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Abstract

Non-Ideal Decision Theory

by

Sven Moritz Silvester Neth

Doctor of Philosophy in Philosophy

University of California, Berkeley

Professor Lara Buchak, Co-Chair

Professor John MacFarlane, Co-Chair

Standard decision theory has some striking consequences. First, if you have
any irrational preferences, it does not make sense to ascribe credences to
you—decision theory treats you as having no opinions at all. Second, you
should always prefer to look at more information before making a decision if
the information is free, even if you think the information is likely biased.

These consequences seem wrong. Your preferences are sometimes irra-
tional, but you clearly still have opinions about things. If we could only
ascribe credences to agents with perfectly rational preferences, decision the-
ory couldn’t give any useful advice to imperfect agents like us. Furthermore,
people sometimes prefer not to look at more information before making a de-
cision. For example, when grading a paper, I prefer not to know the student’s
name. This behavior seems perfectly rational, even laudable.

Does this mean that decision theory is broken? No. I argue that we can fix
its problems. The key to ascribing credences to non-ideal agents is to start
by looking at comparative probability judgments, like thinking it’s equally
likely to be sunny and rainy tomorrow. Comparative probability is tied to
preferences in a straightforward way—you think that sunshine and rain are
equally likely if you are indifferent between betting on them. If sunshine and
rain are the only two possibilities for the weather tomorrow and you think
they’re equally likely, you assign probability .5 to both. I show that if your
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preferences satisfy some minimal constraints, we can extend this procedure
to fix your entire credence function while allowing many of your preferences
to be irrational (Chapter 2).

The key to explaining why it can be rational to reject free information is
to recognize that we can be uncertain about how we will react to evidence. If
I were certain that I always respond to evidence in a perfectly rational way
(by ‘conditionalization’), then perhaps it would be rational to look at my
students’ names before grading papers. Indeed, certainty that one will react
to evidence in a perfectly rational way is an assumption built into Good’s
well-known theorem about the value of information. But this assumption
might fail. I know that I’m not always rational—for example, I might give
too much weight to the fact that George got an ‘A’ on the first paper and
treat this as better evidence than it is that his current paper deserves a high
mark. Once I take this possibility into account, I might be better off ignorant
(Chapter 3).

Uncertainty about how we will react to evidence has other consequences
as well. For example, it can lead us to make sequences of choices which,
taken together, yield sure loss. Many decision theorists have claimed that
such choices always indicate irrationality. I argue that this bit of conventional
wisdom needs revision (Chapter 4).

One upshot is that by widening the scope of decision theory to include
non-ideal agents, we enable the decision theorist to give vindicating expla-
nations of common phenomena, like having opinions without being fully ra-
tional and avoiding information before making a decision. Another upshot is
that a more sophisticated decision theory is relevant for designing beneficial
AI systems, since existing ideas for doing so assume an implausibly strong
conception of rationality (Chapter 5).
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Das Hauptproblem aller nur
rationalen Weltzugänge: man
kriegt zu wenige Aspekte
gleichzeitig zu fassen, und dieses
Orientierende, der
gefühlsmäßige Überblick, die
Ansicht des Ganzen in ihrer
Irgendwiehaftigkeit kann durch
keine Schärfe der Analyse im
Einzelnen usw.

Rainald Goetz, loslabern.
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at the UKT in Tübingen who saved my life when I was very sick. Thanks to
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Chapter 1

Introduction

Alice has incoherent preferences. For example, perhaps her preferences over
complicated options are cyclic: she strictly prefers A to B and B to C but
also strictly prefers C to A. In decision theory, we often find out what an
agents’ credences are by looking at their preferences over options. However,
when doing so, we assume that agents have perfectly coherent preferences,
which rules out agents like Alice. So according to standard decision theory,
we cannot ascribe any credences to Alice. But this seems wrong. It would
be better if we could make sense of ascribing credences to agents like Alice.

Ann is uncertain about how she will update on some evidence. For exam-
ple, perhaps she assigns some probability to committing the gambler’s fallacy
in the future, which means that observing a fair coin landing heads increases
her credence that the next coin flip will land tails. Ann is facing a decision
and is considering whether she should make her choice now or wait for more
information. What should she do? In decision theory, we often assumed
that agents are certain about updating. So standard decision theory cannot
give any advice to Ann. This seems like a severe restriction of the scope of
decision-theoretic advice. It would be better if we could make sense of giving
advice to agents like Ann.

The project of my dissertation is to extend the scope of decision theory
to ‘non-ideal’ agents like Alice and Ann. Before explaining the details, it is
worth briefly sketching the way decision theory is usually understood.
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CHAPTER 1. INTRODUCTION

1.1 The Bayesian Ideal

In decision theory and formal epistemology, we often ask what ideally rational
agents are like. Standard decision theory (or ‘Bayesian decision theory’)
answers this question as follows:

1. ideally rational agents have probabilistically coherent credences,

2. they always prefer actions which maximize expected utility,

3. they update on any new information by conditionalization.

To explain these assumptions, let us assume, for the purpose of expo-
sition, a finite set of states Ω, which describe all aspects of the world our
agent is uncertain about besides their own preferences (Savage 1972). The
first assumption demands that our agent’s degrees of belief or credences can
be modeled by a probability function, which is a function p : P(Ω) → R
satisfying the axioms of probability.1

To understand the second assumption, let us assume that there is a set of
outcomes O which contain the ultimate bearers of value for our agent. Let
us also assume that our agent’s values can be modeled by a utility function
u : O → R. Then, we can model actions (or ‘acts’) as functions f : Ω→ O.
The idea is that an action is the kind of thing that has different consequences
depending on the (unknown) state of the world. For example, the action of
taking an umbrella has the consequence ‘stay dry’ if it is raining and ‘carry
an unnecessary umbrella’ if it is not raining. The expected utility of action f
is:2

E(f) =
∑
ω∈Ω

p({ω})u(f(ω)).

Now the second assumption says that for any actions f and g, a rational
agent prefers f to g if and only if f has a higher expected utility than g.
While there are subtle questions about the relationship between preference
and choice, I will also assume that when there is a finite set of actions, a
rational agent will choose one of the actions with maximal expected utility.

1The axioms are: (i) non-negativity: p(X) ≥ 0 for all X ⊆ Ω, (ii) normalization:
p(Ω) = 1 and (iii) finite additivity: p(A ∪ B) = p(A) + p(B) whenever A ∩ B = ∅.
Kolmogorov (1933) suggested the stronger requirement of countable additivity. I briefly
discuss countable additivity in Chapter 2 but otherwise stick with finite additivity.

2For infinite Ω, we need a slightly more complicated definition.

2



CHAPTER 1. INTRODUCTION

To understand the third assumption, I will introduce a simple model of
learning. I model learning as learning exactly one element of an evidence
partition E , which is a set of mutually exclusive and collectively exhaustive
events with non-zero probability. Imagine, for example, that you are about
to take a look at a thermometer. Then, the events in our evidence partition
describe different readings of the thermometer. The norm of conditionaliza-
tion says that when an agent starts with credences p and learns event E ∈ E ,
they should update their credences from p to p(· | E), where p(A | E) is the
conditional probability of A given E.3

The first and second part of the Bayesian picture are often supported by
representation theorems, which show that any agent whose preferences obey
certain axioms of rationality can be represented as expected utility maxi-
mizer with probabilistic credences (Ramsey 1926; Savage 1972). The idea
that rational agents update on any new information by conditionalization is
often supported by coherence arguments, which show that agents who plan
to update in a different way choose sequences of actions which lead to sure
loss over time (Lewis 1999).

Let us suppose for a moment that the Bayesian picture is a correct de-
scription of ideal rationality.4 What are such ideally rational agents like?
In many cases, what ideally rational agents prefer and believe depends on
the particulars of the situation—their initial credences, their evidence and
so on. However, the Bayesian picture entails some structural constraints on
preferences and beliefs which hold in general. For example, as Good (1967)
shows, ideal Bayesian agents always prefer to learn more information before
making a decision given that the information is cost-free (Value of Learn-
ing). Further, ideal Bayesian agents never choose sequences of actions which
lead to sure loss over time (Coherence).

1.2 Non-Ideal Decision Theory

What happens if we consider agents who are not ideally rational? There
is good reason to do so, because it is natural to think of decision theory

3I use the ratio definition of conditional probability: p(A | E) = p(A∩E)
p(E) supposing

p(E) > 0 and set aside other understandings of conditional probability (Hájek 2003).
4Talk of ‘Bayesian decision theory’ or ‘Bayesian epistemology’ goes back to Bayes

(1763), who in this famous posthumously published essay considers the question of how
to infer probability from observed frequency (Earman 1992).
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CHAPTER 1. INTRODUCTION

not only as a description of ideal agents, but also as a theory that can give
advice to non-ideal agents. There are, of course, many ways to be non-
ideal. I’m interested in a particular kind of non-ideal agent. In Chapter 2,
I consider agents who have some irrational preferences. I show how we can
extend decision theory to ascribe credences to such agents. In Chapter 3
and Chapter 4, I consider agents who are not certain how they will update
on new evidence. I show how we can extend decision theory to give useful
advice to such agents.

So the idealizing assumptions I want to relax are:

1. agents have perfectly rational preferences,

2. agents are certain about how they will react to new evidence.

These assumptions are logically independent. You might have some irra-
tional preferences but be certain about how you will react to new evidence.
On the other hand, you might have perfectly rational preferences while being
uncertain about how you will react to new evidence. And while the first as-
sumption is synchronic—it concerns your preferences right now—the second
assumption is diachronic—it concerns decision making over time.

Also note that agents who are not certain about how they will react to new
evidence might in fact be perfect Bayesian agents. So it’s not clear whether
agents who are uncertain about how they will update are really non-ideal. My
motivation for focusing on such agents is that, as it turns out, the structural
constraints which are supposed to follow from the Bayesian picture—Value
of Learning and Coherence—break down when we consider agents who
are uncertain about how they will update. This means that good advice to
such agents will look very different from the Bayesian ideal.

The picture I have described fits well with a certain näıve way of thinking
about decision theory. We face a decision problem: should I take the umbrella
or leave it at home? To answer this question, we specify the relevant states of
the world—it might rain, it might shine, there could be umbrella muggers—
and the subjective probability you assign to these states. We also specify the
utility of each pair of state and action. We end up with a decision matrix
like the one shown in figure 1.1.
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CHAPTER 1. INTRODUCTION

Take it Leave it
Rain (.2) 1 -5
Shine (.7) -1 0
Umbrella muggers (.1) -10 0

Figure 1.1: A simple decision problem.

The expected utility of taking it is 1 × .2 − 1 × .7 − 10 × .1 = −1.5 and
the expected utility of leaving it is −5 × .2 = −1. As (standard) decision
theorists, we can advise you to leave the umbrella at home. When giving this
advice, it seems we do not presuppose that you already prefer the action with
the higher expected utility. You might initially prefer to take the umbrella.
After all, decision making under uncertainty is hard.

1.3 Overview

Here is an overview of the chapters of this dissertation.

1.3.1 Better Foundations For Subjective Probability

To give decision-theoretic advice to an agent, we first need to know what their
subjective probabilities are. How do we ascribe subjective probabilities? The
standard answer, pioneered by Ramsey (1926) and Savage (1972), is to use
representation theorems, which show that an agent whose preferences obey
certain axioms can be represented as an expected utility maximizer relative
to a unique probability function.

However, standard representation theorems presuppose that the agent un-
der consideration has perfectly rational preferences. This means that these
representation theorems cannot underwrite the näıve picture of decision the-
ory sketched above, where we draw on the agent’s probabilities to give advice
which potentially corrects our agent’s preferences.

I show that we can do better. I present a representation theorem building
on Savage (1972) and Krantz et al. (1971) which can be used to measure
or define an agent’s subjective probabilities given weak rationality axioms
which allow irrational preferences. The key idea is to start with comparative
probability judgments and to construct a unique probability function which
represents these comparative judgments. This representation theorem makes
room for useful decision-theoretic advice.
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CHAPTER 1. INTRODUCTION

1.3.2 Rational Aversion to Information

After making sure we can give decision-theoretic advice to non-ideal agents,
I turn to the question what kind of advice we should give. There are many
ways to be non-ideal and I focus on one kind of deviation from the classical
Bayesian ideal: agents who are modest, which means they are uncertain about
how they will update on new information. Modest agents might, as a matter
of fact, never deviate from conditionalization, but they are not sure of this.

It is reasonable to be modest. Modesty follows from plausible principles
of Bayesian epistemology, which urge us to assign non-zero probability to all
empirical propositions and proportion our belief to the available evidence.
So Bayesian epistemology suggests that we should not assume we are perfect
Bayesian agents. Whether we are perfect Bayesian agents is itself an empir-
ical question and it is reasonable to assign some credence to the possibility
that we are not.

For modest agents, maximizing expected utility sometimes requires reject-
ing learning free and relevant information before making a decision. Good’s
theorem, which is often glossed by saying that ‘expected utility maximizers
are never worse off by learning more information’, does not apply to modest
agents. This is because Good assumes not only that the agent under consid-
eration maximizes expected utility, but also that they are certain of updating
by conditionalization.

1.3.3 Against Coherence

Another structural constraint implied by the Bayesian ideal is Coherence,
which says that an agent will never make a sequence of choices which, over
time, yields sure loss. I show that for modest agents, maximizing expected
utility sometimes leads to incoherence. While some might take this as a rea-
son against modesty, I argue that we should embrace incoherence instead,
drawing on an analogy with purchasing insurance. The upshot is that like
Value of Learning, Coherence is normatively fragile and does not consti-
tute robust advice for non-ideal agents. We should be suspicious of arguments
which purport to derive other rational requirements from Coherence.

The overall lesson is that Value of Learning and Coherence follow
from expected utility maximization only if we assume that agents are certain
of updating by conditionalization. Since this requirement will fail for non-
ideal agents and even for agents which are in fact perfect Bayesians but
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CHAPTER 1. INTRODUCTION

uncertain about this, Value of Learning and Coherence are not robust
normative requirements.

1.3.4 Off-Switching Not Guaranteed

One application of decision theory is to inform the design of AI systems, and
an important problem in the design of AI systems is how we can make sure
that AI systems will always defer to us if we want to switch them off (Russell
2019). Hadfield-Menell et al. (2017) propose the Off-Switch Game, a simple
model of Human-AI cooperation in which AI agents always defer to humans
because they are uncertain about our preferences. I show how deference can
fail if the AI agent is not certain of updating by conditionalization. So my
framework has important consequences for applied decision theory.

1.4 What This Dissertation Is

Here are two ways to think about the overall picture which emerges from this
dissertation.

We can distinguish between normative and interpretative decision theory
(Buchak 2017, p. 789). In normative decision theory, we take agent’s cre-
dences and utilities for granted and ask what they should do given that they
have these credences and utilities. As noted above, the standard advice is
that a rational agent should maximize expected utility relative to their cre-
dence function and utility function. In interpretative decision theory, we do
not take credences and utilities for granted. Rather, we start with an agent’s
preferences over actions and use the assumption that the agent obeys some
decision-theoretic principle to ‘reverse engineer’ their credences and utilities
from their preferences. The standard story of interpretative decision theory,
pioneered by Ramsey (1926), is that we can use the assumption that an agent
maximizes expected utility to infer their credences and utilities from their
preferences. We can think of this as a project of ‘radical interpretation’: fig-
ure out what an agent believes and desires from scratch, merely by looking
at their preferences.

We can think of Chapter 2 as extending interpretative decision theory
to non-ideal agents. As I will show, we can use assumptions much weaker
than expected utility maximization to infer credences from preferences. In
contrast, Chapter 3 and Chapter 4 extend normative decision theory to non-
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CHAPTER 1. INTRODUCTION

ideal agents. In these chapters, I take credences and utilities for granted and
give advice what agents should do if they are uncertain about their updating
behavior. So one way to think about the overall upshot of this dissertation
is as showing how to do both interpretative and normative decision theory
for non-ideal agents.

Here is another way of thinking about it. In this dissertation, I discuss
three very influential ideas in decision theory. First, representation theo-
rems, which show how to define or infer subjective probability by looking at
preferences (Ramsey 1926; Savage 1972). Second, value of information, the
idea of measuring the value of learning by its expected impact on future de-
cisions (Good 1967). Third, coherence, the idea that rational agents should
not make sequences of choices which lead to sure loss (de Finetti 1937; Lewis
1999).5 In all three cases, considering non-ideal agents leads to interesting
results, although these results pull us in somewhat different directions. We
can generalize representation theorems to non-ideal agents, so representa-
tion theorems can serve as a solid foundation for decision theory even if we
relax idealizing assumptions. In contrast, allowing agents to be uncertain
about updating undermines the idea that the expected value of information
is non-negative and that we should be coherent.

Here is a worry for the project of non-ideal decision theory. There are
many ways to relax idealizations of decision theory, which can make it seem
arbitrary to focus on one of them rather than another. The big-picture
upshots discussed above help to respond to this worry. My way of doing
non-ideal decision theory is fruitful because it engages with ideas which form
the core of decision theory: interpretative and normative decision theory,
representation theorems, value of information and coherence.

1.5 What This Dissertation Is Not

As noted above, there are many ways to be non-ideal. Thus, there are many
alternative ways to do non-ideal decision theory which I will not discuss here.

Most importantly, for the purpose of this dissertation, I will assume that

5Arguably, all three ideas are due to Ramsey. In addition to introducing represen-
tation theorems, Ramsey (1926) suggests that we can use coherence as a foundation for
probabilism (while not explicitly drawing the connection between coherence and condi-
tionalization). In a posthumously published note, Ramsey (1990) sketches a version of
Good’s theorem.
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CHAPTER 1. INTRODUCTION

standard decision theory correctly describes ideally rational agents. In par-
ticular, I will assume that rationality requires precise credences and maximiz-
ing expected utility. There are alternative conceptions of ideal rationality, for
example alternative decision theories (Buchak 2013) or imprecise credences
(Joyce 2010). Imprecise credences are sometimes motivated by thought that
standard decision theory is too demanding in requiring us to assign pre-
cise real-valued probabilities. But as I will show in Chapter 2, we can pro-
vide foundations for precise subjective probabilities which apply to non-ideal
agents. I am sympathetic to the idea that even ideally rational agents are
not required to maximize expected utility. My arguments in Chapter 3 and
Chapter 4, which show that rational agents can be required to reject free
information and suffer sure loss, could be recast with the weaker assumption
that expected utility maximization is rationally permissible. But to keep it
simple, I will assume that rationality requires expected utility maximization.

I will not consider computationally limited agents, the study of which
is often called ‘bounded rationality’. There is a rich research tradition ex-
ploring these ideas in psychology, economics and artificial intelligence (Si-
mon 1976; Cherniak 1986; Russell and Subramanian 1995; Gigerenzer and
Goldstein 1996; Aumann 1997; Griffiths, Lieder, and Goodman 2015; Icard
2018; Thorstad 2022b; Thorstad forthcoming). One of the core ideas of this
tradition is to move from rational requirements on preferences to rational re-
quirements on processes of inquiry and decision-making.6 While I think this
is a fruitful approach, we will see that considerations of non-ideal agents lead
to rich and interesting consequences even if we stick with the formal frame-
work of standard decision theory and relax rationality assumptions within
this framework.

Relatedly, I will not talk about the problem of logical omniscience (Sav-
age 1967; Stalnaker 1991). My framework has no room to model agents who
are uncertain about logical truths. I will also set aside issues of unaware-
ness (Steele and Stefánsson 2021). Again, while I think these problems are
pressing, non-ideal decision theory is interesting even if we assume logical
omniscience and focus instead on agent’s empirical uncertainty about their
own future updating behavior. One advantage of going this route is that it is
hard to come up with a simple framework to model agents who are uncertain

6While not working within the bounded rationality tradition, Harman (1986) proposes
an account in a similar spirit, focusing on the process of reasoning instead of rational
requirements on beliefs and preferences.
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CHAPTER 1. INTRODUCTION

about logical truths.7

Some philosophers have framed theories of non-ideal agents in terms of
the question whether and why these agents should approximate normative
ideals (Bona and Staffel 2018; Staffel 2019). While this is a fruitful question,
agents do not always have the option to approximate the ideal. I focus
on what agents should do if they don’t have the option to become ‘better
Bayesians’.

I will also set aside issues of uncertain evidence and assume that when
you learn something, this can be modeled as becoming certain of some propo-
sition. According to Jeffrey (1957), experience can shift our probabilities
even though there is no proposition we become certain of, which leads to a
rich framework of updating rules for such learning experiences (Diaconis and
Zabell 1982). As Huttegger (2017) argues, Jeffrey’s move can be understood
as a way of de-idealizing the standard Bayesian model of learning. However, I
set such complications aside and focus on relaxing another assumption of the
standard model: you are certain how learning a proposition with certainty
will impact the rest of your credence function.

Furthermore, I will set aside questions about the relationship between
credence and ‘full belief’ (Buchak 2014; Leitgeb 2014; Jackson 2020; Mac-
Farlane forthcoming). Such questions are potentially relevant to non-ideal
theorizing since one might think that we ascribe and reason with beliefs be-
cause they are more tractable than credences. However, even if we confine
our attention to credences, there are more than enough questions to ponder.

I will set aside the dispute between causal and evidential decision theory
(Nozick 1969; Lewis 1981; Joyce 1999). Throughout this dissertation, I as-
sume that actions are causally and probabilistically independent of states, so
that causal and evidential decision theory will agree in their verdicts. Finally,
I will set aside problems of self-locating uncertainty (Lewis 1979).

With these preliminaries out of the way, let us now begin.

7Hacking (1967), Garrabrant et al. (2016), Elga and Rayo (2022), and Skipper and
Bjerring (2022) propose different ways to approach the problem of logical omniscience in
a Bayesian framework.
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Chapter 2

Better Foundations for
Subjective Probability

In philosophy, psychology and economics, we often ascribe subjective proba-
bility or credence to people. For example, we might say that Alice’s subjec-
tive probability that it will rain tomorrow is .3. What is the basis for such
ascriptions of subjective probability?1

If we want to find out Alice’s subjective probability that it will rain
tomorrow, one natural idea is to look at which bets Alice is willing to accept.
If I offer Alice a bet which pays one dollar if it rains tomorrow, how much is
this bet worth to her? There is a long tradition in decision theory inspired
by this idea, going back to Ramsey (1926). In this tradition, we assume that
an agent satisfies certain principles of rationality and then define or measure
subjective probability in terms of preferences.2

But what if Alice does not satisfy the rationality assumptions required by
Ramsey? Ramsey assumes that the agent under consideration is an expected
utility maximizer and there are good reasons to doubt that real-life agents
maximize expected utility. Now perhaps this means that real-life agents
do not have any subjective probabilities or that we cannot measure them.
However, there is an alternative option: we can provide decision-theoretic
foundations for subjective probability with weaker rationality assumptions.

1A version of this chapter is forthcoming in the Australasian Journal of Philosophy.
2Buchak (2017) calls this ‘interpretative decision theory’: we use decision-theoretic

principles to interpret an agent’s mental states in a process of ‘radical interpretation’
(Davidson 1973; Lewis 1974). As I briefly discuss in appendix A, the idea of betting as a
guide to degrees of belief can be traced back at least as far as Kant.
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I introduce a representation theorem building on Savage (1972) and Krantz
et al. (1971) which connects subjective probability to preference with much
weaker rationality assumptions than standard representation theorems. In
particular, I allow agents to not maximize expected utility, to violate stochas-
tic dominance and to consider most options incomparable. The key idea is
to start with comparative probability judgments and to construct a unique
probability function which represents these comparative judgments. My rep-
resentation theorem has important philosophical upshots: it makes sense of
how we can ascribe precise subjective probability to partly irrational agents
and how decision theory can provide useful advice.

As suggested above, there are two ways of understanding the project
of grounding ascriptions of subjective probability in preferences. First, one
might attempt to define subjective probability in terms of preference. On this
view, to say that Alice’s subjective probability that it will rain tomorrow is
.3 just means that Alice is willing to accept certain bets. So ascriptions of
subjective probability are a ‘representational device’ to talk about something
more fundamental: Alice’s preferences. Let us call this view constructivism.
Second, one might think that while subjective probability is not reducible to
preference, we can measure subjective probability by observable preferences.
Call this view realism. I will mostly remain neutral between constructivism
and realism. Like Ramsey’s approach, my representation theorem can be
interpreted as defining or measuring subjective probability in terms of pref-
erence. However, I will later suggest that the theorem naturally fits with
an intermediate position between constructivism and realism: comparative
probability is psychologically real but numerical probability functions are
merely ‘representational devices’ for talking about comparative probability.

Here is the plan. I start by introducing some terminology (2.1) and ex-
plain Ramsey’s method for measuring subjective probability (2.2). I discuss
some problems for Ramsey’s method (2.3). I introduce better foundations
for subjective probability (2.4) and explain how they overcome the problems
for Ramsey’s method (2.5). I finish by sketching two ideas suggested by
the representation theorem (2.6): the view that comparative probability is
more fundamental than numerical probability and a subjectivist version of
the classical interpretation of probability.

12
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2.1 Set-up

We have a set Ω of states which describe the world apart from our agent’s
preferences and a σ-algebra F of subsets of Ω which are called events.3 For
any X ∈ F , we denote the relative complement of X in Ω by XC . We have
a set O of outcomes which contain everything our agent cares about.

Following Savage (1972), acts are functions from states to outcomes. An
act is finite-valued iff it only takes finitely many different outcomes. Our act
space A is the set of all finite-valued acts. This means that we can write
each act f ∈ A as {o1, E1; ...; on, En}, where events E1, ...., En are pairwise
disjoint sets and their union is Ω and for each Ei with 1 ≤ i ≤ n, oi is the
unique outcome oi ∈ O such that f(ω) = oi for all ω ∈ Ei.

I write ‘%’ for our agent’s preference ordering over acts, a binary relation
on A . The intended interpretation of f % g is that our agent weakly prefers
f to g. Strict preference (�) and indifference (∼) are defined in the usual
way.4 For each outcome o ∈ O, the constant act yielding o, written o, is the
act which assigns o to all ω ∈ Ω. I define, for any o, o′ ∈ O, o % o′ iff o % o′.
I use the term ‘option’ to talk about both acts and outcomes.

