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Abstract

There is wide support in logic, philosophy, and psychology for the hypothesis that the probability of the indicative

conditional of natural language, Ppif A then Bq, is the conditional probability of B given A, PpB|Aq. We identify

a conditional which is such that Ppif A then Bq “ PpB|Aq with de Finetti’s conditional event, B|A. An objection to

making this identification in the past was that it appeared unclear how to form compounds and iterations of conditional

events. In this paper, we illustrate how to overcome this objection with a probabilistic analysis, based on coherence, of

these compounds and iterations. We interpret the compounds and iterations as conditional random quantities which,

given some logical dependencies, may reduce to conditional events. We show how the inference to B|A from A and

B can be extended to compounds and iterations of both conditional events and biconditional events. Moreover, we

determine the respective uncertainty propagation rules. Finally, we make some comments on extending our analysis

to counterfactuals.
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1. Introduction

There is wide agreement in logic and philosophy that the indicative conditional of natural language, if A then B,

cannot be adequately represented as the material conditional of binary logic, logically equivalent to sA _ B (not-A

or B) [26]. Psychological studies have also shown that ordinary people do not judge the probability of if A then B,

Ppif A then Bq, to be the probability of the material conditional, PpsA_ Bq, but rather tend to assess it as the conditional

probability of B given A, PpB|Aq, or at least to converge on this assessment [5, 28, 30, 55, 70, 71, 83]. These

psychological results have been taken to imply [5, 29, 41, 64, 71, 72], that if A then B is best represented, either as

the probability conditional of Adams [3], or as the conditional event B|A of de Finetti [21, 22], the probability of

which is PpB|Aq. We will adopt the latter view in the present paper and base our analysis on conditional events and

coherence (for related analyses, specifically on categorical syllogisms, squares of opposition under coherence and on

generalized argument forms see [42, 77, 76, 82]). One possible objection to holding that Ppif A then Bq “ PpB|Aq
is that it is supposedly unclear how this relation extends to compounds of conditionals and makes sense of them

[24, 26, 87]. Yet consider:

ahkkkkkkkkkikkkkkkkkkj
She will be angry if

bhkkkkkkkkikkkkkkkkj
her son gets a B and

fhkkkkkkkkkikkkkkkkkkj
she will be furious if

chkkkkikkkkj
he gets a C . (1)

✩This is a substantially extended version of a paper ([40]) presented at the 8th International Conference Soft Methods in Probability and

Statistics 2016 (SMPS 2016) held in Rome in September 12–14, 2016.
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The above conjunction appears to make sense, as does the following seemingly even more complex conditional con-

struction [24]:

If she will be angry if her son gets a B, then she will be furious if he gets a C. (2)

We will show below, in reply to the objection, how to give sense to (1) and (2) in terms of compound conditionals.

Specifically, we will interpret (1) as a conjunction of two conditionals (a|b and f |c) and (2) in terms of a conditional

whose antecedent (a|b) and consequent ( f |c) are both conditionals (if a|b, then f |c). But we note first that the

iterated conditional (2) validly follows from the conjunction (1) by the form of inference we will call centering

which, as we will show, can be extended to the compounds of conditionals (see Section 3 below). We point out

that our framework is quantitative rather than a logical one. Indeed in our approach, syntactically conjoined and

iterated conditionals in natural language are analyzed as conditional random quantities, which can sometimes reduce

to conditional events, given logical dependencies ([47, 50]). For instance, the biconditional event A||B, which we will

define by pB|Aq ^ pA|Bq, reduces to the conditional pA ^ Bq|pA _ Bq. Moreover, the notion of biconditional centering

will be given.

The outline of the paper is as follows. In Section 2 we give some preliminaries on the notions of coherence and p-

entailment for conditional random quantities, which assume values in r0, 1s. In Section 3, after recalling the notions of

conjoined conditional and iterated conditional, we study the p-validity of centering in the case where the basic events

are replaced by conditionals. In Section 4 we give some results on coherence, by determining the lower and upper

bounds for the conclusion of two-premise centering; we also examine the classical case by obtaining the same lower

and upper bounds. In Section 5, after recalling the classical biconditional introduction rule, we present an analogue

in terms of conditional events (biconditional AND rule); we also obtain one-premise and two-premise biconditional

centering. In Section 6 we determine the lower and upper bounds for the conclusion of two-premise biconditional

centering. In Section 7 we investigate reversed inferences (i.e., inferences from the conclusion to its premises), by

determining the lower and upper bounds for the premises of the biconditional AND rule. Section 8 sketches how to

apply results of this paper to study selected counterfactuals, and remark that the Import-Export Principle is not valid

in our approach which allows us to avoid Lewis’ notorious triviality results. Section 9 concludes with some remarks

on future work. Further details which expand Section 2 are given in Appendix A.

2. Some preliminaries

The coherence-based approach to probability and to other uncertain measures has been adopted by many authors

(see, e.g., [7, 8, 12, 13, 14, 15, 16, 17, 18, 38, 49, 71, 88]); we recall below some basic aspects on the notions of

coherence and of p-entailment. In Appendix A we will give further details on coherence of probability and prevision

assessments.

2.1. Events and constituents

In our approach events represent uncertain facts described by (non ambiguous) logical propositions. An event A is

a two-valued logical entity which is either true (T ), or false (F). The indicator of an event A is a two-valued numerical

quantity which is 1, or 0, according to whether A is true, or false, respectively, and we use the same symbol to refer to

an event and its indicator. We denote by Ω the sure event and by H the impossible one (notice that, when necessary,

the symbol H will denote the empty set). Given two events A and B, we denote by A ^ B the logical intersection, or

conjunction, of A and B; moreover, we denote by A _ B the logical union, or disjunction, of A and B. To simplify

notations, in many cases we denote the conjunction of A and B (and its indicator) as AB; of course, AB coincides with

the product of A and B. We denote by sA the negation of A. Of course, the truth values for conjunctions, disjunctions

and negations are obtained by applying the propositional logic. Given any events A and B, we simply write A Ď B to

denote that A logically implies B, that is AsB “ H, which means that A and sB cannot both be true.

Given n events A1, . . . , An, as Ai _ sAi “ Ω , i “ 1, . . . , n, by expanding the expression
Źn

i“1pAi _ sAiq, we obtain

Ω “
nľ

i“1

pAi _ sAiq “ pA1 ¨ ¨ ¨ Anq _ pA1 ¨ ¨ ¨ An´1
sAnq _ ¨ ¨ ¨ _ psA1 ¨ ¨ ¨ sAnq;
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that is the sure event Ω is represented as the disjunction of 2n logical conjunctions. By discarding the conjunctions

which are impossible (if any), the remaining ones are the constituents generated by A1, . . . , An. Of course, the con-

stituents are pairwise logically incompatible; then, they are a partition of Ω. We recall that A1, . . . , An are logically

independent when the number of constituents generated by them is 2n. Of course, in case of some logical dependen-

cies among A1, . . . , An, the number of constituents is less than 2n. For instance, given two events A, B, with A Ď B,

the constituents are: AB, sAB, sAsB. If not stated otherwise, we assume logical independence throughout the paper.

2.2. Conditional events and coherent probability assessments

Given two events E,H, with H ‰ H, the conditional event E|H is defined as a three-valued logical entity which

is true (T), or false (F), or void (V), according to whether EH is true, or sEH is true, or sH is true, respectively. The

notion of logical inclusion among events has been generalized to conditional events by Goodman and Nguyen in

[52] (see also [49]). Given two conditional events E1|H1 and E2|H2, we say that E1|H1 implies E2|H2, denoted by

E1|H1 Ď E2|H2, iff E1H1 true implies E2H2 true and sE2H2 true implies sE1H1 true; i.e., iff E1H1 Ď E2H2 and
sE2H2 Ď sE1H1.

We recall that, agreeing to the betting metaphor, if you assess PpE|Hq “ p, then, for every real number s, you are

willing to pay an amount ps and to receive s, or 0, or ps, according to whether EH is true, or sEH is true, or sH is true

(bet called off), respectively. Then, the random gain associated with the assessment PpE|Hq “ p is G “ sHpE ´ pq.

Given a real function P : K Ñ R, where K is an arbitrary family of conditional events, let us consider a

subfamily Fn “ tE1|H1, . . . , En|Hnu of K , and the vector Pn “ pp1, . . . , pnq, where pi “ PpEi|Hiq , i “ 1, . . . , n.

