
thropological point of view, it is hard to sustain the claim that “we dislike talking
of those things not already proved to exist”. In fact, the contrary seems to be
the case: as a whole, we seem to enjoy very much talking of those things whose
actual existence is completely unknown. Of course, Scott is here talking about
mathematicians, a different cultural group if there is one and he might be for-
mulating a deontological maxim for mathematicians than anything else. Notice
that Scott acknowledges the fact that as far as higher-order intuitionistic logic
is concerned, that is topos theory, the various systems presented can be shown
to be formally equivalent. We should emphasize, in the same vein, the fact that
Fourman also “regards topos theory as the “algebraic” form of this higher-order
intuitionistic logic”. (Fourman 1977, 1054.) First-order logic seems to be the real
issue, although it is not so easy to separate the various logical systems in such a
way.

Here is Boileau and Joyal’s rebuttal.

1. First, as Fourman explicitly admits (see Fourman 1977, 1070), his system is
an abstract codification of a category of H-sets, where H is a Heyting algebra,
which was shown by Higgs to be equivalent to a topos of sheaves over the
Heyting algebra of open sets of a topological space. Fourman is thus lead to
consider a sheaf as a set with a complementary structure. Boileau and Joyal
believe that the formal presentation should not present the objects as sets
with a structure, but simply as sets with a specific logic.

2. The logical system developed by Boileau and Joyal is claimed to be more
simple and natural than Fourman’s system. One can work with the objects
as if they were sets, provided that the logical rules, constructive in their
workings if not in their spirit, are respected.

3. Fourman’s system is perfectly legitimate for toposes, but the underlying
intuition does not generalize to other cases. By adding the idea of the support
of a sequent, one can treat logical systems in various categories.

4. The last point brings us to the underlying unity of Boileau and Joyal’s ap-
proach. Although the notion of deduction is modified or restricted in contrast
with the classical notion, one can treat various logical systems in a unified
manner.

In a nutshell, Boileau and Joyal insists on the fact that Fourman’s approach is
somewhat ad hoc and that their approach is simpler and provides a unified frame-
work to do and develop categorical logic in general. Furthermore, but this point
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is not underlined by the actors involved in the dispute, it is clear that Joyal’s
approach was right from the start motivated by the desire to minimize the dis-
tance between the syntax of categories and the syntax of logic. Evidence for this
is easy to find: the choice of a Gentzen type presentation of logic, the choice of
a multi-sorted system, the choice of rules which are simply rewriting of adjunc-
tions between functors, and as we have seen, the higher-order type theory itself,
which was chosen so that the interpretation of the connectives is simple and almost
immediate in toposes. Stipulating the context of a deduction is nothing neither
more nor less than the idea that a function necessarily has an underlying domain
and codomain, although set theorists never conceived of functions that way. In
contrast, Fourman and Scott are more preoccupied by purely logical issues and
categories, in particular toposes, are seen as providing new metalogical resources
in the study of intuitionistic and more generally constructive systems. An illustra-
tion of this position is found in their joint paper entitled Sheaves and Logic, also
published in the proceedings of the Durham meeting and related to Scott’s paper.

Scott’s paper in this volume describes a system of higher-order logic
which may be interpreted in any topos. Here we describe the models
of this logic given by sheaves over a complete Heyting algebra (cHa).
These sheaf models subsume the more familiar Beth, Kripke and topo-
logical interpretations of intuitionistic logic, which correspond to in-
terpretations in sheaves over the appropriate cHa of “truth values”.
They also provide a uniform way of extending these interpretations
to higher-order logic and thus help to explain the models of analysis
of Scott, Moschovakis and van Dalen. Once we go beyond first-order
logic, these sheaf models are more general than Beth, Kripke or topo-
logical models. Models over a site (. . . ) provide yet more generality.
(. . . ) Sites also arise naturally in first-order model theory once we take
into account the comparisons between various models made possible by
geometric morphisms. For a presentation of this theory see Makkai and
Reyes 1977. However, we find a full-blown categorical presentation is
often too abstract and results in very heavy machinery’s being brought
to bear on very simple problems. By restricting our attention to the
special case of models over a cHa, we hope to make what is simple
look simple. Models over cHa show clearly the link with traditional
models for intuitionistic logic and are sufficient for many applications.
([Fourman and Scott, 1979, 303])

