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Abstract In this article, network science is discussed from a methodological perspec-
tive, and two central theses are defended. The first is that network science exploits the
very properties that make a system complex. Rather than using idealization techniques
to strip those properties away, as is standard practice in other areas of science, network
science brings them to the fore, and uses them to furnish new forms of explanation.
The second thesis is that network representations are particularly helpful in explaining
the properties of non-decomposable systems. Where part-whole decomposition is not
possible, network science provides a much-needed alternative method of compressing
information about the behavior of complex systems, and does so without succumb-
ing to problems associated with combinatorial explosion. The article concludes with
a comparison between the uses of network representation analyzed in the main dis-
cussion, and an entirely distinct use of network representation that has recently been
discussed in connection with mechanistic modeling.

Keywords Network · Representation · Explanation · Mechanism · Decomposition ·
Idealization

1 Introduction

It is often remarked that network science is transforming our understanding of complex
systems. In a recent opinion paper in Nature Physics, Albert-Laszlo Barabasi says:
“One thing is increasingly clear: no theory of the cell, of social media, or of the
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Internet can ignore the profound network effects that their interconnectedness cause
[sic]. Therefore, if we are ever to have a theory of complexity, it will sit on the shoulders
of network theory” (Barabasi 2012, p. 15).

Although it is reasonable to doubt that any general theory of complexity is in fact
forthcoming, Barabasi is right to think that network science has special relevance to
the study of complex systems. One reason for this is that network models have been
used to shed light on a bewildering variety of complex empirical phenomena, includ-
ing the frequencies of protein–protein interactions, the social causes of obesity, the
propagation of viruses through the Internet, and the neural correlates of Alzheimer’s
disease.1 Another reason for this is that that network models offer a powerful way of
representing and reasoning about the manner in which complex systems are intercon-
nected.

In this article, network science is discussed from a methodological perspective, and
two central theses are defended. The first is that network science exploits the very
properties that make a system complex. Rather than using idealization techniques to
strip those properties away, as is standard practice in other areas of science, network
science brings them to the fore, and uses them to furnish new forms of explanation.
This head-on approach to complexity is quite novel, especially in comparison with
explanatory strategies that have been emphasized in recent philosophical accounts of
complex systems science. The second central claim in this article is that network rep-
resentations are particularly helpful in explaining the properties of non-decomposable
systems. Where part-whole decomposition is not possible, network science provides
an alternative method of explaining system behavior. Together, these two claims show
that network science is, as Barabasi imagines, a powerful method for understanding the
interconnectedness of complex systems, and one that breaks free of certain limitations
inherent in other methods.

The discussion is organized as follows. In Sect. 2, some network science con-
cepts are introduced and a pioneering model is presented in some detail. In Sect. 3,
it is argued that this pioneering model, despite being highly abstract and statistical
in nature, satisfies standard tests for explanatory relevance. In Sect. 4, an argument
is given for the first of the two aforementioned central claims: that network science
exploits complexity rather than avoiding it. In Sect. 5, an argument is given for the
second central claim: that network representations are particularly helpful in explain-
ing the properties of non-decomposable systems. In Sect. 6, a comparison is made
between the perspective defended here, and that defended in a recent paper by Levy
and Bechtel on the role of network representation in the study of mechanisms. Levy
and Bechtel conceive of network analysis as a continuation of mechanistic analysis. I
defend the view that much of network science should be seen instead as a departure
from the mechanistic approach, and one that offers a completely distinct explanatory
strategy.

1 Canonical sources for these developments can be found, respectively, in Rual et al. (2005), Christakis
and Fowler (2007), Pastor-Satorras and Vespignani (2001), and Supekar et al. (2008).
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2 The distinctive strategy of network science

2.1 Representing networks

Network science is a systematic attempt to study properties that are hidden in the pat-
tern of connections among the elements that compose complex systems. The principal
mathematical tool of network science is graph theory. A graph consists of a set of
points either on a plane, or in n-dimensional space, and a set of line segments, each of
which either joins two points to one another, or joins one point back to itself (Gross
and Yellen 2006). The canonical form of graph theoretic representation is known as
an adjacency matrix, which is a matrix in which both rows and columns are labeled by
an ordered list of elements. If a direct connection exists between two elements, their
intersection is marked with a 1; otherwise, it is marked with a 0.

Adjacency matrix A in Fig. 1 represents a graph with six points, or nodes and seven
connections, or edges. The same information can also be represented in a diagram that
is easier to inspect visually.

It is important to keep in mind that Figs. 1 and 2 are equivalent from a graph
theoretic perspective. In Fig. 2, no information is carried by the angles between lines
or the apparent spatial position of the nodes.

Graph-theoretic representations can be used to model empirical systems. For exam-
ple, each node might represent a protein type, and each edge might represent a
protein–protein interaction that occurs in one species. Such a graph summarizes which
proteins depend on which others to realize their biological function. Such a summary
can yield predictions about unknown functions by relying on the fact that proteins with
overlapping pathways tend to have a high degree of functional similarity (Schwikowski
et al. 2000).

Fig. 1 Adjacency matrix for a
6-node graph

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0
1 0 1 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
1 0 1 0 0 0
0 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

Fig. 2 The same system
represented by the adjacency
matrix in Fig. 1, here
represented diagrammatically
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Fig. 3 A 25-node network
configured as a square lattice,
and another configured as a star
network

2.2 Organization influences behavior: a clear case

There is a straightforward sense in which the behavior of a highly interconnected sys-
tem depends on the way its inter-element connections are organized. The star network
depicted in Fig. 3 offers a maximally simple example of this kind of dependence.

One network property that is often used in the analysis of complex systems is path
length, which is defined as the number of edges on the shortest path between two
vertices. In Fig. 3, it is easy to confirm visually that the longest path length in the
star-shaped network is two. Since every node is connected to the central node, (other
than the central node itself) one can trace a line between any pair of nodes in two
steps or less. Compare this to the square lattice on the left. The path length along
just one side of the lattice is four. Some path lengths in the graph are smaller; others
larger. If we imagine that nodes represent computers, for example, it is easy to see
that information originating at one computer can be distributed to the whole network
in fewer steps in the star network than it can be in the lattice-like network. This is
a toy example, but it shows that the pattern of organization among the elements of a
network can influence the dynamical processes instantiated on that network. Now we
consider a more scientific example.