We denote by Hn the disjunction H1 _ ¨ ¨ ¨ _ Hn. As EiHi _ sEiHi _ sHi “ Ω , i “ 1, . . . , n, by expanding the

expression
Źn

i“1pEiHi _ sEiHi _ sHiq we can representΩ as the disjunction of 3n logical conjunctions, some of which

may be impossible. The remaining ones are the constituents generated by Fn and, of course, are a partition of Ω. We

denote by C1, . . . ,Cm the constituents which logically imply Hn and (if Hn ‰ Ω) by C0 the remaining constituent
sHn “ sH1 ¨ ¨ ¨ sHn, so that

Hn “ C1 _ ¨ ¨ ¨ _ Cm , Ω “ sHn _Hn “ C0 _ C1 _ ¨ ¨ ¨ _ Cm , m ` 1 ď 3n .

In the context of betting scheme, with the pair pFn,Pn) we associate the random gain G “
řn

i“1 siHipEi ´ piq,

where s1, . . . , sn are n arbitrary real numbers. We observe that G is the difference between the amount that you

receive,
řn

i“1 sipEiHi ` pi
sHiq, and the amount that you pay,

řn
i“1 si pi, and represents the net gain from engaging

each transaction HipEi ´ piq, the scaling and meaning (buy or sell) of the transaction being specified by the magnitude

and the sign of si respectively. Let gh be the value of G when Ch is true; then G P D “ tg0, g1, . . . , gmu. Of course,

g0 “ 0. We denote byDHn
the set of values of G restricted toHn, that isDHn

“ tg1, . . . , gmu.

Definition 1. The function P defined on K is said to be coherent if and only if, for every integer n, for every finite

subfamily Fn of K and for every real numbers s1, . . . , sn, one has: minDHn
ď 0 ď maxDHn

.

Notice that the condition minDHn
ď 0 ď maxDHn

can be written in two equivalent ways: minDHn
ď 0,

or maxDHn
ě 0. As shown by Definition 1, a probability assessment is coherent if and only if, for any finite

combination of n bets, it does not happen that the values g1, . . . , gm are all positive, or all negative (no Dutch Book).

Further technical details on coherence of probability assessments on conditional events and on conditional random

quantities are given in Appendix A.

2.3. Conditional random quantities and the notions of p-consistency and p-entailment

In what follows, if not specified otherwise, we will consider conditional random quantities which take values in a

finite subset of r0, 1s. Based on the notions of p-consistency and p-entailment of Adams ([1]), which were formulated

for conditional events in the setting of coherence (see, e.g., [43, 45, 48]), we will generalize these notions to these

conditional random quantities. Let X|H be a finite conditional random quantity and let tx1, . . . , xru denote the set of

possible values for the restriction of X to H. Then, X|H P r0, 1s if and only if x j P r0, 1s for each j “ 1, . . . , r; indeed

in this case coherence requires that PpX|Hq P r0, 1s (see, e.g., [50]).

Definition 2. Let Fn “ tXi|Hi , i “ 1, . . . , nu be a family of n conditional random quantities which take values in a

finite subset of r0, 1s. Then,Fn is p-consistent if and only if, the (prevision) assessment pµ1, µ2, . . . , µnq “ p1, 1, . . . , 1q
on Fn is coherent.
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Definition 3. A p-consistent family Fn “ tXi|Hi , i “ 1, . . . , nu p-entails a conditional random quantity X|H which

takes values in a finite subset of r0, 1s, denoted by Fn |ùp X|H, if and only if for any coherent (prevision) assessment

pµ1, . . . , µn, zq on Fn Y tX|Hu it holds that: if µ1 “ ¨ ¨ ¨ “ µn “ 1, then z “ 1.

Of course, when Fn p-entails X|H, there may be coherent assessments pµ1, . . . , µn, zq with z ‰ 1, but in such case

µi ‰ 1 for at least one index i. We say that the inference from Fn to X|H is p-valid if and only if Fn |ùp X|H.

Now, we generalize the notion of p-entailment between two finite families of conditional random quantities F and

F 1.

Definition 4. Given two p-consistent finite families of conditional random quantities F and F 1, we say that F p-

entails F 1 if and only if F p-entails X|H, for every X|H P F 1.

Transitivity property of p-entailment: Of course, p-entailment is transitive; that is, given three p-consistent families of

conditional random quantities F ,F 1,F 2, if F |ùp F
1 and F 1 |ùp F

2, then F |ùp F
2.

Remark 1. Notice that, from Definition 3, we trivially have that F p-entails X|H, for every X|H P F ; then, by

Definition 4, it immediately follows

F |ùp F
1 , @F 1 Ď F , F 1 ‰ H . (3)

Remark 2. Notice that, if we consider conditional events instead of conditional random quantities, we recover the

usual notions of p-consistency, p-entailment, and p-validity.

3. Centering

Given a conditional event B|A, if you assess PpB|Aq “ x, then for the indicator of B|A we have B|A “ AB`xsA (see

Appendix Appendix A.3). Thus, when the conditioning event A is true then B|A has the same value as B and as AB,

while, when the conditioning event A is false then B|A coincides with x “ PpB|Aq. This aspect seems related to the

notion of (strong) centering used in Lewis’ logic ([61]) in order to assign truth values to counterfactuals. In Remark 3

of this section we will show that pB|Aq ^ A “ AB, that is pB|Aq^A and AB are the same object; then, by the compound

probability theorem, it holds that PrpB|Aq ^ As “ PpABq “ PpB|AqPpAq and then PrpB|Aq ^ As “ PpABq ď PpB|Aq.

This inequality also follows by the Goodman & Nguyen inclusion relation AB Ď B|A ([49, Theorem 6]). We recall

that the equality PrpB|Aq ^ As “ PpB|AqPpAq in [54] is named “the probabilistic version of centering” and it has been

usually looked at as a probabilistic independence of the conditional if A then B from its premise A. We also recall that

in [54, footnote 5] Hajek and Hall observe that “centering is a slight misnomer, since this name usually refers to a

property of the nearness relation used to give the truth conditions for the conditional (each world is the nearest world

to itself)”2. Interestingly, in [2] Adams has shown that the Lewis theory of nearest possible worlds can be interpreted

as a theory of worlds nearest in probability; in other words, according to Adams’ viewpoint, the Lewis logic may be

considered as “the logic not of truth, but of high probability”. By the previous remarks and in agreement with [54]

(see also [53, p. 442]), we simply use the term centering also for the kind of inferences which we study in this paper.

There is one-premise centering: inferring if A then B from the single premise AB. And two-premise centering:

inferring if A then B from the two separate premises A and B. Centering is valid for quite a wide range of conditionals

([19, 20, 66]). It is clearly valid for the material conditional, since not-A or B must be true when A and B is true. It is

also valid for Lewis conditional if A then B ([61]), which holds, roughly, when B is true in the closest world in which

A is true. In [61] Lewis has a semantic condition of centering, which states that the actual world is the closest world to

itself. The characteristic axiom for this semantic condition is what we are also calling centering. It is probabilistically

valid, p-valid, for the conditional event, i.e. AB p-entails B|A and tA, Bu p-entails B|A. Centering is, however, not

valid for inferentialist accounts of conditionals, where an inferential relation between antecedent and consequent is

presupposed (see, e.g., [23]).

2 Lewis distinguished between “centering” and “weak centering” ([61]). We use “centering” simply for the equivalent of the former, “strong”

notion on centering. There is psychological evidence that ordinary people conform to this notion of centering for indicatives ([20, 80]).
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A (p-consistent) set of premises p-entails a conclusion if and only if the conclusion must have probability one

when all the premises have probability one [48]. Clearly, one-premise centering is p-valid, indeed the p-entailment

of B|A from AB follows by observing that PpABq “ PpAqPpB|Aq and so PpABq ď PpB|Aq: if PpABq “ 1, then

PpB|Aq “ 1. Two-premise centering is also clearly p-valid, as it is p-valid to infer AB from A and B, and then one-

premise centering can be used to infer B|A: if PpAq “ x and PpBq “ y, coherence requires that PpABq has to be in the

interval rmaxtx ` y ´ 1, 0u,mintx, yus, with PpABq ď PpB|Aq. Therefore, if PpAq “ PpBq “ 1, it follows PpABq “
PpB|Aq “ 1 and then tA, Bu p-entails B|A.