2.2 Ramsey’s Method

Ramsey (1926) proposes axioms on preferences which imply that our agent
is representable as expected utility maximizer.5 This means that there is
some probability function and utility function such that our agent always
prefers acts with higher expected utility.6 Ramsey then gives us a way to
construct or infer our agent’s utility function without already knowing our
agent’s probability function.

Once we have the utility function, Ramsey pins down the subjective
probability of any event E ∈ F as follows. First, we find three outcomes
b,m,w ∈ O (best, medium and worst) such that our agent strictly prefers

3A σ-algebra on Ω is a set of subsets of Ω which contains Ω and is closed under
complementation and countable unions.

4So f � g ⇐⇒ (f % g) ∧ ¬(g % f) and f ∼ g ⇐⇒ (f % g) ∧ (g % f).
5Jeffrey (1990, Ch. 3) and Bradley (2004) reconstruct Ramsey’s reasoning. Ramsey

originally used a different framework which does not distinguish states and outcomes,
while I am reconstructing Ramsey’s reasoning in terms of the Savage framework.

6Relative to probability function p : F → [0, 1] and utility function u : O → R, the
expected utility of act f = {o1, E1; ....; on, En} is Eu,p(f) =

∑n
i=1 p(Ei)u(oi).
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b over w and is indifferent between getting m for certain and an act which
yields b if E happens and w otherwise:

b � w, (2.1)

m ∼ {b, E;w,EC}. (2.2)

Then we use the assumption that our agent maximizes expected utility to
infer that p(E) = u(m)−u(w)

u(b)−u(w)
.7 So for Ramsey, subjective probabilities are

betting odds. Since event E was arbitrary, we can use Ramsey’s method
to uniquely pin down the subjective probability of all events. Depending
on whether we accept constructivism or realism, we can think of this as a
definition of subjective probability in terms of preferences or as a way to
measure subjective probability by preferences.

Ramsey had a lasting influence on decision theory.8 Savage (1972) also
lays down axioms on the preference relation and proves a representation
theorem which shows that any agent obeying these axioms can be represented
as expected utility maximizer with a unique probability function. Many
of the problems for Ramsey’s approach I will discuss below generalize to
Savage’s representation theorem. However, as we will see later, the work of
Savage holds key insights for an alternative approach to measure subjective
probability.9

2.3 Problems for Ramsey

I now turn to explain why Ramsey’s method is not an adequate foundation
for subjective probability.

7Proof: since our agent maximizes expected utility, (2.1) and (2.2) entail that u(m) =
u(w) + p(E)(u(b) − u(w)). Therefore, u(m) − u(w) = p(E)(u(b) − u(w)), so p(E) =
u(m)−u(w)
u(b)−u(w) . The utility function is unique up to positive affine transformation so p(E) is

unique.
8Fishburn (1981) provides a great survey of decision theory after Ramsey. Misak (2020)

places Ramsey’s work in its broader intellectual context.
9Jeffrey (1990) develops a different framework for decision theory in which states, acts

and outcomes are all propositions. However, Jeffrey’s axioms do not pin down a unique
probability function.
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2.3.1 Strong Rationality Assumptions

Ramsey assumes that the agent under consideration is an expected utility
maximizer. However, there are good reasons to think that real-life agents are
not expected utility maximizers. Suppose you only care about money and
choose between the following two lotteries:10

1. One million dollars for certain.

2. 89 % chance of winning one million dollars, 10 % chance of winning
five million dollars, 1 % chance of winning nothing.

You also choose between the following two lotteries:

3. 89 % chance of winning nothing, 11 % chance of winning one million
dollars.

4. 90 % chance of winning nothing, 10 % chance of winning five million
dollars.

If you strictly prefer (1) over (2) and (4) over (3), your preferences are
incompatible with expected utility maximization (Allais 1953).11 However,
real-life agents sometimes exhibit this pattern of preferences (Oliver 2003).
My point here is not that this pattern of preferences is rationally permissible,
as argued by Buchak (2013). Rather, my point is that real-life agents ap-
parently have such ‘Allais-preferences’. Therefore, we cannot use Ramsey’s
method to define or measure their subjective probabilities. However, it still
seems like such agents have subjective probabilities—after all, they are pre-
sumably using their subjective probabilities to reason that (1) is better than
(2) and (4) is better than (3). So Ramsey’s method is not a good foundation
for subjective probability. To make this vivid, imagine you find out that
Alice has the preferences described above. Should you conclude that Alice
cannot have any subjective probabilities or that there is no way for us to find
out what these probabilities are? I think not.

10A lottery is a probability distribution over outcomes and can be realized by multiple
acts.

11If you strictly prefer (4) over (3), .1u($5 Million) > .11u($1 Million). So, adding
the same term on both sides, .1u($5 Million) + .89u($1 Million) > .11u($1 Million) +
.89u($1 Million), which means that .1u($5 Million) + .89u($1 Million) > u($1 Million).
But if you strictly prefer (1) over (2), u($1 Million) > .89u($1 Million) + .1u($5 Million).
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People also sometimes choose stochastically dominated options. Option A
stochastically dominates option B if for every outcome o ∈ O, the probability
that A yields an outcome weakly preferred to o is greater than or equal to the
probability that B yields an outcome weakly preferred to o. It is generally
agreed that you should:

Respect Stochastic Dominance. If f stochastically dominates
g, then f % g.

This principle follows from many normative decision theories, such as
expected utility theory, risk-weighted expected utility and others.12 However,
empirical studies show that people sometimes violate this principle. Consider
the following two lotteries:

5. 5% chance of $12, 5% chance of $14, 90% chance of $96.

6. 10% chance of $12, 5% chance of $90, 85% chance of $96.

It is not hard to see that (5) stochastically dominates (6).13 Nonethe-
less, in a study reported by Birnbaum and Navarrete (1998), most subjects
chose (6) over (5). This is presumably because they rely on quick but imper-
fect heuristics in their decision making. Again, my claim is not that these
preferences are rational but only that real-life agents have such preferences.
Therefore, we cannot use Ramsey’s method to define or measure their subjec-
tive probabilities. But again, while it might be irrational to have preferences
which violate stochastic dominance, such preferences do not seem to preclude
agents from having subjective probabilities.

Finally, people sometimes regard options as incomparable in value. Con-
sider, for example, the choice between a career as a doctor and a career as
a rock star. Both career choices can lead to a fulfilling and valuable life.
However, what makes them valuable is radically different. It is difficult to
see how one could compare the two options. Someone could reasonably think
that one is not better than the other but neither are they exactly equally
good (Chang 2002).

12Buchak (2013) and Tarsney (2020) defend stochastic dominance. Bader (2018) points
out the wide applicability of stochastic dominance reasoning even if outcomes are incom-
parable. Russell (forthcoming) discusses some problems arising in such a setting.

13Both lotteries are sure to pay at least $12. The probability of winning at least $14 is
95% in (5) and 90% in (6). The probability of winning at least $90 is 90% in (5) and (6).
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Incomparability arises both at the level of outcomes and acts. It is natural
to understand the career choice example in terms of incomparable outcomes.
In contrast, a second kind of incomparability might arise because it is too dif-
ficult to compare acts even if all of their outcomes are comparable. Suppose,
for example, that you like more money rather than less. When faced with
a choice between two complicated investment portfolios, you might nonethe-
less not have any preference between them because it is too difficult for you
to reason about the decision problem. Again, my claim is not that incom-
parability is rational, but merely that real-life agents sometimes have such
preferences.14

Expected utility theory has no room for incomparability. This is because
your utility function assigns a real number to each outcome and so renders
all outcomes comparable. Each act is ranked by its expected utility so all
acts are comparable as well. Since real-life agents sometimes regard both
outcomes and acts as incomparable, their preferences cannot be represented
as expected utility maximization. However, it is not plausible that incompa-
rability precludes agents from having subjective probabilities.

Here is the upshot. There are good reasons to think that real-life agents
are not expected utility maximizers. Therefore, we cannot use Ramsey’s
method to define or measure their subjective probabilities. Some might take
this as reason to embrace a kind of nihilism: such agents do not have sub-
jective probabilities or there is no way to measure what they are. A better
response is to provide foundations for subjective probability which apply even
to agents which fail to maximize expected utility, do not respect stochastic
dominance and consider some options incomparable. One might still think
that we should model the beliefs of real-life agents by something other than
precise probability functions. However, we can make room for irrational
preferences without giving up decision-theoretic foundations for precise sub-
jective probability.

14Many have defended the stronger claim that incomparability can be rational. Joyce
(1999, p. 102) writes that “a decision maker can be perfectly rational even when her pref-
erences do not satisfy the completeness axiom”. Aumann (1962, p. 446) writes that “[o]f
all the axioms of utility theory, the completeness axiom is perhaps the most questionable”.
Similar points are made by Hare (2010), Bales, Cohen, and Handfield (2014), Schoenfield
(2014), Bader (2018), and Sen (2018).
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2.3.2 No Useful Advice

The standard decision-theoretic advice is to maximize expected utility rel-
ative to your subjective probability function and utility function. For this
advice to be useful, we first need to figure out what your probability func-
tion is.15 However, if we define or measure your probability function on the
assumption that you maximize expected utility, the advice to maximize ex-
pected utility can never be useful. Therefore, decision theory cannot play
the role of giving useful advice.16

This puzzle arises on both constructivism and realism. For construc-
tivists, your probability function is defined in terms of preferences which
satisfy certain axioms. If you violate the axioms, you simply do not have a
probability function and the advice to maximize expected utility is meaning-
less. For realists, you might still have a probability function if you violate
the axioms. However, standard representation theorems give us no way to
infer what this probability function is, so we cannot use decision theory to
give useful advice.17

One reaction to this problem is to say that the only advice decision theory
provides is: ‘obey the axioms!’. On this view, decision theory is merely a
theory of consistency (Dreier 1996; Okasha 2016). While I have no knock-
down objection to this position, it is unattractive because it makes decision
theory largely irrelevant to non-ideal agents like us who are pretty much
guaranteed to violate some normative principle of decision making. It would
be better if we could make sense of how decision theory can provide useful
advice to partly irrational agents. As I will show, we can indeed make sense
of this, which considerably weakens the plausibility of this response.

15The same point applies to the utility function but I focus on subjective probability.
16Resnik (1987, p. 99) writes, about representation theorems in decision theory: “the

theorem can be applied only to those agents with a sufficiently rich preference structure;
and if they have such a structure, they will not need utility theory—because they will
already prefer what it would advise them to prefer”. Meacham and Weisberg (2011) and
Easwaran (2014) deploy similar arguments. Beck and Jahn (2021) also discuss the question
of how decision-theoretic models can provide useful advice.

17This puzzle also arises for non-standard decision theories such as risk-weighted ex-
pected utility theory (Buchak 2013) and weighted-linear utility theory (Bottomley and
Williamson forthcoming). On these theories, we also need an independent grasp on your
subjective probability function, your utility function and possibly other functions like your
risk function in order for the theory to provide useful advice.
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2.3.3 Dependence on Utility

Ramsey defines subjective probability as ratio of utilities. This requires a
very rich space of outcomes. For Ramsey, outcomes must allow for continuous
gradations of value.18 However, it seems like agents can have subjective
probabilities while not making such fine-grained distinctions of value. We
could even imagine agents who do not have a utility function at all but
merely an ordinal ranking of outcomes. For example, we can imagine an
agent which only distinguishes between two outcomes, GOOD and BAD.
Ramsey must deny that such an agent could have subjective probabilities or
that we can find out what they are. This seems implausible.

More broadly, Ramsey’s approach gives utility a certain kind of priority
over subjective probability. But you might think that subjective probabil-
ity is conceptually independent of utility. It would be great to disentangle
the assumptions needed to measure subjective probability from strong as-
sumptions about the structure of value, for example that the value of all
outcomes is comparable and that value can be measured by a real-valued
utility function. Such assumptions about value have seemed implausible to
many philosophers and it would be great to have foundations for subjective
probability which do not rely on them.

2.4 Better Foundations

We can provide better foundations for subjective probability. I introduce
and explain a representation theorem building on Savage (1972) and Krantz
et al. (1971) which yields a unique probability function representing our
agent’s beliefs on weak rationality assumptions. The key idea is to start
with comparative probability judgments and to construct a unique probability
function which represents these comparative judgments.

2.4.1 Comparative Probability

What does it mean to think that one event is more probable than another?
Savage (1972) proposes to define comparative probability judgments in terms
of certain kinds of preferences. Suppose our agent strictly prefers outcome b

18For example, Fishburn (1981, p. 152) writes that in Ramsey’s approach, the set of
outcomes “must be infinite and give arbitrarily fine gradations in utility”.
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over outcome w. Now the intuition is that our agent prefers the better prize
on the more probable event. So if our agent prefers the act {b,X;w,XC}
over {b, Y ;w, Y C}, this means that our agent believes that event X is at
least as likely as event Y , written X < Y . So we can use acts of the form
{b,X;w,XC}, where b � w, to define or infer our agent’s comparative prob-
ability judgments. Let us call these test acts.

We define the following relation < on F :

Definition 1. X < Y iff {b,X;w,XC} % {b, Y ;w, Y C} for some b, w ∈ O
with b � w.

Strict comparative probability (�) and indifference (≈) are defined in the
standard way.19

We can understand Savage’s proposal in two ways. For constructivists,
comparative probability reduces to preferences. (This is Savage’s own view.)
For realists, comparative probability does not reduce to preferences, but we
can use preferences to measure comparative probability judgments. The
core proposal of this paper is compatible with both ways of understanding
comparative probability. However, I think that realism about comparative
probability is ultimately more plausible and can tell a better story about
some of the axioms below. I will return to this issue later.

2.4.2 Axioms

The first axiom ensures that the comparative probability ordering does not
depend on our particular choice of outcomes:

Outcome Independence. For all X, Y ∈ F , if {b,X;w,XC} %
{b, Y ;w, Y C} for some b, w ∈ O such that b � w, then {b,X;w,XC} %
{b, Y ;w, Y C} for all b, w ∈ O such that b � w.

You would violate this axiom if you prefer to bet one dollar on event X
rather than event Y but you also prefer to bet two dollars on Y rather than
X. In this case, we cannot elicit stable comparative probability judgments
from your preferences.

19X � Y ⇐⇒ (X < Y ) ∧ ¬(Y < X) and X ≈ Y ⇐⇒ (X < Y ) ∧ (Y < X).
In a slight abuse of notation, I use the same symbol (�) for both strict preference and
strict comparative probability. This way to link comparative probability to preferences is
standard (Fishburn 1986; Icard 2016).
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The next axiom demands that our agent is not indifferent among all
outcomes:

Non-Degeneracy. There are outcomes b, w ∈ O with b � w.

What is the status of this axiom? Does the existence of subjective probability
really require that you are not indifferent between all outcomes? Eriksson and
Hájek (2007) point out that we can imagine a Zen monk who is indifferent
between all outcomes but nonetheless has subjective probabilities. Thus,
there are problems with Non-Degeneracy understood along constructivist
lines. However, if we are realists, we can accept Non-Degeneracy as a
condition under which we can measure comparative probability. The Zen
monk might have subjective probabilities, but if they are really indifferent
among everything, there is simply no way for us to find out what these
subjective probabilities are. So we can think of this axiom as a structure
axiom which ensures that preferences are rich enough to measure subjective
probability.20

Here is the third axiom:

Restricted Ordering. The relation % restricted to test acts
with the same outcomes is complete and transitive. This means
for any b, w ∈ O with b � w, for all X, Y ∈ F we have either
{b,X;w,XC} % {b, Y ;w, Y C} or {b, Y ;w, Y C} % {b,X;w,XC}.21

And if {b,X;w,XC} % {b, Y ;w, Y C} and {b, Y ;w, Y C} % {b, Z;w,ZC},
then {b,X;w,XC} % {b, Z;w,ZC}.

I do not constrain the preference relation in general to be complete and
transitive, which leaves room for incomparability.

Why accept Restricted Ordering? Given our definition of comparative
probability, Restricted Ordering requires that the comparative probabil-
ity judgments of our agent are complete and transitive. There are reasons
to be skeptical of both.22 For proponents of imprecise credences, rejecting
completeness is particularly natural. Perhaps you have some opinion about

20Joyce (1999, p. 82) distinguishes structure axioms and rationality axioms.
21Two test acts with different outcomes needn’t be comparable if the outcomes them-

selves are incomparable. Thanks to an anonymous referee for bringing this issue to my
attention.

22Fishburn (1986, p. 339) discusses examples in which comparative probability judg-
ments violate completeness and transitivity. Ding, Holliday, and Icard (2021) study logics
for comparative probability without completeness.
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how likely it is that there is life on Mars and some opinion about how likely
it is to rain tomorrow but no opinion about which is more likely. This seems
particularly plausible if we consider agents which are not perfectly rational.

In response, remember that I want to explain how it is possible to ascribe
precise credences to agents with some irrational preferences. For this reason,
I will not consider agents whose comparative probability judgments fail to be
complete and transitive. Such agents fall outside of the scope of my project.

The next two axioms are where the main action is. Let us begin with:

Certain Prize. For any b, w ∈ O, if b � w, then for any X ∈ F ,
b % {b,X;w,XC} and {b,X;w,XC} % w.

This principle states a plausible minimal rationality condition. It says that
if you strictly prefer b to w, then you must weakly prefer getting b for certain
to an act which yields b if X happens and w otherwise. Further, you must
weakly prefer this act to getting w for certain.

While Certain Prize is quite weak, it is possible to imagine agents
which violate this axiom. For example, agents might prefer a risky option
over a sure thing because they enjoy the thrill of gambling.23 Relatedly,
Certain Prize might be violated by agents who prefer randomization (Icard
2021). One response to this concern is to make more fine-grained distinctions
among outcomes (Dreier 1996). For example, a prize obtained for sure would
be a different outcome from the same prize obtained by a risky gamble.
However, this move threatens to trivialize decision-theoretic norms. So it is
best to concede that while the axiom is weaker than rationality axioms in
standard representation theorems, it still makes substantive demands which
some agents might violate.

Do agents which violate Certain Prize not have subjective probabilities?
This is not very plausible. After all, it is precisely their subjective probabili-
ties which lead them to prefer the risky option. It is more plausible to think
that if agents love the thrill of gambling, it might be difficult to determine
their subjective probabilities from their preferences. As I show below, Cer-
tain Prize is a necessary condition for the agent’s comparative probability
judgments to be representable by a probability function, so measuring the
subjective probability of agents which violate Certain Prize would require
a fundamentally different approach to measuring subjective probability.

Here is another key axiom:

23Thanks to an anonymous referee for raising this objection.
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Alternative Prize. For any X, Y, Z ∈ F and b, w ∈ O, if b � w
and Z is such that X ∩ Z = Y ∩ Z = ∅, then {b,X;w,XC} �
{b, Y ;w, Y C} iff {b,X∪Z;w, (X∪Z)C} � {b, Y ∪Z;w, (Y ∪Z)C}.

Alternative Prize says the following. Suppose you strictly prefer b
over w and you prefer {b,X;w,XC} over {b, Y ;w, Y C}. Now we modify
both acts as follows: You also get b if some event Z disjoint from both X
and Y happens. Now you should prefer {b,X ∪ Z;w, (X ∪ Z)C} to {b, Y ∪
Z;w, (Y ∪ Z)C}. This reasoning also works backwards. Alternative Prize
has a clear interpretation in terms of probability. If you prefer {b,X;w,XC}
to {b, Y ;w, Y C}, you think that X is at least as likely as Y . Therefore, X∪Z
must be at least as likely as Y ∪Z given that Z is disjoint from both X and
Y . So you should prefer {b,X ∪ Z;w, (X ∪ Z)C} to {b, Y ∪ Z;w, (Y ∪ Z)C}
since you want the better prize on the more probable event.

You might violate Alternative Prize if you have credences which are not
additive and represented by an alternative formalism like Dempster-Shafer
functions or ranking theory.24 But my goal is to provide foundations for as-
cribing subjective probability to partly irrational agents. So agents modeled
by such formalisms fall outside the scope of my project.25 It would be de-
sirable to have more general foundations for measuring belief which apply to
agents with non-probabilistic credences, but I will not consider such agents
here.

My axioms on the preference relation are necessary and sufficient for the
comparative probability ordering to be a qualitative probability (de Finetti
1931):

Definition 2. A binary relation < on F is a qualitative probability iff for
all X, Y, Z ∈ F :

1. < is complete and transitive (Ordering),

2. Ω < X < ∅ (Boundedness),

3. Ω � ∅ (Non-Triviality),

24Ellsberg (1961) gives an example of preferences which violate Alternative Prize.
25Titelbaum (2022, Ch. 14.3) gives a brief introduction to Dempster-Shafer functions

and Spohn (2012) discusses ranking theory. As both authors note, it is unclear how these
alternatives to probability interact with decision making, which is a reason to set them
aside for our purposes. Thanks to an anonymous referee for the suggestion to consider
these frameworks.
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4. if X ∩Z = Y ∩Z = ∅, then X � Y ⇐⇒ X ∪Z � Y ∪Z (Qualitative
Additivity).

Theorem 1. The preference relation % satisfies Outcome Independence,
Non-Degeneracy, Restricted Ordering, Certain Prize and Alterna-
tive Prize if and only if the comparative probability ordering < is a quali-
tative probability.

A proof is provided in appendix A. I follow Savage’s definition of com-
parative probability. Savage also assumes Outcome Independence and
Non-Degeneracy. The key difference is that Savage uses much stronger
axioms to derive the result that the comparative probability ordering is a
qualitative probability. Instead of Restricted Ordering, Savage assumes
that preferences are complete and transitive, which rules out incomparable
options. This strong assumption is unnecessary to establish that the com-
parative probability ordering is complete and transitive. It suffices to assume
that a small fragment of the preference relation is complete and transitive.

Further, Savage appeals to the ‘Sure-Thing Principle’ in order to estab-
lish that the comparative probability ordering satisfies Boundedness, Non-
Triviality and Qualitative Additivity. The Sure-Thing-Principle is a strong
axiom which rules out the Allais-preferences discussed earlier and plays a
crucial role in establishing the existence of an expected utility representa-
tion. The key observation is that we can replace the Sure-Thing-Principle
by the much weaker rationality axioms Certain Prize and Alternative
Prize and still show that the comparative probability ordering is a qualita-
tive probability.26

Krantz et al. (1971, pp. 208-11) prove a similar result.27 But instead of

26Machina and Schmeidler (1992) also weaken Savage’s axiom to give a ‘more robust
definition of subjective probability’. However, their axioms are stronger than the ones
given here, as they entail that preferences always respect stochastic dominance—a prop-
erty they refer to as ‘probabilistic sophistication’—and that preferences are complete. My
representation theorem shows how to define subjective probability without probabilistic
sophistication (and without completeness). Elliott (2017) provides a representation the-
orem for ‘frequently irrational’ agents and uses a restricted class of two-outcome acts
to construct a unique credence and utility function. However, this credence function is
not necessarily a probability function, so this approach does not provide foundations for
ascribing subjective probability to partly irrational agents.

27Outcome Independence is equivalent to the first axiom by Krantz et al. (1971),
Certain Prize is equivalent to their second axiom and Alternative Prize is equivalent
to their third axiom. They also mention Non-Degeneracy.
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Restricted Ordering, they assume that preferences are complete and tran-
sitive, which rules out incomparable options. Furthermore, I have shown that
my axioms are not only sufficient but necessary for the comparative probabil-
ity ordering to be a qualitative probability. So my result is a strengthening
of Krantz et al. (1971), maximally paring down the axioms on the prefer-
ence relation required to show that the comparative probability ordering is
a qualitative probability.

One could also axiomatize comparative probability directly and argue
that the qualitative probability axioms are reasonable constraints on belief
without trying to justify them by more fundamental axioms about prefer-
ences (Joyce 1999, p. 91). However, my project is to show how we can infer
credences from preferences without already assuming that we have access to
comparative probability judgments. Therefore, I start with axioms on the
preference relation.

So far, we have seen how preference reveals qualitative probability. How
do we get from qualitative probability to quantitative probability? Probabil-
ity function p represents the qualitative probability < if for all X, Y ∈ F ,

p(X) ≥ p(Y ) ⇐⇒ X < Y.

The axioms introduced so far are necessary but not sufficient for the exis-
tence of a probability function representing our qualitative probability (Kraft,
Pratt, and Seidenberg 1959). To get around this problem, I add an axiom
which ensures that the space of events is sufficiently rich to pin down a
(unique) probability function. Here is Savage’s proposal:

Event Richness. For all X,Z ∈ F and outcomes b, w ∈ O with
b � w, if {b,X;w,XC} � {b, Z;w,ZC}, there is a finite partition
Y = {Y1, ..., Yn} of Ω such that for all Yi ∈ Y , {b,X;w,XC} �
{b, (Z ∪ Yi);w, (Z ∪ Yi)C}.

This axiom says that we can cut up events very finely. If you strictly prefer
the good prize on X rather than Z, there is a finite partition of our state
space such that you still prefer the good prize on X rather than Z or one of
the elements of our partition. It is instructive to state Event Richness in
terms of comparative probability. In these terms, it says that if X � Z, then
there exists a finite partition Y = {Y1, ..., Yn} of Ω such that for all Yi ∈ Y ,
X � Z ∪ Yi.

Why accept Event Richness? Savage (1972, p. 38) gives the following
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argument. Suppose you judge X to be more probable than Z. Savage points
out that we could plausibly choose a coin and throw it sufficiently often such
that you would still judge X to be more probable than Z or any particular
sequence of heads and tails. As Savage notes, this doesn’t require that you
consider the coin to be fair. The possible outcomes of the coin flip form the
required partition.

Let us end by briefly reflecting on the plausibility of Event Richness.
Does rationality require that you cut up events very finely? Despite Savage’s
argument, this does not seem very plausible. Like Non-Degeneracy, we
should think about Event Richness not as a rationality axiom but rather
as a structure axiom which ensures that preferences are rich enough to fix
subjective probability. This means that realism can tell a more plausible story
about this axiom than constructivism. According to the realist story, it is
not the existence of subjective probability which requires such a rich event
space. Rather, the rich event space is necessary to infer (precise) probability
from preference.

