Qualia Logic

Let \(p \) be a statement of classical propositional calculus. We want to add cases for which \(p \) is a statement about qualia. Classically, if \(p \) is a statement it can have truth values \(T \) or \(F \). But if \(p \) contains qualia it contains ineffable information. One way to allow for this is to let \(p \) take on the truth values \((T, i)\), \((F, i)\), \((T, i)\) or \((F, i)\) for 'true', 'false', 'true and ineffable' or 'false and ineffable' [2]. For example I would give the sentence

'one way that green appears to me is' the truth-value \((T, i)\).

If \(p \) is true and \(q \) is true then \(p \land q \) is true. Some reflection shows that if \(p \) is true and \(q \) is true and ineffable, then the proposition \(p \land q \) is ineffable... One can go through the truth value alternatives for \(p \land q \) systematically and construct a truth table for \(p \land q \):

Truth Table (matrix) for \(p \land q \)

\[
\begin{array}{|c|c|c|c|c|}
\hline
p & q & (T) & (F) & (T, i) \\
\hline
(T) & (T) & (F) & (T, i) & (F, i) \\
(F) & (F) & (F) & (F, i) & (F, i) \\
(T, i) & (T, i) & (F, i) & (T, i) & (F, i) \\
(F, i) & (F, i) & (F, i) & (F, i) & (F, i) \\
\hline
\end{array}
\]

If \(p \) has truth value \((T, i)\), then \(\neg p \) could have either truth value \((F, i)\) or \((F)\). The first case happens when, for example, I assert that I'm seeing green when I'm really seeing purple. The second happens if I'm a zombie. In that case I would not be experiencing color at all, so \(\neg p \) gets the value \((F)\).

A first attempt at a truth table for \(p \lor q \) is

\[
\begin{array}{|c|c|c|c|c|}
\hline
p & q & (T) & (F) & (T, i) \\
\hline
(T) & (T) & (T) & (T, i) & (T) \\
(F) & (T) & (F) & (T, i) & (F, i) \\
(T, i) & (T, i) & (T, i) & (T, i) & (T, i) \\
(F, i) & (T) & (F, i) & (T, i) & (F, i) \\
\hline
\end{array}
\]

Apparently truth tables could be given for other operators too. These give a 4-valued logic that one might call Qualia Logic (QL). Notice in the above tables the and-over-or distributive law fails.

A first guess at a truth table for \(p \rightarrow q \) is

\[
\begin{array}{|c|c|c|c|c|}
\hline
p & q & (T) & (F) & (T, i) \\
\hline
(T) & (T) & (T) & (T, i) & (T) \\
(F) & (T) & (F) & (T, i) & (F, i) \\
(T, i) & (T, i) & (T, i) & (T, i) & (T, i) \\
(F, i) & (T) & (F, i) & (T, i) & (F, i) \\
\hline
\end{array}
\]
Notice that if p is going to answer the Hard Problem(s) (how and why qualia?), it must imply some proposition q that has a truth value (T, i). But in the (tentative) truth table above, this is not possible if p has truth value (T). Therefore the truth value of p must be (T, i). Therefore the answer to the Hard Problem will itself be constituted at least partially by ineffable qualia.

Questions: What's the difference in the logic (metaphysical or epistemic) of a zombie and the logic of those of us who do experience (or have) qualia? (I suppose a zombie cannot assign a truth value (T, i) metaphysically...) If we consider our experiences related to time as the 'input' qualia, can we applyQL and derive a temporal logic? Can QL be construed as an enlargement of the scope of the logic of physical laws?

References