We will study the p-validity of generalized versions of one-premise and two-premise centering, where the uncon-

ditional events A and B are replaced by the conditional events A|H and B|K, respectively. These kinds of centering in-

volve the notions of conjunction and of iterated conditioning for conditional events. Conjunction and iteration among

conditionals have been studied from the viewpoint of random variables by many authors (see, e.g. [57, 58, 59, 85]);

for an overview on conditionals, see, e.g., [3, 25, 27]. In our approach we exploit recent results obtained in the setting

of coherence for conditional random quantities (see, e.g. [46, 47, 50, 51]).

3.1. Conjunction of two conditional events

We recall and discuss the notion of conjunction of two conditional events. Note that, in numerical terms, two

conditional events A|H and B|K, with PpA|Hq “ x and PpB|Kq “ y, coincide with the random quantities AH ` x sH
and BK ` ysK, respectively. Then, min tA|H, B|Ku “ min tAH ` x sH, BK ` ysKu.

Definition 5 (Conjunction). Given any pair of conditional events A|H and B|K, with PpA|Hq “ x, PpB|Kq “ y, we

define their conjunction as the conditional random quantity

pA|Hq ^ pB|Kq “ min tA|H, B|Ku | pH _ Kq “ min tAH ` x sH, BK ` ysKu | pH _ Kq.

Then, defining z “ PrpA|Hq ^ pB|Kqs, we have

pA|Hq ^ pB|Kq “

$
’’’’&

’’’’%

1, if AHBK is true,

0, if sAH _ sBK is true,

x, if sHBK is true,

y, if AH sK is true,

z, if sH sK is true.

(4)

From (4), the conjunction pA|Hq ^ pB|Kq is the following random quantity

pA|Hq ^ pB|Kq “ 1 ¨ AHBK ` x ¨ sHBK ` y ¨ AH sK ` z ¨ sH sK . (5)

Notice that the quantity z “ PrpA|Hq ^ pB|Kqs represents the value that you assess, with the proviso that, for each

real number s, you will pay the amount sz by receiving the random quantity srpA|Hq ^ pB|Kqs. In particular, if s “ 1,

then you agree to pay z with the proviso that you will receive: 1, if both conditional events are true; 0, if at least one of

the conditional events is false; x, if A|H is void and B|K is true; y, if B|K is void and A|H is true; z, if both conditional

events are void. Notice that this notion of conjunction, with positive probabilities for the conditioning events, has

been already proposed in [63].

Remark 3. We remark that in particular, given two events A and H, with H ‰ H, PpA|Hq “ x, PpHq “ y,

PrpA|Hq ^ Hs “ z, by (5) it holds that

pA|Hq ^ H “ pA|Hq ^ pH|Ωq “ AHHΩ` x ¨ sHHΩ` y ¨ AHH ` z ¨ sHH “ AH. (6)

Then, the conjunction pA|Hq ^ H is equivalent to the unconditional event AH and PrpA|Hq ^ Hs “ PpAHq “
PpA|HqPpHq.

Notice that the notion of conjunction given in Definition 5, with positive probabilities for the conditioning events,

has been already proposed in the context of betting scheme in [63]. By linearity of prevision it holds that

z “ PpAHBKq ` xPp sHBKq ` yPpAH sKq ` zPp sH sKq ;

5



in particular, if PpH _ Kq ą 0 we obtain the following result given in [59, 63]:

PrpA|Hq ^ pB|Kqs “
PpAHBKq ` PpA|HqPp sHBKq ` PpB|KqPpAH sKq

PpH _ Kq
.

We recall that a well-known notion of conjunction among conditional events, which plays an important role in non-

monotonic reasoning, is the quasi conjunction [1, 6, 48], i.e., the following conditional event:

QCpA|H, B|Kq “ pAH _ sHq ^ pBK _ sKq|pH _ Kq ,

or in numerical terms, since AH _ sH “ AH ` sH and BK _ sK “ BK ` sK:

QCpA|H, B|Kq “ min tAH ` sH, BK ` sKu | pH _ Kq .

The event AH _ sH is the material conditional associated with the conditional “if H then A”. Then, the quasi conjunc-

tion is defined by taking the minimum of the material conditionals given H _ K. However, we define the conjunction

by taking the minimum of the conditional events given H _ K. Our conjunction is (in general) a conditional ran-

dom quantity, whereas the quasi conjunction is a conditional event. In some particular cases conjunction and quasi

conjunction coincide; two cases examined in [47] are: piq x “ y “ 1; piiq K “ AH (or symmetrically H “ BK).

Moreover, classical results concerning lower and upper bounds for the conjunction of unconditional events, which do

not hold for the upper bound of the quasi conjunction ([39, 49]), still hold for our notion of conjunction. This is shown

in the next result ([50]).

Theorem 1. Given any coherent assessment px, yq on tA|H, B|Ku, with A,H, B,K logically independent, and with

H ‰ H,K ‰ H, the extension z “ PrpA|Hq ^ pB|Kqs is coherent if and only if the Fréchet-Hoeffding bounds are

satisfied:

maxtx ` y ´ 1, 0u “ z1 ď z ď z2 “ mintx, yu . (7)

Remark 4. We recall that, by logical independence of A,H, B,K, the assessment px, yq is coherent for every px, yq P
r0, 1s2. From Theorem 1, the set Π of all coherent assessment px, y, zq on F “ tA|H, B|K, pA|Hq ^ pB|Kqu is Π “
tpx, y, zq : px, yq P r0, 1s2,maxtx ` y ´ 1, 0u ď z ď mintx, yuu. Then, z P r0, 1s and pA|Hq ^ pB|Kq P r0, 1s.
Moreover, as p1, 1, 1q P Π, the family F (and so each subfamily of F ) is p-consistent. In particular, if x “ 1, y “ 1,

then z must be equal to 1. Then, by Definition 3, tA|H, B|Ku p-entails pA|Hq ^ pB|Kq, i.e.,

tA|H, B|Ku |ùp pA|Hq ^ pB|Kq . (8)

We call this inference rule “AND rule for conditional events”. We also notice that the assessment px, y, 1q P Π if and

only if x “ 1 and y “ 1. Then, both x “ 1 and y “ 1 follow from z “ 1, i.e. pA|Hq ^ pB|Kq |ùp tA|H, B|Ku, which

is the converse of (8).

Remark 5. Assuming HK “ H, it holds that the conjunction pA|Hq^pB|Kq coincides with the product pA|Hq¨pB|Kq;

moreover

PrpA|Hq ^ pB|Kqs “ PrpA|Hq ¨ pB|Kqs “ PpA|HqPpB|Kq,

which states that the random quantities A|H and B|K are uncorrelated; more details are given in ([50]).

3.2. Iterated conditioning

We recall and discuss the notion of iterated conditioning.

Definition 6 (Iterated conditioning). Given any pair of conditional events A|H and B|K, the iterated conditional

pB|Kq|pA|Hq is defined as the conditional random quantity pB|Kq|pA|Hq “ pB|Kq ^ pA|Hq ` µsA|H, where µ “
PrpB|Kq|pA|Hqs.
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Notice that, in the context of betting scheme, µ represents the amount you agree to pay, with the proviso that you

will receive the quantity

pB|Kq|pA|Hq “

$
’’’’’’’’&

’’’’’’’’%

1, if AHBK is true,

0, if AHsBK is true,

y, if AH sK is true,

µ, if sAH is true,

x ` µp1 ´ xq, if sHBK is true,

µp1 ´ xq, if sH sBK is true,

z ` µp1 ´ xq, if sH sK is true.

(9)

We recall the following product formula ([47]).

Theorem 2 (Product formula). Given any assessment x “ PpA|Hq, µ “ PrpB|Kq|pA|Hqs, z “ PrpB|Kq ^ pA|Hqs, if

px, µ, zq is coherent, then z “ µ ¨ x, i.e.,

PrpB|Kq ^ pA|Hqs “ PrpB|Kq|pA|HqsPpA|Hq . (10)

As z “ µx, it follows that z ` µp1 ´ xq “ µ. Then, from (9), pB|Kq|pA|Hq coincides with

AHBK ` yAH sK ` px ` µp1 ´ xqq sHBK ` µp1 ´ xq sHsBK ` µ psAH _ sH sKq.

