How organisms respond to environmental changes: from phenotypes to molecules (and vice versa)

Massimo Pigliucci

The ability of organisms to produce different phenotypes under different environmental conditions (phenotypic plasticity) has been an object of evolutionary and ecological studies since the neodarwinian synthesis. Yet, until lately, our knowledge in this field was limited to statistical approaches based on the classical tools of quantitative genetics. In recent years, however, a new dialog between organismal biologists and researchers interested in uncovering the mechanistic details of physiological and phenotypic responses has yielded several new insights. Some classic examples of phenotypic plasticity have now been traced to specific alterations in DNA transcription and RNA translation rates, and to changes in patterns of protein expression. Conversely, the explicit use of evolutionary and ecological theory is helping us to put a panoply of molecular data into a coherent historical and organismal perspective.

Massimo Pigliucci is at the Depts of Botany and Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1100, USA (pigliucci@utk.edu).

However, arguably a major reason was that he came under political attack in the Soviet Union by Lysenko; this left him little time further to develop and publicize his work. Starting from the mid-1960s, and especially since the mid-1980s, however, the study of reaction norms and of phenotypic plasticity (a measure of how different the phenotypes produced in distinct environments are from each other, and therefore a property of the reaction norm) has become a centerpiece of modern evolutionary and ecological genetics4-8.

The currently favored approach to the study of reaction norms and the modeling of their evolutionary trajectories is based on an extension of the concepts and tools of classical quantitative genetics9. That is, a group of genetically related individuals (a collection of isogenic lines, clones, half- or full-sib families) is exposed to a variety of environmental conditions (treatments), and their response is graphed as a reaction norm (i.e. as a plot of phenotype versus environment for each genotype, family or clone). A family of statistical techniques related to the analysis of variance is then used to partition the observed phenotypic variation in at least three components: (1) genotype, representing differences in the average response across environments among genotypes; (2) environment, quantifying the average effect of the treatments across genotypes; and

References

17 te Boekhorst, L.I. (1980) Residential status and seasonal movements of wild orang-utans in the Gunung Leuser Reserve (Sumatra, Indonesia), Anim. Behav. 39, 1098-1109
(3) genotype by environment interaction, gauging the genetic variation for the shape of the reaction norm existing in that particular population. This information can be easily translated into estimates of fundamental quantitative genetic parameters such as genetic correlations and heritabilities. These estimates can then be plugged into multivariate extensions of the classical quantitative genetic equations that describe response to selection, yielding predictions of rates and directions of evolutionary change in that particular population, given certain simplifying assumptions.

Lately, a certain dissatisfaction with the purely statistical approach typical of classical quantitative genetics has been expressed; quantitative genetic models either do not deal with the specific genetic basis of phenotypic plasticity (the so-called 'black box' approach), or they assume a very simple model of many genes that have small additive effects. One alternative that is currently being pursued is the mapping of genes affecting quantitative trait loci using a combination of techniques that bridges the gap between a purely statistical description of a population and a more mechanistic understanding of the genetic machinery underlying complex traits. On a different front, the concept of 'plasticity genes' has been proposed. Because of some confusion with previous definitions, I will refer to these as 'regulatory loci that directly respond to a specific environmental stimulus by triggering a specific series of morphogenic changes', a more restricted and conceptually useful definition than previously proposed. It has been suggested that understanding the origin, evolution and function of plasticity genes must be an integral component of any satisfactory scenario of organismal evolution in response to heterogeneous environments. But what do we know about the origin, evolution and function of plasticity genes?

Two mechanistic approaches to the study of plasticity genes

There are two important and complementary approaches that one can use to dissect the genetic and physiological basis of phenotypic reactions to environmental changes. We can try to isolate mutants that abolish or interfere with a well-characterized pattern of phenotypic plasticity, or we can expose plants

Fig. 1. Phylogeny of several phytochrome genes. This is one of the best-known examples of evolution of plasticity genes. Taken, with permission, from Ref. 27.