2.3 An influential network model

In the paper that triggered the contemporary proliferation of network science, Watts
and Strogatz (1998) use network representations to explore the dynamics of infectious
diseases. Throughout most of its history, the mathematics of graphs had been studied
under the guise of combinatorics, and had had little impact on empirical science.2

For the most part, mathematicians had restricted their investigations to regular lattices
(much like the square lattice in Fig. 3), in which each node is connected to a fixed
number of its nearest neighbors, or random graphs, in which every possible pairwise
connection is either drawn in or left blank at the flip of a coin. What intrigued Watts

2 If we interpret “network science” loosely, its history is much longer. Sociologists have applied small
networks to social phenomena since the work of Moreno in the 1930s (Easley and Kleinberg 2010), and
operations researchers made use of graph theory in WWII (Cunningham et al. 1984). The very large-scale
work described here, however, requires computational power that has only been available more recently. It
should also be noted that the more recent history of network science has had a much broader impact than
early work in the field. In 2008, the Thompson Reuters publication “Science Watch” ranked the Watts and
Strogatz paper as the 6th most cited paper in the history of physics. On August 9th, 2014, the Thomson
Reuters Web of Knowledge (apps.webofknowledge.com) shows that the paper has received 10,308 citations.
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and Strogatz was the empirical finding that most of the network-like systems that had
been studied in the real world displayed neither of these topological structures. Instead,
empirical network-like systems display irregular clustering at the local level, and these
local clusters are often connected to one another by means of a long-range bridge.3

This kind of network structure had recently been discovered in systems as diverse as
the nervous system of a nematode worm, a network of actors that had appeared in
films together, and the power-grid of the Western United States.

Because this empirical data looked qualitatively different from the kinds of graphs
typically studied in pure mathematics, Watts and Strogatz (among others) became
interested in developing algorithms to construct networks that shared some of the
statistical properties observed in empirical data. This algorithm subsequently became
the model for many similar graph construction algorithms that have been studied with
increasing enthusiasm since the original publication.

The algorithm they devised takes as its input a ring-lattice in which each node is
connected to a fixed number of its closest neighbors on the ring.4 The algorithm then
considers each edge in turn, choosing with some fixed probability to rewire it to a
new, randomly selected node. Watts and Strogatz decided to use this model to study
how patterns of connections among people might influence disease spreading.5 To do
this, they adapted a traditional epidemiological model to fit the network context. That
model is known as the SIR model of disease spreading, and it can be expressed as three
differential equations in which a population is divided into susceptible (S), infected
(I ), and recovered (R) compartments. These quantities vary as a function of time, but
are conserved, such that S(t) + I (t) + R(t) = N , where N is the total population
size. One infected person is introduced into a susceptible population, and the disease
then spreads to other people along the edges in the network. After a fixed number of
time steps, each infected person is moved into the recovered compartment, and then
enjoys a fixed period of immunity before becoming susceptible once again. The three
equations that comprise the model are:

1. dS/dt = δR − βSI ,
2. dI/dt = βSI − γ I ,
3. dR/dt = γ I − δR,

where parameter β is the rate at which the infection is transmitted, parameter γ is the
(memory-less) rate of recovery, and parameter δ is a fixed period of immunity acquired

3 The term “long-range” refers to path-length in graph-theoretic, rather than physical space. The idea can
be expressed intuitively in terms of a social network. In a graph of my social network, the set of all my
friends are represented as being one unit removed from me. The set of all the friends of my friends (who
are not also friends with me directly) are represented as being two units removed from me, and so on. A
long-range connection is one that directly connects two nodes that would otherwise be separated by a long
path, relative to the global average.
4 The ring-format of the lattice was chosen for the computational convenience of periodic boundary
conditions, and is not meant to have any representational significance.
5 They also studied how the structure of networks influences the interactions of models of rational agents
in a Prisoner’s dilemma scenario. Although the results of this initial work also led to a huge amount of
subsequent study, I focus on the epidemiological aspect of their work to avoid the special complications
associated with models of rational decision-making.
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after recovery.6 By varying these biological parameter values, one can represent a
variety of different diseases.

One of the assumptions of the traditional SIR model is that the population is ran-
domly mixed. This assumption makes it possible to model the transmission probability
β as a uniform random variable, each value of which describes the proportion of the
population that becomes infected at one time-step in a computer simulation. This ideal-
ization, which is known as ‘the homogenous mixing assumption,’ is nearly equivalent
to the hypothesis that the probability of coming into contact with a friend or neigh-
bor is the same as the probability of coming into contact with someone randomly
selected from the population. I say “nearly equivalent” because traditional compart-
mental models do not represent individual disease transmission events explicitly, so
it is false, strictly speaking, to say that the model describes probabilities that are
attached to individual transmissions. The value for β can be more accurately thought
of as the average number of infection opportunities experienced by the whole popu-
lation during a given time interval (Bansal et al. 2007). However, when we constrain
the disease to spread along a pre-drawn graph of the contact structure, β ceases to be
a uniform random variable and becomes instead a vector quantity that summarizes at
each point in time precisely which contact opportunities exist.7 To explore this new
graph-theoretic version of the SIR model, computer simulation is required. On each
simulation trial, only some infection opportunities result in successful transmission.
This opportunity/success ratio is averaged over simulation trials, and the resulting
quantity represents the transmission probability of the disease in a more fine-grained
way than is possible in the original compartmental model.

It turns out that the dynamical properties of diseases, as represented by the SIR
model, are highly sensitive to network topology. This makes intuitive sense. One
might suspect that the dynamics of a disease spreading process would be different in
an urban area packed full of people than they would be in a rural area in which large
crowds are rare. The beauty of the Watts–Strogatz model is that it allows us to explore
the impact of the contact structure on the disease dynamics in a quantitative way.

2.4 What the Watts–Strogatz model explains

What can be learned about real disease behavior from the Watts–Strogatz model? I will
focus on just one lesson that involves two simple network properties. The first property
is called the characteristic path length. The definition of path length provided above

6 The form of these equations is slightly more complex than the one actually implemented by Watts and
Strogatz. I have chosen to write this version of the model both because it is the most widely recognized
version of the SIR model, and also because it allows me to define a biological parameter in Section 3.5,
where I argue that the network epidemiology is reasonably autonomous from certain biological details. It
is also worth noting that I am following epidemiological practice by referring to the model parameters as
“rates.” In fact they are just proportions and do not literally have a temporal component.
7 Some texts use the term “population structure” to describe the disease topology of biological popula-
tion. I prefer the term “contact structure” because the set of relevant connections—instances of physical
proximity between two organisms that make transmission biologically possible—will be different for each
population/disease pairing. “Contact structure” does a better job of avoiding the misleading implication that
there is a single structure associated with each population.
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described a relation between two nodes: the number of edges found on the shortest path
between them. Characteristic path length is a generalization of this idea. It is defined
as the average path length over all pairwise combinations of nodes in the graph. The
second property is called the clustering coefficient of the graph, and it can be defined
as the probability that two neighbors of a given node are themselves neighbors (where
the term “neighbor” indicates a direct link). Somewhat more precisely, the clustering
coefficient is a measure of the ratio of the number of three-node combinations that
form triangles to the number of all possible three-node combinations. Empirically
speaking, therefore, clustering is a measure of the cliquishness of a population.