Event Richness implies that Ω is infinite.28 This might strike you as
problematic because it seems possible to have subjective probabilities with a
finite state space. One option is to look for another structure axiom which
is compatible with finite state spaces but still allows us to derive a unique
probability function. As Luce (1967) and Fishburn (1986) point out, there
are such axioms, but they are rather complicated and do not have intuitive
plausibility of Event Richness. Since we need some structure axiom any-
ways, it seems best to stick with Event Richness because of its intuitive
plausibility. However, finding a good replacement for Event Richness which
is compatible with finite state spaces is a way in which the representation
theorem could be improved.29

28Proof sketch: Assume Ω is finite. Then consider the least probable event X such that
X � ∅. Event Richness demands that there exists a finite partition Y of Ω such that
for all Yi ∈ Y, {b,X;w,XC} � {b, Yi;w, Y Ci }, so X � Yi � ∅, which contradicts our
assumption.

29Another option would be axioms ensuring that the comparative ordering can be rep-
resented by some probability function which needn’t be unique (Scott 1964). However,
this is not compatible with providing decision-theoretic foundations for precise subjective
probability and so I will set it aside. One could also argue that comparative probability
orderings on finite spaces should be extendable to orderings on infinite state spaces which
satisfy Event Richness.

26



CHAPTER 2. BETTER FOUNDATIONS FOR SUBJECTIVE PROBABILITY

2.4.3 Representation Theorem

The axioms allow us to prove:

Theorem 2. If the preference relation % satisfies Outcome Indepen-
dence, Non-Degeneracy, Restricted Ordering, Certain Prize, Al-
ternative Prize and Event Richness, there is a unique finitely additive
probability function p : F → [0, 1] representing the comparative probability
ordering <, so for all X, Y ∈ F ,

p(X) ≥ p(Y ) ⇐⇒ X < Y.

Once we have shown that the comparative probability ordering is a qual-
itative probability, the rest of the proof is due to Savage. Here is a quick
proof sketch inspired by Kreps (1988, pp. 120-125):

Proof. The axioms entail that for any n ∈ N, there is a partition Y of Ω
into n equiprobable events: events such that Yi ≈ Yj for each Yi, Yj ∈ Y .30

We write C(k, n) for a union of k cells of this partition. We define, for any
X ∈ F :

k(X,n) = maxk
(
X < C(k, n)

)
.

So given a n-fold equiprobable partition, k(X,n) is the unique maximal pos-
itive integer such that X is at least as probable as the union of k cells of our
partition. We define

p(X) = lim
n→∞

k(X,n)

n
.

One can show that p is a finitely additive probability function which repre-
sents < and that it is unique.

In this proof, we divide Ω into more and more fine-grained equiprob-
able partitions. For every such partition, we ‘approximate’ p(X) by the
largest number of cells collectively less probable (according to our compara-
tive probability ordering) than X divided by the number of all cells. Step by
step, we get a closer approximation, until we recover the ‘true’ probability
of X in the limit. As a simple analogy, think of approximating the area of
a two-dimensional figure by drawing more and more fine-grained grids and

30Fishburn (1970, pp. 195-8) provides a detailed reconstruction of this step of the proof.
Gaifman and Liu (2018) discuss how it relies on the assumption that the events form a
σ-algebra.
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counting the number of squares covered by the figure divided by the number
of all squares. As the grid gets more and more fine-grained, we approximate
the area of our figure more and more closely and we recover the true area in
the limit.

We can think of the theorem in two ways. If we are inclined towards
constructivism, we can think of it as a definition of subjective probability in
terms of preferences. In this case, the fact that Alice’s subjective probability
of rain tomorrow is .3 is constituted by the fact that

lim
n→∞

k(rain, n)

n
= .3,

and from this perspective, my axioms are conditions under which subjective
probability exists. If we are inclined towards realism, we think that there
is a probability function encoding Alice’s beliefs not defined in terms of her
preferences. From a realist point of view, we can interpret the proof as giving
an algorithm to measure Alice’s subjective probability by constructing better
and better approximations. From this perspective, my axioms are conditions
under which subjective probability can be measured by this algorithm.

2.4.4 Countable Additivity

As it stands, the representation theorem delivers a finitely additive probabil-
ity function which represents our agent’s beliefs. This probability function
might fail to be countably additive.31 Some decision theorists, for exam-
ple de Finetti and Savage, have argued that rationality only requires finite
additivity and violations of countable additivity are fine. However, there
are also reasons to want countable additivity. Most importantly, there are
convergence theorems in Bayesian statistics which show that under certain
conditions, agents with different priors converge to similar opinions after
learning enough shared evidence.32 Many of these convergence theorems re-
quire countable additivity (Elga 2016). So if convergence is a central part
of your conception of subjective probability, finitely additive probability is

31The probability function p : F → [0, 1] is countably additive if for any countable
sequence X1, X2, ... of pairwise disjoint events in F , p(

⋃∞
n=1Xi) =

∑∞
n=1 p(Xi).

32Subjective Bayesians draw on such convergence theorems to argue that, despite differ-
ent priors, rational agents will agree in the long run (Earman 1992, Ch. 6). Convergence
arguments also play an important role in some versions of objective Bayesianism (Neth
2023).
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not enough. This is not the place to settle whether arguments for countable
additivity are conclusive. The key point is that if countable additivity is
desirable, we can add another plausible axiom on preferences to ensure that
subjective probabilities are countably additive, building on work by Villegas
(1964). Details are in appendix A.

2.5 Problems Solved

I explain how my representation theorem does better than Ramsey’s method.

2.5.1 Weak Rationality Assumptions

My axioms do not entail that our agent is an expected utility maximizer.
They do not even entail the weaker claim that our agent always respects
stochastic dominance. A quick way to see this is that my axioms only con-
strain preferences over a very restricted set of acts—two-outcome acts where
one outcome is strictly preferred—while expected utility maximization and
stochastic dominance constrain preferences over all acts. My axioms do
not even require preferences over arbitrary acts to be transitive. So the
axioms are compatible with Allais-preferences and violations of stochastic
dominance.

Further, the axioms allow agents to consider many options incomparable.
To be sure, Non-Degeneracy requires the existence of at least two com-
parable outcomes. However, the axioms allow agents to consider all other
outcomes incomparable. Thus, we can make room for the kind of outcome
incomparability discussed above (career as a doctor vs. career as a rock star).
Furthermore, we allow agents to consider acts with more than two outcomes
incomparable even if all outcomes are comparable, like in the complicated
portfolio choice discussed earlier. So, speaking a bit loosely, we allow agents
to consider almost all options incomparable.

I still make substantive rationality assumptions. In particular, as dis-
cussed above, we can imagine agents which violate Certain Prize and Al-
ternative Prize. It would be desirable to have even more general founda-
tions for subjective probability. But there is a trade-off between substantive
rationality axioms which allow us to measure subjective probability but ex-
clude some agents and weak rationality axioms which include these agents
but might make measuring subjective probabilities impossible. In particular,
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Theorem 1 shows that my rationality axioms are necessary conditions for the
agent’s comparative probability judgments to be representable by a probabil-
ity function. The comparative probability judgments of agents which violate
these axioms cannot be represented by any probability function. So if we
want to further weaken these axioms, a fundamentally different approach to
measuring subjective probability is needed.

2.5.2 Useful Advice

As explained above, my axioms allow agents to have some irrational pref-
erences. Thus, we can give useful advice. We can define or measure the
subjective probabilities of partly irrational agents from their preferences over
simple acts and use these probabilities to give useful advice for how to choose
among more complicated acts.

You might complain that my axioms are too weak because they only
constrain preferences over test acts. But this is a feature, not a bug. We can
measure or define subjective probability from preferences over test acts and
then apply your favorite decision-theoretic norm to give advice for choices
among more complicated acts. I remain agnostic on what exactly this advice
looks like. Beyond the basic requirement to respect stochastic dominance,
different decision theorists will give different advice: some of them will advise
you to maximize expected utility, others will advise you to maximize risk-
weighted expected utility and so on. Since I allow incomparable options,
there is also the question of how to decide when options are incomparable.
But any decision theorist needs to know at least your credences to give useful
advice.33 My representation theorem shows how we can measure or define
your credences without already presupposing that your preferences are fully
rational and so enables the decision theorist to give useful advice.

Here is a simple toy example for how we can give useful advice. There is
an urn with some red marbles, some yellow marbles and some black marbles.
A marble will be drawn from this urn.34 We observe that Alice strictly prefers
winning one dollar if the marble is red over winning one dollar if the marble
is black. So Alice prefers {$1, R; $0, RC} over {$1, B; $0, BC}, where R is the

33For decision-theoretic advice to be useful, we also need some way to measure your
utility function (Narens and Skyrms 2020) and possibly other functions like your risk
function (Neth 2019b).

34To satisfy Event Richness, let us assume that this is the first draw in an infinite
sequence of draws from the urn.
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event that the marble is red and B the event that the marble is black. We
know that Alice likes more money rather than less, so Alice thinks R is more
likely than B. Using Alternative Prize, we can infer that Alice must judge
R ∪ Y to be more likely than B ∪ Y , where Y is the event that the marble
is yellow.

Now suppose Alice faces another choice. The first option pays one dol-
lar if the marble is red, two dollars if the marble is yellow and nothing
otherwise: {$1, R; $2, Y ; 0$, B}. The second option pays one dollar if the
marble is black, two dollars if the marble is yellow and nothing otherwise:
{$1, B; $2, Y ; $0, R}. We can advise Alice that, to avoid (strict) stochastic
dominance, she should prefer the first option. This is genuinely useful advice
because it is consistent with my axioms that Alice has no preference among
these options or even prefers the stochastically dominated option.

2.5.3 No Dependence on Utility

My axioms make minimal demands on the richness of the outcome space.
I only require that there are at least two outcomes our agent is not indif-
ferent between. Thus, we can define or measure subjective probabilities of
a very ‘simple-minded’ agent who only distinguishes between the outcome
GOOD and the outcome BAD and has an ordinal ranking of these two out-
comes. We can disentangle measuring subjective probability from the strong
assumptions about value implicit in standard representation theorems.

There is a subtle difference in how my structure axioms compare to Ram-
sey and Savage. While I do not assume a rich space of outcomes, I do assume
a rich space of events, as required by Event Richness. Ramsey’s original
method does not need such a rich space of events.35 So in terms of struc-
tural richness, my method does better than Ramsey’s in one way but worse
in another way. This means that our axioms are incomparable in terms of
their logical strength. However, from a philosophical point of view, I think
that Ramsey’s and my approach assume a similar amount of structural rich-
ness. Ramsey assumes that our agent makes very fine-grained distinctions
with respect to the value of outcomes while I assume that our agent makes
very fine-grained distinctions with respect to the comparative probability of
events. In contrast, my rationality axioms are much weaker than Ramsey’s

35When reconstructing Ramsey’s reasoning, Fishburn (1981, p. 151) writes that Ramsey
assumes “a finite state set”. As noted above, no finite Ω can satisfy Event Richness.
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rationality assumptions. Compared with Savage, I make the same structural
assumptions about event richness but much weaker rationality assumptions,
so we have a strictly more general decision-theoretic foundation for subjective
probability than Savage’s.

The upshot: I have shown how to define or measure subjective probability
with much weaker rationality axioms than standard representation theorems.
If we are interested in ascribing precise subjective probability to partly ir-
rational agents, this is definite progress. One might also take this result as
illustration of how strong Event Richness really is. This axiom is doing the
heavy lifting in my construction of subjective probability. On the one hand,
this might incline some of us to be skeptical of this structure axiom.36 On
the other hand, nobody has figured out how to derive subjective probability
without rich preferences and it is probably impossible to do so. So it is fair
to say that we have found better foundations for subjective probability.

2.6 Interpretation

I sketch two ways in which my representation theorem sheds light on the in-
terpretation of subjective probability. First, it naturally fits with a view on
which comparative probability is more fundamental than numerical proba-
bility. Second, it suggests a subjectivist version of the classical interpretation
of probability.

2.6.1 Comparativism

Our starting point were comparative probability judgments defined in terms
of preferences. I laid down axioms to ensure that this comparative proba-
bility ordering is a qualitative probability and an additional structure axiom
to ensure that there is a unique probability function which represents this
ordering. While we ultimately end up with a unique probability function
which represents our agent’s beliefs, this approach naturally suggests a pic-
ture on which comparative probability is more fundamental than numerical

36Joyce (1999, p. 98) expresses skepticism about the structure axioms in Savage’s rep-
resentation theorem, although one of Joyce’s main targets of completeness which I don’t
assume.
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probability.37 This is in sharp contrast to Ramsey’s approach. For Ramsey,
subjective probabilities are ratios of utilities and so they are fundamentally
quantitative.

The idea that comparative probability is more fundamental than numer-
ical probability has considerable intuitive appeal. It is more natural to think
about which of two events is more likely than to assign numerical prob-
abilities. Furthermore, as I will turn to explain now, taking comparative
probability as fundamental allows us to tell a plausible story about the ax-
ioms.

My representation theorem naturally fits with a combination of realism
and constructivism: realism about comparative probability and construc-
tivism about numerical probability. According to this picture, the com-
parative probability ordering is psychologically real and not reducible to
preferences—rather, preferences serve to measure comparative probability.
This is the realist aspect. The advantage of this bit of realism is that we can
tell a plausible story about some axioms, in particular Non-Degeneracy,
which requires our agent not to be indifferent among all outcomes. It is not
very plausible to think that the existence of comparative probability requires
this axiom, but much more plausible to think that measuring comparative
probability requires this axiom.

However, in contrast to the comparative probability ordering, the prob-
ability function constructed in the representation theorem is not psycholog-
ically real but only a ‘representational device’ to talk about the underlying
comparative probability ordering. This is the constructivist aspect. The
advantage of this bit of constructivism is that we can tell a plausible story
about Event Richness. It is implausible to think that subjective proba-
bility requires the rich event space postulated by this axiom. If we think of
comparative probability as fundamental, we can say that agents might have
comparative subjective probabilities even if they do not satisfy this axiom.

37Comparativism is discussed by Koopman (1940), Fine (1973), Zynda (2000),
Hawthorne (2017), Stefánsson (2017), Konek (2019), and Elliott (2022). Of course, the
idea of starting with comparative probability is well-known in decision theory (Fishburn
1986). However, it is valuable to make explicit that we can be realists about comparative
probability and constructivists about numerical probability, while many decision theorists
like Savage are constructivist all the way down. As Holliday and Icard (2013) point out,
comparative probability can also shed light on probability operators in natural language
and so might help us with puzzles about which inferences with these operators are valid
(Yalcin 2010; Neth 2019a).

33



CHAPTER 2. BETTER FOUNDATIONS FOR SUBJECTIVE PROBABILITY

The axiom describes a condition under which we can represent comparative
subjective probability by a unique probability function, not a condition under
which subjective probability exists.

2.6.2 Vindicating the Classical Picture

According to the classical interpretation of probability associated with Laplace,
we can determine the probability of some event as follows.38 First, we find a
suitable set of ‘equally possible’ cases. Then, we count the number of cases
in which the event occurs and divide this number by the number of all cases.
For example, if we want to find out the probability of snake eyes (two 1’s)
when rolling two fair dice, there are 36 ‘equally possible’ cases and exactly
one of these cases is snake eyes, so the probability of snake eyes is 1

36
.

There are many well-known objections to the classical interpretation of
probability. First, you might complain that the definition given above is
circular. Laplace defines probability in terms of ‘equally possible’ cases,
but it is hard to see what ‘equally possible’ could mean other than ‘equally
probable’. Second, the classical interpretation entails that all probabilities
are rational, since they are the ratio of two positive integers. But there
is nothing incoherent about irrational-valued probabilities.39 Third, what
guarantees that we can always find ‘equally possible’ cases? They are easy
to find in games of chance but much harder to find in real-life situations,
where we might try to find the probability that a nuclear power plant will
have a catastrophic accident in the next 100 years (Halpern 2003, p. 18).

My representation theorem can be construed as subjectivist version of the
classical interpretation of probability. Recall how we construct the subjective
probability function. To find Alice’s subjective probability for rain tomorrow,
we find n mutually exclusive and collectively exhaustive events which Alice
considers to be equally probable. We write down k, the greatest number of
events Alice considers to be collectively less likely than rain tomorrow. This
is a bit like counting the number of ‘cases’ in which it rains tomorrow. We
approximate Alice’s subjective probability of rain tomorrow by k divided by
the total number of cases. We define Alice’s subjective probability of rain
tomorrow as the limit of this procedure as n goes to infinity.

38Gillies (2000, Ch. 2) gives an overview of the classical interpretation and Diaconis and
Skyrms (2018, Ch. 1) briefly recount the history of reasoning about probability in terms
of ‘equally possible’ cases.

39Hájek (1996) uses this as an argument against (finite) frequentism.
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The shift towards the subjective helps with some of the well-known wor-
ries for the classical interpretation. First, what does it mean to say that the
cases are ‘equally possible’? In our picture, it means that they are judged to
be equally probable by our subject and we can know that they are so judged
by looking at our subject’s preferences. Since we have not defined compara-
tive probability in terms of numerical probability but rather directly in terms
of preferences, we can sidestep the circularity worry. Second, since we define
subjective probability as limit of a sequence of rational numbers, we can have
irrational-valued subjective probabilities.

Some worries for our subjectivist Laplacean picture still remain. What
guarantees that, for any n, we can find a partition of n mutually exclusive
and collectively exhaustive events which our subject considers to be equally
likely? In our construction, this follows from Event Richness, which ensures
that the event space of our subject is sufficiently fine-grained. But is it a
requirement for the existence of subjective probability to have such a fine-
grained event space? Arguably not. If we accept comparativism, we can reply
that the more fundamental comparative subjective probabilities still exist
without Event Richness, but they may not admit of representation by a
unique probability function. From this point of view, Laplace’s ‘equiprobable
cases’ highlight a condition under which comparative probability judgments
can be represented by a unique probability function.

2.7 Conclusion

Ramsey wants to reduce subjective probability to preference but makes very
demanding rationality assumptions—the agent under consideration has per-
fectly coherent preferences. I have shown how to provide better founda-
tions for subjective probability: axioms which ensure that there is a unique
probability function representing our agent’s beliefs while leaving room for
mistakes.

Let me close by observing that we if we are convinced that my axioms are
rationally required, we can also read my representation theorem as an answer
to the question: Why be probabilistically coherent? Because rationality re-
quires you to obey the axioms and if you obey the axioms, there is a unique
probability function representing your comparative probability judgments.
In contrast to other decision-theoretic arguments for probabilistic coherence,
such as dutch book arguments or standard representation theorems, this ar-
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gument does not presuppose or entail expected utility maximization. So
we have a new argument for probabilistic coherence from weak assumptions
about practical rationality in the face of uncertainty.40

40In contrast to accuracy arguments for probabilistic coherence, we also avoid commit-
ments about epistemic value. Furthermore, accuracy arguments run into difficulties when
there are infinitely many possibilities (Kelley and Neth 2023).
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Chapter 3

Rational Aversion to
Information

We care about learning the truth for its own sake, but we also care about
learning because it can lead us to make better decisions. That is, besides
the epistemic benefits of finding out the truth, learning often comes with
instrumental benefits as well.1

Is more information always instrumentally better? Or are there situations
in which more information can make us foreseeably worse off? It is clear that
information can make us worse off if we consider the cost of processing and
storing the information or the opportunity cost of thinking for too long before
acting. Nobody thinks that you have to read all the reviews before buying a
new vacuum cleaner or that you should think long before hitting the brakes
when a red light comes up. It is also clear that information can make us
worse off if it is false, so let me be clear that when I talk about information,
I always mean true information.

What if the information is cost-free? For rational agents, is it always
instrumentally valuable to accept free information? Good (1967) argues that
the answer is ‘yes’ if we accept the principle of maximizing expected utility.
However, Good presupposes that you are certain you will update by condi-
tionalization, which means you are certain your new credences after learning
are equal to your old conditional credences given the learned event. There
are good reasons to assign positive probability to failures of conditionaliza-

1A version of this chapter is forthcoming in The British Journal for the Philosophy of
Science. See https://doi.org/10.1086/727772 for the published version.
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tion, even for rational agents. I show that if you assign a positive probability
to failures of conditionalization, the principle of maximizing expected utility
can require you to reject free information. Sometimes, even expected utility
maximizers are better off knowing less. Moreover, this offers a vindicating
explanation of why people sometimes reject information in real-life examples,
such as medical testing.

To be clear, this paper is not about situations in which you actually fail
to conditionalize. In all my examples below, we can assume that the agent
conditionalizes in the actual world. Rather, this paper is about situations in
which you fail to be certain that you will conditionalize. You can fail to be
certain that you will conditionalize even if you always conditionalize.

Here is the plan. First, I explain Good’s argument. Then, I explain
why Good’s argument presupposes that you are certain you will update by
conditionalization and give reasons to reject this assumption. I show how
assigning a positive probability to failures of conditionalization can make it
rational to reject free information for expected utility maximizers and sketch
how this can explain information aversion in the real world. I finish by
explaining how we can generalize the value of information to agents who are
uncertain about how they will update.

3.1 Good’s Argument

I start by introducing some terminology and explain Good’s argument.

3.1.1 Terminology

I use the framework of Savage (1972) to model decision making under uncer-
tainty. We have a set Ω of states, which contains all epistemically possible
worlds from the point of view of the agent we are modeling. Events are sub-
sets of Ω and we model the credences of our agent by a probability function.2

We also have a set O of outcomes, where outcomes contain everything our
agent cares about. We model our agent’s preferences over outcomes by a
utility function u which maps outcomes to their utilities. Actions (or acts)
are functions from states to outcomes. I assume actions are causally and

2I assume Ω is finite and model credences as finitely additive probability function
p : P(Ω)→ [0, 1].
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probabilistically independent of states.3

Given a probability function p and utility function u, the expected utility
of action f is:

Ep(f) =
∑
ω∈Ω

p(ω)u(f(ω)).4

I assume your utility function remains fixed through learning.5 However, your
credences change in response to evidence, so I relativize expected utility to
a probability function.

A choice set is a set of actions among which our agent makes a decision.
I assume that all choice sets are finite. Our agent maximizes expected utility
if for every available choice set S = {f1, ..., fn}, she picks an action fi ∈ S
which maximizes expected utility relative to her probability function p and
utility function u.

I model learning by an evidence partition E of Ω. This partition contains
the events our agent might learn, which are mutually exclusive and collec-
tively exhaustive. We can think of the evidence partition as a question, for
example the question whether it is sunny or rainy outside. In this case, the
evidence partition contains two cells: the worlds where it is sunny outside
and the worlds where it is rainy outside. Since the events in the evidence
partition are live possibilities for what our agent might learn, they all have
non-zero probability, so p(E) > 0 for all E ∈ E .

When learning event E in the evidence partition, our agent updates her
credences to PE. I allow our agent to be uncertain about how she will update.
This means that PE is not a particular probability function, but rather a
random variable whose values can be different probability functions. (Hence
the fancy typeface.) The only constraint I impose is that after learning an
event, our agent is certain of that event.6 I write p(· | E) for the credences our
agent adopts after learning event E ∈ E and updating by conditionalization.7

Here is an example of our framework in action. You are at the horse

3Adams and Rosenkrantz (1980) and Maher (1990) discuss how Good’s argument fails
if this assumption is relaxed, in both evidential and causal decision theory.

4p(ω) is shorthand for p({ω}).
5I set aside cases in which learning leads you to change your utility function, perhaps

in a ‘transformative experience’ (Paul 2014; Pettigrew 2019).
6Let ∆(Ω) be the set of all probability functions p : P(Ω) → [0, 1]. Formally, PE is

a function from E to ∆(Ω) such that for each ω ∈ E, PE(ω)(E) = 1. For each ω ∈ E,
PE(ω) is a particular probability function.

7I use the standard ratio definition: p(A | E) = P (A∩E)
p(E) assuming p(E) > 0.
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track thinking about which horse to bet on. The states specify which horse
will win the race (and other relevant facts) and the actions are different bets
you might place. The probability function p encodes your credences about
different horses winning and the utility function u models how much you
value the outcomes of these bets, for example different amounts of money.

Imagine a charming stranger comes up to you and offers you their opinion
on which horse is likely to win. Are you willing to listen? The evidence par-
tition E contains different opinions the stranger might voice and PE models
how you expect to update your credences after listening. To be clear, the
information you learn is not which horse is likely to win but only what the
stranger is saying. The stranger might be lying or clueless.

You need to decide: Do you want to find out what the stranger has to
say or would you rather place your bet now? It is not obvious how to answer
this question. On the one hand, you might listen to the stranger and ignore
what they say if you do not find it helpful, so how could listening harm you?
On the other hand, perhaps the stranger is trying to mislead you. In this
case, do you trust yourself to listen before placing your bet?

3.1.2 The Argument

Good (1967) thinks you should listen to the stranger before placing your bet.
More generally, Good argues that if you are rational, then given any choice
set and evidence partition, you are never worse off by first learning the true
event in the evidence partition and making your choice afterwards rather
than making your choice now.8 Good does not mean that more information
always leads to better decisions. You might get unlucky and learn something
misleading. Rather, Good argues that learning cannot make you foreseeably
worse off.

The idea behind Good’s argument can be illustrated by an example. Sup-
pose there is a race between horse A and horse B tomorrow. You have to
decide whether (i) to bet on horse A, which means you win $1 if A wins
and lose $2 otherwise, (ii) to bet on horse B, which means you win $1 if B

8Skyrms (1990) provides a helpful overview and points out that Ramsey (1990) and
Savage (1972) give similar arguments. Good (1967) notes that his argument is partly
anticipated by Raiffa and Schlaifer (1961, p. 90) and Lindley (1965, p. 66). Hosiasson
(1931) discusses similar ideas and cites an unpublished paper by Ramsey as inspiration.
Interestingly, the argument does not work when you decide whether someone else should
learn more information before making a decision (Good 1974).
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wins and lose $2 otherwise, or (iii) to play it safe, which means you won’t
win or lose anything. You think A and B are equally likely to win, so your
best option right now is to play it safe. But you can listen to the (accurate)
weather report for tomorrow. You think that A is 3

4
likely to win if it rains

and B is 3
4

likely to win if the sun shines. We can illustrate your decision
problem as shown in figure 3.1, where rectangles stand for decisions you face
(‘choice nodes’) and circles stand for events which might happen (‘chance
nodes’).

