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Abstract: The aim of this paper is to introduce some new operators for aggregating single-valued
neutrosophic (SVN) information and to apply them to solve the multi-criteria decision-making
(MCDM) problems. Single-valued neutrosophic set, as an extension and generalization of an
intuitionistic fuzzy set, is a powerful tool to describe the fuzziness and uncertainty, and Muirhead
mean (MM) is a well-known aggregation operator which can consider interrelationships among any
number of arguments assigned by a variable vector. In order to make full use of the advantages of
both, we introduce two new prioritized MM aggregation operators, such as the SVN prioritized MM
(SVNPMM) and SVN prioritized dual MM (SVNPDMM) under SVN set environment. In addition,
some properties of these new aggregation operators are investigated and some special cases are
discussed. Furthermore, we propose a new method based on these operators for solving the MCDM
problems. Finally, an illustrative example is presented to testify the efficiency and superiority of the
proposed method by comparing it with the existing method.

Keywords: neutrosophic set; prioritized operator; Muirhead mean; multicriteria decision-making;
aggregation operators; dual aggregation operators

1. Introduction

Multicriteria decision-making (MCDM) is one of the hot topics in the decision-making field to
choose the best alternative to the set of the feasible one. In this process, the rating values of each
alternative include both precise data and experts’ subjective information [1,2]. However, traditionally,
itis assumed that the information provided by them are crisp in nature. However, due to the complexity
of the system day-by-day, the real-life contains many MCDM problems where the information is either
vague, imprecise or uncertain in nature [3]. To deal with it, the theory of fuzzy set (FS) [4] or extended
fuzzy sets such as intuitionistic fuzzy set (IFS) [5], interval-valued IFS (IVIFS) [6] are the most successful
ones, which characterize the criterion values in terms of membership degrees. Since their existence,
numerous researchers were paying more attention to these theories and developed several approaches
using different aggregation operators [7-10] and ranking methods [11-13] in the processing of the
information values.

It is remarked that neither the FS nor the IFS theory are able to deal with indeterminate and
inconsistent data. For instance, consider an expert which gives their opinion about a certain object
in such a way that 0.5 being the possibility that the statement is true, 0.7 being the possibility that
the statement is false and 0.2 being the possibility that he or she is not sure. Such type of data is not
handled with FS, IFS or IVIFS. To resolve this, Smarandache [14] introduced the concept neutrosophic
sets (NSs). In NS, each element in the universe of discourse set has degrees of truth membership,
indeterminacy-membership and falsity membership, which takes values in the non-standard unit
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interval (0~, 17). Due to this non-standard unit interval, NS theory is hard to implement on the
practical problems. So in order to use NSs in engineering problems more easily, some classes of NSs
and their theories were proposed [15,16]. Wang et al. [16] presented the class of NS named as interval
NS while in Wang et al. [15], a class of single-valued NS (SVNS) is presented. Due to its importance,
several researchers have made their efforts to enrich the concept of NSs in the decision-making process
and some theories such as distance measures [17], score functions [18], aggregation operators [19-23]
and so on.

Generally, aggregation operators (AOs) play an important role in the process of MCDM problems
whose main target is to aggregate a collection of the input to a single number. In that direction,
Ye [21] presented the operational laws of SVNSs and proposed the single-valued neutrosophic
(SVN) weighted averaging (SVNWA) and SVN weighted geometric average (SVNWGA) operators.
Peng et al. [22] defined the improved operations of SVN numbers (SVNNs) and developed their
corresponding ordered weighted average/geometric aggregation operator. Nancy and Garg [24]
developed the weighted average and geometric average operators by using the Frank norm operations.
Liu et al. [25] developed some generalized neutrosophic aggregation operators based on Hamacher
operations. Zhang et al. [26] presented the aggregation operators under interval neutrosophic set (INS)
environment and Aiwu et al. [27] proposed some of its generalized operators. Garg and Nancy [19]
developed a nonlinear optimization model to solve the MCDM problem under the INS environment.

From the above mentioned AOs, it is analyzed that all these studies assume that all the
input arguments used during aggregation are independent of each other and hence there is no
interrelationship between the argument values. However, in real-world problems, there always occurs
a proper relationship between them. For instance, if a person wants to purchase a house then there is a
certain relationship between its cost and the locality. Clearly, both the factors are mutually dependent
and interacting. In order to consider the interrelationship of the input arguments, Bonferroni mean (BM)
[28], Maclaurin symmetric mean (MSM) [29], Heronian mean (HM) [30] etc., are the useful aggregation
functions. Yager [31] proposed the concept of BM whose main characteristic is its capability to capture
the interrelationship between the input arguments. Garg and Arora [32] presented BM aggregation
operators under the intuitionistic fuzzy soft set environment. In these functions, BM can capture
the interrelationship between two arguments while others can capture more than two relationships.
Taking the advantages of these functions in a neutrosophic domain, Liu and Wang [33] applied the
BM to a neutrosophic environment and introduce the SVN normalized weighted Bonferroni mean
(SVNNWBM) operator. Wang et al. [34] proposed the MSM aggregation operators to capture the
correlation between the aggregated arguments. Li et al. [20] presented HM operators to solve the
MCDM problems under SVNS environment. Garg and Nancy [35] presented prioritized AOs under
the linguistic SVNS environment to solve the decision-making problems. Wu et al. [36] developed
some prioritized weighted averaging and geometric aggregation operators for SVNNSs. Ji et al. [37]
established the single-valued prioritized BM operator by using the Frank operations. An alternative to
these aggregations, the Muirhead mean (MM) [38] is a powerful and useful aggregation technique.
The prominent advantage of the MM is that it can consider the interrelationships among all arguments,
which makes it more powerful and comprehensive than BM, MSM and HM. In addition, MM has a
parameter vector which can make the aggregation process more flexible.

Based on the above analysis, we know the decision-making problems are becoming more and
more complex in the real world. In order to select the best alternative(s) for the MCDM problems, it is
necessary to express the uncertain information in a more profitable way. In addition, it is important to
deal with how to consider the relationship between input arguments. Keeping all these features in
mind, and by taking the advantages of the SVNS, we combine the prioritized aggregation and MM and
propose prioritized MM (PMM) operator by considering the advantages of both. These considerations
have led us to consider the following main objectives for this paper:

1. tohandle the impact of the some unduly high or unduly low values provided by the decision
makers on to the final ranking;
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2. to present some new aggregation operators to aggregate the preferences of experts element;

3. todevelop an algorithm to solve the decision-making problems based on proposed operators;

4. to present some example in which relevance of the preferences in SVN decision problems is
made explicit.

’

Since in our real decision-making problems, we always encounter a problem of some attributes
values, provided by the decision makers, whose impact on the decision-making process are unduly
high or unduly low; this consequently results in a bad impression on the final results. To handle it,
in the first objective we utilize prioritized averaging (PA) as an aggregation function which can
handle such a problem very well. To achieve the second objective, we develop two new AOs,
named as SVN prioritized MM (SVNPMM) and SVN prioritized dual MM (SVNPDMM) operators,
by extending the operations of SVNNs by using MM and PA operators. MM operator is a powerful
and useful aggregation technique with the feature that it considers the interrelationships among all
arguments which makes it more powerful and comprehensive than BM [28], MSM [29] and HM [30].
Moreover, the MM has a parameter vector which can make the aggregation process more flexible.
Several properties and some special cases from the proposed operators are investigated. To achieve
the third objective, we establish an MCDM method based on these proposed operators under the
SVNS environment where preferences related to each alternative is expressed in terms of SVNNSs.
An illustrative example is presented to testify the efficiency and superiority of the proposed method
by comparative analysis with the other existing methods for fulfilling the fourth objective. Further,
apart from these, we verify that the methods proposed in this paper have advantages with respect to
existing operators as follows: (1) some of the existing AOs can be taken as a special case of the proposed
operators under NSs environment, (2) they consider the interrelationship among all arguments, (3) they
are more adaptable and feasible than the existing AOs based on the parameter vector, (4) the presented
approach considers the preferences of the decision maker in terms of risk preference as well as
risk aversion.

The rest of the manuscript is organized as follows. In Section 2, we briefly review the concepts of
SVNS and the aggregation operators. In Section 3, two new AOs based on PA and MM operations
are developed under SVNS environment and their desirable properties are investigated. In addition,
some special cases of the operators by varying the parametric value are discussed. In Section 4,
we explore the applications of SVNN to MCDM problems with the aid of the proposed decision-making
method and demonstrate with a numerical example. Finally, Section 5 gives the concluding remarks.

2. Preliminaries

In this section, some basic concepts related to SVNSs have been defined over the universal set X
with a generic element x € X.

Definition 1 ([14]). A neutrosophic set (NS) a comprises of three independent degrees in particular truth (j,),
indeterminacy (o), and falsity (v,) which are characterized as

a = {{x, pa(x), pa (%), va(x) [ x € X} }, ©)

where iy (x), pa(x), Va(x) is the subset of the non-standard unit interval (0~,1") such that 0~ < pq(x) +
0a(x) +vg(x) <37,

Definition 2 ([16]). A single-valued neutrosophic set (SVNS) « in X is defined as

a= {(x,]/tu(x),pa(x),va(x) | x e X>}/ 2

where pia(x), pa(x), va(x) € [0,1] such that 0 < pg(x) + pa(x) +ve(x) < 3forall x € X. A SVNS isan
instance of an NS.
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For convenience, we denote this pair as &« = (jia, pa, Vo), throughout this article, and called as
SVNN with the conditions ia, pu, Vo € [0,1] and py + P + va < 3.
Definition 3 ([18]). Let & = (pa, pu, V) be a SVNN. A score function s of a is defined as

s(w) = 1+ (o — 204 *21’04)(2*]4&*1/11)‘ 3)

Based on this function, an ordered relation between two SVNNs « and B is stated as, if s(a«) > s(pB) then o > B.

Definition 4 ([16,22]). Let « = (p,p,v), a1 = (p1,01,v1) and ay = (p, p2,v2) be three SVNNs and A > 0
be real number. Then, we have

L af=(v,p,p);

2. ap Sagifpy < pp,p1 > p2and vy > o)

3 w1 = ap ifand only if oy < ap and ay < wy;

4. w3 Nap = (min(pq, i), max(py, p2), max(vy, v2));
5. apUay = (max(yl,;42),min(pl,pz),min(vl,vz));
6. a1 Day = (1 + p2 — p1p2, 102, V1V2);

7. w ®an = (Hip2, 01+ p2 — P12, V1 + V2 — Vi12);
8 Aap=(1—(1—m)pp,v1)

9. ) = (uh1— (- )1 - (1)),

Definition 5 ([36]). For a collection of SVNNs a; = (pj, p5,vj)(j = 1,2,...,1), the prioritized weighted
aggregation operators are defined as

1. SVN prioritized weighted average (SVNPWA) operator

o o o
n Y H 1 Y H 1 Y H;
=1 =

SVNPWA(ay,az,...,0) = | 1= T](1—u;) LTIy | @)

j=1 j=1 j=1

2. SVN prioritized geometric average (SVNPGA) operator

H; H; H;
7 7 n

n T n 3 n T H
SVNPGA(ay,az,. .., 0,) = H(yj)/:1 A-TJa- pj) 71— T]- V) ; (5)

j=1 j=1 j=1

j—1
where Hy = 1 and H; = k]:[ls(txk); (j=2,...,n).

Definition 6 ([38]). For a non-negative real numbers h;(j = 1,2,...,n), (MM) operator over the parameter
P = (p1,p2 ..., pn) € R" is defined as

1

1 no\ Ly
V) (n’ )y Hh?(ﬂ)” g ®)

ceSy j=1
where o is the permutation of (1,2,...,n) and S, is set of all permutations of (1,2,...,1n).

By assigning some special vectors to P, we can obtain some special cases of the MM:
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1. IfP=(1,0,...,0), the MM is reduced to

1 n
1,0,...,0 _ )
MM (g, g, . ) = E]-:Zlhf’ @)
which is the arithmetic averaging operator.
2. IfP=(1/n1/n,...,1/n), the MM is reduced to
n
MM(l/n’l/"""’l/n)(I’l],hz, L /hn) _ Hh}/n, (8)
=1
which is the geometric averaging operator.
3. IfP=(1,1,0,0,...,0), then the MM is reduced to
1/2
(1,1,0,0,...0) 1 -
MM\AAE ) (g by, .. hy) = hih;
( 1,12, ’ n) n(n+l) ,’,]’2:1 ity ’ (9)
i
which is the BM operator [28].
k —k
—— /—n’%
4 Ifr=(11,...,1,0,0,...,0), then the MM is reduced to
k n—k 1/k
——~— 1 k
MM 00O g o,y = | S X T | (10)
G 150 < j=1
...<ik§n

which is the MSM operator [29].

3. Neutrosophic Prioritized Muirhead Mean Operators

In this section, by considering the overall interrelationships among the multiple input arguments,
we develop some new prioritized based MM aggregation operators for a collection of SVNNs
aj; (j=1,2,...,n), denoted by Q). Assume that ¢ is the permutation of (1,2,...,n) such that
D‘U(jfl) < lXU(/) fOI‘j = 2, 3, B (N

3.1. Single-Valued Neutrosophic Prioritized Muirhead Mean (SVNPMM) Operator

Definition 7. For a collection of SVNNs a; (j=1,2,...,n),a SVNPMM operator is a mapping SVNPMM :
Q — Q defined as

Pj nl
=
I N
SVNPMM (a1, 00, ..., ay) = '@ ) , (11)
e, j=1 ZH/
j=1

-1
where H; = 1, Hy = ]I s(ag); (j = 2,...,n), Sy is collection of all permutations of (1,2,...,n) and
k=1

P = (p1,p1,...,Pn) € R" be a vector of parameters.
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Theorem 1. For a collection of SVNNs a; = (uj, 0j,vj)(j = 1,2, ..., 1), the aggregated value by Equation (11)

is again a SVNN and given by

SVNPMM(le,le,..
1-[IT [1-

oESy,

= |1-[1-|TI
oESy,

1-1-| 1
oEeSy,

Pj

and

Thus,

Pi

~/‘xn)

. F:IL,(/-) pj n jE‘] pj
.
L
,
1 1
Hyn \ Pj A
n TU(Z / " /i] bi
=4 ) 12)
1 1
Hyon \ Pj AN
n,,‘im " 7&1”/
L Hj
n et n () nJeti
L f LH L
Po() T Vel T
n o) \ P 2 o) \ P
H; ﬁ H;
A= 1=pogy :
Ha(j) \ Fi
n
Lt
L=ve =
H_ -
n—2t) "
: o
1-TT{1- Q= pep) = ,
j=1
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Now,
Pi\ T
n
! L pj
1 () -
T
SVNPMM(aq, ap, ..., &) = = o o(j
78, j=1 ZH]
=1
1
1 1
o)\ PN\ ™\
7 j=1
n H/-
| T TT - ) ,
TESy j=1
RN
oty \ i "\ R
n ):Hj
= (1= (1= [ IT | =111 —pey ™ :
oS, j=1
N ol
Hoyy \ PN\ 7\ £ pi
n ng(y) ! " fgl Pi
n _): H/
v T[T e
oeS, j=1

Thus Equation (12) holds. Furthermore, 0 < 1, (), 0o (j), Vo(j) < 150 we have

H,i
n n”(/)

1= (1= gy =7 e 0,1

and )
o ety \ P
n T
1= (1= pyq) = €[o0,1],
j=1
which implies that
Aoy \ Fi
n *
T— | IT [t-TI|1— (O peq) ™ € [0,1].
TES, j=1
Hence,
N T
Hegy \ P nl 'gl i
n £ 1, =
0<|1—| T |1 -T1|1—(0—pe) ™ <1
oES, j=1
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Similarly, we have

H Pj T b
n " ‘z’m) =Y
o<1 |1— [T [1-TT|t-poy ™' <1
TESy j=1
and
1
1 7
Hy i pj nl i
noeti) \ " ].Elh
n Y H]
o<1—|1—| [T |1-T]|1-vg ™ <1
eSSy, j=1

which complete the proof. [

The working of the proposed operator is demonstrated through a numerical example, which is
illustrated as follow.

Example 1. Let a1 = (0.5, 0.2, 0.3), a = (0.3, 0.5, 0.4) and a3 = (0.6, 0.5, 0.2) be three SVNNs and
j-1
P = (1, 0.5, 0.3) be the given parameter vector. By utilizing the given information and H; = TT s(ay);

k=1
(j =2,3), we get Hy =1, Hy = 0.74 and Hs = 0.2257. Therefore,

3 et Pi
3 b
IT{1-TI]tQ=pq) ™
o€S3 j=1
1 0.5 0.3
— {1 _ <1 _ ( 05 3><05087) % (1 03 3><03765> x <1 06 3x0. 1148) }
1 0.5 0.3
% {1 _ <1 —(1-03) 3><O3765) % <1 —05) 3><05087> « <1 —0.6)3*0 1148) }
1 0.5 0.3
X {1 _ <1 _ ( —0. 6 3><01148) % (1 03 3><03765> % <1 05 3><05087> }
1 0.5 0.3
% {1 _ <1 _ ( 03 3><03765) x <1 —0. 6 3x0. 1148> x (1 05 3><05087> }
1 0.5 0.3
X {1 _ <1 o ( 05 3><05087) % (1 —0. 6 3x0. 1148) % (1 03 3><03765> }
1 0.5 0.3
y {1 - (1 _(1—08) Mms) y <1 _o5) 3Xo5087> y (1 _03) 3Xo3765> }
= 0.0052.
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Similarly, we have

1-

1-

J
|
/N 7N 7N N N

and

_ (0.3)3><O.5087
_ (0.4)3><0<3765
o (0.2)3><O.1148

_ (0.4)3><0.3765

1—

1
02 3><05087) % (1=

1
1— 05 3><03765> < (1= 02 3><05087> x

1

05 3><01148> % (1=

5 3x0.3765

1
5 3x0.1148

(¢
(¢
(¢
057707) = 1-
><
03] (1=

.000093196

X (11—

(0.3)3 x0.5087

1

)
) (1
)
)< (1-
)
)

1_ (1 —(0.2)3x01148) o (1 (0.3)3%05087

.00000093195.

0.5 03
05 3><03765> x[1— 05 3x0. 1148)

0.5 0.3
1— 05 3x0. 1148)

0.5 03
05 3><03765> % [1— 02 3><05087>

0.5
5 3x0.1148

0.3

% (1= (02 3><05087>

0.3
1— 05 3x0.3765

0.5

2 3x0.5087 1— (05 3><03765

X

N N N N
—— Y~ Y Y Y~ Y—

057)
0.5
05 3><01148> % )
0.3
02725) )

0.5 0.3

04 3><03765> % (1 (02 3><0 1148) }
0.5 0.3

03 3x05087> % (1 02 3x0. 1148) }
0.5 0.3

04 3><03765> % (1 (03 3><05087> }
0.5 0.3

02 3x0. 1148> % (1 03 3><05087) }
0.5 0.3

02 3x0. 1148> % (1 04 3x03765> }
0.5 0.3

> y (1 04) 3xo3765) }
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Hence, by using Equation (12), we get the aggregated value by SVNPMM is

SVNPMM(OC], Xy, 063)
1/1.8 1/1.8
(1 - (0.0052)1/6> 11— (1 - (0.000093196)“6>

1/1.8
1-— (1 — (0.00000093195)"/ 5)

= (0.7415,0.1246,0.0562).

It is observed from the proposed operator that it satisfies the certain properties which are stated
as follows.

Theorem 2. Ifa; = (yj,pj, v;) and uc; = (y},p}, 1/]/) are two SVNNG such that jij < y;-, pj > p;- and v; > v]f
forall j, then
SVNPMM(ay, a2, . .., a) < SUNPMM(a}, a5, ..., a,).

This property is called monotonicity.

Proof. For two SVNNs «; and zx;, we have Xy (j) < oc:f(].), for all j which implies that Ho(j) < y:r(].) and
() Ho(j)

n—g

H!

= H; "I ! j-1 j-1
(1= to()) 7 = (1= ppy;)) 7', where Hy = 1, Hy = [1 s(a) and Hj = 1, H} = ] s(ay) for
k=1 k=1
(j=2,3,...,n). Thus,

Pj H . Pj
n—24)

(i \ P oo \ P
n .;le n / ;1 /,
e E 1= (1= po) SE L= (1= pe) -
Further, we have
nl_:lu(j) P
L L
IT[1-T1|1- (=) ™
oES, j=1
o e \ P
" ;A
>II | 1-T1{1 - (0 =m) -
TESy j=1

10



Symmetry 2018, 10, 280

and
1
Mgy \ P\ \ ™
n "z H;
=
I[T|1-TI|1-(=nop)
= =1
/ PN\
Aoy \
n & H
! = 7
> I | -TT |1 (=) ™
oES, j=1
Hence, we get
1
1 i
H pj nt
i@\ " /Elf’/
n L Hj
=TT |1 -TT 1= (O =heg) ™
ceS, j=1
1
H’ Pj % Ep
n a(j) /‘:1/
n Hlf
<P T | -TT - s &
oES, j=1
Similarly, we have
1
H Pj % )yf P
n nﬂ(}) =N
n v): HI
I=|1=| IT [1-TI|1=peqy ™
TES, j=1
H p; I\ T
noi) \ " E
n
>1-|1- 1-TT] 1 =
€S, =1
and
1
1
oy \ PN\ T\
i j=1
n by H]
vl T T v
eSSy, j=1
1 1
H pj nt 5
o) \ Y " i
n , v H/-
>1-|1- 1-T]|1-v )
oes,y, j=1

11
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Therefore, by Definition 4, we have
SVNPMM(aq, a3, ..., a,) < SUNPMM (&}, 8, ..., a),).

O

Theorem 3. For a collection of SVNNs aj = (yj,pj,vj)(j =1,2,...,n). Leta™ = (u—,p ,v") and
at = (ut,p",v") be the lower and upper bound, respectively, of the SVNNs where p~ = min{y;},
]

o~ = max{p;}, v = max{y}, i+ = max{j;}, p* = min{p;} and v = min{v;}, then
] ] ] ] ]
a~ < SUNPMM(aq,az, ..., 0,) < a™.
This property is called boundedness.

Proof. Since min{y;} < p;, therefore min{y;} < ji,(j), which implies
] ]

and

Then,
2 o) \ P o o) \ Pi
" T " £
IT11- <1 - m_inyj) = <TTl1- (1 - ya(])> =
=1 J =1
Further,
oo \ P
n Y Hj
IT11-TI[1- (lfrnmy]) =1
oES, j=1
w ey \ Pi
n 5 H/
STt -TT{ 1= (1= bogy) ™ ’
TES, j=1

12
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which implies that

TANANNARY
n L H;
- T 1111 17<17mjnyj> =1
TES, j=1 /
1 1
. 4 n
EANANAYT
= Lt
< 1= IT [1-TI|1- (1 =nep) ™ :
0ES, j=1

ie.,

and

—

ceS, j=

1 m
" l;!lam Pi ! El pj
n L H
vixl— 1= [ [T [1-]T|1-vg 7 :

Hence, (1,0~ ,v~) < SUNPMM(ay, a, ..., &,). Similarly, we have
SVNPMM(ay, ay, ..., a,) < (uF,p%,v),
which completes the proof. [
Theorem 4. Let &; be any permutation of w; then we have
SVNPMM(aq, &y, ..., 0,) = SVNPMM(&1, &y, . .., &y ).
This property is called commutativity.
O

Proof. The proof of this theorem can be easily followed from Equation (12), so we omit it here.

Theorem 5. If the priority level of all the SVNNs is taken to be the same then SVNPMM operator reduces to
single-valued neutrosophic Muirhead mean (SVNMM) operator. This property is called reducibility.

13
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Proof. Take ¢; = ,,Hi = % for all j denotes the prioritized level. As ¢; is same for all j, so, we have
¥ H

j=1
(n¢j)ay(j) = ay(j), which implies

1

1 n . )'f )
SVNPMM(ay,ay, ..., 0y) = (n' H“?@-)) =i
T oes, j=1

= SVNMM(D{l,DQ,. . .,an).
|

However, apart from these, the following particular cases are observed from the proposed
SVNPMM operator by assigning different values to P = (p1, p2, ..., Pn)-

1. IfP = (1,0,...,0), then SUNPMM operator becomes the SVN prioritized weighted average
(SVNPWA) operator which is given as

L pj
H =t
SVNPMM(ar, a2, ) = | = @ |15y
toeSy > H],
j=1
n H.
= @ity
j=1 E H]
j=1

= SVNPWA(ay,az,...,a,).

2. WhenP = (A,0,...,0), then SVNPMM operator yields to SVN generalized hybrid prioritized
weighted average (SVNGHPWA) operator as shown below

PN
1 H
SVNPMM(ay, &y, ... &) = | - n="a, )
" oes, ¥ H]
=1
PN
12 H;
= 7@ n &j
n
j=1 Z H]
=]

= SVNGHPWA (1, 87,...,&y).

3. IfP=(11,0,...,0), then Equation (11) reduces to SVN prioritized bonferroni mean (SVNPBM)
operator as below

14
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[

1 H 1 H 2
SVNPMM(aq, a,...,0,) = o n na( )aa(l) n ng( )060(2)
oes, | L H; Y. H
j=1 j=1
1
2
2 n
n H, H.
= p EB - " LI
tors=1 E Hr
r#s r=1

n

Y Hs
s=1

= SVNPBM(ay,az,...,an).

tterms n —t terms

——
4 IfP=(1,1...,1, 0,0...,0 ), then SVNPMM operator yields to SVN prioritized Maclaurin
symmetric mean (SVNPMSM) operator as follows

2n't ! H;
SVNPMM(a1,a2,-.,0) = [ = @ Q| 5w,
1<;:1<-~ q=1 Z Hr
<jp<n r—1

3.2. Single-Valued Neutrosophic Prioritized Dual Muirhead Mean Operator

In this section, we propose prioritized dual aggregation operator based on the MM under the
SVNS environment.

Definition 8. A SVNPDMM operator is a mapping SVNPDMM : Q" — Q) given by

1
e\ ™
1 - Lt
SVNPDMM(a1, a2, 0) = —— | TT €D (pitegy) - : (13)
Z p] oES, j=1
j=1
Theorem 6. The collective value by using Equation (13) is still a SVNN and is given as
SVNPDMM (ay,az, ..., 0n)
1
n% Pi " é”/
n HI
=TT T e ,
€S, j=1
H P A
} " g(: i [l /51 »j
= T= [ TT [1-TI|1-Q=peg) ™' K (14

Proof. The proof follows from Theorem 1. [

In order to illustrate the working of this operator, we demonstrate it through an illustrative
example as follows.

15
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Example 2. If we have taken the data as considered in Example 1 to illustrate the aggregation operator as

defined in Theorem 6 then, we have

= {1 _ <1 — (0.5)3x0:5087
X {1 - <1 — (0.3)3x0:3765
X {1 — <1 — (0'6)3><0A1148
X {1 — <1 — (0'3)3><0A3765
X {1 — <1 _ (0'5)3x05087
|

= 0.00042495.

Similarly, we have

)
)
)
)
)
)

x (1 (0.3)3x03765
x (1— (0.5)3%05087

x (1 - (0.3)3x03765

x (1= (0.6)3><OA1148

1

H

x (1—(1—05)3701148

x (1 (1—0.2)3705087

3 3‘7(/)

(
(
(
(
(
(

1— <1 _ (0.6)3><0A1148 x (1= (0.5)3><0A5087

Pi

1-(1-

(

(
x<1_a_amwmms

(

(

(

3 o
[T|1-TI|1-Q-psp) ™
TES; j=1

y {1 _ (1 — (1 —05)3x03765

% {1 _ <1 —(1-0.5)3x01148

y {1 _ (1 (1 0.5)3X03765

v {1 _ (1 (1 0.2)3X0%087

y {1 _ (1 (105301148

= 0.0268

16

1— (0'6)3><OA1148

% (1 ~ (0.6)3%0.1148
% (1 ~ (0.6)3%0.1148
(1 — (0.5)3x0:5087
« (1 — (0.5)3x0:5087
(
(

x (1= (0.3)3x03765

x (1= (0.3)3x03765

x (1-(1— 050118
x (1-(1— 050118
0.5)3x0.1148 1— (1 —0.2)3%05087
x (1—(1—0.5)3:0376

x (11— (1—0.5)3x0376

(

(
x@_u_mpmw

(

(

(
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and

0ES3 j=
1 0.5 0.3
= {1 _ <1 —(1-03) 3><05087) % <1 —04) 3><O3765> % (1 ~02) 3%0. 1148) }
1 05 0.3
x {1 _ <1 —(1-04) 3><03765> % (1 ~03) 3><05087> « (1 ~02) 3%0. 1148) }
1 0.5 0.3
y {1 _ (1 _1-02) Mms) y <1 _o4) 3Xo3765> y (1 _03) 3Xo5087> }
1 0.5 0.3
x {1 _ (1 —(1-04) 3><03765> % (1 ~02) 3x0. 1148> « (1 ~03) 3><05087> }
1 0.5 0.3
x {1 _ <1 —(1-03) 3><05087> % <1 ~02) 3><01148> « <1 —04) 3x03765> }
1 0.5 0.3
% {1 _ <1 —(1-02) 3x01148 ) (1 ~03) 3x0.5087 « (1 —04) 3x0.3765 }
= 0.0791
Hence,
1 1
1) 18 1\ 18
1-—- (1 — (0.00042495)5) , (1 — (0.0268)5> ,
SVNPDMM(aq, a3, 03) =

L\ T8
(1 - (0.0791)6)
(0.1631,0.6441,0.5535).

Similar to SVNPMM operator, it is observed that this SVNPDMM operator also satisfies same
properties for a collection of SVNNs &;(j = 1,2,...,1) which are stated without proof as below.

(P1) Monotonicity: If a; < uc; for all j, then

SVNPDMM (a1, a2, ..., &,) < SUNPDMM (&}, &3, . .., a},).

(P2) Boundedness: If a~, and a™ are lower and upper bound of SVNNSs then

a~ < SVNPDMM (aq, a2, . .., ay) < a™.

(P3) Commutativity: For any permutation (i3, o0, ..., &) of the (a1, ay, ..., a,), we have

SVNPDMM (a1, a3, . . ., ) = SYNPDMM (1, 3, .. ., ).

4. Multi-Criteria Decision-Making Approach Based on Proposed Operators

In this section, we present an MCDM approach for solving the decision-making problem under
the SVNS environment by using the proposed operators. A practical example from a field of
decision-making has been taken to illustrate it.

17
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4.1. Proposed Decision-Making Approach

Consider an MCDM problem which consists of m alternatives Ay, Ay, ..., Ay, which are evaluated

under the #n criteria C1, Cy, ..., C;. For this, an expert was invited to evaluate these alternatives under
the SVN environment such that their rating values were given in the form of SVNNs. For instance,
corresponding to alternative A; under criterion C;, when we ask the opinion of an expert about the
alternative A; with respect to the criterion C;, he or she may observe that the possibility degree in which
the statement is good is p;j, the statement is false is v;; and the degree in which he or she is unsure is
pij- In this case, the evaluation of these alternatives are represented as SVNN a;; = (4}, 0y, vij) such
that 0 < pyj, 04, vij < 1and pjj + pij + vi; < 3. This collective information is represented in the form of
the neutrosophic decision-matrix D which is represented as

C C ... C,

Ay fa1 wp .. Ay

D Ay [ a1 axm ... gy
Am \&pu1  &m2 oo &mn

Based on this information, the procedure to find the best alternative(s) is summarized as follows:

Step 1:

Step 2:

Step 3:

If in the considered decision-making problem, there exist two kinds of criteria, namely the
benefit and the cost types, then all the cost type criteria should be normalized into the benefit
type by using the following equation

o (Vij/Pij/ Hij) ; for cost type criteria, (15)
gl (mij, pij vij) 5 for benefit type criteria.

Compute Hij(i =1,2,...,m)as
1 ;o j=1,
Hjj = j-1 ) (16)
knls(rik) ;o j=2,...,n.

For a given parameter P = (p1, pa, ..., pn), utilize either SYNPMM or SVNPDMM operator
to get the collective values r; = (p;, p;,v;)(i = 1,2,...,m) for each alternative as

ri = SVNPMM(ri, 7ia, .-, Tin)
1
1 7
i) \ P\ \ §1;7/
n )'fH” /
T= [ IT {1-TT{1-=pmeq) ™ g
TES, j=1
1
. L »g
; N Hnm(/) Pi nl j&l pj
v
o R A PO R R A R : )
TeS, j=1
Lol
" n ;),;‘”(” hi " El Fi
1—|1-| I |1~ 1= v !
ceS, j=1
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or
r = SVNPDMM(riy, ..., ris)
1
. 1 i
) . HW:?‘ Pj ul jE1p’
L= 1= | TT [ =TT 1= mwy :
oES, j=1
. 1
. 1 i
nl;llio(j) Pj "\ L
L L Hjj
= 1—| [T |1- 1—(1=pi() aE (18)
oES, j=1
1
Hiyn \ P a\ £
: n nm(]) j:lp/
L= [ TT{1-TI |- Q=i 7
TESy j=1

Step 4: Calculate score values of the overall aggregated values r; = (y;,0;,vi) (i = 1,2,...,m) by
using equation

s(ry) = 1+ (ui = 2pi *2%‘)(2*#1'*1/1‘). (19)

Step 5: Rank all the feasible alternatives A;(i = 1,2,...,m) according to Definition 3 and hence select
the most desirable alternative(s).

The above mentioned approach has been illustrated with a numerical example discussed in
Section 4.2.

4.2. Illustrative Example

A travel agency named Marricot Tripmate has excelled in providing travel related services to
domestic and inbound tourists. The agency wants to provide more facilities like detailed information,
online booking capabilities, the ability to book and sell airline tickets, and other travel related services
to their customers. For this purpose, the agency intends to find an appropriate information technology
(IT) software company that delivers affordable solutions through software development. To complete
this motive, the agency forms a set of five companies (alternatives), namely, Zensar Tech (A;), NIIT
Tech (A;), HCL Tech (A3), Hexaware Tech (Ay4), and Tech Mahindra (As) and the selection is held
on the basis of the different criteria, namely, technology expertise (Cy), service quality (Cy), project
management (C3) and industry experience (Cy). The prioritization relationship for the criterion is
Cy = Gy = C3 = C4. In order to access these alternatives, an expert was invited and he gives their
preferences toward each alternative in the form of SVNN. Their complete preferences of the expert are
summarized in Table 1.

Table 1. Single-valued neutrosophic decision making matrix.

C1 C Cs Cy
A; (05,03,04) (050203) (02,02,06) (03,0204
A (07,01,03) (07,02,03) (0.6,03,02) (0.6,04,02)
As  (05,03,04) (06,02,04) (0.6,01,02) (0.50.1,03)
Ay (07,03,02) (07,02,02) (04,0502) (0502,02)
As  (04,01,03) (0501,02) (0.4,0.1,05) (0.4,0.3,06)

19
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Then, the following steps of the proposed approach have been executed as below

Step 1: As all the criteria values are of the same types, the original decision matrix need not be
normalized.
Step 2: Compute H;j(j = 1,2,3,4) by using Equation (16), we get

0.6650 0.4921 0.3642
0.9000 0.7200 0.4464
0.6650 0.5320 0.4575
0.6650 05154 0.1134
0.8250 0.6806 0.6024

T
I
e e

Step 3: Without loss of generality, we take P = (0.25,0.25,0.25,0.25) and use SVNPMM operator
given in Equation (17) to aggregate ;j(j = 1,2,3,4) and hence we get r; = (0.9026, 0.0004,
0.0118); r» = (0.9963, 0.0008, 0.0007); r3 = (0.9858, 0.0001, 0.0029); r4 = (0.9877, 0.0021,
0.0002) and r5 = (0.9474, 0.0000, 0.0093).

Step 4: By Equation (19), we get s(r1) = 0.9959, s(r2) = 0.9992, s(r3) = 0.9998, s(r4) = 0.9978 and
s(rs) = 0.9990.

Step 5: Since s(r3) > s(r2) > s(rs) > s(rs) > s(r1) and thus ranking order of their corresponding
alternatives is Az > Ap > As = A4 > A;. Here > refers “preferred to”. Therefore, As is the
best one according to the requirement of the travel agency.

Contrary to this, if we utilize SVNPDMM operator then the following steps are executed as:

Step 1: Similar to above Step 1.

Step 2: Similar to above Step 2.

Step 3: For a parameter P = (0.25,0.25,0.25,0.25), use SVNPDMM operator given in Equation (18)
we get r1 = (0.0069, 0.7379, 0.9413); r, = (0.1034, 0.7423, 0.7782); r3 = (0.0428, 0.6021, 0.8672);
ry = (0.0625, 0.8271, 0.6966) and r5 = (0.0109, 0.5340, 0.9125).

Step 4: The evaluated score values by using Equation (19) are s(r) = 0.2226, s(rp) = 0.1628, s(r3) =
0.3396, s(r4) = —0.0554 and s(r5) = 0.4222.

Step 5: The ranking order of the alternatives, based on the score values, is A5 = Az = Aj = Ay = Ay
and hence As as the best alternative among the others.

4.3. Comparison Study

If we apply the existing prioritized aggregation operator named as SVN prioritized operator [36]
on the considered problem, then the following steps of the Wu et al. [36] approach have been executed
as follows:

Step 1: Use SVNPWA operator as given in Equation (4) to calculate the aggregated values
Bi(i = 1,2,3,4,5) of each alternative A; are f; = (0.4392,0.2407, 0.3981),
B2 = (0.6681,0.1864,0.2602), B3 = (0.5461,0.1929,0.3414), Bs = (0.6294,0.2844, 0.2000)
and Bs = (0.4291,0.1141,0.3232).

Step 2: Compute the cross entropy E for each B; from AT = (1,0,0) and A~ = (0,0,1) based on
the equation E(aq,ap) = (sinpy — sinpp) X (sin(pg — p2)) + (sinpy — sinpy) x (sin(p; —
p2)) + (sinvy — sinva) x (sin(v; — v2)) and then evaluate Sg, by using equation Sp, =
E(ﬁh%ﬁ%z‘\)' The values corresponding to it are: Sﬁl =0.4642, S g, = 0.1755, S gy = 0.3199,
Sp, = 0.1914 and Sp; = 0.4007.

Step 3: The final ranking of alternative, according to the values of Sp,is Ay = Ay = A3z = As = Aj.

From above, we have concluded that the A, is the best alternative and A; is the worst one.
However, from their approach [36], it has been concluded that they have completely ignored the
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interrelationships among the multi-input arguments and hence the ranking order are quite different.
Thus, from it, we can see the influence of the interrelationships among all the criteria on the
decision-making process.

4.4. Influence of Parameter P on the Decision-Making Process

The proposed aggregation operators have two prominent advantages. First, it can reduce the
bad effects of the unduly high and low assessments on the final results. Second, it can capture the
interrelationship between SVN attributes values. Moreover, both of the two aggregation operators
have a parameter vector P, which leads to a more flexibility during the aggregation process. Further,
the parameter vector P plays a significant role in the final ranking results. In order to illustrate the
influence of the parameter vector P = (py, py, ..., pn) on the score functions and the ranking results,
we set different values to P in the SVNPMM and SVNPDMM operators and their corresponding results
are summarized in Table 2. From this table, it is concluded that the score value of each alternative
decreases by SVNPMM operator while it increases by SVNPDMM operator. Therefore, based on the
decision maker behavior, either A3 or As are the best alternatives to be chosen for their desired goals.
Thus, the parameter vector P can be viewed as decision makers’ risk preference.

4.5. Further Discussion

The prominent advantage of the proposed aggregation operators is that the interrelationship
among all SVNNSs can be taken into consideration. Moreover, it has a parameter vector that leads
to flexible aggregation operators. To show the validity and superiorities of the proposed operators,
we conduct a comparative analysis whose characteristics are presented in Table 3.

Table 2. Ranking results of alternatives using proposed operators for different values of P.

Parameter Vector Score Values of Alternatives Ranking
Operator

P Aq Az Az Ay As Results
SVNPMM 09975 0.9997 0.9999 0.9989 09990 Az > Ay = A5 > Ay = Ay

(1,0,0,0) SVNPDMM 02184 00876 02942 -0.1233 03632 As = Az = A; = Ar = Ay
1,1,0,0 SVNPMM 09844 09969 09988 09920 09940 Az = Ay = As = Ay = A;
e SVNPDMM 03638 02891 04851 00162 05597 As = Az = A; = Ar = As
01,10 SVNPMM 09723 09926 09968 09809 09887 Az = Ay = As = Ag > Ay
it SVNPDMM 04268 03846 05529 0.1219 0.6053 As = Az = Ay = Ay = Ay
W11,1) SVNPMM 09624 09868 09942 09659 09851 Az - Ay = As = Ay = Ay
it SVNPDMM 04617 04507 05955 02079 0.6341 As = Az = Ay = Ay = Ay
2.2,2,2) SVNPMM 09443 09633 09836 09189 09767 Az = As = Ay = Ay = Ay
Gt SVNPDMM 05165 05024 0.640 03016 0.6698 As = Az = A; = Ay = Ay
3,3.3,3) SVNPMM 09322 09440 09744 08896 09715 Az = As = Ay = Ay = Ay
e SVNPDMM 05369 05018 0.6490 03142 0.6853 As = Az = A; = Ar = Ay

( 1111 ) SVNPMM 09824 09965 09987 09903 09943 Az = Ay = As = Ay = Ay
272/2/2 SVNPDMM 03652 03217 04982 00490 05661 As = Az = Ay = Ar = As
( 1111 ) SVNPMM 09959 09992 09998 09978 09990 Az = Ay = As = Ag = A;
rvws SVNPDMM 02226 0.1628 03396 -0.0554 04222 As = Az = Ay = Ay = Ay

SVNPMM 09890 09984 09990 09953 09931 Aj = Ar = Ag > As = A
SVNPDMM 03571 0.1886 04228 -0.1009 04781 As> A= Ay = Ay = Ay

SVNPMM 09814 0.9964 0.9974 09898 0.9860 Az > Ap = Ay > A5 > Aq
SVNPDMM 04139 0.2426 0.4645 -0.0595 0.5008 As > Az = A > Ap > Ay

SVNPMM: single-valued neutrosophic prioritized Muirhead mean, SVNPDMM: single-valued neutrosophic
prioritized dual Muirhead mean.

(3,0,0,0)
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Table 3. Comparison of different approaches and aggregation operators.

Whether the Whether the Whether the Whether the Bad Whether It Makes the
Interrelationship of Interrelationship of Relationship of Effects of the Unduly High ~ Method Flexible by
Two Attributes Three Attributes Multiple Attributes Unduly Low A t: the P t
Is Captured Is Captured Is Captured Can Be Reduced Vector

NWA [21] X X X
SVNWA [22]
SVNOWA [22]
SVNWG [22]
SVNOWG [22]
SVNHWA [25]
SVNHWG [25]

NWG [21]

SVNEWG [24]
SVNFWA [24]
SVNENPBM [37]
WSVNLMSM [34]
SVNNWBM [33]
SVNIGWHM [20]
GNNHWA [25]

The proposed method

Approaches

X

X X X X X X X X X X X X X X X

AXANCNAX X X X X X X X X
AXAXAX XXX XXX XXX
AXAXAX XXX XXX XXX
AAANALRNRRNAX X X X X X X

v

NWA: neutrosophic weighted averaging, SVNWA: single-valued neutrosophic weighted averaging, SVNOWA:
single-valued neutrosophic ordered weighted averaging, SVNWG: single-valued neutrosophic weighted
geometric, SVNOWG: single-valued neutrosophic ordered weighted geometric, SVNHWA®: single-valued
neutrosophic hybrid weighted averaging, SVNHWG: single-valued neutrosophic hybrid weighted geometric,
NWG: neutrosophic weighted geometric, SVNFWG: single-valued neutrosophic Frank weighted geometric,
SVNFWA: single-valued neutrosophic Frank weighted averaging, SVNFNPBM: single-valued neutrosophic
Frank normalized prioritized Bonferroni mean, WSVNLMSM: weighted single-valued neutrosophic linguistic
Maclaurin symmetric mean, SVNNWBM: single-valued neutrosophic normalized weighted Bonferroni
mean, IGWHM: single-valued neutrosophic improved generalized weighted Heronian mean, GNNHWA:
generalized neutrosophic number Hamacher weighted averaging.

The approaches in [21,22,25] are based on a simple weighted averaging operator. However,
in these approaches, some of the weakness are (1) they assume that all the input arguments are
independent, which is somewhat inconsistent with reality; (2) they cannot consider the interrelationship
among input arguments. However, on the contrary, the proposed method can capture the
interrelationship among input arguments. In addition to that, the proposed operator has an additional
parameter P which provide a feasible aggregation process. In addition, some of the existing operators
are deduced from the proposed operators. Thus, the proposed method is more powerful and flexible
than the methods in [21,22,25].

In [33,37], authors presented an approach based on the BM aggregation operator where they
considered the interrelationship between the arguments. However, the main flaws of these approaches
are that they consider only two arguments during the interrelationship. On the other hand, in [34]
authors have presented an aggregation operator based on MSM by considering two or more arguments
during the interrelationship; however, these methods [33,34,37] fail to reflect the interrelationship
among all input arguments. Finally, in [20] authors used the Heronian mean AOs without considering
any interrelationship between the arguments.

As compared with these existing approaches, the merits of the proposed approach are that it can
reflect the interrelationships among all the input arguments. In addition, the proposed operators have
an additional parameter P which makes the proposed approach more flexible and feasible.

5. Conclusions

Muirhead mean aggregation operator is more flexible by using a variable and considering the
multiple interrelationships between the pairs of the input arguments. On the other hand, SVNS is more
of a generalization of the fuzzy set, intuitionistic fuzzy set to describe the uncertainties in the data.
In order to combine their advantages, in the present paper, we develop some new MM aggregation
operators for the SVNSs including the SVNPMM and the SVNPDMM. The desirable properties of these
proposed operators and some special cases are discussed in detail. Moreover, we presented two new
methods to solve the MCDM problem based on the proposed operators. The proposed method is more
general and flexible, not only by considering the parametric vector P but also by taking into account the
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multiple interrelationships between the input argument. Apart from this, the remarkable characteristic
of the proposed operator is to reflect the correlations of the aggregated arguments by considering the
fact that those different criteria having different priority levels. The mentioned approach has been
demonstrated through a numerical example and compares their corresponding proposed results with
some of the results of existing approaches. From the computed results, it has been observed that the
proposed approach can be efficiently utilized to solve decision-making problems where uncertainties
and vagueness in the data occur concurrently. Moreover, by changing the values of the parameter P,
an analysis has been done which concludes that the proposed operators provide more choices to the
decision makers according to their preferences. In addition, it is also regarded as considering the risk
preference of decision makers by the parameter P. So, the proposed approach is more suitable and
flexible to solve the practical and complex MCDM problems.

In future works, we will apply our proposed method for more practical decision-making problems.
In addition, considering the superiority of MM operator, we can extend it to some new fuzzy sets, such as
Pythagorean fuzzy sets [39-41], applications to MCDM [42—44], multiplicative sets [45,46] and so on.
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Abstract: As a new generalization of the notion of the standard group, the notion of the neutrosophic
triplet group (NTG) is derived from the basic idea of the neutrosophic set and can be regarded
as a mathematical structure describing generalized symmetry. In this paper, the properties and
structural features of NTG are studied in depth by using theoretical analysis and software calculations
(in fact, some important examples in the paper are calculated and verified by mathematics software,
but the related programs are omitted). The main results are obtained as follows: (1) by constructing
counterexamples, some mistakes in the some literatures are pointed out; (2) some new properties
of NTGs are obtained, and it is proved that every element has unique neutral element in any
neutrosophic triplet group; (3) the notions of NT-subgroups, strong NT-subgroups, and weak
commutative neutrosophic triplet groups (WCNTGs) are introduced, the quotient structures are
constructed by strong NT-subgroups, and a homomorphism theorem is proved in weak commutative
neutrosophic triplet groups.

Keywords: neutrosophic triplet group (NTG); NT-subgroup; homomorphism theorem; weak
commutative neutrosophic triplet group

1. Introduction

The importance of group theory is self-evident. It is widely used in many fields, such as physics,
chemistry, engineering, and so on. It is a very good mathematical tool to describe the symmetry of
nature [1,2]. As a more general concept, Molaei introduced the new notion of generalized group in
1999 [3,4], and some researchers studied its properties [5,6].

The concept of neutrosophic set is introduced by F. Smarandache, it is a generalization of
(intuitionistic) fuzzy sets [7]. The neutrosophic set theory is applied to algebraic structures, multiple
attribute decision-making, and so on [8-13]. Recently, F. Smarandache and Mumtaz Ali in [14,15],
for the first time, introduced the new notion of neutrosophic triplet group (NTG), which is another
generalization of classical group. It is easy to verify that all generalized groups are neutrosophic triplet
group. Note that, in this paper, the notion of neutrosophic triplet group, indeed, is the neutrosophic
extended triplet group in [14].

Until now, for neutrosophic triplet group, some research articles are published [16-21]. At the
same time, there are still some misunderstandings about this new algebraic structure. This paper will
clarify some misunderstandings, especially pointing out some erroneous conclusions in [18] and will
try to give improved results. In Section 2, we give some examples to illustrate which conclusions
are incorrect and some misunderstandings have led to the emergence of these results. In Section 3,
we prove some new important properties of neutrosophic triplet groups. In Section 4, we give some
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new concepts, include NT-subgroups, strong NT-subgroups, and weak commutative neutrosophic
triplet groups (WCNTGs), and prove a homomorphism theorem of weak commutative neutrosophic
triplet groups.

2. Preliminaries

As we all know, the concept of group is a useful tool to characterize symmetry. In the definition
of classical group, unit element has operation invariance for any element, i.e., e-x = x-¢ = x for all x
in a group (G, -), where e in G is the unit element. Moreover, the inverse element x~! of x is also
relative to the unit element ¢, and the inverse element is unique in the classical group. In [14,15],
starting from the basic idea of neutrosophic set, a new algebraic structure, neutrosophic triplet group
(briefly, NTG), is proposed. In NTG, the unit element is generalized as a neutral element, which is
relative and local; that is, each element has its own neutral element; and the original inverse element
concept is generalized as an anti (opposite) element, and it is relative to own neutral element, and it
cannot be unique. In this way, NTG can express more general symmetry and has important theoretical
and applied value.

Definition 1. Assume that N is an empty set and * is a binary operation on N. Then, N is called a neutrosophic
triplet set (NTS) if for any a € N, there exists a neutral of “a” (denoted by neut(a)), and an opposite of “a”
(denoted by anti(a)) satisfying ([14,15]):

a*neut(a) = neut(a)*a = a;

a* anti(a) = anti(a)*a = neut(a).
And, the triple (a, neut(a), anti(a)) is called a neutrosophic triplet.
Note that, for a neutrosophic triplet set (N, *), a € N, neut(a) and anti(a) may not be unique. In order

not to cause ambiguity, we use the notations {neut(a)} and {anti(a)}; they represent the sets of neut(a)
and anti(a), respectively.

Remark 1. In the original definition in [14,15], the neutral element cannot be a unit element in the usual sense,
and then this restriction is removed, using the concept of a neutrosophic extended triplet by F. Smarandache [14].
That is, the classical unit element can be regarded as a special neutral element. Here, the notion of neutrosophic
triplet refers to neutrosophic extended triplet.

Definition 2. Assume that (N, *) is a neutrosophic triplet set. Then, N is called a neutrosophic triplet group,
if it satisfies ([14,15]):

(1)  The operation * is closed, i.e.,a *b € N, Va, b € N;
(2)  The operation* is associative, i.e., (a *b) *c=a* (b *)Va, b,c €N

A neutrosophic triplet group (N, *) is called to be commutative, ifa * b= b*a, Va, b € N.

3. Some Counterexamples and Misunderstandings on Neutrosophic Triplet Groups

The research idea of Ref. [18] is very good, but the main results are not true. This section first
gives some counterexamples, and then analyzes some of the misunderstandings on neutrosophic
triplet groups.