Remark 6. As x ě z, for x ą 0 one has µ “ z
x

P r0, 1s; moreover x ` µp1 ´ xq is a linear convex combination of

the values µ and 1, then x ` µp1 ´ xq P rµ, 1s. Therefore, for x ą 0, pB|Kq|pA|Hq P r0, 1s. As shown in Theorem 4,

µ P r0, 1s also for x “ 0. Thus, pB|Kq|pA|Hq P r0, 1s in all cases.

3.3. One-premise and two-premise centering: p-validity

The one-premise centering involving conditional events is represented by the following inference rule: from

pA|Hq ^ pB|Kq infer pB|Kq|pA|Hq. Likewise, two-premise centering involving conditional events is represented by:

from tA|H, B|Ku infer pB|Kq|pA|Hq. Are these inference rules p-valid?

One-premise centering is p-valid; indeed, from (10) it holds that

PrpB|Kq ^ pA|Hqs ď PrpB|Kq|pA|Hqs, (11)

then PrpB|Kq ^ pA|Hqs “ 1 implies PrpB|Kq|pA|Hqs “ 1, i.e.,

pB|Kq ^ pA|Hq |ùp pB|Kq|pA|Hq. (12)

Two-premise centering is also p-valid; indeed, from (8) and (12), by transitivity,

tpA|Hq, pB|Kqu |ùp pB|Kq|pA|Hq, (13)

that is, if PpA|Hq “ 1 and PpB|Kq “ 1, then PrpB|Kq|pA|Hqs “ 1.

4. Lower and upper bounds for two-premise centering

In this section we give a probabilistic analysis of two-premise centering by determining the coherent lower and

upper bounds for the conclusion. We first consider the general case: from tA|H, B|Ku infer pB|Kq|pA|Hq. Then,

we consider two-premise centering with unconditional events in the premise set: from tA, Bu infer B|A, which is a

particular case where H “ K “ Ω.
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4.1. The general case: “from tA|H, B|Ku infer pB|Kq|pA|Hq”

We start by computing the set of all coherent assessments on the elements of centering.

Theorem 3. Let A, B,H,K be any logically independent events. The set Π of all coherent assessments px, y, z, µq on

the family F “ tA|H, B|K, pA|Hq ^ pB|Kq, pB|Kq|pA|Hqu is Π “ Π1 Y Π2, where

Π1 “ tpx, y, z, µq : x P p0, 1s, y P r0, 1s, z P rz1, z2s, µ “ z
x
u,

with z1 “ maxtx ` y ´ 1, 0u, z2 “ mintx, yu, and

Π2 “ tp0, y, 0, µq : py, µq P r0, 1s2u.
(14)

Proof. We recall that the assessment px, yq on tA|H, B|Ku is coherent for every px, yq P r0, 1s2. By Theorem 1, the

assessment z “ PrpA|Hq ^ pB|Kqs is a coherent extension of px, yq if and only if z P rz1, z2s, where z1 “ maxtx ` y ´
1, 0u and z2 “ mintx, yu. Moreover, assuming x ą 0, by Theorem 2 it holds that µ “ z

x
. Then, every px, y, z, µq P Π1

is coherent, that is Π1 Ď Π. Of course, if x ą 0 and px, y, z, µq R Π1, then px, y, z, µq is not coherent. Now, we assume

x “ 0, so that z1 “ z2 “ 0. Then, we show that the assessment p0, y, 0, µq is coherent if and only if py, µq P r0, 1s2, that

is p0, y, 0, µq P Π2. As x “ 0, it holds that A|H “ AH`x sH “ AH. Then, pB|Kq|pA|Hq “ pB|Kq|AH “ pBK`ysKq|AH

and F “ tA|H, B|K, pA|Hq ^ pB|Kq, pBK ` ysKq|AHu. The constituents Ch’s and the points Qh’s associated with

pF ,Mq, whereM “ p0, y, 0, µq, are given in Table 1. Denoting by I be the convex hull generated by Q1,Q2, . . . ,Q8,

Ch Qh

C1 AHBK p1, 1, 1, 1q Q1

C2 AHsBK p1, 0, 0, 0q Q2

C3 AH sK p1, y, y, yq Q3

C4
sAHBK p0, 1, 0, µq Q4

C5
sAHsBK p0, 0, 0, µq Q5

C6
sAH sK p0, y, 0, µq Q6

C7
sHBK p0, 1, 0, µq Q7

C8
sHsBK p0, 0, 0, µq Q8

C0
sH sK p0, y, 0, µq Q0 “M

Table 1: Constituents Ch’s and points Qh’s associated with the prevision assessmentM “ p0, y, 0, µq on F “ tA|H,B|K, pA|Hq ^ pB|Kq, pBK `
ysKq|AHu.

the coherence of the prevision assessmentM on F requires that the condition P P I be satisfied; this amounts to the

solvability of the following system

M “
ř8

h“1 λhQh,
ř8

h“1 λh “ 1, λh ě 0, h “ 1, . . . , 8 . (15)

AsM “ yQ4 ` p1 ´ yqQ5, the vector pλ1, . . . , λ8q “ p0, 0, 0, y, 1 ´ y, 0, 0, 0q is a solution of system (15) such thatř
h:ChĎHK λh “ λ1 ` λ2 ` λ4 ` λ5 “ λ4 ` λ5 “ 1 ą 0, so that

ř
h:ChĎH λh “ λ1 ` ¨ ¨ ¨ ` λ6 “ 1 ą 0 andř

h:ChĎK λh “ λ1 ` λ2 ` λ4 ` λ5 ` λ7 ` λ8 “ 1 ą 0; while,
ř

h:ChĎAH λh “ λ1 ` λ2 ` λ3 “ 0. Then, by (A.2),

I0 Ď t4u and F0 Ď tpBK ` ysKq|AHu. Thus, from Theorem 13, for checking coherence ofM on F it is sufficient to

study the coherence of µ “ PptpBK ` ysKq|AHuq. The random gain for the assessment µ is

G “ sAHpBK ` ysK ´ µq, s P R .

Without loss of generality, we can assume s “ 1. The constituents contained in AH are: C1 “ AHBK,C2 “
AHsBK,C3 “ AH sK. The corresponding values for the random gain G are: g1 “ p1 ´µq, g2 “ ´µ, g3 “ y ´µ. Then,

the set of values of G restricted to AH is DAH “ tg1, g2, g3u. As it can be verified,

minDAH ą 0 ðñ µ ă 0, maxDAH ă 0 ðñ µ ą 1 .

Therefore, the condition of coherence on µ, that is minDAH ¨ maxDAH ď 0, is satisfied if and only if µ P r0, 1s. Thus,

every assessment p0, y, 0, µq is coherent if and only if p0, y, 0, µq P Π2 “ tp0, y, 0, µq : py, µq P r0, 1s2u. Therefore

Π “ Π1 Y Π2.
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Based on Theorem 3, we obtain the following prevision propagation rule for two-premise centering:

Theorem 4. Let A, B,H,K be any logically independent events. Given a coherent assessment px, yq on tA|H, B|Ku,

for the iterated conditional pB|Kq|pA|Hq the extension µ “ PppB|Kq|pA|Hqq is coherent if and only if µ P rµ1, µ2s,
where

µ1 “

#
max

!
0,

x`y´1

x

)
, if x ą 0;

0, if x “ 0;
µ2 “

"
min

 
1,

y

x

(
, if x ą 0;

1, if x “ 0.
(16)

Proof. Assume that x “ 0. From Theorem 3 it follows that the set of all coherent assessments px, y, z, µq on F “
tA|H, B|K, pA|Hq ^ pB|Kq, pB|Kq|pA|Hqu is Π2 “ tp0, y, 0, µq : py, µq P r0, 1s2u. Then, µ is a coherent extension of

px, yq if and only if µ P rµ1, µ2s, where µ1 “ 0 and µ2 “ 1.

Assume that x ą 0. From Theorem 3 it follows that the set of all coherent assessments px, y, z, µq on F is

Π1 “ tpx, y, z, µq : 0 ă x ď 1, 0 ď y ď 1, z1 ď z ď z2, µ “ z
x
u, where z1 “ maxtx ` y ´ 1, 0u and z2 “ mintx, yu.

Then, µ is a coherent extension of px, yq if and only if µ P rµ1, µ2s, where µ1 “ z1

x
“ max

!
x`y´1

x
, 0
)

and µ2 “ z2

x
“

min
 

y

x
, 1
(

.