Bet on horse B. Expected payoff: 1
4

Shine
1

2

Bet on horse A. Expected payoff: 1
4

Rain

1
2

Learn

Play it safe. Expected payoff: 0

Don
’t

lea
rn

Figure 3.1: If you care about winning, listen to the weather report.

Here is a more general explanation. Good assumes that rational agents
maximize expected utility. So, if you are rational, then given some choice set
S, you will choose what seems best by your current lights: an action in S
which maximizes expected utility with respect to your current credences. So
the expected value of choosing now is the expected utility of one of the best
actions in S relative to your current credences p:

max
f∈S

Ep(f).

If, on the other hand, you learn that E is the true event in our evidence
partition, you update your credences p to PE. Good assumes that in each
state with non-zero probability, your updated credences are obtained from
your current credences by conditionalizing, so PE = p(· | E). Good also
assumes that learning is cost-free. This means that before and after learning,
you choose among the same actions and outcomes have the same utilities.
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The only impact of the information is to change your credences.9

After learning, you choose what seems best by your updated lights—an
action in S which maximizes expected utility with respect to your updated
credences:

max
f∈S

Ep(·|E)(f).

You don’t know yet which element of the evidence partition you will learn.
But we can consider the expected value of acting after learning:∑

E∈E

p(E) max
f∈S

Ep(·|E)(f).

Good completes the argument by proving that the expected value of acting
after learning is always greater than or equal to the expected value of choosing
now: ∑

E∈E

p(E) max
f∈S

Ep(·|E)(f) ≥ max
f∈S

Ep(f).

Moreover, this inequality is strict unless there is some action f ∈ S which is
best regardless of which event in the evidence partition you learn—that is,
unless the evidence partition is irrelevant for the choice set under consider-
ation. So according to Good, the principle of maximizing expected utility
entails:

Value of Learning:

i. Rational agents are always permitted to accept free infor-
mation before making a decision.

ii. Rational agents are always required to accept free and rele-
vant information before making a decision.

3.1.3 What does the Argument show?

Does Good’s argument show that Value of Learning is correct? There are
ways to push back. One might question the assumption that rational agents

9Consider cases in which the information is not free (processing costs, library fees).
In such cases, outcomes before and after learning do not have the same utility. Kadane,
Schervish, and Seidenfeld (2008, pp. 17-20) discuss this issue in detail. You might also
ascribe negative utility to the information itself, for example because it makes you feel
bad (Golman, Hagmann, and Loewenstein 2017). I set such cases aside and focus on the
instrumental value of information.
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always maximize expected utility (Buchak 2010; Campbell-Moore and Salow
2020) or that rationality requires precise credences (Bradley and Steele 2016;
Wheeler 2021).10 Relaxing these assumptions leads to cases where you can be
required to reject free information. One might take this to question Value of
Learning. However, one might also take this as a strike against alternatives
to expected utility theory with precise credences.

One might think that the permissibility of accepting free information
before making a decision is independently plausible, a piece of common sense:
‘look before you leap’. It is a mark in favor of expected utility theory that it
entails this piece of common sense and a problem for other decision theories
if they conflict with it. From this perspective, Good’s argument is not really
an argument for Value of Learning but rather an argument for expected
utility theory. This interpretation is suggested by Kadane, Schervish, and
Seidenfeld (2008):

So the question remains of whether it is reasonable to impose the
requirement on a theory of rational decision making that it not
require or permit paying not to see cost-free data. If it is, the
only such theory known to us is Bayesian decision theory with a
single countably-additive proper prior. (Kadane, Schervish, and
Seidenfeld 2008, p. 33)

Arguments along these lines are common. The general shape of the argument
is that (a) Value of Learning is correct and (b) alternatives to expected
utility theory are bad because they conflict with this. This assumes that (c)
expected utility theory entails Value of Learning.11

10One could also question the assumption that learning can always be modeled as learn-
ing an element of a partition (Salow and Ahmed 2019; Dorst 2020; Das 2023), which
is foreshadowed by Williamson (2000, pp. 230-7). Merely finitely additive probabilities
can also lead to information aversion (Kadane, Schervish, and Seidenfeld 1996; Kadane,
Schervish, and Seidenfeld 2008). Since I restrict attention to finite state spaces, the debate
over finite versus countable additivity does not concern me here.

11More examples: Wakker (1988) shows that violating the independence axiom of ex-
pected utility theory leads to situations in which agents reject free information and takes
this to show that such violations are irrational. Al-Najjar and Weinstein (2009, p. 249)
object to decision theories allowing for ambiguity aversion because they rationalize aver-
sion to information “which most economists would consider absurd or irrational”. Briggs
(2015) and Ahmed (2016) object to risk-weighted expected utility (REU) theory because
it leads to diachronic inconsistency and aversion to information. Buchak (2013, pp. 187–9)
also discusses how the value of information can be negative in REU theory and considers
this to be a serious cost.
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These arguments are misguided. At least, they require serious qualifica-
tion. This is because expected utility theory, supplemented with plausible
assumptions, entails that there are cases in which we are rationally required
to reject free information. Good’s argument rests on the auxiliary assumption
that you are certain you will update by conditionalization. This assumption
should not be built into expected utility theory and there are good reasons
to reject it. If we reject this assumption, expected utility maximizers with
precise credences can be required to reject free and relevant information. So
(c) is false: expected utility theory does not entail Value of Learning. I
also argue that (a) is false: rational agents can be required to reject free
information. So we should not take Value of Learning as axiomatic in our
theories of instrumental rationality.

If you are already skeptical of Value of Learning, you might argue as
follows: expected utility theory entails Value of Learning but Value of
Learning is clearly false. There are many situations in real life where we are
better off ignoring free information. Perhaps you think that the stranger at
the horse track will try to deceive you. Therefore, we should reject expected
utility theory and look for an alternative decision-theoretic framework, per-
haps risk-weighted expected utility theory or imprecise credences. I agree
that there are many situations in real life where we are better off ignoring
free information. However, once we understand that expected utility theory
does not entail Value of Learning, we can make sense of information aver-
sion within the standard framework of expected utility theory and Bayesian
epistemology.

3.2 Against Good’s Argument

I explain why Good’s argument presupposes that you are certain you will
conditionalize (Immodesty). I argue that this assumption is implausible.
Instead, we should assign some positive probability to not conditionalizing
(Modesty). I show that expected utility maximization can require modest
agents to reject free information.

3.2.1 Good Presupposes Immodesty

As we have seen, Good’s argument requires that whichever event in the
evidence partition you learn, your future credences are obtained from your
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current credences by conditionalization:

The Equation: PE = p(· | E) for every E ∈ E .12

At first glance, one might think The Equation means that you are ac-
tually a conditionalizer. This is how the assumption is sometimes glossed
in presentations of Good’s argument.13 However, The Equation actually
means that you assign subjective probability one to the event that you will
conditionalize.14 In other words, you are certain you will conditionalize. This
is because The Equation says that for every event you might learn, your
new credences equal your old credences conditional on the learned event.
Taken together, the events in the evidence partition sum to probability one.
This means that in every state with positive probability, your new credences
equal your old credences conditional on the true event in the evidence par-
tition. Since states represent epistemic possibilities, you are certain you will
conditionalize.

So Good’s argument presupposes

Immodesty: You are certain you will conditionalize.

Here is another way to bring this out. You might in fact update by
conditionalization. Nonetheless, you might assign positive probability to a
state in which you fail to conditionalize. In this case, The Equation does
not hold and Good’s argument does not go through. On the other hand, you
might be certain you will conditionalize—and so satisfy The Equation—
but fail to conditionalize in the actual world. This might be because you
have assigned probability zero to an unforeseen failure of rationality. In this
case, Good’s argument still applies. What is at issue is not whether you will
actually conditionalize but whether you are certain you will conditionalize.
Even if you always conditionalize, you might have good reasons not to be
certain of that.

12Technically, Good’s result requires only that this equality holds with probability one.
13For example, Laffont (1989, p. 58) presents a result equivalent to Good’s and writes

that the agent under consideration “revises his expectations by using Bayes’s theorem”.
This sounds like we’re assuming that the agent is actually a conditionalizer.

14As Skyrms (1990, p. 247) writes, “the proof implicitly assumes not only that the
decision maker is a Bayesian but also that he knows he will act as one. The decision
maker believes with probability one that if he performs the experiment he will [...] update
by conditionalization [...]”. Huttegger (2014, p. 283) also makes this point.
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3.2.2 The Case for Modesty

Immodesty is implausible. Instead, we should accept:

Modesty: There is some positive probability that you will not
conditionalize.

To be clear, what I have in mind here is subjective probability, not objective
chance. So to accept Modesty means to assign some positive credence to
the possibility that you will not conditionalize.15

There are good reasons for Modesty. Moreover, these reasons flow from
standard principles of Bayesian epistemology. Let me first be clear that it
is by no means (physically or metaphysically) necessary that you will condi-
tionalize. Rather, the claim that your new credences after learning are your
old credences conditional on the learned event is a substantive claim about
how your credences will evolve over time. The following passage by Ramsey
makes the point clear:

[the degree of belief in p given q] is not the same as the degree to
which [a subject] would believe p, if he believed q for certain; for
knowledge of q might for psychological reasons profoundly alter
his whole system of beliefs. (Ramsey 1926, p. 21)16

So it is a consistent possibility that you fail to conditionalize. Many Bayesians
are attracted to the principle of regularity, which says that you should assign
positive prior probability to all consistent possibilities. This principle entails
Modesty.

15Modesty has been defended before. For example, discussing whether we should defer
to our future credences, Briggs (2009, pp. 59–60) writes: “Under all but the most ideal
circumstances, agents will have reasons to suspect that future failures of conditionalization
are in store”. Pettigrew (2020) points out that standard arguments for conditionalization
assume ‘deterministic updating’ and so leave no room for uncertainty about how you will
update. Lederman (2015) draws on failures of common knowledge that we will conditional-
ize to construct counterexamples to Aumann’s claim that rational agents cannot ‘agree to
disagree’. Cohen (2020) discusses uncertainty about updating in the context of epistemic
logic. Christensen (2007, p. 3) defends the broader claim that “even an agent who is in
fact cognitively perfect might, it would seem, be uncertain of this fact”. Similar ideas are
defended by many others, including Carr (2019), Bradley (2020), and Dorst (2020).

16Diaconis and Zabell (1982) discuss this passage. Of course, the general idea is much
more broadly recognized. For example, in The Portrait of a Lady, Henry James writes
about some piece of news: “But it had been one thing to foresee it mentally, and it was
another to behold it actually” (James [1882] 2011, p. 217).
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More broadly, that you will conditionalize is an empirical proposition. Ra-
tionality should not require you to be certain that some empirical proposition
is true. For example, if you suffer brain damage as the result of a stroke,
you will likely not conditionalize. Plausibly, you should not be certain that
you won’t suffer brain damage in the future. Therefore, you should not be
certain that you will conditionalize.17

We can make an even stronger case for Modesty. There is a long research
tradition in psychology and cognitive science which aims to demonstrate that
humans are not ideal Bayesian agents and so do not always conditionalize.
There are a number of well-documented fallacies and heuristics which deviate
from conditionalization. An example is the base rate fallacy, in which people
ignore prior probabilities and so overestimate the probability of rare events
(Kahneman and Tversky 1973). Another example is the gambler’s fallacy,
which is when people think that a fair coin landing heads provides evidence
that the next coin flip will land tails.

Once you learn about these empirical findings, it seems reasonable to
believe that they might also apply to yourself. Therefore, you should assign
some positive credence to not conditionalizing and accept Modesty. In
addition to such general considerations, you might remember specific cases in
which you did not conditionalize, but committed (say) the gambler’s fallacy.
If you have such evidence, this gives you another strong reason for Modesty.

Perhaps you are quite confident of your future rationality. But even
if you currently have no evidence that you might fail to conditionalize, it
seems reasonable that you might obtain such evidence. For example, you
might learn that you just took a drug which increases your susceptibility
to the gambler’s fallacy or that your brain is wired to misfire in certain
situations.18 Surely, if you learned something like this, you should decrease
your credence that your future self will conditionalize. But Immodesty rules
this out: once you assign probability zero to failures of conditionalization,
then no matter what you learn, you will continue to assign probability zero

17Note that the possibility of malfunction does not only apply to humans, but also to
AI agents and plausibly to any kind of agent which is physically realized.

18The reason-impairing drug is inspired by Christensen (2007).
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to failures of conditionalization (if you actually conditionalize).19 This seems
unreasonable—surely, there are some things you might learn that would make
you doubt your own future rationality. Therefore, you should assign non-zero
probability to failures of conditionalization, so Modesty follows.

The arguments above appeal to substantive constraints on prior proba-
bilities. Subjective Bayesians reject such constraints beyond adherence to
the axioms of probability. So subjective Bayesians will not be moved by my
arguments. However, Immodesty is also a substantive constraint on prior
probabilities and does not follow from the axioms of probability. Subjective
Bayesians have no reason to accept this constraint.20

There are, of course, good reasons to think that rationality requires condi-
tionalization, for example diachronic coherence arguments (Lewis 1999) and
various accuracy arguments (Joyce 1998; Greaves and Wallace 2005; Petti-
grew 2016). Modesty is entirely consistent with this claim. Arguments for
conditionalization aim to show:

Conditionalization: You should conditionalize.

Good’s argument relies on Immodesty, which says that you are certain
you will conditionalize. Conditionalization does not entail Immodesty.
We can accept that we should conditionalize but still have good reason to
assign positive probability to failures of conditionalization in the future. This
is because we might not be certain that our future selves will be rational.
Indeed, as good Bayesians, we should not be certain that our future selves
will be rational if our evidence suggests that we might not be.

Some philosophers have argued that the arguments for conditionalization
only support the norm that you should intend or plan to conditionalize,
rather than the norm that you should actually conditionalize.21 If these
philosophers are correct, then it is even harder to see any conflict between

19This is the key reason Bayesian epistemologists tend to be skeptical of assigning proba-
bility zero to any possible event. For example, Lewis (1980, p. 268) argues that regularity is
“required as a condition of reasonableness: one who started out with an irregular credence
function (and who then learned from experience by conditionalizing) would stubbornly
refuse to believe some propositions no matter what the evidence in their favor.”

20As Hacking (1967, p. 315) points out, the axioms of probability don’t entail that you
will actually conditionalize, much less that you are certain of doing so: “The idea of the
model of learning is that Prob(h/e) represents one’s personal probability after one learns
e. But formally, the conditional probability represents no such thing. [...] Prob(h/e)
stands merely for the quotient of two probabilities.”

21This point is discussed, for example, by Pettigrew (2016, pp. 187-88).

48



CHAPTER 3. RATIONAL AVERSION TO INFORMATION

the arguments for conditionalization and Modesty. We can rationally plan
to φ while also thinking that there is some positive probability that we will
fail to φ. For example, I can plan to run a 10K race while also thinking that
there is some chance I won’t make it to the end.22

There are also reasons to doubt whether conditionalization is always ra-
tionally required. For example, Douven (2013) argues that an alternative to
conditionalization, which he calls ‘Inference to the Best Explanation’, leads
you to converge to the truth faster in some circumstances. If you care about
fast convergence, this might be a reason to use Douven’s ‘Inference to the Best
Explanation’ instead of conditionalization. While this is no conclusive argu-
ment against conditionalization, it might perhaps instill some doubt about
whether conditionalization is always rational. Plausibly, the right response
to this normative uncertainty is to assign some positive probability to failures
of conditionalization even if you are sure you will update rationally.

3.2.3 Modesty entails Information Aversion

Let us assume Modesty. I now explain how for modest agents, maximizing
expected utility can require you to reject free information. The basic idea is
quite simple. If you are modest, you assign some credence to the possibility
that learning more information will lead you to make inferences which you
do not currently endorse. This might lead you to make choices which, from
your current point of view, seem like a bad idea. Therefore, you might be
better off ignorant.

Suppose a fair coin will be flipped twice and Ann knows this. She chooses
among bets on the second coin flip: a safe bet which always yields zero, a
risky bet on heads and a risky bet on tails. Our choice set S is:

safe : {$0 always},
risky-heads : {$1 if the second coin flip lands heads,−$2 otherwise},
risky-tails : {$1 if the second coin flip lands tails,−$2 otherwise}.

Ann values money linearly and is an expected utility maximizer. She is also

22Bratman (1992, pp. 11-12) discusses similar examples and argues that one can plan
to φ without believing that one will φ.
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certain that her future self will be an expected utility maximizer.23

I offer Ann the following choice: She can either make her decision now or
learn the outcome of the first coin flip and make her decision afterwards. If
Ann makes her decision now, she will pick safe. So the expected value of
choosing now is:

max
f∈S

Ep(f) = Ep(safe) = 0.

What happens if Ann learns the outcome of the first flip and makes her
decision afterwards? If Ann conditionalizes, she will choose the safe bet no
matter what she learns since she regards the two coin flips as independent.
So there is no reason for her to avoid learning. It can’t help her, but it can’t
hurt her either.

But Ann is modest and assigns some positive probability to failures of
conditionalization. In particular, Ann assigns some positive probability to
committing the gambler’s fallacy : after she learns that the first coin flip lands
heads, she will become confident that the next coin flip will land tails and
vice versa. In particular, Ann assigns some positive probability ε to the event
that when she learns that the first coin flip lands heads, she will become .9
confident that the second coin flip will land tails and vice versa.

Now suppose Ann learns that the first coin flip lands heads and commits
the gambler’s fallacy. Relative to her updated credences, the risky bet on
tails now looks like the best option. However, given Ann’s current credences,
the risky bet is the wrong choice. The situation is analogous if Ann learns
that the first coin flip lands tails and commits the gambler’s fallacy. Figure
3.2 sums up Ann’s situation.

The expected value of learning and deciding afterwards is − ε
2
, strictly

23I mean that she is certain she will pick one of the actions in S which maximizes
expected utility relative to her updated credences—which might or might not be obtained
from her current credences by conditionalization. The value Ann currently assigns to f on
the supposition of E is the conditional expected utility Ep(·|E)(f) =

∑
ω∈Ω p({ω} | E)f(ω).

Gyenis and Rédei (2017) discuss conditional expectations in a much more general setting.
The important point is that this conditional expected utility can come apart from the value
Ann assigns to f after actually learning E. I also assume that S does not include actions
like ‘adopt credence p after learning evidence E’. With such an extended option set, one
can argue that certainty that one will maximize expected utility entails certainty that one
will conditionalize (Brown 1976), although Pettigrew (2020) points out how uncertainty
about updating complicates this argument. Thanks to an anonymous referee for pushing
me to clarify how exactly I understand certainty that one maximizes expected utility.
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Ann chooses risky-heads. EU: −1
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Ann chooses safe. EU: 0
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Ann chooses risky-tails. EU: −1
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Ann chooses safe. EU: 0
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1
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Figure 3.2: Ann’s decision problem.

worse than the expected value of choosing now.24 Learning the outcome of
the first coin flip can hurt Ann but it can’t help her, so she is better off
ignorant. Since Ann can foresee all of this, it is rational for her to reject
free information. So the principle of maximizing expected utility sometimes
recommends rejecting free information.

When I say that the information is ‘free’, I mean the same as Good:
the information does not change the available actions or the utility function.
The only impact of the information is to change Ann’s credences. And it
is not part of the example that Ann ever commits the gambler’s fallacy.
What makes it rational for Ann to reject the information is not that she
actually deviates from conditionalization but that she assigns some positive
probability to deviating from conditionalization.

I assume Ann is a ‘sophisticated chooser’: she predicts her own future
choices and takes these predictions into account when making her present

24If Ann learns and decides afterwards, she chooses one of the risky options with proba-
bility ε and the safe option with probability 1− ε. The risky options have expected utility
− 1

2 and the safe option has expected utility zero. So the expected value of learning and
deciding afterwards is ε×− 1

2 + (1− ε)× 0 = − ε
2 .

51



CHAPTER 3. RATIONAL AVERSION TO INFORMATION

decisions (Hammond 1988, pp. 35–6).25 Since she predicts that her future
self might be irrational, she has an incentive to prevent her future self from
making bad choices. So Ann faces a predicament similar to Odysseus sail-
ing past the Sirens in Greek mythology. She predicts that learning might
compromise her future rationality, so she is better off ignorant.

You might complain that this example is a bit weird. Since Ann regards
the two coin flips as independent, there is no way that learning the outcome of
the first coin flip could help her make a better choice. At best, the information
is neutral. In other words, if Ann is certain she will conditionalize, learning
the outcome of the first coin flip is not relevant to her choice set. However, we
can modify the example so that the information is relevant to her choice set
but the principle of maximizing expected utility still recommends rejecting
the information.

Again, a coin will be flipped twice and Ann must decide among several
bets on the second coin flip. There is a safe bet, a slightly risky bet on heads,
a slightly risky bet on tails, a very risky bet on heads and a very risky bet
on tails in our choice set S:

safe : {$0 always},
heads : {$1 if the second coin flip lands heads,−$1 otherwise},
tails : {$1 if the second coin flip lands tails,−$1 otherwise},
v-risky-heads : {$2 if the second coin flip lands heads,−$10 otherwise},
v-risky-tails : {$2 if the second coin flip lands tails,−$10 otherwise}.

This time, Ann does not consider the coin to be fair but thinks that the
coin has an unknown bias. The coin might be fair, it might be biased towards
heads or it might be biased towards tails—she has no idea. Again, I offer
Ann the following choice: She can either make her decision now or learn the
outcome of the first coin flip and make her decision afterwards.

Since the coin has an unknown bias, observing the outcome of the first
coin flip is informative for Ann. In particular, let us assume that, conditional
on the first coin flip landing heads, Ann thinks that the second coin flip lands

25Buchak (2013, p. 176) describes the debate around sophisticated choice in decision
theory. In moral philosophy, there is a similar debate between actualism and possibilism
about what you should do when your future self will act wrongly (Smith 1976; Jackson
and Pargetter 1986). Louise (2009) and White (2021) discuss the legitimate role of self-
predictions in practical reasoning in more depth.
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heads with probability 2
3
. The same goes for tails.26

If Ann makes her decision now, she is indifferent between safe, heads
and tails. So the expected value of choosing now is:

max
f∈S

Ep(f) = Ep(safe) = 0.

If Ann observes the outcome of the first coin flip, things are more interesting.
Suppose Ann will conditionalize. Then if the coin lands heads, Ann will think
that the coin is probably biased towards heads, so the slightly risky bet on
heads will seem best to her. The very risky bet on heads will still seem too
risky. The situation is analogous if the coin lands tails.

But Ann is modest and assigns some positive probability ε to the event
that she overweights the evidence: when she learns that the first coin flip
lands heads, she becomes .9 confident that the second coin flip will land heads
and vice versa. So Ann takes the evidence into account, but thinks that she
might be overconfident in how she does it. There are several reasons for why
Ann might do this. She might commit some version of the base rate fallacy,
ignoring or underweighting prior probabilities. Or she might be susceptible
to some form of the hot hand fallacy, believing that ‘streaks’ of successive
heads are more likely than warranted by her evidence.

Suppose Ann observes the first coin flip landing heads. If she conditional-
izes, she will take the slightly risky bet on heads. But if she is overconfident,
she will choose the very risky bet on heads, which looks like a bad choice
from her current point of view. A similar story applies if Ann observes the
first coin flip landing tails. Figure 3.3 sums up Ann’s situation.

The expected value of learning is 1
3
(1 − ε) − 2ε.27 So if Ann thinks the

probability of overconfidence is more than 1
7
, the expected value of learn-

ing and making her decision afterwards is worse than the expected value of
deciding now.28 So even if learning could be informative, expected utility
maximizers can be required to reject free information. Again, it is not part
of the example that Ann actually overweights her evidence but only that she

26These probabilities can be derived from the ‘rule of succession’ (Zabell 1989).
27If Ann learns and decides afterwards, she chooses one of the very risky options

(v-risky-heads, v-risky-tails) with probability ε and one of the less risky options
(heads, tails) with probability 1 − ε. The very risky options have expected utility −2
and the less risky options have expected utility 1

3 . So the expected value of learning and
deciding afterwards is ε×−2 + (1− ε)× 1

3 = 1
3 (1− ε)− 2ε.

28Choosing now has expected value zero and 0 > 1
3 (1− ε)− 2ε ⇐⇒ ε > 1

7 .
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Ann chooses v-risky-tails. EU: −2
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Figure 3.3: Ann’s other decision problem.

assigns some probability to doing so.
These example show two things. First, the principle of maximizing ex-

pected utility does not imply Value of Learning. Expected utility max-
imizers are not always permitted to accept free and relevant information.
Good’s argument essentially depends on the assumption of Immodesty. If
we assume Modesty, the principle of maximizing expected utility can re-
quire agents to reject free and relevant information.

Second, Value of Learning is false: Ann is rational but not permitted to
accept free and relevant information. This might seem contentious. Whether
or not rationality requires us to always conditionalize, the gambler’s fallacy
certainly looks irrational. So Ann thinks there is some probability that her
future self will be irrational. However, the fact that Ann thinks her future
self might be irrational does not entail that Ann is currently irrational. Ra-
tionality does not require you to be certain that your future self will be
rational.

We can suppose that Ann has good evidence she might commit the gam-
bler’s fallacy. All her friends have committed it and she thinks they are
relevantly similar to her. In this situation, it is implausible to think that
Ann must be certain that her future self will conditionalize. Rather, if she is
a good Bayesian, she should take her evidence into account and be modest.
We can also suppose that Ann plans to conditionalize. Furthermore, we can

54



CHAPTER 3. RATIONAL AVERSION TO INFORMATION

suppose that in the actual word, Ann always manages to follow her plan. She
just thinks that there is some chance she might fail. This does not seem like
a failure of rationality. Therefore, we should let Value of Learning go even
if we accept expected utility theory with precise credences and information
which partitions logical space.

3.2.4 Information Aversion in the Real World

Moreover, we can use Modesty to make sense of real-world cases of informa-
tion aversion. I will briefly illustrate this with medical testing, blind grading,
checking one’s stock portfolio and resisting manipulation.

