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Short Abstract: This paper provides a survey of evidence from computational cognitive 
psychology, perceptual psychology, developmental psychology, comparative psychology, 
and social psychology, in favor of the language of thought hypothesis (LoTH). We outline 
six core properties of LoTs and argue that these properties cluster together throughout 
cognitive science. Instead of regarding LoT as a relic of the previous century, researchers 
in cognitive science and philosophy of mind should take seriously the explanatory breadth 
of LoT-based architectures as computational/representational approaches to the mind 
continue to advance. 
  
Long Abstract: Mental representations remain the central posits of psychology after many 
decades of scrutiny. However, there is no consensus about the representational format(s) 
of biological cognition. This paper provides a survey of evidence from computational 

 
1 All authors contributed equally; authorship is in reverse alphabetical order. 
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cognitive psychology, perceptual psychology, developmental psychology, comparative 
psychology, and social psychology, and concludes that one type of format that routinely 
crops up is the language of thought (LoT). We outline six core properties of LoTs: (i) 
discrete constituents; (ii) role-filler independence; (iii) predicate-argument structure; (iv) 
logical operators; (v) inferential promiscuity; and (vi) abstract content. These properties 
cluster together throughout cognitive science. Bayesian computational modeling, 
compositional features of object perception, complex infant and animal reasoning, and 
automatic, intuitive cognition in adults all implicate LoT-like structures. Instead of 
regarding LoT as a relic of the previous century, researchers in cognitive science and 
philosophy of mind must take seriously the explanatory breadth of LoT-based 
architectures. We grant that the mind may harbor many formats and architectures, 
including iconic and associative structures as well as deep-neural-network-like 
architectures. However, as computational/representational approaches to the mind continue 
to advance, classical compositional symbolic structures—i.e., LoTs—only prove more 
flexible and well-supported over time. 
  
Keywords: animal cognition, automaticity, cognitive architecture, deep learning, dual-
process theories, implicit attitudes, infant cognition, language of thought, object files, 
visual cognition  

  
  

1. Introduction 
 
Mental representations remain the central posits of psychology after many decades of scrutiny. 
But what are mental representations and what forms do they take in nature? In other words, what 
is the format of thought? This paper revisits an old answer to this question: The Language of 
Thought Hypothesis (LoTH).  
 
LoTH is liable to evoke memories of the previous century: foundational discussions about the 
structure of thought in the 1970s, the rise of connectionism in the 1980s, debates about 
systematicity and productivity in the 1990s. Now, well into the 21st century, it might seem that 
LoTH is a relic, like Freud’s tripartite cognitive architecture or Skinnerian behaviorism—a topic 
of historical interest, but no longer at the center of scientific or philosophical inquiry into the 
mind. 
  
We will argue for the opposite view: in the half-century since Fodor’s (1975) foundational 
discussion, the case for the LoTH has only grown stronger over time. The chief aim of this paper 



This is a preprint, please cite the published version. 

3 

is to showcase LoTH’s explanatory breadth and power in light of recent developments in cognitive 
science. Computational cognitive science, comparative and developmental psychology, social 
psychology, and perceptual psychology have all advanced independently, yet evidence from these 
disparate fields points to the same overall picture: contemporary cognitive science presupposes the 
language of thought (LoT). 
  
The theoretical literature on LoTH is massive and extremely important for understanding the 
hypothesis and its historical roots. Given space constraints, we will have to ignore huge portions 
of this literature. We aim simply to provide the strongest article-sized empirical case for LoTH. 
As a result, we’re forced to ignore a great deal of empirical evidence in favor of LoTH. Work in 
syntax, semantics, psycholinguistics, and philosophy of mind has often been taken to bolster LoTH 
(Fodor 1975; 1987). While the relevance of linguistics (broadly construed) to LoTH remains 
strong, we situate largely independent forms of evidence at the center of our case. We focus 
primarily on areas (e.g., perception, System-1 reasoning, animal cognition) that seem less 
language-like. If even these apparent problem areas offer evidence for LoTH, then we should be 
optimistic about finding evidence for LoTH throughout much of the mind. 
  
In §2, we specify which systems of representation count as LoTs. Some of the conclusions of this 
section will be a bit surprising, as the natural inferences one should draw from the standard 
characterization of LoTH have largely been ignored since the view’s inception. Then, in §3, §4, 
§5, and §6, we marshall evidence for LoTH from across the cognitive sciences. §3 reviews recent 
LoT-based developments in computational cognitive science, §4 surveys a mass of data from the 
study of human perception, §5 considers evidence from developmental and comparative 
psychology, and §6 examines evidence from social psychology.  
  
We think that LoTH is indispensable to a computational account of the mind. But the empirical 
case for the view does not stem from the idea that LoTH is the “only game in town,” which it is 
not (and never really was). Instead, we contend, LoTH is the best game in town. For a wide variety 
of phenomena, it does the best job of explaining why biological minds work in the peculiar ways 
they do. 
  
Our defense of LoTH doesn’t presuppose a single, large-scale opponent. Broadly speaking, our 
opponents are reductionists of various stripes, e.g., traditional neural reductionists (Churchland 
1981; Bickle 2003), theorists who reduce LoT-like cognition to natural language (Berwick & 
Chomsky 2016; Hinzen & Sheehan 2013), critics of representationalism (Hutto & Myin 2013; 
Schwitzgebel 2013), associationists (Papineau 2003; Rydell & McConnel 2006; Dickinson 2012), 
and most prominently in recent years, reductionist deep-learning approaches (LeCun, Bengio, & 
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Hinton 2015).2 However, with the exception of deep neural nets (DNNs), we will mostly avoid 
direct engagement with these views—not because they are not of interest, but because the best 
counter to reductionism is simply to demonstrate the explanatory successes of LoT-like 
representational structures. In the context of System 1 cognition, for example, our primary 
opponents will be associationist; in the context of perception science, where associationism is less 
prominent, our foil will be rival iconic/imagistic formats. This focus on multiple corners of 
cognitive science will demonstrate two rare virtues of LoTH: its unificatory power across 
disciplines and its generalizability across content domains. 
  
 
2. What Is a Language of Thought? 
  
Classic defenses of LoTH often equated it with the view that mental representations are structured 
(Fodor 1987; Fodor & Pylyshyn 1988). The route from this identification to the “Only Game in 
Town” argument is simple—mental representations must have some sort of structure for 
computational explanations to succeed, and if LoTH follows from that simple fact, it’s hard to 
envision viable alternatives. Arguably, this emphasis on structure per se was influenced by the 
idea that the primary alternatives to LoTH were connectionist models that lacked structured 
representations altogether (Rumelhart & McClelland 1986; cf. Smolensky 1990). 
  
However, we don’t assume this dialectic here. The main reason is that we think there are structured 
(i.e., non-atomic) representations couched in non-LoT-like formats. Iconic representations are 
perhaps the clearest example. Operations like mental rotation (Shepard & Metzler 1971) and 
scanning (Kosslyn, Ball, & Reiser 1978) are inexplicable without appeal to structured 
representations, but at least some of those representations seem to have an iconic, rather than LoT-
like, representational format (Kosslyn 1980; Fodor 2007; Carey 2009; Toribio 2011; Quilty-Dunn 
2020b; cf. Pylyshyn 2002). Other potential formats include analog magnitudes (Meck and Church 
1983; Carey 2009; Mandelbaum 2013; Clarke 2019; Beck & Clarke forthcoming), vectors in 
multi-dimensional similarity spaces (Gauker 2011), mental maps (Tolman 1948; Camp 2007; 
Rescorla 2009; Shea 2018), mental models (Johnson-Laird 2006), graphical models (Danks 2014), 
semantic pointers (Eliasmith 2013), pattern-separated representations (Yassa & Stark 2011; cf. 

 
2 We focus on reductionists because one can grant that, e.g., associative processing and natural-
language-guided cognition exist, while also positing a LoT. Our opponents are not theorists who 
merely posit these mechanisms (as we do), but rather theorists who think all prima facie LoT-
like cognition reduces to them. See, e.g., Lecun et al.’s argument that the success of DNNs 
“raises serious doubts about whether understanding a sentence requires anything like the internal 
symbolic expressions that are manipulated by using inference rules” (2015, 441). 
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Quiroga 2020), neural representations at various scales (Barack & Krakauer 2021), and much else. 
We’re happy to let a thousand representational formats bloom. 
  
We take LoTH to describe a representational format with six distinctive properties beyond merely 
having structure. Many, perhaps all, of these properties are not necessary for a representational 
scheme to count as a LoT, and some may be shared with other formats. We regard these properties 
as (somewhat) independent axes on which a format can be assessed for how LoT-like it is. If LoT 
is a natural kind, then these properties should cluster together homeostatically—i.e., if some 
properties are instantiated, it raises the probability that others are as well (Boyd 1999). These six 
features each expand the expressive power of abstract, domain-general cognition, making it 
advantageous for them to evolve as a cluster. We also suspect there might be distinct LoTs with 
only partially overlapping properties, perhaps arising in different species or different systems 
within the same mind. The properties adumbrated here don’t necessarily exhaust the 
characterization of LoTH. The crux of the paper includes several sections devoted to empirical 
evidence, and a fuller picture of LoTH will emerge throughout. 
  
Before moving to the list of core LoT properties, some caveats about how our approach differs 
from classic defenses of LoTH. First, while LoTH is sometimes understood as the hypothesis that 
mental representations have the same structure as natural language, this is not our strategy. While 
some theorists have posited LoT to explain natural language processing and even play a 
constitutive role in the compositional semantics of natural language (Fodor 1987; Pinker 1994), 
our plan is to search for LoT outside natural-language-guided contexts. We will examine LoT-like 
structures that are less connected to natural language and thus represent stringent test cases for 
LoTH: mid-level vision, nonverbal minds, and System-1 cognition. LoTH as we’ll defend it is 
committed to representational formats that are language-like in some broad respects, but 
independent characterizations are provided by both the logical character of LoT (i.e., the way it 
resembles formal languages that may be radically unlike natural language) and the previous 
theoretical literature on LoTH, which commits to certain distinctive features. As long as one agrees 
that an important class of mental representations has many or all of these features, there is no need 
to quibble about the analogy to natural language. 
  