Example 1. Denote N = {1, 2, 3, 4, 5}; the operation * on N is defined by Table 1. Then, (N, *) is a commutative
neutrosophic triplet group, and:

neut(1) = 1, {anti(1) } = {1, 2, 3}; neut(2) = 3, anti(2) = 2; neut(3) = 3, anti(3) = 3;
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neut(4) =4, {anti(4)} = {1, 2, 3, 4}; neut(5) = 4, anti(5) = 5.

Table 1. Commutative neutrosophic triplet group.

*

Tl WN =

6 I N e
TGN W~ N
TGk WON =W
Q1 = s
= 011 a1 O1 | U1

Denote H=1{1, 2, 3, 4}, then (H, *) is a neutrosophic triplet subgroup (according to Definition 17 in [18]). And,
1H=1{1,4},2H=1{1,2,3,4},3H=1{1,2, 3,4}, 4H = {4/, 5H = {5].
This means that Lemma 1 (2), (4), (7), and (9) in [18] are not true:
1€ H,but1H + H;

1H # 2H and 1HN 2H # ©;

1 € H, but 1H is a neutrosophic triplet subgroup (according to Definition 17 in [18]);
ITH| # 12H1.

Moreover, |H| =4, IN| =5, it follows that |H|| |N; and the number of distinct aH in N (according to
Definition 18 in [18]) is no IN| | | H1. This means that Theorem 3 in [18] are not true.

Example 2. Denote N = {1, 2, 3, 4, 5}, the operation * on N is defined by Table 2. Then, (N, *) is
a non-commutative neutrosophic triplet group, and:

neut(1) =1, anti(1) = 1; neut(2) = 2, anti(2) = 2; neut(3) = 3, anti(3) = 3;

neut(4) = 4, {anti(4)} = {3, 4}; neut(5) = 3, anti(5) = 5.

Table 2. Non-commutative neutrosophic triplet group.

*

Ui W N =

R RN | =
RN =N
Tl W= W
R RN | e
Wk TN =G

Denote H =11, 2, 3, 4}, then (H, *) is a neutrosophic triplet subgroup (according to Definition 17 in [18]). And:
1H={1}, H1=11,2,4);2H=1{2}, H2=1{1, 2,4}, 3H=1{3,4}, H3=1{1,2, 3, 4}

4H ={4}, H4=1{1,2,4}; 5H ={4,5}, H5 =11, 2,4, 5}.

It follows that Theorem 4 in [18] is not true:

anti(1)*(H1) C H, anti(2)*(H2) C H, anti(3)*(H3) C H, anti(4)*(H4) C H, anti(5)*(H5) C H;
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but H is not normal (according to Definition 20 in [18]).
Moreover, anti(5)*4 = 4 € H, thus 5 = | 4(mod H), according to Definition 19 in [18]. But 4 # ; 5 (mod H),
this means that = | is not an equivalence relation. Therefore, Proposition 2 in [18] is not true.

4. Some New and Important Properties of Neutrosophic Triplet Groups

As mentioned earlier, from the definition of neutrosophic triplet group, there may be multiple
neutral elements neut(a) of an element 2. We used more than a dozen personal computers, hoping to
find an example to show that neutral elements of an element do not have to be unique. Unfortunately,
we spent several months without finding the desired examples. This prompted us to consider another
possibility: perhaps because of the associative law, every element in a neutrosophic triplet group has
a unique neutral element? Recently, we succeeded to prove that this conjecture is true.

Theorem 1. Assume that (N, ¥) is a neutrosophic triplet group. Then:

(1) a € N, neut(a) is unique.
(2) a € N, neut(a) * neut(a) = neut(a).

Proof. Assumes, t € {neut(a)}. Then s*a = a*s = a, t*a = a*t = a, and there exists p, g such that:
prfa=a‘p=s,q'a=a%q=t

Thus:
st = (pra)'t = p*@t) =p'a=s.
On the other hand:
s*t = (a*p)*(a*q) = [a*(p*a)]*q = (a*s)*q = a*q = t.

Therefore, s = t = s*. This means that neut(a) is unique, and neut(a) * neut(a) = neut(a) forany ain N. 0O

Remark 2. For an element a in a neutrosophic triplet group (N, *), although neut(a) is unique, but we can see
from Examples 1 and 2 that anti(a) is usually not unique.

Theorem 2. Let (N, *) be a neutrosophic triplet group. Then Ya € N, Vanti(a) € {anti(a)},

(1) neut(a)*p = g*neut(a), for any p, q € {anti(a)};.

(2)  neut(neut(a)) = neut(a);

(3)  anti(neut(a))*anti(a) € {anti(a)};

(4)  neut(a*a)*a = a*neut(a*a) = a; neut(a*a)*neut(a) = neut(a)*neut(a*a) = neut(a);

(5)  neut(anti(a))*a = a*neut(anti(a)) = a; neut(anti(a))*neut(a) = neut(a)*neut(anti(a)) = neut(a);
(6) anti(neut(a))*a = a*anti(neut(a)) = a, for any anti(neut(a)) € {anti(neut(a))};

(7) a € {anti(neut(a)*anti(a))};

(8)  meut(a)*anti(a) € {anti(a)}; anti(a)*neut(a) € {anti(a)};

(9) a € {anti(anti(a))}, that is, there exists p € {anti(a)} such that a € {anti(p)};

(10) neut(a)*anti(anti(a)) = a.

Proof.

(1) For any p, q € {anti(a)}, according the definition of neutral and opposite element, applying
Theorem 1 (1), we have:

p*a = a*p = neut(a), g*a = a*q = neut(a).
neut(a)*p = (g*a)*p = q*(a*p) = g*neut(a).
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@)

®G)

*)

©)

(6)

For any anti(a) € {anti(a)} and anti(neut(a)) € {anti(neut(a))},
[anti(neut(a))*anti(a)]*a = anti(neut(a))*[anti(a)*a] = anti(neut(a))*neut(a) = neut(neut(a)).
On the other hand:

{[anti(neut(a))*anti(a)]*a}*neut(a) = [anti(neut(a))*anti(a)*[a*neut(a)] =
[anti(neut(a))*anti(a)]*a = neut(neut(a)).

Thus:
neut(neut(a))*neut(a) = {{anti(neut(a))*anti(a)|*al*neut(a) = neut(neut(a)).

Moreover, the definition of neutral element, neut(neut(a))*neut(a) = neut(a). Therefore, neut(neut(a))
= neut(a).
For any anti(a) € {anti(a)} and anti(neut(a)) € {anti(neut(a))}, applying (2), we have:

[anti(neut(a))*anti(a)]*a = anti(neut(a))*[anti(a)*a] = anti(neut(a))*neut(a) = neut(neut(a)) = neut(a);
a*[anti(neut(a))*anti(a)] = [a*neut(a)]*[anti(neut(a))*anti(a)] = a*[neut(a)*anti(neut(a))]*anti(a) =
a*neut(neut(a))*anti(a) = a*neut(a)*anti(a) = a*anti(a) = neut(a).

Thus, anti(neut(a))*anti(a) € {anti(a)}.
According to the definition of neutral element, using the associative law, we get:

(a*a)*neut(a*a) = (a*a),
anti(a)*[(a*a)*neut(a*a)] = anti(a)*(a*a),
[anti(a)*al*[a*neut(a*a)] = [anti(a)*a]*a,

neut(a)*[a*neut(a*a)] = neut(a)*a,
[neut(a)*al*neut(a*a) = neut(a)*a,
a*neut(a*a) = a.

Similarly, we can get that neut(a*a)*a = a. Moreover:

neut(a)*neut(a*a) = [anti(a)*al*neut(a*a) = anti(a)*[a*neut(a*a)] = anti(a)*a = neut(a).
neut(a*a)*neut(a) = neut(a*a)*[a*anti(a)] = [neut(a*a)*al*anti(a) = a *anti(a) = neut(a).

For any anti(a) € {anti(a)}, we have:

anti(a)*neut(anti(a)) = anti(a); neut(anti(a))*anti(a) = anti(a).
a*[anti(a)*neut(anti(a))] = a*anti(a); [neut(anti(a))*anti(a)|*a = anti(a)*a.
[a*anti(a)]*neut(anti(a)) = a*anti(a); neut(anti(a))*[anti(a)*a] = anti(a)*a.
neut(a)*neut(anti(a)) = neut(a); neut(anti(a))*neut(a) = neut(a).
a*[neut(a)*neut(anti(a))] = a*neut(a); [neut(anti(a))*neut(a)]*a = neut(a)*a.
[a*neut(a)*neut(anti(a)) = a*neut(a); neut(anti(a))*[neut(a)*a] = neut(a)*a.
a*neut(anti(a)) = a; neut(anti(a))*a = a.

Moreover:

neut(a)*neut(anti(a)) = [anti(a)*al*neut(anti(a)) = anti(a)*[a*neut(anti(a))] = anti(a)*a = neut(a).
neut(anti(a))*neut(a) = neut(anti(a))*[a*anti(a)] = [neut(anti(a))*al*anti(a) = a *anti(a) = neut(a).

For any anti(neut(a)) € {anti(neut(a))}, by the definition of opposite element, we have:

neut(a)*anti(neut(a)) = anti(neut(a))*neut(a) = neut(neut(a)).
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(10)

Applying (2), neut(neut(a)) = neut(a), we get:
neut(a)*anti(neut(a)) = anti(neut(a))*neut(a) = neut(a).

Thus:
a*[neut(a)*anti(neut(a))] = a*neut(a); [anti(neut(a))*neut(a)]*a = neut(a)*a.
[a*neut(a)|*anti(neut(a)) = a*neut(a); anti(neut(a))*[neut(a)*al = neut(a)*a.
a*anti(neut(a)) = a; anti(neut(a))*a = a.

For any anti(a) € {anti(a)}, we have:
a*anti(a) = anti(a)*a = neut(a).

[a*neut(a)*anti(a) = anti(a)*[neut(a)*a] = neut(a).
a*[neut(a)*anti(a)] = [anti(a)*neut(a)]*a = neut(a).

Applying (1), anti(a)*neut(a) = neut(a)*anti(a), thus:
a*[neut(a)*anti(a)] = [neut(a)*anti(a)*a = neut(a).
Using (5), neut(a)*neut(anti(a)) = neut(a), it follows that:
a*[neut(a)*anti(a)] = [neut(a)*anti(a)*a = neut(a)*neut(anti(a)).
On the other hand, by (1) and Theorem 1 (2):
[neut(ay*anti(a)]*[neut(ay*neut(anti(a))] = neut(a)*neut(a)*[anti(ayneut(anti(a))] = neut(a)*anti(a);
[neut(a)*neut(anti(a))]*[neut(a)*anti(a)] = neut(a)*{neut(anti(a))*anti(a)|*neut(a) = neut(a)*anti(a).

Therefore, a € {anti(neut(a)*anti(a))}.
Assume anti(a) € {anti(a)}, then [neut(a)*anti(a)]*a = neut(a)*[anti(a)*a] = neut(a)*neut(a). By Theorem
1 (2), neut(a)*neut(a) = neut(a). Thus, [neut(a)*anti(a)]*a = neut(a). On the other hand,

a*[neut(a)*anti(a)] = [a*neut(a)|*anti(a) = a*anti(a) = neut(a).

Therefore:
[neut(a)*anti(a)]*a = a*[neut(a)*anti(a)] = neut(a).

This means that neut(a)*anti(a) € {anti(a)}. Similarly, we can get anti(a)*neut(a) € {anti(a)}.
For any anti(a) € {anti(a)}, denote p = neut(a)*anti(a). Using (8) we have p € {anti(a)}. Moreover, by
Theorem 1 (2):

neut(a)*p = neut(a)*[neut(a)*anti(a)] = [neut(a)*neut(a)|*anti(a) = neut(a)*anti(a) = p.

From this and applying (7), a € {anti(neut(a)*p)} = {anti(p)}, p € {anti(a)}.
Assume anti(a) € {anti(a)} and anti(anti(a)) € {anti(anti(a))}, by the definition of opposite element,
we have:
anti(a)*anti(anti(a)) = neut(anti(a)).

Thus:

a*[anti(a)*anti(anti(a))] = a*neut(anti(a)).

[a*anti(a)]*anti(anti(a)) = a*neut(anti(a)).

neut(a)*anti(anti(a)) = a*neut(anti(a)).
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Applying (5), a*neut(anti(a)) = a, it follows that:
neut(a)*anti(anti(a)) = a.

O

Example 3. Let Z; = {[0], [1], [2], [3], [4], [5]}, * is classical mod multiplication, then (Zs, *) is a commutative
neutrosophic triplet group, see Example 10 in [16].

1)
@)

®)

@)

®)

(6)

@)

®)

©)

We can show that (they correspond to the conclusions of Theorem 2):

[2]*[4] = [5]*[2], [2]*[5] = [4]*[2], that is, for any p, g € {anti([2])}, neut([2])*p = g neut([2]).
neut(neut([0])) = neut([0]) = [0], neut(neut([1])) = neut([1]) = [1], neut(neut([2])) = neut([2]) = [4],
neut(neut([3])) = neut([3]) = [3], neut(neut([4])) = neut([4]) = [4], neut(neut([5])) = neut([5]) = [1].
Since neut([2]) = [4], {anti([4])} = {[1], [4]} and {anti([2])} = {[2], [5]}, so anti(neut([2])) = anti([4]) =
{[11, [4]}, and [1]*[2] = [2] € {anti([2])}, [1]*[5] = [5] € {anti([5])}, [4]*[2] = [2] € {anti([2])}, [4]*[5] =
[2] € {anti([2])}. This means that anti(neut([2]))*anti([2]) € {anti([2])} for any anti([2]) € {anti([2])}
and any anti(neut([2])) € {anti(neut([2]))}.

neut([0]*[0D*[0] = [0]*neut([0]*[0]) = [O], neut([0]*[01)* neut([0]) = neut([0])*neut([0]*[0]) = [OL;
neut([11*[11)*[1] = [1]*neut([1]*[1]) = [1], neut([1]*[1])* neut([1]) = neut([1])*neut([1]*[1]) = [1]; and
so on. This means that (4) hold for all a € Z.

Since {anti([2])} = {[2], [B]}, so neut(anti([2])) = [4] or [1]. From [4]*[2] = [2]*[4] = [2] and [1]*[2] =
[2]*[1] = [2] we know that neut(anti([2]))*[2] = [2]*neut(anti([2])) = [2] for any anti([2]) € {anti([2])}
and any neut(anti([2])) € {neut(anti([2]))}. Note that, since {neut(anti([2]))} = {[4], [1]}; when anti([2])
= [5], neut(anti([2])) = [1] # neut([2]), this means that neut(anti(a)) = neut(a) is not true in general.
Since {anti(neut([2]))} = {[1], [4]}, from this and [1]*[2] = [2]*[1] = [2] and [4]*[2] = [2]*[4] = [2] we
know that anti(neut([2]))*[2] = [2]*anti(neut([2])) = [2] for any anti(neut([2])) € {anti(neut ([2]))}.
Note that, since {anti(neut([2]))} = {[1], [4]}; when anti(neut([2])) = [1], anti(neut([2])) # neut([2]),
this means that anti(neut(a)) = neut(a) is not true in general.

Since {anti(neut([2]))} = {[1], [4]} and {anti([2])} = {[2], [5]}, so {anti(neut([2]))*anti([2])} = {[2], [S]},
that is, [2] € {anti(neut([2]))*anti([2])}.

Since neut([2]) = [4] and {anti([2])} = {[2], [5]}, from [4]*[2] = [4]*[5] = [2] we know that
neut([2])*anti([2]) € {anti([2])}.

Since neut([2]) = [4] and {anti([2])} = {[2], [5]}, so {anti(anti([2]))} = {[2], [5]}. Thus, from
[4]*[2] = [4]*[5] = [2] we know that neut([2])*anti(anti([2])) = [2] for any anti([2]) € {anti([2])}
and anti(anti([2])) € {anti(anti([2]))}. Note that, since {anti(2)} = {[2], [5]}; when anti([2]) = [5],
anti(anti([2])) = [5] # [2], this means that anti(anti(a)) = a is not true in general.

Theorem 3. Assume that (N, ¥) is a commutative neutrosophic triplet group. Then¥ a, b € N:

(1)
(2)

neut(a) * neut(b) = neut(a*b).
anti(a) * anti(b) € {anti(a*b)}.

Proof. If a, b € N, then:

[neut(a)*neut(b)1*(a*b) = {[neut(a)*neut(b)*a}*b = {[neut(a)*al*neut(b)}*b = [a*neut(b)|*b
= a*[neut(b)*b] = a*b.

Similarly, we have (a*b)*[neut(a)*neut(b)] = a*b. That is:

(a*b)*[neut(a)*neut(b)] = [neut(a)*neut(b)|*(a*b) = a*b. (1)
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Moreover, for any anti(a) € {anti(a)} and anti(b) € {anti(b)}, we have:

[anti(a)*anti(b)]*(a*b) = {[anti(a)*anti(b)]*a}*b = {[anti(a)*a]*anti(b)}*b = [neut(a)*anti(b)]*b
= neut(a)*[anti(b)*b] = neut(a)*neut(b).

Similarly, we have (a*b)*[anti(a)*anti(b)] = neut(a)*neut(b). That is:
(a*b)*[anti(a)*anti(b)] = [anti(a)*anti(b)]*(a*b) = neut(a)*neut(b). 2)

Combining (1) and (2), we have neut(a)*neut(b) € {neut(a*b)}. From this, by Theorem 1, we get:
neut(a)*neut(b) = neut(a*b). Therefore, using (2), we get anti(a)*anti(b) € {anti(a*b)}. O

5. NT-subgroups and Weak Commutative Neutrosophic Tripet Groups

The notion of subgroup is an important basic concept for neutrosophic triplet groups, but the
definitions in the existing literatures are not consistent (see [14,15,18,20]). In order to avoid ambiguity,
this paper gives a new definition and formally named NT-subgroup. Moreover, this section will discuss
an important kind of neutrosophic triplet groups, call weak commutative neutrosophic triplet group
(WCNTG). We will prove some well-known properties of WCNTG and a homomorphism theorem by
special NT-subgroups.

Definition 3. Assume that (N,*) is a neutrosophic triplet group and H be a nonempty subset of N. Then H is
called a NT-subgroup of N if;

(1) a*beHforalla,beH;
(2)  there exists anti(a) € {anti(a)} such that anti(a) € H for all a € H, where {anti(a)} is the set of opposite
element of a in (N,*).

Proposition 1. Assume that (N,*) is a neutrosophic triplet group. If H is a NT- subgroup of N, then neut(a) € H
forall a € H, where neut(a) is the neutral element of a in (N,*).

Proof. For any a € H, by Theorem 1 (1) we know that neut(a) is unique. Applying Definition 3, we get
that there exists anti(a) € H and neut(a) = a*anti(a) € H. O

Remark 3. (1) For a NT-subgroup H of N, where (N, *) is a neutrosophic triplet group, a € H, by Definition
3 we know that not all anti(a) is in H; in fact, at least one can be in H. (2) By Proposition 1, a € H implies
neut(a) € H. But H does not necessarily contain neut(b) for all b € N. For example, let N = Z in Example 3
and H ={[0], [2], [3], [4]}, then H is a NT-subgroup of (Zg, *), and (1) [2] € H but {anti([2])} is not a subset of
H; (2) {neut(a) la € N = Zg} ={[0], [1], [3], [4]} is not a subset of H.

Definition 4. Assume that (N,x) is a neutrosophic triplet group. N is called a weak commutative neutrosophic
triplet group (briefly, WCNTG) if a* neut(b) = neut(b)* a for alla, b € N.

Obviously, every commutative neutrosophic triplet group is weak commutative. The following
example shows that there exists non-commutative neutrosophic triplet group which is weak
commutative neutrosophic triplet group.

Example 4. Put N ={1, 2, 3, 4, 5, 6, 7}, and define the operation * on N as Table 3. Then, (N, *) is a
non-commutative neutrosophic triplet group, and:

neut(1) =1, anti(1) = 1; neut(2) = 1, anti(2) = 2; neut(3) = 1, anti(3) = 3; neut(4) = 1, anti(4) = 4;
neut(5) = 1, anti(5) = 6; neut(6) = 1, anti(6) = 5; neut(7) = 7, {anti(7)} = {1, 2, 3,4, 5, 6, 7}.
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It is easy to verify that (N, *) is a weak commutative neutrosophic triplet group.

Table 3. Weak commutative neutrosophic triplet group.

*

NS U WN R
NGl WN ==
Nk WUl = NN
NN Ul oW | W
N W N OO |
N = oW N R 0| a
NGO =N Wo | o
NN NNNNN| N

Proposition 2. Assume that (N,*) is a neutrosophic triplet group. Then (N,*) is weak commutative if and only
if N satisfies the following conditions:

(1)  neut(a)*neut(b) = neut(b)*neut(a) for all a, b € N.
(2)  neut(a)*neut(b)*a = a*neut(b) for all a, b € N.

Proof. If (N, *) is a weak commutative neutrosophic triplet group, then (using Definition 4):
neut(a)*neut(b) = neut(b)*neut(a), Va, b € N.
And:
neut(a)*neut(b)*a = neut(a)*[neut(b)*a] = neut(a)*[a*neut(b)] = [neut(a)*al*neut(b) = a*neut(b).
Conversely, assume that N satisfies the conditions (1) and (2) above. Then:
a*neut(b) = [neut(a)*neut(b)|*a = [neut(b)*neut(a)|*a = neut(b)*[neut(a)*a) = neut(b)*a.
From Definition 4 we know that (N, *) is a weak commutative neutrosophic triplet group. O

Proposition 3. Let (N,*) be a weak commutative neutrosophic triplet group. Then ¥V a, b € N:

(1) neut(a)*neut(b) = neut(b*a);
(2)  anti(a)*anti(b) € {anti(b*a)}.

Proof. Ifa, b € N, then:

[neut(a)*neut(b)]*(b*a) = {[neut(a)*neut(b)]*b}*a = {neut(a)*[b*neut(b)]}*a = [neut(a)*b]*a
= [b*neut(a)]*a = b*[neut(a)*a] = b*a.

Similarly, we have (b*a)*[neut(a)*neut(b)] = b*a. That is:
(b*a)*[neut(a)*neut(b)] = [neut(a)*neut(b)]*(b*a) = b*a. 3)
Moreover, for any anti(a) € {anti(a)} and anti(b) € {anti(b)}, we have:

[anti(a)*anti(b)]*(b*a) = {[anti(a)*anti(b)]*b}*a = {anti(a)*[anti(b)*b]}*a = [anti(a)*neut(b)]*a
= anti(a)*[neut(b)*a] = anti(a)*[a*neut(b)] = [anti(a)*a]*neut(b) = neut(a)*neut(b).

Similarly, we have (b*a)*[anti(a)*anti(b)] = neut(a)*neut(b). That is:

(b*a)*[anti(a)*anti(b)] = [anti(a)*anti(b)]*(b*a) = neut(a)*neut(b). (4)
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Combining (3) and (4), we have neut(a)*neut(b) € {neut(b*a)}. From this, by Theorem 1, we get
neut(a)*neut(b) = neut(b*a). Therefore, using (4), we get anti(a)*anti(b) € {anti(b*a)}. O

Definition 5. Let (N,*) be a neutrosophic triplet group and H be a NT-subgroup of N. Then H is called a strong
NT- subgroup of N if:

(1) neut(a) € H foralla € N.
(2)  if there exists anti(a) € {anti(a)} and p € N such that anti(a)*b*neut(p) € H, then there exists anti(b) €
{anti(b)} and q € N such that a*anti(b)*neut(q) € H; and the inverse is true.

Example 5. Let (N, *) be the neutrosophic triplet group in Example 4 and H; ={1, 7}, H, ={1, 5,6, 7). Then H;
and H; are two strong NT-subgroups of N.

Proposition 4. Let (N, *) be a group (as a special neutrosophic triplet group) and H be a normal subgroup of N.
Then ((N, *) is a weak commutative neutrosophic triplet group and H is a strong NT-subgroup of N.

Proof. For group (N, *) with identity e, neut(a) = e and anti(a) = a1 for anya € N.

It is easy to verify that a* neut(b) = neut(b)* a for alla, b € N. From this, by Definition 4 we know
that (N, *) is a weak commutative neutrosophic triplet group.

For normal subgroup H, by Definition 3, H is a NT-subgroup of N. Moreover, H satisfies the
condition in Definition 5 (1).

Now, assume that there exists anti(a) € {anti(a)} and p € N such that anti(a)*b*neut(p) € H,
this means that a~*b € H. Denote h = a~'*b € H. Then a = b*h~!. Since H is a normal subgroup
of N, h~1 € H and there exists hi; € H such that b*h~1 = hy*b. Thus, a = hy*b, a*b~! = h; € H. That is,
there exists b1 = anti(b) € {anti(b)} and a € N such that a*anti(b)*neut(a) = a*b~"*e = a*b~' = hy € H.
Similarly, we can prove the inverse is true.

Therefore, H satisfies the condition in Definition 5 (2), and H is a strong NT-subgroup of N. O

Theorem 4. Let (N, *) be a weak commutative neutrosophic triplet group and H be a strong NT-subgroup of N.
Define binary relation ~p on N as follows: Va, b € N:

~ yb if and only if there exists anti(a) € {anti(a)} and p € N such that anti(a)*b*neut(p) € H.

Then:

(1)  the binary relation ~ py is an equivalent relation on N;

(2) a= ybimplies c*a ~p c*b for all c € N;

(3) a= ybimplies a*c =~ b¥c and c*a ~ y ¢*b forall c € N;

(4)  denote the equivalent class contained a by [a]y, and denote N/H = {[a]y |a € N}, define binary operation *
on N/H as follows: [a]y *[bly = [a*b]y,Va, b € N. We can obtain a homomorphism from (N, *) to (N/H, *),
that is, f: N—N/H; f(a) = [aly for alla € N.

Proof.

(1) Foranya € N, applying Theorem 1 we have:
anti(a)*a*neut(a) = [anti(a)*al*neut(a) = neut(a)*neut(a) = neut(a) € H.

Thusa =~ g a.
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o Ifa~ pb, then there exists anti(a) € {anti(a)} and p € N such that anti(a)*b*neut(p) € H. Denote
h = anti(a)*b*neut(p), then h € H and:

a*h = a*[anti(a)*b*neut(p)],
a*h = neut(a)*b*neut(p),

a*h = b*neut(a)*neut(p), (by Definition 4)
anti(b)*(a*h) = anti(b)*[b*neut(a)y*neut(p)],
[anti(b)*al*h = neut(b)*neut(a)*neut(p),
{[anti(b)*a]*h}*anti(h) = [neut(b)*neut(a)*neut(p)*anti(h),
anti(b)*a*neut(h) = [neut(b)*neut(a)*neut(p)*anti(h).

Applying Definition 3 we have [neut(b)*neut(a)*neut(p)|*anti(h) € H, thus anti(b)*a*neut(h) € H,
this means that b ~  a.

o Ifa~xpyband b~ g c, then there exists anti(a) € {anti(a)}, anti(a) € {anti(a)}, p € N and
q € N such that anti(a)*b*neut(p) € H, anti(b)*c*neut(q) € H. Denote hy = anti(a)*b*neut(p),
hy = anti(b)*c*neut(q), then hy € H, hy € H and:

b*hy = b*[anti(b)*c*neut(q)] = [b*anti(b)]*[c*neut(q)] = neut(b)*c*neut(q).
From this and h; = anti(a)*b*neut(p), using Definition 4 we get:

hl*hz

= [anti(a)*b*neut(p)]*hy

= [anti(a)*b]*[neut(p)*hy]

= [anti(a)*b]*[ha*neut(p)]

= anti(a)*(b*hy)*neut(p)

= anti(a)*[neut(b)*c*neut(q)*neut(p)
= anti(a)*[neut(b)*c]*[neut(q)*neut(p)]
= anti(a)*[c*neut(b)*[neut(q)*neut(p)]
= [anti(a)*c]*[neut(b)*neut(q)*neut(p)]

By Definition 3 we have hy*h; € H; using Proposition 3 (1), neut(b)*neut(q)*neut(p) =
neut(p*q*b). Hence:
anti(a)*c*neut(p*q*b) = hy*hy € H.

This means that a ~ p c. Therefore, ~p is an equivalent relation on N.

(2) Assumea ~ g b. Then there exists anti(a) € {anti(a)} and p € N such that anti(a)*b*neut(p) € H.
Denote:h = anti(a)*b*neut(p), then h € H and:

h*neut(c)

= [anti(a)*b*neut(p)*neut(c)

= [anti(a)*b]*[neut(p)*neut(c)]
= [anti(a)*b]*[neut(c)*neut(p)]
= anti(a)*[b*neut(c)*neut(p)

= anti(a)*[neut(c)*b]*neut(p)

= [anti(a)*neut(c)]*[b*neut(p)]
= [anti(a)*anti(c)*c]*[b*neut(p)]
= [anti(a)*anti(c)]*(c*b)*neut(p).

Using Proposition 3 (2), anti(a)*anti(c) € {anti(c*a)}. Thus, there exists anti(c*a) € {anti(c*a)}

such that:
anti(c*a)*(c*b)*neut(p) = h*neut(c) € H.
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This means that (c*a) ~ g (c*D).

(1) Assume a ~g b. Then there exists anti(a) € {anti(a)} and p € N such that anti(a)*b*neut(p) € H.
Applying Definition 5 (2), there exists anti(b) € {anti(b)} and q € N such that a*anti(b)*neut(q) € H.
Denote h = a*anti(b)*neut(q), then h € H and:

neut(c)*h
= neut(c)*[a*anti(b)*neut(q)]
= [neut(c)*a]*[anti(b)*neut(q)]
= [a*neut(c)|*[anti(b)*neut(q)]
= {a*[c*anti(c)]}*[anti(b)*neut(q)]
= (a*c)*[anti(c)*anti(b)*neut(q).

Using Proposition 3 (2), anti(c)*anti(b) € {anti(b*c)}. Thus, there exists anti(b*c) € {anti(b*c)}
such that:
(a*c)*anti(b*c)*neut(q) = neut(c)*h € H.

Applying Definition 5 (2), there exists anti(a*c) € {anti(a*c)} and r € N such that:
anti(a*c)*(b*c)*neut(r) € H.
This means that (a*c) ~g (b*c).

(2) Using (1)-(3) we can obtain (4). O

Example 6. Let N = {1, 2, 3, 4, 5, 6, 7). The operation * on N is defined as Table 4. Then, (N, *) is a
non- commutative neutrosophic triplet group, and:

neut(1) =1, anti(1) = 1; neut(2) = 1, anti(2) = 2;

neut(3) = 1, anti(3) = 3; neut(4) = 1, anti(4) = 4;
neut(5) = 1, anti(5) = 6; neut(6) = 1, anti(6) = 5; neut(7) = 7, anti(7) = 7.

Table 4. Weak commutative neutrosophic triplet group and its strong neutrosophic triplet (NT)-subgroup.

*

NS Ul R WON =

= OOl W N | =
N QN L DNN
W N =Gl = W | W
B QN = O Ul
Gl = O WN = Ul G
N = N WO
N Ul W~

It is easy to verify that (N, *) is a weak commutative neutrosophic triplet group. Denote H = {1, 5,
6,7}. Then H is a strong NT-subgroups of N.
Thus we can get that (they correspond to the conclusions of Theorem 4):

(1) The relation ~p is an equivalent relation on N and N/H = {{1, 5, 6, 7}, {2, 3, 4}}.
(2) 1=~ pg5implies 2*1 =2 ~p 4 = 2*5, and so on.
3) ~ p 5 implies 1*2 =2 ~y 3 = 5*2, and so on.
f
4)  (N/H,* ={[1lu, [2Iu}, (N, )=(N/H, *), where f(1) = f(5) = f(6) = f(7) = [1]n, and f(2) = f(3) =
f@ =12n.
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Remark 4. Applying Proposition 4 we know that Theorem 4 is a generalization of homomorphism basic theorem
in classical group theory. Moreover, Theorem 4 is also a generalization of related results in [17].

6. Conclusions

This paper studied furtherly neutrosophic triplet group (NTG) and obtained some important
results. First, some examples are given to show that some results in [18] are not true. Second, some
new properties of neutrosophic triplet groups are presented, in particular, the fact of unique neutral
element in every neutrosophic triplet group is proved. Third, the notions of NT-subgroup and strong
NT-subgroup are proposed, a special kind of NTG (called weak commutative neutrosophic triplet
group) is studied, and a homomorphism theorem is presented. All these results are interesting for
exploring the structure characterizations of NTG. As the next research topics, we will explore the
structures of some special NTG and their relationships with related logic algebras (such as BE-algebras
and pseudo-BCI algebras [21-23]).
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Abstract: It is an interesting direction to study rough sets from a multi-granularity perspective.
In rough set theory, the multi-particle structure was represented by a binary relation. This paper
considers a new neutrosophic rough set model, multi-granulation neutrosophic rough set
(MGNRS). First, the concept of MGNRS on a single domain and dual domains was proposed.
Then, their properties and operators were considered. We obtained that MGNRS on dual domains
will degenerate into MGNRS on a single domain when the two domains are the same. Finally, a kind
of special multi-criteria group decision making (MCGDM) problem was solved based on MGNRS on
dual domains, and an example was given to show its feasibility.

Keywords: neutrosophic rough set; MGNRS; dual domains; inclusion relation; decision-making

1. Introduction

As we all know, Pawlak first proposed a rough set in 1982, which was a useful tool of granular
computing. The relation is an equivalent in Pawlak’s rough set. After that, many researchers proposed
other types of rough set theory (see the work by the following authors [1-8]).

In 1965, Zadeh presented a new concept of the fuzzy set. After that, a lot of scholars studied it
and made extensions. For example, Atanassov introduced an intuitionistic fuzzy set, which gives two
degrees of membership of an element; it is a generalization of the fuzzy set. Smarandache introduced
a neutrosophic set in 1998 [9,10], which was an extension of the intuitionistic fuzzy set. It gives three
degrees of membership of an element (T.I.LF). Smarandache and Wang [11] proposed the definition of
a single valued neutrosophic set and studied its operators. Ye [12] proposed the definition of simplified
neutrosophic sets and studied their operators. Zhang et al. [13] introduced a new inclusion relation
of the neutrosophic set and told us when it was used by an example, and its lattice structure was
studied. Garg and Nancy proposed neutrosophic operators and applied them to decision-making
problems [14-16]. Now, some researchers have combined the fuzzy set and rough set and have
achieved many running results, such as the fuzzy rough set [17] and rough fuzzy set. Broumi and
Smarandache [18] proposed the definition of a rough neutrosophic set and studied their operators and
properties. In 2016, Yang et al. [19] proposed the definition of single valued neutrosophic rough sets
and studied their operators and properties.

Under the perspective of granular computing [20], the concept of a rough set is shown by the
upper and lower approximations of granularity. In other words, the concept is represented by the
known knowledge, which is defined by a single relationship. In fact, to meet the user’s needs or achieve

Symmetry 2018, 10, 296; doi:10.3390/sym10070296 40 www.mdpi.com/journal /symmetry
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the goal of solving the problem, it is sometimes necessary to use multiple relational representation
concepts on the domain, such as illustrated by the authors of [21]. In a grain calculation, an equivalence
relation in the domain is a granularity, and a partition is considered as a granularity space [22].
The approximation that is defined by multiple equivalence relationships is a multi-granularity
approximation and multiple partitions are considered as multi-granularity spaces; the resulting
rough set is named a multi-granularity rough set, which has been proposed by Qian and Liang [23].
Recently, many scholars [24,25] have studied it and made extensions. Huang et al. [26] proposed the
notion of intuitionistic fuzzy multi-granulation rough sets and studied their operators. Zhang et al. [27]
introduced two new multi-granulation rough set models and investigated their operators. Yao et al. [28]
made a summary about the rough set models on the multi-granulation spaces.

Although there have been many studies regarding multi-granulation rough set theory, there have
been fewer studies about the multi-granulation rough set model on dual domains. Moreover,
a multi-granulation rough set on dual domains is more convenient, for example, medical diagnosis
in clinics [22,29]. The symptoms are the uncertainty index sets and the diseases are the decision
sets. They are associated with each other, but they belong to two different domains. Therefore,
it is necessary to use two different domains when solving the MCGDM problems. Sun et al. [29]
discussed the multi-granulation rough set models based on dual domains; their properties were
also obtained.

Although neutrosophic sets and multi-granulation rough sets are both useful tools to solve
uncertainty problems, there are few research regarding their combination. In this paper, we proposed
the definition of MGNRS as a rough set generated by multi-neutrosophic relations. It is useful to solve
a kind of special group decision-making problem. We studied their properties and operations and then
built a way to solve MCGDM problems based on the MGNRS theory on dual domains.

The structure of the article is as follows. In Section 2, some basic notions and operations are
introduced. In Section 3, the notion of MGNRS is proposed and their properties are studied. In Section 4,
the model of MGNRS on dual domains is proposed and their properties are obtained. Also, we obtained
that MGNRS on dual domains will degenerate into MGNRS on a single domain when the two domains
are same. In Section 5, an application of the MGNRS to solve a MCGDM problem was proposed.
Finally, Section 6 concludes this paper and provides an outlook.

2. Preliminary
In this section, we review several basic concepts and operations of the neutrosophic set and
multi-granulation rough set.
Definition 1 ([11]). A single valued neutrosophic set B is denoted by ¥ y € Y, as follows:
B(y) = (Ts(y), Is(y), Fs (v))
Tg(y), Ig(y), Fp(y) € [0,1] and satisfies 0 < Tg(y) + Ip(y) + Fp(y) < 3.

As a matter of convenience, ‘single valued neutrosophic set’ is abbreviated to ‘neutrosophic set’
later. In this paper, NS(Y) denotes the set of all single valued neutrosophic sets in Y, and NR(Y x Z)
denotes the set of all of the neutrosophic relations in Y x Z.

Definition 2 ([11]). If A and C are two neutrosophic sets, then the inclusion relation, union, intersection, and
complement operations are defined as follows:

(1) ACCiffVyeY, TA(y) < TC(y), IA(y) > IC(y) and FA(y) > FC(y)
(2) A“={(y, Fa(y), 1 —1a(y), Ta(y) L ye Y}

@) ANC={y, Taty) NTc(y), Ia(y) V Ic(y), Faly) V Fc(y)) | ye Y}
4 AUC={(y, Taly) V Tcy), Ia(y) Nc(y), Fa(y) NFe(y) 1 ye Y}
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Definition 3 ([19]). If (U, R) is a single valued neutrosophic approximation space. Then ¥ B € SVNS(U),
the lower approximation N(B) and upper approximation N(B) of B are defined as follows:

Tn(p) (y) = min[max(Fr(y,2), T5(2))], In() (y) = max[min((1 — Ir(y,2)), I(2))],
Enp) (y) = max{min(Tr(y, z), Fp(2))]

T (y) = maxmin(Tr(y, 2), Tp(2))], Iy(p) (y) = min[max(Ir (v, 2), Is(2))],
Fy(s)(y) = min[max(Fr(y, z), Fp(2))]

The pair (N(B), N(B)) is called the single valued neutrosophic rough set of B, with respect
to (U, R).

According to the operation of neutrosophic number in [16], the sum of two neutrosophic sets in U
is defined as follows.

Definition 4. If C and D are two neutrosophic sets in U, then the sum of C and D is defined as follows:
C+D={(<y, Cly) ® D(y)> 1 ye U}.

Definition 5 ([30]). If b = (T}, I}, F) is a neutrosophic number, n* = (Ty+, I+, Fyx) = (1, 0, 0) is an ideal
neutrosophic number. Then, the cosine similarity measure is defined as follows:
Ty Ty + Iy - Iy« + Fp - Fi«

VT2 + 12 + F? - \/(Tb*)2 + (Ip)? + (Fp)?

S(b,b*) =

3. Multi-Granulation Neutrosophic Rough Sets

In this part, we propose the concept of MGNRS and study their characterizations. MGNRS is
a rough set generated by multi-neutrosophic relations, and when all neutrosophic relations are same,
MGNRS will degenerated to neutrosophic rough set.

Definition 6. Assume U is a non-empty finite domain, and R; (1 < i < n) is the binary neutrosophic relation
on U. Then, (U, R;) is called the multi-granulation neutrosophic approximation space (MGNAS).

Next, we present the multi-granulation rough approximation of a neutrosophic concept in an
approximation space.

Definition 7. Let the tuple ordered set (U, R;) (1 < i < n) be a MGNAS. For any B € NS (U), the three
menberships of the optimistic lower approximation M°(B)and optimistic upper approximationM’ (B) in (U, R;)
are defined, respectively, as follows:
n . n .
Tue(s)(y) = max min (max((F, (,2), To(2))) T () = min max (min (1~ I, 3,2)), I5(2)),

in max (min(Tg, (y, z), Ts(z))

~—

n
Fye ) (y) = min ma&((min(TRi (v,2), Fp(2)) ), Type ) (y) = m

’

i=1 z€ i=1 zel
Iy () () = max min(max(Ig, (v,2), 15(2))), Fyp ) (¥) = max min(max Fg, (y,2), Fy (2)))-
Then, M°(B), M’ (B) € NS(U). In addition, B is called a definable neutrosophic set on (U, R;) when

750

M°(B) = M’(B). Otherwise, the pair (M"(B), M (B)) is called an optimistic MGNRS.
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Definition 8. Let the tuple ordered set (U, R;) (1 < i < n) be a MGNAS. For any B € NS(U), the three
memberships of pessimistic lower approximation MP (B) and pessimistic upper approximation M (B) in (U, R;)
are defined, respectively, as follows:

Tymr () (y) = mnin min(max(Fg,(y,2), Ts(2))), Imr () (y) = max mezﬁ((min((l —Ig,(v,2)),18(2))),

i=1 zel i=1
Furr(p) (y) = rﬁalx ma&((mm(TR.(/, ), Fg(2))), Tﬁp(g)(y) r¥17211x ma&((mln(TR v,2), Tg(2))),
77
IM”(B) (y) = rlnl{l gg{l\(max(IR (v,2), IB(Z)))I FM”(B) (y) = I‘lnl? IZI;ILII‘(maX(FR Y,z) ))

Similarly, B is called a definable neutrosophic set on (U, R;) when MP(B) = M’ (B). Otherwise, the pair
(MV(B),MP(B)> is called a pessimistic MGNRS.

Example 1. Define MGNAS (U, R;), where U = {z1, z, z3} and R; (1 < i < 3) are given in Tables 1-3

Table 1. Neutrosophic relation Rj.

Ry 21 23 23

z1 (0.4,0.5,0.4) (0.5,0.7,0.1) (1,0.8,0.8)
2z (0.5,0.6,1) (0.2,0.6,0.4) 0.9,0.2,0.4)
Z3 (1,0.2,0) (0.8,09,1) 0.6,1,0)

Table 2. Neutrosophic relation Rj.

R, z1 22 z3

z1 0.9,0.2,0.4) (0.3,0.9,0.1) (0.1,0.7,0)
Zp (0.4,0.5,0.1) 0,0.1,0.7) (1,0.8,0.8)
z3 (1,0.5,0) (0.4,04,0.2) (0.1,0.5,0.4)

Table 3. Neutrosophic relation Rj.

R; z1 22 3

z1 (0.7,0.7,0) (0.4,0.8,0.9) (1,04,0.5)
Z (0.8,0.2,0.1) (1,0.1,0.8) (0.1,0.3,0.5)
23 0,08,1) (1,0,1) (1,1,0)

Suppose a neutrosophic set on U is as follows: C(z1) = (0.2, 0.6, 0.4), C(z2) = (0.5, 0.4, 1),
C(z3) = (0.7, 0.1, 0.5); by Definitions 7 and 8, we can get the following:

M°(C)(z1) = (04,03,04), M°(C)(22) = (05,04,05), M’(C)(z3) = (0.7,04,04)
M’(C)(z1) = (0.3,0.6,0.4), M’ (C)(z2) = (0.5,0.4,0.5), M"(C)(z3) = (0.4,0.6,0.5)
MP(C)(z1) = (0.2,0.6,0.5), MP(C)(z2) = (0.2,0.6,0.1), MP(C)(z3) = (0.2,0.6,0.1)
M’ (C)(z1) = (0.7,0.4,0.4), M (C)(z2) = (0.7,0.2,0.4), M" (C)(z3) = (0.7,0.4,0.4)

Proposition 1. Assume (U, R;) is MGNAS, R; (1 < i < n) is the neutrosophic relations. ¥ C e NS(U), M°(C)
and M’ (C) are the optimistic lower and upper approximation of C. Then,

M°(C) = UN(OM'(C) = AN(C)

i=1

where

N(O)) = 0, (R (12) UCENNC)(y) = U (Rily,5)NC(2))
Proof. They can be proved by Definitions 7.
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Proposition 2. Assume (U, R;) be MGNAS, R; (1 < i < n) be neutrosophic relations. ¥ C e NS(U), M (C)
and MP(C) are the pessimistic lower and upper approximation of C. Then
n

MP(C) = ANOM (€)= ON(O)

where

N(O)(y) = 0, (Ri“(y,2) UC(2)), N(C)(y) = U (Riy,2) NC(2))

ze ze

Proof. Proposition 2 can be proven by Definition 8.

Proposition 3. Assume (U, R;) is MGNAS, R; (1 <i < n) is the neutrosophic relations. ¥ C, D e NS(U),
we have the following:

® M
@) M”(C) =~ M°(~
M(

=

<

ﬁ
22000
IR

=
S ==

C) =~ MP(~ C);

() M°(CND)=M°(C)nM°(D), MP(CND) = MP(C) N MP(D);
(4) M°(CuD)=M(C)uM’ (D), M"(CuD) =M (C)uM'(D);
() CcD= M(C) < M (D),MF(C)C MP(D);

(6) CC D= M(C)c M (D),MC)cM(D);

(7) M°(CUD) 2 M°(C)uUM°(D), MP(CUD) 2 MP(C)UMP(D);
8 M’(CnD)c M’ (C)nM’ (D), M'(CnD) c M"(C)nM"(D

Proof. (1), (2), (5), and (6) can be taken directly from Definitions 7 and 8. We only show (3), (4), (7),
and (8).
(3) From Proposition 1, we have the following;:

71

wenp) = B (0, Rew2uEnDIE)

i=1
G(Egm%%> C(z) N (Re(y >UD@»)

i=1

- (5 mnavce)) o (5 g mom)

= M°C(y) N M°D (y)

Similarly, from Proposition 2, we can get the following;:
MP(CND)(y) = MPC(y) N MPD(y).

(4) According to Propositions 1 and 2, in the same way as (3), we can get the proof.
(7) From Definition 7, we have the following:

Tye(cupy(y) = max n;ig{maX[FRi(yIZ),(maX(T c(2),Tp(2)))] }

i=1 z
= rlr_ﬁalx rzréiﬂ{max[(max(FRi (,2),Tc(2))), (max(Fg,(y,2), Tp(2)))] }
> max {r?:alx I;I“éigli(maX(FRi(y,Z), TC(Z))):| , hlalx gréi{ll(max(FRi(y,z), Tp(z)) )} }

= max( Type(c) (¥), Tme(p) (y))-
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n

Iyecop)(y) = minmax{min[(1 - Ig,(y,2)), (min(Ic(z), Ip(2)))] }

i=1 zelU
= min max {min (min( (1 - Ix,(3,2)), Ic(2))), (min((1 - I, (1.2)), Io(2)))] }
< min {1}11{1 max(mm((l —Ig,(y,2)), I (z)))} {mi? r211£>l<(mm((l - IRi(y,z)),ID(z)))} }
= min( Iye(c) (), Ine(p (y))

n

Fyercupy(y) = 1‘1111{1 max{mm[TRv(y,z), (min(Fe(z), Fp(2)))] }

— i map{min min Ty (1,2, Fe(2)], min (i (3,2), Fo (2)) ]
n

< . i i .
< min {1}1:1{1 I?eaL)l((mm(TR‘ (y,z),FC(z)))} , {mm rznea&((mm(TRl (y,z),FD(z)))} }
= min FMD (©) (y), FM"(D) (y)) .

Hence, M°(CUD) D> M°(C)uUM’(D).

Also, according to Definition 8, we can get MP (CU D) D MF(C) U MP (D).

(8) From Definition 7, we have the following:

n

TM"(CQD) (y) = min maL>I<{min [Tk, (y,2), (min(Tc(z), Tp(z)))

i=1 ze

}
= min max{min| (min (T, (v,2), Te(2)) ), (min(Tx, (v,2), To(2))) ]}

< minf i max amin (T (5, 2), Te(2))) | i maxamin (T 0, 2), To ) |}

i= i=1 zel

= min TH“(C)(y)’TMO(D)(y)>'

IM"(CMD)(y) :I}'Lyfif(min{max[ (v,2), (max(] (2),Ip(2)))] }

*r?:alx mm{max[(max(IR (y,2),Ic(2) )),(maX(IR (v,2), ID(Z)))]}

< min {I}Exmm(max(l,q (v,2),Ic(z ))} {rlnax rnlll}(max( i(y,z),ID(z)))}}

min Iy o (v 0y @)).
Fare (crpy () Zmaxmm[FRl (Fe(z) V Fp(z))]
max min|(Fy, (v,2) V Fc(2)) V (Fr,(4,2) V Fo (2))]
> {r{:axmm(FRl FC(Z))} {zz"al min (Fg, (y, 2 )\/PD(Z))]
= max(Fﬂ W), By (o) (¥) )

Hence, M’ (CND) C M’ (C)N'M’ (D)
Similarly, according Definition 8, we can get M" (C N D) € M?(C) n'M" (D).
Next, we will give an example to show that maybe M°(C U D) # M°(C) U M°(D).

Example 2. Define MGNAS (U, R;), where U = {z;, 2, z3} and R; (1 < i < 3) are given in Example 1.
Suppose there are two neutrosophic sets on universe U, as follows: C(zq) = (0.5, 0.1, 0.2), C(z3) = (0.5,

0.3,0.2), C(z3) = (0.6,0.2,0.1), D(z7) = (0.7, 0.2, 0.1), D(z5) = (0.4, 0.2, 0.1), D(z3) = (0.2, 0.2, 0.5), we have

(CUD)(z1)=1(0.7,0.1,0.1), (C U D)(z) = (0.5, 0.2, 0.1), (C U D)(z3) = (0.6, 0.2, 0.1), (C N D)(z1) = (0.5, 0.1,
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0.2), (C N D)(z3) =(0.4,0.2,0.2), (C N D)(z3) = (0.2, 0.2, 0.5). Then, from Definitions 7 and 8, we can get
the following:

M°(C)(z1) = (0.5,0,0.2), M°

(z ), M°(C)(z3) = (0.5,0.1,0.2), M°(C)(z3) = (0.5,0.1,0.2);
M°(D)(z1) = (04,0,0.1), M° M°
21

(c )
(D)(z2) = (02,0.1,0.2), M°(D)(z3) = (04,0.1,0.2);

M°(CUD)(z) = (0.5,0,0.1), M°(C U D)(z3) = (05,0.1,0.1), M°(C U D)(z3) = (0.5,0.1,0.1)
(M°(C) UM’ (D))(z1) = (05 001),( °(C)uM’(D))(z2) = (0.5,0.1,0.2),
(M°(C)UM’(D))(z3) = (0.5,0.1,0.2)

So, M°(CUD) # M°(C) UM’(D).
Also, there are examples to show that maybe MP (C U D) # MP(C) U MP(D),
M’ (CND) # M’ (C)nM’ (D), M"(CN D) # M (C) N M? (D). We do not say anymore here.

4. Multi-Granulation Neutrosophic Rough Sets on Dual Domains

In this section, we propose the concept of MGNRS on dual domains and study their
characterizations. Also, we obtain that the MGNRS on dual domains will degenerate into MGNRS,
defined in Section 3, when the two domains are same.