Thus, according to Fourman and Scott, logic has precedence over categorical
ideas and methods. The latter are certainly useful, but there is no need to look
for the most general result in that framework nor to find a unified framework that
would be based on the categorical framework. Two specific rebuttals are in order.
First, as Lawvere has emphasized in the eighties, one has to distinguish between
petit toposes and gros toposes. Examples of petit toposes are precisely toposes of
sheaves over a cHa (or a locale) and examples of gros toposes are toposes of all
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spaces of a certain type or the topos of simplicial sets. The point is that gros
toposes have very different properties from petit toposes. Scott is here ignoring
the class of gros toposes, which nonetheless are important not only in mathematics
in general but for logic too. (See [Lawvere, 1986; Lawvere, 1989].) Second, for
some applications, classifying toposes (“models over a site” in Scott’s terminology)
constitute a powerful tool. A classical example of this sort was given by Joyal in
the seventies with his construction of the so-called formal reals for which local
compactness fails. (See, [Ščedrov, 1984, section 4.2] and the whole paper for
various examples or [Johnstone, 2002].)

6 THE METHOD OF FORCING IN TOPOSES: KRIPKE-JOYAL
SEMANTICS

In the foregoing sections, the relationship between a topos E and its associated
theory TE might seem to be, in some sense, too close for comfort. For E can
be given in the form of TE and it is thus difficult to see how E could be useful
in order to understand TE . However, Grothendieck toposes were given and can
be given independently of a theory and they are, in a precise technical sense
that we will not clarify here, incompatible with finitary theories. Furthermore,
Joyal quickly showed that Grothendieck toposes encompasses the usual semantics,
at least for intuitionistic and classical logic: algebraic, topological and Kripke
models. Joyal generalized Kripke’s semantics for intuitionistic logic in the context
of Grothendieck toposes. The interesting feature of the Kripke-Joyal semantics is
that it can be manipulated classically. It should be emphasized immediately that
Joyal’s work was not a generalization for the sake of generalizing; it was seen and
presented as an efficient method to prove results about toposes in the same way
that Kripe semantics was used to prove results about intuitionistic logic.

Let E be an elementary topos, L an higher-order language and M : L // E an
interpretation of L in E . Let G be a full sub-category of E such that

i) G is closed under subobjects, i.e. given i : A � X of E and X in G, then i
and therefore A is in G;

ii) |G| is a set of generators for E , that is if X
h
−→
−→
k

Y are such that h 6= k in E ,

then there is an object G in G and a morphism A
f
−→ X such that h ◦ f 6= k ◦ f .

Definition (Kripke-Joyal semantics): Let G be an object of G, ϕ(x1, . . . , xn) a

formula of L and G
ai−→ Xi, 1 ≤ i ≤ n, where Xi = M(“the sort of x′′i ). The

morphism ai is sometimes called a generalized element of Xi at stage G. We define
the relation G ||− ϕ(a1, . . . , an) and say that ‘ϕ(a1, . . . , an) holds at stage G’ or
that ‘G forces ϕ(a1, . . . , an)’ as follows:

(1) G ||− a1 = a2 if and only if a1 = a2 : G //X ;

(2) G ||− a ∈ A if and only if the diagram
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X × ΩX Ω
eX

//

G

X × ΩX

(a,A)

��

G 1
! // 1

Ω

>

��

commutes;
(3) G ||− R(a1, . . . , an) if and only if the triangle

G X1 × · · · ×Xn

(a1,...,an) //G

M(R(x1, . . . , xn))
%%LLLLLLLLLLLLLLLLLLL X1 × · · · ×Xn

M(R(x1, . . . , xn))

OO

commutes;
(4) G ||− ϕ(~a) ∧ ψ(~b) if and only if G ||− ϕ(~a) and G ||− ψ(~b);
(5) G ||− ϕ(a1, . . . , an) ∨ ψ(b1, . . . , bm) if and only if there are morphisms t1 :

G1
//G and t2 : G2

//G in G such that t1+t2 : G1+G2 � G is an epimorphism
and G1 ||− ϕ(a1t1, . . . , ant1) and G2 ||− ψ(b1t2, . . . , bmt2);

(6) G ||− ϕ(a1, . . . , an) ⊃ ψ(b1, . . . , bm) if and only if for all t : G′ // G in G,
if G′ ||− ϕ(a1t, . . . , ant), then G′ ||− ψ(b1t, . . . , bmt);