Second, we will avoid direct discussion of two features of thought that have dominated earlier 
discussions, namely, systematicity and productivity (Fodor & Pylyshyn 1988). We agree with the 
widespread view that any format worth calling a LoT must not only have structure, it must be 
compositional: it must include complex representations that are a function of simple elements plus 
their mode of combination (cf. Szabo 2011). But as Camp (2007) and others argue, this feature is 
arguably present in various representational forms, including maps, and thus is not sufficient for 
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ensuring a LoT. Compositionality that is fully systematic and productive is very good evidence for 
LoT-like architectures, but we want to leave open whether some of the LoT-like structures we’ll 
explore are fully systematic and productive. As a historical note, this caveat is in keeping with 
earlier discussions, in which systematicity and productivity were each considered “a contingent 
feature of thought” (Fodor 1987, 152) that evidences LoTH rather than a constitutive requirement. 
This caveat also dovetails with the previous one about relaxing the analogy with natural 
language—while (e.g.) recursive productivity might be a key feature of natural language 
(Chomsky 2017), we allow that some LoT-based systems may fail to be recursive. Finally, while 
we believe systematicity and productivity were good arguments for LoTH, the nature of these 
cognitive features and their presence in biological minds, including nonverbal ones, is well-
trodden ground (Carruthers 2009; Camp 2009). Since our goal is to point in new directions for 
LoTH, we will invoke systematicity and productivity sparingly, mostly keeping instead to the six 
core properties listed below. These properties are intended to capture the spirit of earlier 
presentations of LoTH—a combinatorial, symbolic representational format that facilitates logical, 
structure-sensitive operations (Fodor & Pylyshyn 1988)—while framing an updated discussion 
more closely tied to contemporary experimental research. 
  
Property 1: Discrete constituents. Typical iconic representations holistically encode features and 
individuals (Kosslyn, Thompson, & Ganis 2006; Fodor 2007; Hummel 2013), while LoT 
representations comprise distinct constituents corresponding to individuals and their separable 
features. In a sentence like “That is a pink square object”, the predicate “square” can be deleted 
without any other constituents being deleted. In an iconic representation of a pink square, the 
relationship between the individual, its color, and its shape is more intertwined. “Pink square” can 
be the output of a Merge operation (Chomsky 1995) while the part of the icon that represents pink 
and the part that represents square are one and the same. 
  
Property 2: Role-filler independence. LoT architectures have a distinctive syntax: they combine 
constituents in a way that maintains independence between syntactic roles and the constituents that 
fill them (Hummel 2011; Martin & Doumas 2020; Frankland & Greene 2020). The role agent is 
present in “John loves Mary” and “Mary loves John”. The identity of the role is independent of 
what fills it (“Mary”, “John”). Likewise, each constituent maintains its identity independent of its 
current role (“John” can be agent or patient). Role-filler independence captures the rule-based 
syntactic characteristics of LoT-like compositionality: the syntactic structure is typed 
independently of its particular constituents, and the constituents are typed independently of how 
they happen to compose on a particular occasion. In map-like representations, for example, 
changing the spatial position of a marker changes not only the tputative “predicate” (e.g., tree) but 
also the spatial content of the marker (e.g., its position relative to other map-elements); thus maps 
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fail to exhibit full role-filler independence (Kulvicki 2015). Similarly, connectionist models that 
bind contents through tensor products (Smolensky 1990; Eliasmith 2013; Palangi, Smolensky, He, 
& Deng 2018) can simulate compositionality, but fail to preserve identity of the original 
representational elements; thus they sacrifice role-filler independence, and with it classical 
compositionality (Hummel 2011; Eliasmith 2013, 125ff). 
  
Role-filler independence might seem similar to the property of having discrete constituents, but 
they’re not equivalent. One could posit discrete constituents in an unordered set, for example, 
without positing a role that maintains its identity across multiple fillers. There’s also nothing in 
the positing of discrete constituents per se that precludes the type-identity of those constituents 
from shifting in various contexts (e.g., GREEN APPLE and GREEN PEN might be complexes of 
discrete constituents, but the co-presence of APPLE vs. PEN might change the identity of GREEN 
[Travis 2001]). 
  
Property 3: Predicate-argument structure. One distinctively LoT-like mode of combination is 
predication, in which a predicate is applied to an argument to yield a truth-evaluable structure. 
Simple sentences like “John smokes” and “Mary is tall” are paradigmatic examples. Other 
representational formats, such as images and maps, are assessable for accuracy, but often (perhaps 
always) fail to exhibit truth-evaluable predicate-argument structure (Rescorla 2009; Kulvicki 
2015; Camp 2018). We’ll usually interpret predicate-argument structure as requiring both discrete 
constituents and role-filler independence, i.e., as requiring constituents that function as predicates 
and arguments but maintain type-identity, and as having predicative syntactic structures that can 
be operated on independently of the content of non-logical constituents. Thus this condition is not 
merely that the system must be capable of expressing propositions like <John smokes> (a condition 
that can be met by even the simplest neural nets, where <John smokes> can be represented by an 
unstructured node), but rather that this predicate-argument structure is instantiated in the 
representational vehicle itself (see, e.g., Fodor 1987). 
  
Property 4: Logical operators. One hallmark of LoT architectures is the use of logical symbols 
like NOT, AND, OR, and IF. These operators are discrete constituents that compose into larger 
structures, a hallmark of LoT-like symbols more generally. Logical operators don’t obviously 
presuppose subsentential LoT-like structure, since one could imagine appending such operators to 
otherwise unstructured formats, or to maps (Rescorla 2009). But they are one piece of an overall 
LoT-friendly picture, positing discrete constituents that allow for formal-syntactic operations. For 
example, consider an operation that runs from A-OR-B and NOT-A to B; even if A and B are 
atomic symbols or maps, their un-LoT-like properties are irrelevant since the operation is sensitive 
to the logical structure alone. Finding evidence for explicit, discrete logical operators should 
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therefore increase our credence in LoTH, all else equal. We’ll construe logical operators as 
requiring role-filler independence, in that (e.g.) negation operators are the same no matter what 
proposition they negate. 
  
Property 5: Inferential promiscuity. LoT architectures have been useful in characterizing 
inferential transitions, especially logical inferences (Fodor & Pylyshyn 1988; Rips 1994; Braine 
& O’Brien 1998; Quilty-Dunn & Mandelbaum 2018a; cf. Johnson-Laird 2006). LoT-like 
representations should not only encode information, they should be usable for inference in a way 
that is automatic and independent of natural language.3 The automaticity point is important: the 
theories of logical inference just cited share an appeal to computational processes that transform 
representations with one logical form into representations with another logical form in accordance 
with rules that are built into the architecture (i.e., merely procedural, not explicitly represented, 
and thus not amenable to intervention from representational states; Quilty-Dunn & Mandelbaum 
2018b). If these theories are even roughly on the right track, then we should find evidence for 
logical-form-sensitive computation outside conscious, controlled, natural-language-guided 
contexts. 
  
Property 6: Abstract conceptual content. LoTH has historically been opposed to concept 
empiricism, the view that concepts are sensory-based (Barsalou 1999; Prinz 2002). It is logically 
compatible with other core LoT properties that some LoTs might be modality-specific (e.g., 
different LoT symbol types and/or syntactic rules for each modality). But there is no a priori reason 
to expect that primitive LoT symbols—unlike, e.g., iconic or analog formats—will be limited to a 
certain range of properties (e.g., sensory properties, the referents of simple concepts for classical 
empiricists). Thus we should expect (ceteris paribus) LoT symbols to represent abstract categories 
without representing specific details (e.g., a symbol that encodes bottle and no particular shape or 
color). There is therefore a non-demonstrative but bidirectional relationship between LoTs and 
abstract contents: many LoTs should be expected to encode abstract content, and abstract content 
is naturally represented by means of discrete LoT-like symbols. 
 
*** 
 
The hypothesis that these features cluster together generates non-trivial predictions. Once we’ve 
isolated a particular representation-type, evidence for any two features (e.g., discrete constituents 
and abstract conceptual content) may look completely different. Nonetheless, LoTH predicts that 
these sorts of evidence should tend to co-occur. This co-occurrence would be surprising from a 

 
3 “Usability for inference” here is independent from structural access constraints, e.g. from 
modularity. 
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theory-neutral point of view, but not from the perspective of LoTH. We will use just this sort of 
clustering-based approach to mount an abductive, empirical argument for LoTH. We focus on 
independently identified systems to observe whether these six properties cluster in them: 
perception, physical reasoning in infants and animals, and System-1 cognition. 
  
  
3. LoT in Computational Cognitive Science 
  
Before we turn to the bulk of our evidence, we first consider the status of LoTH in computational 
modeling—a topic of pressing concern as the advance of Artificial Intelligence has made LoT 
appear antiquated to some researchers. LoT-style models naturally grew out of symbolic 
computation (Fodor 1975; Schneider 2011; cf. Harman 1973; Field 1978), including “GOFAI” 
(“Good Old-Fashioned Artificial Intelligence”: Haugeland 1985). As new computational methods 
arose that did not presuppose symbolic computation, such as connectionism with its subsymbolic 
elements, LoT-style architectures grew detractors. With recent successes of subsymbolic deep 
neural networks (DNNs) (e.g., Google AI’s Google Translate, Deep Mind’s success with 
AlphaFold at modeling protein structure and with AlphaZero and MuZero at dominating complex 
games [Schrittwieser et al. 2020]), LoT-like architectures may appear obsolete. 
  
However, LoT has seen a resurgence in a computational framework that has led to breakthroughs 
within cognitive science: Bayesianism. Since Bayesian models of cognition are based on 
probabilistic updating, they appear to present alternatives to LoTH, which posits logical inference. 
However, Bayesian computational psychology naturally complements LoT architectures 
(Goodman, Tenenbaum, Feldman, & Griffiths 2008; Kemp 2012; Piantadosi, Tenenbaum, & 
Goodman 2012; Ullman, Goodman, & Tenenbaum 2012; Erdogan, Yildirim, & Jacobs 2015; 
Goodman, Tenenbaum, and Gerstenberg 2015; Goodman & Lassiter 2015; Yildirim & Jacobs 
2015; Piantadosi, Tenenbaum, & Goodman 2016; Piantadosi & Jacobs 2016; Overlan, Jacobs, & 
Piantadosi 2017). Wedding probabilistic reasoning to symbolic system processing has led to the 
“probabilistic language of thought” (PLoT) (Goodman, Tenenbaum, & Gerstenberg. 2015). 
  
PLoTs share a core set of properties: a set of primitives with basic operations for their combination 
(such as the lambda calculus, e.g., Church from Goodman et al. 2008). Primitives correspond to 
atomic concepts, which are recursively combined to form concepts of arbitrary complexity (Fodor 
1998; Quilty-Dunn 2021). All one must do is define a set of primitives, and a set of rules for 
combination and the system is capable of constructing a potentially infinite string of well-formed 
formulae (Chomsky 1965). 
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Bayesianism adds probabilistic inference to the traditional LoT machinery. One way of 
accomplishing this is by having a likelihood function that is noisy (combining this with a 
preference for simplicity, either because it's explicitly specified as a prior for the system, or 
because it falls out as a function of other constraints). PLoTs are classical symbolic systems that 
display all the hallmarks of LoT architectures, such as discrete constituents, role-filler 
independence, predicate-argument structure, productive and systematic compositionality, and 
inferential promiscuity. They are also, however, flexible probabilistic computational programs, 
because all other aspects of symbol processing (e.g., how they are combined, which processes 
utilize them, which information gets updated for them, even their basic semantics) can be 
determined probabilistically. 
  