Fig. 2. Comparison of 2-D gel patterns of total proteins isolated from dark-grown wild-type plants (WT.d) and light-grown wild-type plants (WT.l) of Arabidopsis. Black arrows indicate spots (proteins) of higher intensity (related to protein quantity) when compared to the same spot in the other pattern. White arrows indicate spots that specifically appeared in the pattern and that were undetectable in the other growth conditions. As expected, many of the spots show significant differences when their intensities are compared between these growth conditions. Taken, with permission, from Ref. 16.
Box 1. The response to light in flowering plants
Light is one of the fundamental abiotic variables of the environment of any plant. Different aspects of light availability influence the development, physiology and morphology of a plant: the day length (photoperiodic responses), the intensity and direction of irradiation (phototropism, photosynthesis), and the spectral quality (used as a way to gauge canopy density and forthcoming competition from neighbors). Phenotypic responses of flowering plants to light have been investigated since Darwin’s demonstration that the tip of the growing embryo is responsible for phototropism (tracking the direction of incident light) during development. Recently, a number of studies have dealt with how plants perceive changes in light quality, and how these are translated into one of the best-known examples of adaptive phenotypic plasticity.

At the phenotypic level, it is known that plants that typically colonize open gaps in the canopy, or otherwise live in habitats where shading is not a constant component of the environment, dramatically alter their architecture and phenotype when exposed to abnormally low ratios of red (R) to far-red (FR) light. Under these conditions, plants tend to suppress branching, increase the rate of vertical elongation of the stem, and flower earlier. Since the lower R:FR ratio is caused by the fact that their neighbors absorb the photosynthetically active red light, while reflecting the far-red portion of the spectrum, this so-called ‘shade avoidance’ response is thought to give an advantage to plants by allowing them to complete the life cycle and produce progeny before being shaded by competitors.

At the physiological level, it has been known for some time that a specific class of molecules, known as phytochromes, are characterized by a sensitivity of their molecular structure to R:FR ratio, in particular the phytochrome A and B. Phytochromes exist in two states, and the switch between them is catalyzed by the spectral quality of the incident light. The use of mutants and of probes derived from them recently enabled researchers to identify a family of at least five genes coding for phytochromes in flowering plants (Fig. 1). The functions of only two of these, phytochromes A and B, are known to some extent, and they appear to be partially overlapping, with effects that are specific to either molecule (photoperiod for Phy-A, certain components of shade-avoidance for Phy-B) and effects that are controlled by both (germination). Recent advances point to the interaction of phytochromes with at least some plant hormones (most notably gibberellins) to form complex light perception-transduction pathways that include several other regulatory genes and that account for the sophisticated plasticity exhibited by plants at the phenotypic level.

Box 2. Heat-shock responses across kingdoms
Most living organisms have to deal with fluctuations in the temperature of their habitat, and these fluctuations can vary enormously in amplitude, duration and predictability. It is, therefore, not surprising that a special type of plasticity to heat shock has evolved across kingdoms (with known examples existing among bacteria, fungi, plants, invertebrates and vertebrates). Phenotypically, this response is usually measured in terms of fecundity or survival, that is, it deals with plasticity for fundamental components of fitness. Typically, survival is minimal if an organism is subjected to a sudden increase in ambient temperature (acute shock). On the other hand, the ability to withstand the change increases proportionally to the time of acclimation at increasingly higher temperatures. Also, lines of Drosophila melanogaster collected from natural populations that normally experience higher temperatures in their habitats show more resistance to the shock treatment, suggesting that the plastic response has the ability to evolve within species. Another interesting observation is that the temperature that activates the response strictly depends on the specific habitat of the organism considered: for example, Antarctic fishes of the genera Pagotheria, Nototheria and Chionodraco react when the temperature becomes as ‘hot’ as 5°C (Ref. 31).