Remark 7. The p-validity of two-premise centering given in (13) directly follows as an instantiation of Theorem 4

with x “ 1 and y “ 1.

4.2. The case H “ K “ Ω

In case of logical dependencies among events, as we know, the set of all coherent assessments may be smaller than

the set given in Theorem 3. We examine the case H “ K “ Ω, by showing that the set Π of all coherent assessments

on F “ tA, B, AB, B|Au is still the same as in Theorem 3.

Theorem 5. Let A, B be any logically independent events. The set Π of all coherent assessments px, y, z, µq on the

family F “ tA, B, AB, B|Au is Π “ Π1 Y Π2, with Π1 and Π2 as defined in formula (14).

Proof. We recall that the assessment px, yq on tA, Bu is coherent for every px, yq P r0, 1s2. The assessment z “ PpABq
is a coherent extension of px, yq if and only if z P rz1, z2s, where z1 “ maxtx` y´ 1, 0u and z2 “ mintx, yu. Moreover,

assuming x ą 0, by compound probability theorem it holds that µ “ z
x
. Then, every px, y, z, µq P Π1 is coherent,

that is Π1 Ď Π. Of course, if x ą 0 and px, y, z, µq R Π1, then px, y, z, µq is not coherent. Now, we assume x “ 0,

so that z1 “ z2 “ 0. Then, we show that the assessment p0, y, 0, µq is coherent if and only if py, µq P r0, 1s2, that is

p0, y, 0, µq P Π2. The constituents Ch’s and the points Qh’s associated with pF ,Pq, where P “ p0, y, 0, µq, are given

in Table 2. Denoting by I the convex hull generated by Q1,Q2,Q3,Q4, the coherence of the prevision assessment P

Ch Qh

C1 AB p1, 1, 1, 1q Q1

C2 AsB p1, 0, 0, 0q Q2

C3
sAB p0, 1, 0, µq Q3

C4
sAsB p0, 0, 0, µq Q4

Table 2: Constituents Ch’s and points Qh’s associated with the probability assessment P “ p0, y, 0, µq on F “ tA, B, AB,B|Au.

on F requires that the condition P P I be satisfied; this amounts to the solvability of the following system

P “
ř4

h“1 λhQh,
ř4

h“1 λh “ 1, λh ě 0, h “ 1, . . . , 4 . (17)

As P “ yQ3 ` p1 ´ yqQ4, the vector pλ1, . . . , λ4q “ p0, 0, y, 1 ´ yq is a solution of system (17), with
ř

h:ChĎA λh “ 0.

Then, by (A.2), I0 Ď t4u and F0 Ď tB|Au. Thus, from Theorem 13, for checking coherence of P on F it is

sufficient to study the coherence of µ “ PpB|Aq. Of course, µ “ PpB|Aq is coherent if and only if µ P r0, 1s. Thus,

every assessment p0, y, 0, µq is coherent if and only if p0, y, 0, µq P Π2 “ tp0, y, 0, µq : py, µq P r0, 1s2u. Therefore

Π “ Π1 Y Π2.
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Based on Theorem 5, we obtain the following prevision propagation rule for two-premise centering with uncon-

ditional events in the premise set:

Theorem 6. Let A, B be any logically independent events. Given a coherent assessment px, yq on tA, Bu, for the

conditional event B|A the extension µ “ PpB|Aq is coherent if and only if µ P rµ1, µ2s, where

µ1 “

#
max

!
x`y´1

x
, 0
)
, if x ą 0;

0, if x “ 0;
µ2 “

"
min

 
y

x
, 1
(
, if x ą 0;

1, if x “ 0.

Proof. The proof is the same of Theorem 4, with F “ tA, B, AB, B|Au and with Theorem 3 replaced by Theorem 5.

Remark 8. As shown by theorems 4 and 6, the lower and upper bounds on the conclusion of two-premise centering

involving iterated conditionals coincide with the respective bounds on the conclusion of the (non-iterated) two-premise

centering.

5. Biconditional centering

In classical logic the biconditional A Ø B (defined by ĞpA _ Bq _ pABq) can be represented by the conjunction of

the two material conditionals sA _ B and sB _ A. Therefore, tsA _ B, sB _ Au |ù A Ø B3, which is called biconditional

introduction rule. With the material conditional interpretation of a conditional, the biconditional A Ø B represents

the conjunction of the two conditionals if A then B and if B then A. In this section, we present an analogue in terms of

conditional events, by also giving a meaning to the conjunction of two conditional events A|B and B|A.

From centering it follows that tA, Bu |ùp B|A and tA, Bu |ùp A|B. Then, from PpAq “ PpBq “ 1 it follows that

PpB|Aq “ PpA|Bq “ 1, which we denote by: tA, Bu |ùp tA|B, B|Au. Thus, by applying (8) with H “ B and K “ A,

we obtain tA|B, B|Au |ùp pA|Bq ^ pB|Aq (which we call biconditional introduction rule, or biconditional AND rule).

Then, by transitivity

tA, Bu |ùp pA|Bq ^ pB|Aq . (18)

In a similar way, we can prove that

AB |ùp pA|Bq ^ pB|Aq . (19)

We recall that the conditional event pABq | pA _ Bq, denoted by A||B, captures the notion of the biconditional event,

which has been seen as the conjunction of two conditionals with the same truth table as the “defective” biconditional

discussed in [32]; see also [30]. We have

Theorem 7. Given two events A and B it holds that: pA|Bq ^ pB|Aq “ pABq|pA _ Bq “ A||B.

Proof. We note that pA|Bq ^ pB|Aq “ minpA|B, B|Aq|pA _ Bq “ AB ` µ ¨ sAsB, where µ “ PrpA|Bq ^ pB|Aqs; we also

observe that pABq|pA _ Bq “ AB ` p ¨ sA sB, where p “ PrpABq|pA _ Bqs. Then, under the assumption that “pA _ Bq
is true”, the two random quantities pA|Bq ^ pB|Aq and pABq|pA _ Bq coincide. By coherence (see [50, Theorem 4])

it follows that these two random quantities coincide also under the assumption that “pA _ Bq is false”, that is µ and p

coincide. Therefore, pA|Bq ^ pB|Aq “ pABq|pA _ Bq.

Based on Theorem 7, we can now really interpret the biconditional event A||B as the conjunction of the two

conditionals pB|Aq and pA|Bq. Moreover, equations (18) and (19) represent what we call two-premise biconditional

centering and one-premise biconditional centering respectively, that is tA, Bu |ùp A||B and AB |ùp A||B.

Though in classical logic tsA, sBu |ù pA Ø Bq, the analogue does not hold in our approach, since we do not have p-

entailment of A||B from sA, sB, indeed if PpsAq “ PpsBq “ 1, then PpA _ Bq “ 0 and therefore PpA||Bq “ PppABq|pA _
Bqq P r0, 1s (see Theorem 8 below). The biconditional event A||B is of interest to psychologists because there is

evidence that children go through a developmental stage in which they judge that Ppif A then Bq “ PrpABq|pA _ Bqs,

3 We recall that the symbol |ù denotes the relation of logical entailment. In our case, if both events sA _ B and sB _ A are true, then the

biconditional A Ø B is true.
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with this judgment being replaced by P(if A then B) = PpB|Aq as they grow older ([32]). We recall that, given

two conditional events A|H and B|K, their quasi conjunction is defined as the conditional event QpA|H, B|Kq “
rpAH _ sHq ^ pBK _ sKqs|pH _ Kq. Quasi conjunction is a basic notion in the work of Adams ([1]) and plays a role in

characterizing entailment from a conditional knowledge base (see also [6]). We recall that in [49] A||B was interpreted

by the quasi conjunction of A|B and B|A, by obtaining A||B “ QpA|B, B|Aq “ pABq|pA _ Bq.

6. Lower and upper bounds for two-premise biconditional centering

In this section we determine the lower and upper bounds for the conclusion of two premise biconditional center-

ing.4

Theorem 8. Let A, B be any logically independent events. Given any (coherent) assessment px, yq P r0, 1s2 on tA, Bu,

for the biconditional event A||B the extension z “ PpA||Bq is coherent if and only if z P rz1, z2s, where

z1 “ max tx ` y ´ 1, 0u , z2 “

#
mintx,yu
maxtx,yu

, if x ą 0 or y ą 0,

1, if x “ 0 and y “ 0.
(20)

Proof. We consider two cases: piq x ą 0 or y ą 0; piiq x “ 0 and y “ 0.