Definition 9. Assume that U and V are two domains, and R; € NS(U x V) (1 <i < n) is the binary
neutrosophic relations. The triple ordered set (L, V, R;) is called the (two-domain) MGNAS.

Next, we present the multi-granulation rough approximation of a neutrosophic concept in
an approximation space on dual domains.

Definition 10. Let (U, V, R;) (1 < i < n) be (two-domain) MGNAS. ¥ B € NS(V) and y € U, the three
memberships of the optimistic lower and upper approximation M°(B), M"(B) in (U, V, R;) are defined,
respectively, as follows:

n

Tyes)(y) = max mi‘r}[max(FRl (¥,2), Ts(2)) ] Ippo () () = min max [min((1 - Ig,(v,2)),I5(z))]

i=1 ze i=1 ze

Fyp(s) (¥) = n;p max[min (T, (v,2), Fs (2)) Ty ) (v) = min max [min T, (3, 2), T (2))]
I?(B)(y) Iﬂaf( ml‘r/l[max(IR (y,2),1 (Z))]FM“(B)(y) Iﬁxml\r)[max(PR (y,2), Fs(2))]

Then M°(B), M’ (B) e NS(U). In addition, B is called a definable neutrosophic set on (U, V, R;)
on dual domains when M°(B) = M’ (B). Otherwise, the pair (MD(B ), M’ (B )> is called an optimistic
MGNRS on dual domains.

Definition 11. Assume (U, V, R;) (1 < i < n) is (two-domain) MGNAS. ¥ B e NS(V) and y € U, the three
memberships of the pessimistic lower and upper approximation MP(B), M? (B) in (U, V, R;) are defined,
respectively, as follows:

T () (y) = 1}2{1 min[max(Fg, (v, 2), Ts(2)) ], Ly (8) (v) = %ﬁalx max[min((1 — Ix,(y,2)), Is(2))],

FMp (y) m:alxma‘;([mm(TR (y,z )FB(Z))], (B (y) m:alx ma&([mm(TR (y,2), Tg(z )},

B(z)
Iﬁp(m(y) mmmm[m ( (v,2),1p(z ))],FMp(B)(y) =m1n rrél‘r/l[max(FRi(y,z),FB(z))].

i=1 zeV i=1 z
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Then, B is called a definable neutrosophic set on (U, V, R;) when MP(B) = M”(B). Otherwise,
the pair (MP (B),MP(B)) is called a pessimistic MGNRS on dual domains.

Remark 1. Note that if U =V, then the optimistic and pessimistic MGNRS on the dual domains will be the
same with the optimistic and pessimistic MGNRS on a single domain, which is defined in Section 3

Proposition 4. Assume (U, V, R;) (1 <i < n) is (two-domain) MGNAS, R; (1 < i < n) is the neutrosophic
relations. ¥ C, D e NS(U), we have the following:

(1) M°(C) =~ M’(~C), MP(C) =~ M’(~ C);

() M’(C) =~ M’(~C), M"(C) =~ MP(~ C);

G M°(CnD)=M(C)nM°(D), MP(CND) = MP(C) N MP(D);
(4) M’(CuD)=M(C)uM’ (D), M"(CuD)=M"(C)uM’(D);
(6) C< D= M’(C) C M°(D),MP(C) C MP(D);

(6) CC D= M(C)C M (D),M ()< M (D);

(7) M°(CUD) 2 M°(C)uUM°(D), MP(CUD) 2 MP(C)UMP(D);
(8) M’(CnD)C M’ (C)nM’ (D), M'(CnD)C M'(C)nM (D).

Proof. These propositions can be directly proven from Definitions 10 and 11.

5. An Application of Multi-Granulation Neutrosophic Rough Set on Dual Domains

Group decision making [31] is a useful way to solve uncertainty problems. It has developed
rapidly since it was first proposed. Its essence is that in the decision-making process, multiple
decision makers (experts) are required to participate and negotiate in order to settle the corresponding
decision-making problems. However, with the complexity of the group decision-making problems,
what we need to deal with is the multi-criteria problems, that is, multi-criteria group decision making
(MCGDM). The MCGDM problem is to select or rank all of the feasible alternatives in multiple,
interactive, and conflicting standards.

In this section, we build a neo-way to solve a kind of special MCGDM problem using the MGNRS
theory. We generated the rough set according the multi-neutrosophic relations and then used it to
solve the decision-making problems. We show the course and methodology of it.

5.1. Problem Description

Firstly, we describe the considered problem and we show it using a MCGDM example of
houses selecting.

Let U = {x1, x2, ..., Xy} be the decision set, where x; represents very good, x, represents good,
X3 represents less good, ..., and x, represents not good. Let V = {1, y», . .. , ¥} be the criteria set to
describe the given house, where ; represents texture, i, represents geographic location, y3 represents
price, ..., and y, represents solidity. Suppose there are k evaluation experts and all of the experts give
their own evaluation for criteria set y; (y; € V) (j=1,2, ..., n), regarding the decision set elements
xi(xjeU)(i=1,2,...,m). In this paper, let the evaluation relation Ry, Ry, ... , Ry between V and U
given by the experts, be the neutrosophic relation, Ry, Ry, ..., Ry € SNS (U x V). That is, R (x;, y;)
(I=1,2,...,k) represents the relation of the criteria set Y and the decision set element x;, which is
given by expert /, based on their own specialized knowledge and experience. For a given customer, the
criterion of the customer is shown using a neutrosophic set, C, in V, according to an expert’s opinion.
Then, the result of this problem is to get the opinion of the given house for the customer.

Then, we show the method to solve the above problem according to the theory of optimistic and
pessimistic MGNRS on dual domains.
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5.2. New Method

In the first step, we propose the multi-granulation neutrosophic decision information system
based on dual domains for the above problem.

According to Section 5.1’s description, we can get the evaluation of each expert as a neutrosophic
relation. Then, all of the binary neutrosophic relations R; given by all of the experts construct a relation
set R (i.e.,, R; € R). Then, we get the multi-granulation neutrosophic decision information systems
based on dual domains, denoted by (U, V, R).

Secondly, we compute M°(C), M’ (C), MP(C), M (C) for the given customer, regarding (U, V, R).

Thirdly, according to Definition 4, we computed the sum of the optimistic and pessimistic
multi-granulation neutrosophic lower and upper approximation.

Next, according Definition 5, we computed the cosine similarity measure. Define the choice x*
with the idea characteristics value a * = (1, 0, 0) as the ideal choice. The bigger the value of S(ay,, a*)
is, the closer the choice x; with the ideal alternative x *, so the better choice x; is.

Finally, we compared S(ay;, «*) and ranked all of the choices that the given customer can choose
from and we obtained the optimal choice.

5.3. Algorithm and Pseudo-Code

In this section, we provide the algorithm and pseudo-code given in table Algorithm 1.

Algorithm 1. Multi-granulation neutrosophic decision algorithm.

Input Multi-granulation neutrosophic decision information systems (U, V, R).

Output The optimal choice for the client.

Step 1 Computing M°(C), M’ (C), MP(C), M* (C) of neutrosophic set C about (U, V, R);

Step 2 From Definition 4., we get M°(C) + M’ (C) and MF(A) + M" (A);

Step 3 From Definition 5., we computer S°(ay,, a*) and SP(ay, a*) (i=1,2,...,m);

Step 4 The optimal decision-making is to choose xy, if
S(D‘Xh' “*) = maxie{l,Z,»-» '} (S(’XX;/ ’X*))'

pseudo-code

Begin

Input (U, V, R), where U is the decision set, V' is the criteria set, and R denotes the binary neutrosophic
relation between criteria set and decision set.

Calculate M°(C), M°(C), MP(C), M (C). Where M°(C), M"(C), MP(C), M” (C) , which represents the
optimistic and pessimistic multi-granulation lower and upper approximation of C, which is defined in
Section 4.

Calculate M°(C) + M’(C) and MP(C) + M" (C), which is defined in Definition 4.

Calculate S° (M” (C)+M°(C), rx*) and S (M/”(C) + M’ (C), rx*), which is defined in Definition 5.

Fori=1,2,..., m;j=1,2,...,m;1=1,2,... ,k

If SOy, a*) < S° (txx/,tx*>, then S° <1xx/,1x*) — Max,

else S%(ay,, &*) — Max,
If S%(ay,, ) > Max, then S°(ay,, a*) — Max;

Print Max;

End

5.4. An Example

In this section, we used Section 5.2’s way of solving a MCGDM problem, using the example of
buying houses.

Let V = {y1, y2, ¥3, ya} be the criteria set, where y; represents the texture, 1, represents the
geographic location, i3 represents the price, and v, represents the solidity. Let U = {z1, z, z3, z4} be
a decision set, where z; represents very good, z, represents good, z3 represents less good, and z
represents not good.
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Assume that there are three experts. They provide their opinions about all of the criteria sets y;
(yj e V) (G=1,2,3,4) regarding the decision set elements z; (x; € U) (i =1, 2, 3, 4). Like the discussion
in Section 5.1, the experts give three evaluation relations, R, Ry, and Rz, which are neutrosophic
relations between V and U, that is, Ry, Ry, R3 € NR(U x V). Try(z;, y;) shows the expert, k, give the
truth membership of y; to z;; Ir(z;, yj) shows the expert, k, give the indeterminacy membership of y; to
z; Fre(zi, ;) shows the expert, k, give the falsity membership of y; to z;. For example, the first value
(0.2,0.3, 0.4) in Table 4, of 0.2 shows that the truth membership of the texture for the given house is
very good, 0.3 shows that the indeterminacy membership of the texture for the given house is very
good, and 0.4 shows that the falsity membership of the texture for the given house is very good.

Table 4. Neutrosophic relation R;.

Ry Y1 L) Y3 Y4

z1 (0.2,0.3,0.4) (0.3,0.5,0.4) (0.4,0.6,0.2) (0.1,0.3,0.5)
Zn (0.8,0.7,0.1) (0.2,0.5,0.6) (0.6,0.6,0.7) (0.4,0.6,0.3)
Z3 (0.5,0.7,0.2) (0.6,0.2,0.1) (1,0.9,0.4) (0.5,0.4,0.3)
Z4 (0.4,0.6,0.3) (0.5,0.5,0.4) (0.3,0.8,0.4) (0.2,0.9,0.8)

So, we build the multi-granulation neutrosophic decision information system (U, V, R) for
the example.
Assume that the three experts give three evaluation relations, the results are given in Tables 4-6.

Table 5. Neutrosophic relation R;.

R, Y1 Y2 Y3 Y4

7 (0.3,0.4,0.5) (0.6,0.7,0.2) (0.1,0.8,0.3) (0.5,0.3,0.4)
z (0.5,0.5,0.4) 1,0,1) (0.8,0.1,0.8) (0.7,0.8, 0.5)
2 (0.7,0.2,0.1) (0.3,0.5, 0.4) (0.6,0.1, 0.4) (1,0,0)

2 (1,02,0) (0.8,0.1,0.5) (0.1,0.2,0.7) (0.2,0.2,0.8)

Table 6. Neutrosophic relation R3.

R3 Y1 Y2 Y3 Y4

7 (0.6,0.2,0.2) (0.3,0.1,0.7) (0,0.2,0.9) (0.8,0.3,0.2)
z (0.1,0.1,0.7) (02,0.3,0.8) (0.7,0.1,0.2) 0,0,1)

2 (0.8,0.4,0.1) (0.9,0.5,0.3) (0.2,0.1,0.6) (0.7,0.2,0.3)
2 (0.6,0.2,0.2) (02,0.2,0.8) a,1,0) (05,0.3,0.1)

Assume C is the customer’s evaluation for each criterion in V, and is given by the following:
C(y1) = (0.6,0.5,0.5), C(y2) = (0.7, 0.3, 0.2), C(y3) = (0.4, 0.5, 0.9), C(y4) = (0.3, 0.2, 0.6).
From Definitions 10 and 11, we can compute the following;:

M°(C)(z1) = (0.4,0.5,0.4), M°(C)(z2) = (0.5,0.4,0.6), M°(C)(z3) = (0.3,0.3,0.6),
M°(C)(z4) = (0.6,0.4,0.4)

M’(C)(z1) = (0.4,0.3,0.5), M’(C)(z2) = (0.4,0.5,0.7), M"(C)(z3) = (0.6,0.3,0.4),
M’(C)(z4) = (0.5,0.5,0.5)

MP(C)(z;) = (03,05,0.6), MP(C)(z3) = (0.3,0.5,0.8), MP(C)(z3) = (0.3,0.5,0.9),
MP(C)(z4) = (0.3,0.5,0.9)

M’ (C)(z1) = (0.6,0.3,0.2), M’ (C)(z2) = (0.7,0.2,0.5), M’(C)(z3) = (0.7,0.2,0.2),

370

M’ (C)(z4) = (0.7,0.2,0.4)
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According Definition 4, we have the following:

(M°(C) + M’(C)) (1) = (064,015,0.2), (M°(C) + M’(C) ) (z2) = (07,02,042),
(M”(C)+MG(C)>(Z3):(072,0.09,0.24),( °(C) + M (C))( 4) = (0.8,02,02)

(MP(C) + M (C)) (z1) = (0.72,0.15,0.12), (M?(C) +M"(C))(zz) = (0.79,0.1,04),
(M7(c) +W(C)>(Z3) = (0.79,0.1,0.18), (MP(C) +M”(C)> (z4) = (0.79,0.1,0.36)

Then, according Definition 5, we have the following:
S%(az,, &) = 0.9315, 5% (az,, ™) = 0.8329, S%(az,, &™) = 0.8588, 5% (a2, ™) = 0.9428. (1)

SP(az,, &%) = 0.9662, S (az,,a*) = 0.8865, S (zy, a*) = 9677, S (az,, ™) = 0.9040. )

Then, we have the following:
S%(azy, &) > 8%z, %) > S8 (azy, a) > S%(az,, a"). (3)

SP(azy, ) > SP (a7, &) > SP(az,, ) = SP(az,, a"). 4)

So, the optimistic optimal choice is to choose x4, that is, this given house is “not good” for the
customer; the pessimistic optimal choice is to choose x3, that is, this given house is “less good” for
the customer.

6. Conclusions

In this paper, we propose the concept of MGNRS on a single domain and dual domains, and
obtain their properties. I addition, we obtain that MGNRS on dual domains will be the same as the
MGNRS on a single domain when the two domains are same. Then, we solve a kind of special group
decision-making problem (based on neutrosophic relation) using MGNRS on dual domains, and we
show the algorithm and give an example to show its feasibility.

In terms of the future direction, we will study other types of combinations of multi-granulation
rough sets and neutrosophic sets and obtain their properties. At the same time, exploring the
application of MGNRS in totally dependent-neutrosophic sets (see [32]) and related algebraic systems
(see [33-35]), and a new aggregation operator, similarity measure, and distance measure (see [36-39]),
are also meaningful research directions for the future.
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Abstract: In classical group theory, homomorphism and isomorphism are significant to study the
relation between two algebraic systems. Through this article, we propose neutro-homomorphism and
neutro-isomorphism for the neutrosophic extended triplet group (NETG) which plays a significant
role in the theory of neutrosophic triplet algebraic structures. Then, we define neutro-monomorphism,
neutro-epimorphism, and neutro-automorphism. We give and prove some theorems related to these
structures. Furthermore, the Fundamental homomorphism theorem for the NETG is given and
some special cases are discussed. First and second neutro-isomorphism theorems are stated. Finally,
by applying homomorphism theorems to neutrosophic extended triplet algebraic structures, we have
examined how closely different systems are related.
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1. Introduction

Groups are finite or infinite set of elements which are vital to modern algebra equipped with
an operation (such as multiplication, addition, or composition) that satisfies the four basic axioms of
closure, associativity, the identity property, and the inverse property. Groups can be found in geometry
studied by “Felix klein in 1872” [1], characterizing phenomenality like symmetry and certain types
of transformations. Group theory, firstly introduced by “Galois” [2], with the study of polynomials
has applications in physics, chemistry, and computer science, and also puzzles like the Rubik’s cube
as it may be expressed utilizing group theory. Homomorphism is both a monomorphism and an
epimorphism maintaining a map between two algebraic structures of the same type (such as two
groups, two rings, two fields, two vector spaces) and isomorphism is a bijective homomorphism
defined as a morphism, which has an inverse that is also morphism. Accordingly, homomorphisms
are effective in analyzing and calculating algebraic systems as they enable one to recognize how
intently distinct systems are associated. Similar to the classical one, neuro-homomorphism is the
transform between two neutrosophic triplet algebraic objects N and H. That is, if elements in N satisfy
some algebraic equation involving binary operation “*”, their images in H satisfy the same algebraic
equation. A neutro-isomorphism identifies two algebraic objects with one another. The most common
use of neutro-homomorphisms and neutro-isomorphisms in this study is to deal with homomorphism
theorems which allow for the identification of some neutrosophic triplet quotient objects with certain
other neutrosophic triplet subgroups, and so on.

The neutrosophic logic and a neutrosophic set, firstly made known by Florentin Smarandache [3]
in 1995, has been widely applied to several scientific fields. This study leads to a new
direction, exploration, path of thinking to mathematicians, engineers, computer scientists, and
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many other researchers, so the area of study grew extremely and applications were found
in many areas of neutrosophic logic and sets such as computational modelling [4], artificial
intelligence [5], data mining [6], decision making problems [7], practical achievements [8], and so forth.
Florentin Smarandache and Mumtazi Ali investigated the neutrosophic triplet group and neutrosophic
triplet as expansion of matter plasma, nonmatter plasma, and antimatter plasma [9,10]. By using
the concept of neutrosophic theory Vasantha and Smarandache introduced neutrosophic algebraic
systems and N-algebraic structures [11] and this was the first neutrosofication of algerbraic structures.
The characterization of cancellable weak neutrosophic duplet semi-groups and cancellable NTG are
investigated [12] in 2017. Florentin Smarandache and Mumtaz Ali examined the applications of the
neutrosophic triplet field and neutrosophic triplet ring [13,14] in 2017. Sahin Mehmet and Abdullah
Kargin developed the neutrosophic triplet normed space and neutrosophic triplet inner product [15,16].
The neutrosophic triplet G-module and fixed point theorem for NT partial metric space are given
in literature [17,18]. Similarity measures of bipolar neutrosophic sets and single valued triangular
neutrosophic numbers and their appliance to multi-attribute group decision making investigated
in [19,20]. By utilizing distance-based similarity measures, refined neutrosophic hierchical clustering
methods are achieved in [21]. Single valued neutrosophic sets to deal with pattern recognition problems
are given with their application in [22]. Neutrosophic soft lattices and neutrosophic soft expert sets are
analyzed in [23,24]. Centroid single valued neutrosophic numbers and their applications in MCDM
is considered in [25]. Bal Mikail, Moges Mekonnen Shalla, and Necati Olgun reviewed neutrosophic
triplet cosets and quotient groups [26] by using the concept of NET in 2018. The concepts concerning
neutrosophic sets and neutrosophic modules are described in [27,28], respectively. A method to handle
MCDM problems under the SVNSs are introduced in [29]. Bipolar neutrosophic soft expert set theory
and its basic operations are defined in [30].

The other parts of a paper is coordinated thusly. Subsequently, through the literature analysis
in the first section and preliminaries in the second section, we investigated neutro-monomorphism,
neutro-epimorphism, neutro-isomorphism, and neutro-automorphism in Section 3 and a fundamental
homomorphism theorem for NETG in Section 4. We give and prove the first neutro-isomorphism
theorem for NETG in Section 5, and then the second neutro-isomorphism theorem for NETG is given
in Section 6. Finally, results are given in Section 7.

2. Preliminaries

In this section, we provide basic definitions, notations and facts which are significant to develop
the paper.

2.1. Neutrosophic Extended Triplet

Let U be a universe of discourse, and (N, ) a set included in it, endowed with a well-defined
binary law .

Definition 1 ([3]). The set N is called a neutrosophic extended triplet set if for any x € N there exist "¢t
€ N and e™™) ¢ N. Thus, a neutrosophic extended triplet is an object of the form (x, e"® ™)) where
") js extended neutral of x, which can be equal or different from the classical algebraic unitary element if
any, such that

X % em’ut(x) _ eneut(x) xx=x
and ™) ¢ N is the extended opposite of x such that
X % etmti(x) — ermfi(x) xx = eneut(x)

In general, for each x € N there are many existing eneut(x)'s g ganti(x)'s,

Theorem 1 ([11]). Let (N, *) be a commutative NET with respect to * and a, b € N;
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(i) neut(a) x neut(b) = neut(axb);
(i) anti(a) * anti(b) = anti(a *b);

Theorem 2 ([11]). Let (N, %) be a commutative NET with respect to x and a € N;

(i) neut(a) x neut(a) = neut(a);
(ii)  anti(a) = neut(a) = neut(a) x anti(a) = anti(a)

2.2. NETG

Definition 2 ([3]). Let (N, %) be a neutrosophic extended triplet set. Then (N, x) is called a NETG, if the
following classical axioms are satisfied.

(a) (N, %) is well defined, i.e., for any x,y € N one has x x y € N.
(b) (N, %) is associative, i.e., for any x,y,z € N one has x * (y xz) = (x % y) * z.

We consider, that the extended neutral elements replace the classical unitary element as well the extended
opposite elements replace the inverse element of classical group. Therefore, NETGs are not a group in classical
way. In the case when NETG enriches the structure of a classical group, since there may be elements with more
extended opposites.

2.3. Neutrosophic Extended Triplet Subgroup
Definition 3 ([26]). Given a NETG (N, *), a neutrosophic triplet subset H is called a neutrosophic extended
triplet subgroup of N if it itself forms a neutrosophic extended triplet group under . Explicity this means

(1) The extended neutral element e"***) lies in H.
(2) Foranyx,y € Hx*y € H.
(3) Ifx € H then e™i%) ¢ H.

In general, we can show H < N as x € H and then eMti(X) ¢ H e xx ei(x) = gneut(x) ¢ g,

Definition 4. Suppose that N is NETG and Hy, Hy < N.H; and Hy are called neutrosophic triplet conjugates
of Nifn € N thereby Hy = nHy(anti(n)).

2.4. Neutro-Homomorphism
Definition 5 ([26]). Let (N, *) and (N, o) be two NETGs. A mapping f: Ny — Ny is called a
neutro-homomorphism if
(a)  Forany x,y € N, we have
flxxy) = fx) o f(y)
(b)  If (x,neut(x), anti(x) is a neutrosophic extended triplet from Ny, then

flneut(x)) = neut(f(x))

and

f(anti(x)) = anti(f(x)).
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Definition 6 ([26]). Let f: N;—N; be a neutro-homomorphism from a NETG (N1, *) to a NETG (N, o).
The neutrosophic triplet image of f is

Im(f) = {f(g) : § € N1, }.

Definition 7 ([26]). Let f: Ny—N, be a neutro-homomorphism from a NETG (N1, *) to a NETG (N, o) and B
C N,. Then

f7(B) = {x € Ny : f(x) € B}
is the neutrosophic triplet inverse image of B under f.

Definition 8 ([26]). Let f : Ny — Ny be a neutro-homomorphism from a NETG (N1, *) toa NETG (N>, o).
The neutrosophic triplet kernel of f is a subset

Ker(f) = {x € Ny : f(x) = neut(x)} of Ny,
where neut(x) denotes the neutral element of Ny.

Definition 9. The neutrosophic triplet kernel of ¢ is called the neutrosophic triplet center of NETG N and it is
denoted by Z(N). Explicitly,

Z(N) ={a € N:g¢, =neuty}
= {a € N:ab(anti(a)) =b,Vb € N}
={aeN:ab=ba, Vb e N}.

Hence Z(N) is the neutrosophic triplet set of elements in N that commute with all elements in N. Note that
obviously Z(N) is a neutrosophic triplet. We have Z(N) = N in the case that N is abelian.

Definition 10 ([26]). Let N bea NETG and H C N.Vx € N, the set xh/h € H is called neutrosophic triplet
coset denoted by xH. Analogously,
Hx =hx/he H

and
(xH)anti(x) = (xh)anti(x)/h € H.

When h < N, xH is called the left neutrosophic triplet coset of H in N containing x, and Hx is called the
right neutrosophic triplet coset of H in N containing x. | xH | and | Hx | are used to denote the number of
elements in xH and Hzx, respectively.

2.5. Neutrosophic Triplet Normal Subgroup and Quotient Group

Definition 11 ([26]). A neutrosophic extended triplet subgroup H of a NETG of N is called a neutrosophic
triplet normal subgroup of N if aH (anti(a)) C H,Vx € N and we denote itas H < N and H < N if H # N.

Example 1. Let N be NETG. {neut{ < N and N < N.
Definition 12 ([26]). If N is a NETG and H < N is a neutrosophic triplet normal subgroup, then the

neutrosophic triplet quotient group N/H has elements xH : x € N, the neutrosophic triplet cosets of H in N,
and operation (xH)(yH) = (xy)H.
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3. Neutro-Monomorphism, Neutro-Epimorphism, Neutro-Isomorphism, Neutro-Automorphism

In this section, we define neutro-monomorphism, neutro-epimorphism, neutro-isomorphism, and
neutro-automorphism. Then, we give and some important theorems related to them.

3.1. Neutro-Monomorphism

Definition 13. Assume that (N1, *) and (N3, o) be two NETG’s. If a mapping f : Ny — Ny of NETG is only
one to one (injective) f is called neutro-monomorphism.

Theorem 3. Let (Ny, *) and (N3, o) be two NETG’s. ¢ : Ny — Ny is a neutro-monomorphism of NETG if
and only if kerp = {neuty }.

Proof. Assume ¢ is injective. If a € kerg, then

¢(a) = neutny = @(neuty),Va € Ny

and hence by injectivity a = neuty. Conversely, assume kerg = ¢(neuty1). Leta,b € Ny such that ¢(a) =
@(b). We need to show thata = b.

neuty = @(b)anti(¢(a))
¢(b)g(anti(a))
P

(b(anti(a))).

Thus b(anti(a))) € kerg, and hence, by assumption ker¢ = ¢(neutyi). We conclude that
b(anti(a))) = neutyy,ie., a="b. O

Definition 14. Let (Ny, %) and (N, o) be two NETG’s. If a mapping f : Ny — N is only onto (surjective) f is
called neutro-epimorphism.

Theorem 4. Let N and H be two NETG's. If ¢ : N — H is a neutro-homomorphism of NETG, then so is ¢~ 1:
H — N.

Proof. Letx = ¢(a),y = ¢(b),Va,b € Nand Vx,y € H.So a = anti(¢(x)),b = anti(¢(y)). Now

anti(xy) = ¢(¢p(a)p(b))
= anti(¢(ab) = ab
)

= anti(¢(x))anti(¢(y)).
O

Theorem 5. Let N be NETG and a,b € N. The map ¢ : N — AutN.Then,a — @, is a
neutro-homomorphism.
Proof. For any fixed n € N, we have

@ap(N) = abn(anti(ab)) = abn(anti(a))anti(b)
= @a(bn(anti(b)) = gagp(n),
S0 Qap = Pagppi-e., P(ab) = ¢(a)p (D).
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It is in fact has anti-neutral element i.e., ¢(anti(n)) = anti(¢,). Since @uanti(¢,(a)) =
n(anti(n)an)anti(n) = a, and so ¢y, is injective. [

Theorem 6. Let f: N — H be a neutro-homomorphism of NETG N and H. For h € H and x €
FY(h), f~1(h) = x € kerf.

Proof. (1) Let’s show that f (k) C x kerf.If x € f~1(h), then f(x) = hand b € f~1(h), then
F(6) = 1€ f(x) = f(y), then:
anti(f(x))f(x) = anti(f(x))f(b)(by theorem 1)
neuty = f(anti(x))f(b) (by definition 1)

= anti(x)b € kerf.

For at least k € kerf, anti(x)b = k. If b = xk, then,
b€ xkerf = f1(h) C xkerf 1)
(2) Let’s show that xkerf C f~1(h). Let b € xkerf. For at least k € kerf,b = xk
= f(b) = f(xk) = f(x)(K) = h neuty; = h
If f~1(h) =band b € f~1(h), then

xkerf C f~1(h) )

by (1) and (2), we obtain xkerf = f~1(h).
OJ

Theorem 7. Let ¢ : Ny — N, be a neutro-homomorphism of NETG N1 and N.

(1) If Hy 9N, then ¢~ '(Hy) < Ny
(2) IfH; < Ny and ¢ is a neutro — epimorhism then ¢(Hy) < Na.

Proof. (1) If x € ¢ YHy)) and a € Nj, then ¢(x) € Hy and so
¢((ax)(anti(a)) = @(a)e(x)anti(p(a)) € Hy. Since H; is neutrosophic triplet normal subgroup.
We conclude ax(anti(a)) € ¢~ (Ha).

(2) Since H; is neutrosophic triplet normal subgroup, we have ¢(a)@(Hp)anti(p(a)) C ¢(Hyp).
Since we assume ¢ is surjective, every b € N, can be written as b = ¢(a),a € Nj. Therefore,
be(Hy)anti(b) € ¢(Hy).

O

Theorem 8 ([26]). Let f : N — H be a neutro-homomorphism from a NETG N toa NETG H. Kerf <1 N.

Theorem 9. Let N be NETG and H I N. The map ¢ : N — N/H, n — nH, is a neutro-homomorphism
with neutrosophic triplet kernel kergp = H.
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Proof. We have ¢(ab) = (ab)H = (aH)(bH) = ¢(a)¢(a), so ¢ is a neutro-homomorphism. As to
the neutrosophic triplet kernel, a € kerg < ¢(a) = H (since H is neutral in N/H) < aH = H (by
definitionof ¢) <> a € H. O

Theorem 10. Let N be NETG and H C N be a non-empty neutrosophic extended triplet subset. Then H < N,
if and only if there exists a neutro-homomorphism ¢ : Ny — Np with H = ker¢.

Proof. Its straight forward. [

3.2. Neutro-Isomorphism

Definition 15. Let (N1, ) and (N, o) be two NETGs. If a mapping f : N; — N neutro-homomorphism is
one to one and onto f is called neutro-isomorphism. Here, N1 and N, are called neutro-isomorphic and denoted
as N1 = No.

Theorem 11. Let (N, *) and (N3, o) be two NETG’s. If f : Ny — Ny is a neutro-isomorphism of NETG'’s,
thensois f~1: Ny — Nj.

Proof. It is obvious to show that f is one to one and onto. Now let’s show that f is
neutro-homomorphism. Let x = ¢(a),y = ¢(b),Va,b € N1,Vx,y € N, and so, a = anti(¢(x)),b =
anti(¢(y)). Now anti(xy) = anti(¢(@(a)p(b))) = anti(¢(p(ab))) = ab = anti(¢(x))anti(p(y)). O

3.3. Neutro-Automorphism.

Definition 16. Lef (N7, *) and (N3, o) be two NETG’S. If a mapping f : Ny — Ny is one to one and onto fis
called neutro-automorphisim.

Definition 17. Let N be NETG. ¢ € AutN is called a neutro-inner automorphism if there isan € N such
that ¢ = @y.

Proposition 1. Let N be a NETG. For a € N,f;: N — N such that x — ax(anti(a) is a
neutro-automorphism (AutN).

Proof. (1) Vx,y € N, we have to show that

f(x) = f(y) = x = y.ax(anti(a)) = ay(anti(a)) = ax(anti(a))a = ay(anti(a))a = ax(neut(a)) = ay(neut(a)) =

Therefore, f is one to one.
(2) Vx,y € N, we have to show that

f(x) = ax(anti(a)) = y.ax(anti(a))a = ya= ax(neut(a)) = ya = ax = ya = anti(a)ax = anti(a)ya = neut(a)x =

So, f is onto. Therefore, f; is a neutro-automorphism.
O
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Lemma 1. Let a be an element of NETG N such that a> = a. Then a = neut(a).

Proof. We have
= (anti(a) * a) x a for anti(a) € N (anti axiom)
= anti(a) * a® (associativity axiom)
anti(a) = a (by assumption)
neut(a) (by definition of anti)

|

Theorem 12. Let N be NETG and Hy,Hy < N. Then the neutrosophic extended triplet set HiHy =
{ab:a € Hy,b € Hy} is a neutrosophic extended triplet subgroup in the case that HiHy = HyHj.

Proof. Suppose HiHj; is a neutrosophic extended triplet subgroup. Then, for alla € Hy,b € Hp, we
have anti(a)anti(b) € HiHy,i.e., HyHy C H1H,. Butalso for h € HyH, we find a € Hy,b € Hj thereby
anti(h) = ab, and then h = anti(b)anti(a) € HyH;. So HiH, C HyH, that's, HyH, = HyH;. On the
other hand, assume that HiH, = H,H;. Then Va,a’ € Hy,b,b' € Hy we have aba’'b’ € aHyHb' =
aH{Hyb' = HpH,. Furthermore, Ya € Hy,b € H, we have anti(ab) = anti(b)anti(a) € HyH; =
H{H,. O

4. Fundamental Theorem of Neutro-Homomorphism

The fundamental theorem of neutro-homomorphism relates the structure of two objects between
which a neutrosophic kernel and image of the neutro-homomorphism is given. It is also significant
to prove neutro-isomorphism theorems. In this section, we give and prove the fundamental theorem
of neutro-homomorphism. Then, we discuss a few special cases. Finally, we give examples by
using NETG.

Theorem 13. Let N7, N; be NETG’s and ¢ : Ny — Ny be a neutro-homomorphism. Then, Ny /ker(¢) =
im(¢). Furthermore if ¢ is neutro-epimorphism, then

Nl/k€1’4) = Nz.

| > im(¢)
N7

N /ker(¢)

Proof. We will construct an explicit map i:Nj/ker(¢) — im(¢) and prove that it is a
neutro-isomorphism and well defined. Since ker(¢) is neutrosophic triplet normal subgroup of Nj.
Let K = ker(¢), and recall that Ny /K = {aK : a € Ny }. Define i : N1 /K — im(¢),i: nK — ¢(n),n € Ny.
Thus, we need to check the following conditions.

(1) iis well defined

(2) iisinjective

(8) iissurjective

(4) iisaneutro-homomorphism
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(1) We must show that if aK = bK, then i(aK) = (bK). Suppose aK = bK. We have
aK = bK = anti(b)aK = K = anti(b)a € K. Here, neut(,5y = ¢(anti(b)a) = ¢(anti(b)¢(a)
= anti(¢(b))p(a) = ¢(a) = ¢(b). Hence, i(aK) = ¢(a) = ¢(b) = i(bK). Therefore, it is
well defined.

(2) We must show that i(aK) = i(bK) = aK = bK. Suppose that i(aK) = i(bK). Then

i(aK) = i(bK)=aK = bK.
= ¢(anti(b)) ¢(a) = neut,, = ¢(anti(b)a) = neut,, = anti(b)ae K
= anti(b)aK = K (aN,= N, & ae N,).

Thus, i is injective.

(3) We must show that for any element in the domain (N7 /K) gets mapped to it by i. let’s pick any
element ¢(a) € im(¢). By definition, i(aK) = ¢(a), hence i is surjective.

(4) We must show that i(aK bK) = i(aK)i(bK).i(aKbK) = i(abK)(aK bK = abK) = ¢(ab) =
¢(a)p(b) = i(aK bK) = i(aK)i(bK). Thus, i is a neutro-homomorphism.

In summary, since i : Ny /K — im(¢) is a well-defined neutro-homomorphism that is injective
and surjective. Therefore, it is a neutro-isomorphism. i.e., N;/K = im(¢$), and the fundamental
theorem of neutro-homomorphism is proven. [J

Corollary 1 (A Few Special Cases of Fundamental Theorem of Neutro-homomorphism).

e Let N=(1,1,1) bea trivial neutrosophic extended triplet. If o: N;— N is an embedding, then neutrosophic
ker(¢) = {neut(1) = 1IN1}. The Theorem 12 says that im(¢) = {N1/IN1} = Nj.

o If@: Ny—=N,isamap ¢(n) = neut(1) = 1N, for all ny € Ny, then neutrosophic ker(p) = N1, so Theorem
13 says that 1IN, = im(¢) = N1/Njy.

Example 2. The neutrosophic extended triplet alternating group Ay (the neutrosophic extended triplet subgroup
of even permutation in NETG S,,) has index 2 in S,,.

Solution. To prove that [S,:A,] = 2. We will construct a surjective neutro-homomorphism ¢: S,—Z; with
neutrosophic triplet ker¢p = A;. Here the neutrosophic extended triplets of Z, are (0, 0, 0) and (1, 1, 1). If this
is achieved, it would follow that S,/ Ay = Zy, s0 | Su/An| = | Zy | =2, and therefore [S;:Apl = 1S,/An | =2,
. . 0] if f is even
as desired. Define ¢: Sy—Z, by ¢(f) = { [[1}] lj;j; is odd
By construction ¢ is surjective. To prove that ¢ is a neutro-homomorphism we need to show that
d(x) + d(y) = d(xy), VX, y € Sn. Here if x and y are both even or both odd, then xy is even. If x is even
and y is odd, or if x is odd and y is even, then xy is odd. Let us see these four different cases as follows:

(1) xand y are both even. Then xy is also even. So, ¢(x) = $(y) = d(xy) = [0]. Since [0] + [0] =
[0] holds.

(2) xiseven, and y is odd. Then xy is odd. So, ¢(x) + ¢p(y) = [0] + [1] = [1] = d(xy).

(3) xisodd, and y is even. This case is analogous to case 2.

(4) xandy are both odd. Then xy is even, so ¢(x) + &(y) = [1] + [1] = [0] = d(xy). Thus, we verified
that ¢ is a neutro-homomorphism. Finally, neutrosophic trplet kerd = {x € Sy: d(x) = [0],} is the
neutrosophic extended triplet set of all even permutations, so neutrosophic triet kerp = A,.
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5. First Neutro-Isomorphism Theorem

The first neutro-isomorphism theorem relates two neutrosophic triplet quotient groups involving
products and intersections of neutrosophic extended triplet subgroups. In this section, we give and
prove the first neutro-isomorphism theorem. Finally, we give an example by using NETG.

Theorem 14. Let N be NETG and H, K be two neutrosophic extended triplet subgroup of N and H is a
neutrosophic triplet normal in K. Then

(a)  HKis neutrosophic triplet subgroup of N.

(b)  HN\ K is neutrosophic triplet normal subgroup in K.
@ Hf=ghx
H — HOK

Proof. (a) Letxy € HK.If x = ik and y = haky, h1hy € H and kq, ko € K. Consider

x(anti(y)) = (hikq) anti(hyky)
= (hikq)anti(ky)anti(hy)
= hl(kl(unti(kz)))anti(hz), (k3 =k (ll?lti(kZ)) tk3 €K
= h1k3(anti(h2))

= h1k3(llnti(h2))ll7lfi(k3)k3

= hyks(anti(hy))anti(ks)ks
= hyhyks because H < kso h3 = ks(anti(hy))anti(ks) € H

= x(anti(y) = hyks € HK, (hy = h1hy)
= HKis NETG of N.

(b) We have to prove H N K is neutrosophic triplet normal subgroupinkor HNK <1 k. Letx € HNK
and x € K.If x € Hand x € K, then kx(anti(k)) € H because H <I k and kx(anti(k)) € K because
xk € K. Thus, kx(anti(k)) € HN K. Since HN K < k.
(0 K HLQK LetHNK=D,s0 & = HLDK Now let’s define a mapping ¢: HK— & by ¢ (k) = KD.
1. @ is well defined
hiky = hpko, hihy € H and k1k; € K
kihy = kol
= llﬁti(kz)klha = hlz
= anti(ko)ky = hly(anti(hy)), by (anti(hy)) € H
= aﬂti(kz)kl € H, but anti(kz)k] e K
= anti(kp)ky € HNK =D
= ai’lti(kz)kl eD
= anti(ky)kyD = D
= kD = kD
= ¢(hky) = p(haks).
2. @ is neutro-homomorphism.
(D(hlkl.hzkz) = ([)(h] (k]hz)kz
= ¢p(h1h2'k1ky)
= KikoD
= k1Dk,D
= ¢(hiky).¢(hak2)

3. @ isonto.
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Since for every KD € K/D, > neut.k € HK under ¢ such that ¢(neut.k) = KD. Hence, ¢ is onto.
Now by Theorem 13,
HK/Ker¢ = K/D

Now it is enough to prove that ker¢ = H. Let h € H,h(neut) € HK. Thus

¢(h) = ¢(h.neut) = neut.D = D

= ¢(h) =D
= h € ker¢.i.eH C ker¢g

Conversly, hk € ker¢, where h € H and k € K. If ¢(hk) = D, then

KD=D =keD=HNK
=heHandk € K
= hk CH
= ker¢p C H. Thus H = ker¢

by (1) = HI[%K' =

Example 3. Let N be NETG. Neutro-isomorphism theorems are for instance useful in the calculation of NETG
orders, since neutro-isomorphic groups have the same order. If H < N and K < N so that HK is finite, then
Lagrange’s theorem [26] in neutrosophic triplet with theorem 13 yield

|HK! /K| = |HK:KI
= |HK/K|
= |H/HNOKI
= IH:HNK]
=I|HI/IHNKI, thatis
I|HKI = IHIIKI/IHNOKI

6. Second Neutro-Isomorphism Theorem

The second neutro- isomorphism theorem is extremely useful in analyzing the neutrosophic
extended normal subgroups of a neutrosophic triplet quotient group. In this section, we give and
prove the second neutro-homomorphism theorem for NETG.

Theorem 15. Let N be a NETG. Let H and K be neutrosophic triplet normal subgroup of N with K C H. Then
H/K<N/Kand N/JKH/K = N/H

Proof. Consider the natural map ¥:N—N/H. The neutrosophic triplet kernel, H contains K. Thus, by
the universal property of N/K, it follows that there is a neutro-homomorphism N/K — N/H. This
map is clearly surjective. In fact, it sends the neutrosophic triplet left coset 7K to the neutrosophic
triplet left coset nH. Now suppose that nK is in the neutrosophic triplet kernel. Then the neutrosophic
triplet left coset nH is the neutral neutrosophic triplet coset, that is, nH = H, so that n € H. Thus the
neutrosophic triplet kernel consists of those neutrosophic triplet left cosets of the form nK, for n € H,
thatis, H/K.

63



Symmetry 2018, 10, 321

1. ¥iswell defined. Let ak = bk.

anti(b)ak =k
anti(b)a € k
= K<H
anti(b)a € H
aH = bH(anti(b)aH = H)
¥ (ak) = ¥ (bk)

2. Y is neutro-homomorphism

ag, b € N/K
¥ (axby) =¥ (abk) = abH = aHbH =¥ (ak)¥ (bk).

3.  VYisonto

Forally=aH € N/H,x =ak € N/K=¥(x) =y.
4. ker¥ =H/K

The neutral element of N/ H is H. Therefore

ker ¥: {xk € N/K:¥(xk) = H}
={xke N/K:¥(xk) =xH = H}
={xke N/K:x € H}

= {xk € H/K}

= H/K.

By Theorem 13 N/KH/K = N/H.
O

7. Conclusions

This paper is mainly focused on fundamental homomorphism theorems for neutrosophic extended
triplet groups. We gave and proved the fundamental theorem of neutro-homomorphism, as well
as first and second neutro-isomorphism theorems explained for NETG. Furthermore, we define
neutro-monomorphism, neutro-epimorphism, neutro-automorphism, inner neutro-automorphism,
and center for neutrosophic extended triplets. Finally, by applying them to neutrosophic algebraic
structures, we have examined how closely different systems are related. By using the concept of a
fundamental theorem of neutro-homomorphism and neutro-isomorphism theorems, the relation
between neutrosophic algebraic structures (neutrosophic triplet ring, neutrosophic triplet field,
neutrosophic triplet vector space, neutrosophic triplet normed space, neutrosophic modules, etc.) can
be studied and the field of study in neutrosophic algebraic structures will be extended.
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Abstract: In this paper, we introduce the concept of neutrosophic number from different viewpoints.
We define different types of linear and non-linear generalized triangular neutrosophic numbers
which are very important for uncertainty theory. We introduced the de-neutrosophication concept
for neutrosophic number for triangular neutrosophic numbers. This concept helps us to convert a
neutrosophic number into a crisp number. The concepts are followed by two application, namely in
imprecise project evaluation review technique and route selection problem.

Keywords: linear and non-linear neutrosophic number; de-neutrosophication methods

1. Introduction

1.1. Theory of Uncertainty and Uncertainty Quantification

Uncertainty theory playsanimportant role in modeling sciences and engineering problems.
However, there is a basic question regarding how we can define or use the uncertainty concept
in our mathematical modeling. Researchers around the globe defined many approaches to defining
them, and give their various recommendations to using uncertainty theory. There are several
literaturestudiesthatclassify some basic uncertain parameters. It should be noted that there is no
unique reorientation of the uncertain parameter. For the problem’s purpose or decision makers’ choice,
it can be varied and presented as a different application. We now, here, give some info about uncertain
parameters, and show how they differ from eachother using the concept of uncertainty using some
definition, flowcharts, and diagrams. In this paper, we recommend the researcher to take the uncertain
parameter as a parametric interval valued neutrosophic number.

Some basic differences between some uncertain parameters:

If we take Interval number [1] then we can see,

1.  The information belongs to a certain interval
2. There is no concept of membership function
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If we take Fuzzy number [2,3], then we can see,

1. The concept of belongingness of the elements comes
2. The use of membership function is present

If we take Intuitionistic fuzzy number [4], then we can see,

1. The concept of belongingness and non-belongingness of the elementscomes
2. The use of membership and non-membership function is present

If we take Neutrosophic fuzzy number [5], then we can see,

1. The concept of truthiness, falsity, and indeterminacy of the elements comes
2. The use of membership function for truthiness, falsity, and indeterminacy is present

Please follow the idea given in the flowchart below, as shown in Figure 1:

Uncertain parameter

v ! ——— ' .

[ Interval number I Fuzzy number I Intuitionistic Ne phic Other type
fuzzy number number of uncertain
number

' ' '

Smele and omin Generalization of the Linear and non hnear concept of
valued concept maxunem gradation the corresponding functions

Figure 1. Flowchart for different uncertain parameter.

1.2. Neutrosophic Number

Fuzzy systems (FSs) and Intuitionistic fuzzy systems (IFSs) cannot successfully deal with
a situation where the conclusion is adequate, unacceptable, and decision-maker declaration is
uncertain. Therefore, some novel theories are mandatory for solving the problem with uncertainty.
The neutrosophic sets (NSs) [5] reflect on the truth membership, indeterminacy membership, and falsity
membership concurrently, which is more practical and adequate than FSs and IFSs in commerce,
which areuncertain, incomplete, and inconsistent in sequence. Single-valued neutrosophic sets are an
extension of NSs which were introduced by Wang et al. [6]. Ye [7] introduced simplify neutrosophic
sets, and Peng et al. [8,9] definite their novel operations and aggregation operators. Finally, there
are different extensions of NSs, such as interval neutrosophic set [10], bipolar neutrosophic sets [11],
and multi-valued neutrosophic sets [12,13]. The decision-making problem [14-38] is very important in
study, when it is with uncertainty.

Although many researchers and scientists have worked in the recently developed neutrosophic
method, and applied it in the field of decision making, there is, however, still some viewpoints
regarding defining neutrosophic numbers in different forms, and their corresponding de-impreciseness
is very important.

1.3. Ranking and De-Impreciseness

The ranking and de-impreciseness of the imprecise numbers are not a new concept.However,
what is the basic concept of the above-said important results and what is the relation. Figure 2 shows
the flowchart for de-impreciseness and ranking.
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Ranking De-impreciseness

The method for comparison between two The method to convert unprecise

imprecise number number to crisp number

De-mmpreciseness methods

\ Other methods

Figure 2. Flowchart for de-impreciseness and ranking.

h

Ranking methods

Ranking is a concept where we can compare two imprecise numbers, and de-impreciseness is
a technique where the imprecise number is converted to a crisp number. Somewhere, the decision
maker takes the two concepts as the same. In this case, they convert the imprecise number into crisp
number, and compares them on the basis of crisp value.

1.4. Structure of the Paper

The paper is organized as follows. In Section 1, the basic concept on imprecise set theory and
neutrosophic set theory are discussed. Section 2 contains the preliminaries section. Section 3 goes for
the known definition of neutrosophic sets and numbers. Single valued linear neutrosophic number
and its variation are showing in Section 3. In Section 4, we address the basic concept of neutrosophic
non-linear number and generalized neutrosophic number. In Section 5, the de-neutrosophication
of linear neutrosophic triangular fuzzy number is performed. The PERT problem is considered
in Section 6. The application in assignment problem, considering aproblem, is taken in Section 7.
The conclusions are written in Section 8.

2. Neutrosophic Number

Definition 1. (Neutrosophic Set) A set Spey in the universal discourse X, which is denoted generically

by x, is said to be a neutrosophic set if Spew = {(x; [”s’,;;(x)'?‘s';;,(x)'ﬂs’;;(x)})zx € X}, where
nszu(x) : X — [0,1] is called the truth membership function which represents the degree of confidence,
pg— (x): X = [0,1] is called the indeterminacy membership function which represents the degree of
uncertainty, and 9¢— (x) : X — [0,1] is called the falsity membership function which represents the degree of

scepticism on the decision given the decision maker.
g~ (x), g (x)&l‘/’%ﬁ (x) exhibits the following relation:

0< g (x) + ptg;;(x) + 0~ (x) <3

Sheu -

Definition 2.  (Single Valued Neutrosophic Set) Neutrosophic set Spen i the definition 2.3, is
called a Single Valued Neutrosophic Set (Syey) if x is a single valued independent variable. Thus
S = {(x; [NSZ, (x),;tsfn; (x), ﬁS;;(x)]ﬁx € X}, where ns;;l(x), Mo (x)&ﬁS;;(x) represents the truth,
indeterminacy, and falsity membership function, respectively, as stated in definition 2.3, and also exhibits the
same relationship as stated earlier.
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If there exists three points, ag, bo&co, for which 75— (ag) =1, Mo (by) =1 &b~ (co) =1, then
the % is called neut-normal.
A S,y is said to be neut-convex, which implies that it is a subset of a real line, by satisfying the

following conditions:

1 mg—{par + (1= p)az) > min{mg— (m), 75— (a2))
pg— (par + (1 —p)az) < max(pug—(a1), pg— (a2))
3. B~ (par + (1 - p)az) < max(dg— (a1), 85— (a2))

where, a1&a, € Rand p € [0,1].

Definition 3. (Single Valued Neutrosophic Number)Single Valued Neutrosophic Number (Z) is defined as
zZ = ([(pY, g% Y, sY); al, [(p% 42,72, 52); B, (PP, 4%, 73, 8%); v]) where a, B,y € [0,1], the truth membership
function (7z) : R — [0,&], the indeterminacy membership function (uz):R — [B,1], and the falsity

membership function (95) : R — [v,1] is given as:

my(x)  pl<x<q
1 1
5 - o g <x<r
m(x) = Ttz (%) l<x<sl
0 otherwise
pz(x) Pz <x< qj
o B P<x<r
pa(x) = (%) r2 <x<s?
1 otherwise
9(x)  pP<x<g
3 3
i 0% ¢ <x<r
0x(x) = Oz (x) P <x<s®
1 otherwise

3. Single Valued Linear Neutrosophic Number

1.  Triangular Single Valued Neutrosophic number of Type 1: The quantity of the truth, indeterminacy
and falsity are not dependent: A Triangular Single Valued Neutrosophic number of Type 1 is
defined as ANQU = (pl,pz,p3; 91 9 q3;r1,r2,r3) whose truth membership, indeterminacy and
falsity membership is defined as follows:

x—p
pz*pll when p; <x < pp
1 whenx = p,
TANcu (X) = p3—X

e when pr < x < p3

0 otherwise

and
—p
Pa—pi when p; <x < pp
1 whenx =p,
T (¥) = P32X whenpy <x < p
p3—p2 2 =F3

0 otherwise

J2—X
P whenq; < x < ¢
0 whenx =g
IENM (x) = xX—qp

P when gy < x < g3

1 otherwise
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and
=P
p2—p1
1 whenx = p,

when p; <x < pp

TANM (x) = p3—x
pP3—p2

when pr < x < p3
0 otherwise

where, 0 < Tﬁw:u(x) + IAN,”(X) + FANM(x) <3,x € A
The parametric form of the above type number is (Ane) w By =
[TNeut (&), TNewz (a); INeut (B), INewz (B); FNeut (), FNeu2 (7)1,

where,
TNeul(‘x) =p1+ Dé(pz - Pl)
TNew2 () = p3 — a(p3 — p2)
INet (B) = 2 — B(42 — m
INeuZ(.B) =p+p

here, 0 < <1,0<B<L,0<y<land0<a+pB+9<3
Example 1. Take Ane = (10,15,20;14,16,22;12,15,19).