Real human populations are known to be highly clustered. Theoretically, high
degrees of clustering should prevent a disease from reaching a large proportion of
the total population quickly. High levels of clustering imply that the possible routes
of disease transmission are highly overlapping, so that a given chain of transmission
is likely to follow a closed loop back to one of the already-infected individuals, rather
than follow an open path toward a new susceptible individual.

Watts and Strogatz found empirically, however, that many networks had very short
characteristic path lengths despite the fact that clustering coefficients remained high.
This means that the number of transmission events required to traverse from any one
node in the graph to any other was quite small. This was unexpected because in both the
random graphs and the lattice-like graphs that were known to mathematicians, large
clustering coefficients are always associated with large characteristic path lengths,
and small clustering coefficients are always associated with small characteristic path
lengths. By contrast, in the empirical data sets Watts and Strogatz inspected, they
observed that clustering coefficient and path length were very often anti-correlated.
Their algorithm was designed to construct graphs that matched the empirical data in
precisely this respect: it provides a way of exploring the mathematical space in which
clustering coefficient and characteristic path length diverge.

Watts and Strogatz found that these two properties diverge much more readily than
expected. As the random, potentially long-range connections are introduced via the
re-wiring algorithm, the path length of the resulting graph drops off precipitously
while the clustering coefficient hovers near its maximal value.

Notice that the x-axis in Fig. 4 is plotted logarithmically so that the extremely steep
descent into the low path length/high clustering regime is made visible. This shows
that the introduction of only a very small fraction of long-range connections has a
radical impact on the path-length, but very little impact on the clustering coefficient.
Since path length can be thought of as a kind of distance, and since most of the graphs
described by Fig. 4 have low path length, Watts and Strogatz named the phenomenon
the small-world property, a term that has since gained prominence both in scientific
and popular circles.

How does this relate to the dynamics of infectious disease? In a randomly connected
contact structure, diseases can spread very quickly because characteristic path length
is low.8 Since it only takes a small number of long-range connections to turn a highly
clustered graph with high path length into a small world graph with low path length,

8 Specifically, it is about ln(n)/ ln(k), where n is the number of nodes in the graph, and k is the number
of initially connected neighbors.
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Fig. 4 Log-normal plot of
clustering coefficient
(C(p)/C(0)) and path length
(L(p)/L(0)) as functions of
rewiring probability. Both
properties in the vertical axis are
expressed as ratios because they
are normalized to values taken
from a randomized graph.
Rewiring probability determines
the proportion of long-range
connections. From Watts and
Strogatz (1998)

Fig. 5 Log-normal plot of the
SIR rhalf rate against rewiring
probability, which determines
the proportion of long-range
connections. From Watts and
Strogatz (1998)

one might expect that very small perturbations to the contact structure might have an
enormous impact on the dynamics of a disease. Indeed, Watts and Strogatz observed
that the very fast rate at which path length drops off results in surprising sensitivity
of disease dynamics to increased rewiring probability. In particular, the value of β

required for the disease to reach half the total population, (a quantity they call rhalf )
drops off steeply with increasing rewiring probability.

The x-axis in Fig. 5 is again plotted logarithmically so that the steep drop of the
rhalf rate is visible. The figure shows that a very small percent change in the number of
long-range disease transmission events makes diseases with low critical infectiousness
rates, which are otherwise easily contained, capable of generating massive epidemics.
Moreover, these results carry implications for intervention strategies such as vaccina-
tion. Watts and Strogatz themselves interpret their results as evidence that if a disease
can escape the quarantine-like effects of clustering early on in the spreading process,
it will be able to spread just as easily as if there were no clustering at all.

3 Explaining generic properties

The Watts–Strogatz algorithm is intended to produce a class of graphs that share
just two statistical properties found in a wide variety of empirical data sets. In most
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other respects, the model is highly idealized, and by itself not sufficient to predict the
dynamics of a specific historical epidemic. Nevertheless, the model has considerable
explanatory value. To see this, let us first be explicit about the explanatory reasoning
to which the model gives rise. It runs as follows: measured populations have the
small-world property. Instantiations of the small-world property in empirical systems
lead to fast disease spreading, despite the presence of high clustering coefficients.
Therefore, many real diseases can spread rapidly despite the presence of high clustering
coefficients.

This line of reasoning ought to be counted as explanatory because it passes both
probabilistic and counterfactual tests for explanatory relevance. The probabilistic
test, originally formulated by Hans Reichenbach and developed to particular effect
by Wesley Salmon, involves two necessary conditions. For two variables A and B,
if B is explanatorily relevant to A, then (i) the probability of A conditional on B
is greater than the unconditional probability of A, and (ii) no third factor screens
off A from B. In our case, the relevant inequality says: the probability that vari-
able rhalf takes on a certain value x , given information about the fraction of disease
transmissions that are long-range, is greater than the unconditional probability that
variable rhalf takes on value x . Although the rhalf rate of a given disease cannot
be observed directly, it is clear that the influence of the contact structure on the
rhalf rate is a matter of the frequency with which people come into close physi-
cal contact with one another. This suggests that information about the particular
causal factors relevant to the determination of the rhalf rate are already subsumed
by the information about the contact structure, and therefore do not screen off its
influence. Moreover, model-fitting studies show that information about the contact
structure does, under many conditions, improve the accuracy of models when they
are used to retrodict epidemiological data (Bansal et al. 2007). So we have reason
to believe that information about the structure of real populations carries explana-
tory information about the rhalf rate of real diseases, whatever the actual value may
be.

The other well-known criterion of explanatory relevance is counterfactual: if vari-
able A had not taken value a, then variable B would not have taken value b (Woodward
2003). One of the counterfactuals prompted by the line of reasoning above is this: if
human contact structures did not typically have the small-world property, then epi-
demics would not spread as quickly as they typically do during their early stages.
This counterfactual is almost certainly true. If we could somehow intervene on the
population in such a way as to increase the path-length of the contact structure,
an epidemic would have fewer opportunities to spread. Alone, such an intervention
does not necessitate that every disease would spread more slowly. We can imag-
ine, for example, a situation in which some bacteria are willingly introduced into
the country’s water supply en masse. In this case, person to person contact of the
relevant biological kind would no longer be the primary means by which the dis-
ease is transmitted, so contact structure would make little difference to the speed
with which the disease spreads. However, if the intervention on the contact structure
were “surgical” and all biological factors were held fixed, it would be mathematically
impossible for the epidemic to spread as quickly as it would have done without the
intervention.
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One potential source of doubt about the explanatory status of the reasoning above
is that it is highly abstract and idealized. It is therefore unclear whether this reasoning
is sufficiently well grounded in the empirical target phenomenon. In particular, the
reasoning above is not firmly entrenched in the causal-mechanical factors that underlie
real instances of disease transmission.9 I offer a two-fold response to this concern.