Versions of the PLoT have made serious progress in a number of specific areas, e.g., learning 
taxonomical hierarchical structures such as kinship (Kemp 2012; Katz, Goodman, Kersting, Kemp, 
& Tenenbaum 2008; Mollica & Piantadosi 2015), causality (Goodman, Ullman, & Tenenbaum 
2011), number (Piantadosi, Tenenbaum, & Goodman 2012), analogical reasoning (Cheyette and 
Piantadosi 2017), theory acquisition (Ullman, Goodman, & Tenenbaum 2012), programs (Liang, 
Jordan, & Klein 2010), mapping sentences to logical form (Zettlemoyer & Collins 2005), general 
Boolean concept learning (Goodman et al. 2008), and moral rule learning (Nichols 2021). The 
sheer breadth and depth of the Bayesian computational revolution itself provides strong evidence 
in favor of the viability of the LoT. Instead of computational psychology showing that the LoT is 
a stale theory of the past, it shows how robust, flexible, powerful, and necessary the LoT is in order 
to ground our computational cognitive science in a way that maps onto human data.   
  
The models that best approximate one type of human concept learning (e.g., learning that a wudsy 
is the tallest object that is either blue or green) are ones where a fuller set of classical logical 
connectives are hard-coded as primitives. For instance, Piantadosi et al. (2016) taught participants 
Boolean and quantificational concepts, then built different LoT models in a lambda calculus and 
compared them to the human data (Fig. 1a). They found that the models that least resembled human 
performance tended to have the least LoT-like structure. Models that lacked built-in connectives 
and represented only primitive features or similarity to exemplars performed poorly, as did models 
that merely learned response biases and only represented TRUE and FALSE categorization 
judgments. LoTs built with a single connective from which all others are constructed (such as 
NAND or conjunctions of Horn clauses, disjunctions with at most one non-negated disjunct) fared 
better, but not as well as LoTs with the full suite of Boolean operators (conjunction, disjunction, 
negation, conditional, and biconditional), which in turn were outperformed by models supplanted 
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further with built-in (first-order) quantifiers.4 While wudsy is not an ordinary lexical concept it is 
a learnable concept for humans and its acquisition is best modeled by a LoT-like architecture. Thus 
Piantadosi et al.’s findings provide an existence proof for the utility of LoT-like architectures in 
the acquisition of logically complex, non-lexical concepts. 
  

 
Figure 1—(a) Participants draw inferences about the referent of novel terms like wudsy based on 

examples; reprinted from Piantadosi et al. (2016), Figure 1, with permission from American 
Psychological Association. (b) Participants encode shapes and re-identify them using minimal 

description length in a PLoT; reprinted from Sablé-Meyer, Ellis, Tenenbaum, & Dehaene 
(2021a), with permission from Mathias Sablé-Meyer. (c) Primitive operations in a geometrical 
PLoT; reprinted from Sablé-Meyer et al. (2021a), with permission from Mathias Sablé-Meyer.  

 
Bayesian computational psychology provides evidence that we can learn complex concepts by 
running probabilistic inductions over a distinctive sort of representational system. This system 

 
4 Adding second-order quantifiers did not increase performance, suggesting increasing 
expressive power per se does not necessarily improve model fit. 
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exploits a rich array of discrete constituents (including predicates and logical operators) that 
compose into predicate-argument structures of the form A wudsy is an F; these structures function 
as inferentially promiscuous hypotheses and incorporate built-in logical operators that obey role-
filler independence: in other words, this system is a LoT.5 
  
Similar architectures have recently been used to capture representations of geometrical structure 
(Amalric et al. 2017; Romano et al. 2018; Roumi, Marti, Wang, Amalric, & Dehaene 2021; Sablé-
Meyer et al. 2021a; 2021b). For example, Amalric et al. (2017) gave participants a task: observe a 
sequence of dots and guess where the next dot will appear. They developed a “language of 
geometry” (see also Romano et al. 2018) and found that the complexity of descriptions in this 
language predicted human error patterns. Sablé-Meyer et al. (2021a) modified this language 
(including, e.g., accommodating curve-tracing). Participants took as long as needed to encode 
shapes, and then re-identified them after a brief delay (Fig. 1b). Description complexity in Sablé-
Meyer et al.’s PLoT (Fig. 1c) predicted the duration of both encoding and reidentification. 
 
Our primary aim in this section is to point out that not all cutting-edge computational cognitive 
science is opposed to LoTH.6 Indeed, some of the most impressive work in this area relies on LoTs 
to model human cognition. Current DNNs may be less well-equipped to capture these capacities. 
For example, Sablé-Meyer et al. (2021b) examined performance of French adults, Himba adults 
(who lacked formal education or lexical items for geometric shapes and didn’t grow up in a 
“carpentered world”), and French kindergartners on an “intruder” task where they had to detect an 
unusual shape in a crowd of shapes. They found that performance in humans was most similar to 
a model where shapes are “mentally encoded as a symbolic list of discrete geometric properties” 
(Sablé-Meyer et al. 2021b, 5). This LoT-like model was contrasted with state-of-the-art DCNNs 
as well as non-convolutional DNNs (specifically, variational autoencoders), and the LoT model 
outperformed the alternatives. Furthermore, PLoTs are capable of encoding domain-general 

 
5 Bayesian modeling is sometimes pitched as a Marrian “computational-level” rational analysis  
(Anderson 1990; Oaksford & Chater 2009). However, a model that better captures human 
behavior than competitors provides defeasible evidence that some approximation of the 
computational elements of the model are realized in human cognitive architecture. This 
“algorithmic-level” approach to computational modeling fits with recent Bayesian approaches 
(e.g., Vul et al. 2014; Lieder & Griffiths 2020). We grant that further evidence is needed to 
establish the algorithmic-level reality of PLoTs (e.g., behavioral evidence of the sort canvassed 
in the rest of this paper), but we take their success primarily to push back against the dominance 
of non-LoT-like architectures such as DNNs. Moreover, the fine-grained behavioral measures 
used in the “language of geometry” literature discussed in the next two paragraphs evince an 
algorithmic-level interpretation. 
6 For more critical discussion of DNNs see Lake, Ullman, Tenenbaum, & Gershman 2017 and 
Marcus 2018. 
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models that underwrite commonsensical reasoning, a well-known limitation of extant DNNs (Zhu 
et al. 2020; Peters & Kriegeskorte 2021). Given the expressive flexibility of PLoTs and their ability 
to model concept acquisition from just a single data point, they exhibit some advantages over DNN 
architectures (Piantadosi et al. 2016, 414; cf. Brown et al. 2020; but see Ye & Durrett 2022). 
  
To be clear on the dialectic, many theorists are inclined to point to advances in AI as sufficient 
evidence against the LoTH. PLoTs serve as an existence proof that LoT architectures are useful in 
computational modeling. Our claim is not that DNNs will never be able to model this data; indeed, 
since DNNs are universal function approximators, perhaps such a claim is ipso facto false. Other 
learning policies (e.g., meta-learning; Finn, Yu, Zhang, Abbeel, & Levine 2017) or architectures 
(e.g., transformers; Vaswani et al. 2017) may turn out to match symbolic models at mimicking 
acquisition of logically complex concepts and geometrical encoding in humans. We also grant that 
DNNs are useful for various engineering purposes outside the context of modeling biological 
competences. Our claim is simply that computational modeling has not left LoT-like symbolic 
models behind; LoTH remains fruitful in 21st-century computational cognitive science. 
 
It is well-understood by contributors to this literature that “the form that [LoT] takes has been 
modeled in many different ways depending on the problem domain” (Romano et al. 2018, 2). The 
PLoTs used to model geometrical cognition possess discrete constituents that combine recursively 
to form more complex shapes, exhibiting role-filler independence, and encode abstract geometric 
“primitives” (Amalric et al. 2017) like symmetry and rotation independently of low-level 
properties. Other PLoTs used to model (complex) concept acquisition possess all these features 
plus logical operators and predication. Of course, whether any or all of these PLoTs turn out to be 
isomorphic to human cognition is still—like most questions in cognitive science—open. The two 
morals we stress are a) that many of these models are meant to test concrete representational 
formats at the algorithmic level, b) that these models implement LoTs, and (c) that they sometimes 
match human performance better than competitor models. 
  
 
4. Perception 
  
LoTH is often framed as a thesis about thought—that is, post-perceptual central cognition. The 
idea that perception itself might be couched in a LoT is often ignored (cf. Fodor 1975, Ch. 1; 
Pylyshyn 2003). Indeed, characterizations of many anti-LoTH views, e.g., concept empiricism, 
appeal to the hypothesis that conceptual representations have the same format as perceptual 
representations, implicitly ruling out the possibility of LoT in perception (Prinz 2002; Machery 
2016). 
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We propose instead to take it as an empirical question whether LoT-like representations are 
deployed in perception, and we’ll argue that the answer is likely “Yes”. If cognition is largely LoT-
like, and perception feeds information to cognition, then we should expect at least some elements 
of perception to be LoT-like, since the two systems need to interface (Mandelbaum 2018; Quilty-
Dunn 2020a; Cavanagh 2021). Our case studies include perceptual representations of objects (e.g., 
object files), relations within objects (e.g., part-whole relations), and relations between objects. 
  
4.1 Object Files 
  
Object files are perceptual representations that select individuals, track them across time and space, 
and store information about them in visual working memory (VWM). This construct is probed via 
independent, but converging methods, including: multiple-object tracking (Fig. 2a; Pylyshyn & 
Storm 1988), object-based VWM storage (Fig 2b; Hollingworth & Rasmussen 2010), physical 
reasoning, especially in infants (Fig. 2c; Xu & Carey 1996), and object-specific preview benefits 
(Fig. 2d; Kahneman, Treisman, & Gibbs 1992). These methods cluster around a common 
underlying representation, standardly taken to be a unified representational kind (Scholl & Leslie 
1999; Carey 2009; Green & Quilty-Dunn 2017; Smortchkova & Murez 2020). Object files are 
extremely well-studied, are generated by encapsulated perceptual processes (Mitroff, Scholl, & 
Wynn 2005; Scholl 2007) that operate prior to and independently of natural-language-guided 
cognition (Carey 2009), and are widely believed to have some sort of compositional structure 
(minimally, object-property bindings), making them an excellent test-case for LoTH. 
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Figure 2. (a) Multiple-object tracking: a subset of visible items (“targets”) are tracked while 
others (“distractors”) are ignored; reprinted from Pylyshyn (2004), Figure 1, with permission 
from Taylor & Francis. (b) Object-based VWM storage: a change detection task demonstrates 

that color is recalled for each object despite location changes, providing just one example piece 
of evidence that object-based storage in VWM uses object-file representations; reprinted from 
Hollingworth & Rasmussen (2010), Figure 2, with permission from American Psychological 

Association. (c) Object-based physical reasoning: objects pop out from behind an occluder, and 
preverbal infants rely on spatiotemporal information (and featural and categorical information—

see Section 5) to keep track of the number of objects, as evidenced by their increased looking 
time when an unexpected number of items is displayed; reprinted from Xu & Carey (1996), 

Figure 1, with permission from Elsevier. (d) Object-specific preview benefit: a feature is 
previewed in each of two visible objects before disappearing, after which the objects move to 

new locations, and a target feature appears. Subjects show a benefit in reaction time when 
discriminating the feature if reappears in the same object, illustrating that object-file 

representations store object properties across spatiotemporal changes; reprinted from Mitroff et 
al. (2005), Figure 4, with permission from Elsevier. 
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According to Carey’s (2009) seminal theory of core cognition, object files are amodal but iconic 
in format (cp. Xu 2019). Nonetheless, we believe a LoT-based model is better suited to the data 
than an iconic model (Green & Quilty-Dunn 2017; Quilty-Dunn 2020a; 2020c). As far as we know, 
the possibility of logical operators in object files hasn’t been studied. However, converging 
evidence suggests that object files have discrete constituents, role-filler independence, predicate-
argument structure, and abstract conceptual content. In Section 5, we’ll explore the inferential 
promiscuity of object files in physical reasoning. 
  