The parametric representation is

Tne1(a) =10+ 5a
Tea (&) = 20 — 5a
Ina(B) =16 — 28
Ine1 (B) = 16+ 6p
Fne1(7) = 15— 3y
Fnea(7) =15+4y

Table 1 and Figure 3 show the value of TNel (IJ(), TNL’2 (06), INEl (’B), INel (‘B), FNel ("y), and FNBZ('Y)
and graphical representation of triangular single valued neutrosophic numbers (TrSVNNs) respectively.

Table 1. Value of Tye1(«), Tnea (2), Ine1(B), INe1(B), Fne1(7), and Fyez (7)-

B,y Tne1(«) TNe2 () Ine1(B) Ine1(B) Fne(y)  Fnez2(7)

0 10 20 16 16 15 15
0.1 10 19.5 15.8 16.6 14.7 15.4
0.2 11 19 15.6 17.2 14.4 15.8
0.3 11.5 18.5 154 17.8 14.1 16.2
0.4 12 18 152 18.4 13.8 16.6
0.5 12.5 17.5 15 19 13.5 17
0.6 13 17 14.8 19.6 13.2 17.4
0.7 13.5 16.5 14.6 20.2 129 17.8
0.8 14 16 14.4 20.8 12.6 18.2
0.9 14.5 15.5 14.2 21.4 12.3 18.6

1 15 15 14 22 12 19

2. Triangular Single Valued Neutrosophic Number of Type 2: The quantity of indeterminacy and
falsity are dependent: A triangular single valued neutrosophic number (TrSVNN) of Type 2
is defined as ANW = (p1, P2, P3; 91,92, 93; UNeu, YNeu) Whose truth membership, indeterminacy,
and falsity membership are defined as follows:
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"L whenp; <x<p2

P2—p1
1 whenx=p;
TANEM (X) = pP3—x h <x<
s Whenpa <x <ps

0 otherwise

and ( )
2 —X+UNeu(X—q1
T wheng; <x < g
I (x)= UNey Whenx =gy
ANeu - x_qZ‘H”Neu(qfi_x)
e when g, < x < g3
1 otherwise
and ( |
—x+ X—
A2 X YNew X 1) ;;I\f;l 1) whengq; < x < qo
Er (x) = YNew Whenx =g
A - X—q2+YNeu (g3 —X)
Neu e when g, < x < g3

1 otherwise

where, 0 < Ty (x)+ 1z (x)+F; (¥) <2,x € Ay

The parametric form of the above type number is (AiNeu)a/ﬁﬁ

[TNeul (a), TNeuZ(“)/' INewt (ﬁ)/ INeu2(,B); Fneut (7)/ FNeuZ('Y)]r where

TNew (&) = p1 + a(p2 — p1)
TNewa () = p3 — a(ps — p2)
Inet (B) = %W
INeu2(B) = %W
FNeut (7) = %{\W
Frewz(7) = %W

Here, 0 <a <1 uney <B<Lynew <y<landO<pf+y<landO0<a+p+7y <2

n | |
A~ z 1
: 1 TNel(a')
: — Tnez2(a)
ap,y » — Ine1(B)
2 — Ine2(P)
o | S [:Ne]_(y)
: 1 — Fne2(¥)
= | |

Figure 3. Graphical representation of TrSVNNs.
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Example 2. Take ZNE = (10,15,20; 14, 16,22;0.4,0.5)
The parametric representation is,

Tne1(a) =10+ 5a
Tyea (@) = 20 — 5
Ine1(B) = 3(52 — 108)
Ina(B) =12+ 108
Fne1(7) = 18 — 4y
Fnez2(7) = 10+ 121.

Table 2 and Figure 4 show the value of Tnei (), Tnez2 (), INe1(B), INe1(B), Ene1(77), and Fea (7y)
and graphical representation of type-2 TrSVNNSs.

Table 2. Value of T (a), Tne2(®), INe1(B), INe1(B), Fne1(7), and Fea (77)-

0By Tne(®) TNea(a) INe1(B) Ine1(B) Fne1(7) Fe2(7)

0 10 20 - - - -
0.1 10.5 19.5 - - - -
0.2 11 19 - - - -
0.3 11.5 185 - - - -
04 12 18 16 16 - -
0.5 125 175 15.6667 17 16 16
0.6 13 17 15.3333 18 15.6 17.2
0.7 135 16.5 15. 19 15.2 18.4
0.8 14 16 14.6667 20 14.8 19.6
0.9 14.5 15.5 14.3333 21 14.4 20.8

1 15 15 14 22 14 22

e |

o

= — Tner(a)

& ] — Thez ()
apBy b — Ines(B)

e | l V\ — Ine2(B)

o | - FNel ("}’)

e — Frea(¥)

=

(=} u

Figure 4. Graphical representation of type-2 TrSVNNs.
3. Triangular Single Valued Neutrosophic number of Type 3: The quantity of the truth,
indeterminacy, and falsity are dependent: A TrSVNN of Type 3 is defined as An,, =

(P1, P2, P3; WNe, UNeu, YNeu ), whose truth membership, indeterminacy, and falsity membership are
defined as follows:
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o
WNeu py—g When p1 < x < py
WNey When x = pp

TANBM (x) = WNeu pP3s—x
P3=P2  when p, < x < p3
0 otherwise
and ( )
—X+u xX—
P22 X UNew X P1) pzl\f;l P when p; < x < p2
L (x) = UNey When x = po
ANeu - X—patuneu(p3—2x)
Ps=pr2 when py < x < p3
1 otherwise
and
7p27xt}1;¥’;fx7pl)when r<x<p
~ B UNey When x = pp
[0 =1 prtunelps—x)
P3=r2 when p; < x < p3
1 otherwise

where, 0 < Ty (x)+ 1z () +F; (x) <1,x€ Ay

The parametric form of the above type number is (gNeu)a,ﬁ,q =
[TNeul (Dé), TNeuZ(‘X); INewt (ﬁ)/ INeuZ(.B); Fneut (7)/ FNeuZ(')’)]r where

Tven (&) = 1.+ wNe“ (p2—p1)
Tiveu(®) = P3 = i, (P = p2)
Inew (B) = %W
Inew2(B) = %W
Fnew (7) = %W
FNewa(7) = %W

Here, 0 < & < wnew, UNew < B <L ynew <y <1l,and0<a+p+7y <1
Example 3. Take /TNE = (14,16,22;0.5,0.8,0.7)

The parametric representation is,

Tnet(a) = 14 + 4«
Tnea(a) =22 — 1204
INe1 (.B) =16 - ?
INEI(.B) =16+ 7
Fner(7) = 16 — @7
Fne2(7) =16 + ¢ b2 'y.

Table 3 and Figure 5 show the value of Ty,1(a), Tne2(), Ine1(B), INe1(B), Fne1(77) and Fyea(7y)-
and Graphical representation of type-3 TrSVNNs
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Table 3. Value of Tne1(«), Tez2(@), Ine1(B), Ine1(B), Fne1(7) and Fnea (7)-

0By Tne®) TNea2(a) INe1(B) INe1(B) Fne1(7) Fe2(7)

0 14 2
0.1 14.4 20.8
02 14.8 19.6
03 15.2 18.4
04 15.6 17.2
05 16 16
0.6
07 16 16
08 16 16 162857 151429
0.9 15.75 16.75 165714  14.2857
1 15.5 17.5 168571  13.4286
=
o
[f=]
.
=]
(=]
~ — Tyesr(a@)
o — Tyez(a)
(I,)Q,}’ 2 "rNel(ﬁ)
(%)
o | Ine2(P)
* Frer(¥)
o —
5 Frez(¥)
o
2
o
2
(=]
(=] un

(= = ) ]
[=] w [=] [0

Figure 5. Graphical representation of type-3 TrSVNNs.

Different Operational Laws of Two Triangular Neutrosophic Numbers: If A New and B New are two
single valued neutrosophic numbers with nine components having truthmembership Th . &5
indeterminacymembership I Fnies B and falsitymembership F e B respectively, such as:

ANeu = (a1,82,83; b1, b, b3; 1,2, ¢3) and Bney = (a4, a5, a6; ba, bs, bs; ¢4, ¢35, Co)

where g, band c are the scores given by the decision maker in the scale, ranging from lower limit L; to
upper limit Uj.

e  Addition

CNeu = ANau + ENeu
{min(ay + ag, U;), min(ap + as, Uy ), min(az + raphical representation of type 3 TrSVNNsaq, U))};

' {min(by + by, Uy), min(by + bs, Uy), min(bs + b, Uy) }; {min(cy + cq, Uy), min(cy + cs, Uy), min(cs + c, Uy}
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e  Negative of SVNNs
§Neu = *A’Neu
= (—a3, —az, —ay; —b3, —by, —by; —c3, —¢c3, —c1)
e  Subtraction
DNeu - ANeu BNeu
- ANeu ( BNeu)
{max(ay — ae, L;), max(ay — as, L;), max(az —ag, L)) };
= ( {max(by —be, L;), max(by — bs, L;), max(bs — by, L;)}; )
{max(cy — ce,L;), max(cy — cs, Ly), max(cs —ca, Ly)}
[ ]

Multiplications

5Nfi = gNeu iENeu
= ANeu + (_BNeu)
{max(ay — ae, L;), max(ay — as, L;), max(az —as, L;)};
= ( {max(by —be, L;), max(by — bs, L;), max(bs — by, L;)}; )
{max(cy — ce,L;), max(cy —cs, L;), max(c3 —ca, L)}

Multiplication by a constant

ENr:‘u =k {gNeu]
=k x (ay,a2,a3;b1,b2,b3;¢1,¢2,¢3)
= <k111,ka2, kll3;kb1,kb2, kb3;kC1,kC2, k(,'3>
e Inverse of SVNNs
?Neu = g71 = 1

e <111az,ﬂ3?b1,b2,b3,'c1/02,63>
:<%'E'H'E'E'E'E'E'E>fw(”bc)
1 1

e Divisions

GNQIANELI r BNeu
= ANeu + BNeu
= (a1, a2, a3;b1, by, b3; ¢, 2, c3) X (%/%/%}i/é/}}j}%/%/%)
min(% Z—; Z—i g—i Z—; z—é = vision of SVNNS,Z%,Z%,%),
mean(gt, g, ob, @, 22, @ = vision of SVNNs, 22,22, ),
max(zl, %,%,%, 22, g = visionof SVNNs, 22,22, 32)
min (1 by by by by by b3 bs bs)

¢ mean(ﬁzgzzggm

mmn(,,ﬂggggﬁg)
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Example 4. If Ay,, = (5,10,15;2.5,5,7.5;10,17.5,25) and Byo, = (4,6,8;3,6,9;1,1.75,2.5) are two
single valued neutrosophic numbers with independent truth, indeterminate, and false values in the scale of 0 to

25, then find the ANW + BNew, /TNE“ — Bnew ANW X Bneu, gN”” and kByy where k = 3.
Neu

e  Addition
ANew + Bnew = (9,16,23;5.5,11,16.5;11,19.25,25),

e  Subtraction
AnNew — Brew = (0,4,11;0,0,4.5;7.5,15.75,24)

e  Multiplication
Aneu X Bnew = (20,60,120;7.5,30, 67.5;10,30.625, 62.5)

e Division

A
% = (0.625,1.806,3.75;0.278,1.0185,2.5; 4, 11.5,25),
Neu

e Multiplication by a constant

kBnew = (12,18,24;9,18,27;3,5.25,7.5)

4. Neutrosophic Non-Linear Number and Generalized Neutrosophic Number

4.1. Single Valued Non-Linear Triangular Neutrosophic Number with Nine Components

A single valued non-linear triangular neutrosophic number with nine components is defined
as Anew = (p1,P2,P3:91,92,93;11,12,13), whose truth membership, indeterminacy, and falsity
membership is defined as:

x—p; "
(szpll) when p; < x < pp

1 when x = py

TANeu (x) = ( pP3—x )az
P3—p2

0 otherwise

when p; < x < p3

and ,
x—q1 \1
(=qr) whengi <x <qp
()= 0 when x = qo
ANeu - ( x—q3 )bz
B3—927  wheng, < x < g3
1 otherwise
and o
xX—r1
(57%) " whenry <x <1
0 when x =1y
FANM(X) - (X=r )52
T3—72 whenry < x < r3

1 otherwise
where, 0 < Tz (x)+ 1z (x)+Fz (x) <3,x € Ane

Note. If aj, a7, by, by, c1,c2 = 1, then single valued non-linear triangular neutrosophic number with
nine components will be converted into single valued linear triangular neutrosophic number with
nine components.
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4.2. Single Valued Generalized Triangular Neutrosophic Number with Nine Components

A single valued triangular neutrosophic number with nine components is defined as

Ane = (p1, P2, P3;G1, 92, G3; 11, 12, 13), whose truth membership, indeterminacy, and falsity membership
is defined as:

x—p
“’pz—pll when p; <x < pp

w when x = p;
Aneu (x) = p3—x

P3=P2  when p, < x < p3
0 otherwise

and -
qu—qll when gy <x <
0 when x = ¢
IENH, (x) = pts
3742 whengy, < x < g3
o otherwise
and
X—T1
Arzfrl whenr; <x <1
F o 0 when x = r;
ANEM( )= 22X
1312 whenr, < x <r3

A otherwise

where, 0 < Tz (x)+15 (x)+F;

ANB“(X) <3 x¢€ AvNew

4.3. Single Valued Generalized Non-Linear Triangular Neutrosophic Number with Nine Components

A single valued non-linear triangular neutrosophic number with nine components is defined

as gNeu = (p1,P2,P3:91,92,93; 71,72, 13), whose truth membership, indeterminacy, and falsity
membership is defined as:

(;2__’;11 )" when py < x < py
B w when x = p,
ANeu (x) = w(}is:;z)”Z

~ whenpy <x<p3
0 otherwise P P

and .
P "when g < x < g2
0 when x = g,
A‘Neu (X) = ( X—q3 )bZ
Pla=g when g, < x < g3
o otherwise
and JPp—
(=) whenr <x <rp
0 when x =1y
Fz (x)=
ANeu( ) A(r);:rrgz)fz

. whenry <x<rj
A otherwise

where, 0 < Tz (x)+ 1z (x)+Fz (x) <3,x € Ane

Note. if ay, a5, b1, by, c1,c2 = 1, then single valued generalized non-linear triangular neutrosophic
number with nine components will be converted into single valued generalized linear triangular
neutrosophic number with nine components.
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5. De-Neutrosophication of Linear Neutrosophic Triangular Fuzzy Number
De-Neutrosophication Using Removal Area Method
Let us consider a linear neutrosophic triangular fuzzy number as follows:

Ane = (a,b,c;d,e, f;8,11,k)

whose pictorial representation is as follows.
Firstly, we consider the graphical representation of linear neutrosophic triangular fuzzy number
in Figure 6.

Figure 6. Linear neutrosophic number.

We consider an ordinary number k € R and a fuzzy number A for the lower triangle, then left
side removal of A with respect to k is R;(A4, k), defined as the area bounded by k and the left side of
the fuzzy number A. Similarly, the right side removal of A with respect to k is R,(A4, k). Also consider
an ordinary number k € R and a fuzzy number B for the left most upper triangle(Adef), then the left
side removal of B with respect to k is R; (E, k), defined as the area bounded by k and the left side of the
fuzzy number B. Similarly, the right side removal of B with respect to k is R,(B, k). A fuzzy number
C for the right most upper triangle(Aghk), then left side removal of C with respect to k is R;(C, k),
defined as the area bounded by k and the left side of the fuzzy number C. Similarly, the right side
removal of C with respect to k is R,(C, k).

Mean is defined as (A, k) = RUARIRAAK g ) = RIBOIRABE) (s oy — RUCKIRACK)
Then, we defined the defuzzification of a linear neutrosophic triangular fuzzy as

R(f),k) _ R(A,k)+R(§,k)+R(C,k).

Fork =0,
R(A,0) = R;(A/O);—R,(A/O)
% R;(B,0)+R,(B,0
R(B,0) = 1 )'*2' (B,0)
% R;(C,0)+R(CO
R(C,0) = 1 )2 (€0)
Then,

R(D,0) = R(A,0) + R(B,0) 4+ R(C,0)

3

We take A = (a,b,¢),B = (d,e, f),C = (g, 1, k).
Figure 7 shows the pictorial representation of de-neutrosophication.
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Figure 7. Cont.
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(e) ()

Figure 7. Pictorial representation of de-neutrosophication. (a) Area of trapezium OABR; (b) Area of
trapezium OABR; (c) Area of trapezium OEDR;(d) Area of trapezium OEFR; (e) Area of trapezium
OHGR: (f) Area of trapezium OHKR.

Then,
R;(A,0) =Area of trapezium OABR = <";b) 1
R;(A,0) =Area of trapezium OABR = (a;b) 1
R;(B,0) =Area of trapezium OABR = (d;e) 1
R,(B,0) =Area of trapezium OABR = (Hz'f )1
R;(C,0) =Area of trapezium OABR = (g ;h> 1
R;(C,0) =Area of trapezium OABR = (k;m 1

Hence, (4,0) = W,R(E,O) (d+28+f) JR(C,0) = M
» +2b+c+d+2e+f+g+2h+k
So, R(D,0) = (wt2btetdi2etfig )

Example 5. Finding De-neutrosophication value of Neutrosophic number.
Table 4 shows the de-neutrosophication value of Neutrosophic number.

Table 4. De-neutrosophication value of Neutrosophic number.

Experiment No. Neutrosophic Number De-Neutrosophication Value
Set 1 A =(1,2,3;05,15,2.5;1.2,2.7,3.5) 2.0083
Set 2 B = (05,1.5,2.5;0.3,1.3,2.2;0.7,1.7,2.2) 145
Set 3 ¢ =(0.3,1.2,2.8;0.5,1.5,2.5;0.8,1.7,2.7) 1.533
Set 4 D = (1,3,5;0.5,1.5,2.5;1.2,2.7,4.5) 2.425
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6. PERT in Triangular Neutrosophic Environment and the Proposed Model

The full form of PERT method is project evaluation and review technique, which is a project
management tool used to schedule, organize, and coordinate tasks within a project. It is basically a
method to analyze the tasks involved in completing a given project, especially the time needed to
complete each task, and to identify the minimum time needed to complete the total project.

PERT planning involves the following steps:

Identify the specific activities and milestones.
Determine the proper sequence of the activities.
Construct a network diagram.

Estimate the time required for each activity.
Determine the critical path.

AR o

Update the PERT chart as the project progresses.

The main objective of PERT is to facilitate decision making and to reduce both the time and cost
required to complete a project. PERT is intended for very large-scale, one-time, non-routine, complex
projects with a high degree of dependency, projects which require a series of activities, some of which
must be performed sequentially, and others that can be performed in parallel with other activities.
PERT has been mainly used in new projects which have large uncertainty with respect to design of a
structure, technology, and networking system. To take care of associated uncertainties, we introduced
triangular neutrosophic environment for PERT activity duration.

The three time estimates for activity duration are as follows:

Optimistic time (J): Generally, the shortest time in which the activity can be completed. It is
common practice to specify optimistic time to be three standards deviations from the mean so that
there is approximately a 1% chance that the activity will be completed within the optimistic time.

Pessimistic time (p): Generally, the longest time that an activity might require. Three standard
deviations from the mean are commonly used for the pessimistic time.

Most likely time (1i1): Generally, it is the completion time, in normal circumstances, having the
highest probability. Note that this time is different from the expected time.

Note 2. In Ref. [22], the authors introduced the concept of score and accuracy function to compute
the crisp value of a trapezoidal neutrosophic number. In our proposed model, we choose all the three
different times (optimistic, pessimistic, most likely) as triangular neutrosophic number.

To obtain the crisp value, we introduced the de-neutrosophication value R(D,O) =
(a-+2b+c+d+2e+f+g+2h+k)
2

of triangular neutrosophic number (a,b,¢;d, e, f;g,h, k).
Now, the expected time and standard deviation can be calculated by the formula Ej = 0+4me
and oj = P2 where o, p, and m are all crisp value of optimistic, pessimistic, and most likely time
estimations, respectively.

Now, we use CPM method for further calculation of earliest/latest time, critical path, and float.

In forward pass, starting with a time of zero for the first event, the computation proceeds from
left to right, up to the final event. For any activity (i, ), let ES; denote the earliest time of event i,
then ES; = ES; + t;;. If more than one activity enters an event, the earliest start time for that event is
computed as ES; = max{ES; + t;;} for all activities emanating from node i entering into j.

In case of backward pass, starting with the final node, the computation proceeds from right to
left, up to the initial event. For any activity (i, ), let LF; denote the latest finished time of event i,
then LF; = LF; — t;;. If more than one activity enters an event, the latest finish time for that event is
computed as LF; = min{LFj - tij} for all activities emanating from node j entering into i.

After calculating the critical path, compute project length variance, which is the sum of the
variances of all the critical activities. Next, calculate the standard normal variable Z = L=T¢ where T,

o
is the scheduled time to complete the project, and T, is the normal expected project length duration.
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Using a normal curve, we can estimate the probability of completing the project within a specified
time. The steps of the said method are shown in Figure 8. We also set the numerical value for the said
problem to show the importance of our method in Table 5.

_________________ -
| Draw the project Network :

........ T—

Compute Expected time using

_ o+4m+p
B =22

S —

Compute earliest start/Finish, |
Latest start/finish 1
Total float of each activity -

! Compute Project length :
: Variance, Standard normal :
' vanablez=T2

Estimate the probability
of completing the
project

Figure 8. Flowchart for the solution procedure.
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Draw the project network and find the probability that the project is completed in 16 days.

Solution. Now, we solve the problem by the following steps, as shown in Table 6, Figures 9 and 10.

Step-1.
Table 6. The value of Ej; and <Tjk2 for the above problem.
Optimistic Time Pessimistic Time Most Likely Time o+dm+ 0.2
Ej = Z50P o2 = (22

(0) (p) (m) U 6 jk 6
2.26 542 3.33 3.50 0.277
492 2.00 4.92 443 0.244
4.67 1.71 5.42 4.68 0.243
2.96 3.33 2.67 2.83 0.004
2.75 5.54 242 3.00 0.216
3.83 226 4.67 413 0.068
2.83 4.92 2.00 2.63 0.121
3.33 3.50 2.26 2.65 0.001
542 2.67 4.92 4.63 0.210
3.50 242 2.00 2.32 0.032
4.88 4.67 1.71 2.73 0.001

Step-2

Network Diagram /—F 1 \A63

N

L

4.43

(a

50

3.00

Figure 9. The network diagram for the problem.

Step-3

[159159]/ g O\

L\ [13.138.13]
2

F 3.1317.63] G

[8.18)8.18]  [10.8199.91]

. "
G@/f&m;?_:&]
[5.34.43] \::“\.

[10.81]7.43]

0.81/10.81] F s

——» Line denote the Critical Path

Figure 10. Critical path analysis for the problem.
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Therefore, the expected project duration is 15.9 days.

Critical path A—+C—G—]J—=K.

Project length variance 02 = 0.962, standard deviation0.98.

Probability that the project will be finished within 16 days is P(z < 1§439) = P(z < 0.1)
Area under the normal curve P(z < 0.1) = 0.5+ @(0.1) = 0.5398

The related normal curve is drawn in Figure 11.

0 Z=0.1
Figure 11. The normal curve for the above problem.

7. Application of Triangular Neutrosophic Fuzzy Number in Assignment Problem Using
De-Neutrosophic Value

The assignment problem is very important for transferring goods from one place to another place.
In the assignment problem, if uncertainty occurs, then it is more complicated to solve. By the concept
of impreciseness and its corresponding crispified value, we can easily handle the assignment problem.
In this section, we take a route selection problem with neutrosophic cost data and solve the problem.

We consider a problem of assigning three different trucks to three different destinations.
The assigning costs that are the travelling costs in rupees are given here. How should the trucks
be dispatched so as to minimize the total travelling cost? Note, that all the costs are triangular
neutrosophic numbers.

Let us consider that the transportation cost for the three trucks are neutrosophic in nature. For that
viewpoint, we take that the cost of the three trucks are as follows in Table 1, in units of dollar. Each
component represents the moneys in units of dollars.

Here, red car denotes Truck 1, yellow car denotes Truck 2, and green car denotes Truck 3 as shown
in the Figure 12.

.'/ Terminal Station \- =
- <~
Destination-1

h Destination-2

L8 /

Destination-3

Figure 12. Pictorial representation of the problem.
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We apply the defuzzification result of triangular neutrosophic number from Table 7.

Table 7. Neutrosophic value for the transportation costs.

Destination-1 Destination-2 Destination-3
Truck 1 (1,4,7,1,3,5,3.5,6,7.5) (0.525,4.51,2,3;1.53555)  (1,3,5,0.51.53.52,4,6)
Truck 2 (1,2,3,05,1.5,2.5;1.5,25,3.5) (1,1.54;0.5,1,2.5;1.25,3,4.25) (1.5,2.5,3.5;1,1.5,3;2,3,4)
Truck 3 (2/4,6,1.5,2.5,4.5;3,5,7) (1,5,8,1.5,4.5,7.5;4,6.5,9) (1,5,8,1.5,3,6.5;4,7,9)

R(D,0) = <"+2b+c+d+ﬁ+f +8+24K) 14 convert the numbers into a crisp number.

Then, we have the following Table 8.

Table 8. De-neutrosophication value for the transportation costs.

Destination-1 Destination-2 Destination-3
Truck 1 4.25 2.67 2.92
Truck 2 2.00 1.71 2.75
Truck 3 3.92 5.25 5.08

Now, we consider row minimum from each row, and subtract it from the other element (row-wise).
Thus, we get Table 9.

Table 9. Row minimum from each row, and subtract it from the other element (row-wise).

Destination-1 Destination-2 Destination-3
Truck 1 1.58 0 0.25
Truck 2 0.29 0 1.04
Truck 3 0 1.33 1.16

Now, we consider column minimum from each column and subtract it from the other element
(column-wise). Thus, we get Table 10.

Table 10. Column minimum from each column and subtract it from the other element (column-wise).

Destination-1 Destination-2 Destination-3
Truck 1 1.58 0 0
Truck 2 0.29 0 0.79
Truck 3 0 1.33 0.91

Here, the minimum number of straight lines to cover all the zeros is 3 (which is also equal to the
order of the matrix), as shown in Table 11.

Table 11. Minimum number of straight lines to cover all the zeros.

Destination-1 Destination-2 Destination-3
Truck 1 1.58 0 0
Truck 2 0.29 0 0.79
Truck 3 0 1.33 0.91

From the Table 12, we see that if the Truckl goes to Destination-3, Truck2 goes to Destination-2,
and Truck3 goes to Destination-1, then the carrying is minimum.
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Table 12. Transformed table.

Destination-1 Destination-2 Destination-3
Truck 1 1.58 0 [0]
Truck 2 0.29 [0] 0.79
Truck 3 [0] 1.33 0.91

That means from the Figure 13 Truck-1—Destination-3, Truck-2—Destination-2,
Truck-3— Destination-1.

0!9 v Destination-3
( /4
00
Destination-2
—
= »
i d ||\

Destination-1

Figure 13. Pictorial representation of the solution.

The corresponding Min cost = (3.92 + 1.71 + 2.92) = 8.55 units of dollar.

Then, we get Table 13.
Table 13. Neutrosophic value of destinations.
Destination-1 Destination-2 Destination-3
Truck 1 (1,4,7,1,3,5;3.5,6,7.5) (0.5,2.54.51,2,3,1.53.55.5)  (1,3,5,0.5,1.5,3.5;2,4,6)
Truck 2 (1,2,3,05,1.5,2.5;1.525,3.5) (1,1.54,0.5,1,2.5;1.25,3,4.25) (1.5,2.5,3.5;1,1.5,3;2,3,4)
Truck 3 (2,4,6;,1.5,2.5,4.5;3,5,7) (1,5,8;1.5,4.5,7.5;4,6.5,9) (1,5,8;1.5,3,6.5;4,7,9)

Ye [21] built up the concept of score function and accuracy function. The score function S and the
accuracy function H are applied to compare the grades of triangular fuzzy numbers (TENS). These
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functions show that greater is the value, the greater is the TENS, and by using these, concept paths can
be ranked.
We apply the result of triangular neutrosophic number.

Let, A = (a,b,c;d,e, f;g,h,k) be a triangular neutrosophic fuzzy number, then the score
(A) _ {8+ (a+2b+c)—(d+2e+f)—(g+2h+k)}
= 2

function is defined as S
H(A) _ {(u+2h+c);(g+2h+k)} ]

In order to make comparisons between two triangular neutrosophic values, Ye [21] presented the
order relations between two triangular neutrosophic values.

Let A} = (a1,b1,¢1;d1, €1, f1;81, 11, k1) and Ay = (a2, b, c2;d, €2, f2; 82, ha, k) be two triangular
neutrosophic values, then the ranking method is defined as follows.

(1) lfS(Av]) > S(Az),thel’l Al > Az
(i) if S(A1) = S(A) and H(A1) > H(Aj), then A} > A

, and accuracy function is defined as

We apply the score function result of triangular neutrosophic number S(A) =

{SHHZHC)*WE ctN=(8+240)} 4 convert the numbers into a crisp number.

Then we have the following table, as shown in Table 14.

Table 14. Converted the numbers into a crisp number.

Destination-1 Destination-2 Destination-3
Truck 1 —0.92 —0.33 —-0.25
Truck 2 0.00 —0.04 —0.08
Truck 3 —0.58 —1.42 —-1.17

Take the most negative cost (—1.42), add it with all the elements of the matrix we get Table 15.

Table 15. Corrosponing positive value table.

Destination-1 Destination-2 Destination-3
Truck 1 0.50 1.09 1.17
Truck 2 1.42 1.38 1.34
Truck 3 0.84 0.00 0.25

Now, we consider row minimum from each row and subtract it from the other elements (row-wise).
Thus, we get Table 16.

Table 16. Row minimum from each row and subtract it from the other elements (row-wise).

Destination-1 Destination-2 Destination-3
Truck 1 0 0.59 0.67
Truck 2 0.08 0.04 0
Truck 3 0.84 0 0.25

Now, we consider column minimum from each column, and subtract it from the other elements
(column-wise). Thus, we get Table 17.

Table 17. Column minimum from each column, and subtract it from the other elements (column-wise).

Destination-1 Destination-2 Destination-3
Truck 1 0 0.59 0.67
Truck 2 0.08 0.04 0
Truck 3 0.84 0 0.25
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Here, the minimum number of straight lines to cover all the zeros is 3(which is also equal to the
order of the matrix), as shown in Table 18.

Table 18. Minimum number of straight lines to cover all the zeros is 3.

Destination-1 Destination-2 Destination-3
Truck 1 0 0.59 0.67
Truck 2 0.08 0.04 0
Truck 3 0.84 0 0.25

From the Table 19, we see that if the Truck1 goes to Destination-1, Truck2 goes to Destination-3,
and Truck3 goes to Destination-2, then the carrying is minimum.

Table 19. Decision table.

Destination-1 Destination-2 Destination-3
Truck 1 [0] 0.59 0.67
Truck 2 0.08 0.04 [0]
Truck 3 0.84 [0] 0.25

That means from the Figure 14 the destination is as follows Truckl—Destination-1,
Truck2— Destination-3, Truck3— Destination-2.

|
P

Destination-1

Y

Destination-2

Destination-3

Figure 14. Pictorial representation of the solution.

The corresponding Min cost = (—0.92 — 1.42 — 0.08) = —2.42 units of dollar.
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Note: Since, using de-neutrosophic value, we observe that min cost is 8.55 units of dollar, whereas
using score function, we get min cost in negative quantity that is loss, hence de-neutrosophication
gives us a better result than the score function.

8. Conclusions

The theory of uncertainty plays a key role in applied mathematical modeling. The concept of
neutrosophic number is very popular nowadays. The formation and de-neutrosophication of the
corresponding number can be very important for the researcher who deals with uncertainty and
decision-making problems. In this paper, we construct the concept triangular neutrosophic number
from different viewpoints, which is not defined earlier. We use the concept of linear and non-linear
form with generalization of the pick value of truth, falsity, and indeterminacy functions by considering
triangular neutrosophic numbers, which are very important for uncertainty theory. We introduced the
de-neutrosophication concept for triangular neutrosophic numbers. This concept helps us to convert
a neutrosophic number into a crisp number, which is surely helpful for decision-making problems.
In future, we can extend the concept into different types of neutrosophic numbers, which can be more
applicable in modeling with uncertainty.
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Abstract: In this paper we provide an application of neutrosophic bipolar fuzzy sets in daily
life’s problem related with HOPE foundation that is planning to build a children hospital, which
is the main theme of this paper. For it we first develop the theory of neutrosophic bipolar fuzzy
sets which is a generalization of bipolar fuzzy sets. After giving the definition we introduce some
basic operation of neutrosophic bipolar fuzzy sets and focus on weighted aggregation operators in
terms of neutrosophic bipolar fuzzy sets. We define neutrosophic bipolar fuzzy weighted averaging
(N BF WA) and neutrosophic bipolar fuzzy ordered weighted averaging (N 5F OWA) operators.
Next we introduce different kinds of similarity measures of neutrosophic bipolar fuzzy sets. Finally
as an application we give an algorithm for the multiple attribute decision making problems under
the neutrosophic bipolar fuzzy environment by using the different kinds of neutrosophic bipolar
fuzzy weighted /fuzzy ordered weighted aggregation operators with a numerical example related
with HOPE foundation.

Keywords: neutrosophic set; bipolar fuzzy set; neutrosophic bipolar fuzzy set; neutrosophic bipolar
fuzzy weighted averaging operator; similarity measure; algorithm; multiple attribute decision
making problem

MSC: (2010 Mathematics Subject Classifications) 62C05; 62C86; 03B52; 03E72; 90B50; 91B06; 91B10;
46540; 47H99

1. Introduction

Zadeh [1] started the theory of fuzzy set and since then it has been a significant tool in learning logical
subjects. It is applied in many fields, see [2]. There are numbers of over simplifications/generalization of
Zadeh's fuzzy set idea to interval-valued fuzzy notion [3], intuitionistic fuzzy set [4], L-fuzzy notion [5],
probabilistic fuzzy notion [6] and many others. Zhang [7,8], provided the generality of fuzzy sets as
bipolar fuzzy sets. The extensions of fuzzy sets with membership grades from [—1, 1], are the bipolar
fuzzy sets. The membership grade [—1,0) of a section directs in bipolar fuzzy set that the section
fairly fulfils the couched stand-property, the membership grade ]0,1] of a section shows that the
section fairly fulfils the matter and the membership grade 0 of a section resources that the section is
unrelated to the parallel property. While bipolar fuzzy sets and intuitionistic fuzzy sets aspect parallel
to one another, they are really distinct sets (see [3]). When we calculate the place of an objective
in a universe, positive material conveyed for a collection of thinkable spaces and negative material
conveyed for a collection of difficult spaces [9]. Naveed et al. [10-12], discussed theoretical aspects of
bipolar fuzzy sets in detail. Smarandache [13], gave the notion of neutrosophic sets as a generalization
of intutionistic fuzzy sets. The applications of Neutrosophic set theory are found in many fields

Symmetry 2018, 10, 331; doi:10.3390/sym10080331 94 www.mdpi.com/journal /symmetry
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(see http:/ /fs.gallup.unm.edu/neutrosophy.htm). Recently Zhang et al. [14], Majumdar et al. [15],
Liu et al. [16,17], Peng et al. [18] and Sahin et al. [19] have discussed various uses of neutrosophic set
theory in deciding problems. Now a days, neutrosophic sets are very actively used in applications
and MCGM problems. Bausys and Juodagalviene [20], Qun et al. [21], Zavadskas et al. [22], Chan and
Tan [23], Hong and Choi [24], Zhan et al. [25] studied the applications of neutrosophic cubic sets in
multi-criteria decision making in different directions. Anyhow, these approaches use the maximum,
minimum operations to workout the aggregation procedure. This leads to subsequent loss of data and,
therefore, inaccurate last results. How ever this restriction can be dealt by using famous weighted
averaging (WA) operator [26] and the ordered weighted averaging (OWA) operator [27]. Medina
and Ojeda-Aciego [28], gave t-notion lattice as a set of triples related to graded tabular information
explained in a non-commutative fuzzy logic. Medina et al. [28] introduces a new frame work for
the symbolic representation of informations which is called to as signatures and given a very useful
technique in fuzzy modelling. In [29], Nowakovad et al., studied a novel technique for fuzzy medical
image retrieval (FMIR) by vector quantization (VQ) with fuzzy signatures in conjunction with fuzzy
S-trees. In [30] Kumar et al., discussed data clustering technique, Fuzzy C-Mean algorithem and
moreover Artificial Bee Colony (ABC) algorithm. In [31] Scellato et al.,discuss the rush of vehicles in
urban street networks. Recently Gulistan et al. [32], combined neutrosophic cubic sets and graphs and
gave the concept of neutrosophic cubic graphs with practical life applications in different areas. For
more application of neutrosophic sets, we refer the reader to [33-37]. Since, the models presented in
literature have different limitations in different situations. We mainly concern with the following tools:

(1)  Neutrosophic sets are the more summed up class by which one can deal with uncertain
informations in a more successful way when contrasted with fuzzy sets and all other versions
of fuzzy sets. Neutrosophic sets have the greater adaptability, accuracy and similarity to the
framework when contrasted with past existing fuzzy models.

(2)  And bipolar fuzzy sets are proved to very affective in uncertain problems which can characterized
not only the positive characteristics but also the negative characteristics of a certain problem.

We try to blend these two concepts together and try to develop a more powerful tool in the form
of neutrosophic bipolar fuzzy sets. In this work we initiate the study of neutrosophic bipolar fuzzy
sets which are the generalization of bipolar fuzzy sets and neutrosophic sets. After introducing the
definition we give some basic operations, properties and applications of neutrosophic bipolar fuzzy
sets. And the rest of the paper is structured as follows; Section 2 provides basic material from the
existing literature to understand our proposal. Section 3 consists of the basic notion and properties of
neutrosophic bipolar fuzzy set. Section 4 gives the role of weighted aggregation operator in terms of
neutrosophic bipolar fuzzy sets. We define neutrosophic bipolar fuzzy weighted averaging operator
(NBFWA) and neutrosophic bipolar fuzzy ordered weighted averaging (N3 FOWA) operators.
Section 5 includes different kinds of similarity measures. In Section 6, an algorithm for the multiple
attribute decision making problems under the neutrosophic bipolar fuzzy environment by using the
different kinds of similarity measures of neutrosophic bipolar fuzzy sets and neutrosophic bipolar
fuzzy weighted/fuzzy ordered weighted aggregation operators is proposed. In Section 7, we provide
a daily life example related with HOPE foundation, which shows the applicability of the algorithm
provided in Section 6. In Section 8, we provide a comparison with the previous existing methods. In
Section 9, we discuss conclusion and some future research directions.
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2. Preliminaries

Here we provide some basic material from the literature for subsequent use.
Definition 1. Let ) be any nonempty set. Then a bipolar fuzzy set [7,8], is an object of the form
B = (u, (" (u), (1) :ucy),

and pt (u) : Y — [0,1] and p~ (u) : Y — [—1,0], u*(u) is a positive material and p~ (u) is a negative
material of u € Y. For simplicity, we donate the bipolar fuzzy set as B = (u, u~) in its place of B =
(u, (ut(u), p () :u€).

Definition 2. Let By = (p;, py ) and By = (u3 , 5 ) be two bipolar fuzzy sets [7,8], on Y. Then we define
the following operations.

(2) B1UBy = (max(py (u),p3 (), min(py (u),py (u)));
(3)  BiMBy = (min(py (u), " (u)),max(py (u),py (u)))-

Definition 3. A neutrosophic set [13], is define as:
L = {{x, Trup(x), Ind;(x),Fal;(x)) : x € X},

where X is a universe of discoveries and L is characterized by a truth-membership function Truy : X —]0,17],
an indtermency-membership function Indy : X —0~,17[ and a falsity-membership function Faly : X —
10, 1% such that 0 < Trup(x) + Indp(x) + Faly(x) < 3.

Definition 4. A single valued neutrosophic set [16], is define as:
L = {{x, Truy (x), Ind(x), Fal (x)) : x € X},

where X is a universe of discoveries and L is characterized by a truth-membership function Truy, : X — [0,1],
an indtermency-membership function Indy, : X — [0,1] and a falsity-membership function Fal}, : X — [0,1]
such that 0 < Trup(x) + Indp(x) + Falp(x) < 3.

Definition 5. Let [16]
L = {{(x, Truy (x), Ind(x), Fal; (x)) : x € X},

and
B = {{(x, Trug(x), Indg(x), Falg(x)) : x € X},

be two single valued neutrosophic sets. Then

(1) L C Bifandonly if Trup (x) < Trug(x), Indr(x) < Indg(x), Fal;(x) > Falg(x).
(2) L = Bifand only if Truy(x) = Trug(x), Ind(x) = Indg(x), Fal; (x) = Falg(x), forany x € X.
(3)  The complement of L is denoted by L® and is defined by

L¢ = {(x,Faly(x),1— Ind;(x), Truy (x)) /x € X}.
(4)  The intersection

LNB = {{x,min{Trup(x), Trug(x)}, max{Ind(x), Indg(x)}, max{Fal(x),Falg(x)}):x € X}.
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(5)  The Union
LUB = {{x,max {Trup(x), Trug(x)}, min{Indy(x), Indg(x)},min {Faly(x), Falg(x)}) : x € X}.

Definition 6. Let Aj = (Truy, Indy, Faly) and Ay = (Truy, Indy, Faly) be two single valued neutrosophic
number [16]. Then, the operations for NNs are defined as below:

>~

(1) A= <1—(1—Tru1)/\,1nd{\,Fal{‘>;
2) A= <Tru{‘,1 (1= Ind)M1—(1— Fall)A>,-

(3) A+ Ay = (Truy + Truy — Truy Truy, IndyInd,, Fal Fal,);
(4) AlAz = (TrulTruz, Indq + Ind,_IndiInd,, Fal; + Fal, — FallFalz) where A > 0.

Definition 7. Let A; = (Truy, Ind,, Faly) be a single valued neutrosophic number [16]. Then, the score
function s(Ay),accuracy function L(Ay), and certainty function c(A1), of an NNs are define as under:

(1) s(A
(2) L(Al) = Tru1 - Fal],'
(3)  c(Ay) = Truy.

) _ (Truy+1—Indy+1—Faly)
- 3

’

[l

3. Neutrosophic Bipolar Fuzzy Sets and Operations

In this section we apply bipolarity on neutrosophic sets and initiate the notion of neutrosophic
bipolar fuzzy set with the help of Section 2, which is the generalization of bipolar fuzzy set. We also
study some basic operation on neutrosophic bipolar fuzzy sets.

Definition 8. A neutrosophic bipolar fuzzy set is an object of the form N'B = (N'B+, N'B=) where

NBH = (u, (Truprsy, Ind iy, Fal i) :u € ),
NB= = (u, (Trups—, Indys-, Falys-) :u € )),

where Tru sy, Ind sy, Fal s @ Y — [0,1] and Truys-, Ind s, Fal s 0 Y — [—1,0].

Note: In the Definition 8, we see that a neutrosophic bipolar fuzzy sets NZ = (N5, NB-),
consists of two parts, positive membership functions A5+ and negative membership functions A5~
Where positive membership function A5+ denotes what is desirable and negative membership
function A5~ denotes what is unacceptable. Desirable characteristics are further characterize as:
Tru 5. denotes what is desirable in past, Ind 5. denotes what is desirable in future and Fal /5
denotes what is desirable in present time. Similarly Tru,s- denotes what is unacceptable in
past, Ind;s- denotes what is unacceptable in future and Fal - denotes what is unacceptable
in present time.

Definition 9. Let NB = (NPT, NP) and NE = (NPT, NE~) be two neutrosophic bipolar fuzzy sets.
Then we define the following operations:

(1) .l\/’lgf = {<1 — Trups:, 1 —Indys:, —1 — Fal s and 1 — Truys, 1 — Indys, —1 — FalNgf>};
1 1 1 1 1 1
(2)

T T I I in(F F
NlBUNB:< max( i rusz),max( nlem, nszm),mm( “1/\/13+f ulsz), >;

maX(TruNlB, , Trust, ), max(Inles,, IndNZB, ), min(PulN]B, , Fulst, )
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(3)

min(TruNlm, Trusz ), min(Inlem, Inszm ), max(FulNlm, Falsz ), >

NBANB =
min(Truys-, Truygs- ), min(Indys-, Ind s ), max(Fal s, Falys- ).
1 2 1 2 1 2

Definition 10. Let NP = (NBT, NE~) and NEF = (NP, NP~) be two neutrosophic bipolar fuzzy sets.
Then we define the following operations:

(1)
j\/15+ ej\/f* _ < TruN]m + TruNzg- - T""N]& . Trusz;+,1ndN]B+ + Ind s — Inleg- . Inszg-, >’
—(|Falys. |- |Falys.|)
and
,/\/15‘ @NZB‘ _ < Trulef + TruNZB, - Trung, . TruNzuf,Inlesf + Inszuf — Inley, -IndNZB,, >;
f(‘FulNlB, ~|PulN257 )
(2)
NEF@NBY = <Trulem “Truyse, Ind s, - Indys., Falys, + Falys, — (‘F“l/\ff‘ | : ‘Falj\,rzm |)>,
and
NE= @ NE~ = (Truys - Truys, Indys- - Ind s, Falys- + Falys- — (|Falys-| - [Falys-|)
3)

A/l3+ 7/\/23+ = <min(Trung+,TruNZB+),min(Inde3+,IndNZm), max(FalAflg+,Fal/\/25+)> ,
and

NB= - NP~ = <min(TruN37,TruNgf ), min(Indys-, Indys-), max(FulNgf,PalNg,)»
1 2 1 2 1 2

Definition 11. Let N5 = (N8, N'B~) be a neutrosophic bipolar fuzzy set and A > 0. Then,

(1)
ANBE = (1= (1= Truys. )Y 1 — (1 — Indys: ), — |Falys: V),
ANB= = (1= (1= Truys )" 1— (1 — Indys- )", — |Fal s |).
)
NBH = <(TruNg+)A , (Inde)A, 1+ |1+ F“INB+|A>/
NB-A = ((Tru/\/g,)}‘, (Ind/\mf)}‘, —1+4 =1+ Falys- (M)|/\>

Theorem 1. Let NF = (NBH, NE=), NP = (WEH,NE7) and NE = (NEF, NE~) be neutrosophic
bipolar fuzzy sets. Then, the following properties hold:

(1) Complementary law: (NF)¢ = NB.
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(2)  Idempotent law:

HNPUNE = NP,
(ily NEnNE = NE.

(3)  Commutative law:

(i) NBuNE = NPUNE,
(i) NEnNF = NEANE,
(iiy NEoNE = NPaoNP,
)

(iv) NEaNE = NPaNE.
(4)  Associative law:

(i) WEUNEYUNE = NEUWFUND),
(i) WENNE)ANE = NEn (NFnaF),
(iii)) NBaoNP) o NE = NBaoWBaNE),
(iv) MEoNP)oNF = Mo WFaonp).

(5)  Distributive law:

UWNENNE) NBUNP
NNVEUNE) NBnNB
& NSUNP) = (WPaNp
& (N7 ) (
® (N ) (
® (N ) (

)N (VEUNT),
yu
U
BaNB NBa NP N
yu
n

(NBONB),
NEaNE),
NE e NE),
(NB®NB),
(N @ NF).

BunNE NBoNE
BaNB NBo NP

(6)  De Morgan's laws:

() (NB UNB)C _ MBC mNBC,
(ii) (M m\fﬁ)c = NEUNE,
(111) WNE o NBY NEe @ NE,

iv) (NEeNF)" # NEoNF

RN N

Proof. Straightforward. [

Theorem 2. Let NP = (NBH,NB7) and NF = (NF,NP~) be two neutrosophic bipolar fuzzy sets
and let NB = NB @& NP and NP = ANB (A > 0). Then both NP and NP are also neutrosophic bipolar
fuzzy sets.

Proof. Straightforward. [

Theorem 3. Let NB = (NP NB~) and NF = (N, NE7) be two neutrosophic bipolar fuzzy sets,
A, A1, Ay > 0. Then, we have:

9



Symmetry 2018, 10, 331

(i) ANF @ NY)
(it) MNE ® AHNF

ANEB @ ANE,
(A1 @ Ap)NE.

Proof. Straightforward. [

4. Neutrosophic Bipolar Fuzzy Weighted /Fuzzy Ordered Weighted Aggregation Operators

After defining neutrosophic bipolar fuzzy sets and some basic operations in Section 3. We in
this section as applications point of view we focus on weighted aggregation operator in terms of
neutrosophic bipolar fuzzy sets. We define (V3 FWA) and (NBFOWA) operators.

Definition 12. Let /\/]B = (./\/']B +, /\/jB ™) be the collection of neutrosophic bipolar fuzzy values. Then we define
NBFWA as a mapping NBFWA; : Q" — Qby

NBFWA, (NlB,/\/B, ...,Nf) = NE @ NP o, ..., @k NE.