The first part of the response is that the target of the explanation under consideration
is a generic feature of disease-like processes, rather than a feature of any particular
epidemic. What we would like to understand is why disease-like processes in general
tend to display faster spreading behavior when the structure through which they spread
has the small world property than when it does not. If a model is to explain this very
general fact, it should be able to reproduce the faster spreading behavior using only
generic system properties. The model must not, in other words, rely on the contribution
of system-specific parameters that pertain to only some peculiar instances of the target
phenomenon.

Recently, many philosophical accounts of scientific explanation have incorporated
similar arguments. I’ll mention two. Weslake (2010) argues that when the targets of
scientific explanation are generic facts, rather than events bound to a specific spatio-
temporal location, explanations will be deeper to the extent that they do not limit their
range of application by making essential reference to system-specific spatio-temporal
parameters. On Weslake’s view, as long as the statements in the explanans are true,
abstraction of the kind present in the network model actually improves the quality of
the explanation.

Huneman (2010) develops a theory of explanation in which abstract mathematical
structures are shown to describe topological properties of an empirical phenomenon
in a way that entails the explanandum behavior. In order to represent an empirical
system with a topological structure such as a graph, one needs empirical justification.
Naturally, justification depends on causal detail. However, justification and explanation
are two distinct ends. Huneman argues that, conditional on the correct representation
of topological properties, causal-mechanical details contribute little or nothing to the
derivation of the target phenomenon. (Huneman 2010, p. 218).10

Huneman’s informal definition of a topological explanation runs as follows. “When
among the consequences of some topological properties, stands the behavior, prop-
erty, or outcome we want to explain, then I say that we have given a topological
explanation of our explanandum” (Huneman 2010, p. 215). Huneman also under-
stands whole-graph properties as topological in his broad sense of that term.11 “From
now on, I call ‘topological properties,’ those properties that are either proper to subsets
in a topological space or to some graphs and networks” (Huneman 2010, p. 217). The

9 I do not mean to presume that all causal explanations are mechanistic. I discuss causal explanation in
this section, and take up a comparison with mechanistic explanation in Sect. 6.
10 Jones (2014) presents a similar view. However, the focus of that article is on the way that diagrammatic
representations facilitate inferences about counterfactual structure. In large networks, very few interesting
properties are detectable by means of visual inspection. What makes the representations useful is rather the
fact that they can be studied algorithmically.
11 It should be noted that Huneman is sensitive to the fact that topology and graph theory are distinct
mathematical disciplines, but chooses to use the term “topological” in a broad sense that covers both
disciplines.
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explanation of generic disease behavior in terms of the rhalf rate appears to count as a
topological explanation on Huneman’s view. However, not everything Huneman says
about topological explanation applies to the view of network explanation presented
here. Huneman strives to show that topological explanations are non-causal. For two
reasons, I prefer to remain neutral on that score. First, the truth conditions for the
claim that an explanation is non-causal are intimately bound up with questions about
the metaphysics of causation, which is a topic far too broad to be taken up here. Sec-
ond, and more importantly, the central concern in this article is to show that networks
are particularly appropriate for representing and reasoning about complex distributed
systems. The argument for that claim does not require us to take a stand on the philo-
sophical question of whether all scientific explanations are causal. To preserve the
broad appeal of this project, I therefore prefer not to take a side on that issue.

The second part of my response to the worry about abstraction highlights the fact
that the small-world property in the model has a clear and measurable analogue in
empirical data. While it is true that raw epidemiological data are noisy, and that it is
necessary to extrapolate from them by means of data models, the data are gathered
using standard means of demographic measurement. We already have mechanistic
knowledge of the spatial limitations of disease transmission that indicates which kind
of demographic measurements are relevant. Clearly, epidemic dynamics would not
depend so directly on contact structure if an airborne virus could travel hundreds of
miles through the air between infections. But we know that even in the case of air-
borne viruses, disease transmission depends on physical proximity. Moreover, we have
mechanistic knowledge of the transmission process that tells us whether sharing a bus
ride is more likely to result in transmission than sharing an office, for example. Given
this knowledge, we can construct a model of contact structure based on surveys about
personal relationships, and physical and demographic data on schools, workplaces,
and transportation systems. For details about how these data are collected, see Roth-
man et al. (2008). This background knowledge about the causal processes underlying
disease transmission is an essential part of the justification for applying the mathe-
matical, graph-theoretic model to the empirical phenomena. Given that justification,
the applied model should be counted as what Craver (2006) calls a “how-actually”
model.12

A second source of doubt about the explanatory status of network models is the
fact that when philosophers of science describe novel kinds of scientific explanation,
the kinds they have in mind tend to line up with an established scientific discipline
such as astrophysics or molecular biology. Since graph-theory is not itself a scientific
discipline with unique empirical content, the set of scientific explanations it can be used
to construct will not be sufficiently unified to deserve methodological commentary.
The response to this worry is that in some cases, new mathematical techniques give
rise to a distinctive kind of explanation that fails to line up with traditional disciplinary
boundaries. This domain-general, representation-centric approach to explanation has
been emphasized in a growing body of philosophical work.

12 Although I am borrowing the terminology from Carl Craver’s well-known article “When mechanistic
models explain,” I do not mean to imply that the small-world model should be counted as a mechanistic.
Reasons for resistance are discussed in Sect. 6.
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An excellent example can be found in a recent (2014) article by Paul Humphreys, in
which he articulates an explanatory paradigm called “explanation as condition satisfac-
tion.” Condition-satisfaction explanations proceed by showing that the mathematical
generating conditions for a given mathematical object (such as a probability distribu-
tion) are satisfied by the empirical generating conditions for an empirical phenomenon.
It is then demonstrated that facts about the mathematical object account for non-trivial
facts about the empirical phenomenon. According to Humphreys, one of the most
important features of such explanations is that they “do not require the use of detailed
models of system-specific processes […]” (Humphreys 2014, p. 1103). A number of
other recent articles have also promoted that idea that certain kinds of mathematical
representation generate epistemologically distinctive kinds of explanation that are not
constrained to a particular empirical discipline. These include Batterman and Rice
(2014) on minimal model explanation, Lange (2009) on dimensional explanation, and
Ladyman et al. (2007) on renormalization group explanation. On the view defended
here, network explanation deserves to be added to the list.

We have seen that network explanations are abstract, and that the explanatory
inferences they make possible are not confined to a particular discipline. As recent
philosophical literature has emphasized, neither of these two features should be viewed
as a credible threat to the explanatory status of network models. In any case, despite
their salience, neither of these two features is unique to network models. In the fol-
lowing two sections, I describe what I take to be the most distinctive features of
network explanation. Taken together, these features illustrate a relatively new and
relatively cohesive strategy for reasoning about a variety of complex distributed
systems.

4 Network models embrace complexity

4.1 Embracing complexity

In this section, it is argued that network models embrace complexity, rather than
shy away from it. In order to establish this claim, I first say what it means to embrace
complexity, and show how network models do so. Then, I describe why this orientation
toward complexity should be counted as an epistemologically significant development.