4.1.1  First, object files exhibit a decomposition into discrete constituents. Unlike rival models 
(e.g., iconic models), a LoT-based model of object perception predicts that featural representations 
should easily break apart from (i) representations of individuals and (ii) other featural 
representations. 
  
Representations of color and shape frequently come apart from representations of objects without 
disrupting multiple-object tracking (Fig. 2a) (Bahrami 2003; Zhou, Luo, Zhou, Zhuo, & Chen 
2010; cp. Pylyshyn 2007). In VWM, object files dynamically lose featural information like color 
and orientation independently of one another (Bays, Wu, & Husain 2011; Fougnie & Alvarez 
2011) and VWM resources are depleted independently for color and orientation (Wang, Cao, 
Theeuwes, Olivers, & Wang 2017; Markov, Tiurina, & Utochkin 2019). Similar results hold for 
real-world stimuli. The state of a book (open or closed) is remembered or forgotten independently 
of its color or token identity (Brady, Konkle, Alvarez, & Oliva 2013), and the identity and state of 
multiple real-world objects are independently swapped in VWM (Markov, Utochkin, & Brady 
2021). These effects are independent of natural-language encoding: they persist when subjects 
engage in articulatory suppression (Fougnie & Alvarez 2011; Tikhonenko, Brady, & Utochkin 
2021), and preverbal infants can lose featural information in VWM but maintain a “featureless” 
pointer-like component of an object-file (Kibbe & Leslie 2011). 
  
In summary, object files in online tracking and VWM appear to break apart freely into discrete 
constituents, including representations of individuals and separable feature dimensions. This LoT-
like format is independent of natural-language capacities. 
  
4.1.2  Second, object files satisfy demanding constraints on predicate-argument structure. One 
can grant that object files decompose into discrete constituents but deny that these constituents are 
ordered into a genuinely sentence-like representation. Here we highlight two constraints on 
genuinely sentence-like predicate-argument representations: role-filler independence (one of our 
six LoT properties) and a grammatical attribution/predication distinction. 
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Recall that role-filler independence requires that discrete constituents compose into larger 
structures, but the syntactic structure is typed independently of its particular constituents, and the 
constituents are typed independently of how they happen to compose on a particular occasion. In 
a predicate-argument structure in particular, both predicate and argument must maintain type-
identity independently of their current bindings—e.g., it must be the same JOHN and TALL in 
TALL(JOHN), TALL(MARY), and SHORT(JOHN). 
  
The clear candidates for predicate-like and argument-like representations in object files are 
representations of properties and representations of individuals, respectively (cp. Cavanagh 2021). 
Representations of individuals must maintain their identity independently of the properties they 
bind, since tracking performance is successful while properties change (Flombaum, Kundey, 
Santons, & Scholl 2004; Flombaum & Scholl 2006; Zhou et al. 2010) and even while properties 
are forgotten entirely (Scholl, Pylyshyn, & Franconeri unpublished; Bahrami 2003). The 
computational processes involved in tracking are known as object correspondence processes. 
Some properties are used to compute object correspondence (e.g., spatiotemporal features and 
some surface features—see below). However, the fact that the argument-like representation of the 
tracked individual can persist while many attributed features are changed/lost entails that the 
representation maintains independence from the properties to which it is bound. 
  
Likewise, representations of properties maintain their identity independently of the object-
representations to which they’re bound. Some evidence for this is the already-cited fact that they 
regularly come apart from their respective object representations. However, more striking evidence 
comes from the way in which featural information is “swapped” between objects. Participants 
often misremember a feature of one object as bound to another object (Bays, Catalao, & Husain 
2009), including for real-world stimuli (Utochkin & Brady 2020; Markov et al. 2021). Even during 
multiple-object tracking, a stored feature of one object (e.g., a previewed numeral) may be 
swapped with another object if they come too close to each other during tracking (Pylyshyn 2004). 
Thus property-representations, like individual-representations, maintain type-identity across 
distinct bindings, demonstrating role-filler independence. 
  
The second constraint on predicate-argument structure is a grammatical attribution/predication 
distinction. In a genuinely sentence-like representation, we can distinguish grammatical positions 
of predicates. For example: 
  
(1) That spherical object is red. 
(2) That red object is spherical. 
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Both attribute spherical shape to the referent of “That”, but in (1) the predicate falls within the 
scope of the noun phrase, while in (2) it is in main-predicate position. 
  
One way of capturing this distinction is by appeal to the role of the predicate in grounding the 
reference of the noun phrase. For example, Perner and Leahy characterize thought in terms of file-
like representations (cp. Recanati 2012), which “capture the predicative structure of language, i.e., 
the distinction between what one is talking about (the subject, topic, i.e., what the file tracks) and 
what one says about it (the information about the topic, i.e., the information the file has on it)” 
(2016, 494). Files have “labels” that are captured by (inter alia) determiner phrases like THE 
RABBIT as well as file-contents that include predicates like +FURRY. The attribution of RABBIT 
in THE RABBIT plays some reference-grounding role, while +FURRY is parasitic on the referent 
of THE RABBIT and merely predicates a property of that referent (see Burge 2010). In particular, 
the label-like attributive helps to sustain, and constrain, reference of the file over time.  
  
We can exploit the attribution/predication distinction to see whether the discrete constituents of 
object files are organized in a genuinely predication-like way, or whether they are merely label-
like representations, as in THE RABBIT. The latter format is compatible with a LoT-based model, 
but part of the virtue of LoTH is that it predicts nontrivial clustering of LoT-like properties. We 
ought to predict full-blown propositional structures are present in perception as well. 
  
Object files attribute a wide range of properties to their referents, and some of these are used to 
guide reference to objects. For example, an object file will continue to refer to an object that 
disappears behind an occluder, but only if it re-emerges at a spatiotemporally appropriate location 
(Scholl & Pylyshyn 1999). However, while object files attribute other features like color, reference 
to the object is maintained even if it re-emerges a totally different color. Generalizations like this 
have led some researchers to describe spatiotemporal features as aspects of the object-file “label” 
while surface features are “stored inside the folder” (Flombaum, Scholl, & Santos 2009, 153). 
Recent evidence casts doubt on strict limitations on which properties are part of the “label”. While 
earlier theories took spatiotemporal indices to be uniquely privileged (e.g., Leslie et al. 1998), 
surface features like color can play an indexing, reference-guiding role in object files, even in 
ordinary contexts (Hollingworth & Franconeri 2009; Moore, Stephens, & Hein 2010; Hein, 
Stepper, & Moore 2021). However, object files routinely store some featural information (e.g., 
color or orientation) while completely failing to use it to guide reference to objects (e.g., Gordon, 
Vollmer, & Frankl 2008; Richard, Luck, & Hollingworth et al. 2008; Gordon & Vollmer 2010; 
Jiang 2020; see Quilty-Dunn & Green forthcoming for a review). 
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Object files not only contain discrete constituents, but also the way those constituents are organized 
satisfies demanding criteria for predicate-argument structure. 
  
4.1.3  Third, object files encode abstract conceptual content. Part of the utility of LoT-like 
formats is abstracting away from modality-specific information. A LoT allows color and 
categorical information to be captured in the same representation, as in THAT OBJECT IS A 
BROWN RABBIT. If object files are LoT-like representations, they not only ought to encode 
conceptual categories, they ought to do so in a way that abstracts away from sensory details. 
  
The evidence suggests that object files do encode abstract conceptual content. For example, the 
object-specific preview benefit—a reaction-time benefit in discriminating previously viewed 
properties of tracked objects (Fig. 2d)—is observed even when the previewed feature is an image 
of a basic-level category (e.g., APPLE) and the test feature is the corresponding word (e.g., 
“apple”) (Gordon & Irwin 2000). Similar effects are found for semantic identity of words across 
fonts (Gordon & Irwin 1996) or basic-level categories across different exemplars (Pollatsek, 
Rayner, & Collins 1984) and across visual and auditory information (Jordan, Clark, & Mitroff 
2010; cf. O’Callaghan forthcoming). Importantly, these effects do not transfer across associatively 
related stimuli (e.g., bread-butter), ruling out a reductive associative explanation (Gordon & Irwin 
1996). 
  
Similar effects were recently found in preverbal infants. Kibbe and Leslie (2019) discovered that 
while infants will not notice whether the first of two serially hidden objects changes its surface 
features when it re-emerges from behind an occluder, they do notice when it changes its category 
between FACE and BALL. Pomiechowska and Gliga (2021) tested preverbal infants in an EEG 
change-detection task for familiar categories (e.g., BOTTLE) or unfamiliar categories (e.g., 
STAPLER). Infants showed an equal response in the negative-central ERP (an EEG signature of 
sustained attention) for across-category and within-category changes for unfamiliar categories, 
suggesting, unsurprisingly, failure to categorize. But for familiar categories, they showed an 
increased amplitude only for across-category changes, suggesting that their object files in VWM 
maintained the conceptual category of the object while visual features decayed. 
  
In adults, VWM seems often to discard specific sensory information in favor of conceptual-
category-guided representations (Xu 2017; 2020; cf. Harrison & Tong 2009; Gayet, Paffen, & Van 
der Stigchel 2018). Participants recall blurry images as less blurry than they really were, suggesting 
categorical encoding that “goes beyond simply ‘re-experiencing’ images from the past” (Rivera-
Aparicio, Yu, & Firestone 2021, 935). Bae, Olkkonen, Allred, & Flombaum (2015) found that 
object files in online perception and VWM are biased toward the center of color categories, 
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suggesting that object files store a basic-level color category like RED plus a noisy point estimate 
within the range of possible red shades. This evidence implicates a category-driven format for 
object-based VWM representations that abstracts away from low-level visual detail. 
  