(7) G ||− ¬ϕ(~a) if and only if for all t : G′ //G in G, if G′ ||− ϕ(a1t, . . . , ant),
then G′ ' 0;

(8) G ||− ∀zϕ(z, a1, . . . , an) if and only if for all t : G′ // G in G and b :
G′ // Z, G′ ||− ϕ(b, a1t, . . . , ant);

(9) G ||− ∃zϕ(z, a1, . . . , an) there is
{
Gi

ti−→ G : i ∈ I
}

in G and there is
{
Gi

bi−→ Z : i ∈ I
}

such that

• (∀i ∈ I)(Gi ||− ϕ(bi, a1ti, . . . , anti)

• ∀X in E∀h, k ∈ HomE(G,X)(h 6= k ⊃ ∃i ∈ I(hti 6= kti)).

The full subcategory G comes from the case of a Grothendieck topos generated
by a site, whose image in the topos is G. One can also consider special cases of
interest. First, for an arbitrary topos E , it is always possible to let G = E . Two
other cases worth mentioning are: 1) G = Sub(1), which corresponds to toposes
of sheaves over a topological space and yields a particularly simple formulation of
the semantics and 2) the case when G = 1, that is when the terminal object is a
generator. In the latter case, the topos E is Boolean and it can be shown that the
semantics “is” the classical set-theoretical semantics (this is not quite precise, but
can be clarified easily).
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One natural question to ask is how the internal semantics of a topos E relates
to the Kripke-Joyal semantics. In fact, they coincide in the following sense:

Theorem: Let L′ be the language build from L by adding to the latter new
sorts, one for each G of G and new functional symbols, one for each G

a
−→M(S),

where S is a sort of L, and let M ′ be the obvious extension of M to L′. Then:

(i) G ||− ϕ(a1, . . . , an) if and only if M ′ |= > `~a ϕ(a1(g), . . . , an(g))

(ii) If ϕ is a sentence of L, then M |= > ` ϕ if and only if ∀G in G(G ||− ϕ).

7 FIBRED CATEGORIES AND LOGIC

Although this development found its full expression in the late eighties and early
nineties, it has to be mentioned since it has become an important part of categorical
logic and it has its roots in work done in the late sixties and mid-seventies. We
will concentrate on the roots themselves and only point to certain presentations
of the contemporary literature.

As we have mentioned, Lawvere and Lambek were both in Zurich in 1965-66
and at that time Lawvere was developing his ideas on categorical logic while, as we
have seen, Lambek was generalizing results about posets to categories. Lawvere
asked Lambek whether he had noticed that Tarski’s fixed point theorem for posets
generalized to categories and Lambek answered by showing him his manuscript of
A fixpoint theorem for complete categories, published in 1968. (A result that is
now better known by theoretical computer scientists than by category theorists,
although the distinction between these two groups is nowadays more and more
difficult to make.) Lawvere, as we have also mentioned, returned to the issue of
fixed point theorems in 1968 and published his Diagonal Arguments and Carte-
sian Closed Categories, in the proceedings of the meeting of the Batelle Institute
in 1969. This paper not only contains the definition of a Cartesian Closed Cate-
gory (CCC), but it also suggests explicitly that a CCC is an algebraic version of
type theory, on the one hand, and, on the other hand, that a theory gives rise to a
category with finite products, now called a Cartesian category. There is, further-
more, an indication that Lawvere saw a connection between CCCs and Church’s
λ-calculus. Although there is no explicit mention of this connection in the paper,
there is a clear indication that Lawvere did indeed see a connection. It is presented
right from the start, in the very definition of a Cartesian Closed category. The
key ingredient is in the definition of what Lawvere called the λ-transform of a
morphism. Let C be a CCC and h : X // Y A be a morphism. Then h is said to
be the λ-transform of f if and only if the diagram

A× Y A Y
ev

//

A×X

A× Y A

1×h

��

A×X

Y

f

��?
??

??
??

??
??



The History of Categorical Logic: 1963–1977 99

is commutative. In particular, when X = 1, the terminal object, it follows that
every f : A //Y gives rise to a unique morphism f : 1 //Y A, called the ‘name
of f ’. Lambek was to use this connection systematically later.