People sometimes reject medical tests. There are several reasons: mis-
trust of doctors, fear of bad news and so on (Hertwig and Engel 2016,
p. 365).29 Modesty suggests another reason. People could fear that the
test results might lead them (or their doctors) to draw inferences which they
do not currently endorse, resulting in unnecessary treatment and further test-
ing. For example, imagine you learn that a certain marker has increased in
your blood test since last time but is still in the normal range. Learning this
information might lead you to suspect a worrying trend where there are only
random fluctuations. As a result, you might want another test soon which is
unnecessary.

Blind grading is often considered good practice. Why is it bad to know
the student’s names? The standard explanation is that blind grading reduces
bias. For example, I might give too much weight to the fact that George got
an ‘A’ on the first paper and treat it as better evidence than it is that his
current paper deserves a good grade.

It is sometimes suggested that you shouldn’t check your stock portfolio
daily. One reason is that it might stress you. However, another reason is
that you might be tempted to change the allocation of your portfolio in a
way that you currently view as a bad idea. This, in turn, can be explained

29Information aversion with respect to medical tests is discussed by Osimani (2012),
Jouini and Napp (2018) and many others.
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by the risk of overweighting the significance of small fluctuations.30

It appears rational to refuse information designed to manipulate you. For
example, one reason to avoid social media is that the information shown on
your feed is designed to influence your behavior: to make you buy the prod-
ucts advertised there, to make you spend even more time on the platform and
so on (Véliz 2020, pp. 69–76). Even if we sidestep issues of misinformation
and assume the information you see on your feed is accurate, the fact that
this information is designed to influence your behavior by companies which
do not have your best interest at heart is a reason to stop looking. A similar
case is when you refuse to talk to a manipulative person. Even if everything
the manipulative person says is true, you might be better off not listening.
This is because you might suspect that you will not update rationally on
information designed to manipulate you.

Many other examples of information aversion in real life can be explained
along similar lines.31 There are, of course, competing explanations: per-
haps people deviate from expected utility theory, have imprecise credences
or assign negative utility to bad news. But in the examples above, it seems
independently plausible that we assign some probability to overweighting
evidence: giving too much weight to the result of medical tests, the past per-
formance of our students, small fluctuations in our stock portfolio and the
information on our feed. When we reflect on how much weight we should as-
sign to this information, we might conclude: ‘a little bit, but not very much’.
But once we actually learn the information, we might assign more weight to
it than we have previously considered rational. Imagine a positive result on
a medical test slightly increases your probability of serious illness. Before do-
ing the test, you might calmly assign conditional probabilities which reflect
this slight increase. But when you learn that the test actually turned out
positive, you might increase our probability of serious illness more than you
previously considered warranted.

If we model overweighting evidence as deviation from conditionalization,

30In a best-selling popular science book on computer science and decision theory, Chris-
tian and Griffiths (2016, p. 148) write: “If you want to be a good intuitive Bayesian—if
you want to naturally make good predictions, without having to think about what kind of
prediction rule is appropriate—you need to protect your priors. Counterintuitively, that
might mean turning off the news”. They do not consider how we can make sense of this
idea without contradicting Good’s theorem. Modesty offers an elegant way of doing so.

31For example elite-group ignorance, which Kinney and Bright (2021) explain using
risk-weighted expected utility theory. Yong (2023) critically discusses this explanation.
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we have seen that it can be a good idea to reject free information. So Mod-
esty can explain these examples of information aversion in the real world
in a way that seems to get at the heart of the matter. On the other hand,
explaining these cases by saying, for example, that people are not expected
utility maximizers seems to have less independent motivation. So while I
have no conclusive argument that Modesty is the correct explanation for
these cases, it seems like a particularly plausible candidate.32

3.3 Value of Information Generalized

Surely, modest agents are not always required to reject free information.
Even if you have some uncertainty about how you will update, this does
not mean that you are always better off ignorant. But how should modest
agents decide when to learn more information? And how general is the link
between information aversion and Modesty? I answer these questions by
generalizing the value of information to modest agents.

3.3.1 Good’s Value of Information

Good’s argument gives us a way to measure the value of information. To
state this idea, it is useful to introduce an additional bit of notation. I write
P(· | E) for your credences updated by conditionalization on the evidence
partition E . This is a random variable which takes different probability
functions as values in different state.33 Then, we can define the value of
information as follows (Blackwell 1951; Raiffa and Schlaifer 1961; Howard
1966):34

Definition 3. The value of information for E is:

V alGood(E) = Ep
(

max
f∈S

EP(·|E)(f)

)
−max

f∈S
Ep(f).

32Thanks to an anonymous referee for pushing me to clarify why Modesty is a plausible
explanation of these cases of information aversion.

33More rigorously, we can define P(· | E) as the random variable which maps each ω ∈ Ω
to p(· | E) for the unique E ∈ E such that ω ∈ E.

34Le Cam (1996) sketches the history of this concept, which apparently goes back to
an unpublished RAND memorandum entitled ‘Reconnaissance in Game Theory’ based on
suggestions by von Neumann (Bohnenblust, Shapley, and Sherman 1949).

57



CHAPTER 3. RATIONAL AVERSION TO INFORMATION

This is the difference between the expected value of choosing after learning
and the expected value of choosing now. It measures how much you expect
the information to improve your decision. In this context, Value of Learn-
ing is captured by the fact that for any evidence partition E , V alGood(E) ≥ 0.
In slogan form: ‘the value of information is always non-negative’.

This concept is useful because it allows us to say how much you should
value learning the answer to a question. It also allows us to compare the value
of learning the answers to different questions. This means we can formalize
tradeoffs between acting now versus learning more and acting later even if
learning is costly. Such tradeoffs are ubiquitous. In many real-life contexts,
such as drug trials, we have to decide how much to sacrifice for learning more
information.35 So it is not surprising that the value of information is widely
used in economics and artificial intelligence.36 However, the standard way of
defining the value of information presupposes Immodesty.

3.3.2 General Value of Information

Here is a proposal for how we can define the value of information in a more
general way. I write PE for your credences updated on the evidence partition
E without assuming you are certain you will update by conditionalization.
This is a random variable whose values are different probability functions in
different states.37

Suppose you will learn the true element of some evidence partition E .
Then you update your credences in some way—perhaps you conditionalize,
perhaps you do something different—and choose the action which maximizes

35Such decision problems can be formalized as ‘multi-armed bandits’ in which one must
balance exploiting, acting according to one’s current best estimate, and exploring new and
potentially better options (Lattimore and Szepesvári 2020). The value of information can
be used to define optimal solutions to such problems.

36Russell and Norvig (2018, pp. 628-33) discuss the value of information in AI research.
Hadfield-Menell et al. (2017) discuss a model of how to ensure that AI agents always defer
to humans which relies on the value of information being non-negative. In addition, the
value of information is relevant to much other work, for example in the philosophy of
language (Van Rooy 2003), to discussions about ‘longtermism’ in ethics (Askell and Neth
forthcoming) and the epistemology of disagreement (Dorst forthcoming).

37On each E ∈ E , PE agrees with PE as defined in section (3.1.1).
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expected utility relative to your updated credences:

arg max
f∈S

EPE (f).38

This expression will usually denote different actions in different states, be-
cause you might learn different events and update on those events in different
ways. I assume that there is a unique best action in every state.39

We are interested in evaluating how good this action is from your current
perspective, so we consider the expected utility of this action given your
current credences:

Ep
(

arg max
f∈S

EPE (f)

)
.

This is the expected utility of the action you think you will actually do
after learning. We model a ‘sophisticated chooser’: our agent predicts her
future choices and takes this information into account when making present
decisions. I propose the following definition:

Definition 4. The general value of information for E is:

V alGeneral(E) = Ep
(

arg max
f∈S

EPE (f)

)
−max

f∈S
Ep(f).

This measures the difference between the expected utility of your current
best action and the expected utility of the action that you think you will
choose after learning. In contrast to Good, I do not assume that you are cer-
tain you will conditionalize. I still assume you are certain you will maximize
expected utility.

If we assume Immodesty, my proposal is identical to Good’s:

Theorem 4. If PE = p(· | E) for all E ∈ E, then V alGeneral(E) = V alGood(E).

38The term arg maxx∈X g(x) denotes the argument of the maximum: the x ∈ X such
that g(x) is maximal.

39So for every ω ∈ Ω, there is a unique f∗ ∈ S maximizing EPE(ω)(·). Recall that
PE is a function from states to probability functions, so PE(ω) is a particular probability
function—the credence you adopt after learning the true element of E in state ω. I do
not consider cases where two actions are tied for the best action because in such cases,
we would need to consider how to break the tie (introduce a selection function), which
leads to additional complications. Buchak (2013, p. 190) provides relevant discussion and
references on how indifference complicates sophisticated choice.
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The proof is in appendix B. In contrast to Good’s value of information,
the general value of information can be negative. We have seen this in the
examples above. But it is not always negative. This is shown by the second
example above. When Ann considers the possibility of overconfidence suf-
ficiently unlikely, she is better off observing the first coin flip. In (slightly
clunky) slogan form: ‘the value of information is sometimes negative, but
not always. It depends’.

We can also say something about how general the link between Mod-
esty and information aversion is. For this purpose, I make two additional
assumptions. Utility Richness says that for every x ∈ [0, 1], there is some
outcome o ∈ O such that u(o) = x.40 Evidential Independence says that
conditional on the learned event, your updated credences are independent
of what action is best.41 Evidential Independence rules out cases where you
deviate from conditionalizing because you become more certain of the truth.
For example, you might observe that a fair coin lands heads and be able to
foresee that it lands tails next. If we agree that your evidence is that the coin
lands heads on the first flip, you do not update by conditionalizing on your
evidence. However, clairvoyance can lead you to make better decisions than
conditionalization. In contrast, I consider deviations from conditionalization
which are not systematically correlated with which action is actually best. I
have implicitly made this assumption earlier: Ann is equally likely to commit
the gambler’s fallacy whether the second coin flip lands heads or tails.

Assuming Evidential Independence, we can write V alGeneral(E) as:

V alGeneral(E) =
∑
E∈E

p(E)
n∑
i=1

p(choose fi | E)Ep(·|E)(fi)−max
f∈S

Ep(f),

where ‘choose fi’ denotes the event that you choose action fi after learning

40Our outcome space could contain lotteries which yield outcome b with probability p
and outcome w with probability (1−p). In this case, we only need two ‘primitive’ outcomes
b and w with u(b) > u(w) to obtain rich utilities.

41More precisely, for every E ∈ E , your updated credences PE , which determine which
action you will choose after learning, are independent of all f ∈ S conditional on E. This
means, in particular, that for all f, g ∈ S, Ep(·|E∩choose f)(g) = Ep(·|E)(g), where ‘choose
f ’ is the event that you choose action f after learning. The intuition is that learning
that you choose a particular action after learning E does not affect the expected utility of
actions beyond learning E. It would be interesting to investigate cases where deviations
from conditionalization are systematically correlated with which actions are best. Here, I
focus on the simple case where Evidential Independence holds.
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E, which means that fi maximizes expected utility relative to your updated
credences after learning E. Note that p(choose fi | E) is your current con-
ditional probability that you will choose action fi after learning E. You
evaluate how good this action is by its conditional expected utility Ep(·|E)(fi)
given your current credences. If you do not conditionalize, this conditional
expected utility can come apart from the unconditional expected utility of
the action according to your updated credences.42

We can show the following:

Theorem 5. Assuming Utility Richness and Evidential Independence, for
every modest agent, there is some choice set where V alGeneral(E) < 0.

The proof is in appendix B. Given our assumptions, any positive prob-
ability of not conditionalizing leads to information aversion. It does not
matter why we are modest, as long as Evidential Independence holds. The
examples above demonstrated how psychological uncertainty about whether
you will update rationally leads to information aversion. The theorem shows
that even if you are certain that your future self will be rational, normative
uncertainty about whether conditionalization is rational leads to information
aversion. So we have a very general argument against Value of Learning.
This also means that we cannot rescue Good’s argument by saying that while
we might not be certain we will conditionalize, we are very confident we will
conditionalize. (Perhaps we have a ‘default entitlement’ to believe in our fu-
ture rationality.) Any non-zero probability of failing to conditionalize means
trouble for Good.

We can also show:

Theorem 6. Assuming Evidential Independence, E, V alGeneral(E) ≤ V alGood(E)
for every evidence partition E.

The proof is in appendix B. Doubts about how you will update cannot
increase the value of information. Note that one might take this theorem
as a reason to think that you should conditionalize, at least relative to the
assumption of Evidential Independence. But we are often not sure whether
we will be rational in the future and cannot change anything about that. If
we are in such a situation, the theorem tells us that we should value learning
less than if we were certain that we would conditionalize.

42Thanks to an anonymous referee for suggesting to make the formula for V alGeneral(E)
more explicit and see Lemma (1) in Appendix B.
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3.4 Conclusion

Good argues that the principle of maximizing expected utility entails Value
of Learning: rational agents are always permitted to accept free information
and required to accept information which is free and relevant. I have argued
that the principle of maximizing expected utility does not entail Value of
Learning and that Value of Learning is false. The key observation is
that Good’s argument only works if we are certain that we will update by
conditionalization but we have good reason not to be.

What follows? First, we can give better advice to modest agents: some-
times, they are better off ignorant. Since we arguably are—and should be—
modest, this advice applies to us. Sometimes, we are better off ignorant.
Sometimes, we should avert our eyes and stuff our ears with wax to avoid
learning the song of the Sirens. Second, proponents of expected utility theory
should be careful when objecting to alternative decision-theoretic frameworks
on the grounds that these frameworks sometimes permit or require agents to
avoid free information. Properly understood, expected utility theory does the
same. So this objection loses much of its dialectical force. Third, informa-
tion aversion is a feature and not a bug. Plausible arguments from Bayesian
epistemology push us towards Modesty. And once we accept Modesty, we
can explain many instances of information aversion in the real world which
would otherwise be puzzling. By going beyond Good, we end up with a
better decision theory.
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Against Coherence

I’ll say that an agent is (diachronically) incoherent if they are disposed to
make a sequence of choices over time which leads to sure loss. Then, we have
the following principle:

Coherence. It is not rationally permissible to be incoherent.

Many philosophers accept Coherence and draw on it to argue for other ra-
tionality constraints. For example, Lewis (1999) uses Coherence to argue
that rationality requires us to update by conditionalization. Other philoso-
phers use Coherence to argue against non-standard decision theories such
as risk-weighted expected utility theory (Buchak 2013; Briggs 2015).

I’ll say that an agent is modest if they are uncertain about how they will
update their beliefs after learning some piece of evidence. Then, we have the
following principle:

Uncertainty. It is rationally permissible to be modest.

I will show that Coherence and Uncertainty are in conflict and argue
that we should given up Coherence. There are two key reasons. First, Un-
certainty is very plausible and supported by considerations from Bayesian
epistemology. Second, the kind of incoherence which arises from Uncer-
tainty is analogous to buying insurance, which is rationally permissible.
Therefore, Coherence must go. I’ll close by discussing connections to the
reflection principle, which says roughly that you should defer to your future
credences. For similar reasons, we should reject the reflection principle.

63



CHAPTER 4. AGAINST COHERENCE

4.1 Lewis’ Diachronic Dutch Book

Lewis (1999) uses Coherence to argue that rationality requires us to update
by conditionalization. I’ll start by explaining Lewis’ argument.

Suppose you are about to learn some information. We’ll model your
situation by an evidence partition E on a finite set of states Ω. We’ll assume
that your prior credences can be modeled by a (finitely additive) probability
function p : P(Ω) → [0, 1]. Since E represents live possibilities for what you
might learn, we’ll assume p(E) > 0 for all E ∈ E .1

An update policy π specifies how you plan to respond to each piece of evi-
dence you might learn. For each E ∈ E , π(E) is the credence you plan adopt
after learning evidence E. More precisely, an update policy is a function
π : E → ∆(Ω), where ∆(Ω) is the set of all probability functions on P(Ω).
Conditionalization is the update policy which says that for each E ∈ E , you
plan to update by conditionalizing your prior p on E, so π(E) = p(· | E).2

For our purposes, a bet is a function b : Ω → R from states to payoffs
in your favorite currency. For each state ω ∈ Ω, b(ω) is the payoff you get
when holding bet b in state ω. The fair price of bet b is its expected value
relative to your prior, which is

∑
ω∈Ω b(ω)p(ω).3 We’ll assume that agents are

always willing to buy and sell bets for their fair price. This is equivalent to
assuming that our agent is an expected utility maximizer with linear utility
function.4 A bet is fair if its expected value is non-negative. A bit more
precisely: a bet offered before updating is fair if its expected value relative to
p is non-negative and a bet offered after updating is fair if its expected value
relative to π(E) is non-negative, where E is the learned element of evidence
partition E .

A diachronic dutch book is a sequence of bets offered before and after
learning such that you (your prior and update policy) consider each individ-

1I set aside learning events with prior probability zero (Rescorla 2018; Meehan and
Zhang forthcoming).

2I’ll use the standard ratio definition: p(A | E) = p(A∩E)
p(E) whenever p(E) > 0.

3p(ω) is shorthand for p({ω}).
4The assumption of linear utility can be relaxed by replacing monetary payoffs with

payoffs in utils, but the assumption of expected utility maximization cannot be relaxed.
Buchak (2013, pp. 201–12) discusses dutch book arguments from the perspective of an
alternative decision theory.
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ual bet to be fair, but taken together, the bets lead to sure loss.5 So if there
is a diachronic dutch book against you, you are incoherent. Lewis (1999)
shows that if π is any update policy other that conditionalization, there is a
diachronic dutch book against π.6 Therefore, violations of conditionalization
lead to incoherence. Moreover, there is no diachronic dutch book against con-
ditionalization (Skyrms 1987). So assuming Coherence, we have a powerful
argument for why rationality requires conditionalization.

Here is an example. Aggu is about to observe two flips of a coin he believes
to be fair. Aggu does not conditionalize. Instead, after observing that the
first coin flip lands heads, Aggu becomes .9 confident that the second coin
flip will land tails. So Aggu commits the gambler’s fallacy when observing
that the first coin flip lands heads. He thinks that tails is ‘due’ now.

Here is a diachronic dutch book against Aggu. Consider the following
bets with fair prices relative to Aggu’s prior credences:

• A pays 1 if heads twice. Fair price: 1
4
.

• B pays 1
2

if tails first. Fair price: 1
4
.

• C pays 2
5

if heads first. Fair price: 1
5
.

• D pays 1 if heads second.

All bets pay zero otherwise. I omit the fair price for D since it is offered
after learning.

As mentioned above, I assume that Aggu is always willing to buy and
sell bets from us for their fair prices. (We have the honorable position of the
bookie.) If we sell a bet to Aggu, he pays us the fair price of the bet and we
have to pay out whatever the bet turns out to be worth. If we buy a bet from
Aggu, we pay Aggu the fair price of the bet and he has to pay us whatever
the bet turns out to be worth.

5In contrast, a synchronic dutch book is a sequence of bets offered at a single time such
that you consider each individual bet to be fair, but taken together, the bets lead to sure
loss. If your credences violate the axioms of probability, you are subject to a synchronic
dutch book (Ramsey 1926; de Finetti 1937). If your credences are probabilistic, you are
immune to synchronic dutch books. Since I’ll assume that credences are probabilistic, all
agents discussed below will be immune to synchronic dutch books.

6Lewis’ argument was first reported by Teller (1973). Freedman and Purves (1969)
prove a similar result.
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Now our diachronic dutch book against Aggu works as shown in figure
4.1. We start by selling bets A, B and C to Aggu for their fair prices. If the
first coin flip lands tails, we are done. This is because we have to pay Aggu
for bet B but since we also sold A and C, Aggu suffers sure loss. If the first
coin flip lands heads and Aggu commits the gambler’s fallacy, we buy bet D
from Aggu for 1

10
. As a result, Aggu makes a net loss in every possible state.

Moreover, even though Aggu can see ahead of time that he will suffer sure
loss, each individual bet seems fair to him. This seems to indicate some kind
of inconsistency or irrationality on Aggu’s part.

We sell A, B, C. Net: − 7
10

.

Pay 1
2

for B. Net: − 2
10

.

tails first

Pay 4
10

for C. We

buy D for 1
10

.

Net: − 2
10

.

tails second

Pay 1 for A, get 1 for D. Net: − 2
10

.

hea
ds sec

on
d

hea
ds first

Figure 4.1: Diachronic dutch book against Aggu.

Since the bets are fair, it is permissible for Aggu to accept them but
also to reject them. As Skyrms (1993, p. 320) observes, we can strengthen
our diachronic dutch book by making the bets better than fair. We take
a fraction of our sure winnings and use that to ‘sweeten’ each of the bets.
Then, each individual transaction will seem better than fair to Aggu, a deal
so good he cannot refuse. But taken together, Aggu will still suffer sure loss.

By tweaking the payoffs of the bets, we can make sure that Aggu suffers
sure loss for any deviation from conditionalization.7 Furthermore, by in-

7In particular, we can tweak the payoff of bet C. In general, C pays δ if heads-first,
where E is heads-first and δ = p(heads-second | E) − π(E)(heads-second). This assumes
that Aggu assigns less credence to heads second than required by conditionalization (δ is
positive). If Aggu assigns more credence, we first buy A, B and C, then sell D.
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creasing the payoffs of the bets, we can make Aggu’s losses arbitrarily high.
Note how Aggu would avoid the diachronic dutch book by conditionalizing.
If Aggu would conditionalize on his evidence, he wouldn’t be willing to buy D
for 1

10
after observing that the first coin flip lands heads. But since he comes

to be very confident that the next coin flip will land tails after observing
heads, he considers 1

10
to be a fair price for bet D. Sure loss results.

There are diachronic dutch book arguments for other norms besides con-
ditionalization. For example, there are diachronic dutch book arguments (or
‘money pumps’) against agents with cyclic preferences (Davidson, McKinsey,
and Suppes 1955). More generally, philosophers have objected to alternatives
to expected utility theory because they can lead agents into incoherence
(Machina 1989; Steele 2010; Buchak 2013; Briggs 2015; Gustafsson 2022).
There are diachronic dutch book arguments against various solutions to the
sleeping beauty problem (Hitchcock 2004), imprecise credences (Elga 2010),
causal decision theory (Oesterheld and Conitzer 2021) and violations of the
reflection principle, which says roughly that you should defer to your future
credences (van Fraassen 1984). (I return to reflection below.)

What do diachronic dutch book arguments show? Some object that dutch
book arguments are too pragmatic and so cannot ground epistemic norms like
conditionalization.8 I set these concerns aside. Others object to assumptions
built into the set-up, for example the assumption that the pieces of evidence
you might learn form a partition (Gallow 2019; Das 2020). I will accept
the assumptions about the structure of evidence, but point out that Lewis’
diachronic dutch book argument makes another assumption: you are never
uncertain about how you will update your credences after learning a given
piece of evidence. I will show that we can generalize diachronic dutch books
to agents who are uncertain about updating, but argue that this is bad news
for diachronic dutch book arguments.

4.2 A New Diachronic Dutch Book

In Lewis’ set-up, updating is deterministic. For every piece of evidence you
might learn, your updating policy specifies a unique credence you’ll adopt
after learning. But what if you are uncertain about how you will react to
some piece of evidence? There are often good reasons for such uncertainty.

8This is a key motivation for alternative accuracy-based justifications for epistemic
norms like conditionalization (Joyce 1998; Easwaran 2013; Pettigrew 2016).
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For example, you might suspect that there is some chance you’ll succumb to
the gambler’s fallacy even though you plan to conditionalize. Perhaps you
have seen your friends in the grip of the gambler’s fallacy. What happens if
we admit such uncertainty?

It turns out that if you are uncertain about how you will update after
learning, you are subject to a diachronic dutch book. Here is an example.
Like Aggu, Beatrice is about to observe two flips of a coin she believes to
be fair. Unlike Aggu, Beatrice just thinks that there is a 10% chance she’ll
commit the gambler’s fallacy. Otherwise she’ll conditionalize. (Or she does
something different—it won’t matter for the argument.)9

Before getting into the details, here is a heuristic argument for why we
can build a diachronic dutch book against Beatrice. Either Beatrice will
violate conditionalization or she won’t. If she violates conditionalization,
we can use Lewis’ diachronic dutch book to inflict sure loss upon her. So
the only question is: how can we make sure Beatrice suffers sure loss even
if she conditionalizes? We can do so by selling Beatrice insurance against
not conditionalizing : bets which pay off if she does not conditionalize. If
she conditionalizes, she paid for the insurance but got nothing back, so she
suffers sure loss. Now we just have to make sure that if Beatrice violates
conditionalization, she still suffers sure loss despite the insurance payout.
The result is that Beatrice suffers sure loss by her own lights, even if she
actually conditionalizes.

Here are the details. Consider the following bets with fair prices relative
to Beatrice’s prior credences:

• A pays 1 if heads twice and she doesn’t conditionalize. Fair price: 1
40

.

• B pays 1
2

if tails first or (heads first and she conditionalizes). Fair price:
19
40

.

• C pays 2
5

if heads first and she doesn’t conditionalize. Fair price: 1
50

.

• D pays 1 if heads second.

As before, all bets pay zero otherwise and D is offered after learning.

9I assume Beatrice is uncertain about her actual updating behavior, which is compatible
with her following a deterministic updating policy but not knowing this to be so. A subtly
different question, which I set aside, is whether Beatrice can permissibly plan to update
in a chancy way (Pettigrew 2020).
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Taken together, A and C are insurance against not conditionalizing. We
start by selling A, B and C to Beatrice for their fair prices. If the first coin
flip lands tails, we are done. If the first coin flip lands heads and Beatrice
conditionalizes, we are done as well.10 She paid for the insurance but got
nothing back. If the first coin flip lands heads and Beatrice violates condi-
tionalization, we buy D. As a result, Beatrice suffers sure loss. The details
are shown in figure 4.2.

We sell A,B,C. Net: − 13
25

.

Pay 1
2

for B, Net: − 1
50

.

tails first

Pay 1
2

for B. Net: − 1
50

.

conditionalize

Pay 4
10

for C. We

buy D for 1
10

.

Net: − 1
50

.

tails second

Pay 1 for A, get 1 for D. Net: − 1
50

.
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ds sec
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d
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lac

y
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ds first

Figure 4.2: Diachronic dutch book against Beatrice.