The molecular basis of the heat-shock response is fairly well elucidated in invertebrates. In Drosophila melanogaster, there are at least eight major polypeptides that are synthesized in response to heat shock. The cDNA from one of these, hsp70, has been used as a probe to locate genes with similar characteristics in an array of organisms. At least three different promoters have been located upstream of hsp70 in Drosophila. Some heat-shock proteins are constitutively expressed, while others are activated only during the acclimation period; the first type can be considered a regulatory or structural gene (depending on its specific function) with environmentally independent expression. The second class is either an example of plasticity genes (if they respond directly to the environmental signal), or it is activated by unidentified plasticity genes. The activation of the heat-shock genes is mediated in most organisms by a heat-shock factor (HSF), which acts as a transcriptional activator. This gene is constitutively expressed, but heat shock causes a marked elevation of the level of its mRNA. The physiological role of the heat-shock proteins is far less clear, although they are thought of as involved in stabilizing other proteins when the cell is exposed to the heat shock. A role as molecular chaperons has been demonstrated for hsp20, hsp60 and hsp70 (Ref. 33).

or animals to different environments and screen directly for changes in their RNA or protein patterns that are specifically associated with a set of environmental conditions. The study of mutants was the foundation of modern genetics ever since Gregor Mendel and, later, Thomas Hunt Morgan, and (in a different version involving the deliberate disruption of normal developmental processes) it has recently received renewed attention because of its usefulness as an ‘entry’-level method to isolate specific genetic factors. The story of the study of genes coding for light receptors in plants is a typical example (Box 1). Two of these genes were initially found by screening for mutants exhibiting a long hypocotyl phenotype under normal light conditions (the elongated hypocotyl, or embryonic shoot, is typical of plants in the dark phase, when the seedling has to emerge from the soil). Once found, they were mapped on the genome of Arabidopsis thaliana by classical genetic methods. Given the small genome of A. thaliana, however, it is relatively easy to isolate and sequence a gene of known position. After a plasticity gene is sequenced, it is then possible to clone similar genes from several species to find possible homologs and trace back its evolutionary history (Fig. 1). An even more direct approach to mutagenesis has been developed recently. In the case of ‘tagged’ mutagenesis, one can insert a known sequence (the tag) in a random position in the genome, either by transformation or by using transposons. A regular screening for mutations is then performed and potentially interesting mutants are isolated. The tag sequence can then be rescued with a probe of complementary sequence and the DNA regions upstream and downstream from the tag can be explored.

One can also screen directly for differences in protein or nucleic acid expression between individuals exposed to different environmental conditions. A particularly elegant example of protein expression is the work of Santoni et al. They compared the total protein profiles obtained by two-dimensional gel electrophoresis of the same genotype of A. thaliana growing in the dark and in normal light conditions. They also compared the patterns of single-gene mutants with an elongated hypocotyl to that of the wild type under identical environmental conditions. In both cases, they were able to demonstrate the switching on or off of dozens of proteins, in either an environmental-or genotype-specific way (Fig. 2). To conduct screenings for environmentally sensitive genes at the nucleic acid level, the organism is exposed to the environmental conditions of interest (e.g. water stress) and is then quickly frozen. DNA profiles of the treated and control organisms reveal portions of the genome that are specifically present only under the treatment conditions. Once the sequences of these fragments have been obtained, Northern blots can be performed in order to study the pattern of expression of the corresponding RNAs. Thus, the environmental specificity of the genes can be demonstrated, and also their timing of expression and their localization can be studied.

What evidence do we have for the existence of plasticity genes?