Ifk = <%, 1.l ) then the N'B FW.A operator is reduced to

.
B B A/B BY _ 1 (B a8 5
NBFA (N NB L NE ) == (Nl o NB®, .., oN? ) ‘
Theorem 4. Let ./\/']-B = (./\/']B +,./\/].B ™) be the collection of neutrosophic bipolar fuzzy values. Then
kj
1— H;'lzl (1 — Truij) ’

k/
NB]-—W_Ak (j\/'lBJr,NZBJr,...,J\/}BJr) = 1- H;ﬂ:l (1 — IndN'jBJr) ,

k]
(FﬂlNB+>
]

kj
1-—- H]'.’:1 (1 - Trust) ,

k/
NBFWA, (/\/f*,/\ff*,...,J\/f*) = | 1-1T., (1 - IndN']B—> /

-,

)

n
*szl

Proof. Let /\/']-B = (N}B *,/\/']VB ~) be a collection of neutrosophic bipolar fuzzy values. We first prove
the result for n = 2. Since

VBT = -17(17TmNLB+> A= (1=tndys )", —(|Falys. ¥,
MNE = :17(17TmNLB,>k1,1f(pmdNE,)kl, (\FulNLB,])kl_,
MNE = 1 (17TruNbg+>k2,lf (lflnd/\/[m)kz,f(‘l-"ul/\/ﬁ )kz: ,
MNE = 1 (1- TruNf,>k2,1 -(1 fIndMé,)kz,f(\FuleB,‘)kz_ ,
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then
NEFWAL (NENE)
NEFWA (N NE)
NEFWA(NEZNET) = aNE- e,
[ 2 (1- TruNF+)k1 -(1- Tru'vhm)kz - (1 -(1- Tru(‘v’m)kl) |
x (1 - (1 - TruNb&)kZ) ,
NEFWA (NEENE) = ] e (1- Ind“\‘,fpr)kl -(1- Inde+)kz - (1 -(1- IndeH)kl)

x (1 - (1 ~ Ind,gp. )k? ,
2

Y k
‘Ful/\/bm

b NE @ koNF,

klN-lB+ @ kz./\/'28+,

—()Fale

>17(17Tru/\,,§+) (1- Tru,\bur) 17(17171,71A‘,5.)k1 (171nd%g+)k2,
o (| Fat o |2
b

NEFWA (NEF NEY) = (‘M
- VB+

NEFWA (N~ NE) b NE~ @ kNE,

[ 2 (1- TmN{;,)k‘ -(1- TruNhg,)k2 - (1 -(1- Tru/\ff,)kl> |
x (1 -(1- TYMN-IF—)]Q) ,

NEFWA(NE- NET) = | 2 (1 tnd,ys )kl — (1= Inds )k2 - <17 (1 s )kl)

x (1 - (1 - Ind'vbsf)kz ,

7()1-":11,“5 i |Ful/\,l§, )l

1 (1 Trugs ) (1= Truys- ) A= (1= Indys )k‘ (171nthB,)kz,

NEFWA(NE~ NE) - = \pazAB D (|Falgs- |12

So NBFWA (NLB,NI,B) = kg NB @ ko NB. If result is true for n = k, that is

- k-
7
1-11E, (kTmN]m) ,

k/
NBFWA, (NF*,NZB*,...,/\/]B*) - 1-1k, (171ndN/B+) ,

k/
(FulNng )

1- H l(1 Tru\zs) ,

NB}'WAk(/\/lB*,/\/ZB*,...,/\/jB*) = 1-11, (1- Ind,\g,) ,

(Fuljvg ) !
7

k
-1,

,Hk
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then, when k + 1, we have

r . kj K1 1
1-— H‘ 1-— TruNm + 1= (11— Truys:
Tkt
" k; e
,(1—1‘[.:1 (1 ru\5+> 17<1—TruN£:> ,

kj ki1
NEFWA (NEF NET, L NEY) = 1-T, (1 ~Indys ) + (1 - (1 ~ Indys. ) )
)

ki K41
k
—(1— 4 (l — Ind‘,\,-]_&) ) X (1 — (1 — IndA,;ﬁ) ) ,

]

k
7
k
= 1-11 (1 - IndNB+> ey
7

kl
(F al s, )
i

r k
7
1-T18t] (1 - TruN»ng) ,
7

k41
,1-[/_:1

kj K1
1-T1 (1 ru,vg> +< (lfTruNB,) )
k+1
. k; ki1
1711 1-— 1—Ti ,
1( TMNB+> < ruNlil)
B B arB— B k i it
NBFWA (J\G NET N ) = 1-11] 1(1—1ndha) + (14;;;1%1)
. p k, p K1
171_1 1-1 e 1-1 B ,
(o))
HJr (Faljw,

k

-1 (1 — Tru NB,
k/

= 1-14] (1 - Indvz;

J

8 Ly (Ful I

Soresultholds forn =k+1. O

Theorem 5. Let ./\/}B = (./\/}BJF,./\/].B*) be the collection of neutrosophic bipolar fuzzy values and k =
(k1, ka, . k)T is the weight vector of./\ij (j=12,..,n), withk; € [0,1] and Z;’Zlkj = 1. Then we have
the following:

(1) (Idempotency): If all ./\f]-BN (j=1,2,..,n) are equal, i.e.,N/B = /\/]B,for all j, then
NBFWA, (NF,N;B,...,N,F) = NB.

(2)  (Boundary):
NB < NBFWA <NB,NB,...,/\/,1B> < NB', for every k.

(3)  (Monotonicity) If Tru s+ < Truypp+« Indypye < Indys.- and Falys- > Fal g5+, for all j, then
j i j j i j

NBFWA, (/\GB,Nf,...,Nf) < NBFWA (./\/']*,Nz*, y ,fi) , for every k.
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Definition 13. Let /\/]B = (/\/jB *,A/’].B =) be the N'BFW.A be a collection of neutrosophic bipolar fuzzy values.

An neutrosophic bipolar fuzzy OWA(NBFOWA) operator of dimension is a mapping NEFOWA : Q" —
Q) defined by

B B B B B B B
NEFOWA (NEFNF L NET) = aNE @ NES 6, ok NES,
NEFOWA (NE=, NE=, ., NE7)

KN © kN @, s SRaN T,
where (0 (1),0(2),...,0 (n)) is a permutation of (1,2, ...,n) such that NB > ./\/'BEJ.) forall j. Ifk =

(%, %,. .y %) then BEOWA operator is reduced to BFA operator having dlmenszon .

Theorem 6. Let /\/']-B = (./\/'/B +,./\/']B ) be the collection of neutrosophic bipolar fuzzy values. Then

k
i
1 7H;?:1 (1 TruN% ) ,

kj
NBFOWA, (/\/18+,NZB+,...,/\/,§+) = | 11T, (1 - Innggj)) ,

kj
Tru, 5+ )
( N (e(7))

1"
111, (1 TruNi(,”>

kj
NBFOWA, (/\/1’3+,Nf+,...,/\/,§+): 1-1IT, (1 IndNé;T,]))>

Tru, 5- )
( Newy

k i ’ (2)

Ko

where
k= (ky ko, k)",

is the weight vector of NBF OWA operator with ki € [0,1] and k= 1, forallj =1,2,..,n,ie., all
/\/jBN (j=1,2,...,n), are reduced to the following form:

k/
/\/B}'OWAk (,/\/'154-,/\/254—,.,,,/\[’?4-) = 1- H]’-’:1 (1 — TruN(s(f )) ,
o(j
kj
NBFOWA, (Nf*,NZB*,...,Nf*) = 1-11, (1 - TruN(g(,_”) )
o(j
Theorem 7. Let ./\/}BN =W ﬁ;,]\f fm) (j =1,2,...,n) be a collection of neutrosophic bipolar fuzzy values and

k= (ki ko, o),
is the weighting vector of N'BF OW.A operator with kj € 10,1] and Z]’-’Zlkj = 1; then we have the following.
(1) Idempotency: If all A/'].B (j=1,2,..,n)are equal, i.c., /\/jB = N8B, forall j, then
NEFOWA (NENE, ., NF) = NE,

(2)  Boundary:
NB < NBFOWA, (NB,NB, ...,/\/,f”) < NB',
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for where k, where /\/jB = (/\/jB+,/\/’]-B’) be the NBFWA /\/’]-BJr = (Trups., Ind s, Fal s )
i j j

(j=1,2,..,n)and ./\/'].B* = (Truys-, Indys-, Falys-) (j =1,2,..., 1) be a collection of neutrosophic
j j j
bipolar fuzzy values

NB = {min (TruNm) ,min <Inng,> , — max <FalNg,>} ,
] ] ] I ] j

./\/’8+ = {max (TruNm) ,max (Inde) , —min <FulNg+)} .
] j ] i ] j

(3)  Monotonicity: Let /\/jB " and /\/’]-B =~ (j=1,2,...,n) be a collection of neutrosophic bipolar fuzzy values.
If Truprse < Truypos, Indype < Indyps.+ and Falys- > Fal 5+, for all j, then
j j j j j i

NBFOWA, (/\/B,/\/’B,...,Nf) < BFWLy (Nlé,NZB*,...,NB) , for every k.

n*

(4)  Commutativity: Let N]B = (./\/'jB *,N].B ~) be a collection of neutrosophic bipolar fuzzy values. Then
BFOWLy (N, NF, ., NF) = BEOWLy (NB',NB', ...,Nf’) ,

for every w, where (A/’]B/,NB/, ...,NnB/) is any permutation of (NF, NP, ..., NB).
Theorem 8. Let N]B = (./\ij *,/\f].B ~) be a collection of neutrosophic bipolar fuzzy values

k= (ky ko, k)",
is the weighting vector of N'B FOW.A operator with
ki €[0,1] and Zi_1k;j = 1;
then we have the following:

1) Ifk=(1,0,..,0)7, then

NBFOWA, (NB,./\/'ZB,...,N,?) = m]ax (/\/]-B) .

)  Ifk=(0,0,..,1)T, then

NBFOWA, (NB,NB,...,N,?) = min (N}f) .

(3) Ifkj =1,k;=0,andi # j, then

BFOWA, (N~ NF~,., NE~) = N5,

where Nf(].) is the largest of/\/[B (i=1,2,..,n).

5. Similarity Measures of Neutrosophic Bipolar Fuzzy Sets

In Section 4 we define different aggregation operators with the help of operations defined in
Section 3. Next in this section we are aiming to define some similarity measures which will be used
in the next Section 6. A comparisons of several different fuzzy similarity measures as well as their
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aggregations have been studied by Beg and Ashraf [38,39]. Theoretical and computational properties
of the measures was further investigated with the relationships between them [15,40-42]. A review, or
even a listing of all these similarity measures is impossible. Here in this section we define different
kinds of similarity measures of neutrosophic bipolar fuzzy sets.

5.1. Neutrosophic Bipolar Fuzzy Distance Measures
Definition 14. A function E : NBESs (X) — [0,1] is called an entropy for NBFSs (X),

(1) E(./\/B)zlﬁ./\/'gisacrispset.
2 EWNB)=0«

TruNlm(X) = fTrungf (x),Inlem(x) = fInlegf(x),FulNlm(x) = fFalngf(x) VxeX.

3) E(NB) =E (NB) for each YN8 € BFSs (X).
(4) E (./\/18) <E (./\/ZB) l'f./\/lg is less than N'B, that is,

TruNl,g+(x) < TruN213+(x) ,Inlem (x) < IndN25+(x), Pulles+(x) > Pulsz(x),
Trung,(x) < TruNZB,(x) ,InleB,(x) < IndNZB,(x), FalN]g,(x) > FulNZB, (x),

for TruN5+ ‘TruNg (x )‘
or TruN15+(x) > T"”Nf+(x)' Inlem(x) > IndN25+(x),

and
Falng,(x) < Ful/\/f’ (x) < Ngf(x)for TruNlm(x) > Ful/\/f’(x)'

Definition 15. Let X = {x1, 2, ..., x,} and NB = (NB+, N'B=) be an NBFS. The entropy ofNBFS is
denoted by E(NB+, N'B~) and given by

)
)
)
)

min((Tleg ; ’(x)),min(lndj\‘,lg J(x)), FulN{g L (x)

E(NB+) = %):?:1

max((Tru 3 (x))max(Ind, ;3 1x)),|Fal 5 (x)
NY NT NT

min((Trung,’(x)),min(Ind‘vlg,'(x)),‘FulNIB,’(x)

E(Ngi) = %Z?:l

max((Tru‘wig,'(x)),max(lndNIB,'(x)),

Fal.VIB’ (x)

and for a neutrosophic bipolar fuzzy number N¥ = (N LB N LB ), the bipolar fuzzy entropy is given by

E(NB+) min((TruLIr’(x),min(IndL+ (x)), FalL+ (x)‘)

L max(TruL] +(x)), maX(Ind ( )), Fal (X) @
E(NB*) min((TruLl, 1x) mm(Ind (x)), ‘Fal )1

k max(Tru (x)), max(Ind (x)),|Fal 7(x))

Definition 16. Let X = {x1, X2, ..., X }. We define the Hamming distance between N'F and N'F belonging to
NBESs(X) defined as follows:
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(1) The Hamming distance:

d(A/'lBJr,NZBJr) = % ]’.':1(‘TruN-15+(xj) — Truszs+(x]-)|
+\Inleg+ (xj) = IndN23+ (x})]
[Pl s (x7) ~ Fals. (%))
Hamming distance for positive neutrosophic bipolar sets
dNE NPT = 3 X ([ Truys- (x) = Truygs- ()]
HIndys-(x)) — Indys- (x))]
+| \Falngf (xj) — Falngf ()1
Hamming distance for negative neutrosophic bipolar sets

(2)  The normalized Hamming distance:

d(,/\ff+,/\/213+) = %Z}Ll(\TruMm(xj) — Truszs+(x]-)|
+|Inleg+ (xj) — Inszm (x))]
Hl[Falys. (xj) — Falys: (x)[1)
normalized Hamming distance for positive neutrosophic bipolar sets
AT~ NF) = o L (I Tranyee (x)) = Trungss (x)]
+|IndN15+ (xj) — Inszm (x))]
+\|Falle+(x]-) - Pallea+(x]-)|\)

normalized Hamming distance for negative neutrosophic bipolar sets

(3)  The Euclidean distance:

2 B (Truygs: (x)) = Truys (x)))?
ANBT NB) = +(Indyzs. (x)) - Ind/\/sz(Xj))2
+(Fal s (x)) = Falys. (x))*

3 S (Truys- (x) = Truygs- (x;))?
d(./\/le,N'zBf) - +(IndN157 (xj) — I”d/\/ZBf (xj))z
+(Fulng, (Xj) — FﬂlNlB* (xj))z

(4)  The normalized Euclidean distance:

=~ ]’7:1(TruN15+ (xj) — Tru - (x))?

dNFH NS = | H(Ind s () = Indys (x))?
+(Falys. (xj) — Fal s, (x))?

% ]7'1:1(71?’”/\/187(3(]-) - TruNF (x]-))z
d(/\/’llg*,/\/’ff) = +(IndN157(xj) — I"d/\/zlff (x]»))z
+(Pullef (xj) — Pulng, (x].))z

106

®)

@)

®



Symmetry 2018, 10, 331

(5)  Based on the geometric distance formula, we have
L (T (x) -
ANET NEY) = +(Indyzs: (x))
Jr(FalN'lB+ (Xj) —
[ 3 (T’”Nf* (%)) =
d(./\/’lBi,./\[zgi) = +(Ind/\/15,(x])—
+(PulNle (Xj) —
(6)  Normalized geometric distance formula:

d(MB+erlg+)

dNP NFT) =

where o > 0.

()

(ii)  If o = 2, then Equations (9) and (10), reduce to Equations (7) and (8).
(iii))  We define a weighted distance as follows:
r L
)(Tm s (x7) = Tritygo. (xj))\
B+ \/B L
d(Nl ‘*',_/\/2 +) = % 2;1:1 k/ -+ ‘(Ind’,\/l8+ (x]) — Il’ldN’zB+ (X/)))
L
i n ‘(puz,vlm(xj) - palem(xj))\
r L
)(Trung, (xj) — TruNZB, (x]))‘
B— B L
d(Nl /Nz ) = %Z7:1k] +‘(1nd/\/187(xj‘)*Ind/\/zgf(x]‘)))
L
i |(Falys- (x)) = Falgs- (x)))]
where k = (ky,ky, ..., kn)T is the weight vector oij(j =1,2,..,n),and a > 0.
(i) Especially, if &« = 1, then Equation (11) is reduced as

dNFH N =

dNF NG =

Inszm (x]))L
Falys. (x))"

Ind/\/zgf (x]))L
Falys- (x))"

Tfu/\/ZBJr (x]))L G

T; - ANL 7 &
Tl (%))

1y .
2 Zj:l k]

B o 1(T;'u/\ﬂg+(9c]) Trusz(x]-))L B
(Inlez;+(X]) Inszm(xj))L
+(FulN15+(x]) Fal e (1))

[ (TruNB (x])—TruNB (x;)F E
(IndNB (x]) - Inszsf (x/-))L
(FulNB (x)) — Falyu- ()"

If & = 1, then Equations (9) and (10), reduce to Equations (5) and (6).

’(TT”MB+ (xj) = Trusz (x]))‘

Uik |+ (Inlem(xj) - Inszm(xj))
+ (Pul/\/l3+(xj) - Ful/\/lm(xj))
’(TruME+(xj) - Trusz(xj))‘

+ (Inlem(xj) — Inszm(xj))

+ (Pul/\/l3+(xj) - PulNlm(xj))
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Ifk = (%, %, " %)T, then Equation (11) goes to Equation (10), and Equation (12) goes to

Equation (6).
(ii)  If o« = 2, then Equation (11) is reduced to the as:

5 U (Trus (x)) = Truygs: (x;))?
ANEENED) = | F(Indys. () — Indys. (x))®
+(Fale. (x)) — Fala. (1))

1yn 2 (13)
5 ijl(Trung,(xj) - TruNZBf (x7))
+(IndN157 (x]') - Inszsf (x/))z
+(Falys- (xj) — Falys-(x)))?

AP NG)

Ifk= (%1 . 1T then Equation (13) is reduced to Equation (8).

5.2. Similarity Measures of Neutrosophic Bipolar Fuzzy Set

Definition 17. Let § be a mapping § : Q(X)? — [0, 1], then the degree of similarity between NF € Q(X) and
NE € Q(X) is defined as s(NB, N'B), which satisfies the following properties: [43,44].

(1) 0<sWNENB)<1;

2)  SWNB,NP)=1ifNB = NE;

3)  SWNENY) = (WP, NP);

4)  IfSNE NEP) = 0and 3INE,NB) = 0, NP € Q(X), then (N, NB) = 0. We define a similarity
measure of NB and NF as:

I %Z};l(TruMm X]) —Trusz(xj))L 1
SNBH NP =1 +(1nleg+(xj - Inszz;+(Xj))L

(

)
| HFalp ()~ Falyp o))" ] L
% 7:1(TTMN'157 (X]) — TruNzg, (x]))L
SWNEB- NET) =1 +(Indyzs- (x;)
-‘r(Fﬂl/\/le )

N1 ()L
Xj nszg (x}))

L

(
(

Xj — Falng, (x]))

where o > 0, and S(NF, NF) is the degree of similarity of NF and NF. Now by considering the weight
of every element we have,

r L Ta
‘(Tru s (xj) = Tru N2,3+(xj))]
L
SV = 1= 3Rk |+ | (ndygs (x) — Ind s (x)]
L
i +‘(FalNl&(xj)—FalNlm(xj))‘ | G

r ‘L 14

‘(Trung,(xj) — Truyp- ()
L
AN NPT) =1 |3k |+ | (ndys () — Indygs ()|

L

+ ‘(Fal xo- (x)) = Fal Nf,(xj))‘

108



Symmetry 2018, 10, 331

If we give equal importance to every member then Equation (15) is reduced to Equation (14). Similarly we

may use

§(NlB+,./V’ZB+) =1—

‘ (TruNm (xj) = TruNm (x]))
L

L

i
‘(Inde x] —Inde x]
‘(FﬂlArBJr X/

Fale X]
‘(Truj\/m (xj) = TruNm (x]))‘

i (
‘(Inde(x]) - Inde x]

‘(Fale(xj) fFulNlm(x]))‘ )

=1

& A

Rl

‘(Tru/\/s (xj) — TruNB (x7))
L
Il’ldN’B xj)*ITldA/B x])’
L
FulNB )

o

‘(Trulef(x/) TruNB (;))

o (
+(
(PulN’B
(

L
(

=1
‘InleB,(x) Indys- x]))’

‘(Ful/\/lza (x/-)—FalNlB (x ))‘ )

Now by considering the weight of every element we have

§(A/IB+,N-ZB+) —1—

If we give equal importance to every member, then Equation (17) is reduced to Equation (16).

& A

Yk (‘(TruNm

xj) — TruNm(x )

(
+|(nd s () — Iy ()|
+‘(Pale+(x]) Fal,\/zm(x])))L
ik (‘(TruNm(x]) Tru/\f25+(xj)) :
‘(IndMB+(x]) - Ind/\/zm(x]))’L
+‘(1—"alles+(x]')—Falj\/zm(x;))‘L) |

L k([ (Trayes- () = Triygs- (x7)|
‘(Inlegf(xj) - Inszg, (x/-))’L
|

+ ‘(PulNgf (xj) — FulNzgf (x})) '

Ly k(| (T (x7) = Trugs ()]
L
+ | (Indygs (x)) = Ind s (x)))|

+ ‘(Fallef (x]-) - Fal/\/zs— (xj))‘L)
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5.3. Similarity Measures Based on the Set-Theoretic Approach

Definition 18. Let NB € Q(X) and NB € Q(X). Then, we define a similarity measure NF and N from
the point of set-theoretic view as:

Yy <min(Trung+ (x7), Trusz (7))

+ min(IndN15+ (x}), IndN23+ (x}))
+ min(|Fulng+ (x)1, |FulN25+(xj)|)

SA(NB+,NB+) _
1 2 1 (max(TruN]m (%)), Trusz (x}))

+ max(Inleg+ (%)), Inszm (x}))
+max(|FalN13+ (xj) |, |Falj\/25+ (xj) )

. (18)
27:1 <m1n(Trulef (x}), Trustf (7))
+ min(Inleg, (x}), I”dNZB* (x}))
§(./\le*,/\f23*) _ + mm(\Fulle, (xj)|, \FulNZB, (x]))|))
Y (max(Trungf (%)), TruNzgf (x}))
+ max(IndN]B, (%)), Inszg, (%))
+max(|Fullef (x))1, |FalN257 (x))))
Now by considering the weight of every element we have
7:1 k](mm(TruNm (x}), TruNf, (xj)) + min(Inlez;+ (x}),
§(,/\/'18+,,/\/23+) _ Inszm(x])) + rmn(|FulN13+ (x))1, |Fal/\/25+ (x))]))
Y k-(max(TruNg+ (x}), TruNg- (xj)) + max(Inlez;+ (x}),
Inde(x]) + max(\Fule (x)1, |FalN23+ (x)1)) 19)

Z] 1k (mm(TruNB (x}), TruNs (x]))erin(IndNngf(x]'),
Ind s (x ))+mln(|Fﬂ1NB (xp)|, [Falys-(x;)1))
j—1kj (max(TruNm(x]) TruNz; (x ]))+max(1nles+(xj),

), [Ealys-(x))])

SNVPNTT) =

Inszm (x}) + max(\Fulng (%)
If we give equal importance to every member, then Equation (19) is reduced to Equation (18).

5.4. Similarity Measures Based on the Matching Functions

We cover the matching function to agreement through the similarity measure of A'5FSs.

Definition 19. Let NP € Q(X) and NB € Q(X), formerly we explain the degree of similarity of N'B and
./\/'ZB based on the matching function as:

e psty T () g 0 ) )l ) g )
o2 max (Y} ((TruNm) (x)) + (Indvm)z( i)+ (Fal,\/g )? (x,))
XL 1k ((Tru s )2 (x)) + (Inde) (xj) + (Fﬂl/vle) (x1)))

Uiy (Truy g (x)). Truy 5 (x)))+(Ind B~ (*])I"dxs xj))+|Fal,, (- (V;)Hl‘"al\r (x)1)

]
§(NB— NB—) _ M Ny 2 (
v - max (T, (Truys-) (%) + (Indys-)* (%) + Fal/\B ) (x7)),
(xj) + (Falys-)*(x))))

S ki (Truygs- )2 (xj) + (Indyys- )2

(20)

Xj
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Now by considering the weight of every element we have

(Tt 3) T sy 5)+ (s ) 5. 3))+ Fatl s )L Fal g (5))
max (3 (Tt () + I P05) = Falge ),
L K (Truys: ) (xj) + (Indyys ) (x)) + (Falys: ) (%))
iy kj(Tru 5= (%)) Tru B~ (X,))+(I"d - (Vﬂ Indng,(x,))JrlFal B (tf)HFalsz ()
max():;-izl((TruNle)Z(x]) (IndNb (%)) + (Ful/\/g )2(x7)),
K k(T 205) + (Ind s () + (Falys 2 (x)

SNPH AT =

SN AR = )
(
(1) If we give equal importance to every member, then Equation (21) is reduced to Equation (20).

(2)  Ifthe value of S(NB, NP) is larger then its mean NP and NP are more closer to each other.

6. Application

@n

In this Section 5 after defining some similarity measures we proceed towards the main section
namely application of the developed model. In this section we provide an algorithm for solving
a multiatribute decision making problem related with the HOPE foundation with the help of
neutrosophic bipolar fuzzy aggregation operators, neutrosophic bipolar similarity measures under the

neutrosophic bipolar fuzzy sets. For detail see [13,42].

Definition 20. Let L = {Ly, Ly, ..., Ly} consists of alternatives, and let P = {Py, Py, ..., P, } containing the
attributes and k = (ki,ky, ..., k)T be the weight vector that describe the importance of attributes such that

ki € [0,1] and Yl k; = 1. Let us use the neutrosophic bipolar fuzzy sets for L; as under:

Lf = {(P, (Tru)},(P), (Ind)L,( ), (Fal)f; (P,))|Pj € P}, i=1,2,3,..,m }

Ly = {(P,(Tru);(P}), (Ind); )(Ful) (P;))|Pj € P}, i =1,2,3,..,m
such that
(Tru)(P;) € [0,3], (Ind);;(P)) € [0,3], (Fal)}; () € [0,3],
0 < (Tru)/;(P), (Ind);},P), (Fal)}; (P})) < 3.
(Tru)[;(P;) € [-3,0], (Ind) I(P)e[ 3,0], (Fal)[; (P;) € [3,0],
~3 < (Tru);,(P)), (Ind);;P), (Fal)j; (P;)) < 0.

Now we define the positive and negative ideal solutions as under:

L = {(P, (Tru) [ (P), (Ind) . (P)), (Fal) /. (P))|P; € P}}
Ly ={(P, (Tru) . (By), (Ind) . (P;), (Fal), (P)))|P; € P}}

" LY = (P, (Tru)f_(P), (Ind);"_(P,), (Fal) " (P)|P; € P}} }
L™ = {(B (Tru),_(P), (Ind),_(P,), (Fal),_(P))|P; € P}}
where
(Tr)}.(B) = max{(Tru)j,(By), (Tru), ()} = min{ (Tru){(B)}, (Tru) ()
= max{(Tru),(B), (Tru). (Py)} = min{(Tru),(B) H(Ind) . (B)
= max{(Ind){;(P), (Ind) (P} = min{ (Ind);(B)) (Ind) ., ()
= max{(Ind)p,(Py), (Ind);". (P)} = min{ (Ind){(P))}.
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(Fal)/; (P) mln{(Fal) (P;), (Fal);.(P)} = miax{ (Fal)f; (P)}-
(Fal); (P) = mln{(Ful) (P;), (Fal).(P)} = miax{ (Fal);; (P)}-

Now using Equation (15), we find the degree of similarity for L*, L;, and L™, L;, as under:

[ X ki ((Trm) [ (x) = (Tru) fy ()t ]

Si(L L) =1- +[(Ind) . (xj) — (Ind) f;(x;)|"
H(Fal)il(x]) (Fal)LI(x]” ) 1 , (25)
[ 3T ki ((Trw) o (xp) = (Tru) () ]
(LY L) =1- +(Ind) [, (xj) — (Ind)7;(x})]*
+|(Fal) ;. (x;) — (Fal);(x;)[")
and o
[ 3T K ((Tru)— (xp) = (Tru) [ (xp))* ] °
si(L, L) =1- +|(Ind)[ (x;) — (Ind);(x))|*
| HIEan; ) - Banpi)n ]| -
[ 3 T ki([(Tra) () — (Tra) (%))~ ]
(L7, L) =1- H(Ind) - (xj) — (Ind);(x})|*

+I(Fal),(x))— (Fal) (1))
Using Equations (25) and (26), calculate di of L; as under:

+ si(LYL) _
i = sp(LFL7 ) +s1 (L7 L) i=12.n 27)
et
d- = s1(LL7) i=1,2,..,n

i ST L s (L L)

If the value of d; is greater, then the alternative L; is better.
Also using Equations (17), (19) and (21), we find the degree of similarity for L, L;, and L™, L;,
as under:

(1)  Based on Equation (17), we define the following: We define the following;:

i1 (‘(Truu(x]) Tru +(x;)) E
’(Indl_w( xj) — Ind - (x;)) ‘L
s(L* L) =1- +‘(Ful“( %) ~ Fali (%)) ‘L z
i " (‘(Truy(x]) T""ﬁ(xi))
‘(Indy(xj)*lndﬁ xj)) ‘L
et ||,
- j=1 (‘(TT”L (x]) TruL, (x])) I’
‘(I"dL (xj) — Ind, - (x})) ‘L
(LT, L) =1-— ’(F“IL (%)) — F"IL (%)) ‘L
1 Sk (T (o) — T, ("fi
)

](IndL (x}) — Ind,(x}))

+’(FulL (xj) — Fal,. x]))’

112



Symmetry 2018, 10, 331

(2)  Based on Equation (19), we define the following: We define the following:

i g kj(min(Tru 4 (x;), TruL+(r/))erln(lndLJr(x]) IndL+ xj))+min(|Fal; + (x;)], \Fal

(1))

SAZ(L+’L1'+) = ):] 1 kj(max(Tru;+ (x)) TruL+(xl))+max(1ndL+(xl IndL+(x,)+max(\FalL+ ])HFal )N)
2]71 kj(min(Tru - (x;), TruLi (x)))
+min(Ind; - (x;), Ind; - (x;))
+min(|Fal; - (x;)|,|Fal, - (x;
) - min(|Faly (3, |Fal,_(x)])

Yy kj(max(Trup - (x;), Tru - (x}))
+max(Ind - (x;), Ind; - (x;)
+max(|Faly-(x;)|, [Fal - (x;)]))

(3)  Based on Equation (21), we define the following: We define the following;:

Ly kj(min((Tra) [ (x;), (Tru) [ (x;))
+min((Ind)}. (x )(Ind)a(x]))
+min(|(Fal) (x/)\ |(Fal);;(x;)]))
Z?:lkj(max((Tfu)L (x), (Tru)f;(x;))
+(max((Ind) . (x )(I"d)ﬂ(x]))
+max(|(Fal); (x])l |(Fal);(x;)])
T kf(mln((TfM)L+(x]) (Tru);(x;))
+min((Ind) . (x;), (Ind);(x;))
+ min(|(Fal);, (x;)|, [(Fal) ;(x))[))
Ljg kj(max((Tru) - (x;), (Tru) ;;(x;))
+(max((Ind) ., (x;), (Ind) ;;(x}))
+ max(|(Fal) . (x;)|, [(Fal);(x;)])

1

§3(L+r L1+) =

SA3(L+IL1‘7)

Then use (27).

7. Numerical Example

(29)

(30)

Now we provide a daily life example which shows the applicability of the algorithm provided in

Section 6.

Example 1. The HOPE foundation is an international organization which provides the financial support to
the health sector of children of many families in round about 22 different countries in southwest Missouri.
This organization provides the support when other organization does not play their role. Every day a child is
diagnosed with a severe illness, sustains a debilitating injury, and a family loses the battle with an illness. With
these emergencies come unexpected expenses. Here we discuss a problem related with HOPE foundation as:
HOPE foundation is planning to build a children hospital and they are planning to fit a suitable air
conditioning system in the hospital. Different companies offers them different systems. Companies offer three
feasible alternatives L; = (i = 1,2,3), by observing the hospital’ physical structures. Assume that Py and
Py, are the two attributes which are helpful in the installation of air conditioning system with the weight
vector as k = (0.4,0.6)T for the attributes. Now using neutrosophic bipolar fuzzy sets for the alternatives

L; = (i = 1,2,3) by examining the different characteristics as under:

Ly ={(P,03,04,07),(P,,08,08,06)},
Ly ={(P,—-03,-02,-0.1), (P, —0.4,—0.6, —0.8)}.
LY ={(P,04,06,02),(P,03,09,02)},
L, ={(P,—01,-03,-04), (P, —08,-0.7,—0.1)}.

113



Symmetry 2018, 10, 331

Ly
Ly

= {(P,0.3,0.5,0.7), (P,0.2,0.30.6) },

= {(P,—05,—0.1,—0.4), (P,, —0.3,—0.2,—0.8) }.

where L = {(P;,0.3,0.4,0.7), (P,0.8,0.8,0.6) } means that the alternative Ly has the positive preferences
which is desirable: 0.3,0.8 as a truth function for past, 0.4,0.8 as a indeterminacy function for future and 0.7,0.6

as a falsity function for present time with respect to the attributes Py and Py respectively.

Similarly L; = {(P;, —0.3, 0.2, —0.1), (P2, —0.4, —0.6, —0.8) } means that the alternative L; has
the negative preferences which is unacceptable: —0.3, —0.4 as a truth function for past, —0.2, —0.6 as a
indeterminacy function for future and —0.1, —0.8 as a falsity function for present time with respect to
the attributes P; and P, respectively.

(1) By Equations (23) and (24) we first calculate L™ and L~ of the alternatives L; = (i = 1,2,3), as

LT = {(P,04,0.6,0.7),(P,,0.5,09,0.6)},
L~ = {(P,03,04,02),(P,,02,03,02)},
and
Lt = {(P,—01,-0.1,-0.1),(P,,—03,-02,—0.1)},
L~ = {(P,-05,-03,-04),(P,,—0.8,—0.7, —0.8) }.

Then by using Equations (25)-(27), (suppose that « = 2 and k = 1), we have

§ (LY, LY) = 082674 (LY, L) =07753%(L",L}) = 05152,
$1(LT,Ly) = —05732,8 (L, Ly) = —0.8721,4 (LT, Ly) = —0.7776.
(L7, L7) = 0.3876,%(L7,Ly) =058 (L7, L]) = 05417,
$1(L7,Ly) = —0.1038,8(L7,Ly) = —0.2449,8 (L, Ly) = —0.1119,
and

S1(LT,L7) = —0.2609,8 (LT, L)) = —0.1157,8(L", L]) = —0.2439,
$1(LT,Ly) = —0.1485,8 (L, Ly) = —0.075,8 (L™, Ly ) = —0.0243.
S(L7,L7) = —0.6229,8(L7,Ly) = —0.7146,8 (L™, L] ) = —0.7958,
$1(L7,Ly) = 0.6062,8 (L7, Ly ) = 0.3636,51(L~, L3 ) = 0.4803.

Now by Equation (27), we have

+ _ + _ + _
di =0.7207,d, =0.1393,d5 = 0.9093, ) @31)
Ly >Ly> L3
dy = —0.3244,d, = —0.2598,d; = —0.0532, 32)
Ly > Ly > Ly ’
and
+ _ + _ + _
di =0.2813,d, = 0.4031,d; = 0.4728, ) 33)
Ly > Ly, > L
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d; =0.06184,d, = 0.1190,d; = 0.1942, (34)
Ly > Ly > L ’
(2)  Now by Equations (28) and (29) (suppose that &« = 3), we have
H(LY,Ly) = 09051,8(L", L)) =0.7283,5(L", L) = 0.6873,
(LT, Ly) = —1.9845,8(L",Ly) = —2.338,8% (L7, L;) = —1.3894.
H(L7,L7) = 0.6940,3,(L7, L) = 0.4952,5,(L",L]) = 0.577,
$(L7,Ly) = —1.0988,5(L",L,) = —1.0717,8,(L", Ly ) = —1.004,
and
(LT, LY) = —0.6210,8 (LT, L) = —0.6086,5, (L, L) = —0.4944,
$(LT,Ly) = 03714,%(L%, Ly ) = 0.5139,5(L*, Ly ) = 0.3358.
H(L7,Ly) = —2.3840,8% (L7, L)) = —1.968,8 (L, L]) = —2.2632,
8(L7,Ly) = 0.6972,8(L7,L, ) =0.5752,5,(L™, Ly ) = 0.6691.
Now again using Equation (27), we have
df = 0.5660,d; = 0.5952,d1 = 0.5436, (35)
Ly>1Ly> L3 !
d; = 0.6436,d, = 0.6856,d, = 0.5805, 36)
Ly > 11> L3 !
and
+ + + _
di” = 0.2066,d, =0.2362,d; =0.179, ) 37)
Ly >L > L3
dy =0.3475,d, =0.4719,d; = 0.3341, 38)
Ly >L > L3 '

(8)  Thus, by Equations (27), (30) and (31), we have

$3(LT, L) = 042858 (L, L)) = 0.5675,83(L7, L) = 0.7027,
&(LT,Ly) = —0.6468,83(L",Ly) = —0.6486,83 (LT, Ly ) = —0.6316,

and

§3(L_r Lr)
(L7, Ly)

0.4848,83(L~, L) = 0.1538,83(L ", L) = 0.6153,
—1.375,83(L7, Ly ) = —1.0625,8,(L ", Ly ) = —1.4375.

By Equations (30)-(32) we have

&(LT, L) —0.2727,55(L*, L) = —0.3913,85(L ", LT) = —0.3461,
$(LT,Ly) = 2.6666,8(L7, Ly) = 2.6666,53(L", Ly ) = 2.5555.
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$(L7,L7) = —1.060,83(L7, L)) = —1.3461,83(L™, Ly) = —1.4000,
$(L7,L7) = 1.4585,8(L",Ly) =17500,83(L",L;) = 5217.

By Equations (30)-(32), we have

df =0.4691,d5 = 0.7868,dF = 0.5331,

, 39
Ly > L3> 1L 39)

, 40
Ly>1Ly>Ls ( )

and
dl+ = 0.2046, dz+ =0.2252, d;r =0.1982,

Ly >Ly > L3

dy =03199,d; = 0.3790,d; = 0.3018, }
}, (41)

42
Ly > L3> 1 ( )

d; =0.3475,d, = 0.6037,d; = 0.6267, }
From the Equations (35)-(42), we have that the alternative L, (feasible alternative) is the best one
obtained by all the similarity measures. Thus we conclude that air-conditioning system L, is better to
installed in the hospital after considering its negative and the positive preferences for past, future and
present time.

8. Comparison Analysis

There are a lot of different techniques used so for in decision making problems. For example
Chen et al. [23] used fuzzy sets, Atanassov [26] used intutionistic fuzzy sets, Dubios et al. [9], used
bipolar fuzzy sets, Zavadskas et al. [37] used neutrosophic sets, Zhan et al. [25], used neutrosophic
cubic sets, Ali et al. [33] used bipolar neutrosophic soft sets and so many others discuss decision
making problems with respect to the different versions of fuzzy sets. Beg et al., and Xu [38,39,41]
discussed similarity measures for fuzzy sets, intutionistic fuzzy sets respectively. In this paper by
applying bipolarity to neutrosophic sets allow us to distinguish between the negative and the positive
preferences with respect to the past, future and present time which is the unique future of our model.
Negative preferences denote what is unacceptable while positive preferences are less restrictive and
express what is desirable with respect to the past, future and present time. If we consider only one
time frame from the set {past, future and present} one can see our model coincide with bipolar fuzzy
sets in decision making as Dubios et al. [9] and Xu [41].

9. Conclusions

We define neutrosophic bipolar fuzzy sets, aggregation operators for neutrosophic bipolar fuzzy
sets, similarity measures for neutrosophic bipolar fuzzy sets and produce a real life application in
decision making problems. This model can easily used in many directions such as,

(1)  Try to solve traffic optimization in transport networks based on local routing using neutrosophic
bipolar fuzzy sets.

(2)  Ahybrid clustering method based on improved artificial bee colony and fuzzy C-Means algorithm
using neutrosophic bipolar fuzzy sets.

(3) Hybrid multiattribute group decision making based on neutrosophic bipolar fuzzy sets
information and GRA method.

(4)  Signatures theory by using neutrosophic bipolar fuzzy sets.

(5)  Risk analysis using neutrosophic bipolar fuzzy sets.
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Abstract: The notions of neutrosophy, neutrosophic algebraic structures, neutrosophic duplet and
neutrosophic triplet were introduced by Florentin Smarandache. In this paper, the neutrosophic
duplets of Zyn, Zpg and Zp, p, . p, are studied. In the case of Zyn and Zy,, the complete characterization
of neutrosophic duplets are given. In the case of Z, . p,, only the neutrosophic duplets associated with
pis are provided; i = 1,2, ...,n. Some open problems related to neutrosophic duplets are proposed.

Keywords: neutrosophic duplets; semigroup; neutrosophic triplet groups

1. Introduction

Real world data, which are predominately uncertain, indeterminate and inconsistent, were
represented as neutrosophic set by Smarandache [1]. Neutrosophy deals with the existing neutralities
and indeterminacies of the problems. Neutralities in neutrosophic algebraic structures have been
studied by several researchers [1-8]. Wang et al. [9] proposed Single-Valued Neutrosophic Set (SVNS)
to overcome the difficulty faced in relating neutrosophy to engineering discipline and real world
problems. Neutrosophic sets have evolved further as Double Valued Neutrosophic Set (DVNS) [10]
and Triple Refined Indeterminate Neutrosophic Set (TRINS) [11]. Neutrosophic sets are useful in
dealing with real-world indeterminate data, which Intuitionistic Fuzzy Set (IFS) [12] and Fuzzy sets [13]
are incapable of handling accurately [1].

The current trends in neutrosophy and related theories of neutrosophic triplet, related triplet
group, neutrosophic duplet, and duplet set was presented by Smarandache [14]. Neutrosophic duplets
and neutrosophic triplets have been of interest and many have studied them [15-24]. Neutrosophic
duplet semigroup were studied in [19] and the neutrosophic triplet group was introduced in [8].
Neutrosophic duplets and neutrosophic duplet algebraic structures were introduced by Smarandache.

In the case of neutrosophic duplets, we see ax = a and x = neut(a), where, as in L-fuzzy sets [25]
as per definition is a mapping from A : X — L, L may be semigroup or a poset or a lattice or a Boolean
o-ring; however, neutrosophic duplets are not mapping, more so in our paper algebraic properties of
them are studied for Z, for specific values of n. However, in the case of all structures, the semigroup
or lattice or Boolean ¢-ring or a poset, there are elements which are neutrosophic duplets. Here,
we mainly analyze neutrosophic duplets in the case of Z;, only number theoretically.

In this paper, we investigate the neutrosophic duplets of {Zu, x }, where p is a prime (odd or
even) and n > 2. Similarly, neutrosophic duplets in the case of Z,; and Z),, ., are studied. It is noted
that the major difference between the neutrals of neutrosophic triplets and that of neutrosophic duplets
is that in the former case they are idempotents and in the latter case they are units. Idempotents in the
neutrosophic duplets are called trivial neutrosophic duplets.

This paper is organized as five sections, Section 1 is introductory in nature and Section 2 provides
the important results of this paper. Neutrosophic duplets in the case of Zu; p an odd prime are studied
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in Section 3. In Section 4, neutrosophic duplets of Z,; and Zj, p, . p,, and their properties are analyzed.
Section 5 discusses the conclusions, probable applications and proposes some open problems.

2. Results

The basic definition of neutrosophic duplet is recalled from [8].
Consider U to be the universe of discourse, and D a set in U, which has a well-defined law #.

Definition 1. Consider (a, neut(a)), where a, and neut(a) belong to D. It is said to be a neutrosophic duplet
if it satisfies the following conditions:

1. neut(a) is not the same as the unitary element of D in relation with the law # (if any);
2. at#tneut(a) = neut(a) #a = a; and
3. anti(a) ¢ D for which a # anti(a) = anti(a) # a = neut(a).

Here, the neutrosophic duplets of {an, x }, pis a prime (odd or even) and n > 2 are analyzed
number theoretically. Similarly, neutrosophic duplets in the case of Zy; and Z,p, ., are studied in
this paper.

The results proved by this study are:

1. The neutrals of all nontrivial neutrosophic duplets are units of {Zyn, x}, {Zy, x} and
{Zpipapur X 1

2. If pis aprime in anyone of the semigroups ({Zn, X } or {Zpg, X} or {Zp, p,...p,, X }) as mentioned
in 1, then mp has only p number of neutrals, for the appropriate m.

3. The neutrals of any mp' for a prime p; (m, p) = 1 are obtained and they form a special collection.

3. Neutrosophic Duplets of {Z,, x } and its Properties

Neutrosophic duplets and neutrosophic duplet algebraic structures were introduced by Florentin
Smarandache in 2016. Here, we investigate neutrosophic duplets of {Z,, x }, where p is a prime (odd
or even) and n > 2. First, neutrosophic duplets in the case of Z,s and Z3; and their associated number
theoretic properties are explored to provide a better understanding of the theorems proved. Then,
several number theoretical properties are derived.

Example 1. Let S = {Zy4, X } be the semigroup under x modulo 16. Z1¢ has no idempotents. The units of Z4
are {1,3,5,7,9,11,13,15}. The elements which contribute to the neutrosophic duplets are {2,4,6,8,10,12,14}.
The neutrosophic duplet sets under usual product modulo 16 are:

{{2,1},{2,9}}, {{4,1},{4,5},{4,9}, {4, 13} },
{{6,1},{6,9}},{{8,1},{8,3},{8,5},{8,7},{8,9}, {8,11},{8,13}, {8,15} },
{{10,1},{10,9}}, {{12,1}, {12,5}, {12,9}, {12,13} }, {{14,1}, {14,9}}

The observations made from this example are:

1. Every non-unit of Zy4 is a neutrosophic duplet.
. Every non-unit divisible by 2, viz. {2,6,10,14}, has only {1,9} as their neutrals.
3. Every non-unit divisible by 4 are 4 and 12, which has {1,5,9,13} as neutrals.

The biggest number which divides 16 is 8 and all units act as neutrals in forming neutrosophic duplets.
Thus, A = {1,3,5,7,9,11,13,15}, which forms a group of order 8, yields the 8 neutrosophic duplets; 8 x i = 8
foralli € Aand A forms a group under multiplication modulo 16; and {1,9} and {1,5,9,13} are subgroups
of A.

In view of this, we have the following theorem.

Theorem 1. Let S = {Zyn, X }, be the semigroup under product modulo 2", n > 2.
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(i) The set of units of Sare A = {1,3,5,...,2" — 1}, forms a group under x and |A| = on=1,
(ii) The set of all neutrosophic duplets with 2"~ is A; neutrals of 2"~ are A.
(i) All elements of the form 2m € Zon (m an odd number) has only the elements {1,2"~1 + 1} to contribute
to neutrosophic duplets (neutrals are 1,21 +1).
(iv) All elements of the form m2" € Zyn;1 < t < n—1; m odd has its neutrals from B = {1,2"~" +
1, 2n—t+1 +1, 2n—t+2 +1, .. .,211—1 + LG—t + zﬂ—H—l +1,.. .,zn—t + 2n—1 +1,...,1+ 2n—t +
o=ty qon 1)

Proof.

(i) Given S = {Z, x} where n > 2 and S is a semigroup under product modulo 2". A =
{1,3,5,7,...,2" — 1} is a group under product as every element is a unit in S and closure axiom
is true by property of modulo integers and |A| = 2"~1. Hence, Claim (i) is true.

(ii) Now, consider the element 2"~1; the set of duplets for 2" lig Afor2" 1 x1=2""121"1x3 =
201 1) =20 420 = 2=l =1 (m); (m is odd) will give only m2" 1. Hence, this proves
Claim (ii).

(iii) Consider 2m € Zyn; we see 2m x 1 = 2m and 2m(2" 1 +1) = m2" +2m = 2m. (2m, 2"~ +1)is
a neutrosophic duplet pair; hence, the claim.
(iv) Let m2! € Zon; clearly, m2f x x = m2! for all x € B.
O

Next, we proceed onto describe the duplet pairsin S = {Z33, x }.

Example 2. Let S = {Zy3, x } be a semigroup under product modulo 3%. The units of S are A = {1,2,4,5,7,8,
10,11,13,14,16,17,19,20,22,23,25,26}. Clearly, A forms a group under a product. The non-units of S
are {3,6,9,12,15,18,21,24}. Zero can be included for 0 x x = 0 for all x € S, in particular for x € A.
The duplet pairs related to 3 are By = {{3,1},{3,10},{3,19}}. The duplet pairs related to 6 are By, =
{{6,1},{6,10},{6,19} }. The duplet pairs related to 9 are

Bs = {{9,1},{9,4},{9,7},{9,13},{9,10}, {9, 16},{9,19}, {9,22},{9,25} }.

The neutrosophic duplets of 12 are By = {{12,1},{12,10}, {12,19} }. The neutrosophic duplets of 15 are
Bs = {{15,1},{15,10}, {15, 19} }. Finally, the neutrosophic duplets of 18 are

Be = {{18,1},{18,4},{18,7},{18,13},{18,10}, {18,16},{18,19},{18,22}, {18,25} }.

The neutrosophic duplets associated with 21 are B; = {{21,1},{21,10},{21,19}} and 24 are By =
{{24,1},{24,10}, {24,19}}. Now, the trivial duplet of 0, which we take is

Bo = {{0,1},{0,4},{0,7}, {0,13},{0,10}, {0, 16}, {0,191}, {0,22}, {0,25}}.
We see L = {By U By U By U...U Bg} forms a semigroup under product modulo 27 and o(L) = 45.
We have the following result.

Theorem 2. Let S = {Zyn, X }, where p is an odd prime, n > 2 is a semigroup under x, and product modulo
is p". The units of S are denoted by A and non-units of S are denoted by B. The neutrosophic duplets of S
associated with B are groups under product and are subgroups of A. The neutrals of tp® = b € B are of the form
D= {1,1 + Pn—s’1 4 pn—s+1,1 + pn—s+2’ . .,1 + pn—l,l + pn—s + pn75+1, 1+ pn—s T pn75+2’ . .’1 +
Pl A T <t <mp/ml <s<n

Proof. Let tp® € Z,n all elements which act as neutrosophic duplets for tp* are from the set D. For any
x € D and tp® € Zjs, we see xtp® = tp°; hence, the claim. [

122



Symmetry 2018, 10, 345

It is important to note that S = {Z,1, x } has no non-trivial neutrosophic triplets as Z,» has no
non-trivial idempotents.
Next, we proceed to finding the neutrosophic duplets of Zy,; p and q are distinct primes.

4. Neutrosophic Duplets of Z,; and Z,p, _p,

In this section, we study the neutrosophic duplets of Z,; where p and q are primes. Further, we
see Zyy also has neutrosophic triplets. The neutrosophic triplets in the case of Z,; have already been
characterized in [23]. We find the neutrosophic duplets of Z5,, p a prime. We find the neutrosophic
duplets and neutrosophic triplets groups of Zys in the following.

Example 3. Let S = {Zys, x } be the semigroup under product modulo 26. The idempotents of S are 13 and 14.
We see 13 is just a trivial neutrosophic triplet, however only 14 contributes to non-trivial neutrosophic triplets.
We now find the neutrosophic duplets of Zye. The units of Zpe are A = {1,3,5,7,9,11,15,17,19,21, 23,25}
and they act as neutrals of the duplets. The non-units which contribute for neutrosophic duplets are B =
{2,4,6,8,10,12,13,14,16,18,20,22,24}. 0 is the trivial duplet as 0 x x = 0 for all x € A. Consider 2 € B
the pairs of duplets are {2,1},2 x 14 = 2 but 14 cannot be taken as anti(2) = 20 and anti(2) exists so 2 is not
a neutrosophic duplet for (2,14,20) is a neutrosophic triplet group.

Consider 4 € B;{4,1} is a trivial neutrosophic duplet. Then, 4 x 14 = 4 and (4,14,16) are again
a neutrosophic triplet as anti(4) = 16 so 4 is not a neutrosophic duplet. Thus, 16 and 20 are also not
neutrosophic duplets. Consider 6 € B; we see {6,1} is a non-trivial neutrosophic duplet. In addition, (6,14, 10)
are neutrosophic triplet groups so 6 and 10 are not non-trivial neutrosophic duplets. Consider 8 € B, (8,14, 18)
is a neutrosophic triplet group. hence 8 and 18 are not neutrosophic duplets. Then, (12,14,12) is also
a neutrosophic triplet group. Thus, 12 is not a neutrosophic duplet. Let 22 € B be such that (22,14,24) is
a neutrosophic triplet group, hence 22 and 24 are not neutrosophic duplets.

Consider 13 € B; we see the neutrals are {1,3,5,7,9,11,15,17,19,21,23,25}. We see the collection of
neutrosophic duplets associated with 13 € Zyg happens to yield a semigroup under product if 13 is taken as the
trivial neutrosophic duplets, as it is an idempotent in Zoe, and, in all pairs, it is treated as semigroup of order 13,
where (13,1) and (13,13) are trivial neutrosophic duplets.

In view of this, we have the following theorem.

Theorem 3. Let S = {Zyp, x } be a semigroup under product modulo 2p; p an odd prime. This S has only p
and p + 1 to be the idempotents and only p contributes for a neutrosophic duplet collection with all units of Zp,
and the collection B = {(p, x)|x € Zap}, x is a unit in Zy), forms a commutative semigroup of order p which
includes 1 and p which result in the trivial duplets pair (p,1) and (p, p).