In order to understand the claim that network models embrace complexity, we begin
with a characterization of complexity itself, as it relates to the phenomena of interest
in network science. In this context, complex systems are those in which many discrete
elements display a non-trivial pattern of interaction. If you want to understand the col-
lective behavior of a complex system, you need to take that pattern of interaction into
account. In other many-element systems, the pattern of inter-element interaction plays
a less important role in determining system behavior, and can therefore be ignored
or simplified. In ideal gases at equilibrium, for example, intermolecular interactions
are stochastically independent. This fact provides justification for ignoring the precise
features of the pattern, and allows us to represent the set of interactions with a single
distribution function. This is a case in which randomness justifies the suppression of
information about the pattern of interaction. In other cases, a highly ordered configu-
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ration of interactions provides the needed justification. For example, the melting point
of many crystals is determined by the ratio of the displacement of an atom from its
lattice position to the distance to its nearest neighbor. Although crystals are almost
never organized into perfect lattices, and distance to nearest neighbor varies from site
to site, it can nevertheless be represented by a fixed parameter for many computational
purposes. In both cases, successful models suppress information about the pattern of
interaction by replacing it with an all-purpose fixed parameter.

When dealing with complex systems, such idealizations are not satisfactory. The
particular pattern of inter-element interaction plays an ineliminable role in producing
the collective behavior of interest. In such cases, it becomes necessary to include at
least one variable that carries information about the precise pattern of inter-element
interaction. Let us call such a variable a “pattern variable.” To say that a network model
embraces complexity is to say that it reproduces the collective behavior of interest
by representing that behavior as a function of a pattern variable. Figure 5 depicts a
canonical example of such a functional relationship: the pattern variable p captures the
proportion of interactions that are long-range. The rhalf rate is the collective behavior
that epidemiologists would like to explain.

We now have an account of the sense in which network models embrace complexity.
That account relies directly on the notion of a pattern variable, which has not been
clearly defined. Naturally then, our next task is to construct such a definition.

4.2 The fixation criterion

Notice that the graph construction algorithm in the Watts and Strogatz model is
designed such that the graph retains the same number of nodes and edges on each
simulation trial. Moreover, the only biological parameter in the model is transmission
versus lack of transmission. Even though these properties are held fixed on each trial,
our explanatory variable—the proportion of long-range connections—remains free to
vary.

This observation can be generalized to yield an account of what it is for a variable
to represent a pattern of interaction. A variable will count as a pattern variable in
the sense intended here if and only if holding fixed (i) the number of nodes (ii) the
number of dyadic interactions per node and (iii) the dynamics of each interaction, is
not sufficient to fix the value of the variable.

Conditions (i) and (ii) reflect the fact that information about the pattern of inter-
element interaction cannot be captured by facts about the mere magnitude of the
system. Condition (iii) shows that information about the pattern of interaction cannot
be captured by facts about the composition and dynamics of local dyadic relations.
Patterns of interaction provide information that is instead about the unique manner
in which interactions are distributed across the entire collection of elements. Vari-
ables that satisfy the fixation criterion provide some direct insight into the properties
that make the system complex. If those variables can be recruited to explain sys-
tem behavior, then the explanation is one that exploits complexity for explanatory
ends.
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4.3 The epistemological significance of network models

At the outset of Sect. 4, it was suggested that the orientation toward complexity implicit
in the use of network models is epistemologically significant. In this section, I give
two reasons for this view.

The first reason has to do with the ability of network models to abstract away
from the underlying theory of the individual system components. To see this, let
us compare network and non-network approaches to answering the question “why
do diseases sometimes move quickly through a population?” Before the Watts and
Strogatz result, all known attempts to answer this question incorporated information
about the biological properties of infectious diseases (information about the values of
the parameters in the compartmental model above). A standard answer would cite the
fact that the degree of infectiousness of the disease in question has surpassed a critical
threshold. Specifically, the standard answer would cite the fact that a quantity known as
the basic reproductive number is substantially greater than one. The basic reproductive
number is a measure of the average number of new infections at each time step, and can
be calculated approximately as the ratio of two biological parameters, β/γ . The Watts–
Strogatz results provide an entirely different answer that is based on the organization of
the contact structure, rather than its biological underpinnings. The network approach
provides an avenue of understanding that is at least partially uncoupled from biological
theory, and is therefore resistant to traditional accounts of inter-theoretic reduction.

The second reason that the network orientation toward complexity is epistemolog-
ically significant is that network models are far more abundant than traditional forms
of scientific representation. Every element in the system is represented explicitly in
the graph, as is every pairwise interaction. This abundance necessitates massive rep-
resentations and considerable computational power. Since the number of elements in
an adjacency matrix grows as the square of the number of system elements, network
representations are subject to combinatorial explosion. For example, in one of the first
large-scale, network-oriented studies of protein–protein interactions in humans, Rual
et al. studied the interactions between 8,100 protein types, creating a space of over 65
million possible interactions. It is this capacity of graphs to explicitly represent every
possible pairwise interaction between elements that sets it apart from other forms of
representing complex systems.

In traditional approaches to many-element systems, the goal is to construct a model
that is itself no longer complex and therefore (hopefully) tractable. Weisberg (2007)
calls this model-building strategy “Galilean idealization,” and argues that it is one of
the three most prominent forms of idealization in the history of science. Although
network models always involve idealization away from the empirical character of
individual nodes, their head-on approach to complexity breaks free of the need to
engage in Galilean idealizations concerning the number of discrete elements in a
system, and thereby allows scientists to overcome what was previously a significant
epistemic constraint.13

13 This freedom from Galilean idealization is one reason why network representations can be viewed as
epistemologically distinctive. The computational methods used to study them provide a kind of understand-
ing that at least partially breaks free from the processing limitations intrinsic to human cognition.
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5 Explaining non-decomposable systems

5.1 Defining near-decomposability

In Sect. 4, it was argued that network science confronts complexity in a head-on
manner. In this section, it is argued that the head-on approach is especially valuable
when applied to the study of non-decomposable systems.

A natural starting point for the argument is with a definition of nearly-decomposable
systems. Strevens (2005) defined nearly-decomposable systems as ones in which “the
short-term behavior of a system’s components can be understood largely independently
of the behavior of other components.” In his landmark paper on complex systems,
Herbert Simon gave a similar, but somewhat more subtle definition. “In a nearly-
decomposable system, the short-run behavior of each of the component sub-systems
is nearly independent of the short-run behavior of the other components, and in the
long-run, the behavior of any one of the components depends only in an aggregate
way on the behavior of other components” (Simon 1962, p. 474).

Where systems are nearly-decomposable, it is not necessary to represent every
component in the system explicitly. In virtue of the independence of component sub-
systems, scientists are free to develop a theory of each subsystem, and then compose
the predictions of those theories in order to yield predictions about the behavior of the
whole. According to both Simon and Strevens, the benefit of decomposition opera-
tions is that they relieve us of the burden of representing every element explicitly, and
thereby save us from the troubles associated with combinatorial explosion. In short,
therefore, when dealing with nearly-decomposable systems, some compact form of
representation will be available.