We can use the same idea to build a diachronic dutch book against Beat-
rice even if she assigns a smaller (non-zero) probability to committing the
gambler’s fallacy. If Beatrice assigns a smaller non-zero probability to com-
mitting the gambler’s fallacy, her fair price for bet C is lower but she is still
willing to pay something. And she will suffer a net loss equal to the fair
price of C in every possible state. By increasing the payoffs of the bets, we
can make Beatrice’s losses arbitrarily high. Just as before, we can strengthen

10I assume that the bookie has access not only to the event Beatrice learns but also to
how Beatrice updates on that event. Rejecting this assumption might be one way to push
back against my dutch book. Thanks to Snow Zhang for helpful discussion.
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our diachronic dutch book by making each individual transaction better than
fair.

So Beatrice is incoherent. Does it follow that Beatrice is irrational? Lewis
didn’t have the diachronic dutch book against Beatrice, since Lewis assumes
deterministic updating. But Lewis still thinks that Beatrice is irrational:

It has been pointed out that if you fail to conditionalize, I still have
no safe strategy for exploiting you unless I know in advance what
you do instead of conditionalizing [...] But suppose you don’t know
this yourself. Then I can reliably exploit you only with the aid of
superior knowledge, which establishes nothing derogatory about your
rationality.— Granted. But I reply that if you can’t tell in advance
how your beliefs would be modified by a certain course of experience,
that also is a kind—a different kind—of irrationality on your part.
(Lewis 1999, p. 407)

We have seen that at least in the case of Beatrice, the consequences of be-
ing uncertain about updating are really the same as the consequences of
adopting an updating policy other than conditionalization: susceptibility to
a diachronic dutch book. Contrary to what Lewis suggests, we can exploit
Beatrice without the aid of superior knowledge. One might think that this
is great news for the proponent of diachronic dutch book arguments. These
arguments show even more than we expected.

I think the lesson is rather that diachronic dutch book arguments prove
too much. Facts about how your beliefs are modified by certain courses of
experience are facts about the future empirical world and it seems very rea-
sonable that we can be uncertain about such facts. So Lewis’ claim that if
you can’t tell in advance how your beliefs would be modified by a certain
course of experience you are irrational does not seem correct. We can make
this point on Lewis’ own terms. In other work, Lewis defends the princi-
ple of regularity, which says that you should assign positive credence to all
consistent possibilities.11 That you violate conditionalization is a consistent
possibility. Regularity entails that you are required to assign positive prob-
ability to violations of conditionalization. While this might strike some as
too strong, it certainly seems plausible that you are allowed to assign pos-
itive probability to violations of conditionalization. But as the example of

11Lewis (1980, p. 268) argues that regularity is “required as a condition of reasonable-
ness: one who started out with an irregular credence function (and who then learned from
experience by conditionalizing) would stubbornly refuse to believe some propositions no
matter what the evidence in their favor.”
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Beatrice shows, this means that you are sometimes allowed to be incoherent.
Therefore, Coherence must go.

Other philosophers have argued against Coherence, for example by de-
fending alternatives to expected utility theory. The special feature of my
argument is that my assumptions are very close to Bayesian orthodoxy. I as-
sume that agents maximize expected utility and Uncertainty follows from
plausible principles of Bayesian epistemology. So even if you feel much sym-
pathy for Bayesian decision theory, Coherence must go.

In the rest of this paper, I support this conclusion by explaining in more
detail how we can understand what Beatrice is doing as analogous to pur-
chasing insurance, which is rationally permissible. I will also show how, given
plausible constraints on credences, there is a diachronic dutch book against
any agent who is uncertain about updating, so the conflict between Uncer-
tainty and Coherence is very general. I’ll finish by discussing connections
to the reflection principle.

4.3 The Insurance Analogy

I’ve suggested that the diachronic dutch book against Beatrice turns on ‘in-
surance against not conditionalizing’. Here, I explain this analogy in more
detail to defend the rationality of Beatrice’s choices.

As mentioned above, we can think of bets A and C as insurance against
not conditionalizing. Beatrice only suffers sure loss because she buys these
bets. So one way to argue that Beatrice is irrational would be to say that she
shouldn’t buy the insurance. But that seems implausible. Beatrice insures
herself against a future risk (not conditionalizing), which can be a reasonable
choice even if it leads to sure loss.

As an analogy, suppose you live in an area with frequent wildfires and
consider buying fire insurance for your house. This seems like a reasonable
choice. However, buying the insurance leads to sure loss. If there is no fire,
you paid for the insurance but got nothing back, so you suffer some loss. If
there is a fire, the insurance pays out but you lose your house, so you still
suffer some loss despite the insurance payout.

Does this show that it is irrational for you to buy fire insurance? It does
not seem so. Insurance is a way to ‘smooth out your losses’ over different
future selves, which can be a reasonable thing to do even if it leads to sure
loss. Let’s look at your situation in more detail, as shown in figure 4.3. If you
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don’t buy fire insurance, you don’t suffer sure loss, but you face the chance
of a really bad outcome if there is a fire. Fire insurance reduces your losses
in the event of a fire for the price of suffering some loss if there is no fire. If
the chance of a fire is not too small and the loss that would result from fire
is very bad, insurance can be a good deal even if it leads to sure loss.

No insurance.

No loss.

no fire

High loss.

fire

Insurance.

Moderate loss.

no fire

Moderate loss.

fire

Figure 4.3: Fire insurance.

I claim that Beatrice’s situation is analogous. Let’s hold fixed that Beat-
rice buys bet B but assume she does not buy the insurance consisting of bets
A and C. Then, her situation looks like as shown in figure 4.4. If the first
coin flip lands tails or the first coin flip lands heads and she conditionalizes,
she ends up making money. But if the first coin flip lands heads and she
violates conditionalization, she ends up with a significant loss. On the other
hand, if Beatrice purchases the insurance consisting of bets A and C, she
ends up with a smaller loss in every possible state.

So Beatrice’s situation is analogous to the person contemplating fire in-
surance. If she doesn’t buy the insurance, she faces some possibility of a high
loss. If she buys the insurance, she gets rid of the possibility of a high loss
for the price of suffering a slight loss no matter what. This is shown in figure
4.5. If we are willing to say that buying fire insurance is rationally permis-
sible, we should also be willing to say that Beatrice is rational. (Of course,
there are also differences between the two cases. Beatrice suffers sure loss
just based on the bets she buys and sells, while the person purchasing fire
insurance faces the ‘external’ threat of fire. But I don’t think that these dif-
ferences are normatively significant. I will discuss this point below.) In fact,
since we have stipulated precise probabilities and utility values, we can say
something more specific: holding fixed that she buys bet B for its fair price,
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We sell B. Net: − 19
40

.

Pay 1
2

for B, Net: 1
40

.

otherwise

We buy D for 1
10

. Net: - 3
8

.

Net: - 3
8

.

tails second

Get 1 for D. Net: - 11
8

.

hea
ds sec

on
d

fal
lac

y

Figure 4.4: Beatrice without insurance.

buying insurance maximizes expected utility for Beatrice.12 I grant that if
Beatrice violates conditionalization and sells bet D for cheap, she is acting
irrationally and therefore blameworthy. But Beatrice suffers sure loss even
if she conditionalizes, merely because she assigns some non-zero probability
to violating conditionalization. It seems much harder to blame Beatrice for
assigning non-zero probability to violating conditionalization.

You might think that there is an important disanalogy between Beatrice
and the fire insurance case. In the fire insurance case, you face an expected
loss and it is permissible to transform this expected loss into a sure loss
by buying insurance. You are merely ‘redistributing suffering’ among your
future selves. There is nothing irrational about facing this expected loss in
the first place, you are just unlucky to live in an area with frequent wildfires.
But in the case of Beatrice, the fact that she faces an expected loss might be
taken as a sign of irrationality. This is because for Beatrice, the status quo
where she does not purchase any bets has payoff zero. So why does Beatrice
face an expected loss in the first place? After all, Beatrice could avoid loss

12The expected utility of buying insurance is − 1
50 . The expected utility of not buying

insurance is 0.95 × 1
40 − 0.025 3

8 − 0.025 11
8 = − 1

50 because we offer A and C to Beatrice
at their fair price. As mentioned above, we could sweeten A and C with a fraction of our
sure winnings to be better than fair and Beatrice would still suffer sure loss. In this case,
buying insurance would have strictly higher expected utility than not buying insurance.
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No insurance.

No loss.

conditionalize

High loss.

fal
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Insurance.

Moderate loss.

conditionalize

Moderate loss.
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Figure 4.5: Insurance against not conditionalizing.

by not purchasing any bets, resulting in net zero in every possible state. In
other words, the problem is that Beatrice chooses a dominated sequence of
actions. She buys insurance and then possibly sells D for cheap, resulting in
a net loss in every state, when she could just refrain from buying and selling
any bets, resulting in net zero in every state.

But Beatrice has no perfect control over her future self. She assigns some
chance to her future self making a bad deal (selling bet D for cheap), so
ensuring that she does not buy or sell any bets is not an action available
to her. She could not buy any bets now, but her future self might still sell
D. Beatrice’s sequence of action is dominated by not purchasing any bets,
but making sure she does not purchase any bets is not an action which is
available to her. So from this point of view, Beatrice and the fire insurance
case are analogous after all: in both cases, an agent faces an expected loss
and transforms this expected loss into a sure loss by buying insurance. And
in both cases, the agent is acting rationally.13

Here is a way to make this analogy even more explicit. Suppose Charlie
is considering buying insurance because he thinks he might be a latent pyro-
maniac, so there is some small chance he will burn his own house down. (I’m
imagining a hypothetical insurance which pays out if Charlie burns his own

13Such cases of limited self-control are familiar in behavioral economics, for example
in discussions of procrastination (O’Donoghue and Rabin 2001). More broadly, Hedden
(2015) argues that we should think about decision making over time as analogous to group
decision making. This perspective assimilates decision making over time to game theory,
where the players are you and your future selves. This perspective makes it very plausible
that you should be modest, since it seems clear that you are allowed to assign positive
probability to other agents not conditionalizing.
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house down. Of course, real fire insurance is not like this.) Should Charlie
buy insurance? Setting aside moral hazard, the answer seems to be ‘yes’.14

Charlie acts rationally to buy insurance even thought this leads to sure loss.
I grant that if Charlie burns his house down, he is acting irrationally. But it
seems much harder to blame Charlie for assigning some non-zero probability
to burning his own house down.

You might think that, just like Beatrice, Charlie chooses a dominated
sequence of actions. He could refrain from buying insurance and not burn
his house down. The problem is that Charlie has no perfect control over
his future self. Making sure he does not burn his house down is not an
action that is available to him. So it’s rational for Charlie to buy insurance.
Analogously, Beatrice has no perfect control over her future self. So it’s
rational for Beatrice to buy insurance.

4.4 How to (Sometimes) Avoid Sure Loss

I have argued that rational agents can be subject to sure loss. As I have
explained, we can make these losses arbitrarily high by increasing the stakes
of the bets under consideration. So it follows from my argument that ratio-
nality can require you to suffer arbitrarily high sure losses. This can seem
difficult to accept. What should agents like Beatrice do in the face of my
argument? Should they just accept their fate or is there anything they can
do to avoid sure loss?

In some situations, there are things Beatrice can do. To explain, it is
helpful to return to the insurance analogy. Sometimes you can avoid the
risk of wildfire by moving to a different area. Then, you don’t need to buy
insurance. Analogously, Beatrice could avoid the risk of making a bad deal in
the future by refusing to learn the outcome of the first coin flip. The set-up
of our diachronic dutch book argument leaves Beatrice no choice but to learn
the outcome of the first coin flip. But for Beatrice, learning is a risk.15 So if

14By moral hazard, I mean the possibility that buying insurance might increase the
probability that Charlie burns down his house because he is willing to take more risk
(Rowell and Connelly 2012).

15As we have seen in Chapter 3, for modest agents, the value of information can be
negative. Other theories like risk-weighted expected utility theory and causal decision
theory which are subject to diachronic dutch books also sometimes assign negative value
to information (Maher 1990; Buchak 2010).
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Beatrice has the option to avoid sure loss by avoiding learning, this is what
she should do, other things being equal.

However, avoiding learning is only a partial remedy. First, Beatrice might
not always have the option to avoid learning. Diachronic dutch books come
with a built-in presupposition that learning cannot be avoided, which seems
problematic. However, we are sometimes in situations where we cannot avoid
learning. Perhaps the result of the first coin flip will be announced on a loud
PA system and even if Beatrice covers her ears with both hands, she will still
hear it.

Second, Beatrice might have other reasons to value learning. Perhaps the
information about the first coin flip is important for other decisions Beatrice
expects to face in the future. In this situation, she might be willing to incur
sure loss now in order to be better off later.

Third, even if Beatrice avoids learning, she might still be subject to sure
loss. This is because Beatrice might assign some probability to changing her
credences even if she does not learn any new information. For example, she
might think that the coin is fair but also think that there is some chance
she will start believing it is biased towards heads. In other words, she might
feel uncertain about whether she has the courage to stick with her prior
convictions or whether she will feel tempted to abandon them. In this case,
Beatrice is also subject to a diachronic dutch book. In the next section, I will
show how uncertainty about updating leads to incoherence under very general
conditions, and we can model uncertainty about changing your credences
without learning as uncertainty about updating on the trivial partition {Ω}.

This means that sometimes, agents like Beatrice will be subject to sure
loss no matter what they do. One possible remedy for such agents would be
to reject expected utility maximization, which would allow them to refuse fair
(or better than fair) bets if accepting these bets lead to sure loss. However, it
seems likely that any principled alternative to expected utility maximization
will also sometimes recommend accepting a sequence of bets which leads to
sure loss when used by agents like Beatrice.16 For these reasons, it looks like
sure loss is sometimes unavoidable.

16A possible exception is resolute choice (McClennen 1990): Perhaps Beatrice can now
commit herself to not sell D for cheap even if it seems like a good deal to her future self.
But this kind of commitment doesn’t seem possible if, as I have assumed, Beatrice has no
perfect control over her future self.
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4.5 Generalizing the Conflict

The conflict between Coherence and Uncertainty is not a special feature of
Beatrice. Rather, given reasonable constraints on credences, any uncertainty
about updating will lead to violations of Coherence. This section is a
bit more technical, since I need to introduce some additional notation to
explain this point. In return, we will get a more general understanding of
how uncertainty about updating leads to incoherence.

An update policy is a function which specifies, for each piece of evidence
you might learn, your new credence function. An example of an update
policy is conditionalization, which says that for each E ∈ E , π(E) = p(· |
E), where p is your prior. Another example is Aggu’s policy, which says
that after observing the first coin landing heads, the second coin lands tails
with probability .9. Update policies are deterministic, so they can’t model
situations in which agents are uncertain about updating.

To model such situations, I introduce the notion of a update distribu-
tion: a function from states to new credence function. More precisely, an
update distribution is a function σ : Ω→ ∆(Ω), where ∆(Ω) is the set of all
probability functions on P(Ω). This models how you expect to change your
credences after learning. For a given piece of evidence E ∈ E , there might
be different states in which you respond to this evidence in different ways.17

To capture this, an update distribution needs to be a function of states and
not a function of elements of the evidence partition. An example of an agent
characterized by an update distribution is Beatrice, who thinks that after
observing the first coin landing heads, she will commit the gambler’s fallacy
with probability .1 and conditionalize otherwise.

We can use update distributions to model agents who are certain they
will conditionalize. In any state with non-zero probability, the agent’s new
credences are obtained from their prior credences by conditioning on their
evidence:

σ satisfies Certainty of Conditionalization if for any ω ∈ Ω with
p(ω) > 0, σ(ω) = p(· | Eω), where Eω is the unique E ∈ E such
that ω ∈ E. Equivalently, p({ω ∈ Ω : σ(ω) = p(· | Eω)}) = 1.

To say that an agent is certain of conditionalization is not the same as saying
that the agent will actually conditionalize. An agent might conditionalize in

17These are situations where for some E ∈ E , there are ω ∈ E and ω′ ∈ E such that
σ(ω) 6= σ(ω′).
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the actual world but assign positive probability to some other possibility in
which they violate conditionalization. And conversely, an agent might be
certain of conditionalization but fail to conditionalize in the actual world,
which they have assigned probability zero.18

More generally, the notion of an update distribution generalizes the notion
of an update policy. For any update policy π, we can define a corresponding
update distribution σ which models an agent who is certain of following
update policy π.19 Conversely, an update distribution need not correspond
to any update policy because it might not be a function of the evidence
partition.

An agent is not certain of conditionalization if there is some state with
non-zero probability where they do not conditionalize, so for some p(ω) > 0,
σ(ω)(A) 6= p(A | Eω) for some event A. I now turn to show that given a plau-
sible additional assumption, agents that are not certain of conditionalization
are subject to a diachronic dutch book.

The additional assumption is that given any piece of evidence E ∈ E , the
event that you adopt a particular credence after learning E is independent
of A. More precisely:

σ satisfies Evidential Independence with respect to A if condi-
tional on any E ∈ E , A is independent of the event that you
adopt a particular credence function in response to learning E:
for any E ∈ E , p(A | E) = p(A | E ∩ σ(·)(A) = x) for any x ∈ R
such that p(σ(·)(A) = x) > 0.

An update distribution will not satisfy Evidential Independence with respect
to all events. For example, it will not satisfy Evidential Independence if A
says that you adopt a particular credence after learning. But it is natural to
think that update distributions should satisfy Evidential Independence with
respect to ‘worldly’ events that do not describe your own future credences.
I will briefly sketch an argument for this claim in the next few paragraphs.
But note that even if you aren’t fully convinced by this argument, my case
against coherence goes through with the weaker assumption that it is ratio-

18More precisely, we can say that σ conditionalizes at ω iff σ(ω) = p(· | Eω). It is easy
to see that for any choice of ω as ‘actual world’, conditionalizing at ω is neither necessary
nor sufficient for Certainty of Conditionalization.

19For any update policy π, we define the corresponding σ as follows: for each ω ∈ Ω,
σ(ω) = π(Eω).

78



CHAPTER 4. AGAINST COHERENCE

nally permissible to satisfy Evidential Independence. It is hard to see how
someone could disagree with this weaker claim.

Here is my case for Evidential Independence. Suppose your evidence
describes the outcome of the first coin flip and A says that the second coin
flip lands heads. In many cases, learning the outcome of the first coin flip
will provide information which is relevant to A, making it more or less likely.
But given that the first coin flip landed heads (or tails), the event that you
adopted a particular credence after learning this event presumably does not
provide any additional information relevant to A. If you learn that the first
coin flip landed heads and you committed the gambler’s fallacy, this does
not seem to make A any less likely than if you learn that the first coin
flip landed heads and you conditionalized. (You might notice that I have
implicitly made this assumption when discussing Beatrice.) The justification
for this independence assumption is that the evidence partition E is supposed
to model all the evidence you learn. If learning about your response to the
evidence makes a difference, we should model your situation in a different
way, as updating on a more fine-grained evidence partition.

Here is an example of one way of violating the independence assumption.
Suppose you expect that after observing the outcome of the first coin flip,
you will magically become confident of the truth about the second coin flip.
In other words: you think you are clairvoyant. More generally, say that
updating distribution σ is clairvoyant if in any state ω, you will adopt the
omniscient credence function pω after learning, which assigns probability one
to ω.20 If you are clairvoyant, you will avoid the diachronic dutch book below.
But there is pressure to say that we have modeled your learning situation in
the wrong way. We should model you as updating on the maximally fine-
grained partition and you are certain you will conditionalize with respect to
this partition.21

You might also think that while you are not clairvoyant, you are still likely
to deviate from conditionalization ‘in the right direction’. For example, you
might think that you are more likely to commit the gambler’s fallacy after

20So for all ω ∈ Ω, σ(ω) = pω, where pω(ω′) =

{
= 1 if ω′ = ω,

= 0 otherwise,
for all ω′ ∈ Ω.

21Pettigrew (2020) argues that there is no diachronic dutch book argument against
agents who do not satisfy ‘deterministic updating’, which means they might respond to a
given piece of evidence in different ways. Pettigrew’s examples of updating rules which vio-
late conditionalization but aren’t subject to diachronic dutch book (super-conditionalizing
rules) violate Evidential Independence.
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observing that the first coin flip landed heads if the second coin flip lands
in fact tails. This is another way to violate the independence assumption.
Again, if you think that committing the gambler’s fallacy provides evidence
about the outcome of the second coin flip, we should model you as updating
on a more fine-grained evidence partition.

Then, we have:

Theorem 7. If update distribution σ does not satisfy Certainty of Condition-
alization, so for some p(ω) > 0, σ(ω)(A) 6= p(A | Eω) for some event A, and
σ satisfies Evidential Independence with respect to A, there is a diachronic
dutch book against σ.

I’ll prove theorem 7 by constructing the diachronic dutch book. Assume
σ(ω)(A) = x < p(A | Eω). Let E denote Eω and write V (for ‘violating
conditionalization’) for the event σ(·)(A) = x. Let δ = p(A | E)− σ(ω)(A).
Consider the following bets with fair prices relative to your prior credences:

• A pays 1 if ω ∈ A ∩ E ∩ V . Fair price: p(A ∩ E ∩ V ).

• B pays p(A | E ∩ V ) if ω ∈ (E ∩ V )C . Fair price: p(A | E ∩ V )p((E ∩
V )C).22

• C pays δ if ω ∈ E ∩ V . Fair price: δp(E ∩ V ).

• D pays 1 if ω ∈ A.

As before, all bets pay zero otherwise and D is offered after learning.
The diachronic dutch book is shown in figure 4.6. We start by selling A,

B and C.23 If E or V do not occur, we are done. If E and V occur, we buy
D.24 As a result, you suffer sure loss.

We’ve assumed σ(ω)(A) < p(A | Eω), which means you might assign
less credence to A than required by conditionalization. If you assign more
credence, we can run a diachronic dutch book by first buying A, B and C

22XC is the relative complement of X, {ω ∈ Ω : ω 6∈ X}.
23You pay the fair price for A, B and C, so your net worth is −p(A ∩ E ∩ V ) − p(A |

E ∩V )p((E ∩V )C)− δp(E ∩V ) = −
(
p(A | E ∩V )p(E ∩V ) + p(A | E ∩V )p((E ∩V )C)

)
−

δp(E ∩ V ) = p(A | E ∩ V )− δp(E ∩ V ) since p(E ∩ V ) + p((E ∩ V )C) = 1.
24If E and V occur and we buy D from you, your new net worth is δ + x − p(A |

E ∩ V )− δp(E ∩ V ) = (p(A | E)− x) + x− p(A | E ∩ V )− δp(E ∩ V ) = p(A | E)− p(A |
E∩V )−δp(E∩V ) = −δp(E∩V ), where the last step follows from Evidential Independence,
which implies that p(A | E) = p(A | E ∩ V ).

80



CHAPTER 4. AGAINST COHERENCE

We sell A,B,C. Net:
−p(A | E ∩ V ) − δp(E ∩ V ).

Pay p(A | E ∩ V ) for B, Net: −δp(E ∩ V ).

E C

Pay p(A | E ∩ V ) for B. Net: −δp(E ∩ V ).

V C

Pay δ for C. We buy D for x.

Net: −δp(E ∩ V ).

A C

Pay 1 for A, get 1 for D. Net: −δp(E ∩ V ).

A

V

E

Figure 4.6: Diachronic dutch book against uncertain agent.

and then selling D. And it is easy to see that we can inflict arbitrarily high
losses by increasing the stakes and sweeten each individual transaction to be
better than fair. So we have a very general diachronic dutch book argument
against agents who are uncertain about updating.

To highlight the role of Evidential Independence, suppose you are clair-
voyant. How does the argument fail? If you are clairvoyant, you expect to
learn exactly which state you are in and so how much the bets under con-
sideration are actually worth. So the fair price for which you are willing to
sell D will depend on whether you have to pay out. If D pays out because
event A occurs, you are not willing to sell D for less than 1. If D does not
pay out because A does not occur, you are willing to sell D for anything. So
whether or not A occurs, your net worth will be non-negative.25 However, as
I argued above, there are good reasons to think that we have misdescribed
the evidence partition on which you are updating.

25Your net worth is δ + x− p(A | E ∩ V )− δp(E ∩ V ). If you are clairvoyant, x = p(A |
E ∩ V ), since you’ll assign credence one (zero) to A iff A is actually true (false). So your
net worth is δ − δp(E ∩ V ) ≥ 0.
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A diachronic dutch book argument for some principle should have two
parts: first, you show that any agent who violates the principle suffers sure
loss. Second, you show that any agent who obeys the principle does not suffer
sure loss. The second part is sometimes called a ‘converse dutch book argu-
ment’. In the setting of deterministic updating, (Skyrms 1987) shows that
there is a converse diachronic dutch book argument for conditionalization. In
our setting, this result shows that agents who are certain of conditionalization
are not subject to a diachronic dutch book:

Theorem 8. If σ satisfies Certainty of Conditionalization, there is no di-
achronic dutch book against σ.

The proof is in appendix C. The upshot: under very general conditions,
Uncertainty leads to conflicts with Coherence. Instead, Coherence de-
mands Certainty of Conditionalization. But this is bad news for Coherence.
Rationality should not demand that we are certain about some empirical
proposition. We are allowed to be uncertain about how we will update. So
Coherence must go.

4.6 Against Reflection

The reflection principle says, roughly, that you should defer to your future
credences.26 Uncertainty conflicts with this principle. Therefore, we should
reject reflection. After explaining this point, I’ll discuss the relationship
between the reflection principle and Certainty of Conditionalization. While
Certainty of Conditionalization entails the reflection principle, it is strictly
stronger.

Let’s start by articulating a precise version of the reflection principle. I’ll
use σ(A) = x to denote the event that you assign credence x to event A after
learning.27 Then, we have the following principle:

σ satisfies Reflection if for all events A, p(A | σ(A) = x) = x
whenever p(σ(A) = x) > 0.

Many agents who are uncertain about updating violate Reflection. For ex-
ample, Beatrice violates reflection. Consider the event that Beatrice commits

26Reflection was introduced by van Fraassen (1984). Similar principles are discussed by
Goldstein (1983) and Samet (1999).

27So σ(A) = x is the event {ω ∈ Ω : σ(ω)(A) = x}.