Proof. Given S = {Z,, x} is a semigroup under x and p is an odd prime. We see from [23] p and
p + 1 are idempotents of Z,,. It is proven in [23] that p + 1 acts for the neutrosophic triplet group of
Zyp (formed by elements 2,4,6,...,2p — 2) as the only neutral. (p, p, p) is a trivial neutrosophic triplet.
However, Z,, has no neutrosophic duplet other than those related with p alone and p x x = p for all x
belonging to the collection of all units of Zp,, including 1. If x is a unit in Z,, two things are essential:
xis odd and x # p. Since x is odd, we see x = 2y + 1 and p(x) = p(2y + 1) = 2yp + p = p, hence
(p, x) is a neutrosophic duplet. The units of Z,, are (p — 1) in number. Further, (p, p) and (p, 1) form
trivial neutrosophic duplets. Thus, the collection of all neutrosophic duplets B = {(p, x)}, x is a unit
and x = p is also taken to form the semigroup of order p and is commutative as the collection of all
odd numbers forms a semigroup under product modulo 2p; hence, the claim. [J

It is important and interesting to note that, unlike Zn, p is a prime and n > 2. We see Z»), has both
non-trivial neutrosophic triplet groups which forms a classical group [23] as well as has a neutrosophic
duplet which forms a semigroup of order p.

Next, we study the case when Z,, is taken where both p and g are odd primes first by an example.

123



Symmetry 2018, 10, 345

Example 4. Let S = {Zj5, x} be a semigroup under product. The idempotents of Zi5 are 10 and 6.
However, 10 does not contribute to non-trivial neutrosophic triplet groups other than {5,10,5}, {10,10,10}.
The neutrosophic triplet groups associated with 6 are (3,6,12), (12,6,3), (9,6,9) and (6,6,6). The neutrosophic
duplets of Zy5 are contributed by {5}, {10} and {3,12,6,9} in a unique way.

Dy = {{5,1},{5,4},{5,7},{5,13},{5,10} },
D, = {{10,13},{10,7},{10,1}, {10,4},{10,10} },
D3 = {{3,11},{3,1},{3,6},{12,11},{12,1},{12,6},{6,11},{6,1},{6,6},{9,11},{9,1},{9,6} }

All three collections of duplets put together is not closed under x; however, Dy and D3 form a semigroup
under product modulo 15. If we want to make Dy a semigroup, we should adjoin the trivial duplets {0,4},
{0,7},{0,13},{0,1},{0,6},{0,10} as well as Dy. Further, we see D1 U D, U D3 is not closed under product.

Thus, the study of Z,; where p and g are odd primes happens to be a challenging problem.
We give the following examples in the case when p =5and g = 7.

Example 5. Let S = {Zs5, x} be a semigroup of order 35. The idempotents of Zzs are 15 and 21.
The neutrosophic triplets associated with 15 are {(15,15,15), (5,15,10), (25,15,30), (20, 15,20), (30,15, 25),
(10,15,5) }, a cyclic group of order six. The cyclic group contributed by the neutrosophic triplet groups associated
with 21 is as follows: {(21,21,21),(7,21,28), (28,21,7), (14,21,14) }, which is of order four. The neutrosophic
duplets are tabulated in Table 1. Similarly, the neutrosophic duplets associated with S = {Zy¢s, x } are tabulated
in Table 2.

Table 1. Neutrosophic Duplets of {Z35, x }.

Neutrals for duplets Neutrals for duplets
5,10, 15, 20, 25, 30 7,14,21,28

1,8,15,22,24 1,6,11, 16, 21, 26, 31

Table 2. Neutrosophic Duplets of {Z;g5, x }.

Neutrals for duplets Neutrals for duplets
3,6,9,12,18,21,24,27, 5,10, 20, 25, 40, 50,
33,36, 39, 48, 51, 54, 57, 66, 55, 65, 80, 85, 95, 100
69,78, 81, 87,93, 96,99, 102
1,36,71 1,22,43, 64,84
Neutrals for duplets Neutrals for duplets
7,14,28,49,56,77,91, 98 15, 30, 45, 60, 75, 90
1,16, 31,46, 61,76,91 1,8,15,22,29, 36,43, 50,

57,64,71,78,85,92,99

Neutrals for duplets Neutrals for duplets
21,42, 63, 84 35,70

1,6,1116,21, 26, 31, 36, 1,4,7,10,13,16,19, 22, 25, 28,
41,46, 51, 56, 61, 66, 71, 31, 34,37, 40,43, 46, 49, 52, 55,
76, 81, 86,91, 96, 101 58,61, 64,67,70,73,76,79,

82,85, 88,91, 94, 97,100, 103

Theorem 4. Let {Z,, X } be a semigroup under product modulo n; x € Z,, \ {0} has a neutral y € Z,, \ {0}
or is a non-trivial neutrosophic duplet if and only if x is not unit in Z,,.
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Proof. x € Z, \ {0} is a neutrosophic duplet if x x y = x(mod n) and y is called the neutral of x.
If x2 = x, then we call the pair (x, x) as trivial neutrosophic duplet pair. We see x x y = x, if xis a
unit in Z,,, then there exists a z € Z,, such thatz x (x x y) =z x x,so thaty = 1 as z x x = 1(mod n);
so y = 1 gives trivial neutrosophic duplets. Thus, x is not a unit if it has to form a non-trivial
neutrosophic duplet pair; x X y = x and y # 1 then if x is a unit we arrive at contradiction; hence, the
theorem. [

Theorem 5. Let S = {Zpg, x} be a semigroup under product modulo pq, p and q distinct odd primes.
There is p number of neutrosophic duplets for every p,2p,3p,...,(q — 1)p. Similarly, there is q number of
neutrosophic duplets associated with every q,2q, . .. (p — 1)q. The neutrals of sq and tp is given by 1 + nq for
1<t<g-1,0<n<p-—1landthatofsqisgivenbyl+mp;1<s<p—-1,0<m<g-1

Proof. Given {Zp;, x} is a semigroup under product modulo pg (p and g two distinct odd primes).
The neutrals associated with any tp;1 < t < g — 1 is given by the sequence {1 + 4,29 + 1,39 +
1,...,(p—1)g+1} forevery tp € {p,2p,..., (9 —1)p}. We see, if tp € Zy,,

tp x (1+nq) = tp+tpng

= tp+ tnpq = tp(mod pq).

A similar argument for sq completes the proof; hence, the claim. [

Theorem 6. Let S = {Zpl,UZMPn/ X } be the semigroup under product modulo p1py . . . pn, Where p1,p2, ..., Pn
are n distinct primes. The duplets are contributed by the non-units of S. The neutrosophic duplets associated

with Ai = {pi,2pi,- .., (prp2-- - pi1Pit1---pn — V)pit are {1+ (p1p2. .. pi-apis1-. - pu)t} where t =
1,2,...,pi—Vandi =1,2,...,n. Thus, every element x; of A; has only p; — 1 number of elements which
neutralizes x;; thus, using each x;, we have p; — 1 neutrosophic duplets.

Proof. Given S = {Z, p,...p,, ¥ } is a semigroup under product modulo p; ... p,, where p;s are distinct
primes, i = 1,2,...,n. Considering A; = {p;,2pi,...,(P1p2---Pi-1Pis1---Pn — 1)p;i}, we have to
prove that, for any sp;, sp; X [1+ (p1p2. .. pi—1Pit1---Pu)tl = spi 1 <t < p;_1.

Clearly,

spi X [+ (p1pa- - picapiyi - p)t] = spi +spil(pip2 - - pic1piva - - pu)t]
=spi+st{(pip2-.. picapiPiv1 - - pu)] = spi
as p1p2...pn = 0(mod (p1p2 ... pn)). Hence, the claim. [

Thus, for varying t and varying s given in the theorem, we see

{spi, 1+ (p1p2- - picapia - pu)t)}
is a neutrosophic duplet pair 1 <t < p; —1; 1 <s < p1p2...pi—1pit1---pnandi=1,2,... ,n.

5. Discussions and Conclusions

This paper studies the neutrosophic duplets in the case Zyn, Zy; and Zy,p, . p,. In the case of
Zpn and Zp,, a complete characterization of them is given; however, in the case Z, . p,, only the
neutrosophic duplets associated with p;s are provided; i = 1,2,. .. n. Further, the following problems
are left open:

1. For Zyg, p and q odd primes, how many neutrosophic duplet pairs are there?

2. For Zy,. p,, what are the neutrals of p;pj, pipjpx,---, P1P2 - - - Pi-1Pi41 - Pu?

3. The study of neutrosophic duplets of prlptz pini P1r- - pn are distinct primesand t; > 1;1 <i <
Lps

n is left open.
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For future research, one can apply the proposed neutrosophic duplets to SVNS, DVNS or TRINS.

These neutrosophic duplets can be applied in problems where neutral elements for a given a in Z,n or
Zyq happens to be many. However, the concept of anti(a) does not exist in the case of neutrosophic
duplets. Finally, these neutrosophic duplet collections form a semigroup only when all the trivial
neutrosophic duplet pairs (0, ) for all appropriate a are taken. These neutrosophic duplets from Z,»
and Zp; can be used to model suitable problems where the anti(a) under study does not exist and
many neutrals are needed. This study can be taken up for further development.
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TRINS  Triple Refined Indeterminate Neutrosophic Sets
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Intuitionistic Fuzzy Sets
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Abstract: Fault diagnosis is an important issue in various fields and aims to detect and identify the
faults of systems, products, and processes. The cause of a fault is complicated due to the uncertainty
of the actual environment. Nevertheless, it is difficult to consider uncertain factors adequately with
many traditional methods. In addition, the same fault may show multiple features and the same
feature might be caused by different faults. In this paper, a neutrosophic set based fault diagnosis
method based on multi-stage fault template data is proposed to solve this problem. For an unknown
fault sample whose fault type is unknown and needs to be diagnosed, the neutrosophic set based on
multi-stage fault template data is generated, and then the generated neutrosophic set is fused via the
simplified neutrosophic weighted averaging (SNWA) operator. Afterwards, the fault diagnosis results
can be determined by the application of defuzzification method for a defuzzying neutrosophic set.
Most kinds of uncertain problems in the process of fault diagnosis, including uncertain information
and inconsistent information, could be handled well with the integration of multi-stage fault template
data and the neutrosophic set. Finally, the practicality and effectiveness of the proposed method are
demonstrated via an illustrative example.

Keywords: neutrosophic set; fault diagnosis; normal distribution; defuzzification; simplified
neutrosophic weighted averaging operator

1. Introduction

Fault diagnosis aims to identify and repair faults in systems, products, and processes, and has been
widely applied to various fields, for instance, military [1,2], economic [3,4], and medicine [5,6], and
plays a significant part in the prevention of accidents during the normal operation of equipment [7,8].
Owing to the complexity and uncertainty of the actual environment, fault information is usually
imprecise, incomplete, and uncertain, and it is thus, difficult to cope with [9-12]. The challenge
is to devise a fault diagnosis process to reduce the impact of such imprecision, incompletion, and
uncertainty as much as possible. Furthermore, the fault information obtained from multiple sources
may be different or even conflicting [13]. In such cases, it is important to check conflicts between the
information and to aggregate the information into consistent information.

A great deal of research work has been performed in the field of fault diagnosis, some of which
has resulted in the application of efficient approaches to exactly and expeditiously diagnose certain
types of faults. Nevertheless, most of these methods fail to diagnose multiple types of faults [14-16].
To solve this problem, some methods based on Bayes theory were proposed [17-19], though efficient
aggregation results could only be obtained when the proper and qualified a priori and conditional
probabilities were obtainable in the methods based on Bayes theory [20]. As a development of the Bayes
theory, the Depmster-Shafer evidence theory was proposed to deal with uncertainty problems [21-24].
Reference [25] describes the integration of the fuzzy set theory and evidence theory to improve the
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accuracy of various diagnoses. In addition, there have been several research works based on the use of
acoustic signals [26-28] for the fault diagnosis of rotating machines. Lee et al. [29] presented a power
transformer fault diagnosis method based on set pair analysis (SPA) and association rules. He et al. [30]
proposed a novel fault diagnosis method based on the relevance vector machine (RVM) to deal with
small data samples. Vibration signal-based fault diagnosis methods [31-33] have also proposed in
recent years.

However, uncertain factors in the process of fault diagnosis have not been well handled. In order
to deal with uncertain problems under fuzzy information and incoherent information, Smarandache
defined the concept of a neutrosophic set [34-37], which is a set of elements that exist in a non-standard
unit interval, such as the realness degree, uncertainty degree, or false degree, as a summarization of
concepts of the classic set [38], fuzzy set (FS) [39], intuitionistic fuzzy set (IFS) [40,41] and interval
valued intuitionistic fuzzy set (IVIFS) [42]. To facilitate the application of the neutrosophic set to
practical problems, Wang et al. [43] proposed the concepts of the interval neutrosophic set (INS) and
single valued neutrosophic set (SVNS), and Ye [44] defined the concept of the simplified neutrosophic
set (SNS). In order to fuse the neutrosophic information to solve realistic problems under a neutrosophic
environment, some researchers proposed neutrosophic aggregation operators. For instance, Liu and
Wang [45] introduced a single-valued neutrosophic normalised weighted Bonferroni mean operator
based on the SVNS. Furthermore, Peng et al. [46] developed simplified neutrosophic information
aggregation operators, such as the simplified neutrosophic weighted averaging (SNWA) operator and
the simplified neutrosophic weighted geometric (SNWG) operator.

Several methods based on the neutrosophic set have been proposed for fault diagnosis.
For instance, Ye proposed cotangent similarity measures for SVNSs based on a cotangent function
for the fault diagnosis of steam turbines [47] and the dimension root similarity measure of SVNSs
for the fault diagnosis of hydraulic turbines [48], which are all used for fault diagnosis under a
single-valued neutrosophic environment. Kong et al. proposed the misfire fault diagnosis method for
the fault diagnosis of gasoline engines [49]. Zhang et al. proposed a single-valued neutrosophic (SVN)
multi-granulation rough set over a two universe model for the diagnosis of steam turbine faults [50].

There is still a requirement to deal with the uncertainty, imprecision, and incompletion of
information and to improve the accuracy of fault diagnosis results with reduced calculations
[51-53]. Nevertheless, the complex relationships among fault types and various features of faults
in fault diagnosis problems leads to difficulty in fault diagnosis. In addition, with changes in time,
the unsteadiness of the actual environment causes uncertainty in fault template data collected at
different stages. The uncertainty of multi-stage fault template data, however, fails to be dealt with well.
In order to solve this problem, a neutrosophic set based fault diagnosis method based on multi-stage
fault template data is proposed in this paper. An unknown fault sample whose fault type is unknown
is diagnosed by generating its neutrosophic sets based on multi-stage fault template data, and then
the SNWA operator is applied to fuse the multi-stage neutrosophic sets of the unknown fault sample
under each feature and to fuse the neutrosophic sets of all features of the unknown fault sample again.
Afterward, the fault diagnosis results are determined by the application of the defuzzification method
to defuzzy the neutrosophic set of each fault type. This proposed method has several main traits.
Firstly, in comparison to some traditional fault methods, for instance, the method based on the relevance
vector machine [30], the multi-stage fault template data can deal with the uncertainty of collected
data due to the unsteadiness of the actual environment. Afterwards, compared with the method
based on random fuzzy variables [54], the application of the neutrosophic set gives consideration
to the uncertainty of the fault types and the unknown fault sample, which reflects and handles the
uncertainty of fault information well. Compared with former neutrosophic set based methods for fault
diagnosis [47-50], the generation of a neutrosophic set based on multi-stage fault template data in this
paper can deal with uncertain information better and diagnose the faults efficiently.

The rest of this paper is arranged as follows: Section 2 briefly introduces the concepts of the
neutrosophic set, SNS, and the SNWA operator. The proposed method for fault diagnosis is listed step
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by step in Section 3. In Section 4, a numerical example is used to demonstrate the reasonableness of
this proposed method, and to interpret the proposed method. Some summary remarks are shown in
Section 5.

2. Preliminaries

The neutrosophic set, introduced by Smarandache [34], is an extension of the classical FS [39],
IFS [40], and IVIFS [42]. It is an efficient tool for dealing with the problem with uncertain information.
The neutrosophic set concept is defined as follows [43]:

Definition 1. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic set
(A) in X is characterized by a truth-membership function (T ), an indeterminacy-membership function (14)
and a falsity-membership function (Fp). Ta(x), Ia(x), and Fa(x) are real standard or non-standard subsets of
107,17 [. That is,

Ta: X =]07,17]
Ip: X —]07,17] 4))
Fq:X =07, 17

There is no restriction on the sum of T (x), La(x) and Fa(x),50 0~ < supTa(x) + supls(x) + supFa(x) < 3.

In order to promote the application of the neutrosophic set in practical problems, the notion of
SNS [44] was proposed as a subclass of the neutrosophic set. The definition of SNS is as follows [44]:

Definition 2. Let X be a space of points, with a generic element in X denoted by x. A neutrosophic set
(A) in X is characterized by a truth-membership function (T4 (x)), a indeterminacy-membership function
(Ia(x)) and a falsity-membership function (Fa(x)). If Ta(x) : X — [0,1], Ia(x) : X — [0,1] and
Fa(x) : X — [0,1] satisfied:

x € X Ta(x) €[0,1]

x e X Ia(x) €0,1] @
x € X+ Fy(x) € [0,1] and
0< TA(X) + IA(X) +FA(X) <3.
Then an SNS A in X can be denoted as
A ={{x,Ta(x),14(x),Fa(x))|x € X} ®)

Which is called an SNS. In particular, if X includes only one element, N = (T4 (x), [4(x), Fa(x))
is called a SNN and is denoted by a« = (t, 77, v). The numbers i, 77, v denote, respectively, the degree
of membership, the degree of indeterminacy-membership, and the degree of non-membership.

For any two SNSs (A = (Ta(x),Ia(x),Fa(x)),B = (Tg(x),Ip(x), Fg(x))), the operational
relations are defined as the following [44]:

A+B =(Ta(x)+Tp(x)—Ta(x)Tp(x), La(x) + Ip(x) — La(x)Ip(x), Fa(x) + Fp(x) — Fa(x)Fp(x)),
A x B = (Ta(x)Tp(x), La(x)Ip(x), Fa(x)Fp(x)),

M =1 —(1—Ta(x)"1— (1= Ia(x))", 1= (1= Ea(x))),A >0,

AN = (Ta(x)}, Ta(x)", Ta(x)"),A > 0.

4)
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Peng et al. [46] developed some simplified neutrosophic information aggregation operators,
such as the SNWA operator, which is based on the conception of SNS. It is defined as follows [46]:

Definition 3. Let a; = (y;, 7t;,v;),i = 1,2,...,n be a collection of SNNs. Then,

SNWA(aq,a2,...,0,) = Wiy + Waty + ... + Wpaty

n

= a-TTa - TT™ T,  i=12..n
i=1

i=1 i=1

®)

n
where w = (wy,wy, ..., wy)T is the weight vector of a;(i = 1,2,...,n), withw; € [0,1] and ¥ w; = 1.
i=1

3. The Proposed Method

The characteristics of the actual environment in which a system, product, or process is used,
for instance, the temperature, location and air, are unstable over time in the fault diagnosis process,
even if the equipment works under the same conditions normally, which leads to uncertainty in the
data collected at different stages. These factors have obvious impacts on fault diagnosis results. Thus,
the uncertainty of fault information must be dealt with to achieve more efficient diagnosis results.
In the face of this problem, a neutrosophic set based fault diagnosis method based on multi-stage fault
template data is proposed to diagnose the unknown fault sample in this paper. Consider an unknown
fault sample (S) with n features (C = {Cy,Cy, ..., Cy}), whose data have been collected under each
feature. The aim of this fault diagnosis method is to identify the fault type of the unknown fault
sample (S). The flow-process diagram of the proposed method is shown in Figure 1, and the detailed
procedures are elaborated step by step in the following text.

Step 1: Collect the multi-
_______ »| stage data of each fault
type under each feature

Use original data
for generating
SNS

Step 2: Generate the SNS
I »| for unknown fault sample
based on multi-stage data
L= ! of each fault type under
each feature

|

Step 3: Aggregate
generated SNS based on

- T~ | each fault type under each
e - | feature
|

| |
| |
H Fuse the L ¢
| |
| |

Step 4: Aggregate fused
b e 1 L —»| SNS based on all features
of each fault type

A

- _D_eze_r;wi_n_e_ﬂ:e_ B _: Step 5: Determine the fault
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Figure 1. Block diagram of the proposed method.
Step 1 Collect the multi-stage data of fault types under each feature. Suppose that there are m fault
types (F = {Fy, B, ..., Ey}) with n features (C = {Cy,Cy, ..., Cy}). Firstly, collect the multi-stage

data of each fault type under each feature. Each stage’s data for each fault type under each
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Step 2

feature are obtained by continuously collecting within the time interval (T). Suppose that data
from k stages of every fault type under every feature are obtained. The multi-stage data of each
fault type under each feature are shown as follows:

G

E . kstages data of F; under C;

wherei =1,2,...,m andj =1,2,...,n.

Generate the SNS for an unknown fault sample (S) based on the multi-stage data of each
fault type under each feature. For each stage’s data for each fault type under every feature,
and for the data of every feature of the unknown fault sample (S), a normal distribution model
is established which is obtained by using the arithmetic average (m) and variance (¢2) of a
stage’s data as the arithmetic average and standard deviation of the normal distribution model,
denoted as N(m, ¢2). Then, k normal distribution models and k normal distribution figures
are generated according to k stages of data of each fault type under each feature. In addition,
a normal distribution model is generated based on the data of the unknown fault sample
under each feature. The normal distribution figures generated from the data of C; of unknown
fault sample S and k stages of data for C; of F; are shown in Figure 2. As the figure shows,
each stage’s data collected drift to a certain extent in a certain range. In particular, there are
distinct differences between the fault type’s data collected in the fourth stage and the data of the
unknown fault sample.
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Figure 2. Distribution of S under C; and F; under C;.

The normal distribution function indicates the distribution probability density of the data.
The membership degree of SNS is defined as the ratio of the maximum value of the vertical
coordinate of the intersection point between the unknown fault sample and the fault type and
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the peak value of the unknown fault sample. The two normal distribution curves (Figure 3) and
the definition of the membership degree (i) are as follows:

p=n, ©)

where y, represents the maximum value of the vertical coordinate of the intersection point of
distribution between the unknown fault sample (S) and the fault type (F;), and y,, represents the
peak value of the unknown fault sample’s distribution.

As the figure shown, the intersection points of distribution between the unknown fault sample
and F; are marked with X, and the peak point of S” distribution is marked with X in the same
way. Then, from the Equation (6), the membership degree is generated.
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Figure 3. Generation of the membership degree.

In this paper, it is assumed that the non-membership degree and the membership degree
are interdependent. The indeterminacy-membership degree indicates the uncertainty degree
of neutrosophic information. Entropy represents the uncertainty of the information and has
been widely used in many fields. Shannon introduced the quantitative and qualitative model
of communication as a statistical process that underlies information theory [55], which is a
formalism that was originally applied to digital communication. The indeterminacy-membership
degree and non-membership degree are defined as follows:

1) v=1-p,

1 1 @)
(2) n= ulf)gz(;) +vloga(), p#0,v#0.

The indeterminacy-membership degree (77) represents the Shannon entropy of the membership
degree (1) and the non-membership degree (v), and 7t equals 0 if y or v equal 0. Hence, the SNS
can be obtained. The generated SNS is shown in Table 1:
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Table 1. The generated simplified neutrosophic set (SNS) for S based on multi-stage data.

Fault T s Feature
ault e tage
yp g G o c
15} 1 (F‘iy mh, vih) (ﬂiz' T, i) e (.”in/ ﬂin' Vin)
2 (11, 3, viy) (M 7 Vi) o (1 70 Vi,
k (k1 7y vhy) R (W, 7k 14,
FZ 1 (’4%1’ H%lf V%]) (]’%2’ 7-[%2’ V%Z) (“Ll%”, n%n’ V%n)
(21, 31, v3y) (M2 T3, v3y) -+ Hapr Tonr Vo
k (le(l’ nlzcl’ VIZ{]) (F’EZ’ 7(,2{2’ V’ZCZ) (nulénf HIZCn’ V,ZCn)
Fin 1 (”L}n]' 7T;1n]f Vylnl) (.u}y,Z/ n}nz’ V;lnz) (I’l%mr 71',1,,”, Vrlml)
2 Mo Tt Vi) (Hapr Ty Vap) o Faus T Vi
k (M1 1 Vo) (Maor Thos Via) = (s Tohuns Viun)

Step 3 Aggregate the generated SNS based on each fault type under each feature. In this paper, it is
assumed that the weights of data from k stages collected under the same working conditions
are equal. The k SNNs of each fault type under each feature are fused via the SNWA operator,
as shown in Equation (5). For instance,

ap = SNWA(ady, a2y, ..., ak)). (8)

Then, the fused SNS matrix (A) is as follows:

(#ij, Tij, Vi)

wherei=1,2,...,m and j=1,2,...,n.
Step 4 Aggregate the fused SNS based on all features of each fault type. If the weights of n features are
equal, n SNNs of each fault type are fused via the SNWA operator, as shown in Equation (5).
For instance,
oy = SNWA(a11, &12, -, &15). )

Then, the fused SNS matrix (F) is as follows:

i3] (1, 1, v1)

I3 (p2, 72, v2)
F = . " .

Fu (I/im/ T, Vm)
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Step 5 Determine the fault type of the unknown fault sample. Considering the fuzziness of the unknown
fault sample and the fault types, direct application of the defuzzification method can intuitively
reflect the results of the fault diagnosis and reduce the amount of calculation in the process of
fault diagnosis. The crisp number of each SNN is defuzzied and calculated as follows [56]:

Hi
Pi+ i

Ci = pi+ (m)( (10)
C, is the degree to which the information extracted from the data of untested fault supports each
fault type. As a result, the ranking order of all the fault types can be determined according to the
descending order of their crisp numbers (C;).

4. Illustrative Example and Discussion

In this section, an example of a motor rotor is used to demonstrate the validity and accuracy rate
of the proposed method.

The experimental equipment is a multi-functional flexible rotor test-bed. The vibration displacement
sensor and acceleration sensor were placed in the horizontal and vertical directions of the rotor support
pedestal, respectively, to collect the rotor vibration signals, and the signals were transmitted to the upper
computer through the acquisition box. Then, using the data analysis software under the LabVIEW
environment, the vibration acceleration spectrum of the rotor and the average amplitude of vibration
displacement in the time domain were obtained as the fault feature signals. An unknown fault sample,
S1, was used. When the rotor was running normally, the amplitude of each vibration frequency did
not exceed 0.1 m/s?. When the fault occurred, the frequency and augmentation of the amplitudes
of different faults were distinct. The vibration energy of three kinds of fault types were mostly
concentrated at 1 — 3X. Therefore, S| was determined to have four features:

1. Cy: The vibration amplitude when the acceleration frequency of the rotor is the basic frequency,
1X.

2. Cy: The vibration amplitude when the acceleration frequency of the rotor is the frequency 2X.

Cz: The vibration amplitude when the acceleration frequency of the rotor is the frequency 3X.

4. Cy4: The average amplitude of vibration displacement in the time-domain.

@

The data in this paper originated from ref. [57]. The data of S; under each feature was collected.
For instance, the data of S; under C; was as follows:

Sic, Data = [0.1421 0.1426 0.1422 0.1422 0.1423 0.1433 0.144 0.1439 0.1437 0.1436
0.1432 0.1434 0.1437 0.1428 0.1424 0.1427 0.1431 0.1425 0.1428 0.1421
0.1424 0.142 0.1422 0.1426 0.1431 0.1428 0.1426 0.1424 0.1422 0.1416
0.1424 0.1429 0.1424 0.1423 0.1421 0.142 0.142 0.1423 0.1425 0.1426].

Step 1 Collect the multi-stage data of each fault type under each feature. There are three fault types set
up on the test-bed:
1. F;: Rotor imbalance.
2. F: Rotor misalignment.
3. F3: Support base loosening.

For each feature of each fault type, data from five stages were collected, and for each stage’s data,
forty consecutive observation values were collected continuously within a time interval of 16 s.
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The data in this paper originated from Reference [57]. For instance, the first stage’s data of F;
under C; was as follows:

Fic, First Stage's Data = [0.1663 0.1590 0.1568 0.1485 0.1723 0.2006 0.1903
0.1908 0.1986 0.1843 0.1785 0.1610 0.1579 0.1511 0.1532 0.1647 0.1628 0.1646
0.1634 0.1642 0.1648 0.1640 0.1674 0.0661 0.1659 0.1650 0.1633 0.1632 0.1604
0.1542 0.1555 0.1562 0.1540 0.1564 0.1557 0.1542 0.1546 0.1571 0.1537 0.1536].

Step 2 Generate the SNS for the unknown fault sample based on the multi-stage data from each fault
type under each feature. Each stage’s data collected is used to establish the normal distribution
model. The generated normal distributions of fault types and the unknown fault sample are
listed in Table 2. For instance, the normal distribution of S1¢, data and F;¢, with five stages of
data is shown in Figure 4. As the figure shows, each stage’s data collected drift to a certain extent
in a certain range. In particular, there were distinct differences between the fault types collected
in each stage and the data of unknown fault samples. Therefore, it is significant to collect data in
multiple stages and to use its integration with the neutrosophic set to deal with the uncertainty
of fault information.

Table 2. Multiple distributions of fault types and the unknown fault sample.

Fault T st Feature
ault e age
P & C1 Cy C3 Cy
F 1 N(0.1619, 0.0200) N(0.1538, 0.0112)  N(0.1163, 0.0098)  N(4.3057, 0.1124)
2 N(0.1596, 0.0073)  N(0.1509, 0.0052) N(0.1095, 0.0021)  N(4.4143, 0.0226)
3 N(0.1644, 0.0009) N(0.1468, 0.0024) N(0.1063, 0.0037) N(4.2626, 0.6336)
4 N(0.1617, 0.0006)  N(0.1519, 0.0316) N(0.1117, 0.0022) N(4.3138, 0.0249)
5 N(0.1598, 0.0010)  N(0.1428, 0.0025) N(0.1182, 0.0017) N(4.3319, 0.0347)
F 1 N(0.1696, 0.0096) N(0.3266, 0.0108) N(0.2772, 0.0250) N (4.9825, 0.1882)
2 N(0.1742, 0.0045) N(0.3278, 0.0083) N(0.2726, 0.0095) N(4.5844, 0.1226)
3 N(0.1932, 0.0138)  N(0.3384, 0.0115) N(0.2217, 0.0339)  N(4.4358, 0.4015)
4 N(0.1916, 0.0037)  N(0.3350, 0.0063) N(0.2131, 0.0053) N(5.0105, 0.6455)
5 N(0.1804, 0.0031) N(0.3187, 0.0041) N(0.2255, 0.0135) N(4.5631, 0.0678)
F 1 N(0.3387, 0.0071)  N(0.3413, 0.0207)  N(0.1501, 0.0120)  N(9.8483, 0.0709)
2 N(0.3296, 0.0026)  N(0.3511, 0.0090) N(0.1341, 0.0080) N(9.7652, 0.0953)
3 N(0.3247, 0.0074)  N(0.3409, 0.0135)  N(0.1341, 0.0113)  N(9.7802, 0.0608)
4 N(0.3265, 0.0049) N(0.3357, 0.0098) N(0.1330, 0.0052) N(9.8739, 0.1267)
5 N(0.3275, 0.0023)  N(0.3503, 0.0060)  N(0.1295, 0.0048) N(9.7856, 0.1010)
Sq 1 N(0.1427, 0.0006)  N(0.1109, 0.0316) N(0.1337, 0.0022) N(4.0938, 0.0249)
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Figure 4. Distribution of S; under C; and F; under Cy.

Then, p, 71, v are calculated with Equations (6) and (7). For instance, the distribution of S1¢, Data
was N (0.1427, 0.0006), the normal distribution of F;¢, s first stage of data was N(0.1619, 0.0200),
and the membership degree of SNN generated from the two distributions is shown in Figure 5.
As the figure shows, the intersection points of distribution between the unknown fault sample
(S1) and Fy¢,’s first stage data are marked with X, and the peak point of S;’s distribution is
marked with X in the same way. Then, from the Equations (6) and (7), the SNN was generated
and denoted as (0.0197, 0.0969, 0.9803). The generated SNSs are listed in Table 3.
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Figure 5. Generation of membership degree.
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Table 3. The generated SNS for S; based on the multi-stage data from every fault type under
every feature.

Feature

Fault Type Stage

C1

C

Cs

Cy

B

(0.0197, 0.0969, 0.9803)
(0.0092, 0.0521, 0.9908)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)

(0.7400, 0.5731, 0.2600)
(0.6576, 0.6426, 0.3424)
(0.6382, 0.6545, 0.3618)
(0.8108, 0.4851, 0.1892)
(0.7177,0.5951, 0.2823)

(0.0973, 0.3191, 0.9027)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0004, 0.0032, 0.9996)

(0.0841, 0.2888, 0.9159)
(0.0000, 0.0000, 1.0000)
(0.0388, 0.1641, 0.9612)
(0.0001, 0.0006, 0.9999)
(0.0003, 0.0026, 0.9997)

b

(0.0021, 0.0152, 0.9979)
(0.0000, 0.0000, 1.0000)
(0.0001, 0.0010, 0.9999)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)

(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)

0.0000, 0.0000, 1.0000
0.0000, 0.0000, 1.0000
0.0038, 0.0249, 0.9962
0.0000, 0.0000, 1.0000
(0.0000, 0.0000, 1.0000)

0.0000, 0.0000, 1.0000)
0.0010, 0.0082, 0.9990)
0.0486, 0.1944, 0.9514)
0.0164, 0.0836, 0.9836)
(0.0000, 0.0000, 1.0000)

F

DIl WU WN O WN -~

(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)

(0.0001, 0.0008, 0.9999)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)

(0.1118, 0.3502, 0.8882)
(0.2525, 0.5650, 0.7475)
(0.1847,0.4785, 0.8153)
(0.3815, 0.6648, 0.6185)
(0.4364, 0.6850, 0.5636)

(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)
(0.0000, 0.0000, 1.0000)

Step 3 Aggregate the generated SNSs based on each fault type under each feature. Fuse the five stages
of SNNSs for each fault type under each feature with the SNWA operator, Equation (5). It is
assumed that the weights (w) of the five SNNs are [0.20, 0.20, 0.20, 0.20, 0.20]. For example,
the SNNs based on the fault type F; under feature C; could be fused as follows:

&1 = SNWA(“%I/“%l/“%lf“%l/“?l)

= SNWA((0.0197, 0.0969, 0.9803), (0.0092, 0.0521, 0.9908),
(0,0,1),(0,0, 1),(0, 0, 1))

= (0.0058, 0.0000, 0.9942).

The others are shown in Table 4.

Table 4. The results of fusing the five SNNs of each fault type under each feature.

Fault Type C1 G Gs Cy
F (0.0058, 0.0000, 0.9942)  (0.7200, 0.5868, 0.2800)  (0.0203, 0.0000, 0.9797)  (0.0252, 0.0008, 0.9748)
F (0.0004, 0.0000, 0.9996)  (0.0000, 0.0000, 1.0000)  (0.0008, 0.0000, 0.9992)  (0.0134, 0.0038, 0.9866)
F (0.0000, 0.0000, 1.0000)  (0.0000, 0.0000, 1.0000)  (0.2836, 0.5332, 0.7164)  (0.0000, 0.0000, 1.0000)

Step 4 Aggregate the fused SNSs based on all features of each fault type. Fusing the SNNs is based
on the four features of each fault type by the SNWA operator, Equation (5). In addition, it is
supposed the weights (w) of the four SNNs are [0.25, 0.25, 0.25, 0.25]. For example, the SNNs

based on fault type F; could be fused as follows:

a1 = SNWA(a11, 012, €13, 14)
— SNWA((0.0058, 0, 0.9942), (0.72, 0.5868, 0.28), (0.0203, 0, 0.9797),

(0.0252, 0.0008, 0.9748))
= (0.2633, 0.0000, 0.7367).

The others are shown in Table 5.
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Table 5. The results of fusing the SNNs containing four features based on each fault type.

Fault Type SNS
F (0.2633, 0.0000, 0.7367)
F (0.0030, 0.0000, 0.9970)
F (0.0952, 0.0000, 0.9048)

Step 5 Determine the fault type of the unknown fault sample. Finally, Table 5 can be regarded as an
SNN fault diagnosis matrix which can be used to rank the three fault types via the defuzzification
method (Equation (10)). The descendant ranks of the crisp numbers of the three fault types are
shown in Table 6.

Table 6. The ranks of the crisp numbers of three fault types.

Fault Type Crisp Number Rank

F 0.263335 1
k 0.003040 3
R 0.095221 2

The above ranking results show that the fault type diagnosed by the proposed method is [,
which is consistent with the true fault type.

In addition, taking the distribution of the data of S; under a certain feature, for instance,
C3, and the distribution of the first stage’s data of each fault type under the identical feature as an
example, the distribution figure is shown in Figure 6. As the figure shows, the maximum intersection
points of the ordinate of distribution between S; and each fault type (F;) are marked with X, and the
peak point of S;’s distribution is marked with X in the same way. Then, from the calculation formula
of the membership degree (Equation (6)), it is clear that the membership of S; to F3 is the maximal
one, which conflicts with the originally known information that S1’s actual fault type is F;, and this
situation is not rare. Therefore, the integration of multi-stage fault template data and the neutrosophic
set is efficient and significant, and it fuses the conflicting information into coordinated information
and obtains the correct diagnosis results.
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Figure 6. The distribution of S; and the three fault types.
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Moreover, the proposed method was used to verify the other two unknown fault samples,
and these diagnosis results were also correct. The diagnosis result of the three unknown fault samples
are shown in Figure 7, where the ordinate indicates the crisp number of the defuzzification result,
and the abscissa indicates the fault types. As shown in this figure, the crisp numbers of the unknown
fault sample of each fault type are plotted with a line chart. When the crisp number of an unknown
fault sample for a certain fault type (F;) is maximal, the diagnosed fault type of the unknown fault

sample is F;.
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Figure 7. The diagnosis results of the three unknown fault samples.
Compared with Xu’s method [54], which was used to diagnose three unknown fault samples
(51,52, S3), the proposed method was also applied to diagnose identical three unknown fault samples

(51,52, 53) to demonstrate the reasonableness of this proposed method. The diagnosis results are
shown in Table 7.

Table 7. Diagnosis results of the proposed method and Xu’s method.

Rank of Fault Types
Unknown Fault Mehod Diagnosis Result  Validity
F1 F2 F3
s The proposed method 1 3 2 F Correct
1 Xu’ method [54] 1 3 2 £ Correct
S The proposed method 2 1 3 F Correct
2 Xu’ method [54] 2 1 3 B Correct
S The proposed method 3 2 1 R Correct
3 Xu’ method [54] 3 2 1 F Correct

From the diagnosis results in Table 7, it is concluded that the similar rankings for all fault types and
diagnosis results indicates the practicality and effectiveness of the proposed method. Xu’s method [54]
only applies to the minimum and maximum mean values of five stages of data, whose boundary
rests with the several stages of data collected. However, it is widely admitted that each stage’s data
would drift to a certain extent over a certain range, and the deviation of data due to the unsteadiness
of the actual environment is one of most influencing causes in fault diagnosis results. It is difficult
for Xu’s method [54] to express and deal with the uncertainty of multi-stage fault template data,
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which the proposed method coped with appropriately due to the integration of multi-stage fault
template data and the neutrosophic set. In adition, the crisp numbers fail to precisely express the
information extracted from the data collected due to the unsteadiness of measuring the environment.
The neutrosophic set, however, was able to accurately describe the uncertain phenomenon, as it gives
consideration to both the uncertainty of fault types and the unknown fault sample. Most kinds of
uncertain problems in the process of fault diagnosis, including uncertain information and inconsistent
information could be handled well with the integration of multi-stage fault template data and the
neutrosophic set.

5. Conclusions

In this paper, to deal with uncertain problems in fault diagnosis, a fault diagnosis method was
developed by defuzzying the neutrosophic set obtained from multi-stage data. The focus of this
method is the collection of data in multiple stages and the generation of SNS, which was expected
to appropriately minimize the uncertainty of fault type information and unknown fault sample
information. An illustrative example was provided in this paper, and the results of this example
indicate that the proposed method can effectively diagnose the fault type of an unknown fault sample.
This neutrosophic set based fault diagnosis method based on multi-stage fault template data not only
handles the uncertainty of information collected in fault diagnosis well, but also provides a method for
fault diagnosis where there are complicated corresponding relationships between multiple fault types
and their features. It is both efficient and convenient when dealing with fault diagnosis problems.
Further work will focus on the following directions. An appropriate method for the calculation of
features” weights based on the information collected is planned. In addition, for the convenience of
calculation, the double aggregation of netrosophic sets may be simplified in future work.
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1. Introduction

In 1965, Zadeh introduced the concept of fuzzy set in which the degree of membership is expressed
by one function (that is, truth or t). The theory of fuzzy set is applied to many fields, including fuzzy
logic algebra systems (such as pseudo-BClI-algebras by Zhang [1]). In 1986, Atanassov introduced
the concept of intuitionistic fuzzy set in which there are two functions, membership function (t) and
nonmembership function (f). In 1995, Smarandache introduced the new concept of neutrosophic
set in which there are three functions, membership function (t), nonmembership function (f) and
indeterminacy/neutrality membership function (i), that is, there are three components (t, i, f) =
(truth, indeterminacy, falsehood) and they are independent components.

Neutrosophic algebraic structures in BCK/BCI-algebras are discussed in the papers [2-10].
Moreover, Zhang et al. studied totally dependent-neutrosophic sets, neutrosophic duplet semi-group
and cancellable neutrosophic triplet groups (see [11,12]). Song et al. proposed the notion of generalized
neutrosophic set and applied it to BCK/BCl-algebras.

In this paper, we propose the notion of a commutative generalized neutrosophic ideal in a
BCK-algebra, and investigate related properties. We consider characterizations of a commutative
generalized neutrosophic ideal. Using a collection of commutative ideals in BCK-algebras, we obtain
a commutative generalized neutrosophic ideal. We also establish some equivalence relations on the
family of all commutative generalized neutrosophic ideals in BCK-algebras, and discuss related basic
properties of these ideals.

2. Preliminaries

A set X with a constant element 0 and a binary operation * is called a BCI-algebra, if it satisfies
(Vx,y,z € X):

Symmetry 2018, 10, 350; doi:10.3390/sym10080350 144 www.mdpi.com/journal /symmetry
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M) ((xxy)*(xxz))*(zxy) =0,
(I (x*(x*y))*y=0,

() x*x=0,

(IV) xxy=0,yxx=0 = x=y.

A BClI-algebra X is called a BCK-algebra, if it satisfies (Vx € X):
(V) 0xx=0,
For any BCK/BClI-algebra X, the following conditions hold (Vx,y,z € X):

x*x0=x, D)
X<y = x*z<Yxz,z2xY < Z%X, ()
(xxy)sz=(x%z)*y, 3)
(x#z)x (y*z) <xxy 4)

where the relation < is defined by: x < y <= x xy = 0. If the following assertion is valid for a
BCK-algebra X, Vx,y € X,

xx(xxy) =yx(y*x). ®)

then X is called a commutative BCK-algebra.
Assume [ is a subset of a BCK/BCI-algebra X. If the following conditions are valid, then we call
I'is an ideal of X:

0el, 6)
(VxeX)(Vyel)(xxyel = xel). )

A subset I of a BCK-algebra X is called a commutative ideal of X if it satisfies (6) and
(Vx,y,zeX)((xxy)xzel,zel = x*x(yx(yxx)) €l). 8)
Recall that any commutative ideal is an ideal, but the inverse is not true in general (see [7]).

Lemma 1 ([7]). Let I be an ideal of a BCK-algebra X. Then I is commutative ideal of X if and only if it satisfies
the following condition for all x,y in X:

xxyel = xx(yx(y*x)) €l ©)
For further information regarding BCK/BCl-algebras, please see the books [7,13].

Let X be a nonempty set. A fuzzy set in X is a function y : X — [0,1], and the complement of
#, denoted by i, is defined by pu°(x) =1 — pu(x), Vx € X. A fuzzy set j in a BCK/BCI-algebra X is
called a fuzzy ideal of X if

(Vx € X)(u(0) = p(x)), (10)
(Vx,y € X)(u(x) = min{p(x *y),u(y))}- 1n

Assume that X is a non-empty set. A neutrosophic set (NS) in X (see [14]) is a structure of
the form:

A= {{x; Ar(x), A1(x), Ap(x)) | x € X}
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where At : X = [0,1], A : X = [0,1] ,and Ap : X — [0,1] . We shall use the symbol A = (A, A, Af)
for the neutrosophic set

A= {(x; Ar(x), Aj(x), Ap(x)) | x € X}.
A generalized neutrosophic set (GNS) in a non-empty set X is a structure of the form (see [15]):
A= {{x; Ar(x), Arr(x), Arp(x), Ap(x)) | x € X, Ajr(x) + Afp(x) <1}

where At : X = [0,1], Ap: X = [0,1],, A;p: X = [0,1] ,and Ajp : X — [0,1] .
We shall use the symbol A = (Ar, Ajr, Ajp, Af) for the generalized neutrosophic set

A= {{x; Ar(x), Arr(x), Arp(x), Ap(x)) | x € X, Ajr(x) + App(x) < 1}
Note that, for every GNS A = (Ar, Arr, Arr, Ar) in X, we have (for all x in X)
(Vx € X) (0 < Ar(x) + Ajr(x) + Arp(x) + Ap(x) < 3).

IfA = (AT, AIT/ AIF/ AF) is a GNS in X, then JA = (AT, AIT/ AIT’ AS ) and <>A (A A?F’
Arr, Ar) are also GNSs in X.

Given a GNS A = (Ar, Ar, Ajp, Ar) in a BCK/BCl-algebra X and ar, a;1, Br, Bir € [0,1],
we define four sets as follows:

Ua(T,ar) == {x € X | Ar(x) > at},

Ua(IT,apr) = {x € X | Ap(x) > arr),

La(F, Br) == {x € X | Ap(x) < Br},
AUF, Brr) == {x € X | Arr(x) < Brr}-

A GNS A = (Ar, Art, A1, Ar) in a BCK/BClI-algebra X is called a generalized neutrosophic
ideal of X (see [15]) if

(Vx € X) < Ar(0) > Ar(x), Arr(0) > Arr(x) > a2
Arr(0) < Agp(x), Ap(0) < Ap(x)
Ar(x) > min{Ar(x xy), Ar(y)}
Ajr(x) =2 min{A;r(x*y), Air(v)}
(Vxy € X) Arp(x) < max{Arr(x xy), Arr( 49

F(y)}
Ap(x) < max{Ap(x +y), Ap(y)}
3. Commutative Generalized Neutrosophic Ideals

Unless specified, X will always represent a BCK-algebra in the following discussion.

Definition 1. A GNS A = (A1, A, Arr, Ar) in X is called a commutative generalized neutrosophic ideal
of X if it satisfies the condition (12) and

Ar(xs (5 (yx))) = min{Ar((r+7) * ), Ar(2)}
Arr( (g (y ) > min{ Arr((x ) *2), Arr(2)}

(op2 X g pen (e (y 2 ) < maxd A ((x ) #2), Are(2)} 9
Ap(xs (g (y*x))) < max{Ap((x xy) #2), Ap(z)}

Example 1. Denote X = {0,a,b, c}. The binary operation x on X is defined in Table 1.
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Table 1. The operation “*”.

o SR o

o SN oo
o8N oo .
o oo o| S
oS  OoO|n

We can verify that (X, *,0) is a BCK-algebra (see [7]). Define a GNS A = (A, Arr, Arp, Ar) in X by
Table 2.

Table 2. GNS A = (AT, A[T, A[}:, AF).

X AT(x) AIT(X) AIF(x) A}‘(x)
0 07 0.6 0.1 0.3
a 05 0.5 0.2 0.4
b 03 0.2 0.4 0.6
c 03 0.2 0.4 0.6

Then A = (Ar, Arr, Arr, Ar) is a commutative generalized neutrosophic ideal of X.
Theorem 1. Every commutative generalized neutrosophic ideal is a generalized neutrosophic ideal.

Proof. Assume that A = (Ar, Arr, Arp, Ar) is a commutative generalized neutrosophic ideal of X.
Vx,z € X, we have

Ar(x) = Ar(x % (0% (0% x))) > min{Ar((x*0) xz), Ar(z)} = min{Ar(x*z), Ar(2)},

Apr(x) = Arr(x+ (0% (0% x))) > min{A;r((x % 0) *2), Arr(z)} = min{Arr(x *z), Arr(2)},

Arp(x) = Arp(x (0% (0% x))) < max{Ap((x*0)*2z), Ajp(z)} = max{Ajp(x*z), Aip(z)},
and
Ap(x) = Ap(x % (0% (0% x))) < max{Ap((x*0)xz), Ap(z)} = max{Ap(x *z), Ap(z)}.
Therefore A = (Ar, Arr, Arr, Ar) is a generalized neutrosophic ideal. [

The following example shows that the inverse of Theorem 1 is not true.
Example 2. Let X = {0,1,2,3,4} be a set with the binary operation x which is defined in Table 3.

Table 3. The operation “*”.

= W N = O %
= W= oo
B WNOO| =
B worRrolN
WO OoOOoOOoO|Ww
O OO OO

We can verify that (X, x,0) is a BCK-algebra (see [7]). We definea GNS A = (At, Ajr, Arr, Ap) in X
by Table 4.
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Table 4. GNS A = (A, Ajr, Afg, Ap).

X Ar(x) Amr(x) Arp(x)  Ap(x)
0 0.7 0.6 0.1 0.3
1 0.5 0.4 0.2 0.6
2 0.3 0.5 0.4 0.4
3 0.3 0.4 0.4 0.6
4 0.3 0.4 0.4 0.6

It is routine to verify that A = (Ar, Arr, Arr, Ar) is a generalized neutrosophic ideal of X, but A is not
a commutative generalized neutrosophic ideal of X since

Ar(2% (3% (3%2))) = A(2) = 03 # min{A7((2+3) x0), A(0)}
and/or
Ap(2% (3% (3+2))) = Arp(2) = 04 £ max{Ar((2%3) *0), Ar(0)}.

Theorem 2. Suppose that A = (Ar, Arr, A, Ar) is a generalized neutrosophic ideal of X. Then A = (Ar,
Arr, Ap, Af) is commutative if and only if it satisfies the following condition.

Ar(xxy) < Ar(x* (y* (y xx)))
Arr(xxy) < Arr(xx (y * (y * x)))
Arp(xxy) > Arp(xx (y* (y xx)))
Ap(xxy) > Ap(x (y + (y * x)))

(Vx,y € X) (15)

Proof. Assume that A = (Ar, Arr, Arp, Ar) is a commutative generalized neutrosophic ideal of X.
Taking z = 0 in (14) and using (12) and (1) induces (15).

Conversely, let A = (A1, Art, A1r, Ar) be a generalized neutrosophic ideal of X satisfying the
condition (15). Then

Ar(xx (y* (y+x))) = Ar(x+y) = min{Ar((x x y) +2), Ar(2)},
Arr(xx (y* (y*x))) = Arr(x +y) = min{Arr((x +y) *2), Arr(2)},

Arp(x# (y* (y=x))) < Arp(x xy) < max{Arp((xxy) *z), Arr(z)}
and
Ap(x = (y = (y*x))) < Ap(x*y) < max{Ap((x *y) xz), Ap(z)}

forall x,y,z € X. Therefore A = (Ar, Ar, Ajp, Af) is a commutative generalized neutrosophic ideal
of X. O

Lemma 2 ([15]). Any generalized neutrosophic ideal A = (A, Arr, Arr, Ar) of X satisfies:

Ar(x) = min{Ar(y), Ar(z)}
Arr(x) = min{A;r(y), Arr(2)}
App(x) < max{Ajr(y), Ar(z)}
Ap(x) < max{Ar(y), Ar(z)}

(Vx,y,ze X) | xxy<z = (16)

We provide a condition for a generalized neutrosophic ideal to be commutative.
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Theorem 3. For any commutative BCK-algebra, every generalized neutrosophic ideal is commutative.