With this conception of near-decomposability in mind, we can now define non-
decomposability. Roughly, a non-decomposable system is one that is not even close
to being nearly-decomposable. More precisely, a system is non-decomposable just in
case the behavior of any given component part, even over a short time period, depends
on the behavior of many other individual components.

This definition is to be interpreted in such a way that the term “component”
can refer either to the basic elements in a system or to any collection of basic
elements other than the entire set. Interpreted this way, the definition entails that
within a non-decomposable system, no component subsystems exist that are either
independent or nearly independent of one another. This consequence yields an appro-
priate contrast with the property of near-decomposability. Near-decomposability is
an empirical property that provides justification for using compact representations.
Non-decomposability, as defined here, is the corresponding empirical property that
guarantees that compact representations will be empirically inadequate.

5.2 Epidemiological populations are non-decomposable

As we saw in the epidemiological case above, network models typically do require the
representation of every element in the system, and since many representations involve
thousands of elements, I called network science representations abundant. Now we
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can see that this abundant character is by no means accidental. The alternative to
using an abundant form of representation is to rely on part-whole decomposition,
with the hope of securing a more compact and therefore more manageable represen-
tation. But no part-whole explanatory strategy could have answered the question of
why disease-like phenomena spread faster in small-world structures than otherwise,
precisely because the epidemiological case is an example of a non-decomposable
system.

To see this, we must ask what units of decomposition would serve as compo-
nent subsystems if the epidemiological system were decomposable. What about
individual organisms? Might they serve as units of decomposition? While there
is no general difficulty in individuating organisms, the possibility of individua-
tion at this fundamental level is only a degenerate case of decomposability. As
both Simon and Strevens have stressed, the goal of decomposition is precisely to
find a level of description at which basic elements need not be represented indi-
vidually, so that our representations do not grow to unwieldy proportions. In our
epidemiological example, the only higher-level units available are the groups of
organisms that correspond to the compartments in the SIR model. These groups
cannot serve as units of decomposition, however, because they do not satisfy the
criterion of short-term independence. The size of the whole population is conserved,
and therefore any change to one compartment necessitates a corresponding change
in another compartment that is, moreover, realized in the very next time-step. The
short-term behavior of these groups will therefore be highly interdependent. As a
result, they satisfy the crucial short-term dependence condition in the definition of
non-decomposability.

Neither individuals nor compartmental groups are legitimate units of decomposi-
tion. Might there be a third way? Could we impose some ad hoc taxonomy that is not
reflected in the model as it stands? For example, could we divide the population into
clusters as defined above, and then predict the behavior of each cluster on a purely
local basis? We cannot. The interconnected nature of graphs precludes such a strategy.
Clusters can be connected to the rest of the graph in many ways, and the manner in
which they are connected will have an immediate effect on the short-term behavior of
the cluster itself.

Consider a case in which the cluster in question is composed of three nodes in
the susceptible compartment, each of which has some non-zero disposition to acquire
the disease upon contact with an infected individual. The cluster is either connected
to the rest of the graph or it is not. If not, then the transmission probability drops
to zero. If purely local considerations predict a positive probability of infection, but
considerations of connectivity tell us that the true probability is zero, then the unit
in question is not sufficiently independent from the rest of the population to serve as
unit of decomposition. If the cluster is connected (which is the more realistic case for
most biological populations) the susceptibility of each node depends on whether the
external node to which it is connected is itself infected. Since we are assuming that all
edges represent short-term interactions, this dependence obtains at a very short time
interval. As a result, ad hoc taxonomies give us no reason to think that epidemiological
populations might be decomposable after all. If we want to reason effectively about
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system behavior, therefore, it is necessary to tackle the interconnectedness of the
population more directly.14

From this discussion, it is already evident that there is a comparative sense in which
the epistemic benefits of network representation are particularly helpful in the domain
of non-decomposable systems. Other approaches to complex systems rely on part-
whole decomposition, but such approaches fail when applied to non-decomposable
systems. Network science therefore offers unique benefits in this area. But there is
a more important and more interesting sense in which network representations have
special applicability in the domain of non-decomposable systems. To articulate the
idea, it will be helpful to introduce another model.

5.3 A model of urban traffic density

Consider the question of why some particular road in a city has the highest occurrence
of traffic jams. One way of answering this question is to examine the kinds of institution
to which the road provides access. The more traffic attracted by those institutions, the
more traffic will appear on the roads that lead to it. This is known as the inherent
travel demand on a road. There is another, network-oriented approach to answering
this question that has recently become popular. The network approach determines
probability that a road will become congested by examining its location relative to all
other roads, regardless of the kinds of institution to which it provides access. In a recent
paper, Wang et al. (2012) show that by incorporating information about how centrally
a road is situated in graph-theoretic space, they can better predict traffic patterns in
San Francisco and Boston.15

The extent to which a road segment occupies a central place in the city grid is
measured in terms of a mathematical property of networks known as betweenness.
Betweenness is a property of a single edge in a graph. To compute the betweenness
of an edge, a search algorithm examines every pairwise combination of nodes in
the graph, and finds the shortest path length between each pair. It then searches the
resulting data structure to determine what proportion of those paths incorporate the
road segment in question. That proportion is the betweenness of the edge. It is not
difficult to see how this mathematical measure can be converted into an empirical
one. Edges represent road segements, which are defined as stretches of road between
legal intersections, and nodes represent the intersections themselves. The movement
of automobiles is represented with a dynamical system not entirely unlike the one
discussed in the epidemiological case above. At each time step in the simulation,
a number is assigned to a road segment that represents the number of automobiles
occupying that segment. Wang et al. show that the traffic density on a road segment

14 It is important that many epidemiological models assume constancy of infection time. If the target
population had, for example, a bi-modal distribution of infection times in which one cluster of organisms
is disposed to become infected quickly and another is disposed to become infected slowly, it is likely that
some of the collective dynamical behavior could be explained on the basis of a decompositional strategy.
15 The mathematical measure is sometimes called betweenness and sometimes called betweenness cen-
trality. I use the term “betweenness” to refer to the mathematical property and the term “road centrality” to
refer to an empirical property of a road.
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can be predicted better by modeling both the road’s centrality and inherent travel
demand than it can by modeling inherent travel demand alone.

5.4 Betweenness and complete non-decomposability

A closer look at the betweenness relation reveals quite a lot about the distinctive nature
of network science. On the one hand, it is a purely local property that applies only to
a single edge, and on the other hand, its value is only visible once a complete search
of the graph has been conducted.