At the same conference, Lambek presented his second paper on the relationships
between categories and deductive systems and certainly took note of this connec-
tion, since it comes back in his third paper on the topic. Although these papers
were not influential at first, they contain ideas that were to become important
later.

Already in the mid-fifties, Lambek, together with his colleague Findley, had
noticed a similarity between certain results in the theory of bimodules and deduc-
tive systems. Lambek and Findley developed a notation for certain concepts and
wrote a paper on the subject, entitled Calculus of Bimodules, that was never pub-
lished, since the results contained therein were supposedly subsumed by Cartan
and Eilenberg’s work that was about to appear in their book on homological alge-
bra. (There is, however, a published trace of their work in a M.Sc. thesis submitted
under Maranda’s supervision at the Université de Montréal, done by Vaillancourt.
See [Vaillancourt, 1968].) Lambek used the same notation in his first investigation
of linguistics in a paper published in 1958. (See [Lambek, 1958].) Once he had
learned category theory, Lambek realized that they were in fact looking at certain
morphisms in specific concrete categories and that the results could be reformu-
lated and developed in a categorical context. Lambek published three papers on
deductive systems and categories, the first one in 1968, the second one in 1969 and
the third one in 1972. Although the three papers have the same title and seem
to be forming a complete whole, they are in fact independent from one another.
They are simply on the same theme and constitute various attempts at developing
the same ideas, which is formulated at the beginning of the very first paper:

Roughly speaking, the situation is this: While deductive systems may
be viewed as free algebra on the category of pre-ordered sets, they may
also be used to construct free algebras on the category of all categories
in some universe. The crucial step in the argument is the construction
of a category whose objects are terms of a given deductive system and
whose maps are equivalence classes of proofs. ([Lambek, 1968a, 287].)

In modern terminology, the main problem could be formulated as follows: how
to construct all arrows A //B in the free biclosed monoidal category generated
by a graph and to decide when two such arrows are equal. The first problem,
namely the construction of the free category of the right sort, was solved by gener-
alizing Gentzen’s cut-elimination theorem, first to substructural logic and then to
certain structured categories. The second problem, deciding when two arrows are
equal, was attacked in full generality in the second paper Deductive Systems and
Categories II. Standard Constructions and Closed Categories. It also introduces
explicitly the notion of a free biclosed monoidal category. However, the paper
contains a certain number of mistakes. The satisfactory solution to the second
problem was finally presented in a paper published in 1993. (See [Lambek, 1993].)
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In his third paper, Deductive systems and categories III, presented at Dalhousie
in January 1972, Lambek starts with Cartesian closed categories and tries to es-
tablish an equivalence with combinatory logic. More specifically, he shows how to
go from combinatory logic, defined in the paper as ontologies, to Cartesian closed
categories, but he was unable to verify that one could go in the opposite direction.
This problem was solved later, in fact in the early eighties. It is here that Lam-
bek developed systematically the connection between CCCs and typed λ-calculi.
Modifying slightly the foregoing notation (and the formal context somewhat, but
we won’t give the details), given a morphism ϕ(x) : 1 //Y , there exists a unique
morphism f : A // Y such that fx = ϕ(x), where x : 1 // A. The name of
f can in this case be written as λx∈Aϕ(x) in the corresponding λ-calculus. In
collaboration with Phil Scott, they showed that the category of typed λ-calculi
(with translations as morphisms) and the category of Cartesian closed categories
with weak natural number objects (and Cartesian closed functors preserving weak
natural numbers objects on the nose) are equivalent. ([Lambek and Scott, 1986,
79, Theorem 11.3].)

However, the main moral of all these papers is already stated in the foregoing
quote: it is the correspondence between propositions of a deductive system with
the objects of a corresponding category and the (equivalence classes of) proofs of
the deductive system and the morphisms of the corresponding category. This cor-
respondence is now summarized by the slogan propositions-as-objects and proofs-
as-morphisms. This fundamental correspondence constitutes the first element of
three essential ideas at the heart of developments of categorical logic that took
part from the mid to the late eighties. The other two ideas were, in the first place,
Lawvere’s analysis of the comprehension principle and Bénabou’s work on fibred
categories.

Later in 1968, at the conference on applications of categorical algebra that
took place in New York, Lawvere extended the connections between CCCs and
logic in the direction of higher-order logic and type theory. The goal was to
provide an analysis of equality and the comprehension schema as adjoint functors
to elementary functors, thus including them in the algebraic approach.