Proof. Assume that A = (Ar, Arr, Arr, Ar) is a generalized neutrosophic ideal of a commutative
BCK-algebra X. Note that

(e (yx (yxx))) = ((xxy) #2)) w2 = ((x (y * (y xx))) #2) * ((x xy) x2)
< (xx (yx (y*x))) * (xxy)
= (xx (xxy)) = (y* (yxx)) =0,
thus, (x* (y* (y*x))) * ((xxy) *z) < z,Vx,y,z € X. By Lemma 2 we get

> min{Ar((x xy) *z), Ar(z)},

)

)) = min{A;r((x*y) *z), Arr(2)},
)) < max{Arr((x*y) *z), Arr(2)},
) z)

}-

Therefore A = (At, Arr, Ap, Af) is a commutative generalized neutrosophic ideal of X. [

Ar(x s (y* (y*x)
Apr(x o (y * (y *
App(x (y* (y *
Ap(x s (y = (v x)

)
x)
x)
)) <max{Ar((x*y)xz), Ap(z

Lemma 3 ([15]). Ifa GNS A = (Art, Ajt, Arr, Ar) in X is a generalized neutrosophic ideal of X, then the
sets Ua(T,ar), Ua(IT,arr), La(F, Br) and La(IF, Br) are ideals of X for all at, arr, Br, Bir € [0,1]
whenever they are non-empty.

Theorem 4. If a GNS A = (Ar, Arr, Arr, Ar) in X is a commutative generalized neutrosophic ideal of X,
then the sets U (T, ar), Ua(IT,a;7), Lao(F, Bg) and L4 (IF, B1r) are commutative ideals of X for all ar, ar,
Br, Bir € [0,1] whenever they are non-empty.

The commutative ideals UA(T,ar), Ua(IT,ar7), La(F, Br) and La(IF,Bir) are called level
neutrosophic commutative ideals of A = (At, Arr, Arr, AF).

Proof. Assume that A = (Ar, Air, Ap, Ap) is a commutative generalized neutrosophic ideal
of X. Then A = (Ar, Ajr, Arp, Ar) is a generalized neutrosophic ideal of X. Thus Ua(T,aT),
Ua(IT,a17), La(F,Br) and La(IF,Bir) are ideals of X whenever they are non-empty applying
Lemma 3. Suppose that x,y € X and x *y € Ua (T, p) NUA(IT, ayr). Using (15),

Ar(xx* (y* (y*x))) > Ar(xxy) > ar,
Arr(xx (y+ (y+x))) > Arr(x*y) > arr,

and so x x (y * (y*x)) € Ua(T, ) and x % (y * (yx x)) € Us(IT,aj7). Suppose that a,b € X and
axb e La(IF, Brr) N La(F, BE). It follows from (15) that Ajp(a = (b (b*a))) < Ajp(axb) < B and
Ap(ax (b (bxa))) < Ap(axb) < Bp. Hence a* (b« (bxa)) € L,(IF,Brr) and a*(b*(b*a)) €
La(F,Br). Therefore Ua(T,ar), Ua(IT,ar7), La(F,Br) and La(IF,Bip) are commutative ideals
of X. O

Lemma 4 ([15]). Assume that A = (Ar, Arr, Arr, Af) is a GNS in X and Ua(T,ar), Ua(IT, a;7),
La(F,Br) and L4 (IF, Bir) are ideals of X, Ver, arr, Br, Bir € [0,1]. Then A = (Ar, Arr, Ag, Ap) isa
generalized neutrosophic ideal of X.

Theorem 5. Let A = (A, A, Aip, Ar) bea GNS in X such that Ua(T,ar), Ua(IT, ar7), La(F, Br) and

La(IF, B1r) are commutative ideals of X for all ar, ayr, Br, Bir € [0,1]. Then A = (Ar, Arr, Ajg, Af) isa
commutative generalized neutrosophic ideal of X.
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Proof. Letar, arr, Br, Bir € [0,1] be such that the non-empty sets U4 (T, ar), Ua(IT, 1), La(F, BF)
and L4 (IF, Bip) are commutative ideals of X. Then U (T, at), Ua(IT, ar1), La(F, Br) and La(IF, BiF)
are ideals of X. Hence A = (Ar, Arr, Arp, Ar) is a generalized neutrosophic ideal of X applying
Lemma 4. For any x,y € X, let Ap(x*y) = ap. Then xxy € Ux(T,ar), and so x * (y * (y x x)) €
Ua(T,ar) by (9). Hence Ar(x * (y = (y * x))) > ar = Ar(x *y). Similarly, we can show that

(Ve y € X)(Arr(xx (y* (¥ x))) = Arr(x * y))-

Forany x,y,a,b,€ X,let Ap(x*y) = Brand Ajp(a*b) = Brr. Thenx*y € L4(F,Br) andaxb €
LA(IF, Br). Using Lemma 1 we have x * (y * (y*x)) € La(F,Br) and a* (b* (b*a)) € Lo(IF, Brr)-
Thus Ap(x*y) = Br > Ap(x* (y* (y*x))) and Arp(a*b) = B > Arp((a=b) xb). Therefore
A = (Ar, Arr, A, Ap) is a commutative generalized neutrosophic ideal of X. [

Theorem 6. Every commutative generalized neutrosophic ideal can be realized as level neutrosophic
commutative ideals of some commutative generalized neutrosophic ideal of X.

Proof. Given a commutative ideal C of X, definea GNS A = (Ar, Arr, Ajr, AF) as follows

[ oar ifxeC, [ ar ifxeC,
Ar(x) = { 0 otherwise, Arr(x) = { 0  otherwise,

A[F() {,BIF ifxeC, AF(X):{'BF ifxeC,

1 otherwise, 1  otherwise,

where ar, a7 € (0,1] and Bg, Bir € [0,1). Let x,y,z € X. If (x*xy)*z € Cand z € C,
then x * (y * (y *x)) € C. Thus

)) = ar = min{Ar((x *y) *z), Ar(2)},
))) = ey = min{Ar((x *y) *z), Arr(2)},
))) = Bir = max{Arp((x *y) *z), Arr(2)},
)) = Br = max{Ap((x *y) *z), Ap(2) }.

Assume that (x*y) *z ¢ Cand z ¢ C. Then Ar((x*y) *z) =0, Ar(z) =0, Air((x *xy) xz) =0,
Arr(z) =0, Ajp((x xy) x2z) =1, Ajp(z) = 1, and Ap((x *y) *z) = 1, Ap(z) = 1. It follows that

Ar(x s (y* (y*x)
Apr(x o (y * (y *
App(x o (y* (y *
Ap(x o (y* (y * x)

X
X

) = min{Ar((x*y) *2), Ar(2)},
)) = min{Ajr((x *y) *2), Ar(z)
) < max{Arp((x *y) *2), Arp(2)
) < )}

If exactly one of (x * ) * z and z belongs to C, then exactly one of Ar((x *y) *z) and Ar(z) is
equal to 0; exactly one of Arr((x * y) % z) and Ajr(z) is equal to 0; exactly one of Ap((x *y) *z) and
Ap(z) is equal to 1 and exactly one of Ajp((x *y) * z) and Ajp(z) is equal to 1. Hence

Ar(x s (y* (y*x)
Apr(xx (y* (y = x
Arp(x s (y* (y*x
Ar(xs (y + (y )

b
b

max{Ar((x*y)*z), Ap(z

Ar(x+ (y* (y*x))) > min{Ar((x *xy) *z), Ar(2)},
Apr(x* (y = (y* x))) = min{A;r((x xy) xz), Ajr(2) },
App(xx (y = (y+x))) < max{Ap((x xy) *z), Arp(2)},
Ap(x* (y =+ (y*x))) < max{Ap((x*y) *z), Ap(2) }.

Tt is clear that Ap(0) > Ag(x), A;r(0) > Ajr(x), Arp(0) < Ajp(x) and Ap(0) < Ap(x) for all
x € X. Therefore A = (Ar, A, Ar, Ap) is a commutative generalized neutrosophic ideal of X.
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Obviously, Us(T,ar) = C, Uo(IT, ;1) = C, Lo(F, Br) = C and L, (IF,B;r) = C. This completes
the proof. [

Theorem 7. Let {C; | t € A} be a collection of commutative ideals of X such that

1 X= tUACt,
€
(2 (Vs,teAN)(s>t < CsCCy)

where A is any index set. Let A = (Ar, A, Arr, Arp) be a GNS in X given by

17)

(vx € X) ( Ar(x) =sup{t€e A |x e G} = AIT(y)c) ) ‘

AH:(X) = inf{t €A ‘ X e Ct} = AF(X
Then A = (Ar, Arr, A, Ar) is a commutative generalized neutrosophic ideal of X.

Proof. According to Theorem 5, it is sufficient to show that U(T, t), U(IT,t), L(F,s) and L(IF,s) are
commutative ideals of X for every t € [0, Ar(0) = A;r(0)] and s € [A;p(0) = Ap(0),1]. In order to
prove U(T,t) and U(IT,t) are commutative ideals of X, we consider two cases:

(i) t=sup{ge A|gq<t},
(i) t #sup{g € A|q <t}
For the first case, we have

x € U(T,t) < (Vg <t)(x €Cy) < x€ [Cy,

<t
x € U(IT,t) <= (Vg < t)(x € Cg) <= x € [Cy.
q<t
Hence U(T,t) = NCy; = U(IT,t), and so U(T,t) and U(IT,t) are commutative ideals of X.
<t
For the second case, we claim that U(T,t) = U Cq = U(IT,t). Ifx € U Cq, then x € C; for

some g > t. It follows that Ajr(x) = Ar(x) > q > tand so that x € LI(T t) and x € U(IT,t).
This shows that U Cq C U(T,t) and U Cq C U(IT,t). Now, suppose x ¢ U Cq Then x ¢ Cg, Vg > t.

Since t # sup{q € A | g < t}, there ex1sts e > Osuch that (f —¢ t)NA = (Z) Thus x ¢ Cy,Vg>t—g

this means that if x € Cy, then g < t —e. So Ajr(x) = Ar(x) <t—e < t,andsox ¢ U(T,t) =

U(IT,t). Therefore U(T,t) = U(IT,t) € U C,. Consequently, U(T,t) = U(IT,t) = U C; which
q>t q>t

is a commutative ideal of X. Next we show that L(F,s) and L(IF,s) are commutative ideals of X.
We consider two cases as follows:

(iii) s =inf{r e A |s <r},

(iv) s #inf{r e A |s <r}.

Case (iii) implies that

x € L(IF,s) <= (Vs <r)(x € C) <= x € [C\,

s<r

x €U(F,s) < (Vs <r)(x €Cr) <= x € [Cr.

s<r
It follows that L(IF,s) = L(F,s) = () Cr, which is a commutative ideal of X. Case (iv) induces
s<r
(s,s+e)NA=0forsomee>0.If x € UC,, thenx € C, forsomer <s,and so Ajp(x) = Ap(x) <

s>r

r <s, thatis, x € L(IF,s) and x € L(F,s).iHence UG, C L(IF,s) = L(F,s). If x ¢ UC,, then x & C,
s>r s>r
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for all r < s which implies that x ¢ C, forallr < s+¢, thatis, if x € C, thenr > s+ ¢. Hence Ajp(x) =
Ap(x) > s+¢>s,andsox & L(Ajr,s) = L(Af,s). Hence L(Ajg,s) = L(Af,s) = UC, whichisa

s>r
commutative ideal of X. This completes the proof. [

Assume thta f : X — Y is a homomorphism of BCK/BCI-algebras ([7]). For any GNS A = (Ar,
Arr, Arr, Af) in Y, we define a new GNS A/ = (A, AL, Al AL) in X, which is called the induced
GNS, by
AL(x) = Ar(F(x)), Afz(x) = An(f(x)) ) )

Alp(x) = Ap(f(x)), ALx) = Ap(£(x)
Lemma 5 ([15]). Let f : X — Y be a homomorphism of BCK/BCI-algebras. Ifa GNS A = (At, Ajr, Arr,

Ar) in Y is a generalized neutrosophic ideal of Y, then the new GNS Af = (Af;, A{T, A{F, AJ;) inXisa
generalized neutrosophic ideal of X.

(Vx € X) (

Theorem 8. Let f : X — Y be a homomorphism of BCK-algebras. Ifa GNS A = (Ar, Arr, A, Ap) inY
is a commutative generalized neutrosophic ideal of Y, then the new GNS Af = (Aé, A{T, A{ P Alf:) inXisa
commutative generalized neutrosophic ideal of X.

Proof. Suppose that A = (Ar, Ay, Arr, Arp) is a commutative generalized neutrosophic ideal of Y.
Then A = (Ar, Ar, Afr, Ar) is a generalized neutrosophic ideal of Y by Theorem 1, and so Af = (Aé,
A{T, AJ;F, A),_i) is a generalized neutrosophic ideal of Y by Lemma 5. For any x,y € X, we have

BN
X
3
—~

=

*
—~
<

*
—~
<

*

=
N
=
=

Il

ES
=
3

and

Therefore Af = ( A);, AJ;T, A{ Fr A{:) is a commutative generalized neutrosophic ideal of X. O
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Lemma 6 ([15]). Let f : X — Y be an onto homomorphism of BCK/BCI-algebras and let A = (Ar, Arr,
App, Ap) bea GNS in Y. If the induced GNS Af = (Af A{T, AJI(F, Af) in X is a generalized neutrosophic
ideal of X, then A = (Ar, Ajr, Arp, Ar) is a generalized neutrosophic ideal of Y.

Theorem 9. Assume thta f : X — Y is an onto homomorphism of BCK-algebras and A = (Ar, Arr, Arr,
Af) is a GNS in Y. If the induced GNS Af = (Af A{T, AJ;F, Af) in X is a commutative generalized
neutrosophic ideal of X, then A = (Ar, Arr, Ajr, Ar) is a commutative generalized neutrosophic ideal of Y.

Proof. Suppose that Af = (Af AJI(T, A{F, AL ) is a commutative generalized neutrosophic ideal of

X. Then Af = (AJ;, AJI[T, AJI(F, AI{) is a generalized neutrosophic ideal of X, and thus A = (A, Ajr,
Arr, Ar) is a generalized neutrosophic ideal of Y. For any 4,b, ¢ € Y, there exist x,y,z € X such that

f(x) =4, f(y) =band f(z) = c. Thus,
Ar(ax (bx (bxa))) = Ar(f(x) * (f(y) * (f(y) * f(x)))) = Ar(f(x* (y * (y * x))))
= Af(xx (y* (y+ %)) > Af(x+y)
= Ar(f(x) * f(y)) = Ar(axb),

Arr(ax (bx(bxa))) = Arr(f(x) * (f(y) (f() f
= Alp(xx (y+ (y*x))) >
=Arr(f(x) = fy ))—AIT( b,

x)))) = A (f(x * (y * (y + x))))

Age(ax (bx (bxa))) = Ar(f(x) * (F(y) * (F(y) * £(x))) = Ae(f(x * (y * (y ¥ x))))
= Al (xx (y* (y+x))) < Alp(xxy)
= Arr(f(x) x f(y)) = Arp(a*b),

and

Ap(ax (b (bxa))) = Ap(f(x) * (F(y) * (F(y) * (%)) = Ap(f(x % (y % (y * x))))
= AL(x* (y* (y*x))) < AL(x+y)
= Ap(f(x) * f(y)) = Ap(axD).

It follows from Theorem 2 that A = (A, Ajr, A1, Ar) is a commutative generalized neutrosophic
idealof Y. [

Let CGNI(X) denote the set of all commutative generalized neutrosophic ideals of X and t € [0, 1].
Define binary relations U}, U}y, L% and L on CGNI(X) as follows:

(A,B) € UL & Ux(T,t) = Up(T,t), (A,B) € Uty & Ua(IT,t) = Up(IT, t),

1
(A,B) € Lt & La(F,t) = Lp(F,t), (A,B) € Lt < La(IF,t) = Lg(IF,t) (19)

for A = (AT, A]T, AIF/ Ap) and B = (BT, B]T, B”:, Bp) in CGNI(X) Then clearly U%«, U§T, LS:
and Li, are equivalence relations on CGNI(X). For any A = (Ar, A, Air, AF) € CGNI(X),
let [A]U;T (resp., [A}ufT, [A]Ltl: and [A}Lﬁp) denote the equivalence class of A = (Ar, Ar, Arr, Ar)
modulo U} (resp, Uiy, L: and Lf;). Denote by CGNI(X) /U (resp., CGNI(X )/ule CGNI(X)/LE
and CGNI(X)/L}) the system of all equivalence classes modulo U (resp, Uly, Lk and LY ;); so

CGNI(X)/Uf = {[Aly | A = (A1, Arr, Ajr, Ap) € CGNI(X)}, (20)
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CGNI(X) /Uy = {[Aly, | A= (Ar, Ajr, Air, Ap) € CGNI(X)}, (21)
CGNI(X)/LL = {[Al | A= (Ar, A, A, Ap) € CGNI(X)}, (22)

and
CGNI(X)/Ltp = {[Alp, | A= (A1, Air, Ajp, Ap) € CGNI(X)}, (23)

respectively. Let CI(X) denote the family of all commutative ideals of X and let t € [0, 1]. Define maps

fi : CGNI(X) — CI(X) U{@}, A~ Ux(T, 1), (24)

gt : CGNI(X) — CI(X)U{®@}, A — Ux(IT, 1), (25)

a: CGNI(X) — CI(X)U{@}, A — La(F,1), (26)
and

Bt : CGNI(X) — CI(X) U{@}, A La(IF,t). (27)

Then the definitions of f, g;, a; and p; are well.

Theorem 10. Suppose t € (0,1), the definitions of fi, gi, ar and By are as above. Then the maps fi, g, oy and
Bt are surjective from CGNI(X) to CI(X) U{D}.

Proof. Assumet € (0,1).We know that0.. = (07,07, 1;r, 1F) isin CGNI(X) where O, 0;7, 1;r and 1
are constant functions on X defined by 0r(x) =0, 0;7(x) =0, 1;p(x) = 1and 1z(x) =1 forall x € X.
Obviously f;(0~) = Uo, (T, t), §:(0~) = Uy (IT,t), a;(0~) = Lo_(F,t) and B;(0~) = Lo_(IF,¢) are
empty. Let G(# @) € CGNI(X), and consider functions:

1 ifxeG,

Gr: X 1], G
T —[01], '_){ 0 otherwise,

1 ifxeG,

Gir: X 0,1], G
s X = [01], '_){ 0 otherwise,

GF:X—>[O,1],GH{(1) ifxeg,

otherwise,
and

0 ifxeG,

Gir: X = [01], G { 1 otherwise.

Then G~ = (Gr,Gir,Gir, GF) is a commutative generalized neutrosophic ideal of X, and
fi(G~) = Ug_(T,t) = G, gt(G~) = Ug_(IT,t) = G, at(G~) = Lg_(F,t) = G and B+(G~) =
Lg._(IF,t) = G. Therefore f;, g, &y and By are surjective. [

Theorem 11. The quotient sets

CGNI(X)/Uk, CGNI(X)/Uly, CGNI(X)/LL and CGNI(X) /LY
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are equipotent to CI(X) U {D}.

Proof. For + € (0,1), let f; (resp, g/, af and B;) be a map from CGNI(X)/U%
(resp., CGNI(X)/Ut;, CGNI(X)/Lt and CGNI(X)/Lt,) to CI(X) U {@} defined by f; ([A]U,T) =

f(A) (esp., g7 ([Aly, ) = 8:(A), a7 (14l ) = ar(A) and B ([A], ) = Br(A)) forall A = (Ar,
AIT/ A”:, AF) S CGNI(X) If UA(T,t) == UB(T,t), LIA(IT,t) = UB(IT,t), LA(F,f) = LB(F,f)
and LA(IF,t) = LB(IF,t) for A = (AT, A[T, A[F, AF) and B = (BT, BITrBF/BIF) in CGNI(X),
then (A, B) € U, (A,B) € U}, (A,B) € Lt and (A, B) € Li;. Hence (Alur = [Blug, [Alue, = [Blut
[A]Lft = [B]L;F and [A]L5F = [B]Lt”_. Therefore f{ (resp, gf, a;j and B;) is injective. Now let
G(# @) € CGNI(X). For G~ = (Gr, Git, GIp, Gp) € CGNI(X), we have

fi (16-1uy) = fi(G~) = Us (T,H) = G,
g (1G], ) = &:(G~) = Us_(IT,1) = G,

af ([G~}Up> =ua;(G.) =L (F t) =G
and
Bt ([GN]L5F> = Bi(G~) = Lg_(IF,t) = G.

Finally, for 0~ = (07,0;7,1;p,1r) € CGNI(X), we have

fi (10-)uy ) = fi(0) = Uo_ (T, 1) = @,
st (10-1uy, ) = 8:(00) = Uo (IT,1) = @,

« ([oN]L,F) =a;(0.) = Lo (Ft) =

and

Therefore, f (resp, g, af and ) is surjective. [

Vt € [0,1], define another relations Rf and Qf on CGNI(X) as follows:
(A,B) € R" & U(T,t)NLa(F,t) = Up(T,t) N Lg(F,t)
and
(A,B) € Q! & UA(IT,t) N La(IF,t) = Ug(IT, ) N Lg(IF, 1)

for any A = (Ar, Air, Arr, Ar) and B = (Br, Bir, Bip, Br) in CGNI(X). Then Rf and Q' are
equivalence relations on CGNI(X).
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Theorem 12. Suppose t € (0,1), consider the following maps
¢t : CGNI(X) — CI(X)U{Q@}, A — fi(A) Nar(A), (28)
and
P : CGNI(X) = CI(X) U{@}, A g1(A)NB:(A) (29)
foreach A = (Ar, Arr, Arr, Ap) € CGNI(X). Then ¢ and yy are surjective.
Proof. Assume t € (0,1). For 0~ = (01, 0;7,1;r, 1) € CGNI(X),
@1(0~) = fi(0~) N (0~) = U (T, t) N Lo (F,t) =D
and
91(02) = £:(0-) N Bi(0-) = Lo (IT,#) (1 Lo_ (IF, 1) = ©.
For any G € CI(X), there exists G~ = (Gr, Gi1, Gir, Gp) € CGNI(X) such that
91(G-) = fi(G) Na(G-) = Ug (T,) N Le_(F,) = G
and
P+(G~) = g1(G~) N Br(G~) = U (IT,t) N Lg_(IF,t) = G.
Therefore ¢; and 1; are surjective. [

Theorem 13. For any t € (0,1), the quotient sets CGNI(X)/R! and CGNI(X)/Q! are equipotent to
CI(X)U{Q}.

Proof. Lett € (0,1) and define maps
@f : CGNI(X)/R" = CI(X) U{D}, [A]gt + ¢1(A)
and

Y 1 CGNI(X)/Q" = CI(X) U{D}, [Alg — pr(A).

If 97 ([Alx) = 97 (1Blx) and 7 ([Algt) = 97 ([Blgy) for all [A]g:, [Blg: € CGNI(X)/R' and
[A]Qf, [B]Qf S CGNI(X)/Q[, then ft(A) N Déf(A) = ft(B) N OLt(B) and gt(A) n ‘Bt(A) = gt(B) n ﬁf(B),
that is, UA(T, t) n LA(F,t) = UB(T,t) n LB(F,t) and UA(IT, i’) n LA(IP, t) = UB(IT, t) n LB(IF,t).
Hence (A,B) € R, (A,B) € Q". So [A]gt = [Blgt, [A]gt = [B]gt, which shows that ¢} and ¢} are
injective. For 0~ = (07,0;7,1;¢,1F) € CGNI(X),

@i ([0~]e) = @1(0~) = f1(0~) Nar(0~) = Uo. (07, ) N Lo (1p, t) = D
and
gi ([0~lgr) = 91(0~) = g(0-) N B(0~) = Uo_ (017, 1) N Lo_ (L1, 1) = @.
IfG e CI(X), then G = (GT, Git, GrE, GF) € CGNI(X), and so

¢r ([G]r) = 91(Gr) = fi(G~) Nar(Gr) = Ug (Gr/t) N LG (Gp ) = G
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and
9i ([6-lgr) = $4(G~) = &(G~) N Bi(G~) = Uc_(Gir, ) N Lg. (Gip ) = G
Hence ¢; and ¢; are surjective, and the proof is complete. [

4. Conclusions

Based on the theory of generalized neutrosophic sets, we proposed the new concept of
commutative generalized neutrosophic ideal in a BCK-algebra, and obtained some characterizations.
Moreover, we investigated some homomorphism properties related to commutative generalized
neutrosophic ideals.

The research ideas of this paper can be extended to a wide range of logical algebraic systems such
as pseudo-BClI algebras (see [1,16]). At the same time, the concept of generalized neutrosophic set
involved in this paper can be further studied according to the thought in [11,17], which will be the
direction of our next research work.
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Abstract: Competition among different universities depends largely on the competition for talent.
Talent evaluation and selection is one of the main activities in human resource management (HRM)
which is critical for university development. Firstly, linguistic neutrosophic sets (LNSs) are introduced
to better express multiple uncertain information during the evaluation procedure. We further merge
the power averaging operator with LNSs for information aggregation and propose a LN-power
weighted averaging (LNPWA) operator and a LN-power weighted geometric (LNPWG) operator.
Then, an extended technique for order preference by similarity to ideal solution (TOPSIS) method
is developed to solve a case of university HRM evaluation problem. The main contribution and
novelty of the proposed method rely on that it allows the information provided by different decision
makers (DMs) to support and reinforce each other which is more consistent with the actual situation
of university HRM evaluation. In addition, its effectiveness and advantages over existing methods
are verified through sensitivity and comparative analysis. The results show that the proposal is
capable in the domain of university HRM evaluation and may contribute to the talent introduction
in universities.

Keywords: linguistic neutrosophic sets; multi-criteria group decision-making; power aggregation
operator; extended TOPSIS method

1. Introduction

Human resource management (HRM) refers to a process of hiring and developing employees to
enhance the core competitiveness of an organization [1]. Acting as the root of national competitiveness,
a success in HRM may bring benefit to both the organization and employee well-being; thus, effective
HRM has received a higher demand and recognition during the 21st century. Over the past three
decades, theory and research on HRM has made considerable progress in various fields, such as
tourism industries, health services and universities [2-5]. For example, Zhang et al. [5] investigated a
case of HRM for teaching quality assessment using a multi-criteria group decision-making (MAGDM)
framework. This framework aimed to improve the teaching quality of college teachers and further
enhance the competitiveness of colleges and universities. Apart from the classroom teaching quality
evaluation problems in universities, talent introduction also plays a significant role in universities’
HRM. Particularly, selecting or evaluating these applicants by inappropriate methods may lead
to a failure in HRM and even influence the overall efficiency of the university. Since various
applicants and influential criteria are usually involved in the evaluation procedures of HRM by several
decision makers (DMs), the evaluation should be recognized as a multi-criteria group decision-making
(MCGDM) problem.
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The theory of fuzzy set (FS) can handle uncertainty and fuzziness. The neutrosophic set (NS) [6]
was initially proposed to express membership, nonmembership and indeterminacy, which is a
generalization of FS [7]. Later, many extensions emerged to tackle real engineering and scientific
problems [8], among which the popularly used forms are the simplified neutrosophic set (SNS) [9]
and the single-valued trapezoidal neutrosophic set (SVINS) [10-12]. These extensions have been
successfully applied in various domains, including green product development [13], outsourcing
provider selection [14], clustering analysis [15,16].

However, on some real occasions, people may tend to provide their evaluation information using
natural languages rather than the above extensions which are too complex to obtain. For example,
people can give some linguistic terms like “excellent”, “medium” or “poor” to evaluate the performance
of a company staff based on various criteria. Moreover, it may be also difficult for a single person
to evaluate all alternatives under each influential aspect due to the high complexity of decision
environments. Therefore, the linguistic MCGDM under fuzzy environments has received extensive
research attention and gained many excellent results [17]. Up to now, various extensions have been
studied in depth to describe linguistic information, such as hesitant fuzzy linguistic term set and
some of its extended forms [18-22], linguistic intuitionistic fuzzy set (LIFS) [23,24], Z-number [25],
and probabilistic linguistic term set [26,27] etc. However, the drawback of these extensions for
linguistic MCGDM is that they cannot cover the inconsistent linguistic decision information which
will appear with increasing complexity of the internal and external decision-making environments.
Another example is that when one DM was asked to give some evaluations on a teacher from overseas
under the aspect teaching skill, the DM may describe his or her bad judgments on the teaching
attitude but the good or neutral aspects of the teacher’s teaching capacity and teaching method as well.
An example of that can be seen from the evaluation: “The teacher is rather average in writing and oral
language, and he is able to tailor his teaching method to different students. But my only complaint
is that the teacher is a little strict in teaching attitude”. It can be noted that the above evaluation
includes positive, neutral and negative information all at once. Therefore, this poses a great challenge
for linguistic MCGDM methods on how to capture such inconsistent information.

To tackle the above problem, Fang and Ye [28] proposed the linguistic neutrosophic set (LNS),
which was generalized from the concept of LIFS [23,24]. By contrast, one LNS is represented by three
independent functions of truth-membership, indeterminacy-membership, and falsity-membership in
the form of linguistic terms. Thus, the LNS has its prominent advantages in depicting inconsistent
and indeterminate linguistic information, and several scholars have extended the LNS in several
aspects, such as aggregation operators and similarity (or distance) measures. Li et al. [29] introduced a
linguistic neutrosophic geometric Heronian mean (LNGHM) operator and a linguistic neutrosophic
prioritized geometric Horonian mean (LNGHM) operator. Fan et al. [30] merged the LNSs with
Bonferroni mean operator and proposed a linguistic neutrosophic number normalized weighted
Bonferroni mean (LNNNWBM) operator and a linguistic neutrosophic number normalized weighted
geometric Bonferroni mean (LNNNWGBM) operator. Shi and Ye [31] introduced two cosine similarity
measures of LNSs to tackle MCGDM problems. Liang et al. [32] defined several distance measures of
LNS and presented an extended TOPSIS method under the LNS environment.

To facilitate the mathematical operation, several quantification tools of natural language have
been introduced, such as 2-type [33], triangular (or trapezoidal) fuzzy number [34,35], cloud model [36]
and symbol model [37,38]. These models have greatly contributed to the ease of computation for
linguistic information; however, they cannot cover all types of problems and have some limitations to
be addressed. To tackle the limitations of prior research, Wang et al. [39] introduced a series of linguistic
scale functions (LSFs) for converting linguistic information into real numbers. Through this model,
flexibility of modeling information has been greatly enhanced by considering different semantic
situations and loss and distortion of information has been mitigated to a great extent. Thus, we apply
the LSFs to tackle linguistic neutrosophic information in this paper.
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The power averaging (PA) operator, proposed by Yager [40], has been used as one effective
information aggregation tool in solving MCDM [41-43] problems since its appearance. Unlike other
common aggregation tools, such as weighted averaging [44] and ordered weighted averaging [45,46],
which implicate the independent hypothesis among inputs. The PA operator allows the information
between inputs to support and reinforce each other. In the HRM evaluation problems, it is very suitable
for PA operator to integrate evaluation information of different teams of DMs, as these DMs are not
completely independent and the PA operator can measure their support degree among one another.

TOPSIS method was first presented by Huang and Yoon [47]. It considered that the better scheme
would be closer to ideal solution [48]. Due to the inevitable vagueness inherent in decision information,
fuzzy TOPSIS and its extensions have been deployed [49-51] in real world applications. Considering
the advantages of this method, an extended TOPSIS technique is introduced to evaluate alternatives.

As discussed above, our study developed an integrated method by combining PA operator
with LNSs and constructing an extended TOPSIS technique to tackle the university HRM evaluation
problem. The novelties and contributions of the proposal are listed as following. (1) New algorithms
for LNNs based on LSFs is defined, which can reflect differences between various semantics.
(2) Based on LSFs and the new operations, a generalized distance measure for LNNs is introduced,
which can be reduced to Hamming distance and Euclidean distance of LNNs. The proposed distance
measure is more flexible than prior studies because of the application of LSFs and novel operations.
(3) Considering the fact that DMs in case of university HRM evaluation may support each other,
this paper merges the PA operator with LNSs to tackle information fusion. The proposed method can
improve the adaptability of LNNs in real decision.

The context in the rest of this paper is as follows: Section 2 defines some operations and distance
measurements of LNSs. Section 3 proposes two aggregation operators for LNSs and investigates their
properties. Next, the detailed procedures for a linguistic MCGDM problem are given in Section 4.
Then, a case of university HRM evaluation problem verifies the feasibility and validity of our method
in Section 5. Finally, Section 6 presents the conclusion and future work.

2. New Operations and Distance Measure for LNNs

After introducing the concepts of linguistic term set (LTS) and LNS, this section defines some
new operations and a distance measure for LNNs based on the Archimedean t-norm and f-conorm.
For better representation, some preliminaries about LSFs and the Archimedean f-norm and t-conorm
are provided in Appendix A and Appendix B, respectively.

2.1. Linguistic Neutrosophic Set

H={ht=0,1,---,2t,t € N*}is a discrete term set, which is finite and totally ordered. Herein,
N* presents a positive integers’ set, /i is the value of a linguistic variable. Thus, the linguistic variable
h¢ in H meets the following two properties [34]: (1) The LTS is ordered: /i < hy if and only if T < v,
where (hr,h, € H); and (2) With existing of a negation operator neg(h.) = h(z,,T) (t,v=0,1,---,2t).

In order to preserve as much of the given information and avoid information loss, Xu [52]
extended H = {h|t =0,1,---,2t} into a continuous LTS H = {h.|1 < T < L}, which satisfies the
properties of discrete term set H. When 1, € H, hy is called the original linguistic term; otherwise,
h¢ is called the virtual linguistic term.

Definition 1 ([28,29]). Let X be a universe of discourse and H = {hy|hy < hy < hoy, 0 € [0,2t] }, and the
LNSs can be defined as follows:

@ = {(x,hr,(x), hp, (x), he,(x))|x €X}, 1)

where 0 < T;+ Iz + F; < 6t and the values hr,(x),hy(x),h. (x) € H represent the degrees of

=< 2o
truth-membership, indeterminacy-membership, and falsity-membership, respectively.
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Noteworthy, if there contains only one element in X, 7 is called a LNN, for notational simplicity,
it can be denoted by 7 = <hT;/ ht., ]’l[;a>.

2.2. New Operations for LNNs

According to the LSFs in Appendix A and the Archimedean t-norm and t-conorm presented in
Appendix B, some novel operations for LNNs are defined as follows.

Definition 2. Let a = <hTﬂ,h[E,hPE> and b = <hTE’hIE’th;> be two arbitrary LNNs, and { > 0; then the
operations for LNNs are defined as follows:

(1) e (LU () | (54 () g ) (hs) :
v (e ) f () ) 1 (1=f~ () (1= (1)) ) 1+(1=f+ () (1-£ (1)) ) )
doie | o lm) e (i) e (L) () oy (5 C) e (k)
@ “®b*<f <H@7pwr N(-r @g))f (Hﬁ@ﬂﬁ@%)'f v (s )1 (i) )/
5o (et ((QF () = (1 (i)
@ a=(r »)

: 1 2(f* (i))* 1 2(f (hr))g .
(1 (i, ) + (1= (i ;) / <(2*f*(hlﬁ)) +(f (h:~))> / (( £ ()" (7 () >
~C — *—1 Z(f (th)) *—1 (H’f* h’a)) (1 f h’ ))
(4) a <f ((Z*f*(hrﬁ))é N hﬁ))é)'f < )Z)/

+(f( (1+£7(ny))* “r(1-fr (h1)
e (O ) == ()N
f Quum»<lmm»>> a
(5) neg <h1: , h[ﬁ,h'rﬁ>.

Example 1. Let H = {hg, hy1,hy, h3, hy, hs, he} ={very poor, poor, slightly poor, fair, slightly good,
good verygood}, i = (h3,ho,ho), b = (ho,h3,hs), and { = 2, ifa = 1.4, and fi(hy) = 6, =
5 (x = 0,1,---,2t). The calculated results are as follows:

(1) @@ b= (hye, 375 h375);

@ a@b = (h375,h429,ha20);

() 20 = (hag, ho.ae hoae); and

@) @ = (o hae hss)-

Theorem 1. Let a, E, and ¢ be three LNNs, and { > 0; then the following equations are true:
1) dob=bow
2) (E obh)@e
B aeb=bxa
@) (E@E RF=3® (Z@E);
6 Gaoch=¢(boa) md
(6) <E®E>§=E§®E§.

~—
Il

e (Z@E);

~—r

Theorem 1 holds according to Definition 2, so the proof is omitted here.
2.3. Distance between Two LNNs

Definition 3. Let 4 = <hTE,hlﬁ,hFE> and b = <hTE’h’E’hFE> be two arbitrary LNNs, f* is a LSF. Then,

the generalized distance measure between a and bis defined as follows:

d<ﬁj> = %( “(hr,) = f* (th) )A +|f*(hy,) = £ (hlg) ‘A +\f(he,) — f7 (hP,;)‘A>X~ )
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When A = 1, the above distance measure can be reduced to the Hamming distance; when A = 2, it can be
reduced to the Euclidean distance. We can see that Equation (2) is a generalized form of distance measure.

Theorem 2. Let a = (hr,, hy, hg.), b= <th, hi, hFE> and ¢ = (hy_, hr, hg.) be three arbitrary LNNS, then,
the following properties are required for the generalized distance measure in Definition 3.

(1) d@b) >

2) d@a) = 0
() d(@b) =d(b,a); and

4) d(@) <d(@b)+d(b,c).

Theorem 2 is proved in the Appendix C for better representation.

3. Linguistic Neutrosophic Aggregation Operators

Yager [40] introduced the PA operator to allow input arguments to support each other. Thus,
the traditional PA operator are first reviewed; then, the LNPWA and LNPWG operators are proposed
in an environment featuring LNNs.

Definition 4 ([40]). Let aj(j = 1,2, ,n) be a collection of positive values and Q) be the set of all given
values; then the PA operator is the mapping PA : Q" — Q, which can be defined as follows:

L 1 +G(ﬂ])
i ; (1+G(a))

PA(ay, a2, -+ ,an) = aj, ®)

where

n
Gla) =Y. Sup(aja), (4)
i=1i4]

Sup(aj, a;) represents the support for a; from a;, and meets the following properties:

(1) Sup(a;,a;) € [0,1];
()  Sup(a;,a;) = Sup(aj,a;); and
()  Sup(a;,a;) > Sup(a;,ay), when d(a;,a;) < d(aj,a), and d(a;, a;) is the distance between a; and a;.

3.1. Linguistic Neutrosophic Power Weighted Averaging Operator
This subsection extends the traditional PA operator to LNN. Then, a LNPWA operator is proposed

and discussed.

Definition 5. Let a; = (hr,j, hyj, hr;) (j = 1,2,...,1) bea set of LNNs. Then, the LNPWA operator can be
defined as

1+G(a
LNPWA(@,d, - -+ ,dn) = én(—), ©)
=1
] ]gw](lJrG(aj))
where w = (wy,wy, ..., wy)" is the weight vector of @ a, w; € [0,1], and Zw, =1, G(a) =

Y1,z wiSup(aj, a;), Sup(a;, a;) is the support for a; from a;, which also satzsﬁes the similar properties
in Definition 4.
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Theorem 3. Let 4; = <hT,,—j/ hij, h}:‘ﬁj> (j=1,2,...,n) beaset of LNNs, and w = (wy,w, .. .,w,,)T is the

n
weight vector of @;, w; € [0,1], and Y w; = 1. Then, the aggregated result using Equation (5) is also a LNN.
i=1

n
For notational simplicity, we assume that ; = w;(1+ G(a;))/ ¥ wj(1+ G(a;)).
=1

LNPWA(ay,ap,- -+ ,an) =

f*lélwwmf];@w@wﬁ P GO
B0 () |7\ B )R]
o) )
£ () )< 7 ()

1

]

“Appendix D" details the proof of Theorem 3.

The traditional PA operator has the properties of idempotency, monotonicity, and boundedness.
It can be proved that the LNPWA operator also satisfies these properties.

Theorem 4. Let a; = (hr,j, hy, ]> (j=1,2,...,n) beaset of LNNs, and w = (ws,ws, ..., wy)" is the
weight vector of a;, w; € [0,1], and Z w; = 1. If Sup(d;, ;) = 0or Sup(a;, a;) = k (k € [0,1]) for all &; and
a;. Hence, the LNPWA operator reduces to the linguistic neutrosophic weighted averaging (LNWA) operator.

LNWA(&@, @, - i) = & wi;

=

—
—
+
=
2

—
=

IS

-
*
|
-
I
L

I

—
L1H=
—

—

+

-

2
—_

=

Gl

()7 | > )

21 (1 ()" 2117 (1))
f*71 = w; [ w; ’ f*71 [ = w; w;
B G () B (1)) B G () 1L ()

The proof for Theorem 4 is similar to the proof for Theorem 3; thus, it is omitted here.

3.2. Linguistic Neutrosophic Power Weighted Geometric Operator

Definition 6. Let a; = <hT LjshEj) (j=1,2,...,n) beaset of LNNs. Then, the LNPWG operator can be

defined as
. 1 G q.
LNPWG(dy1,d, - -+ ,dn) = é (@)M

= e (14 6@)) ©
=i ] ]

n
where w = (w1, wy,...,wy)" is the weight vector of aj, w; € [0,1], and Z w; = 1, G(aj) =

Y i Wi iSup(a;,a;), Sup(a;, d;) is the support for a; from d@; and also satisfies the propertzes in Definition 4.

Theorem 5. Let 4; = <hTaj/hIa~j/ ]’lFE]‘> (j=1,2,...,n) beaset of LNNs, and w = (wy,w,, .. A,wn)T is the
n
weight vector of @;, w; € [0,1], and ‘Z w; = 1. Then, the aggregated result using Equation (8) is still a LNN,

For notational simplicity, we assume that {; = w;(1+ G(a;))/ Z w;i(1+ G(aj)).
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LNPWG(ay, @, - - ,dn) =

= )\ A6 A0 )
ACr 0 i00n)7 ) \REr @) R0 )
(B0 ) 0 )
£ (7 (1)) 7+ 1 () )

The proof of Theorem 5 is also omitted duo to the same way as Theorem 3.

4. MCGDM Method Based on the LNPWA and LNPWG Operators

In this part, a MCGDM method based on the LNPWA and LNPWG operators is developed to
solve university HRM evaluation problems.

For a MCGDM problem with a finite set of m alternatives, let D = {D1, D, ..., D, } be the set of
DMs, A = {A1, Ay, ..., Ap} be the set of alternatives, and C = {Cy,Cy, ..., C, } be the set of criteria.
Assume that the weight vector of the criteria is @ = (wl,coz,. . .,wn)T, such that co]. € [0,1] and

n
Y @; = 1. Analogously, the weight vector of the DMs is specified as w = (wq,wy, ..., ws)T, where
j=1
S
wr > 0,and Y, wy = 1. The evaluation values provided by the DMs are transformed into LNNs,
k=1

~k _ k k
and @ = <hTEij,hIEij,
value of DM Dy (k = 1,2,...,s) for alternative 4;(i = 1,2,...,m) on criteria C]-(]' =1,2,...,n).
The detailed procedures of the MCGDM method involve the following steps:

h};?,ij>’ (k=1,2,...,5j=1,2,...,mi=1,2,...,m) represents the evaluation

Step 1: Normalize the decision matrices.

In general, criteria can be divided into two categories: benefit type and cost type. Using
operation (5) in Definition 2, the cost criteria can be transformed into benefit ones as follows:

, (10)

HE 1 — KK Kk

ko ko pk i
P hTEij’hIEij’ hP,,ij>’ for benifit criterion c;
Fyij’ Liij VT

>, otherwise

Step 2: Obtain the weighted decision matrices.

Using operations in Definition 2, the weighted decision matrices can be constructed by multiplying
the given criteria weight vector into the decision matrices.

Step 3: Calculate the supports.

Utilizing the distance measure defined in Definition 3, the support degrees can be obtained by
Equation (11):

Sup(ri}, ¥2) =1—d(, i) i =12 m;j =12, ,miky ky =1,2,- -+ ) 1n

Step 4: Calculate the weights associated with r? (ky=1,2,---,5s).
k ~ 1 ~
1 = wi, (14 G(y)) / ) wiy (1+G(7)) 12)
k=1

where G(ry,) = Zizzl,kz#kl Wy, Sup(ry,, v, ), and wy, is interpreted as the weight of DM Dy, .
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Step 5: Obtain the comprehensive evaluation information.

Using Equation (5) or Equation (9), the normalized evaluation information provided by DMs can

be aggregated, and the integrated decision matrix R = [r;;] 1nxp €an be obtained.

Step 6: Determine the ideal decision vectors of all alternative decisions.

After aggregating the DMs’ evaluation information into the decision matrix R = [rij} i’ which is
as follow:

G G - Gy
Aq 1 ria e T
Ay o1 r;m e T | (13)
R=T[rj],., =
Am Ymli Tm2 - Tmn

We can determine the ideal alternative vector A* among all the alternatives below:

G G e Ca

* . (14)
A* = ((hyy by by ), (g g by ), s (i, g iy ))

Similarly, the negative ideal alternative vector A} can be obtained by the negation of A*, which has
the maximum separation from A*, as follows:

C Cy e Cy (15)
Ar = (<hT0-’hIZt’hF2t>’ <hT0’h12t’hF2i>’ s <hT0’h12i’hF2t>)
In addition, we can obtain the left maximum separation from A* denoted as A*™:
C C . C
1 2 n (16)

A = (b ey (b b ey e (B e )

7m1n{hTA*7 } hIA*f 7max{h1A*7 } and hFA*f 7max{hpm7 }

In the same way, we can also obtain the right maximum separation from A* denoted as A**:

where hTA*f

Cy Cy Cn
At = (<hTA*<,/hTAH1thAH|>/ <hTA*\Z/hIA*‘2'hFA“2>’ T <hTA”'*!'hIA”'"'hFA“”>> /

where hTA*+/' = mz_ax{hTA*+ } h]A*+ mm{hlm+ } and h}:A*+ = rnm{hp/\*+ }

17)

Step 7: Calculate the separations of each alternative decision vector from the ideal decision vector.

Utilizing the distance measure in Definition 3, we can calculate the separations between each
alternative vector and the ideal decision vectors of all alternative decisions, they are respectively
represented as follows:

1

d(Aj, A7) i%( ( ) -f (hTzr) ' +1f (hlaj> _f*(hlo) ! + *<hFaj) _f*(hFo) A) X/ (18)
£
a0 = 32 5 (17 (o, ) = )| |7 (i) = )| | ) = o)) 19)

() 7 (e ) 7 () )l o) ) @)

n l
d(A;, A7) 7<
1:1 3
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f* (hrﬂ/.) —f (hFA* /.) ‘A>W. (21)

(i) =5 )|+

£ (im,) =1 (i )|+

n 1
(a4 =35 (
j=1

Step 8: Calculate the relative closeness of each alternative decision.

The relative closeness of each alternative decision can be obtained using the following formula:

I — d(AZ',A: ) + d(A,', A*f) + d(Ai,A*+) 22)
' d(AirA*) +d(Ai/AZ‘) +d(Ai/A*7)‘Fd(AirA*+)

Step 9: Rank all the alternatives.

According to the relative closeness of each alternative decision I;, we can rank all the alternatives.
The larger the value of ;, the better the alternative A, is.

5. A Case of Human Resource Management Problem

5.1. Problem Definition

The present study focuses on a case of HRM problem in a Chinese university to test the proposed
MCGDM method. Specifically, the school of management in the university plans to introduce talents
from home and abroad to strengthen discipline construction and try to realize the goal of building
a high-level innovative university. Three teams of DMs are assembled as a committee and will
take the whole responsibility for this recruitment process, these teams are university presidents Dy,
deans of management school D;, and human resource officers Ds, respectively. After strict first
interview, six candidates A;(i = 1,2,...,6) remain for the second review. Before the evaluation
procedures, an appropriate evaluation index system should be constructed through literature review
and expert consultation. In the literature research, Abdullah et al. [1] and Chou et al. [53] identified
three dimensions and eight criteria for the HRM evaluation problem; the three dimensions used in
their work were infrastructures, input and output. Zhang et al. [5] constructed an evaluation index
system of classroom teaching quality; dimensions included in their work were usage of teaching
attitude, teaching capacity, teaching content, teaching method and teaching effect. We can see that
different evaluation index systems serve for different purposes of HRM evaluation in various industries.
This study mainly tackles the HRM evaluation for talent introduction in universities which exists in
real-life decision environments. According to Ref. [54], experts agree on the four criteria included in
the evaluation index system for the evaluation of HRM, they are teaching skill (C), morality (C;),
education background (C3) and research capability (Cy), respectively. A brief description of each
criterion is shown as follows.

Teaching skill is an overall reflect of one teacher’s classroom teaching quality which includes
several sub-attributes, such as teaching attitude, teaching capacity, teaching content, teaching method
and teaching effect.

Morality refers to the teachers’ morality in this study. It is a kind of professional morality of
teachers which takes up the first place of education and can greatly affects the education’s level and
quality as a whole. More specifically, the teachers’ morality includes the moral consciousness, moral
relations and moral activity of the teachers in universities.

Education background is an overview of a person’s learning environment and learning ability.
It includes the person’s educational level, graduate school, major courses, academic achievements,
and some other highlights.

Research capability denotes the scientific research ability that is required for scientific research
or the research competence someone shows during the process of scientific research. The former is
closer to the potential, including someone’s abilities in logical thinking, writing and oral language, etc.,
whereas the latter emphasizes someone’s practical scientific research capacity.
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With the reform of education and fierce competition among universities, the current form
of university education needs more and more modern teachers with the above four abilities.
Therefore, this study applies the above four criteria for the case of HRM evaluation, and the
six candidates A;(i = 1,2,...,6) are evaluated by the three teams of DMs under each criterion.
The weight vector of criteria was assigned by DMs as @ = (0.3,0.12,0.31,0.27)T, and the weight

vector of DMs was w = (%, %, %)T In addition, the LTS was denoted as H = {hg,hy,--- ,h¢}=
{extremely poor, very poor, poor, medium, good, very good, extremely good}. By interviewing the DMs
one by one anonymously, all of their linguistic assessments for each alternative under each criterion are
collected together. During this process, DMs in each group are isolated and don’t negotiate with each
other at all. Consequently, the decision information is provided independently in the form of linguistic
terms. Take the evaluation value a}; = (hs, 3, h,) as an example, which represents the evaluation
value of DM D; for alternative A; under criterion Cj. Since the criterion C; (teaching skill) includes
various aspects, such as teaching attitude, teaching capacity, teaching content, teaching method and
teaching effect, the group of DMs D; may hold inconsistent linguistic judgments for alternative A;
with respect to C;. After collecting all the linguistic assessments for alternative A;, the linguistic
neutrosophic information @}; = (hs, I3, hy) is obtained by calculating the weighted mean values of
all the labels of linguistic terms with respect to active, neutral and passive information, respectively.
Similarly, the overall evaluation information provided by the teams of DMs can be represented in the
form of LNNs in Tables 1-3.

Table 1. Evaluation information of D;.

Dy C1 Cy G Cy

Ay (hs,h3,ha)  (hs,h3, ho)  (hs,ha,ho)  (hs, h3, ha)
Ay (hs,ha,hy)  (hs,h3, ) (hs,h3 ko) (ho, B3, ho)
Az (hs,h3,ha) (s, h3,ho)  (hs,h3,ho) (s, B3, ho)
Ay (hs, h3, ha) (hs, h3, ho) (hs, h3, ha) (hs, h3, ho)
As (hs, h3, ha) (hs, h3, ha) (hs, h3, ha) (ho, h3, h2)
As  (hehaha)  (hs,ha,ho)  (hs, haho) (o, B, o)

Table 2. Evaluation information of D5.