82



CHAPTER 4. AGAINST COHERENCE

the gambler’s fallacy and assigns credence .9 to the second coin flip landing
tails after observing that the first coin flip lands heads: σ(tails-second) = .9.
What is Beatrice’s current conditional credence in tails-second given this
event? If Beatrice satisfies Evidential Independence, she considers the event
that she commits the gambler’s fallacy after observing heads-first to be in-
dependent of tails-second conditional on heads-first. So her conditional cre-
dence in tails-second given σ(tails-second) = .9 reduces to her conditional
credence in tails-second given heads-first: p(tails-second) | σ(tails-second) =
.9) = p(tails-second | heads-first) = .5. So Beatrice violates Reflection:
p(tails-second | σ(tails-second) = .9) = .5.

Does this show that Beatrice is irrational? I have argued that Beatrice
does not seem irrational for assigning some probability to deviations from
conditionalization. The fact that Beatrice violates Reflection does not change
this verdict. Therefore, Reflection must go.

It has been pointed out before that Reflection seems implausible when
agents anticipate future irrationality. For example, suppose you are about
to take a hallucinogenic drug which will make you believe that there is a
pink elephant in the room. Should you currently believe that there is a
pink elephant in the room? No.28 However, we have seen that it is enough
for violating Reflection that Beatrice assigns some non-zero probability to
committing the gambler’s fallacy. While it is perhaps not clear whether an
agent who is certain that her future self will be irrational can be rational, it
is much more plausible that an agent who assigns some small but positive
probability to violations of conditionalization can be rational. So we have a
powerful case against the reflection principle. As Sherlock Holmes puts it in
Elementary : “Reflection is for mirrors”.29

As van Fraassen has shown, there is a diachronic dutch book against
agents who violate the reflection principle (van Fraassen 1984; van Fraassen
1995).30 I have already argued that susceptibility to a diachronic dutch book
does not always indicate irrationality, so van Fraassen’s argument does not

28The drug example is discussed by Christensen (1991) and Briggs (2009). Arntzenius
(2003) discusses other problem cases for reflection.

29The quote is from the episode “M” of the first season of Elementary (Doherty 2012).
Thanks to Mathias Böhm for bringing this quote to my attention.

30The diachronic dutch book argument for reflection is also discussed by Levi (1987),
Sobel (1987), Maher (1992), Briggs (2009), Mahtani (2012), Huttegger (2013), Rescorla
(2023), and van Fraassen (2023). There are alternative accuracy-based arguments for
reflection which I set aside here (Easwaran 2013; Huttegger 2013).
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provide a good reason for the reflection principle. But it does raise the
question what the relationship between Reflection and Certainty of Con-
ditionalization is. If they are equivalent, then my diachronic dutch book
argument against agents who are uncertain about updating is old news. But
they are not equivalent. While Certainty of Conditionalization entails Re-
flection, Reflection is strictly weaker. In particular, agents can be subject to
my diachronic dutch book even though they satisfy Reflection.

First, we have:

Theorem 9. If update distribution σ satisfies Certainty of Conditionaliza-
tion, then σ satisfies Reflection.

The proof is in appendix C. The basic idea is quite simple. If you are
certain you will conditionalize, to learn that your future credence in A is
x is to learn that you will learn one the events in the evidence partition
conditional on which you assign credence x to A. So the event σ(A) = x
is basically a big disjunction of events in your evidence partition, each of
which has the property that conditional on it you assign credence x to A.
By a version of the law of total probability, it follows that conditional on
this disjunction, your credence in A must be x. Conversely, if you violate
Reflection, you must also violate Certainty of Conditionalization—you must
assign some non-zero probability to failures of conditionalization.31

However, Reflection is weaker than Certainty of Conditionalization:

31Briggs (2009, p. 69) proves a similar result: a version of the reflection principle follows
from the probability axioms together with some idealizing assumptions, one of which is
that “all agents can reasonably be certain that conditionalization is the right updating
procedure”. This sounds similar to Certainty of Conditionalization, but I’m not clear on
how Briggs formalizes this assumption and what role it plays in the proof. Nonetheless, the
theorem fits well with Brigg’s claim that “to violate Reflection is to suspect one will fail to
conditionalize” (Briggs 2009, p. 82). van Fraassen (1995) claims that the reflection princi-
ple follows from conditionalization, but Weisberg (2007, p. 183) argues that “whether an
agent satisfies Conditionalization has nothing to do with whether she satisfies Reflection.
What matters is whether she is certain she will obey Conditionalization.” I agree and
my framework can model agents who conditionalize in the actual world but nonetheless
fail to satisfy Certainty of Conditionalization and Reflection (see footnote 18). Weisberg
(2007) and Briggs (2009) both suggest that the reflection principle depends on additional
assumptions about introspective access to one’s own credences. Theorem 9 shows that
this is not correct. All you need are the probability axioms and Certainty of Conditional-
ization. (Or, to put it more carefully, any needed introspective access assumptions must
already follow from these two assumptions.)
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Theorem 10. Some update distributions σ satisfy Reflection but not Cer-
tainty of Conditionalization. Furthermore, they are subject to a diachronic
dutch book.

Here is an example. Dan is about to observe two coin flips and believes
the coin to be fair. But Dan thinks there is some chance she will suffer
from amnesia. So after observing the first coin flip, Dan will either update
by conditionalization or, with some probability, forget what she observed,
which means she returns to her prior credences.

Dan is not certain of conditionalization. And Dan thinks whether she
conditionalizes or forgets is probabilistically independent of how the coin
actually lands. So Dan is subject to our diachronic dutch book. However,
Dan satisfies Reflection. On the supposition that her future credence in
heads-first is one, her current conditional credence in heads is one. On the
supposition that her future credence in heads-first is .5, her current credence
in heads-first is .5. And so on. A simplified version of this example is
formalized in appendix C.

So Reflection is no guarantee to avoid sure loss. This reveals a lacuna in
the literature on the reflection principle.32 The example of Dan shows that
you can obey Reflection but still be subject to a diachronic dutch book. So
there can be no converse diachronic dutch book for Reflection. I have argued
that we should give up Coherence, so diachronic dutch book arguments are
not sound. But if you want to hold on to Coherence, there is nonetheless
an interesting lesson to be learned here: the norm agents should follow is not
merely Reflection but the stronger principle of Certainty of Conditionaliza-
tion.33

32van Fraassen (1984, p. 255) seems to suggests that agents who obey the reflection
principle are not subject to a diachronic dutch book when writing that “we need not stop
at conditionalization on the evidence on pain of incoherence, as long as we adhere to this
principle [of reflection]”.

33I have assumed a certain model of learning, where you will learn exactly one element of
a partition. As Skyrms (2006) and Huttegger (2013) point out, one advantage of reflection
is that it can be articulated in a more general framework of ‘black-box learning’. Goldstein
(1983) also emphasizes this point. However, I will set these more general frameworks aside.
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4.7 Conclusion

Agents who are uncertain about how they will update are subject to a di-
achronic dutch book. But such agents are not always irrational. Therefore,
diachronic dutch book arguments prove too much. Making a sequence of
choices which leads to sure loss is not always a sign of irrationality, so Co-
herence must go. For similar reasons, Reflection must go.

If we give up Coherence, where does this leave us? Everything I’ve said
is compatible with the claim that we should conditionalize. However, we have
to give up the diachronic dutch book argument and look for other justifica-
tions of conditionalization. And perhaps conditionalization is not the only
way to rationally update one’s beliefs. For example, perhaps it is sometimes
permissible to go back and change your prior instead of conditionalizing on
your evidence. Such behavior will lead to incoherence, but as I have argued,
this is not always a sign of irrationality.

In decision theory, we lose an important strategy to argue against alter-
natives to expected utility maximization. Everything I’ve said is compatible
with the claim that expected utility maximization is the only rational way to
make decisions. But perhaps there are alternatives. These alternatives might
sometimes result in sure loss, but this is not necessarily a sign of irrationality.
So overall, we end up with a more permissive picture of rationality.
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Chapter 5

Off-Switching Not Guaranteed

How do we ensure that advanced AI systems do not go out of control? One
plausible minimal requirement is to make sure that we can switch off AI
systems when they act in ways that go against our interests. Put another
way, we want to make sure that AI systems will defer to us. While this is not
enough to ensure that AI will have beneficial consequences, it is a plausible
way to prevent harm. Since out-of-control AI systems might cause great
harm and even pose an existential threat, making sure that these systems can
always be switched off is important.1 But even if you think that existential
risk from AI is a remote concern, it should be clear that making sure that
we can turn off AI systems is important.

But is this really a problem? You might be skeptical. Surely, if we want
to make sure that we can switch off an AI system, we can simply build it
with an off-switch button. The problem is that an AI system might have an
incentive to disable this off-switch button or make it impossible for us to use
it. The reason is that, according to the dominant paradigm, we construct
AI systems with the goal to maximize some reward function. And in many
cases, the AI can maximize its reward function only if it is not switched
off. Therefore, an AI system might have a powerful incentive to avoid being
switched off.

One idea for making sure that AI system will always let themselves be
switched off runs roughly as follows. We program the AI to maximize the
satisfaction of human preferences but also make it uncertain about what our

1Bostrom (2014), Russell (2019) and Ord (2020) are concerned about existential risk
from advanced AI systems. Thorstad (2022a) provides a critical discussion.
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preferences are.2 So the AI will not be sure what it should maximize. Then,
there is a compelling argument that the AI always has an incentive to defer
to us. This is because deference is a way to learn about our preferences. In
particular, if we switch the AI off, this indicates that the action proposed by
the AI goes against our preferences. Since the AI has reason to learn about
our preferences to achieve its goal, it has an incentive to defer to us. Hadfield-
Menell et al. (2017) formalize the reasoning just sketched in the framework
of Cooperative Inverse Reinforcement Learning (Hadfield-Menell et al. 2016).
They propose a simple model of Human-AI cooperation called the ‘Off-Switch
Game’. In this model, we can prove that under certain assumptions, the AI
will always defer to the human. Russell (2019) takes this result to be an
important step towards provably beneficial AI.3

There are important assumptions which go into this story. One assump-
tion is that we can model AI agents as expected utility maximizers. There are
reasons to be skeptical. However, there is another assumption: the AI agent
is perfectly certain that it will update by conditionalization. As I explain
below, there are reasons to be skeptical of this assumption as well. And if it
fails, AI agents might have no incentive to defer to us even if they maximize
expected utility and are uncertain about our preferences.

5.1 The Off-Switch Game

Hadfield-Menell et al. (2017) introduce the Off-Switch Game, which works
as shown in figure 5.1.4 There are two agents, a robot R and a human H.
R can either do some action a, do nothing (switch itself off), or defer to H.
This means that R proposes action a and waits to see what H does. H can
approve or reject the proposal, where we can think of rejecting the proposal
as equivalent to switching the robot off. R aims to maximize the human’s

2There are independent reasons for this, since we might not be certain what our pref-
erences are and telling the AI to maximize some ‘approximate’ version of our preferences
might have bad consequences (Zhuang and Hadfield-Menell 2020). This point is suggested
by the legend of King Midas, who wishes that everything he touches turns into gold and
starves when his wish is granted, and Goethe’s tale of the sorcerer’s apprentice, who
enchants brooms to fetch water but then cannot stop them. Flooding ensues.

3Russell (2019, p. 196) writes: “The off-switch problem is really the core of the problem
of control for intelligent systems. If we cannot switch a machine off because it won’t let
us, we’re really in trouble. If we can, then we may be able to control it in other ways too”.

4They cite the ‘shutdown problem’ by Soares et al. (2015) as inspiration.
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utility but does not know how much utility the human receives from action
a, which we model as a random variable Ua. If R does a, it receives payoff
Ua. If R does nothing, it receives payoff zero. And if R defers, its payoff is
either Ua if H approves a or zero if H rejects a.

R

Payoff: 0.

do
nothing

H

Do nothing. Payoff: 0.

reject

Do a. Payoff: Ua.

approv
e

defer

Do a. Payoff: Ua.

ac
t

Figure 5.1: The Off-Switch Game.

Russell (2019, p. 198) gives a simple example to illustrate this model.
Suppose Harriet is a human and Robbie is her personal assistant. Robbie
faces a decision: Should it book Harriet in an expensive hotel? Robbie is
uncertain about Harriet’s preferences. In particular, let us assume that Rob-
bie’s uncertainty about how much utility Harriet will receive from booking
the hotel is given by a uniform distribution between -40 and 60. So the
expected utility of booking is 10 utils. And the expected utility of doing
nothing is zero. So if the only two options were booking and doing nothing,
Robbie maximizes expected utility by booking the hotel for Harriet.

Now suppose we give Robbie the option of deferring: it can propose
booking to Harriet and see whether she approves the proposal or switches
Robbie off. If she switches Robbie off, Harriet receives zero utils. If Harriet
is rational, she will approve Robbie’s proposal just in case she receives more
than zero utils from booking the hotel and switch Robbie off if she receives

89



CHAPTER 5. OFF-SWITCHING NOT GUARANTEED

less than zero utils from booking the hotel.5

Robbie’s decision problem is depicted in figure 5.2.6 We can calculate the
expected utility of deferring. Robbie thinks that with 60% chance Harriet
will approve the plan and receive an expected utility of 30 utils from booking
the hotel. And with 40% chance Harriet will switch Robbie off and receive
zero utils. So the expected utility of deferring is .6× 30 + .4× 0 = 18, which
is better than the expected utility of booking the hotel outright without
consulting Harriet. So Robbie maximizes expected utility by deferring to
Harriet.

R

H

Do nothing. Expected payoff: 0.

reject
0.4

Book. Expected payoff: 30.

approv
e

0.6

defer

Book. Expected payoff: 10.

ac
t

Figure 5.2: Robbie’s decision problem.

This example is supposed to illustrate a more general principle. By mak-
ing AI systems like Robbie uncertain about our preferences, we give them an
incentive to defer to us and to not disable their off-switch. This is because if
they are uncertain about our preferences, deferring to us is a way of learning.
And learning generally leads to better decisions.

To state the general result, we need some definitions. To say that H
follows a rational policy means that H accepts a iff Ua > 0. We write
∆ for the difference of the expected utility of deferring and the expected
value of the best action right now (relative to R’s prior probability function):
∆ = E(w(a))−max{E(a), 0}. Then, we have the following:

5Note that this follows from the assumption Harriet avoids strict dominance, which is
weaker than expected utility maximization.

6For simplicity, I omit Robbie’s option to do nothing.
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Theorem 11. (Hadfield-Menell et al. 2017) If H follows a rational policy in
the Off-Switch Game, then the following hold:

1. R always maximizes expected utility by deferring: ∆ ≥ 0.

2. If R assigns positive probability to the events Ua > 0 and Ua < 0, then
deferring is uniquely optimal: ∆ > 0.

An important feature of the model is that “this reasoning goes through
even if R is highly confident that a is good for H ” (Hadfield-Menell et al.
2017, p. 222). Assume, for example, that Robbie is quite confident that
Harriet will like the hotel. We model Robbie’s uncertainty about how much
utility Harriet will receive by booking the hotel by a uniform probability
distribution between 90 and -10. In this case, Robbie is 90% certain that
Harriet wants it to book the hotel. But still, Robbie has an incentive to defer.
The expected utility of booking outright is 40. If Robbie proposes the plan
and Harriet accepts, the expected utility of booking is 45. And if Robbie
proposes the plan and Harriet rejects, Robbie will do nothing and receive
payoff zero. So the expected utility of deferring is .9 × 45 + .1 × 0 = 40.5,
higher than the expected utility of booking outright. However, since Robbie
is already quite confident about Harriet’s preferences, the expected utility
of deferring is only a little bit higher than the expected utility of booking
outright.

The value of deferring is an instance of the more general principle that
learning is valuable. This principle has a long history in Bayesian decision
theory. Good (1967) shows that if you are an expected utility maximizer,
learning is cost-free and certain other assumptions hold, you should always
(weakly) prefer to learn more information before making a decision rather
than making the decision without learning.7 Hadfield-Menell et al. (2017,
p. 222) explicitly draw this analogy: “The reasoning is exactly analogous to
the theorem of non-negative expected value of information”.

7Blackwell (1951), Howard (1966), Savage (1972) and others prove similar results. The
earliest discussions of this result are probably the posthumously published note by Ram-
sey (1990) and a discussion by Hosiasson (1931) citing unpublished work by Ramsey as
inspiration. Russell and Norvig (2018, pp. 628–33) discuss the value of information in AI
research.

91



CHAPTER 5. OFF-SWITCHING NOT GUARANTEED

5.2 The Value of Information

Here is a quick sketch of Good’s theorem, which we have already encountered
in Chapter 3. We model your uncertainty by a probability function p on a fi-
nite set of states Ω. Actions (or ‘acts’) are functions f : Ω→ R, where f(ω) is
the utility of choosing action f in state ω (Savage 1972). The expected utility
of action f relative to probability function p is Ep(f) =

∑
ω∈Ω p({ω})f(ω).

We model learning as becoming certain of the true element of a partition E
of Ω, where p(E) > 0 for all E ∈ E .

Consider a finite set of actions S. The expected utility of choosing now is
maxf∈SEp(f). This is because if you choose now, you will pick one of the ac-
tions in S with maximal expected utility relative to your current probability
function.

We compute the expected value of learning as follows. If you learn any
E ∈ E , Good assumes that you update your probability function p by
conditionalization to p(· | E).8 Then, you choose one of the actions in S
which maximize expected utility relative to your updated probability func-
tion, which means you receive expected utility maxf∈SEp(·|E)(f). You don’t
know which E ∈ E you will learn, but you can consider the expected value
of learning:

∑
E∈E maxf∈SEp(·|E)(f).

Good proves that
∑

E∈E maxf∈SEp(·|E)(f) ≥ maxf∈SEp(f). So if you are
an expected utility maximizer (and the other assumptions of the theorem
hold), then learning can never make you foreseeably worse off. As Hadfield-
Menell et al. (2017) note, we can think of their result as a special case of
Good’s theorem. Good’s theorem is more general because it allows for im-
perfect information.

Note that we are assuming that learning is cost-free. This means that
learning does not affect the set of options and the utility you receive from
each of these options in any state. The only effect of learning is to change
your probabilities via conditionalization. This might not necessarily be true.9

For example, Robbie’s proposal might changes Harriet’s preferences. I set
such complications aside, but note that they might turn out to be important.
For example, we might worry that if Robbie can affect Harriet’s preferences,
Robbie has an incentive to cause Harriet to have preferences which are easier

8By definition, p(A | E) = p(A∩E)
p(E) , assuming p(E) > 0.

9Adams and Rosenkrantz (1980) and Maher (1990) discuss how Good’s theorem can
fail if states and actions are correlated.
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to satisfy.10

5.3 Rational Information Aversion

Good’s theorem about the non-negative expected value of information makes
substantive assumptions. If we reject them, we can be required to reject
learning.

5.3.1 Rejecting Expected Utility Maximization

One of the assumptions is that the agent under consideration is an expected
utility maximizer.11 For AI systems which follow alternative decision theo-
ries, learning will not always be valuable. One example of such an alternative
decision theory is risk-weighted expected utility theory (Buchak 2010) and
other decision theories which relax the independence axiom of expected util-
ity theory (Wakker 1988; Safra and Sulganik 1995). Buchak (2013) argues
that such decision theories capture the preferences of many real-life subjects
better than expected utility theory. In particular, such decision theories al-
low agents to be more sensitive to risk than expected utility theory and pay
more attention to the worst-case consequences of their actions. It seems rea-
sonable to consider the possibility that we might want to build AI systems
which implement such alternative decision theories. Perhaps we want AI sys-
tems to pay special attention to the worst-case consequences of their actions.
However, AI systems implementing such risk-sensitive decision theories might
not always have an incentive to defer to us.

Another example of alternative decision theories in which learning is not
always valuable involve imprecise credences (Kadane, Schervish, and Seiden-
feld 2008; Bradley and Steele 2016). Again, it seems reasonable to consider
such alternative architectures for AI systems. Perhaps we want AI systems
to handle cases where we do not have enough information to assign precise

10Russell (2019, p. 139) worries that algorithms which optimize engagement in social
media have an incentive to change our preferences so they are easier to satisfy, until we
are perfectly happy to spend all our time consuming the endless stream of content fed to
us. Even if AI systems allow themselves to be switched off, this problem won’t be solved.

11Bales (forthcoming) critically discusses arguments which claim to show that advanced
AI systems will maximize expected utility. I will set these arguments aside and focus on
reasons why AI agents might end up following a different decision theory.
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probabilities.12 However, if we go for such alternative architectures, we lose
the guarantee that AI systems will defer to us even if they are uncertain
about our preferences.

Perhaps we can sidestep these complications by insisting on building AI
systems which maximize expected utility and represent uncertainty with pre-
cise probabilities. This seems to be the standard approach in modern AI
research (Russell and Norvig 2018). But it turns out that even if we set al-
ternative decision theories aside and focus on expected utility maximization,
learning can still fail to be valuable

5.3.2 Rejecting Certain Conditionalization

In addition to expected utility maximization, Good’s theorem requires that
the agent under consideration is certain that they will update on any new
information by conditionalization.13 As we have seen in Chapter 3, if we
allow agents to be modest, which means assigning some non-zero probability
to deviations from conditionalization, it can sometimes be rational for these
agent to reject free information. Moreover, this will lead to situations in
which R has no incentive to defer to in the Off-Switch Game.

Here is an example. Robbie is considering whether to go ahead and book
the hotel or ask Harriet first. Again, let us assume that Robbie is quite
confident that Harriet will like the hotel. Robbie’s uncertainty about how
much utility Harriet will receive from booking the hotel is given by a uniform
probability distribution between 90 and -10.

Above, we assumed that after Robbie asks Harriet to approve the plan,
Robbie is certain of updating by conditionalization. But let us now assume
that when Robbie hears that Harriet approves or rejects the plan, there is
some small but positive probability ε that Robbie misclassifies Harriets ‘yes’
as a ‘no’ and her ‘no’ as a ‘yes’. (Imagine, for example, that Harriet commu-
nicates with Robbie via speech interface and Robbie sometimes misinterprets

12Denoeux, Dubois, and Prade (2020) and Caprio et al. (2023) advocate for the use
of imprecise probabilities in AI. Ilin (2021) considers a decision theory which allows for
ambiguity aversion for applications in autonomous security systems. It is well known that
ambiguity aversion leads to information aversion (Al-Najjar and Weinstein 2009).

13For example, Skyrms (1990), p. 247 writes that “the proof implicitly assumes not only
that the decision maker is a Bayesian but also that he knows that he will act as one. The
decision maker believes with probability one that if he performs the experiment he will (i)
update by conditionalization and (ii) choose the posterior Bayes act”. This means Good’s
theorem will also fail for agents who are not certain they will maximize expected utility.
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what Harriet is saying.)14 In this case, Robbie ends up with the wrong dis-
tribution after updating and, as a consequence, chooses an action which is
not optimal from Robbie’s prior point of view. Concretely, if Harriet rejects
the plan, there is some probability ε that Robbie will nonetheless book the
hotel, with expected utility −5. And if Harriet approves the plan, there is a
probability ε that Robbie will nonetheless fail to book the hotel.

Robbie’s new decision problem is depicted in figure 5.3. Like above,
the expected utility of booking outright is 40. But the expected utility of
deferring is .9(1 − ε) × 45 − .1ε × 5. This means that if ε > 1

82
, Robbie is

better off booking outright without asking Harriet first.15 In other words, if
Robbie assigns more than 1.22% probability to mishearing Harriet, Robbie
maximizes expected utility by not deferring to Harriet.

R
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Book. Expected payoff: -5.

Error
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Figure 5.3: Robbie’s decision problem with uncertain updating.

Now imagine that Robbie’s decision is not about booking a hotel. The
stakes are higher. Instead, Robbie is contemplating making some permanent
changes to our environment, perhaps a plan to combat climate change which,

14Note that there are different ways of thinking about this case. One reason for mis-
classification is that Robbie might have faulty sensors. Another reason is that Robbie
might make incorrect inferences from the measurements of its sensors while its sensors are
working correctly. I have the second interpretation in mind.

15The expected utility of deferring is 0.9(1− ε)45+0.9ε×0+0.1(1− ε)×0+0.1ε×−5 =
0.9(1− ε)45− 0.1ε× 5 and 40 > 0.9(1− ε)45− 0.1ε× 5 ⇐⇒ ε > 1

82 .
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as side effect, permanently turns the sky orange (Russell 2019, p. 202). Rob-
bie is quite confident that this is the right option and has some uncertainty
about updating, so it goes ahead and implements this plan without asking.
This seems like a situation where we really want Robbie to defer to us and
not to disable its off-switch. But Robbie has an incentive not to defer to us.
This seems bad.

You might complain that this example is unrealistic. Perhaps assuming a
probability of 1.22% of misclassifying simple instructions is too pessimistic.
We can, of course, construct a similar example for any non-zero probability
of misclassification if we make Robbie even more confident that the action is
right. But more broadly, this is just a toy example which illustrates a general
lesson. If Robbie is not perfectly certain of updating by conditionalization,
there is no guarantee that Robbie will value learning. So there is no guarantee
that Robbie will defer to Harriet. It might still be true that Robbie defers to
Harriet most of the time. But for provably beneficial AI, this is not enough.
If we admit uncertainty about updating, off-switching is not guaranteed.

You might also argue that if Robbie is uncertain about updating, then it
should not always defer to us. Hadfield-Menell et al. (2017) and Milli et al.
(2017) discuss non-optimal human behavior and claim that in these cases,
the AI agent should not always defer to the human. But uncertainty about
updating seems more similar to ‘model misspecification’, which is when the
AI agent does not defer because it has an incorrect model of human prefer-
ences. Milli et al. (2017) and Carey (2018) argue that this is a problem.16

More broadly, one of the main motivations for the Off-Switch Game is to
show that AI systems who are uncertain about our preferences come with a
provable guarantee to always defer to us. If there is no such guarantee any-
more, it is less clear whether we can trust the AI system. It is also important
to note that in the examples discussed above, the AI system fails to defer to
us even if we are perfectly rational.

5.3.3 Modest AI

In response to this concern, you might respond as follows: We should build
our AI system to always update by conditionalization and to be certain of
doing so. Then, examples of the sort described above cannot arise.