Object files encode abstract conceptual content in a way that is not reducible to low-level modality-
specific information, just as a LoT-based model predicts. 
  
4.2. Structured relations 
  
We’ve just argued that perceptual representations of individual objects contain discrete 
constituents that are organized in a predicate-argument structure and predicate abstract conceptual 
contents—in other words, they’re sentences in the LoT. We’ll now describe some LoT-like 
properties of representations used in the perception of structured relations, both within and 
between objects. 
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Figure 3. (a) Hierarchical part-whole structural description: Ps=monadic featural properties, 

horizontal Rs=spatial relations, vertical Rs=mereological relations; reprinted from Green (2019), 
Figure 9, with permission from Wiley. (b) Structural analogy between tree-like structures in 

natural language syntax and tree-like perceptual representations of interobject relations; reprinted 
from Cavanagh (2021), Figure 3, SAGE Publishing under CC BY 4.0, cropped and rearranged. 

(c) Hierarchical structure in scene grammar: objects are organized relative to “anchors” 
(relatively large, immobile elements of environments like showers and trees) in phrase-like 

structural descriptions of normal relative positions; reprinted from Võ et al. (2019), Figure 2, 
with permission from Elsevier. (d) Examples of perceived interobject relations; reprinted from 

Hafri & Firestone (2021), Figure 2, with permission from Elsevier. 
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4.2.1  First, our perceptual systems represent hierarchical part-whole structure. Our perceptual 
systems don’t simply select objects and attribute properties to them. They also break objects down 
into component parts and represent their part-whole structure. When we perceive a pine tree, we 
see a branch as part of the tree and a needle as part of the branch, with a sense of the borders 
between these various parts. Thus the visual system makes use of hierarchical structural 
descriptions (Fig. 3a; Hummel 2013; Green 2019). 
  
The motivation for classic structural-description accounts of object perception was computational: 
positing representations of object parts that compose to generate descriptions of part-whole 
structure allows for successful computational modeling of object perception (Marr & Nishihara 
1978; Biederman 1987). These models operate just as a classical LoT picture demands, exhibiting 
systematic and productive compositionality of viewpoint-invariant descriptions of parts (Fig. 3b; 
Cavanagh 2021). Structural descriptions “are compositional—forming complex structures by 
combining simple elements—and thus meaningfully symbolic” (Saiki & Hummel 1998b, 1146).7 
  
One of the key assumptions of such models is that object-part boundaries are psychologically real, 
i.e., two points will be treated differently by the visual system when they lie on the same part as 
opposed to two different parts of the same object. This assumption turns out to be true (Green 
2019). For example, a well-known example of object-based attention is that two stimuli are better 
discriminated when they lie on the same object than different objects, controlling for distance 
(Duncan 1984; Egly, Driver, & Rafal 1994). The same is true within parts of objects: participants 
are quicker to discriminate targets if they lie on the same part than if they cross a part-boundary 
(Barenholtz & Feldman 2003). Furthermore, unfamiliar object pairs that share structural 
descriptions are seen as more similar than object pairs that have a higher degree of overall 
geometrical similarity but different structural descriptions (Barenholtz & Tarr 2008). 
  
Role-filler independence emerges directly from structural description models, often explicitly so 
(Hummel 2000). Some independent evidence comes from Saiki and Hummel (1998a), who found 
that shapes of parts and their spatial relations are not represented holistically—in other words, the 
type-identity of each part is represented independently of its particular role in the structural 
description and vice versa. Similarity judgments are also guided independently by part-shapes and 
their interrelations, suggesting role-filler independence (Goldstone, Medin, & Gentner 1991). 
  

 
7 It’s possible that “skeletal” shape representations (Feldman & Singh 2006; Firestone & Scholl 
2014) exhibit similar LoT-like structure (Green ms). 
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We don’t deny that the visual system also employs holistic view-based template-like 
representations (Ullman 1996; Edelman 1999) and other formats. Our claims are merely (i) 
structural descriptions are among the many representations used in visual processing, and (ii) they 
have a LoT-like format comprising discrete constituents ordered in hierarchical ways that preserve 
role-filler independence (Fig. 3b). 
  
4.2.2  Second, we perceive structured relations between objects. We don’t perceive objects as 
isolated atoms, as if through a telescope. Instead, we see the glass on the table, the pencils in the 
cup, etc. 
  
In a recent review, Hafri and Firestone (2021) survey striking evidence that such relations are 
recovered rapidly and in abstract form in visual processing (Fig. 3d). For example, the visual 
system distinguishes containment-events (one object disappears inside another) from occlusion-
events (one disappears behind another) (Strickland & Scholl 2015). A hallmark of categorical 
perception is greater discrimination across than within category-boundaries; participants are better 
at identifying changes in the position of two circles if the change places the circles in a distinct 
relation (e.g., CONTAIN(X,Y), TOUCH(X,Y), etc.), suggesting categorically perceived 
interobject relations (Lovett & Franconeri 2017). When participants are searching for a particular 
relation like cup-contains-phone, they are more likely to have a “false-alarm” for target images 
that instantiate the same relation, like pan-contains-egg, but not book-on-table (Hafri, Bonner, 
Landau, & Firestone 2021). 
  
Like structural descriptions, perceptual representations of abstract relations exhibit role-filler 
independence. Abstract relations apply independently of the relata, and representations of relata 
persist once the relation is broken—e.g., it’s the same ON in ON(CAT,COUNTER) and 
ON(KETTLE,STOVE), and it’s the same CAT once the cat leaps off the counter. Hafri et al.’s 
(2021) finding is especially relevant: the relation CONTAIN(X,Y) governs similarity judgments 
independently of the relata, about as clear a demonstration of role-filler independence as one could 
expect to find. 
  
It would be efficient for the visual system to store frequently represented relations. A fascinating 
recent literature on “scene grammar” (Fig. 3c; Võ 2021; Kaiser, Quek, Cichy, & Peelen 2019) 
details effects of representations of structured relations in visual long-term memory on visual 
search (Draschkow & Võ 2017), categorization (Bar 2004), consciousness (Stein, Kaiser, & 
Peelen, 2015), and gaze duration (Võ & Henderson 2009). Relational representations in visual 
long-term memory (e.g., ON(POT,STOVE)=yes, IN(SPATULA,MICROWAVE)=no) aren’t 
based on associations or statistical summaries over low-level properties. They persist despite 
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changes in position and context (Castelhano & Heaven 2011), thus abstracting away from 
overlearned associations. Characteristic scene-grammar effects disappear, however, for upside-
down stimuli (Stein et al. 2015), implicating a categorical rather than low-level format. The effects 
also appear not to rely on summary-statistical information represented outside focal attention (Võ 
& Henderson 2009). Despite developing independently of natural language (Öhlschläger & Võ 
2020), structured relations in scene grammar display curious hallmarks of language-like formats. 
For instance, the P600 ERP increases for syntactic violations in language, and also increases for 
stimuli that violate visual scene “syntax” (e.g., mouse-on-computer instead of mouse-beside-
computer; Võ & Wolfe 2013). It’s standard to talk of scene grammar as associative, but its 
relational components satisfy a handful of our LoT hallmarks (e.g., discrete constituents with role-
filler independence that encode abstract contents, including categories and relations, and function 
as arguments in multi-place predicates as in ABOVE(MIRROR,SINK)). Scene grammar is used 
directly in controlled behavior (e.g., how to arrange a VR scene; Draskchow & Võ 2017); how 
broadly it can function in logical inference remains to be explored experimentally. 
  
4.3 Vision and DNNs 
  
In sum, our perceptual capacities to identify and track objects, grasp their characteristic structures, 
and perceive and store their relations with one another, appear to rely on LoT-like representations. 
 
A major source of contemporary skepticism about LoTH is the rise of DNNs. Apart from large 
language models like GPT-3, nowhere are DNNs more visible as models of human cognitive 
capacities than in visual perception. Given their successes at image classification and apparent 
similarities to biological vision, one might wonder whether the subsymbolic network structure of 
DNNs obviates the need to posit LoT-like structures. 
 
The DNNs that have been most touted as models of biological vision are deep convolutional neural 
networks (DCNNs) trained to classify images (Kriegeskorte 2015; Yamins & DiCarlo 2016). After 
training on large data sets like ImageNet, DCNNs exhibit remarkable levels of performance on 
image classification. It is important to evaluate comparisons to human vision not simply in terms 
of performance, but primarily in terms of underlying competence (Chomsky 1965). Just as 
differences in performance need not entail differences in competence (Firestone 2020), human-
like performance on a limited range of tasks need not entail human-like underlying competence. 
In other words, DCNNs may accomplish image classification while lacking key structural features 
of human vision, including those relevant to LoTH.   
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DCNNs have been argued to resemble primate vision in competence as well as performance by 
appeal to metrics of similarity such as “Representational Similarity Analysis” (Khaligh-Razavi & 
Kriegeskorte 2014) and “Brain-Score” (Schrimpf et al. 2018). However, there are shortcomings 
both to earlier findings of high similarity using these metrics and to the metrics themselves. For 
example, Xu and Vaziri-Pashkam (2021b) used higher quality fMRI data for their Representational 
Similarity Analysis and found that, contra Khaligh-Razavi and Kriegeskorte’s earlier findings, 
high-performing DCNNs (both feedforward and recurrent) show large-scale dissimilarities to 
human vision. Brain-Score has been criticized for insufficient sensitivity to architectural 
distinctions (e.g., feedforward vs. recurrent models): “either the Brain-Score metric or the 
methodology with which a model is evaluated on it fails to distinguish among what we would think 
of as fundamentally different types of model architectures” (Lonnqvist, Bornet, Doerig, & Herzog 
2021, 3). Furthermore, while Schrimpf et al. (2018) found that Brain-Score positively correlates 
with image classification performance, it fails to capture the crucially hierarchical structure of 
human vision. Nonaka, Majima, Aoki, & Kamitani (2021) thus developed a “Brain Hierarchy 
Score” that measures similarities between hierarchical structures, applied it to 29 DNNs, and found 
a negative correlation between image classification performance and similarity to human vision. 
This finding provides a striking illustration of how DNNs can excel in performance while veering 
apart from human competence (see also Fel, Felipe, Linsley, & Serre 2022). 
 