Lawvere’s basic strategy was to organize the logical data in a more complicated
structure, now called an hyperdoctrine, given by the following data. First, one
starts with a category T of types assumed to be Cartesian closed. This is, in
a sense, the base category with its underlying logic. The morphisms of T are
thought of as terms. Then, the additional structure is given “over” the types,
so to speak. For each type X , there is a Cartesian closed category P (X), whose
morphisms are “deductions over X”, and which is thought of as the “attributes
of type X”. Furthermore, for every term f : X // Y , there is a functor f∗ :
P (Y ) //P (X), called by Lawvere “substitution along f”, such that (gf)

∗
= f∗g∗

(strictly speaking the last equality should be an isomorphism, but Lawvere notes
that equality holds in all the examples he considers). Finally, the operation of
substitution has two adjoints, left and right, which are, respectively, the existential
and the universal quantification along f . Again, Lawvere emphasizes the fact that
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the concept of hyperdoctrine is purely equational.

Lawvere then gives a series of examples, some of which are barely sketched. For
instance, he suggests that any multi-sorted higher-order theory, intuitionistic or
classical, yields an hyperdoctrine. The objects are the basic types of the theory,
closed under the operations of product and exponentiation and the morphisms
are equivalence classes of (tuples) of terms from the theory. The equivalence
class is not defined nor the construction presented. Given an object X , P (X)
consists of all formulas of the theory whose free variables correspond to the type
X . Morphisms of P (X) can be taken to be entailments and in this case P (X) is
a preordered set or “one may take suitable “homotopy classes” of deductions in
the usual sense.” [Lawvere, 1970a, 4] Needless to say, the last claim still has to be
clarified. Lawvere himself cautiously writes that “one can write down an inductive
definition of the “homotopy” relation, but the author does not understand well
what results (some light is shed on this question by the work of Läuchli and
Lambek cited above).” [Lawvere, 1970a, 4] Lambek’s work referred to here is the
work on coherence that was flawed. But Lawvere immediately moves on to add
that “although such syntactically presented hyperdoctrines are quite important,
it is fortunate for the intuition that there are also semantically-defined examples,
as below.” [Lawvere, 1970a, 4] And indeed, the examples involving sets are clear,
interesting and support the basic intuition.

The simplest example, but perhaps not the most interesting, is the case when
T = Set, the category of (small) sets and mappings and, for each set X , P (X) =
2X , the set of subsets of X , or equivalently the set of characteristic functions
defined on X . In this case, f∗ is simply the inverse image and the existential
quantifier is the image. As such, this example is not surprising. More interesting
perhaps is the case when T is the same but P (X) = SetX . An attribute of X is
then a family ϕx of sets indexed by the elements x ∈ X . A deduction ϕ //ψ over
X is any family of functions ϕx //ψx. In particular, P (1) is the category Set of
sets and can be thought of as the category of truth-values (an unusual many-valued
logic). Lawvere conceives this example as “a kind of set-theoretical surrogate of
proof theory” (Lawvere 1970, 4) and proceeds to speculate that “honest proof
theory would presumably also yield a hyperdoctrine with nontrivial P (X), but a
syntactically-presented one.” [Lawvere, 1970a, 4] It is precisely this insight that
was about to become central to the developments in the eighties.

Going up on the ladder of abstraction, the next example consists in taking
a category of small categories, which is Cartesian closed, and consider functor
categories P (C) = SetC for the attributes over the type C. Remember that Lawvere
presented this material before the discovery of elementary toposes and he does
not make an explicit connection with Grothendieck toposes. Needless to say, the
connection has become important afterwards.

From a conceptual point of view, the important point is that hyperdoctrines
are related to another categorical concept, although Lawvere did not exploit the
connection. Indeed, he explicitly made a reference to fibred categories in the
opening statement of his paper.
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The notion of hyperdoctrine was introduced (. . . ) in an initial study of
systems of categories connected by specific kinds of adjoints that arise
in formal logic, proof theory, sheaf theory, and group-representation
theory. . . . . Since then the author has noticed that yet another “logical
operation”, namely that which assigns to every formula ϕ its “exten-
sion” {x : ϕ(x)} is characterized by adjointness, and that the “same”
adjoint in a different hyperdoctrine leads to the notion of fibered cat-
egory. [Lawvere, 1970a, 1]