The number of studies demonstrating the existence of genes that specifically respond to a particular type of environmental alteration by triggering a given pattern of morphogenic changes is increasing steadily. Boxes 1–4 highlight four cases in which the phenotypic reaction, the physiology and the molecular biology are particularly clear: response to light in flowering plants (controlled by phytochromes, Box 1); heat-shock response across kingdoms (hsp-family of proteins, Box 2); adaptive plasticity to sulfur limitations in cyanobacteria.
Box 3. Adaptive responses to sulfur limitation in cyanobacteria

Some of the most convivial and molecularly best-characterized examples of adaptive phenotypic plasticity are found outside the ecological and evolutionary literature. A case in point is a study by Mazel and Marliere for strategies for coping with sulfur limitations in the habitat of cyanobacteria. Sulfur is a fundamental constituent of the lateral chains of cysteine and methionine, and so it is used in the synthesis of many fundamental polypeptides in the cell. A common problem for many prokaryotes is to find themselves in habitats poor in sulfur, and therefore they are unable to synthesize proteins at a normal rate. This is particularly problematic for cyanobacteria, since sulfur is necessary to build phytochromes, the light-harvesting molecules that allow cyanobacteria to function autotrophically.

The classical evolutionary solution to this problem would be to evolve alternative forms of the proteins involved, which do not rely on cysteine and methionine (or th, at least, require less of these two amino acids). We would, therefore, expect that mutations that substitute cysteine and methionine with sulfur-free amino acids of similar structural and biochemical properties should be favored under conditions of sulfur deprivation. This has been demonstrated to be the case, for example, in Salmella typhymurium. Mazel and Marliere, however, show what happens if the organism finds itself in an environment in which the resource is not simply scarce, but fluctuates. The cyanobacterium Calothrix sp. PCC 7601 has two versions of all its proteins that are rich in cysteine and methionine, in particular, phycoerythrin and the proteins associated with its functional properties. The alternative set substitutes amino acids in key positions, resulting in lower requirements for sulfur. Significantly, the alternative set is activated only when sulfur is scarce in the environment. These proteins are in no way involved in the biological fixation of sulfur. Yet, the switch in pattern of protein synthesis does substantially alter the budget of intracellular sulfur. There are three phycoerythrin operons in Calothrix: one is constitutively expressed, regardless of any environmental signal; the second one responds to the light spectral quality; and the third — the one characterized by Mazel and Marliere — shows a dramatic increase in expression under low sulfur conditions. The five genes in the third operon are homologs of those present in the second operon, and they are arranged in the same way. The phycoerythrin genes have a long evolutionary history, since they evolved by successive duplications from an ancestor related to the globin family. A similar mechanism for the evolution of regulatory plasticity had in fact been proposed by Smith.

bacteria (involving an alternative sulfur-independent set of phycoerythrins, Box 3); and temperature-dependent sex determination in reptiles (catalyzed by the antagonistic action of aromatase and reductase on testosterone. Box 4). Other examples include: facultative metamorphosis in amphibians; heterophyll in semi-aquatic plants; the SOS response to DNA damage in E. coli; wing dimorphism in response to crowding or photoperiod in insects; and alterations in flowering phenology in response to temperature and photoperiod in plants.

There are two major reasons why these results have not been connected to the theory of evolution in heterogeneous environments. First, most researchers interested in the molecular and physiological basis of plasticity do not actually work in contact with population and evolutionary biologists. In fact, in most cases, the term ‘plasticity’ does not appear in their papers, and few or none of the fundamental theoretical and empirical papers dealing with the ecology and evolution of plasticity are cited in these reports. As a consequence, discoveries of very interesting patterns of gene expression are left in a vacuum because of the lack of a proper ecological-evolutionary framework to interpret their significance. Conversely, most population and evolutionary biologists publishing in the field are not in touch with the ample physiological and molecular literature available. Consequently, our models of the evolution of plasticity are based on a very rough understanding of the biological machinery actually involved in these processes. Overall, we have a dramatic case of poor communication between scientists interested in that could clearly benefit from a tighter interaction. However, this situation is beginning to change very rapidly.

What can we learn from the combination of ecological and molecular studies of phenotypic plasticity?