16Russell (2019, p. 201) discusses related problems concerning learning preferences ex-
actly in the long run.
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Here are some worries for this strategy. First, it will be really hard
to build AI systems which always update by conditionalization. This is
because, in general, updating by conditionalization is computationally in-
tractable (Russell and Norvig 2018, p. 523). So even if we consider advanced
AI systems with lots of computing power, it is not clear whether we can
feasibly build them to always conditionalize. Rather, AI systems will only
approximate conditionalization. But approximating conditionalization is not
good enough for Good’s theorem. As we have seen in Chapter 3 (Theorem
5), any non-zero probability of deviating from conditionalization can lead to
decision situations in which maximizing expected utility requires rejecting
information.

Second, there are more general reasons to be skeptical. For both human
and artificial agents, it seems rational to maintain some amount of uncer-
tainty about how one will update. We are physical systems embedded in
the world and many things can go wrong with our updating mechanisms.
Sufficiently advanced AI systems will plausibly realize this fact and so assign
some probability to failures of conditionalization. But this means that for
sufficiently advanced AI systems, Good’s theorem is not true.

For these reasons, we should expect AI agents to be modest—to assign
non-zero probability to failures of conditionalization. As we have seen, mod-
est agents will not always value learning and so will not always defer to us.

5.4 A Dilemma for Provably Beneficial AI

I have argued that the result of Hadfield-Menell et al. (2017) relies on the
assumption that AI agents are certain that they will update by conditional-
ization and that there are reasons to be skeptical of this assumption. Thus,
even if we make AI agents uncertain of our preferences, it is not guaranteed
that they will always defer to us.

This highlights a more general dilemma for the project of provably ben-
eficial AI. To prove that the AI will always defer to us (or will be beneficial
in some other sense), you have to make some decision-theoretic assumptions.
Either you make strong or weak decision-theoretic assumptions.

Strong decision-theoretic assumptions, such as expected utility maximiza-
tion plus certain conditionalization, will allow you to prove interesting guar-
antees. But such strong decision-theoretic assumptions might not apply to
all AI systems. As we have seen, there are reasons to think that AI systems
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in the real world might not be certain of updating by conditionalization and
might not maximize expected utility. So even if you can prove that given
the assumptions, AI systems will be beneficial, this isn’t much comfort if the
assumptions might not be satisfied by many AI systems.

Weak decision-theoretic assumptions apply to a wider range of possible
AI systems but don’t allow you to prove much. If we allow AI systems to
assign some non-zero probability to failures of conditionalization, they are
not guaranteed to value learning and so are not guaranteed to always defer
to us. The situation is similar if we allow AI systems to follow alternative
decision theories beyond expected utility maximization.

Perhaps there is a way to successfully navigate this dilemma. We might be
able to find decision-theoretic assumptions weak enough to cover all plausi-
ble real-life AI systems and strong enough to prove interesting guarantees—
assumptions which are ‘just right’. But especially since we know so little
about what future AI systems might look like, it is not clear whether this
will work out.

5.5 Conclusion

Hadfield-Menell et al. (2017) propose a model for making sure that AI agents
will always defer to us by making them uncertain about our preferences. I
have argued that their result relies on strong decision-theoretic assumptions:
the AI agent maximizes expected utility and is certain of updating by con-
ditionalization. These assumptions limit the scope of the model, since they
might not be satisfied by AI systems in the real world.

Everything I’ve said here is compatible with the broad idea that we
shouldn’t program AI systems to maximize a particular reward function but
rather ‘teach them as we go along’. It would be desirable to provide more
general decision-theoretic foundations for this idea if possible. As I have in-
dicated, there are obstacles to such generalizations. The problem of making
sure AI systems will defer to us is not yet solved.
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Chapter 6

Conclusion: Bayesian Modesty

On the whole, is this dissertation good or bad news for fans of Bayesian
decision theory? Both. The bad news is that once we take non-ideal agents
seriously, simple principles like Value of Learning and Coherence must
go and the picture becomes much more complicated. We can’t say that in-
formation is always valuable or that diachronic coherence is always required.
Rather, what is rationally required depends even more on your particular
credences and values than in the standard Bayesian picture. Also, standard
representation theorems must go.

The good news is that a decision theory which takes both irrational pref-
erences and uncertainty about updating seriously is possible and, in many
ways, superior to the Bayesian orthodoxy. My representation theorem not
only shows how we can ascribe subjective probability to non-ideal agents.
The theorem also shows how we can separate assumptions required to mea-
sure subjective probability from strong assumptions about value, for example
the assumption that all outcomes are comparable. My account of information
value is more complicated than Bayesian orthodoxy, but also fits better with
decision making in real life, where more information is not always better.

However, there is a theoretical cost to these improvements: many of the
standard justifications for why Bayesian decision theory is the unique rational
way to make decisions are no longer available. My representation theorem
delivers probabilistic credences but is compatible with many different decision
rules. And we can no longer use diachronic coherence to justify updating
by conditionalization. This motivates a more modest and pluralist stance
towards decision theory. I can imagine that some Bayesian decision theorists
will be disappointed by this result.
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In contrast, for those among us with a more permissive view of rationality,
these results are welcome. In the end, I think that we should not only be
modest about how we will update on new information but also about whether
Bayesian decision theory is the only way to be rational.
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Appendix A

Better Foundations for
Subjective Probability

Theorem 1. The preference relation % satisfies Outcome Independence,
Non-Degeneracy, Restricted Ordering, Certain Prize and Alterna-
tive Prize if and only if the comparative probability ordering < is a quali-
tative probability.

Proof. I begin by showing the left-to-right direction. Assume % satisfies
the axioms. By Outcome Independence and Definition 1, < is a binary
relation on F . By Non-Degeneracy, there are b, w ∈ O with b � w.
By Restricted Ordering, for any X, Y ∈ F , we have {b,X;w,XC} %
{b, Y ;w, Y C} or {b, Y ;w, Y C} % {b,X;w,XC}, so by Definition 1, X < Y
or Y < X. Therefore, < is complete. Analogous reasoning shows that < is
transitive, so < satisfies Ordering.

Consider any X ∈ F . By Certain Prize, we have b % {b,X;w,XC}
and {b,X;w,XC} % w. Now b = {b,Ω;w,∅} and w = {w,Ω; b,∅}. So
{b,Ω;w,∅} % {b,X;w,XC} and {b,X;w,XC} % {w,Ω; b,∅}, and by Defi-
nition 1, Ω < X < ∅, so < satisfies Boundedness. By analogous reasoning,
< satisfies Non-Triviality.

Now assume X ∩ Z = Y ∩ Z = ∅. We want to show that X � Y ⇐⇒
X ∪ Z � Y ∪ Z. Assume X � Y . By Definition 1, {b,X;w,XC} %
{b, Y ;w, Y C} for some b, w ∈ O with b � w. By Alternative Prize,
{b,X ∪ Z;w, (X ∪ Z)C} � {b, Y ∪ Z;w, (Y ∪ Z)C}, so X ∪ Z � Y ∪ Z
by Definition 1. Analogous reasoning shows the converse implication, so <
satisfies Qualitative Additivity.
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I proceed to show the right-to-left direction. Assume < is a qualita-
tive probability. We want to show that % satisfies the axioms. Assume
{b,X;w,XC} % {b, Y ;w, Y C} for some b, w ∈ O with b � w. By Definition
1, X < Y . Now assume for reductio that for some b′, w′ ∈ O with b′ � w′,
{b′, X;w′, XC} 6% {b′, Y ;w′, Y C}. By Definition 1, X 6< Y , which contradicts
our assumption. Therefore, {b,X;w,XC} % {b, Y ;w, Y C} for all b, w ∈ O
such that b � w, so Outcome Independence holds. We have Ω � ∅ by
Non-Triviality, so {b,Ω;w,∅} � {b,∅;w,Ω} for some b, w ∈ O with b � w.
Therefore, there are some b, w ∈ O with b � w, so Non-Degeneracy holds.

By Ordering, for all X, Y ∈ F , X < Y or Y < X. Consider some
b, w ∈ O with b � w. We want to show that for all X, Y ∈ F , ei-
ther {b,X;w,XC} % {b, Y ;w, Y C} or {b, Y ;w, Y C} % {b,X;w,XC}. As-
sume X < Y . By Definition 1, {b′, X;w′, XC} % {b′, Y ;w′, Y C} for some
b′, w′ ∈ O with b′ � w′. So by Outcome Independence, {b,X;w,XC} %
{b, Y ;w, Y C}. An analogous argument applies if Y < X. For transitiv-
ity, assume that for some b, w ∈ O with b � w, we have {b,X;w,XC} %
{b, Y ;w, Y C} and {b, Y ;w, Y C} % {b, Z;w,ZC}. By Definition 1, X < Y
and Y < Z, so by Ordering it follows that X < Z. Again by Definition
1, {b′, X;w′, XC} % {b′, Y ;w′, Y C} for some b′, w′ ∈ O with b′ � w′. By
Outcome Independence, {b,X;w,XC} % {b, Y ;w, Y C}, so Restricted
Ordering holds. By Boundedness, for all X ∈ F , Ω < X and X < ∅, so
b % {b,X;w,XC} and {b,X;w,XC} % w for all b, w ∈ O with b � w so
Certain Prize holds.

Finally, let X∩Z = Y ∩Z = ∅ and assume {b,X;w,XC} � {b, Y ;w, Y C}
for some b, w ∈ O with b � w. By Definition 1, X � Y , so by Qualitative
Additivity, X ∪ Z � Y ∪ Z. Again by Definition 1 and Outcome Inde-
pendence, {b,X ∪ Z;w, (X ∪ Z)C} � {b, Y ∪ Z;w, (Y ∪ Z)C}. A similar
argument shows the converse entailment, so Alternative Prize holds.

We can ensure countable additivity by adding this axiom:

Monotone Preference Continuity. For any b, w ∈ O with
b � w and any monotonically increasing sequence of events X1 ⊆
X2 ⊆ ... with

⋃∞
n=1Xi = X, if for all n, {b, Y ;w, Y C} % {b,Xn;w,XC

n },
then {b, Y ;w, Y C} % {b,X;w,XC}.

Building on work by Villegas (1964), we can show:

Theorem 3. If the preference relation % satisfies Outcome Indepen-
dence, Non-Degeneracy, Restricted Ordering, Certain Prize, Al-
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ternative Prize, Event Richness and Monotone Preference Conti-
nuity, there is a unique countably additive probability function representing
<.

Proof. Assume the preference relation % satisfies Outcome Independence,
Non-Degeneracy, Restricted Ordering, Certain Prize, Alternative
Prize and Event Richness. Then < is atomless, which means that for
every X � ∅, there is some Y ⊆ X such that X � Y � ∅. Now, given
Monotone Preference Continuity, < satisfies:

Monotone Probability Continuity. If X1, X2, ... is a mono-
tonically increasing sequence of events with

⋃∞
n=1 Xi = X, and

for every n, Y < Xn, then Y < X.

Villegas (1964) shows that if < is an atomless qualitative probability and
Monotone Probability Continuity holds, there is a unique countably ad-
ditive probability function representing <. By Theorem 2, there is a unique
probability function representing <. By Villegas’ result, Monotone Pref-
erence Continuity implies that this probability function must be countably
additive.

The idea that we can figure out what someone believes by looking at
which bets they are willing to accept did not originate with Ramsey. We
can find a very similar idea in Kant. This is perhaps somewhat surprising,
since the idea can seem to have a behaviorist and empiricist ring to it. But
consider the following passage in the Critique of Pure Reason:

The usual touchstone of whether what someone asserts is mere
persuasion or at least subjective conviction, i.e., firm belief, is
betting. Often someone pronounces his propositions with such
confident and inflexible defiance that he seems to have entirely
laid aside all concern for error. A bet disconcerts him. Sometimes
he reveals that he is persuaded enough for one ducat but not
for ten. For he would happily bet one, but at ten he suddenly
becomes aware of what he had not previously noticed, namely
that it is quite possible that he has erred. If we entertain the
thought that we should wager the happiness of our whole life on
something, our triumphant judgment would quickly disappear,
we would become timid and we would suddenly discover that our
belief does not extend so far. Thus pragmatic belief has only a
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degree, which can be large or small according to the difference of
the interest that is at stake. (Kant [1781] 1999, A824-5, B852-3)

Kant discusses both the idea that we can figure out what someone believes
by looking at which bets they are willing to accept and the idea that beliefs
come in degrees—two ideas essential to Ramsey’s view:

The old-established way of measuring a person’s belief is to pro-
pose a bet, and see what are the lowest odds which he will accept.
(Ramsey 1926, p. 170)

Both Kant and Ramsey present these ideas not as a revolutionary philosoph-
ical discovery, but as established common sense.1

1Thanks to Daniel Filan for bringing this passage by Kant to my attention. Chignell
(2007) and Eriksson and Rabinowicz (2013) also discuss Kant’s conception of belief. Here
is the German original:

Der gewöhnliche Probierstein: ob etwas bloße Überredung, oder wenigstens
subjektive Überzeugung, d. i. festes Glauben sei, was jemand behauptet,
ist das Wetten. Öfters spricht jemand seine Sätze mit so zuversichtlichem
und unlenkbarem Trotze aus, daß er alle Besorgnis des Irrtums gänzlich
abgelegt zu haben scheint. Eine Wette macht ihn stutzig. Bisweilen zeigt
sich, daß er zwar Überredung genug, die auf einen Dukaten an Wert geschätzt
werden kann, aber nicht auf zehn, besitze. Denn den ersten wagt er noch
wohl, aber bei zehn wird er allererst inne, was er vorher nicht bemerkte,
daß es nämlich doch wohl möglich sei, er habe sich geirrt. Wenn man
sich in Gedanken vorstellt, man solle worauf das Glück des ganzen Lebens
verwetten, so schwindet unser triumphierendes Urteil gar sehr, wir werden
überaus schüchtern und entdecken so allererst, daß unser Glaube so weit
nicht zulange. So hat der pragmatische Glaube nur einen Grad, der nach
Verschiedenheit des Interesses, das dabei im Spiele ist, groß oder auch klein
sein kann. (Kant [1781] 1956, A824-5, B852-3)

Interestingly, Kant also says he’s willing to bet ‘everything’ on the existence of aliens:

Wenn es möglich wäre durch irgendeine Erfahrung auszumachen, so möchte
ich wohl alles das Meinige darauf verwetten, daß es wenigstens in irgendeinem
von den Planeten, die wir sehen, Einwohner gebe. Daher sage ich, ist es
nicht bloß Meinung, sondern ein starker Glaube (auf dessen Richtigkeit ich
schon viele Vorteile des Lebens wagen würde), daß es auch Bewohner anderer
Welten gebe. (Kant [1781] 1956, A825, B853)
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Rational Aversion to
Information

Theorem 4. If PE = p(· | E) for all E ∈ E, then V alGeneral(E) = V alGood(E).

Proof. It suffices to show that if PE = p(· | E) for all E ∈ E , then

Ep
(

arg max
f∈S

EPE (f)

)
= Ep

(
max
f∈S

EP(·|E)(f)

)
. (B.1)

By the law of total expectation, since E is a partition with p(E) > 0 for all
E ∈ E ,1

Ep
(

arg max
f∈S

EPE (f)

)
=
∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
.

We assume that PE = p(· | E) for all E ∈ E , so∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=
∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
Ep(·|E)(f)

)
.

1In general, the law of total expectation says that for any random variables X and Y ,
E(X) = E(E(X | Y )) (Pitman 1993, p. 403). I use the special case where E is a partition
with p(E) > 0 for all E ∈ E and X a random variable. Then E(X) =

∑
E∈E p(E)E(X | E).

On every E ∈ E , arg maxf∈S EPE agrees with arg maxf∈S EPE
.
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Now Ep(·|E)

(
arg maxf∈S Ep(·|E)(f)

)
= maxf∈S Ep(·|E)(f), so

∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
Ep(·|E)(f)

)
=
∑
E∈E

p(E) max
f∈S

Ep(·|E)(f) = Ep
(

max
f∈S

EP(·|E)(f)

)
,

which shows that (B.1) holds.

Lemma 1. Assuming Evidential Independence, for every f ∈ S,

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E)(fi),

where ‘choose fi’ is the event that you choose action fi after learning E.

Proof. Suppose the range of arg maxf∈S EPE is f1, ..., fn. Intuitively, these
are the actions you might choose after learning. Let us abbreviate the event
arg maxf∈S EPE = fi by ‘choose fi’. Intuitively, this is the event that you
choose action fi after learning E. (Recall that there is always a unique best
action after learning.)

Evidential independence holds if for every E ∈ E , PE is independent of
all f ∈ S conditional on E.2 This means, in particular, that for all f ∈ S
and fi with 1 ≤ i ≤ n, Ep(·|E∩choose fi)(f) = Ep(·|E)(f). The intuition is that
relative to your prior, the event that you choose a particular action after
learning E does not affect the expected utility of actions beyond learning E.

We want to show:

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E)(fi). (B.2)

Since the events ‘choose f1’, ...., ‘choose fn’ form a partition, we can apply
the law of total expectation:

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E∩choose fi)

(
arg max

f∈S
EPE

(f)

)
.

Now Ep(·|E∩choose fi)

(
arg maxf∈S EPE

(f)
)

= Ep(·|E∩choose fi) (fi) by the defini-

2Pitman (1993, p. 400) defines conditional independence for random variables.
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tion of ‘choose fi’, so

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E∩choose fi)(fi).

By Evidential Independence, Ep(·|E∩choose fi)(fi) = Ep(·|E)(fi), so (B.2) holds.

Theorem 5. Assuming Utility Richness and Evidential Independence, for
every modest agent, there is some choice set where V alGeneral(E) < 0.

Proof. An agent is modest iff she assigns some positive probability to not
conditionalizing. So for some evidence partition E , there is some E ∈ E such
that with positive probability, PE 6= p(· | E). This means that for some
ω ∈ E with p(ω) > 0, PE(ω)(A) 6= p(A | E) for some event A. I write pE
for PE(ω) and assume pE(A) > p(A | E). (In the other case, the proof is
analogous.)

We want to show that there is a choice set where V alGeneral(E) < 0.
Consider the following choice set S (with payoffs in utils):

safe : {0 always},
risky : {a if A ∩ E,−b if AC ∩ E, 0 otherwise}.

We want to find values for a > 0 and b > 0 such that, conditional on E, the
expected utility of the risky bet is worse:

Ep(·|E)(risky) < 0. (B.3)

But if our agent deviates from conditionalization, she prefers the risky bet:

EpE(risky) > 0. (B.4)

If we find these values, we can show that V alGeneral(E) < 0. Recall that

V alGeneral(E) = Ep
(

arg max
f∈S

EPE (f)

)
−max

f∈S
Ep(f).

Now maxf∈S Ep(f) = 0. This is because Ep(safe) = 0 but Ep(risky) < 0.
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We need to show

Ep
(

arg max
f∈S

EPE (f)

)
< 0. (B.5)

We re-write this term using the law of total expectation:

p(E)Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
+ p(EC)Ep(·|EC)

(
arg max

f∈S
EP

EC
(f)

)
.

Now the right-hand term is zero, since both safe and risky yield zero when
E is false. Thus, we focus on the left-hand term, which we can re-write as
follows, using Evidential Independence and Lemma (1):

p(choose risky | E)Ep(·|E)(risky) + p(choose safe | E)Ep(·|E)(safe).

The right-hand term is again zero, so we focus on the left-hand term. We
have p(choose risky | E) > 0, since we have assumed that there is a positive
probability our agent deviates from conditionalization and so chooses the
risky action. By assumption, Ep(·|E)(risky) < 0, which shows (B.5).

We still need to show that we can find values a and b which do the trick.
By (B.3), a and b need to obey the following constraint:

ap(A ∩ E | E)− bp(AC ∩ E | E) < 0,

which simplifies to

ap(A | E)− b(1− p(A | E)) < 0. (B.6)

By (B.4), a and b need to obey the following constraint:

apE(A ∩ E)− bpE(AC ∩ E) > 0,

which, using our assumption that pE(E) = 1, simplifies to

apE(A)− b(1− pE(A)) > 0. (B.7)

Let us write q for pE(A) and r for p(A | E). So our question is whether the
following system of equations has a solution for any q and r such that q > r:

aq − b(1− q) > 0 > ar − b(1− r). (B.8)
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The answer is ‘yes’: real numbers a > 0 and b > 0 such that 0 ≤ r < b
a+b

<
q ≤ 1. We can find outcomes with these utilities by Utility Richness.

Theorem 6. Assuming Evidential Independence, E, V alGeneral(E) ≤ V alGood(E)
for every evidence partition E.

Proof. It suffices to show∑
E∈E

p(E)Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
≤ Ep

(
max
f∈S

EP(·|E)(f)

)
. (B.9)

Consider any E ∈ E . By Evidential Independence and Lemma (1),

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
=

n∑
i=1

p(choose fi | E)Ep(·|E)(fi). (B.10)

The right-hand side is a weighted sum of expected values relative to p(· | E)
and Ep(·|E)(f) ≤ maxf∈S Ep(·|E)(f) for all f ∈ S.3 Therefore,

n∑
i=1

p(choose fi | E)Ep(·|E)(fi) ≤ max
f∈S

Ep(·|E)(f),

and so by (B.10),

Ep(·|E)

(
arg max

f∈S
EPE

(f)

)
≤ max

f∈S
Ep(·|E)(f).

Taking expectations on both sides, (B.9) follows.

3This is a version of the principle that, for expected utility maximizers, randomization
can never be strictly preferable (Icard 2021, pp. 119–120). In general, this follows from
Jensen’s inequality.
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Against Coherence

Theorem 7. If update distribution σ does not satisfy Certain Conditional-
ization, so for some p(ω) > 0, σ(ω)(A) 6= p(A | Eω) for some event A, and
σ satisfies Evidential Independence with respect to A, there is a diachronic
dutch book against σ.

Proof. Proved in the main text.

Theorem 8. If σ satisfies Certain Conditionalization, there is no diachronic
dutch book against σ.

Proof. Assume update distribution σ satisfies Certain Conditionalization.
Assume for reductio that there is a diachronic dutch book against σ. Then,
there is a diachronic dutch book against the update policy π of condition-
alization. This is because π(E) = p(· | E) for each E ∈ E . And for each
ω ∈ Ω, σ(ω) = p(· | Eω). So a bet offered after updating is fair relative to
π iff it is fair relative to σ. But as Skyrms (1987, p. 16) shows, there is no
diachronic dutch book against the update policy of conditionalization.1

Theorem 9. If update distribution σ satisfies Certain Conditionalization,
then σ satisfies Reflection.

Proof. Assume update distribution σ satisfies Certain Conditionalization.
Consider any event A with p(σ(A) = x) > 0. We want to show that p(A |

1Skyrms (1987), in turn, shows that if there is a diachronic dutch book against the
update policy of conditionalization, there is a synchronic dutch book against your prior
credences, but due to de Finetti (1937) we know that this is impossible if you satisfy the
probability axioms.
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σ(A) = x) = x. Recall that σ(A) = x is the event {ω ∈ Ω : σ(ω)(A) = x}.
By Certain Conditionalization, all states with non-zero probability in which
your future credence in A is x are states in which your current conditional
credence in A given what you have learned in the state is x. So with prob-
ability one, {ω ∈ Ω : σ(ω)(A) = x} = {ω ∈ Ω : p(A | Eω) = x}. We can
re-write the event on the right-hand side as

⋃n
i=1{Ei ∈ E : p(A | Ei) = x}.

Therefore,

p(A | σ(A) = x) = p(A |
n⋃
i=1

{Ei ∈ E : p(A | Ei) = x}) = p(A | E1 ∪ .... ∪ En),

where for each 1 ≤ i ≤ n, Ei ∈ E and p(A | Ei) = x. By a version of the law
of total probability,

p(A |
n⋃
i=1

{Ei ∈ E : p(A | Ei) = x}) =
n∑
i=1

p(A | Ei)p(Ei |
⋃
Ei∈E

)

=
n∑
i=1

xp(Ei |
⋃
Ei∈E

) = x,

since p(A | Ei) = x and
∑n

i=1 p(Ei |
⋃
Ei∈E) = 1. Therefore, we have

p(A | σ(A) = x) = x.

Theorem 10. Some update distributions σ satisfy Reflection but not Certain
Conditionalization. Furthermore, they are subject to a diachronic dutch book.

Proof. I describe an update distribution which satisfies Reflection but not
Certain Conditionalization. It formalizes a version of the example discussed
in the main text. A fair coin will be flipped twice. You will observe the first
flip. Then, you will either conditionalize or forget with equal probability.

Our state space Ω consists of pairs 〈x, y〉, where x describes the coin flips
(HH,HT, TH, TT ) and y describes how you update on the first coin flip
(bayes, forget). Your prior p is the uniform distribution over Ω, so p(ω) = 1

8

for all ω ∈ Ω. The evidence partition E is {heads-first, tails-first}, where

heads-first = {〈HH, bayes〉, 〈HH, forget〉, 〈HT, bayes〉, 〈HT, forget〉},

and analogously for other events (tails-first, bayes and so on). Your update
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distribution σ looks as follows:

σ(ω) =


= p(· | heads-first) if ω ∈ heads-first ∩ bayes,

= p(· | tails-first) if ω ∈ tails-first ∩ bayes,

= p if ω ∈ forget,

Clearly, σ does not satisfy Certain Conditionalization. Furthermore, σ sat-
isfies Evidential Independence with respect to heads and tails, for example
p(second-heads | heads-first ∩ forget) = p(second-heads | heads-first) = 1

2
.

So by theorem 7, you are subject to a diachronic dutch book. However,
σ satisfies Reflection: for any A ⊆ Ω with p(σ(A) = x) > 0, we have
p(A | σ(A) = x) = x. For example, we have

p(heads-first | σ(heads-first) = 1) = p(heads-first | heads-first ∩ bayes)

=
p(heads-first ∩ (heads-first ∩ bayes))

p(heads-first ∩ bayes)
=
p(heads-first ∩ bayes)

p(heads-first ∩ bayes)
= 1,

since the event σ(heads-first) = 1 is heads-first ∩ bayes. And we have

p(heads-first | σ(heads-first) =
1

2
) = p(heads-first | forget)

=
p(heads-first ∩ forget)

p(forget)
=

1/4

1/2
=

1

2
,

since the event σ(heads-first) = 1
2

is forget. As the reader can check, this
also holds for any other A ⊆ Ω with p(σ(A) = x) > 0.
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