Case piq. As PpA _ Bq ě maxtx, yu, it follows that PpA _ Bq ą 0. Then, defining ν “ PpABq, one has

PpA||Bq “
PpABq

PpA_Bq
“ ν

x`y´ν . We recall that ν is a coherent extension px, yq if and only if ν P rν1, ν2s, where

ν1 “ maxtx ` y ´ 1, 0u and ν2 “ mintx, yu. By observing that f pνq “ ν
x`y´ν is an increasing function of ν, it follows

that the assessment z “ PpA||Bq is a coherent extension of px, yq if and only if z P rz1, z2s, where z1 “ ν1

x`y´ν1 “
maxtx`y´1,0u

x`y´maxtx`y´1,0u
“

maxtx`y´1,0u
mintx`y,1u

“ maxtx ` y ´ 1, 0u, and z2 “ ν2

x`y´ν2 “
mintx,yu
maxtx,yu

. We observe that if x “ 0 or

y “ 0, then z2 “ z1 “ 0; if x “ y “ 1, then z1 “ z2 “ 1. Moreover, if x ą 0 and y ą 0, then z2 “ mint x
y
,

y

x
u.

Case piiq (x “ y “ 0). The constituents Ch’s, h “ 1, 2, 3, 4, associated with the assessment p0, 0, zq on

tA, B, AB|pA _ Bqu, and the corresponding points Qh’s are C1 “ AB,C2 “ AsB,C3 “ sAB,C4 “ sA sB, and

Q1 “ p1, 1, 1q,Q2 “ p1, 0, 0q,Q3 “ p0, 1, 0q,Q4 “ p0, 0, zq, respectively. As the prevision point p0, 0, zq coin-

cides with Q4, then it belongs to the convex hull of points Q1, . . . ,Q4, that is the associated system pΣq, as defined

in Section 2.2, is solvable. As PpA _ Bq ď mintx ` y, 1u “ 0, each solution pλ1, . . . , λ4q of pΣq is such thatř
h:ChĎA_B λh “ λ1 ` λ2 ` λ3 “ 0, so that I0 “ t3u. By Theorem 13, p0, 0, zq is coherent if and only if z is coherent,

which amounts to z P r0, 1s.

7. Reversed inferences and bounds on biconditional AND rule

In this section we first recall the lower and upper bounds on the conclusion of the biconditional AND rule. Then,

we study the reverse inferences from the prevision assessment on the conclusion A||B “ pA|Bq^pB|Aq to the premises

tA|B, B|Au. That is, starting with a given assessment z P r0, 1s on A||B, we determine the set Dz of all coherent

extensions px, yq, where x “ PpA|Bq and y “ PpB|Aq. We recall the following probabilistic propagation rule ([49]).

Let px, yq be any coherent assessment on tA|B, B|Au; then, the probability assessment z “ PpA||Bq is a coherent

extension of px, yq if and only if

z “ T H
0 px, yq “

#
0, if x “ 0 or y “ 0 ,

xy

x`y´xy
“ 1

1´x

x
` 1´y

y
`1
, if 0 ă x ď 1 and 0 ă y ď 1 , (21)

where T H
0

px, yq is the Hamacher t-norm, with parameter λ “ 0. We obtain

4Coherence of probability assessments on conditional events can be checked, for example, by the CkC-package [4].
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Theorem 9. Let A, B be any logically independent events. Given any assessment z P r0, 1s on A||B, the extension

px, yq on tA|B, B|Au is coherent if and only if px, yq P Dz, where

Dz “

"
tpx, yq P r0, 1s2 : x “ 0 or y “ 0u, if z “ 0,

tpx, yq P r0, 1s2 : z ď x ď 1, y “ xz
x´z`xz

u, if 0 ă z ď 1 .

Proof. From (21) the set Π of all coherent assessments px, y, zq on tA|B, B|A, A||Bu is

Π “ tpx, y, zq : px, yq P r0, 1s2, z “ T H
0 px, yqu. (22)

Assume that z “ 0. We notice that the assessment px, y, 0q P Π if and only if x “ 0 or y “ 0, with px, yq P r0, 1s2.

Then, D0 “ tpx, yq P r0, 1s2 : x “ 0 or y “ 0u. Assume that 0 ă z ď 1. By Goodman and Nguyen inclusion relation

among conditional events, as AB|pA _ Bq Ď A|B and AB|pA _ Bq Ď B|A, coherence requires that (see, e.g., [49,

Theorem 6]) x ě z ą 0 and y ě z ą 0; thus xy ą 0, x ` y ´ xy ą 0, and x ´ z ` xz ą 0. Then, from (21) and (22) it

holds that z “ xy

x`y´xy
, so that y “ xz

x´z`xz
. Therefore, Dz “ tpx, yq : z ď x ď 1, y “ xz

x´z`xz
u.

Remark 9. Based on Theorem 9, the setΠ of all coherent assessments px, y, zq on tA|B, B|A, A||Bu can also be written

as

Π “ tpx, y, zq : z P r0, 1s, px, yq P Dzu.

Moreover, by symmetry, we observe that, if z ą 0, the set Dz in Theorem 9 can also be written as Dz “ tpx, yq P
r0, 1s2 : z ď y ď 1, x “ yz

y´z`yz
u.

8. Two-premise centering with logical relations and counterfactuals

In this section we consider an instance of two premise-centering, with a logical dependency, that can be used to

study some counterfactuals. Specifically, we consider the inference: tB|Ω,C|Au p-entails pC|Aq|pB|Ωq, with AB “ H.

As B|Ω “ B, this inference can be simply written as

tB,C|Au |ùp pC|Aq|B, with AB “ H. (23)

We first show that, assuming PpBq ą 0, the prevision of the conclusion pC|Aq|B coincides just with PpC|Aq, i.e.,

PrpC|Aq|Bs “ PpC|Aq. By (5) the conjunction of B and C|A reduces to the random quantity pC|Aq|B “ yB, where

y “ PpC|Aq. Then, by linearity of the prevision, PrpC|Aq ^ Bs “ PpC|AqPpBq. Moreover, by (10), it holds that

PrpC|Aq ^ Bs “ PrpC|Aq|BsPpBq and then, by assuming PpBq ą 0, we obtain

PrpC|Aq|Bs “
PrpC|Aq ^ Bs

PpBq
“

PpC|AqPpBq

PpBq
“ PpC|Aq . (24)

Now we show that (24) holds in general, even if PpBq “ 0, by also showing that the iterated conditional pC|Aq|B is

constant and coincides with PpC|Aq, when AB “ H. As pC|Aq ^ B “ yB, by Definition 6, pC|Aq|B “ yB ` µsB.

Moreover, as B Ď sA, conditionally on B being true, it holds that: C|A “ AC ` ysA “ y; that is, when B is true, C|A is

constant and equal to y. Then, by coherence, µ “ PrpC|Aq|Bs “ PrpAC ` ysAq|Bs “ Ppy|Bq “ y (see [46, Remark 1]).

Therefore, when AB “ H it holds that pC|Aq|B “ yB ` ysB “ y, i.e., the iterated conditional pC|Aq|B is constant and

equal to PpC|Aq. Then, trivially, when AB “ H it holds that PrpC|Aq|Bs “ PpC|Aq, i.e. the prevision of the iterated

conditional “if B then (if A then C)” coincides with the probability of “(if A then C)”. Therefore, the probability of

B does not play a role in propagating the uncertainty from the premise set tB,C|Au to the conclusion pC|Aq|B. In

particular, if B “ sA, then pC|Aq|sA “ PpC|Aq.