The nascent interaction between molecular and organismal studies of reactions to environmental heterogeneity is altering our perspective of how phenotypes evolve. First, we are gaining a more precise and biologically realistic understanding of gene–gene interactions (the classical quantitative genetic concept of epistasis). Epistasis has always been considered a ‘noise’ in quantitative genetic analyses of phenotypic variation, and it is routinely ignored on the grounds that it accounts for a small portion of the total genetic variance. As Cheverud and Routman have elegantly demonstrated, however, this is true only for what they call ‘statistical’ epistasis. If we consider ‘physiological’ epistasis, that is, the physiological rather than statistical effects attributable to gene–gene interactions at the individual (as opposed to the population) level, epistasis can make a substantial contribution to additive, dominance and interaction genetic variance components, thereby deserving a more prominent place in our descriptions of evolution.

Second, all the available molecular and physiological evidence points to the fundamental role played by regulatory genes with major effects in phenotypic evolution. Studies of single gene mutants show that they can be responsible for dozens of changes at the protein-regulation level, thereby forming the basis for truly universal pleiotropy. When double and triple mutants are constructed, we can investigate directly what developmental and physiological effects can be attributable to epistasis, instead of simply deducing them from statistical analyses. Very elegant models of gene action in response to environmental cues have recently been produced using this method.

A third point is that fundamental regulatory gene functions seem to have a very ancient and highly conserved evolutionary history (Fig. 1). It is now common practice to isolate a new regulatory gene from a particular organism and then to screen gene sequence databases to find homolog sequences not only in different species of the same genus or family, but even in different kingdoms. Yet, some of the phenotypic variation within species can, surprisingly, be produced by null or defective mutants for important regulatory functions. One of the consequences of these observations is the reopening of the old and still-controversial debate on the relative importance of quantitative versus major-effect genes in evolution.

Fourth, molecular research can benefit from a better understanding of the ecology of the organism. For example, although the so-called ‘trade-off’ model of plasticity in plants is supposed to be one of the best examples of adaptive plasticity, and it is very well characterized at the mechanistic level (Box 1), in fact, the direct ecological evidence that such a response is adaptive has only become available very recently. Mechanistic biology can also gain from a more organismal oriented perspective in another way. The more we dig into the details of organic reactions to environmental change, the more we realize that these reactions are much too complex for a satisfactory gene–phenotype mapping function ever to be reconstructed (notwithstanding the credo of some molecular biologists). We are beginning to understand that there is still a wide between the genetic and the phenotypic levels that is populated by poorly specified ‘emergent
Box 4. Temperature-dependent sex determination in reptiles

In 1966, Madeline Chambier discovered a peculiar phenomenon concerning sex determination in the lizard Agama agama: the sex of the offspring appeared to be determined by the incubation temperature of the eggs. Temperature-dependent sex determination (TSD) is now known to be a widespread phenomenon among reptiles. While the exact adaptive value of TSD is still being debated, its genetic and physiological basis, as well as its potential phylogenetic importance, are becoming much clearer.

The phenotypic response is obviously quite complex: it includes the functional sex of the individual, all the primary and secondary sexual morphological attributes, as well as the behavioral traits associated with being male or female. In the red-eared slider turtle (Trachemys scripta), a temperature below 29°C produces males almost exclusively, while values above that threshold result in females. The fundamental switch at the molecular level is associated with the effect of either aromatase or reductase on testosterone. If the temperature is female-inducing, the enzyme aromatase transforms the precursor testosterone into estradiol. This leads to a chain of events that culminates with the development of a female individual. If the temperature is below the proper threshold, on the other hand, reductase will effectively compete with aromatase for the substrate, and will produce dihydrotestosterone, switching the biochemical and developmental pathways toward maleness. One of the consequences of the elucidation of this mechanism is the realization that, in reptiles, there is no "default" sexual development as is the case in mammals and birds. To be a female, the individual has to follow a non-male pathway, but the opposite is also true (in mammals and birds the individual is constitutionally a female, unless the male-determining factors are present).