Our case for LoT in vision is limited to certain domains: objects, relations between parts and 
wholes, and relations between objects. It is not a coincidence, in our view, that DNNs that succeed 
at image classification exhibit little to no competence in these domains. As Peters and Kriegeskorte 
write about feedforward DCNNs, “the representations in these models remain tethered to the input 
and lack any concept of an object. They represent things as stuff” (2021, 1128).8 It is also not clear 
that DCNNs are capable of representing global shape, let alone the relation between global shape 
and object-parts (Baker & Elder 2022). Baker, Lu, Erlikhman, & Kellman (2020) trained AlexNet, 
VGG-19, and ResNet-50 to classify circles and squares, but found that these DCNNs relied only 
on local contour information; circles made of jagged local edges were classified as squares, and 
squares made of round local curves were classified as circles. The same models (and several others) 
also could not distinguish possible from impossible shapes, which requires relating local contour 
information to global shape (Heinke, Wachman, van Zoest, & Leek 2021). Failures at processing 
relations hold not only for DNNs that map images to labels, but also those that map labels to 
images: Conwell and Ullman (2022) fed the text-guided image-generation model DALL-E 2 a set 
of interobject relations (including those used by Hafri et al. [2021]) and found that it failed reliably 
to distinguish, e.g., “a spoon in a cup” from “a cup on a spoon”. 

 
8 Of course DNNs trained for multiple-object tracking do much better (Xu et al. 2019; Burgess et 
al. 2019), but their similarity to human visual competence is underexplored. 
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To be clear, we make no claims about in-principle limitations of DNNs. The machine-learning 
literature is extremely fast-moving, and we do not pretend to know what it will look like in even 
one year’s time. Moreover, different DNN architectures might better capture the visual processes 
discussed here. While convolutional architectures might privilege local image features, perhaps 
non-convolutional architectures like vision transformers (Vaswani et al. 2017) are better suited to 
avoid these limitations and will supersede DCNNs as models of human vision (Tuli, Dasgupta, 
Grant, & Griffiths 2021). Since DCNNs have accumulated enormous publicity despite apparently 
lacking basic elements of biological vision like global shape and objecthood, future DNN-human 
comparisons should be approached with caution. Finally, as was noted long ago, neural-network 
architectures might be able to implement a LoT architecture (Fodor & Pylyshyn 1988). Indeed, 
some recent work on DNNs explores implementations of variable binding (Webb, Sinha, & Cohen 
2021; though see Gröndahl & Asokan 2022; Miller, Naderi, Mullinax, & Phillips 2022), a classic 
example of LoT-like symbolic computation (Marcus 2001; Gallistel & King 2009; Green & 
Quilty-Dunn 2017; Quilty-Dunn 2021). Our six core LoT properties help specify a cluster of 
features that such an implementation should aim for. 
 
DNNs are marvels of contemporary engineering. It does not follow that they recapitulate 
architectural aspects of human vision. We agree with Bowers et al.’s (2022) recent complaint that 
research on DNNs as models of biological vision is overly focused on performance benchmarks 
and insufficiently guided by experimental perceptual psychology. Given that DNNs are universal 
function approximators, and given the vast resources being poured into their development, they 
will only get closer to human performance over time. But this performance will not reflect core 
competences of the human visual system unless the relevant models incorporate LoT-like 
representations of objects and relations.  
            
  
5. LoTs in Non-Human Animals and Children 
  
Traditionally, theorists in animal and infant cognition have been reluctant to posit complex 
cognitive processes, let alone computations over LoT-style representations (e.g., Morgan 1894; 
Premack 2007; Penn, Holyoak, & Povinelli 2008; cf. Fitch 2019). However, the state of the art in 
comparative and developmental psychology is surprisingly congenial to LoTH. 
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5.1 Abstract Content and Physical Reasoning 
  
Considerable evidence suggests infants use object files to reason about the identity, location, and 
numerosity of hidden objects (Spelke 1990; Carey 2009). However, in a foundational study, Xu & 
Carey (1996) found that, while 12-month-olds who see a duck and then a ball pop out from behind 
an occluder expect two objects to be present, 10-month-olds don’t. This failure might seem to 
suggest that abstract conceptual content is not usable for physical reasoning in young infants, 
potentially undermining LoT-based models of infant reasoning (Xu 2019). 
  
However, 10-month-olds do succeed for socially significant categories (Bonatti, Frot, Zangl, & 
Mehler 2002; Surian & Caldi 2010) and objects that are made communicatively salient (Futo, 
Teglas, Csibra, & Gergely 2010; Xu 2019, 843). There is also evidence that priming can allow 
infants to use information in physical reasoning many months earlier than they would otherwise 
appear to. Lin et al. (2021) made features (e.g., color) salient by first showing an array of objects 
that differed along the relevant dimension (e.g., all different colors). This nonverbal priming 
allowed infants to use information in object files to reason about the individuation of hidden 
objects six months earlier than other methods had detected (e.g., while infants had not shown 
surprise at a lop-sided object balancing on a ledge until 13-months, Lin et al.’s nonverbal priming 
of lop-sidedness caused seven-month-olds to show the effect). 
  
Infants should therefore be able to use conceptual categories for Xu and Carey’s individuation task 
long before 12-months if the right information is primed first: e.g., the relevance of the category’s 
function, a key aspect of artifact concepts (Kelemen & Carey 2007; cf. Bloom 1996). Stavans and 
Baillargeon (2018) demonstrated objects’ characteristic functions before hiding (Fig. 4a) and 
found four-month-olds succeeded at Xu and Carey’s individuation task, looking longer when only 
one object was revealed. These results show two key LoT-like features—abstract content and 
inferential promiscuity—in extremely young preverbal infants. Thus the earlier failures seem to 
be explained by performance constraints (Stavans, Lin, Wu, & Baillargeon 2019). 
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Figure 4. (a) Function demonstrations aid object individuation: in a modification of Xu & 

Carey’s (1996) paradigm, infants first see the characteristic function of an object demonstrated 
(e.g., a marker drawing, a knife cutting), and this demonstration primes them to use categorical 
and featural information about the objects to expect two objects in the test trials (i.e., increased 

looking time when only one object appears); reprinted from Stavans & Baillargeon (2018), 
Figures 4 and 5, with permission from Wiley. (b) View-invariant information extracted by 

newborn chicks: chicks are shown a highly limited set of viewpoints on an object and form an 
abstract, view-invariant representation; reprinted from Wood & Wood (2020), Figure 1, with 

permission from Elsevier. 
  
The use of abstract content in physical reasoning is arguably present throughout the animal 
kingdom, and is well-studied in primates (e.g., Flombaum et al. 2004) and even some arthropods. 
Loukola, Perry, Coscos, & Chittka (2017) trained bumblebees through social learning (using a 
dummy-bee) to roll a ball—an unusual behavior for bumblebees in the wild—into the center of a 
platform for a sucrose reward. When the platform was later re-arranged with several balls at 
various locations that the bees could push into that central area, the bees opted to push balls closest 
to the center of the platform, even if they differed in color or location from the one they had seen 
pushed initially. This suggests bumblebees are sensitive to shape in a way that is dissociable from 
color and location, in contrast to many model-free learning accounts but just as one would expect 
if shape-type is encoded in a LoT. In a similar vein, Solvi, Al-Khudhairy, & Chittka (2020) found 
that bumblebees could recognize objects under full light that they had previously encountered only 
in darkness, suggesting they can transfer shape representations stored through touch to a visual 
task. Bumblebees therefore appear to represent shape in a way that is dissociable from modality-
specific low-level features. These representations figure in practical inferences (thereby displaying 
inferential promiscuity), and that guides recognition across modalities (thereby displaying abstract 
content). Furthermore, honeybees trained on a fewer-than relation (e.g., 2<5) were able to 
generalize to cases involving zero items (e.g., 0<6) without any zero-item training, implicating an 
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abstract symbolic representation of zero that guides inferential generalization and logico-
mathematical reasoning (Howard, Avargues-Weber, Garcia, Greentree, & Dyer 2018; cf. Vasas & 
Chittka 2019; see Weise, Cely Ortiz, & Tibbets 2022 for abstract contents of same and different). 
Similarly, bees’ navigational inferences have been used as an argument for a bee LoT because of 
their computational complexity (Gallistel 2011). 
  
Much of our discussion in Sections 4 and 5.1 has concerned abstract (e.g., amodal or view-
invariant) object representations, and one might wonder whether these effects are really due to 
associations between low-level features acquired gradually during development. One might 
therefore wonder whether DNNs could therefore provide a better explanation of these effects. 
However, Wood and Wood (2020) found that newborn chicks showed one-shot learning of abstract 
object representations (fig 4b). Shortly after birth, having been reared in an environment with no 
movable-object-like stimuli, chicks were shown a virtual 3D-object rotating either fully 360-
degrees, or just 11.25-degrees; later, the chicks successfully recognized the objects from arbitrary 
viewpoints (equally well in both conditions) and moved towards them. Given the paucity of 
relevant input, this experiment points away from DNN-based explanations of abstract object 
representations. 
  
Similarly, Ayzenberg and Lourenco (2021) showed preverbal infants a single view of 60-degrees 
of an unfamiliar object; using a looking-time measure, they found that the infants formed an 
abstract, categorical representation, recognizing the object even when viewpoint and salient 
surface features had drastically changed. The infants’ one-shot category learning outperformed 
DCNNs trained on millions of labeled images. This divergence between DCNN and human 
performance echoes independent evidence that DCNNs fail to encode human-like transformation-
invariant object representations (Xu & Vaziri-Pashkam 2021a). 
            
5.2 Logical Inference 
  
Proponents of LoTH have long held up its ability to explain logical inference in pre-verbal children 
and non-human animals as a virtue (Fodor 1983; Fodor & Pylyshyn 1988; Cheney & Seyfarth 
2008; Gallistel 2011; cf. Bermudez 2003; Camp 2007, 2009; Gauker 2011). Recent evidence 
suggests infants and animals may use logical operators in logical inferences. 
  
Consider the growing body of work on disjunctive syllogistic reasoning (DS). A standard means 
of testing for this capacity is Call’s (2004) two-cups task. The task involves placing a reward in 
one of two cups behind an occluder. Once the cups are brought back into plain view, the participant 
is shown that one is empty, and can then choose which of the two cups to select from. Typically, 
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researchers are interested in whether the participant selects the unrevealed cup more often than the 
revealed one, and whether they choose it without inspecting it first. Such behavior is often taken 
as evidence the participant can reason through DS, since there’s definitely a reward, and one of 
the two cups is empty, guaranteeing the location of the reward by DS. A surprising number of 
animals succeed at this task, as well as children as young as two (Call 2006). 
  
Mody & Carey (2016) argue that there is a confound in such tasks. Participants could rely on a 
non-logical strategy involving modal operators: They could form two unrelated beliefs, MAYBE 
THERE IS A REWARD IN CUP A and MAYBE THERE IS A REWARD IN CUP B. On this 
strategy, once shown that cup A is empty, participants simply ignore the possibility that there may 
be a reward there; left only with the belief that there may be a reward in cup B, they then select 
cup B. So the authors modified this task, using two rewards and four cups (Fig. 5a). While children 
as young as 2.5 succeed at the two-cup task, only 3- and 5-year olds succeed at this four-cup task, 
with 5-year olds performing best. 
  