What he says there is that the concept of hyperdoctrine leads to the notion
of fibred category. Later in the same paper, Lawvere reports that “Gray, by
introducing the appropriate notion of 2-dimensional adjointness, has shown that
all the features of a hyperdoctrine, including our comprehension scheme, can be
obtained by defining a type to be an arbitrary category and an attribute of type
B to be any fibration over B.” [Lawvere, 1970a, 3] Thus, from a purely conceptual
point of view, one could start with fibrations and use the later framework to
develop the connection between type theory and categorical logic. What was
lacking at first, perhaps, was a clear motivation and the right tools to do so. As
early as 1974, Jean Bénabou pushed the idea that fibrations should be taken as
the foundation of category theory itself and laid the groundwork that was to lead,
when combined with Lawvere’s ideas on hyperdoctrines, the groundwork done in
the seventies on first-order and higher-order logics and results by Lambek, Scott,
Seely, Hyland, Pitts and others, to the developments of categorical logic in this
direction in the eighties. (The reference on the subject is [Jacobs, 1999].)

Bénabou had already given a series of talks on fibrations and logic in the sum-
mer of 1974 in Montréal. In the fall of 1975, he presented in Paris two related
papers. In the first one, he describes, explicitly in the context of 2-categories,
the hierarchy of categorical doctrines, e.g. Cartesian, regular, coherent, etc., the
notion of a generic model of a theory and results on finitary objects in a topos.
The second paper is about small and locally small fibrations and ends with a proof
of a classifying topos for geometric theories. (See [Bénabou, 1975].) Three aspects
are striking in Bénabou’s papers. First, the papers are thoroughly categorical: all
definitions and methods are categorical. For instance, the various types of cate-
gorical doctrines are defined not by specifying a formal first-order language, but
by giving properties on diagrams, thus in the spirit of Ehresmann and of what
are now called sketches. Second, all the results are expressed in the context of
2-categories and 2-functors, and some in bicategories. Bénabou himself had in-
troduced earlier a study of bicategories, an important generalization of category
theory that was to come back on the scene in the late eighties and nineties. At the
time, even some category theorists were reluctant to “higher-dimensional” cate-
gories (although 2-categories are strict and not as such higher-dimensional in the
way bicategories are). Third, the use of fibrations for the conceptual clarification
of fundamental issues related to categories. We underline these three aspects to
emphasize the originality, coherence and rigor of Bénabou’s work at the time. We
will now summarize some of the results on fibrations contained in the papers.
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Bénabou presupposes the definition of a fibration in his papers. First, we in-
troduce a notational but very suggestive convention. In the context of fibred

categories, we use the vertical notation
E
↓ p
B

to denote a functor p : E // B.

Given an object X in B, the fibre p−1(X) over X is the category whose objects are
those objects A of E such that p(A) = X and the morphisms are those f : A //B
in E such that p(f) = 1X in B. An object A in E such that p(A) = X is said
to be above X and, similarly, a morphism f in E such that p(f) = u is said to
be above u. The category B is called the base category and E the total category.
This terminology goes back to the early 1940’s when the notion of fibration was
introduced in homotopy theory. Grothendieck extended it to categories in the
early sixties.

Definition: Let p : E // B be a functor.

1. A morphism f : A // B in E is said to be Cartesian over u : X // Y in
B if p(f) = u and if for every g : C // B such that p(g) = u ◦ w for some
w : p(C) //X , then there is a unique h : C //A in E above w such that
f ◦ h = g. This situation is best depicted by the following diagram:

E

B

p

��

A B
f

//

C

A

h

���
�

�

�C

B

g

��?
??

??
??

??
??

X Y
u

//

p(C)

X

w

��

p(C)

Y

u◦w=p(g)

��?
??

??
??

??
?

2. The functor p : E //B is a fibration if for every B in E and u : X //p(B)
in B, there is a Cartesian morphism f : A // B in E above u. A fibration
is also called a fibred category.