This result can be used as a model for some instances of counterfactuals. Counterfactuals are conditionals in

the subjunctive mood, which people usually use when they believe that the antecedents are false. For example, the

assertion of “If the glass had fallen from the table, then it would have broken” conversationally implies that the speaker

believes that the glass did not fall. Counterfactuals are important for causal reasoning and for hypothetical thinking

in general. There is experimental evidence that people judge the probability of a counterfactual, “If A were the case,

then C would be the case”, as the conditional probability, PpC|Aq [68, 78, 80]. Moreover, when presented with causal,
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e.g., “If a patient were to take certain drug, the symptoms would diminish”, or non-causal task material, e.g., “If

the card were to show a square, it would be black”, people judge the negations of the antecedents to be irrelevant to

the evaluation of the counterfactuals [78, 80]. These negations state the actual facts, e.g., “The patient does not take

the drug”, or “The side does not show a square”, respectively. This speaks for the psychological plausibility of our

basic intuition, which also underlies Stalnaker’s extension of the Ramsey test to counterfactuals [26, 29, 84]: when

we evaluate the counterfactual “If A were the case, C would be the case”, we hypothetically remove, or set aside,

our information that A is false from our beliefs and assess C under the assumption that A is true. This matches the

psychological data [78, 80]. One starting point of modeling such situations is given by the aforementioned iterated

conditional pC|Aq|B, with B Ď sA, where B represents the factual statement which provides evidence that sA.

We remark that, contrary to [63], in general the iterated conditional pC|Aq|B, when A, B,C are logically indepen-

dent, does not coincide with the conditional event C|AB. Indeed, by setting PrpC|Aq|Bs “ µ and PpC|Aq “ y, from

Definition 6 we obtain

pC|Aq|B “ pC|Aq ^ B ` µsB “

$
’’&

’’%

1, if ABC is true,

0, if AB sC is true,

y, if sAB is true,

µ, if sB is true,

while, assuming AB ‰ H and PpC|ABq “ z, it holds that

C|AB “ ABC ` zĎAB “

$
&

%

1, if ABC is true,

0, if ABsC is true,

z, if ĎAB is true;

thus: pC|Aq|B ‰ C|AB. Moreover, as pC|Aq|B “ pAC ` ysAq|B “ AC|B ` ysA|B, by linearity of prevision and product

formula

PrpC|Aq|Bs “ PpC|ABqPpA|Bq ` PpC|AqPpsA|Bq. (25)

Therefore, like in [1, 59], the Import-Export Principle is not valid in our approach. Then, as proved in [50], we

avoid the counter-intuitive consequences related to Lewis’ well-known first triviality result ([62]). Moreover, if the

Import-Export Principle were added as an axiom to our theory, assuming AB “ H, A ‰ H, B ‰ H, we would have

on one hand pC|Aq|B “ PpC|Aq; on the other hand it would be pC|Aq|B “ C|AB “ C|H; thus, we would obtain an

inconsistency. We also recall that, following de Finetti, objects like C|H are not considered in our approach. Finally,

we point out that we are able to manage counterfactuals; indeed, in our approach the counterfactual C|A when A is

believed to be false is not C|H, but pC|Aq|sA, which coincides with PpC|Aq.

9. Conclusions

We have presented a probabilistic analysis of the conjunction and iteration of conditional events, and of the cen-

tering inference for these conjunctions and iterations. In our approach conjoined conditionals and iterated condi-

tionals are conditional random quantities defined in the setting of coherence. By this approach we can overcome

some objections made in the past to the conditional probability hypothesis for natural language conditionals, that

Ppif A then Bq “ PpB|Aq. This hypothesis is fundamental for the new Bayesian and probabilistic approaches in the

psychology of reasoning and has been confirmed in many papers ([65, 67, 73, 74, 75, 79, 81]). This identity is also

central to our analysis of both indicative and counterfactual conditionals as conditional events.

We have proved the p-validity of one-premise and two-premise centering when basic events are replaced by condi-

tional events. We have determined the lower and upper bounds for the conclusion of two-premise centering; we have

also studied the classical case and have obtained the same lower and upper bounds. We have proved the p-validity

of an analogue of the classical biconditional introduction rule for conditional events (biconditional AND rule). We

have verified the p-validity of one-premise and two-premise biconditional centering, and have given the lower and

upper bounds for the conclusion of two-premise biconditional centering. We have investigated reversed inferences,

by determining the lower and upper bounds for the premises of the biconditional AND rule. We have briefly indicated

how to apply our results to the study of selected counterfactuals.
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It is often argued that there are deep differences between indicative and counterfactual conditionals. For example,

the indicative conditional, “If Oswald did not kill Kennedy then someone else did”, is not equivalent to the counter-

factual conditional, “If Oswald had not killed Kennedy then someone else would have” ([26]). We will explore in

future work the more detailed similarities and differences between these two forms of the conditional.
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Appendix A. Some technical aspects on coherence

In this Appendix, which expands Section 2.2, we illustrate some technical aspects which concern coherence of

probability and prevision assessments on conditional events and conditional random quantities.

Appendix A.1. Coherence Checking

Let be given a family Fn “ tE1|H1, . . . , En|Hnu and a probability assessment Pn “ pp1, . . . , pnq on Fn, where

pi “ PpEi|Hiq , i “ 1, . . . , n. We set Jn “ t1, 2, . . . , nu. We recall that the constituents C0,C1, . . . ,Cm generated

by Fn, where C0 “ sHn “ ĎH1
ĎH2 ¨ ¨ ¨ ĎHn, are obtained by expanding the expression

Źn
i“1pEiHi _ sEiHi _ sHiq. For

each h P Jm, with the constituent Ch we associate a point Qh “ pqh1, . . . , qhnq, where for each j P Jn, qh j “ 1,

or 0, or p j, according to whether Ch Ď E jH j, or Ch Ď sE jH j, or Ch Ď sH j. Denoting by I the convex hull of

Q1, . . . ,Qm, by a suitable alternative theorem ([31, Theorem 2.9]), the condition Pn P I is equivalent to the condition

minDHn
ď 0 ď maxDHn

given in Definition 1 (see, e.g., [37, 49]). Moreover, the condition Pn P I amounts to the

solvability of the following system (Σ) in the unknowns λ1, . . . , λm

pΣq :

mÿ

h“1

qh jλh “ p j , j P Jn ;

mÿ

h“1

λh “ 1 ; λh ě 0 , h P Jm .

We say that system pΣq is associated with the pair pFn,Pnq. Hence, the following result provides a characterization of

the notion of coherence given in Definition 1 ([33, Theorem 4.4], see also [34, 44, 49])

Theorem 10. Let K be an arbitrary family of conditional events and let P be a probability function defined on K .

The function P is coherent if and only if, for every finite subfamily Fn “ tE1|H1, . . . , En|Hnu of K , denoting by Pn

the vector pp1, . . . , pnq, where p j “ PpE j|H jq, j “ 1, 2, . . . , n, the system pΣq associated with the pair pFn,Pnq is

solvable.

We recall now some results on the coherence checking of a probability assessment on a finite family of

conditional events. Given a probability assessment Pn “ pp1, . . . , pnq on a finite family of conditional events

Fn “ tE1|H1, . . . , En|Hnu, let S be the set of solutions Λ “ pλ1, . . . , λmq of the system pΣq. Then, assuming S ‰ H,

we define
Φ jpΛq “ Φ jpλ1, . . . , λmq “

ř
r:CrĎH j

λr , j P Jn ; Λ P S ;

M j “ maxΛPS Φ jpΛq , j P Jn ; I0 “ t j : M j “ 0u .

Of course, if S ‰ H, then S is a closed bounded set and the maximum M j of the linear functionΦ jpΛq “
ř

r:CrĎH j
λr

there exists for every j P Jn. We observe that, assuming Pn coherent, each solution Λ “ pλ1, . . . , λmq of system pΣq is

a coherent extension of the assessment Pn on Fn to the family tC1|Hn,C2|Hn, . . . , Cm|Hnu. Then, by the additivity

property, the quantity Φ jpΛq is the conditional probability PpH j|Hnq and the quantity M j is the upper probability

P˚pH j|Hnq over all the solutions Λ of system pΣq. Of course, j P I0 if and only if P˚pH j|Hnq “ 0. Notice that I0 is a

strict subset of Jn. We denote by pF0,P0q the pair associated with I0. Given the pair pFn,Pnq and a (nonempty) strict
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subset J of Jn, we denote by pFJ ,PJq the pair associated with J and by pΣJq the corresponding system. We observe

that pΣJq is solvable if and only if PJ P IJ, where IJ is the convex hull associated with the pair pFJ,PJq. Then, we

have ([35, Theorem 3.2]; see also [9, 36])

Theorem 11. Given a probability assessment Pn on the family Fn, if the system pΣq associated with pFn,Pnq is

solvable, then for every J Ă Jn, such that JzI0 ‰ H, the system pΣJq associated with pFJ ,PJq is solvable too.