It is impossible for a single edge between two otherwise disconnected nodes to
instantiate the property of betweenness because it is undefined where no other edges
exist (on pain of division by zero). Logically speaking, the betweenness of an edge is a
“collapsed” relational property between that edge and every other edge in the graph. As
such, where betweenness is employed in an empirical setting, it carries information
about the complete pattern of interaction in the system to which it is applied. This
fact is epistemologically significant, and can help to illustrate the sense in which
network representations have special applicability in the domain of non-decomposable
systems.

Recall the definition of non-decomposable systems: a system is non-decomposable
just in case the behavior of any given component part, even over a short time period,
depends on the behavior of many other individual components. Above, I argued that
the study of non-decomposable systems forces scientists to use abundant representa-
tions. Some representations are more abundant than others, and among the class of
non-decomposable systems, we can define a subclass for which appropriate representa-
tions must be maximally abundant. Call these systems completely non-decomposable.
To define this subclass, simply replace the term “many” in the definition of non-
decomposable systems with the term “every.” Where the behavior of every other
component in the system must be consulted in order to predict the behavior of a single
component, the task of predicting general system behavior is unusually daunting since,
in order to carry out the task, one must face the problem of combinatorial explosion
in its most radical form.

Now we are in position to see why properties such as betweenness make network
representations particularly valuable in the domain of non-decomposable systems:
even in the most extreme case of complete non-decomposability, where combinatorial
explosion is maximal, properties such as betweenness offer us perfectly serviceable
explanantia. In virtue of the fact that betweenness “collapses” information about
the entire graph, it makes even completely non-decomposable systems epistemically
accessible. Once we know that the centrality of a road segment in a city is predictive of
local traffic density, the fact that the task of measuring centrality requires a computa-
tionally demanding global search of the city grid makes little difference to our ability
to understand why the most central road is likely to have one of the highest values of
traffic density. This shows that network measures such as betweenness are especially
well-suited to modeling non-decomposable systems. They compress what appear at
first to be hopelessly complex patterns of interaction into meaningful variables, and
those variables often have considerable explanatory power.
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I have been arguing that network representations are particularly well suited to mod-
eling non-decomposable systems. The argument presented thus far can be strengthened
a bit by noting one additional point about the nature of betweenness. To make the point,
it is necessary to introduce another strategy for dealing with non-decomposable sys-
tems that is nicely articulated in Strevens (2005). Strevens describes a method he calls
enion probability analysis, or EPA. Roughly, EPA is a strategy for aggregating prob-
abilities at the level of individual elements in a non-decomposable system in order to
make predictions about macrolevel dynamics. The case described above of computing
internal energy in a physical particle system is an example of EPA. Given that kind of
approach to aggregation, information about individual behaviors is lost. EPA does not,
therefore, support inferences from the aggregated behaviors of individual elements to
the behavior of any particular element within the aggregate. However, this kind of
many-to-one influence is one of the hallmarks of a highly interconnected system, and
it is complex patterns of influence like this that demand a novel approach. Thankfully,
network representations do allow predictions of this kind. In Wang’s model, the cen-
trality of a road segment can, for example, be recruited to explain why a particular
location in Boston has as much traffic as it does.

In highly non-decomposable systems, this kind of influence between the pattern of
interaction, one the one hand, and some particular local behavior, on the other, makes
a real difference. Aggregative approaches that fail to explicitly model inter-element
interaction cannot capture that difference. Network representations can, and this gives
us yet another reason to believe that they are particularly well suited to explaining
non-decomposable systems.

6 Networks and mechanistic explanation

In conclusion, I would like to briefly compare the strategy suggested here with the strat-
egy suggested in a recent paper by Levy and Bechtel (2013). Levy and Bechtel show
how network representations can be used to model the organization of mechanisms.
Their discussion focuses on gene expression in small-scale networks, where patterns
of interaction appear to make a genuine explanatory difference. The philosophical
aspect of their discussion emphasizes a contrast between two views about the role of
system organization in mechanistic explanation. On the view they criticize, abstract
principles of system organization can at best serve as templates for mechanistic expla-
nation. The real explanatory work is done only when details regarding the material
properties of the component parts (size, shape, chemical reactivity, etc) are filled in.
Their own view, by contrast, is that some mechanistic explanations are actually driven
by considerations of system organization. Sometimes, mechanistic explanations oper-
ate almost exclusively at a high level of abstraction, where very little in the way of
detail regarding the material properties of system components is included.

The description of network science provided in this article has much in common
with the view that Levy and Bechtel defend. But there is a difference of emphasis
that might be misinterpreted as disagreement. Where Levy and Bechtel describe the
use of network representations as an extension of the mechanistic project, the models
described here have very little to do with the discovery of mechanisms. Nevertheless,
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I see our views as more or less compatible. Levy and Bechtel have described one sci-
entific application of network thinking, and I have described another.16 Because the
phenomena Levy and Bechtel focus on have only five or six components, the modeling
efforts they describe do not face the problem of combinatorial explosion. The epistemo-
logical problem they are trying to solve is therefore quite different from the one artic-
ulated here. Where combinatorial explosion is not a problem, it is natural to envision
the application of network representations as an extension of a mechanistic strategy.

Although I am therefore largely in agreement with Levy and Bechtel, I do not want
to advocate some kind of mushy pluralism. There is a hard line to be drawn: the strat-
egy presented in this article cannot be subsumed within the mechanistic framework
because it applies principally to systems that are highly non-decomposable. As Bech-
tel and Richardson explain in their wonderful book on complexity, the mechanistic
strategy for explanation assumes that near-decomposability obtains. The assumption is
necessary because the mechanistic strategy depends on localizing particular activities
to particular substructures. In order for the localization strategy to work, each substruc-
ture must contribute in a relatively consistent fashion to the behavior of the whole. If
there are no mechanically distinct substructures that realize some particular “activity,”
then mechanistic models cannot explain (Bechtel and Richardson 1993, p. 203).

Further support for the claim that localization and decomposition are essential to
the mechanistic program can be found by examining the criteria proposed in a 2010
paper by Bechtel and Abrahamsen. The goal of the paper is to incorporate dynamical
and organizational features into the mechanistic account of explanation. Even in that
context, their explicit characterization of mechanism reads, “A mechanism is a struc-
ture performing a function in virtue of its component parts, component operations,
and their organization” (Bechtel and Abrahamsen 2010, p. 323). In order to generate a
mechanistic explanation, therefore, one must be in position to individuate the relevant
components and provide evidence that associates components with specific opera-
tions. That both of these goals must be achieved is supported by the observation that
they are necessarily interdependent. Part of the evidence that a particular component
is mechanistically relevant is the fact that it is responsible for carrying out a partic-
ular operation. Of course, one could simply stipulate that mechanistic explanation is
possible without any commitment to identifying parts and operations, but that kind of
bare stipulation threatens to take the normative bite out of the mechanistic program.
Chemero and Silberstein make a similar point. They emphasize that if components
cannot be identified, or if no stable role can be assigned to components, the mechanistic
approach to explanation breaks down (Silberstein and Chemero 2013, p. 961).17