Bénabou gave conditions for a fibration to be small or locally small. These are
important conceptual clarifications. Up to that day, category theorists, and in
particular those working in topos theory, were assuming an ambient universe that
allowed one to assume what being small and locally small meant. Thus, a category
of sets was more or less assumed for certain foundational purposes, in particular
for issues of size. What Bénabou showed, and developed later in a paper published
in 1985 is that the concept of fibration was precisely what was needed to give a
conceptually sound analysis of these problems. In a fibration p : E //B, the base
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category B provides the “universe” for the total category E. Thus, being locally
small in E means that the Hom-sets of E can be represented as objects of B. As we
have said, the most interesting result with respect to categorical logic announced
by Bénabou is the proof of the existence of classifying toposes from the fact that
certain fibrations are small. See [Bénabou, 1985].

In the eighties, categorical logicians picked up on the notion of hyperdoctrines
and the conceptual framework provided by Bénabou, sometimes in terms of in-
dexed categories, as a semantical framework and developed the syntactical as-
pects of the work to obtain more specific type theories and completeness the-
orems for them in this framework. (See [Seely, 1983; Seely, 1984; Seely, 1987;
Lamarche, 1991; Moggi, 1991] and, of course, [Jacobs, 1999].)

8 THE DURHAM MEETING

It seems more than appropriate to end with a brief survey of the Durham meeting
that took place from July 9 to July 21 in the summer of 1977. It constitutes in our
mind the endpoint of the first period initiated by Lawvere in 1963. The title of the
meeting was Applications of Sheaves and the subtitle was Applications of Sheaf
Theory to Logic, Algebra, and Analysis. It was edited by M.P. Fourman, C. J. Mul-
vey and D. S. Scott. Among the participants, we find P. Aczel, B. Banaschewski,
M. Barr, J. M. Beck, J. Bénabou, M. Bunge, J. C. Cole, M.-F. Coste, R. Dia-
conescu, E. J. Dubuc, M. P. Fourman, P. J. Freyd, J. W. Gray, R. J. Grayson,
J. M. E. Hyland, J. Isbell, P. T. Johnstone, A. Joyal, G. M. Kelly, J. F. Kennison,
A. Kock, J. Lambek, R. Lavendhomme, F. W. Lawvere, M. Makkai, R. B. Mans-
field, C. J. Mulvey, G. E. Reyes, D. Schlomiuk, D. S. Scott, R. Seely, G. Takeuti,
M. Tierney, D. van Dalen, H. Volger, G. C. Wraith and J. J. Zangwill. The list
of talks is quite impressive but it does not correspond exactly to the list of pa-
pers published. For instance, G.E. Reyes gave two lectures on models in sheaves,
but published a joint paper with Anders Kock on manifolds in formal differential
geometry and a paper on Cramer’s rule in the Zariski topos. Some of the talks
were never transformed into papers. As usual, Bénabou and Joyal gave talks but
did not submit papers. Bénabou talked about fibrations and Joyal gave a talk
entitled A topos as a space and a theory. Makkai gave a talk on the syntacti-
cal constructions and basic properties of classifying toposes and Lambek gave a
talk entitled From λ-calculus to free topoi. Peter Freyd presented results about
complete higher-order theories. When one considers the published papers, one
element stands: it is dominated by papers that are either about or in the context
of sheaves over a topological space X , or equivalently H-sets, for H a complete
Heyting algebra. Out of 33 papers (we exclude Gray’s paper on the history of sheaf
theory), at least 12 are clearly in the framework of a category of sheaves over a
topological space X . The other striking feature is, as the title indicates, the search
for concrete, precise applications of sheaf theory to various fields of mathematics.
This second feature probably explains the first one. However, the underlying re-
striction, that is sheaves over a topological space or, more generally, sheaves over
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a complete Heyting algebra, certainly did not reflect the extent of the potential
applications of the methods available. A more striking example, which we will
simply mention, was given by Marie-Françoise Coste and Michel Coste shortly af-
terwards, using in an essential manner the classifying topos of a geometric theory.
(See [Coste and Coste, 1979].) The search for applications continued for some
time after and lead to interesting developments: models for synthetic differential
geometry, the effective topos and Freyd’s models for the independence of the ax-
iom of choice, to mention but the most obvious. (See, for instance, [Kock, 1981;
Moerdijk and Reyes, 1991] for synthetic differential geometry, [Hyland, 1982;
Hyland, 1991; van Oosten, 2008] for the effective topos and [Freyd, 1980; Blass and
Scedrov, 1989] for Freyd’s models.) But by the early eighties, it seems that the
mathematical community was shunning away from abstract and general methods.