 
Figure 5. (a) Four-cup task: a reward is placed behind an occluder and into one of two cups, and 
again for another reward and pair of cups. Then one cup is shown to be empty, and participants 

who perform disjunctive syllogism can infer that a reward is certain to be in the other cup in that 
pair; reprinted from Mody & Carey (2016), Figure 1, with permission from Elsevier. (b) 

Alternatives in chimps: a reward is placed in one of two boxes, and chimps pull a string to open 
the box and reveal the reward. The chimps pull both boxes when they are opaque, suggesting 

simultaneous representation of two possibilities; reprinted from Engelmann et al. (2021), Figure 
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1, with permission from Elsevier. (c) Success on four-cup task by baboons, reprinted from 
Ferrigno et al. (2021), Figure 1, SAGE Publishing. 

  
Pepperberg, Gray, Mody, & Carey (2019) found that an African grey parrot, Griffin, succeeded at 
a modified version of the four-cup task. Remarkably, Griffin selected the cup that contained reward 
(a cashew) on nearly every trial (chance, in this case, was 33%), besting human five-year-olds 
(whose success is surprisingly variable; Gautam, Suddendorf, & Redshaw 2021). More moderate 
success at the four cup task has also been achieved with olive baboons (Fig. 5c; Ferrigno, Huang, 
& Cantlon 2021). 
  
A straightforward way of understanding these results is to accept that at least some non-human 
animals are competent with DS. To execute that inference, one needs two sentential connectives, 
NOT and OR. These must be combined, syntactically, with representations of states of affairs. 
  
The failure of younger kids at Mody and Carey’s 4-cup task at first looks like bad news for LoTH. 
However, it might only reflect a failure with using negation, rather than with logical inference 
more broadly (Feiman, Mody, & Carey 2022). Moreover, as with Xu’s (2019) arguments against 
LoT-like format in object files, the possibility of performance demands masking an underlying 
LoT-based competence is plausible. The 4-cup task requires kids to track four cups divided into 
two pairs and two occluded stickers, which is demanding on VWM; indeed, animals who 
outperform children tend to have superior VWM capacity (Pepperberg et al. 2019, 417; cf. Cheng 
& Kibbe 2021). As Pepperberg et al. point out, younger children also act more impulsively than 
older ones, sometimes ignoring relevant knowledge in demanding tasks. Thus we should look for 
less demanding tasks before ruling out LoT-like logical inference in children. For example, we 
could look for independent psychophysical signatures of DS as performed by adults and see 
whether those signatures are present in children in simpler tasks. 
  
Cesana-Arlotti et al. (2018) showed 12-month-olds and adults two objects hidden behind occluders 
(e.g., a snake and ball); they saw one placed in a cup without knowing which, and finally the 
unmoved object (e.g., snake) popped out, allowing subjects to infer the identity of the cup-hidden 
object (ball). When the cup-hidden object was revealed, infants’ looking time showed they 
expected it to be the yet-unseen object (ball). This finding is compatible with non-logic-based 
explanations. However, Cesana-Arlotti et al. found that adults performing DS showed an 
oculomotor signature: during inference, their pupils dilated and eyes darted to the still-hidden 
object. This same signature was found in the infants, implicating the same underlying 
computations. 
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Genuine DS should be domain-general. Cesana-Arlotti, Kovacs, & Téglás (2020) used a similar 
paradigm to test DS in twelve-month-olds, this time relying on their knowledge of others’ 
preferences. Participants learned an agent’s preference among objects (ball vs. car); the non-
preferred object then briefly popped out from behind its occluder, after which the agent reached 
behind one of the occluders. Twelve-month-olds looked longer when the non-preferred object was 
reached for. Cesana-Arlotti and Halberda (2022) also found that 2.5-year-olds, who fail the 4-cup 
task, nonetheless reason by exclusion across word-learning, social-learning, and explicit negation 
with a common saccade pattern: they saccade to the to-be-excluded item, return to the target item, 
and fail to show “redundant” saccades—evidence of low-confidence—after target selection. This 
pattern suggests a domain-general inferential mechanism that delivers high-confidence 
conclusions, a functional profile one should expect if children perform DS. 
  
Leahy and Carey (2020) provide an alternative, non-DS-based explanation of successful reasoning 
by exclusion via sequentially simulating alternative possibilities. However, chimpanzees, at least, 
are able to represent distinct possible states of affairs simultaneously. Engelmann et al. (2021) used 
a modified two-cup task in which the empty cup was not revealed. Chimps could pull ropes for 
both cups, or pull just one rope for one cup, causing the second cup to fall out of reach. 
Overwhelmingly they expended extra energy to pull both ropes when the cups were opaque, but 
pulled just one when the cups were transparent (Fig. 5b).9 Pulling two ropes is hedging under 
uncertainty, suggesting chimps simultaneously represent two locations as possibly reward-laden. 
  
Furthermore, 12-month-olds seem to use the same computations adults do to reason by exclusion, 
as measured by oculomotor signatures (Cesana-Arlotti et al. 2018). It’s possible that adults do both 
DS and simulation-based or icon-based reasoning in these tasks. But given independent reasons to 
think these tasks run on LoT-like object representations in VWM and adults’ capacity for DS, and 
the relative lack of evidence for multiple redundant reasoning processes underlying task 
performance, our working hypothesis is that infants’s oculomotor behavior is evidence for LoT-
based DS. 
 
Logical inference without language is a rapidly developing research area, and central contributors 
to this research such as Carey are skeptical of the “thicker” interpretations of the data we defend. 

 
9 Chimpanzees, orangutans, monkeys and children under four fail to hedge in this way when 
rewards are dropped in a transparent Y-shaped tube: they place a hand under just one of the arms 
at the bottom (Redshaw & Suddendorf 2016; Suddendorf et al. 2017; Suddendorf et al. 2019; 
Lambert et al. 2018). It is plausible that participants rely on simulation (Leahy & Carey 2020) 
here. Unlike the cups task, the Y-tube task requires anticipating the trajectory of an object that is 
both plainly visible and already in motion, which might encourage simulation. 
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While we anticipate further plot twists will emerge in study of infant and non-human inference, 
we take the current state of the literature to favor a LoT-based account of DS in infants and animals 
and to bear promise for many LoTH-based lines of research in the development of logical 
operators. 
  
  
6. LoT in Social Psychology: The Logic of System 1 
  
One source of opposition to LoTH stems from treatments of attitudes and system-1 processing in 
social psychology. In traditional dual-process theory, System 1 (“S1”) is governed by shallow 
heuristic, associative, non-rule-based processing (Sloman 1996; Evans & Stanovic 2013). Dual-
process theories originate partly from the heuristics-and-biases tradition, where fast responding 
purportedly demonstrates irrationality (cf. Gigerenzer and Gaissmaier 2011; Mandelbaum 2020b). 
  
One may doubt the irrationality of S1 processing. As case studies we’ll discuss two paradigms 
used to investigate characteristically S1 thought: unconscious reasoning in implicit attitudes in the 
Implicit Association Test and Belief Bias cases (though the same morals hold for other paradigms 
such as Base Rate Inferences and Cognitive Reflection Test: De Neys & Glumicic, 2008; De Neys 
& Franssens, 2009; Thompson, Turner, & Pennycook 2011; Stupple, Ball, Evans, & Kamal-Smith, 
2011; De Neys, Cromheeke, & Osman 2011; De Neys, Rossi, & Houdé 2013; Pennycook et al. 
2014; Thompson & Johnson, 2014; Gangemi, Bourgeois-Gironde, & Mancini, 2015; Johnson, 
Tubau, & De Neys 2016; Bago & De Neys 2017, 2019, 2020).10 

  
6.1 Logic, Load, and LoT 
  
Failures of syllogistic reasoning are commonplace and well-publicized. In particular, belief 
biases—cases where people mistakenly utilize the truth of a conclusion in judging an argument’s 
validity, ignoring logical form—are legion (Markovitz & Nantel 1989). Even outside of the belief 
bias people are forever affirming the consequent, denying the antecedent, and confusing validity 
and truth. 
  

 
10 One reason S1 is so instructive is that its operations occur outside working memory. Cognition 
that is most plausibly governed by internal rehearsal of natural language or “inner speech” 
plausibly requires verbal-working-memory resources (Baddeley 1992; Marvel & Desmond 2012; 
Carruthers 2018). Evidence of LoT-like structure in S1 therefore undermines attempts to reduce 
LoT-like effects to inner speech. 
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Difficulties in reasoning are prima facie problematic for LoTH. The more errors we make in 
reasoning, the less it seems like we need an inferential apparatus to explain people’s thinking. LoT 
is tailor-made to explain formal reasoning—that is, reasoning based on the structure, rather than 
the content, of one’s premises (Fodor & Pylyshyn 1988; Quilty-Dunn & Mandelbaum 2018a; 
2018b). So, failures in reasoning—traditionally seen as due to heuristic S1 processing—are seen 
as reasons for believing that S1 is associative rather than LoT-like (see, e.g., Sloman 1996, Rydell 
& McConnell 2006, Gawronski & Bodenhausen 2006). However, a closer look at the data shows 
evidence for non-associative, LoT-like, logic-sensitive reasoning in S1. 
  
“Conflict problems” are cases where validity and believability conflict, i.e., valid syllogisms with 
unbelievable conclusions or invalid syllogisms with believable conclusions. All other problems 
(valid/believable; invalid/unbelievable) are “nonconflict”. Some examples: 
  
(Conflict: Valid/Unbelievable) 
P1: All birds fly 
P2: Penguins are birds 
C: Penguins fly 
  
(Conflict: Invalid/Believable) 
P1: All birds fly 
P2: Penguins are birds 
C: Penguins swim 
  
(No Conflict: Valid/Believable) 
P1: All birds have feathers 
P2: Penguins are birds 
C: Penguins have feathers 
  
(No Conflict: Invalid/Unbelievable) 
P1: All birds have feathers 
P2: Penguins are birds 
C: Penguins fly 
  
If S1 is not logic-sensitive, then conflict problems should not hamper believability judgments, 
since belief bias is driven by nonlogical factors. Yet logic-sensitive judgments occur even when 
subjects are explicitly instructed to focus on believability, and even under extreme cognitive load. 
Logical responses thus seem to be generated automatically. People are less confident and slower 
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on conflict problems than nonconflict problems regardless of whether they are judging belief or 
logic (Handley & Trippas, 2015; Trippas, Thompson, & Handley 2017; Howarth, Handley, & 
Polito 2021). That is, they’ll be slower to judge that ‘Penguins fly’ is false if it is a conclusion of 
a valid argument than a conclusion of an invalid one. Moreover, those who correctly solve 
syllogism validity questions in conflict problems do so even under intense time pressure and 
additional memory load, ensuring the shutdown of system 2 processes (Bago & De Neys 2017). 
That is, correct responding happens right away; giving participants additional time to think adds 
little accuracy. 
  