The previous result says that the condition Pn P I implies PJ P IJ when JzI0 ‰ H. We observe that, if Pn P I,

then for every nonempty subset J of JnzI0 it holds that JzI0 “ J ‰ H; hence, by Theorem 10, the subassessment

PJnzI0
on the subfamily FJnzI0

is coherent. In particular, when I0 is empty, coherence of Pn amounts to solvability

of system pΣq, that is to condition Pn P I. When I0 is not empty, coherence of Pn amounts to the validity of both

conditions Pn P I and P0 coherent, as shown below ([35, Theorem 3.3]).

Theorem 12. The assessment Pn on Fn is coherent if and only if the following conditions are satisfied: (i) Pn P I;

(ii) if I0 ‰ H, then P0 is coherent.

Appendix A.2. Coherent conditional prevision assessments

We denote by X a random quantity, that is (following de Finetti, see also [60]) an uncertain real quantity, which

has a well determined but unknown value. We recall that in the axiomatic approach to probability, usually X is defined

as a random variable. We assume that X is a finite random quantity, that is X has a finite set of possible values. In

particular, (the indicator of) any given event A is a two-valued random quantity, with A P t0, 1u. Given an event

H ‰ H and a finite random quantity X, let tx1, x2, . . . , xru be the set of possible values of X restricted to H, which

means that if H is true then X P tx1, x2, . . . , xru. As an example, given an event H ‰ H and a finite random quantity

X with a set of possible values tx1, x2, . . . , xnu. Let be Ai “ pX “ xiq, i “ 1, 2, . . . , n. Assume that AiH ‰ H for

i “ i1, i2, . . . , ir and with AiH “ H otherwise. Then, the set of possible values of X restricted to H is txi1 , xi2 , . . . , xir u.

Notice that the set txi1 , xi2 , . . . , xir u is nonempty because
Žn

i“1 AiH “ p
Žn

i“1 AiqH “ ΩH “ H ‰ H. Indeed, if it

were AiH “ H for i “ 1, . . . , n, then it would follows that H “
Žn

i“1 AiH “ H (which is a contradiction).

Agreeing to the betting metaphor, by assessing the prevision of “X conditional on H” (also named “X given H”),

PpX|Hq, as the amount µ, then for any given real number s you are willing to pay an amount µs and to receive Xs,

or µs, according to whether H is true, or false (bet called off), respectively. Then, the random gain associated with

the assessment PpX|Hq “ µ is G “ sHpX ´ µq. We remark that, differently from the notion of expected value, in

the subjective approach of de Finetti the prevision of a random quantity is a primitive notion and its value can be

assessed in a direct way. In particular, when X is (the indicator of) an event A, then PpX|Hq “ PpA|Hq. We recall

the notion of coherence for conditional prevision assessments ([10, 11, 50, 69]). Given a function P defined on an

arbitrary family K of finite conditional random quantities, consider a finite subfamily Fn “ tXi|Hi, i P Jnu Ď K and

the vectorMn “ pµi, i P Jnq, where µi “ PpXi|Hiq, i P Jn. With the pair pFn,Mnq we associate the random gain

G “
ř

iPJn
siHipXi ´µiq, where s1, s2, . . . , sn are arbitrary real numbers; moreover, as made for the conditional events,

we denote by D the set of values of G and by DHn
, where Hn “ H1 _ ¨ ¨ ¨ _ Hn, the set of values of G restricted to

Hn. Then, using the betting scheme of de Finetti, we have

Definition 7. The function P defined on K is coherent if and only if, @n ě 1, @Fn Ď K , @ s1, . . . , sn P R, it holds

that: min DHn
ď 0 ď max DHn

.

Given a family Fn “ tX1|H1, . . . , Xn|Hnu, for each i P Jn we denote by txi1, . . . , xiri
u the set of possible values for

the restriction of Xi to Hi; then, for each i P Jn and j “ 1, . . . , ri, we set Ai j “ pXi “ xi jq. Of course, for each i P Jn,

the family t sHi, Ai jHi , j “ 1, . . . , riu is a partition of the sure event Ω, with Ai jHi “ Ai j,
Žri

j“1 Ai j “ Hi. Then, the

constituents generated by the family Fn are (the elements of the partition of Ω) obtained by expanding the expressionŹ
iPJn

pAi1 _ ¨ ¨ ¨ _ Airi
_ sHiq. We set C0 “ sH1 ¨ ¨ ¨ sHn (C0 may be equal to H); moreover, we denote by C1, . . . ,Cm the

constituents contained inHn “ H1 _ ¨ ¨ ¨_ Hn. Hence
Ź

iPJn
pAi1 _ ¨ ¨ ¨_ Airi

_ sHiq “
Žm

h“0 Ch. With each Ch, h P Jm,

we associate a vector Qh “ pqh1, . . . , qhnq, where qhi “ xi j if Ch Ď Ai j, j “ 1, . . . , ri, while qhi “ µi if Ch Ď sHi; the

vector associated with C0 is Q0 “ Mn “ pµ1, . . . , µnq. Denoting by I the convex hull of Q1, . . . ,Qm, the condition

Mn P I amounts to the existence of a vector pλ1, . . . , λmq such that:
ř

hPJm
λhQh “Mn ,

ř
hPJm
λh “ 1 , λh ě 0 , @ h;

in other words,Mn P I is equivalent to the solvability of the following system, associated with pFn,Mnq,
ř

hPJm
λhqhi “ µi , i P Jn ;

ř
hPJm
λh “ 1 ; λh ě 0 , h P Jm . (A.1)
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Given the assessmentMn “ pµ1, . . . , µnq on Fn “ tX1|H1, . . . , Xn|Hnu, let S be the set of solutions Λ “ pλ1, . . . , λmq
of system (A.1). Then, assuming the system (A.1) solvable, that is S ‰ H, we define:

I0 “ ti : max
ΛPS

ÿ

h:ChĎHi

λh “ 0u, F0 “ tXi|Hi , i P I0u, M0 “ pµi, i P I0q . (A.2)

Then, the following theorem can be proved ([10, Theorem 3]):

Theorem 13. [Operative characterization of coherence] A conditional prevision assessmentMn “ pµ1, . . . , µnq on

the family Fn “ tX1|H1, . . . , Xn|Hnu is coherent if and only if the following conditions are satisfied:

(i) the system (A.1) is solvable;

(ii) if I0 ‰ H, thenM0 on F0 is coherent.

Appendix A.3. Conditional previsions as previsions of conditional random quantities

We recall that usually in the literature a conditional random quantity X|H is understood as the restriction of X to

H, with X|H undefined when H is false. By the betting scheme, if you assess PpX|Hq “ µ, the random quantity that

you receive by paying µ is XH ` µ sH. From coherence, it holds that PpXH ` µ sHq “ µ; indeed, if you would assess

PpXH ` µ sHq “ µ˚ ‰ µ, then the random gain associated with the assessment pµ, µ˚q on tX|H, XH ` µ sHu would be

G “ s1HpX ´ µq ` s2pXH ` µ sH ´ µ˚q .

Then, by choosing s1 “ 1 and s2 “ ´1, the random gain G would be equal to the nonzero constant: µ˚ ´ µ (a Dutch

book). In what follows, by the symbol X|H we denote the random quantity XH ` µ sH, where µ “ PpX|Hq. This

random quantity, which extends the restriction of X to H, coincides with X when H is true and is equal to µ when

H is false ([50]; see also [46, 47, 60]). As shown before the conditional prevision PpX|Hq is the prevision of the

conditional random quantity X|H. In this way, based on the betting scheme X|H is the amount that you receive in

a bet on X conditional on H, if you agree to pay PpX|Hq. Moreover, denoting by tx1, x2, . . . , xru the set of possible

values of X when H is true, and defining Ai “ pX “ xiq, i “ 1, 2, . . . , r, the family tA1H, . . . , ArH, sHu is a partition of

the sure event Ω and we have

X|H “ XH ` µ sH “ x1A1H ` ¨ ¨ ¨ ` xrArH ` µ sH P tx1, x2, . . . , xr, µu .

In particular, when X is (the indicator of) an event A, the prevision of X|H is the probability of the conditional event

A|H and, if you assess PpA|Hq “ p, then for the indicator of A|H we have A|H “ AH ` p sH P t1, 0, pu. We

observe that the choice of p as the value of A|H when H is false has been also considered in some previous works

([17, 33, 57, 60, 63, 85, 86]).
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