Crews et al. also suggested that TSD is, in fact, the ancestral condition for terrestrial vertebrates from which the genotypic sex determination (GSD) typical of birds and mammals evolved. The figure below (taken, with permission, from Ref. 38) shows the differences between the two models, (a) GSD and (b) TSD: a simple loss or inactivation of the regulatory elements that determine temperature sensitivity (plasticity genes) would make the macroevolutionary transition possible. It would be fascinating to investigate whether or not TSD-related genes are still present in lineages of birds or mammals, and to speculate what evolutionary scenarios can account for the evolution of GSD from TSD.

(a) Fertilization

- Gonad determining genes
- Gonad formation
- Hormones
- Sexual differentiation of phenotype

(b) Fertilization

- Temperature
- Enzymes
- Hormones
- Receptors
- Gonad determining genes
- Gonad formation
- Hormones
- Sexual differentiation of phenotype

Conclusions

What are the potential routes that the study of phenotypic reactions to environmental heterogeneity can take during the next few years? We now know that there is genetic variation for phenotypic plasticity in natural populations, and that this variation is both character- and environment-specific. We also know that populations of plants and animals can respond to selection, altering the pattern of their sensitivity to the external conditions. Thanks to the molecular studies of the type reviewed here, we now realize that many of these reactions are not just passive responses of the genetic-physiological machinery, but are highly specific and coordinated by an array of regulatory genes acting at different hierarchical levels. Physical environmental factors such as temperature will still directly affect cellular metabolism and enzyme kinetics, thereby eliciting what I have termed "passive" (i.e., not regulated by the organism) plasticity. The roots of passive plasticity are also developmental, and need to be understood in order to gain a more complete picture of evolution in heterogeneous environments. However, adaptive plasticity will be - by definition - 'active', that is, mediated by a more or less-complex genetic-developmental machinery of the type discussed throughout this article, which can only originate as the product of evolution under natural selection.

What we do not know, or have very few concrete data about, is how adaptive plasticity evolves. How does it happen that a population of Ranunculus flammula is capable of producing two alternative developmental pathways for the shape of its leaves, one to be expressed under water and the other under aerial conditions, but that other populations of the same species cannot do the same? And what about other species of the same genus? Comparative studies of phenotypic plasticity are mostly absent from the literature, but are a necessary component of any satisfactory understanding of the problem.

A second new line of research is trying to link the molecular characterization of plastic responses with the mostly presumptive adaptive meanings that such responses have. Progress in this field will come from a more complete description of the mechanistic machinery involved, as well as from measurements of selection intensity under field and controlled conditions, comparing the relative fitnesses of wild types and mutants that are deficient for the plasticity gene(s).

Yet another direction of future research certainly lies in the already mentioned interface between genetics and environments, in the epigenetic machinery that somehow translates genetic effects and environmental influences into coherent phenotypes. Here, the interaction of detailed molecular studies and new theoretical approaches based on nonlinear dynamic modeling are a promising, yet not explored, avenue of research. One of the emerging concepts is that the old metaphor of genes as 'blueprints' for the organism has to be abandoned in favor of a more complex view that sees organismal properties emerging from local and limited genetic effects. Clearly the stage is set for a very exciting period of research based on a true synthesis of biological knowledge, with different levels of analysis equally contributing to a deeper understanding of what organisms are and how they arose.

References

1. Turesson, G. (1922) The genotypic response of the plant species to the habitat, Hereditas 3, 211–350

Reviews and Perspectives coming soon in TREE:

- Extinction filters and current resilience, A. Balmford
- The molecular phylogeographic bridge between deep and shallow history, B.R. Riddle
- Species-range size distributions: patterns, mechanisms and implications, K.J. Gaston
- Inbreeding avoidance in animals, A. Pusey and M. Wolf
- The biology of anchialine caves, B. Sket
- Evolution and adaptive radiation of Antarctic fishes, A. Clarke and I.A. Johnston