Just as the believability of a conclusion can interfere with validity judgments, so too can the logical 
form of an argument affect believability judgments. In fact,  there is evidence that logical 
responding is more automatic than belief-based responding; derailing logical responding impedes 
belief-based responding more than vice versa (Handley, Newstead, & Trippas 2011; Howarth, 
Handley, & Walsh 2016; Trippas et al. 2017). For example, in Trippas et al. (2017), conflict 
impeded believability judgments more than validity judgments for modus ponens. Sensitivity to 
logical form persists whether subjects are under load or not (and whether asked to evaluate validity 
or not), showing that the relevant differences are due to S1 processing (Trippas, Handley, Verde, 
& Morsanyi 2016). Even when asked to respond randomly, participants still show implicit 
sensitivity to logical form (Howarth et al. 2021). Automatic logical sensitivity also has very little 
individual difference between subjects, suggesting it reflects fundamental architectural features of 
cognition (Ghasemi, Handley, & Howarth 2021). Logical inferences are also made automatically 
during reading (Lea 1995; Lea, Mulligan, & Walton 2005; Dabkowski & Feiman 2021). As one 
would expect if logic was intuitive, subliminally presented premises trigger modus ponens 
inferences (Reverberi, Pischedda, Burigo, & Cherubini 2012). 
  
Far from undermining LoTH, dual-process architectures vindicate LoTH. They demonstrate 
abstract logic-based inferential promiscuity outside controlled, conscious cognition using discrete 
symbols that maintain role-filler independence (e.g., P must be the same symbol in P—>Q). 
  
6.2 The Logic of Implicit Attitudes 
  
Implicit attitudes are typically assumed to be associative. However, Mandelbaum (2016) and De 
Houwer (2019)  documented the effects of “logical interventions” on implicit attitudes, i.e., cases 
where one can change implicit attitudes not by counterconditioning or extinction, as would be 
expected if they had associative structure, but instead by merely changing the logically pertinent 
evidence. Logical (or “propositional”) interventions on attitudes are only possible given that we 
have predicate-argument structure, logical operators, and inferential promiscuity. 
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Take Kurdi and Dunham (2021). Their basic paradigm consisted of a learning and testing phase. 
In a learning phase participants saw sentences of the form: “If you see a green circle, you can 
conclude that Ibbonif is trustworthy; if you see a purple pentagon, you can conclude that Ibbonif 
is malicious.” This design cleverly pits associative vs. propositional (i.e. LoT) processes against 
each other: if the implicit attitude processor is associative then Ibboniff should come out as neutral 
as Ibboniff is being associated with both positive (trustworthy) and negative (malicious) adjectives. 
If the processor is sensitive to propositional values however, then the implicit attitude acquired 
should be dependent on which conditional’s antecedent was satisfied (i.e., which shape appears). 
Participants then moved onto the testing phase which consisted of explicit and implicit attitude 
testing (via the IAT). Results showed that participant attitudes tracked the logical form of the 
stimuli during the testing phase. So, using the sample text above, if participants saw a purple 
pentagon they would conclude that Ibbonif (and the group that he was from, the Niffites, denoted 
from the suffix on the name) was negatively valenced. 
  
Kurdi & Dunham had ample variations on the paradigm all showing similar LoT-based effects on 
implicit attitudes. Importantly, LoT-based inferences can be seen even when the response is 
normatively inappropriate, as in an affirming-the-consequent syllogism (study 3). In the learning 
phase, participants saw sentences such as “If you see a green circle, you can conclude that Ibbonif 
is malicious;” however, instead of seeing a green circle, they would then see an (e.g.,) orange 
square. Thus the correct inference to make is that nothing can be inferred from the set-up. If 
implicit attitudes are updated only by an associative processor, then the valence of the predicate in 
the consequent should dictate the participants’ responses. If instead attitudes are sensitive to the 
logical form of the inventions, then one of two things should happen: for those subjects who 
correctly realize that this is an affirming the consequent argument they should form no opinion 
about the person or group in question. However, the subset of people who incorrectly affirm the 
consequent should make the wrong inference and infer that the consequent accurately describes 
the person or group in question. Participants were given a control question to see if they were apt 
to explicitly affirm the consequent. Those that did also changed their implicit attitudes in line with 
the affirming-the-consequent stimuli they would later see in the experiment; the implicit attitudes 
of those who rejected the affirming the consequent control question, on the other hand, correctly 
tracked the logical implications of the stimuli by failing to update at all (similar results hold for 
denying the antecedent). Given a sufficiently creative set up, one can infer logical processes at 
play even in the absence of inference, or during misinference (Quilty-Dunn & Mandelbaum 
2018a). 
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Similar variations abound. If the associative account were correct then merely giving a major 
premise that is clearly valenced should set the associative value of the target: giving participants 
sentences such as “If you see a purple pentagon, you can conclude that Ibbonif is malicious' should 
make one associate IBBONIF and negative valence via ‘malicious.’ Except that isn’t what 
happens—if subjects are given the conditional premise with no follow-up they withhold forming 
any valenced implicit attitudes, unlike what associative theory would predict.11 The concept 
IBBONIF needs to be linked with the attribute MALICIOUS in a way that is impervious to 
associative factors, but sensitive to counterevidence. A predicate-argument structure with 
MALICIOUS as predicate and IBBONIF as argument predicts just this functional profile. 
  
The Kurdi and Dunham is just one of a near-deluge of recent studies showing the efficacy of logical 
interventions compared to the impotence of associative interventions (De Houwer 2006; Gast & 
De Houwer 2013; Van Dessel, De Houwer, Gast, Smith, & De Schryver 2016; Van Dessel, 
Gawronski, Smith, & De Houwer 2017a; Van Dessel, Mertens, Smith, & De Houwer 2017b; Van 
Dessel, Ye, & De Houwer 2019; Mann & Ferguson 2015, 2017; Cone & Ferguson 2015; Mann, 
Cone, Heggeseth, & Ferguson 2019). Telling participants that they will see a pairing of a group 
with pictures of pleasant (or unpleasant) things is much more effective at fixing implicit attitudes 
than repeatedly pairing the group and the pleasant/unpleasant things. One-shot learning trumps 37 
associative pairings. Even when associative and one-shot propositional learning are combined, the 
associative trials add no detectable valence to the implicit attitude formed from the one-shot 
propositional trial (Kurdi & Banaji 2017). That is, direct exposure to associative pairings isn’t 
necessary or sufficient for forming or changing implicit attitudes, and its effect on attitudes doesn’t 
compare to a single exposure to a sentence. Even when repeated exposure causes some mental 
representation of the categories to be formed, just telling participants whether the stimuli are 
diagnostic modulates learning (e.g., if told the data isn’t diagnostic, learning is inhibited, and if 
told the data is diagnostic, learning is increased). This suggests that the representations acquired 
are being used as beliefs (Quilty-Dunn & Mandelbaum 2018b), and updated in a logical, 
inferentially promiscuous way (Kurdi & Banaji 2019). The primacy of diagnostic information over 
repeated exposure is a consistent finding, showing the inadequacies of associative models (e.g., 
Mann & Ferguson 2015, 2017; Mann et al. 2019). 
  
In short, implicit attitudes—far from being a problem-area for LoT—instead demand evidence-
sensitive, inferentially promiscuous predicate-argument structures that incorporate abstract logical 
operators. 
  

 
11  We don’t deny that there are associations in S1, just that they suffice to explain the data. 
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7. Conclusion 
  
More than half a century after the cognitive revolution of the 1950s, mental representations remain 
the central theoretical posits of psychology. While our picture of the mind has gotten more and 
more complex over time, computational operations over structured symbols remain foundational 
to our explanations of behavior. At least some of these symbols—those involved in certain aspects 
of probabilistic inference, concept acquisition, S1 cognition, object-based and relational perceptual 
processing, infant and animal reasoning, and likely elsewhere—are couched in a LoT. That doesn’t 
mean that all perceptual and cognitive processing is LoT-symbol manipulation. We believe in 
other vehicles of thought, including associations (Quilty-Dunn & Mandelbaum 2020), icons 
(Quilty-Dunn 2020b), and much more. Our claim is somewhat modest: many representational 
formats across many cognitive systems are LoTs. 
  
We don’t deny the successes of DCNNs; perhaps they accurately model some aspects of biological 
cognition (Buckner 2019; Shea 2021). It remains open that DNNs might mimic the performance 
of biological perception and cognition across a wide variety of domains and tasks by implementing 
core features of LoTs (cp. Zhu et al. 2020). We agree with a recent review of DCNNs that a “key 
question for current research is how structured representations and computations may be acquired 
through experience and implemented in biologically plausible neural networks” (Peters & 
Kriegeskorte 2021, 1137). Given the evidence above, matching the competences of biological 
minds will require implementing a class of structured representations that uses discrete 
constituents to encode abstract contents and organizes them into inferentially promiscuous 
predicate-argument structures that can incorporate logical operators and exhibit role-filler 
independence. 
 
There is much more to say about evidence for LoT, including abstract, compositional reasoning in 
aphasics (Varley 2014), and potential neural underpinnings for LoT (Wang et al. 2019; Frankland 
& Greene 2020; Roumi et al. 2021; Gershman 2022). LoTs ought to provide “common codes” that 
interface across diverse systems (Pylyshyn 1973; Dennett 1978). Central topics here include LoTs 
at the interfaces of language (Dunbar and Wellwood 2016; Pietroski 2018; Harris 2022) and action 
(Mylopoulos 2021; Shepherd 2021). 
 
The big picture is that LoTH remains a thriving research program. LoTH allows us to distinguish 
psychological kinds in a remarkably fine-grained way, offering promising avenues for future 
research. LoTs might differ across systems within a single mind, or between species (Porot 2019). 
While it’s likely, for example, that object tracking and S1 reasoning differ in the representational 
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primitives they employ, we don’t know whether or how their compositional principles differ. 
Similarly, we don’t know how representations that guide logical inference in baboons differ from 
those that bees use in social learning, or that infants use in physical reasoning. Differences in 
conceptual repertoire or syntactic rules provide dimensions along which to type cognitive systems. 
Future work can focus on decrypting the specific symbols and transformation rules at work in each 
case, and how these symbols interface with non-LoT mental media.  
 
One might also find subclusters of LoT-like properties. It may be that, for example, properties 
encoding logical operators and making abstract logical contents available for inference form a 
“logic” subcluster, and predicate-argument structure, role-filler independence, and abstract 
contents form a “predication” subcluster. In that case, LoT qua natural kind may be a genus of 
which these subclusters are species (as an analogy, consider how mental icons may be a genus-
level kind with high species-level variation between, e.g., visual images and abstract mental 
models).  
 
Finally, little is known about the evolutionary emergence of LoT in our ancestors or 
phylogenetically distant LoT-based minds. Our ignorance leaves open the possibility that, given 
LoTs’ computational utility, very different biological minds converged on them independently. An 
outstanding research goal is to construct a typology of LoTs within and across species, allowing 
us to better understand the varieties of expressive power in naturally occurring representational 
systems (Mandelbaum et al. under review). 
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