With hindsight, two elements stand out when we look at the early history of
categorical logic. First, a categorical analysis of certain of the key concepts of logic
and set theory is not only possible – an idea that was at first seen as being absurd
since it was thought that logical and set theoretical concepts were too primitive for
such an analysis – , but fruitful in as much as they naturally fall under the central
notions of the theory, e.g. adjoint functors. What this analysis amounted to
was an adequate algebraic treatment of these notions. Although the analysis was
associated with a distinctive ideological component, strongly political in the late
sixties and early seventies, according to which logic and geometry were opposites,
the fabric weaving together these facets was nonetheless thoroughly algebraic and
this was acknowledged by all the parties involved and seen as a potentially powerful
gain. Second, the development of categorical logic was not, in contrast for instance
with Grothendieck’s program in algebraic geometry which was carried on with the
Weil conjectures as the final target, fueled by specific problems or conjectures
deemed to be important by the community of logicians or mathematicians. A
large part of the work done consisted, at first, in finding what one would consider
being an adequate categorical “translation” of concepts and results of logic. The
surprise was to see that so many notions coming from algebraic geometry and
algebraic topology were mathematically equivalent to logical notions when they
were formulated adequately in a categorical framework. This in itself opened new
avenues of research, new ways of thinking about certain problems and theories.

For those who were not charmed by the beauty and elegance of categorical
manners, who were convinced that category theorists had put the cart before
the horses or had fallen prey to a complicated and terrifying new gadget whose
purpose was far from being clear, the standard objection was simply: can you
prove something by these means that cannot be proved by other, meaning more
“traditional”, means? If what one does in categorical logic is simply the same
but in a different, more complicated and ultimately irrelevant guise, why bother
learning this general abstract nonsense in the first place? If one does not care about
a grand unifying picture of mathematics and its foundations, of unsuspected links
between domains resulting in a complex and rich network of abstract structures,
then is there any genuine value in the categorical toolbox?
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It should be pointed out immediately that these complaints strangely resemble
what mathematicians often ask logicians in general. What is original here is that it
is a complaint coming from mathematical logicians towards categorical logicians.
If logicians can or could reply to mathematicians that they were interested in a
specific kind of analysis of mathematical notions, namely a foundational analysis,
categorical logicians had a hard time convincing logicians that their analyses are
genuinely foundational. Notice, however, that many logicians, including Tarski
for instance, do want to use logic as a tool for mathematics and not specifically
as a foundational tool. Be that as it may, in our specific case, the culprit is
certainly related to the algebraic nature of a categorical analysis and algebraic
logic has been seen, at least since Frege, as being foundationally misguided since it
implicitly subsumes logic as a part of mathematics, when Frege and his successors
assumed – not without reasons, it should be added – that the opposite must
be true and we are back, once again, to an ideological, or perhaps some would
prefer to say philosophical, debate. One possible answer to logicians, but that
we will develop elsewhere, is that categorical logic does indeed offer a genuine
foundational analysis of various mathematical concepts, no matter how logicians
define the notion of “foundational analysis”. One can start with various formal
systems, whether propositional, first-order or higher-order, coherent, constructive
or classical, develop them systematically, define semantics for these formal systems
and prove various completeness or other kinds of theorems. Moreover, as we
have already mentioned, categorical logic provides bridges between constructive
and classical approaches, geometry and logic, topology and logic, to name but
the most obvious links. The fate of categorical logic is presently intimately tied
to theoretical computer science, and to a certain extent to the foundations of
homotopy theory and its place in mathematics and mathematical physics. No
matter how categorical logic develops, no matter what route it travels along, its
algebraic roots will always reveal themselves.
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groupes généraux. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé
par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152. Springer-
Verlag, Berlin, 1962/1964.

[Demazure and Grothendieck, 1962/1964b] Michel Demazure and Alexander Grothendieck, ed-
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221 of Lecture notes in mathematics. Springer-Verlag, Berlin, New York,, 1971.

[Gray, 1979] J. W. Gray. Fragments of the history of sheaf theory. In M. P. Fourman, C. J.
Mulvey, and D. S. Scott, editors, Applications of Sheaves, volume 753 of Lecture Notes in
Mathematics, pages 1–79. Springer, Berlin, 1979.

[Grothendieck, 1957] A. Grothendieck. Sur quelques points d’algèbre homologique. Tôhoku
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