16 As a matter of fact, Levy and Bechtel mention the Watts and Strogatz model as well as the concept
of a small-world, apparently because the concept has played such a major role in helping to popularize
network science. But they quickly set aside such “large-scale statistical models” and explicitly restrict their
discussion to much smaller and non-statistical models.
17 Thanks to an anonymous referee for alerting me to this article, which has a lot in common with the
discussion in this section. Given the overlap in emphasis, it is worth noting three points of contrast. First,
the Silberstein and Chemero article is aimed exclusively at explanations in biology and neuroscience. My
aims are much broader. Second, it is my view that network models have the best chance at explaining in
cases in which the individuation of nodes is unproblematic and can be relocated to the background (this point
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This hard line suggests something like a division of labor. Recall the quote from
Barabasi given at the outset. Barabasi claims that network science will become the
foundation of a general theory of complex systems. Insofar as there are many mecha-
nistic explanations of complex systems that do not involve the kind of network thinking
that Levy and Bechtel discuss, Barabasi’s claim is too strong. It would be wrong to call
a modeling framework the foundation of a theory if many of the systems to which the
theory applies cannot be captured within that modeling framework. We can weaken
Barabasi’s claim a bit by thinking about the principles of network science in terms of
heuristics rather than fundamental theory. The mechanistic tradition in the philosophy
of science has often construed the norms of mechanistic explanation in this way, and
it may be useful to take a similar attitude toward network science.

The division of labor I envision is this. When we are dealing with large, robustly non-
decomposable complex systems in which combinatorial explosion cannot be avoided,
the network strategy described here can be seen as a defeasible heuristic for conducting
research. For decomposable or nearly-decomposable complex systems, mechanistic
research is an appropriate heuristic, despite the fact that in many cases it must be
supplemented by network-like representations.18

A committed mechanist might object to this proposal on the grounds that the
individual elements that compose a complex system must themselves be subject to
mechanistic analysis before the kind of reasoning described here can be carried out.
As Alan Baker has stressed in a recent paper, it is difficult to know how to apply net-
work concepts without some theoretical framework that offers individuation principles
for the phenomena that correspond to the nodes and edges in a graph (Baker 2012).
A committed mechanist might build upon Baker’s observation by claiming that it is
necessary to have a mechanistic model of the individual components and relations in a
system before any network representations can legitimately be applied. If this is right,
then mechanistic explanation is a necessary condition on the successful application of

Footnote 17 continued
is discussed below). In systems neuroscience—which receives the bulk of the attention in the Silberstein
and Chemero article - the task of individuation is often quite controversial. This is not to say that examples
in the literature are inadequate, but to suggest that there are explanatory hurdles in neuroscience over and
above those typically present in the social and epidemiological sciences. Third, Silberstein and Chemero
are interested in showing that the style of explanation they see in systems neuroscience is something
“more lawlike” than what the mechanists propose (p. 970). In my view, the relation between law-like
and mechanistic forms of explanation is not mutually exclusive. The explanatory status of the cases I have
described depends neither on a commitment to predictivism nor on the role of nomological necessity. Rather,
they are cases in which we have empirical justification that a mathematical model accurately represents a
particular empirical phenomenon. The accuracy of the representation justifies certain explanatory inferences.
The question of how mathematics matches up with reality is both more general and more difficult than
the question of how network representations explain. Good discussions of this topic that conform to the
perspective defended here can be found in Pincock (2012) and Humphreys (2014).
18 In fact, a position like this was anticipated by Bechtel and Richardson two decades ago. Describing
a continuum of cases in which the pattern of interaction among elements plays an increasingly greater
role in understanding system behavior, they conclude: “If organization becomes even more dominant in
explaining the behavior of the system, and we appeal less to different and distinctive functions performed by
the components, we reach a point where decomposition and localization have to be surrendered” (Bechtel
and Richardson 1993, p. 199).
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network representation. It follows, the objection goes, that network explanations are
always extensions of mechanistic explanations.19

For the sake of argument, let us grant the premise that it is always necessary to
have a mechanistic model of the individual components of a complex system before
its organizational properties can be modeled. From this premise, however, the con-
clusion that network explanations are always extensions of mechanistic explanations
does not follow. The modeling strategy described here has nothing to do with the
kinds of decompositional analysis that are central to the mechanistic project. To see
this, we must first remember that explanations are not generally transitive. So the fact
that we have a mechanistic explanation of the individual components of a complex
system is no guarantee that we have an explanation of the system itself, mechanistic
or otherwise. To show that a mechanistic explanation at the systems level is avail-
able, more evidence is needed. Moreover, if by “mechanism” we have in mind the
understanding of mechanism discussed in the literature on mechanistic explanation in
biology, that additional evidence will have to point to the existence of an intermediate
level of organization at which independent component subsystems can be identified.
As was argued in Sect. 5.2, however, there are cases in which no such intermediate
level exists. In those cases, mechanistic explanation is just impossible.

Although the argument offered here on behalf of the committed mechanist turns
out not to be compelling, it does hint at the fact that in many cases, some mechanistic
understanding of the components in a complex system is extremely valuable. It is
worth reflecting on why this is so. Perhaps mechanistic approaches are particularly
useful when the elements that compose a system are not yet well understood. If we
attempt to apply network representations in cases where our understanding of the
individual components is very poor, we are likely to misrepresent the system, and
draw bad inferences as a result. But in traffic science, epidemiology, computer science,
microeconomics, and other areas, we have quite a lot of mechanistic knowledge about
individual interactions either because they are straightforwardly observable (paying
for milk at the grocery store is a paradigmatic economic exchange) or because they
are constructed by us (we construct the circuit boards that execute computations). But
partly because that kind of knowledge is relatively unproblematic in comparison with
other scientific concerns, we may relegate it to the background. There is a sense in
which we can legitimately take such mechanistic knowledge for granted because it
does not need to be explicitly represented when we construct new explanations, even
if those explanations implicitly depend on the fact that certain mechanistic details
are part of the fabric of our background knowledge. Perhaps it is in part because we
already have an intimate mechanistic understanding of certain kinds of interaction in
a complex system that we are in position to know that certain details can be left out

19 Baker also argues that one of the dangers associated with network science is the unwarranted reification
of networks. The fact that network representations are explanatorily useful does not entail that network-like
empirical phenomena constitute a natural kind. This is one reason that I have stressed the epistemic, rather
than ontological contribution of network science. In areas such as molecular biology, neuroscience, and
perhaps even ecology, it is reasonable to treat networks as real representation-independent features of the
empirical world. In many other areas, however, including those discussed in this article, it is far from clear
that this realist attitude is appropriate. In any case, arguments for such a view would require premises that
are not clearly supported by the present discussion.
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(for certain purposes). In such cases, we stand to gain additional understanding by
focusing on the unique pattern of interaction among a system’s many elements.
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