Dy G G Gs Cy

Aq (he, 13, ho) (hs, h3, ha) (hs, h3, ha) (hs, h3, ho)
A (hs, h3, ho) (hs, h3, ho) (hs, h3, ho) (hs, h3, ho)
As  (hs,hy,ho)  (hs,haho)  (hs, haha)  (hs,ho, ho)
A4 <h6I h3, h2> <h6I h3, h2> <h5, h3, h2> <h5, h3, h2>
As  (hshs,ho)  (hs,haho)  (heha ho)  (ho, B, )
Ae  (hs,h3 b)) (hs,h3ho)  (he h3 hp)  (hs, s, hy)

Table 3. Evaluation information of Dj3.

D3 G @) Cs Cy

Ay (heha,ho) (s, hy ho)  (hehaho) (s, h, ho)
A2 <h5, h3, h2> <h5, h3, h0> <h5, h3, h2> <h5, h3, h2>
Az (hs,ha,ha)  (hs,h3,ho)  (he haho) (s, ha ho)
Ay (b5, ha b))  (hs,h3ho)  (he hz hp)  (ho, B, ho)
As (b5, h3, b)) (hs,h3 o) (he 3 hp)  (hs,hs ho)
Asg (hs,h3,ha)  (ho,ha,ha) (s, h3,ho) (s, h3, ho)

5.2. Evaluation Steps of the Proposed Method

The following steps describe the procedures of evaluation for all candidates, and the ranking
order of the six alternatives can be obtained. For simplicity of calculation, we chose the LSF f}".
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Step 1: Normalize the decision matrices.

It is obvious that all the four criteria are of the benefit type; then, there is no need for normalization.

Step 2: Obtain the weighted decision matrices.

Using operation in Definition 2, the weighted decision matrices can be constructed in Tables 4-6:

Table 4. Weighted evaluation information of Dj.

Dy C G Cs Cy

A1 (h20696, M5.0001, ha579)  (Mo.ss7a, Pis.6051, To) (h2.1327, haoss1, ho) (18772, h5.1166, Ha7165)

Az (h20696, M5.0001, M3.9304)  (M0.8573, 15,6051, Fo) (h2.1327, ha.9881, ho) (ho, hs.1166: 10)

Az (h20696, M5.0001, Ba579)  (Mo.ss73, is.6051, Fo) (h2.1327, ha.9881, ho) (ho, hs.1166, 10)

Ay (20696, 150201, Has79)  (hogs7a, hseos1.ho)  (M2.1327, haoss, has33s) (ho, h5.1166, 10)

As  {h20696, 50001, Pa579)  (Moss73, M5.6051, M5.a204)  (M2.1327, Bagsst, Baszss) (o, Bs.11e6, Haz165)

As (N6, 15,0201, a.579) (ho.8573, 15,6051, o) (h2.1327, ha.9881, o) (ho, 51166, 1a.7165)
Table 5. Weighted evaluation information of Dj.

D, C G Cs Cy

Ay (N6, hs.0201, o) (ho.8573, 56051, M5.4224)  (M2.1327, ha9ss1, has3ss) (18772, hs.1166, M0)

Az (h2.0696, 15.0201, o) (ho.8573, 15,6051, o) (h2.1327, ha.9881, ho) (h1.8772, h5.1166, o)

Az (h2.0696, 15.0201, o) (hoss73, hse051, o) (M2.1327, haosst, a.5335) (h1.8772, ho, o)

Ay (he, 15,0201, Ma579) (he, 56051, M5.4224)  (M2.1327, Maoss, hassss)  (M1.s772, 5166, Ha7165)

As (h2.0696, 115.6974, o) (ho.8573, 15,6051, o) (he, ha.9ss1, o) (ho, 51166, 14.7165)

Ag  (h2.0696, 15,0201, Ma579)  (Mo.ss73, 15,6051, o) (he, haogs1, hassss)  (his772,li5.1166, Han22s)
Table 6. Weighted evaluation information of D3.

Ds G G Cs Cy

Ay (N6, hs.0201, o) (ho.8573, 15,6051, o) (he, hy.9881, 114.5335) (h1.8772, h5.1166, o)

Az (h20696, M5.0001, Ma579)  (hossza Mseost ho)  (Moasaz, hagsst, hassss)  (Mis772, s.1166, Mazies)

Az (h20696, M5.0001, Bas79)  (Mo.ss73, is.6051, o) (he, ha.9ss1, o) (h1.8772, 51166, 110)

Ay (h20696 h5.0201, as79)  (Mo.ss73, hs.6051, o) (he, ha9ss1, 4.5335) (ho, 51166, 14.7165)

As  (h2.0696 15.0201, a579)  (Mo.ss573, h5.6051, o) (N6, ha9ss1, 14.5335) (h1.8772, 15,1166, 14.7165)

As (20696, 50001, has79) (Mo, h5.6051, h5.4224) (h2.1327, haoss1, o) (h1.8772, 51166, H10)

Step 3: Calculate the supports.

Utilizing the distance measure defined in Definition 3 and Equation (11), the supports can be

obtained. Here, we assume that A = 2 in the distance measure.

[ 0.6647 0.6988 07481 0.738 ]
07816 1 1 08957
07456 1 07481 07157
SUP(rl‘lf’rl‘ZJ‘):s“p(erf’r}f): 07816 05848 1 0738 |’
07428 0.6988 0.6689 1
| 07816 1 0.6689 0.8906 |
106647 1 06689 0738 ]
0964 1 07481 0718
e B R B
1 06988 07852 0.8957
| 07816 0695 1 0718 |
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1 06988 07852 1
07456 1 07481 0.738
07456 1  0.6689 0.7157

2 .3\ _ 3 .2\ _
sup (’i/"rf/‘> *Sup<r1‘f"i/‘) | 07816 05848 0.7852 0.8957
07428 1 07481 0.8957
1 0695 06689 0771

Step 4: Calculate the weights associated with r? (k1 =1,2,---,5s).

The weights can be calculated by Equation (12) as follows:

0.317 0.3406 0.3295 0.3208 0.3415 0.3188 0.3382 0.3396
0.3394 0.3333 0.3393 0.3367 0.3238 0.3333 0.3393 0.3381
1 0.3394 0.3333 0.3382 0.3402 5 0.3212 0.3333 0.3295 0.3197
T = | 03385 03437 03384 03252 |70 T | 0323 03126 03384 03381 +and
0.3395 0.3188 0.3323 0.3357 0.3211 0.3406 0.3295 0.3357
L 0.323 0.3407 0.3414 0.3349 | 0.3385 0.3407 0.3172 0.3388
[ 0.3415 0.3406 0.3323 0.3396 ]
0.3368 0.3333 0.3213 0.3252
3 | 03394 0.3333 0.3323 0.3402
Tij = 0.3385 0.3437 0.3232 0.3367
0.3395 0.3406 0.3382 0.3286
| 0.3385 0.3186 0.3414 0.3263 |
Step 5: Obtain the comprehensive evaluation information.
Using Equation (5) or Equation (9), the integrated decision matrix R = [rij] mxn A€
calculated below:
(i) When using Equation (5), the results are listed in Table 7.
Table 7. Comprehensive evaluation information by LNPWA operator.
Dy C1 C Cs Cy
Ay (he, h5.0201, o) (ho.8573, 15,6051, o) (he, ha.9ss1, o) (h1.8772, h5.1166, o)
Az (h2.0696, 15,0201, o) (ho.s573, 15,6051, ho) (h2.1327, ha.9ss1, o) (h1.2689, 15,1166, 10)
Az (h2.0696, 15.0201, o) (ho.8573, 56051, ho) (he, haoss1, o) (h1.8772, ho, o)
Ay (he, Ts.0201, 14.579) (he, s 6051, o) (he, Ts.9881,114.5335) (h1.2689, 151166, o)
As (h2.0696, 1152356, 10) (ho.s573, 156051, ho) (he, hagss1, o) (ho.6358, 1151166, 14.7165)
As  (h20696, M5.0001, ha579)  (Mossess is.6051, Mo) (N6, hagss1, o) (h1.2721, h5.1166, 110)

(ii) When using Equation (9), the results are listed in Table 8.

Table 8. Comprehensive evaluation information by LNPWG operator.

D, C G Cs Cy

Ar (hasssz hsoo01, hisaz)  (hossza hseost, hoeser)  (h3a7a7,hagssi haazar)  (his772,h51166, 1.9671)
Ay (h2.0696, 15,0201, 13.2402) (ho.8573, 56051, ho) (h2.1327, ha.9881, 11 8396) (ho, 5 1166, 11.9918)
Az {h2.0696, 15,0201, 13.5544) (ho.8573, 56051, ho) (h3.1737, ha.9ss1, 11.8834) (h1.8772, ha182, o)
Ay (h30839, h5.0201, hasze)  (h17se9, s 051, hae119) (31414, haosst, a5335) (ho, 15,1166, 13.6868)
As  (h20696, 15,3207, h35549)  (hoss73, M5.6051, h6553)  (hasos1, hagss1, M3.a741) (ho, h5.1166, Ma.7165)
As (13,0839, 15,0201, ha.579) (ho, s 6051, 12.6553) (h3.1201, ha.9881, 111 8174) (ho, 15 1166, 13.3929)
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Step 6: Determine the ideal decision vectors of all alternative decisions.

(i) When using Equation (5), we can determine the ideal alternative vectors among all the
alternatives respectively as follows:

A* = ({he, ho, ho), (he, ho, ho), (e, o, o), (e, o, o)),

A¢ = ((ho, he, he), {ho, he, he), (ho, he, he), (ho, he, he)),

A*™ = ((h2.0696, 15,2356, 14.579), (ho.5864, 15,6051, 10), (12,1327, ha.9ss1, ha5335), (ho.6358, 1151166, 14.7165) ), and

A*T = ((he, h5.0201, o), (he, hs 6051, ho), (e, haosst, o), (1772, ho, o) ).-

(ii) When using Equation (9), the results are:

A* = ({he, ho, ho), (he, ho, ho), (he, o, ho), (he, o, o)),

A¢ = ((ho, hs, he), (ho, he, e), (ho, he, he), (o, he, hs) ),

A*" = ((h2.0696, 15,3227, h4.579), (Mo, 15,6051, 12.6119), (h2.1327, ha.9881, ha5335), (ho, B5 1166, Ha7165) ), and

A*T = ((has387, 150001, 11.8417), (M1.7569, 1156051, 1), (a.4051, 1a.0881, 1 .s174), (11.8772, Ma1s2, Ho))-

Step 7: Calculate the separations of each alternative decision vector from the ideal decision vector.
The separations between each alternative and the ideal decision vector by the LNPWA and

LNPGA operators are shown in Tables 9 and 10, respectively.

Table 9. Separations by the LNPWA operator.

Distance d(A,‘,A* ) d(Ai,A: ) d(Ai,A*_ ) d(Ai,A*+ ) I;
Aq 2.1903 2.1162 1.6257 1.7055 0.7132
Ay 2.3229 2.0653 1.5863 1.7175 0.698
Az 1.3743 2.8968 2.3562 0 0.7926
Ay 2.3229 2.0653 1.5863 1.7175 0.698
As 2.9288 0.561 0 2.3562 0.499
Ag 2.3222 2.0656 1.5864 1.7174 0.6981

Table 10. Separations by the LNPWG operator.

Distance d(A;, A*) d(A;, AL) d(Ai,A*_ ) d(Ai,A*+ ) I;
Aq 2.2863 1.5118 1.1097 0.7259 0.5942
Ay 2711 1.3681 0.9082 0.9641 0.5445
Az 1.9575 2.1815 1.7206 0 0.6659
Ay 2.9016 0.8254 0.3432 1.4138 0.4709
As 3.0628 0.5194 0 1.7205 0.4224
Ag 2.8615 0.9176 0.4412 1.3295 0.4844

Step 8: Calculate the relative closeness of each alternative decision.

The results of relative closeness of each alternative decision are shown in the last column of
Tables 9 and 10.

Step 9: Rank all the alternatives.

According to the relative closeness of each alternative decision I;, we can rank all the alternatives.
When using LNPWA operator, the ranking resultis Az = A; = Ag = Ay = Ay = As, whereas when
using LNPWG operator, the result turns out Az > Ay = Ay > Ag = Ay > As. There is a subtle
distinction between the results obtained by the LNPWA and LNPWG operators, but the alternative Az
remains the most performant and competitive candidate.
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5.3. Sensitivity Analysis and Discussion

The aim of sensitivity analysis is to investigate the effects of different semantics and the distance
parameter A on the final ranking results of alternatives. To do so, the calculated results are shown in
Tables 11 and 12 and Figures 1 and 2, respectively.

1 E n 1 [
0.8 1 i 1
0.6 | Diz
0.4 i
0.2 ' i
0
Al A2 A3 A4 A5 A6
Figure 1. Ranking results by the LNPWA operator.
0.8
06 ufl]
0.4 e
g .
0.2
0
Al A2 A3 A4 A5 A6
Figure 2. Ranking results by the LNPWG operator.
Table 11. Results of different LSFs f* (A = 2).
Alternatives
Ranking Results

A Ay A Ay As Ag

f; INPWA 0713 0698 0793 0698 0499 0698 As- Ay - Ag - Ay = Ay - As
T LNPWG 0594 0544 0666 0471 0422 0484 Az = Ay = Ay = Ag = Ay = As

g INPWA 07 069 0773 069 048 069 Ay Ay = Ag = Ay = Ay > As
2 LNPWG 0578 0549 064 0447 0401 0462  A3= A; = Ay = Ag = Ay > As

jr INPWA 0721 0704 0806 0704 0514 0704 Ay Ay Ag - Ay = Ay - As
3 LNPWG 0608 054 0684 0486 0439 0496 A3 = A; = Ay = Ag = Ay > As
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It can be seen from Table 11 and Figures 1 and 2 that the alternative A3 remained to be the best
one, and As was consistently identified as the worst choice no matter how the aggregation operator
or semantics change. When using the LNPWA operator, the ranking result remains Az >~ A; >
Ag = Ay = Ay > As. The difference in semantics slightly influenced the values of I;, but did not
result in different ranking orders. Similarly, when using the LNPWG operator, the ranking result
always is A3 = A; = Ay = A = Ay > As. Itis clear that the ranking results varied when using
different aggregation operators. This may be caused by the distinct inherent characteristic of these
two operators, since the LNPWA operator is based on the arithmetic averaging, whereas the LNPWG
operator is based on the geometric averaging. This demonstrates that the ranking results have stability
by our proposed method in some degree.

The following Table 12 the influence of the distance parameter A on the final ranking results of
alternatives when the semantics were fixed as f* = f". It can be seen that the ranking results kept the
same as Az = A; = Ay = Ag = Asg > As when using the LNPWG operator. However, results by the
LNPWA operator change among Az = Ay = Ay = Ag = Ay = A5, A3 = A1 = Ag = Ay = Ay = As
and Ay > Ag = Ay = Ay = A3 > As. Thus, we can conclude that the differences in the aggregation
operators and the parameter A could influence the evaluation results, DMs should choose appropriate
parameter A and aggregation operators according to their own inherent characteristics.

Table 12. Results of different parameter A(f* = f7).

A =i

Ranking by LNPWA operator Ranking by LNPWG operator
1 Az = A1 > Ag = Ap = Ay > As Az = A1 > Ay = Ag = Ay > As
2 Az = A1 - Ay = Ag = Ay = As Az = A1 - Ay = Ag = Ay = As
3 Az = Ay = Ay = Ag = Ay = As Az = Ay = Ay = Ag = Ay - As
4 Az = Ay = Ag = Ay = Ay - As Az = A1 = Ay = Ag = Ay - As
5 Az = A1 = Ay = Ag = Ay - As Az = A1 = Ay = Ag = Ay - As
6 Az = A1 = Ag = Ay = Ay - As Az = Ay = Ay = Ag = Ay - As
7 Ay = Az = Ag = Ap = Ay > As Az = Ay = Ay = Ag = Ag = As
8 Ay = Ag - Ay =Ay - A3 > As Az = Ay = Ay = Ag = Ay = As
9 Ay = Ag > Ay =Ay - A3 > As Az = A1 > Ay = Ag > Ay > As
10 Ay = Ag - Ay =Ay - A3 > As Az = A1 > Ay = Ag = Ay = As

5.4. Comparison Analysis and Discussion

This subsection conducts a comparative study to validate the practicality and advantages of the
proposed method in the LNS contexts, and the results are shown in Table 13. Brief descriptions about
the comparative methods are as follows.

(1) Weighted arithmetic and geometric averaging operators of LNNs [28]: the concept of LNNs
was first proposed by Fang and Ye [28]. In their study, two aggregation operators including the
LNN-weighted arithmetic averaging (LNNWAA) operator and LNN-weighted geometric averaging
(LNNWGA) operator are utilized to derive collective evaluations. Then, based on their proposed score
function and accuracy function of LNNSs, the ranking order of alternatives is obtained.

(2) Bonferroni mean operators of LNNs [30]: the LNNNWBM operator and LNNNWGBM
operator are proposed to aggregate evaluations to obtain the collective LNN for each alternative.
Subsequently, the results are derived by expected value.

(3) An extended TOPSIS method [32]: a weighted model based on maximizing deviation is used
to determine criteria weights. Subsequently, an extended TOPSIS method with LNNSs is proposed to
rank alternatives.
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Table 13. Comparison results with the existing methods.

MCGDM Ranking Results
Proposed method by LNPWA operator Az = A1 - Ag = Ay = Ay - As
Proposed method by LNPWG operator Az = A1 - Ay = Ag = Ay > As
LNNWAA operator [28] Az = A1 = Ay = Ag = A5 = Ay
LNNWGA operator [28] Az = A1 > Ay = Ag = Ay > As
LNNNWBM operator [30] (p =q= 1) Ay = Az - Ag = Ap > A5 >~ Ay
LNNNWGBM operator [30] (p = g = 1) Ay = Az = Ag = Ay = Ay - As

An extended TOPSIS method [32] (A = 2) Az = Ay = Ag = Ay = Ay = As

As shown in Table 13, different methods resulted in different ranking results, but the optimal
candidate remained to be A3z, despite the results obtained by the Bonferroni mean operators of
LNNSs [30]. The main reasons for these differences may be as follows: (1) The operations for LNNs
between this study and the comparative methods are remarkably different. The operations in the
existing methods [28,30,32] just considered the linguistic variables’ labels which may cause information
loss and distortion. (2) Different aggregation operators and ranking rules might also cause different
ranking results. Specifically, the LNNWAA and LNNWGA operators defined in [28] were respectively
based on the arithmetic mean and geometric mean operators, whereas the Bonferroni mean operators
of LNNs [30] implicated the interactive hypothesis among inputs. Unlike the existing aggregation tools,
the proposed PA operator for LNNs allows the information provided by different DMs to support and
reinforce each other, and it is a nonlinear weighted average operator.

From above discussions, the unique features of the proposal and its main advantages over others
can be simply summarized below.

(1) The comparative methods [28,30,32] dealt with the LNNs only considering the labels of
linguistic variables while ignoring the differences in various semantics. It has been contended that the
same linguistic variable possesses different meanings for different people and has diverse meanings for
the same person under various situations [55]. Therefore, directly using the labels of linguistic variables
may lead to information loss during information aggregation. To cover this challenge, this study
redefines the operations for LNNs based on the LSFs and Archimedean t-norm and f-conorm, which
increases the flexibility and accuracy of linguistic information transformation.

(2) The extended TOPSIS method [32] only considered two relatively positive and negative ideal
solutions to determine the values of correlation coefficient for each alternative. By contrast, this study
takes both the relatively and absolutely positive and negative ideal solutions into account. Therefore,
the ranking result by this proposed method may be somewhat more comprehensive than the existing
method [32].

(8) For information fusion, all the existing methods [28,30,32] failed to consider the support
degree among different DMs during the aggregation processes. Although it is true that different
aggregation operators cater to different practical decision situations, the proposed PA operators within
LNN contexts are more feasible in dealing with the university HRM evaluation problem in this study.

6. Conclusions and Future Work

Talent introduction plays an important role in the long-term development of a university. This is
closely related to the university’s discipline development and comprehensive strength. Therefore,
there is a need for proper HRM evaluation that uses group decision-making methods efficiently
in order to utilize human resources. This study recognized the HRM evaluation procedures as a
complex MCGDM problems within the LNNs’ circumstances. Through merging the PA operator
with LNSs, we developed two aggregation operators (LNPWA and LNPWG) for information fusion.
Then, we made some modifications in the classical TOPSIS method to determine the ranking order of
alternatives. The strengths of the proposed method have been discussed via comparative analysis.
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Nevertheless, this study also holds several limitations which can suggest several avenues for
future research. First, the information fusion process adds to the computational complexity of the
obtained results because the proposed LNPWA and LNPWG operators are both nonlinear weighted
average operators, where the weights associated with each DM should be calculated by their input
arguments. Fortunately, the pressure from complex computation can be remarkably eased with the
assistance of programming software. Second, with the rapid development of information technology,
it is also possible to extend the current results for other management systems under the network-based
environments [56,57].

By analyzing the achieved results, the practical implications of our research may be summarized
in two aspects. On the one hand, this study proposes a novel linguistic neutrosophic MCGDM method
which contributes to expanding the theoretical depth of university HRM. It may offer comprehensive
supports for decision-making of modern universities’ talent introduction. In addition, the developed
method can also be further expanded to solving group decision-making problems in other fields,
such as tourism. On the other hand, this study further explores the application of linguistic MCGDM
methods in HRM. The obtained knowledge can be very helpful to improve the performance of the
human resource of universities accordingly.
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Appendix A. Linguistic Scale Function
By means of literature review, we can gather the following choices acting as LSFs.
(1) The LSF f; is based on the subscript function sub(h.) = t:

fill) = 0= 5 (x=0,1,--,20), 6 € [0,1]. (A1)
The above function is divided on average. It is commonly used for its simple form and easy
calculation, but it lacks a reasonable theoretical basis [58].

(2) The LSF f; is based on the exponential scale:

af —at— V- (y _ O, l, . ,f)

fa(hy) =6y = { utzjc-ix;g’—z

(A2)
S (y=t+1,t+2,---,21)

Here, the absolute deviation between any two adjacent linguistic labels decreases with the increase
of y in the interval [0, {], and increases with the increase of y in the interval [t + 1, 2¢].

(3) The LSF f3 is based on prospect theory:
Pal (20,1, 8)

) =0.={  2F (A3)
T Y a =t ,42, 20

Here, B,y € [0,1], and when B = ¢ = 1, the LSF f3 is reduced to f;. Moreover, the absolute
deviation between any two adjacent linguistic labels increases with the increase of y in the interval
[0, t], and decreases with the increase of y in the interval [t + 1, 2t].
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Each of the above LSFs f1, f», and f3 can be expanded to a strictly monotonically increasing and
continuous function: f*:S — RT (R* = {r|r > 0,r € R}), which satisfies f*(sr) = 0. Therefore,
the inverse function of f*, denoted as f *—1 exists due to its monotonicity.

Appendix B. The Archimedean T-norm and T-conorm

According to Reference [59], a t-norm T(x,y) is called Archimedean f-norm if it is continuous
and T(x,x) < x, for all x € (0,1). An Archimedean f-norm is called a strict Archimedean t-norm
if it is strictly increasing in every variable for x,y € (0,1). In addition, a f-conorm S(x,y) is called
Archimedean t-conorm if it is continuous and S(x, x) > x, for all x € (0,1). An Archimedean -conorm
is called a strict Archimedean f-conorm if it is strictly increasing in every variable for x,y € (0,1).

In this study, we apply one well-known Archimedean t-norm and ¢-conorm [60], as S(x,y) =
(x+y)/(1+xy)and T(x,y) = xy/[1+ (1 — x)(1 — y)], respectively.

Appendix C. The Proof of Theorem 2

Proof. It is clear that properties (1)—~(3) in Theorem 2 hold. The proof of property (4) in Theorem 2 is
shown below.
First, the distances d(a,¢), d(a,b) and d (b, ¢) can be easily determined respectively as follows:

12 = 317 ) = 7 O6m) [+ £ ) = £ () [+ 17 (1) — £ )] ) 1
a(ab) = %(f* (hr,) — £+ (1) ]A | F () = £ () ]A +|£e () - £ () m " and
() = 5|1 (nr) = 5 )+ |7 (i) = 5 ) [ | () = 50| i
Since [a -+ b| < |a| + [b], then |f* (hr,) — f*(hr.)| = |f* (hr;) = £ (e, ) + £ (b ) = £ (hr.)
fr(ng) = fo () + £ () = £ () | < | £ () = £ ()| + 7 () = £ o) |
fr () = £ ()| < |£o () = £ ()| + |2 () = £ ) |

Similarly, we can obtain | f* () — £* ()| < |f* (i) = £ (i, )| + £ (i) = £ ()

£ () = £ ()| <|f (ne) = £ (s, )| + | £ () = £ ()
Then

Y(1£7 () = £ () [+ | £ () = £ () [+ 17 () = £ (i) 1)
317 m) =52 (i) o) = £ (g )[4 o) = 7 ()

A A
%(f*(hTf,>7f*(hTE) + f*(hlg)ff*(hlf)‘
Thus, property (4) in Theorem 2 holds. [

‘ A

+

,and

<

Thus,

, and

S
VAN

)
)

==

+

£ (he) = £ ()

Appendix D. The Proof of Theorem 3

n
For ease of computation, we assume that {; = w;j(1+ G(4;))/ ¥ w;(1+ G(a;)) . In the following
=1

steps, Equation (5) will be proven using mathematical induction on 7.
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(1) Utilizing the operations for LNNs defined in Definition 2, when n = 2, we have

LNPWA(ay, @) = §1ﬂ1 @ iy =
<f*1<(1+f( ) (s (o az))zz(1f*(hfal))zl(lf*(%))f),
(17 (hryy)™ (1+f*(hfa§z)) 2*(“)’5(’%)) H(1p ()
f*1< l 27 () 2 £ ()™ Z g > (Ad)
b b)) 0 ) bl )
«—1 2(f* ey S ey
! <(2f*(hFa1))“(2f*(h%z))g”(f*(%))gl(f*(hFaz))éz>>

That is

LNPWA(m, @) = {1t @ (olip =
< . jli[l(uf* (hrﬁ))gj*}i(l*f“ (hTa)){i
/ IZT (1+f h E))Zfﬂzll(lff* (hrﬁ))gj ' (A5)
(

- frm )j;g/ ) f*l( z,li[l(f* ("Fﬁ))éj >>
V(e ()T )7\ A G () 4L (7 ()

j=1

En

*( r
f*flA zflil(
B r ()

Thus, when 1 = 2, Equation (5) is true.

(2) Suppose that when 1 = k, Equation (5) is true. That is,

)
i )'”ﬁ(l*f*(hﬁ))gj , (A6)
(

Then, when n = k + 1, the following result can be obtained:

LNPWA(ay, @, - ﬂk+1) = LNPWA(ay, a, -+, ) & Cky18k41
k
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Then, when n = k + 1, Equation (5) is true. Therefore, Equation (5) is true for all 1.
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Abstract: The uncertainty and concurrence of randomness are considered when many practical
problems are dealt with. To describe the aleatory uncertainty and imprecision in a neutrosophic
environment and prevent the obliteration of more data, the concept of the probabilistic single-valued
(interval) neutrosophic hesitant fuzzy set is introduced. By definition, we know that the probabilistic
single-valued neutrosophic hesitant fuzzy set (PSVNHEFS) is a special case of the probabilistic interval
neutrosophic hesitant fuzzy set (PINHFS). PSVNHEFSs can satisfy all the properties of PINHFSs.
An example is given to illustrate that PINHFS compared to PSVNHFS is more general. Then, PINHFS
is the main research object. The basic operational relations of PINHFS are studied, and the comparison
method of probabilistic interval neutrosophic hesitant fuzzy numbers (PINHFNSs) is proposed. Then,
the probabilistic interval neutrosophic hesitant fuzzy weighted averaging (PINHFWA) and the
probability interval neutrosophic hesitant fuzzy weighted geometric (PINHFWG) operators are
presented. Some basic properties are investigated. Next, based on the PINHFWA and PINHFWG
operators, a decision-making method under a probabilistic interval neutrosophic hesitant fuzzy
circumstance is established. Finally, we apply this method to the issue of investment options.
The validity and application of the new approach is demonstrated.

Keywords: probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; multi-attribute
decision making; aggregation operator

1. Introduction

In real life, uncertainty widely exists, like an expert system, information fusion, intelligent
computations and medical diagnoses. When some decision problems need to be solved, establishing
mathematical models of uncertainty plays an important role. Especially when dealing with big data
problems, the uncertainty must be considered. Therefore, to describe the uncertainty of the problems,
Zadeh [1] presented the fuzzy set theory. Next, many new types of fuzzy set theory have been
developed, including the intuitionistic fuzzy set [2], hesitant fuzzy set (HFS) [3], dual hesitant fuzzy
set (DHEFS) [4], interval-valued intuitionistic fuzzy set (IVIFS) [5,6], necessary and possible hesitant
fuzzy sets [7] and dual hesitant fuzzy probability [8]. The fuzzy set theory is a useful tool to figure
out uncertain information [9]. In addition, Fuzzy set theory has also been applied to algebraic
systems [10-13].
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Simultaneously, in actual productions, statistical uncertainty needs to be considered. The
probabilistic method is not always effective when we deal with epistemic uncertain problems [14].
Thus, those problems makes researchers attempt to combine fuzzy set theory with probability
theory as a new fuzzy concept. For example, (1) probability theory as a method of knowledge
representation [15-18]; (2) increase the probability value when processing fuzzy decision making
problems [19-21]; (3) through the combination of stochastic simulation with nonlinear programming,
the fuzzy values can be generated [22,23]. In [24], Hao et al. lists a detailed summary. In the
probabilistic fuzzy circumstances, probabilistic data will be lost easily. Thus, under the fuzzy linguistic
environments [25-27], Pang et al. [28] established a new type of probabilistic fuzzy linguistic term
set and successfully solved these issues. In some practical issues, it is necessary to fully consider
the ambiguity and probability. In 2016, Xu and Zhou [29] produced the hesitant probabilistic fuzzy
set (HPFS). Then, Hao et al. [24] researched a new probabilistic dual hesitant fuzzy set (PDHFS) and
applied it to the uncertain risk evaluation issues.

In [30], Smarandache introduced the neutrosophic set (NS) as a new type of fuzzy set. The NS A
includes three independent members: truth membership T4 (x) € [0,1], indeterminacy membership
Ix(x) € [0,1] and falsity membership F4(x) € [0,1]. NS theory has been widely used in algebraic
systems [31-36]. Next, some new types of NS were introduced, like single-valued NS (SVNS) [37]
and interval NS (INS) [38]. Ye utilized SVNS theory applied to different types of decision making
(DM) issues [39-41]. In [42], Ye presented a simplified neutrosophic set (SNS). Xu and Xia utilized HFS
theory for actual life productions [43—46]. Next, in a hesitant fuzzy environment, a group DM method
was introduced by Xu et al. [47]. However, there are some types of questions that are difficult to solve
by HFS. Thus, Zhu [4] introduced a DHFS theory. Then, Ye [48] established a correlation coefficient
of DHFS. When decision makers are making decisions, DHFS theory cannot express the doubts of
decision makers, completely. Next, in 2005, a single-valued neutrosophic hesitant fuzzy set (SVNHEFES)
was established by Ye [49], and interval neutrosophic hesitant fuzzy set INHFS) was introduced by
Liu [50]. Recently, neutrosophic fuzzy set theory has been widely researched and applied [51-55].

The aleatory uncertainty needs to be considered under the probabilistic neutrosophic hesitant
fuzzy environments. Recently, fuzzy random variables have been used to describe probability
information in uncertainty. However, in the above NS theories, the probabilities is not considered.
Thus, if a neutrosophic multi-attribute decision making (MADM) problem under the probabilistic
surroundings needs to be solved, the probabilities as a part of a fuzzy system will be lost. Until
now, this problem has not given an effective solution. Peng et al. [56] proposed a new method:
the probability multi-valued neutrosophic set (PMVNS). The PMVNS theory successfully solves
multi-criteria group decision-making problems without loss of information. Then, we offer the notion
of probabilistic SVNHES (the probabilistic interval neutrosophic hesitant fuzzy set (PINHFS)) based on
fuzzy set, HFS, PDHFS, NS and IVNHFS. To solve the MADM problems under the probabilistic interval
neutrosophic hesitant fuzzy circumstance, the concept of PINHFS is used. By comparison, we find that
the application of PINHFS is wider than that of the probabilistic single-valued neutrosophic hesitant
fuzzy set (PSVNHFS), and it is closer to real life. Thus, we can study the case of the interval.

The rest of the paper is organized as follows: Section 2 briefly describes some basic definitions.
In Section 3, the concepts of PSVNHFS and PINHFS are introduced, respectively. Next, PINHFS
is the main research object. The comparison method of probabilistic interval neutrosophic hesitant
fuzzy numbers (PINHFNSs) is proposed. In Section 4, the basic operation laws of PINHFN are
investigated. The probabilistic interval neutrosophic hesitant fuzzy weighted averaging (PINHFWA)
and the probability interval neutrosophic hesitant fuzzy weighted geometric (PINHFWG) operators
are established, and some basic properties are studied in Section 5. In Section 6, a MAMD method
based on the PINHFWA and PINHFWG operators is proposed. Section 7 gives an illustrative example
according to our method. To explain that PINHFS comparedto PSVNHES is more extensive, in Section 8,
the PSVNHFS being a special case of PINHFS, the probabilistic single-valued neutrosophic hesitant
fuzzy weighted averaging (PSVNHFWA) and probabilistic single-valued neutrosophic hesitant fuzzy
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weighted geometric (PSVNHFWG) operators are introduced and a numerical example given to
illustrate. Last, we summarize the conclusion and further research work.

2. Preliminaries

Let us review some fundamental definitions of HFS, SVNHFS and INHFS in this section.

Definition 1. ([3]) Let X be a non-empty finite set; an HFS A on X is defined in terms of a function h(x)
that when applied to X returns a finite subset of [0, 1], and we can express HFSs by:

A={{(xhs(x))|x € X},

where h 4 (x) is a set of some different values in [0, 1], representing the possible membership degrees of the element
x € X to A. We call h4(x) a hesitant fuzzy element (HFE), denoted by h, which reads h = {A|A € h}.

Definition 2. ([49]) Let X be a fixed set; an SVNHFS on X is defined as:

N = {{x,{(x),i(x), f(x))|x € X}

in which F(x), i(x) and f(x) are three sets of some values in [0, 1], denoting the possible truth-membership
hesitant degrees, indeterminacy-membership hesitant degrees and falsity-membership hesitant degrees of
the element x € X to the set N, respectively, with the conditions 0 < 8,7, < 1and 0 < 6t + 9T + 5T+ <3,
where ~5 € Hx),y € i(x),n € f(x), 6% € Hx) = Userymaxd, v* € i(x) = U,ejy) maxy,
1t € f(x) = Uyef(x) maxy for x € X.

Definition 3. ([50]) Let X be a non-empty finite set; an interval neutrosophic hesitant fuzzy set (INHFS) on X
is represented by:

A= {(x, Ta(x), La(x), Fa(x))|x € X},

where Ty(x) = {&|& € Ta(x)}, Ia(x) = {B|B € Ia(x)} and To(x) = {§|¥ € Fa(x)} are three sets of
some interval values in real unit interval [0, 1], which denotes the possible truth-membership hesitant degrees,
indeterminacy-membership hesitant degrees and falsity-membership hesitant fuzzy degrees of element x € X
to the set A and satisfies these limits: & = [aF, 2] C [0,1], B = [B%, BY] C [0,1], ¥ = [v%,+Y] € [0,1]
and 0 < sup&* + supp™ +supyt < 3, where &% = Uzer, (x) max{a}, p* = User, () max{B} and
Ft = User, (x) max{7} for x € X.

3. The Probabilistic Single-Valued (Interval) Neutrosophic Hesitant Fuzzy Set

In this section, the concepts of PSVNHFS and PINHFS are introduced. Since PINHFS is more
general than PSVNHFS, the situation of PINHES is mainly discussed.

Definition 4. Let X be a fixed set. A probabilistic single-valued neutrosophic hesitant fuzzy set (PSVNHFS)
on X is defined by the following mathematical symbol:

NP = {(x,5(x)| P'(x), i(x)|P"(x), f(x)|Pf (x))|x € X}. ©)

The components F(x)|P¥(x), 1(x)|P!(x) and f(x)|Pf (x) are three sets of some possible elements where
F(x), i(x) and f(x) represent the possible truth-membership hesitant degrees, indeterminacy-membership
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hesitant degrees and falsity-membership hesitant degrees to the set X of x, respectively. P!(x), Pi(x) and Pf (x)
are the corresponding probabilistic information for these three types of degrees. There is:

. : . ' #Hoo # o
0<wBr<L0<6"+9"+yt+<3Ple(01],Pecl01,Pl el01;)y Pl=1) P=1) P =1
a=1 b=1 c=1

where a € F(x), B € i(x), v € f(x). at € f*(fc) == Upei(x) maxa, p7 € i (x) = Upei(x) maxp,
yrefrx) = U, ef(x) maxy, Pl e P, P;: er, P{ e Pf. The symbols #F, # and #f are the total numbers
of elements in the components I(x)|P!(x), f(x)\Pi(x) and f(x)\Pf(x), respectively.

For convenience, we call iip = (E(x)|P!(x),i(x) |P7(x), f(x) |Pf (x)) a probabilistic single-valued
neutrosophic hesitant fuzzy number (PSVNHEFN). It is defined by the mathematical symbol: 7 =
{E|P% 7| P, f|PS ).

Next, a numerical example about investment options is used to explain the PSVNHFS.

Example 1. OF four investment selections Ay, select the only investment option of an investment company.
The investment corporation wants to have an effective evaluation and to choose the best investment opportunity;
thus, the decision maker needs to use the PSVNHFES theory. According to the practical situation, there are three
main attributes: (1) Cy is the hazard of investment; (2) Cy is the future outlook; (3) Cs is the environment index.
Thus, the data on these four options are represented by SVNHFS, as illustrated in Tables 1—4. Every table is
called a probabilistic single-valued neutrosophic hesitant fuzzy decision matrix (PSVNHFDM).

Table 1. A probabilistic single-valued neutrosophic hesitant fuzzy decision matrix (PSVNHFDM) D
with respect to Aj.

Attributes Investment Selection Ap
Cq {{0.3]0.2,0.4|0.3,0.5]0.5},{0.1|1},{0.3|0.6,0.4]0.4} }
Cy {{0.5]0.5,0.6|0.5},{0.2|0.2,0.3]0.8},{0.3/0.4,0.4/0.6 } }
Cs {{0.2/0.1,0.3|0.9}, {0.1]0.3,0.2/0.7}, {0.5/0.2,0.6|0.8} }

Table 2. PSVNHFDM D, with respect to A;.

Attributes Investment Selection A,
C {{0.6/0.1,0.7|0.9}, {0.1]0.4,0.20.6}, {0.2/0.5,0.3]0.5} }
C {{0.6/0.2,0.7/0.8},{0.1]1},{0.3|1}}
Cs {{0.6/0.3,0.7|0.7}, {0.1]0.6,0.2|0.4},{0.1|0.7,0.2|0.3} }

Table 3. PSVNHFDM D3 with respect to A3.

Attributes Investment Selection Aj
Cy {{0.5]0.5,0.6/0.5}, {0.4|1},{0.2/0.2,0.3]0.8} }
G {{0.61}, {0.3]1}, {0-4[1}}
G {{0.5/0.6,0.6/0.4}, {0.1]1}, {0.3]1} }

Table 4. PSVNHFDM D, with respect to Ay.

Attributes Investment Selection Ay
Cy {{0.7]0.4,0.8/0.6},{0.1|1},{0.1|0.1,0.2|0.9} }
Cy {{0.6/0.6,0.7|0.4}, {0.1|1},{0.2|1} }
Cs {{0.3]0.9,0.5/0.1}, {0.2|1},{0.1|0.1,0.2|0.8,0.3]0.1} }
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In general, in the real world, if the three types of hesitant degrees of the PSVNHES are interval
values, this is a special case of INHFS. This kind of interval is more able to express the problems that
people encounter when making choices in real life. However, the PSVNHES is not an effective tool to
solve this problem. Thus, we need to propose a new method to solve this problem. Then, the SVNHFS
can be used as a special case of the probabilistic interval neutrosophic hesitant fuzzy circumstance.
Thus, the probabilistic interval neutrosophic hesitant fuzzy set (PINHFS) is proposed and studied.
The advantages of this are: SVNHFS can be studied in a wider range; the scope of application is also
broader and closer to real life. Hence, we will give the concept of PINHFS. Simultaneously, in the rest
of this paper, we take PINHFS as an example to conduct research.

Definition 5. Let X be a fixed set, a probabilistic interval neutrosophic hesitant fuzzy set (PINHFS) on X is
defined by the following mathematical symbol:

N = {(x, T(x)|P"(x), 1(x) P (x), F(x) | P (x)) |x € X}.

The components T(x)|PT (x), I(x)|P!(x) and F(x)|PF (x) are three sets of possible elements where T(x),
I(x) and F(x) are three sets of some interval values in the real unit interval [0, 1], which denotes the possible
truth-membership hesitant degrees, indeterminacy-membership hesitant degrees and falsity-membership hesitant
fuzzy degrees of element x € X to the set N, respectively. PT(x), PI(x) and PF(x) are the corresponding
probabilistic information for these three types of degrees. There is:

&= [a", 0" C[0,1),p =[5 Y] C[0,1],7 = [v"2"] C [0,1];0 < supa™ + supp™ +supy™ <3;

#T #1 #F
Preo1,Plel01],Pfefo1],Y.Pf=1Y Pl=1Y PF =1
a=1 b=1 c=1

where & € T(x), p € I(x) and § € F(x). & = Uger, vy max{a}, B* = Upey, (r) max{p}, and 7= =
User, (x) max{¥}. PI € PT, pl € P, Pf € PT. The symbols #T, #1 and #f are the total numbers of elements
in the components T(x)|PT(x), I(x)|P'(x) and F(x)|PF (x), respectively.

For convenience, we call n = (T(x)|PT(x),1(x)|P!(x), F(x)|PF(x)) a probabilistic interval
neutrosophic hesitant fuzzy number (PINHEN). It is defined by the mathematical symbol: n =
{T|PT, 1|P!,F|PF}

If al = o, ﬁL = /Su, 7L = 4U, the PINHFS is transformed into the PSVNHFS.

Therefore, we know PINHFS is more general than PSVNHFS. PSVNHES can satisfy all
the properties of PINHFS. Thus, this paper mainly studies PINHFS.

Definition 6. For a PINHFN n, wherea = 1,2,...,#T,b = 1,2, ..., #I,c = 1,2, .., #F, the score function s(n)
is defined as:

N » X R L » Ml . )L e >t )L AN
: ,

where #T, #I and #f are the total numbers of elements in the components T(x)|PT (x), I(x)|P!(x) and
F(x)|PF(x), respectively.

Definition 7. For a PINHFN n, wherea = 1,2,..,#T,b =1,2,..,#I,c = 1,2, ..., #F, the deviation function
d(n) is defined as:

_ LA ok ol = 25(0)2 - PT+ TfL, (2 B — B —25(0)* - P+ DfEy (2= ok — gl — 25(w)2 - P
() = . )
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where #T, #I and #f are the total numbers of elements in the components T(x)|PT (x), I(x)|P!(x) and
F(x)|PF(x), respectively.
Definition 8. Lef 11 and ny be two PINHFNS, the comparison of the method for ny and ny is as follows:

(1) Ifs(ny) > s(ny), then ny > ny;
2)  Ifs(nm) =s(nz),d(n1) > d(nz), then ny > ny;
(3)  Ifs(ny) =s(ny),d(ny) = d(ny), then ny = ny.

4. Some Basic Operations of PINHFNs
Definition 9. Let n; = {T1|PTt, ;| Ph, Fy|PT} and ny = {T2|PT2, L|P%2, Fy|P™2} be two PINHFNS, then:

®» (m)y= U (P, [1— By, 1= BLIP, & | P,
e, preh,neR
iy
(2) mnNny= N {{061ﬁ712| i rz} {B1u 92\ 11 zz}
€Ty pel,MER,
heT 0, jieF
{n UV2‘):PFIPFZ}}
(3) niUny= U {{“1U772| P TZ} {B1n 92‘ L 12}
€T BEl T2ER R ET PEL e, LPy P
{" VZ‘):PFIPFZ}}
T I
@ (m)*= U {{l(ap), @)MIP Y A = (1= BN 1= (1= )M P,
e, prel,neR
F;
(- —9p)1-a—-aOIMPM
G Am)= U {1 @ADL = ARMIP LD BDMIP AL) (DM IP
aeh,preh,neh
6 m@n= U e+ 05 —abnd, ol + 5 —adindf)|P P2},
0 €Ty prel, T€F,
T2€T2,02€ DL, i €Fy
LI pl F1 pF;
{18105, BY65 [P P}, {[vimb, vi sl P P2},
7 mem= U {{ladnkadlpf PP},
neT,prehneh,
2E€T 02 €D, fla€F

{[B + 05 — pLok, pil + 05 — pUl6ll Py P2},
F; pF
{Ioh + bk —abpk, A+ s =S P P2},

where PlT L Pll1 and P1F ! are hesitant probabilities of &y € Ty, By € Iy and 41 € Fy, respectively. P2T 2 PZI2
and sz are corresponding hesitant probabilities of fia € Ta, 02 € I and fiy € Fy.

Theorem 1. Let ny and ny be two PINHFNS, then (1n1)¢, ny Ny, ny Uny, (1)}, A(ny), ny ® ny and ny @ ny
are PINHFNS.
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Proof. By Definition 5, Definition 9, it is easy to prove the result. [

Theorem 2. Let n; = (Ty|PT, L|Ph, F|PR), ny = (Ta|P2, |PR, K|PR2) and ny =
(T3|PT3, I3| P'3, F3|P3) be three PINHFNSs, A, A1, Ay > 0, then:

(1) n@ny=ny®ny;n @ny =nyRny,

2) (m®nm)®ny=m® (n2®n3); (n @) @nz =m & (na @ n3),
(3)  A(ng @ na) = A1) ® A(na),

4 (mem)t=m) e (),

(5)  (n)M2 = (m)M @ (m1)"2; (A1 + Ag)ny = Ay (m1) @ Ag(my).

Proof. If PlT L Plll and PlF ! are probabilities of #; € Ty, f1 € I and 41 € Fy, respectively. Pk, PZIZ and
P? are correspor}ding probabilities of o € To, 0, € I and fip € F. P3T3, P;3 and P3F3 are corresponding
probabilities of ¢3 € T3, 03 € I3 and ¢3 € F3, then we have:

(1) By Definition 9, we can get that (1) is true.

)
(m@ny)@ng = U {{[of + (3 + &5 —135) — af (3 + 85 — n335),
@€y prel TR,
TETfheh ek,
G3€T3,05€ 13,433
o + (8! + &5 — e — o (' + & — ileDNIP (PP},
I
{1BF(030%), B (65' o3 )] Py (P2 P3Y)
(AT (ub93), M (5051 1Py (P32 P3) )
=n1® (ny ® n3z).
Similarly, we can obtain (11 ® 1) ® n3 = 1y ®@ (1 ® n3).
3

T
Mm@ ny) = U -0 —6f+n5 —afn)' 11— (1 (af + 05 —ai'ns) V]| PTos}
aeh preh ek,
MnET b€ flaeh,

(BN 05), (B ()M [P PR Y, [V (15)™, (D ()M Py}

= U = —ap)t 1= =a)MPLAIBDY (BN AIGD)Y, () MIP 3y
wmeT prehneh

® U {1 = =g 1= A=) MR 3 A165)", O MIP2 Y A1), (8|52}
RED L iR

= A(n1) ® A(n2).
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(4)
(m @m)" = U {{[(aknb)®, (852 [P Py},
5¢1ET1,B_1611V’71€F17
el €h,jiaeF)
{[1—(1— (B} + 6} — pre5))*, 1 — (1 — (BY + 65 — BYi63)) )| Py P2},
(== (rf + k=)t 1= (= (A 4 — o)) PP Ps )
U @b @HMPiy (- a-ghh1— - pgHM|p,
e prel,NER
{(1— -1 —a—HYpiyy
® U Y ORI AL - (1 -ehh 1 - (1-6d)N|Py2),
€D bheD, fich,
- —uh)'1- - uHMP2}}
= (m)* @ (m)*.
()

()Mt = U {2, ()Mt Pty {1 = (1= BE)M 2,1 — (1 - g2 Py},
& €Ty prel ER

{[1— (1 —yhyMt22,1 - (1 - 4f)yh+a2) Py

U P} A = (1= )™ P = (1= ) ™) PR}

BT prel,eR

® U {{laf) ", (@f)2] [P}, {1 = (1 B1)2,1 = (1 Bi) ) P,

& €Ty prel, 1eER
(1= =ah)™1- (1= P}
= (m)M ® ()"

Similarly, we have (A + A2)ny = Aq(n1) @ Az(ny). O

Theorem 3. Let ny and ny be two PINHFNs, A > 0, then:

M ((m))* = (Am))",
) Am) = ((m)")",
(3)  (m) ®n = (n; @ny)S,

4) (M) ®(n2)" = (m ®ny)".

Proof. PlT L Plll and P1F ! are hesitant probabilities of & € Ty, 1 € Ij and §; € Fy, respectively. ph, PZI2
and PZF2 are corresponding hesitant probabilities of 7, € Ty, 0, € I and fip € F,. Then:
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(1)
()= U {hhA0pt (0 - g1 - g Ip Y, {ak, o) [Pl A
€Ty prel;, 11eR
= U {edh NPy - 8HY 1 - (89N,
e prel, meq
[1-(1—ab)),1- (1 -af)NPy
=AU {{lad a0y 185 AP, [ 4P )
& €Ty prel,11€R
= (M(m))".
)
Am)=AC U {0hANIP - B - IR, ([, ad] 1P}
€Ty prel,1eR
= U {1- @ —9hN1— @ — NP {1 - B, (1 - BHMIPY,
ay €0, By €LY ER
{[(ah)®, (@M P1}}
= U {1y, @M PY, {1 - (1 - phY 1 - (1 B P1Y,
ay€h,By €NV ER
{1— 91— —HYpi)e
= ((m)M)".
(3)

(U {hba8e - a1 —ghipy, {lad, o8P 1)
& €Ty Breh,ER

o U Ak u8P2Y - 68,1 —65)P2Y, {Ink, n¥1IP )
Ty beD fneh,

(n1)° @ (n2)°

L L L, L F1 pF
= U ld +ub = oduh i+ =AW 11P Py,
aeT prehneh,
€T e, fiheh,

{[(1 = B5) (1 - 0%), (1 — ) (1 — 0)][P{ P2}, {[abn, allpd!) [P P2} }

Ty p T L pl
= U {{ladnz, ai'nd") [P Py}, { (BT + 05 — B163, Bi + 65" — BiI63'] [P Py},
aen prehnek,
T2€T02€D, fleR,

F1 pF
(vt + 15 — i ot + i = sIPy PyR 1)¢
= (m ®@ny)".
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@
(m)fem=( U {1y {1 - B4, 1 = BRI}, {[af, &4 |P 3 )
€Ty, prel,yeR
o U ke8P {1 - 08,1 - 051|P2 Y, {[nh, n11P2 ) )
€T b€, jheF,
= U {{Ivhuk, 28R PRy, {[1 - ple, 1 — phek) P Py},
&1€T17[§_1€11,"71€F1,
€T,02€hL,jaER
{lad +nk — aknk, ol + 44 — p¥) [Pl P2}
=( U {{lak + 15 — abng, off + 0§ — ofTpd) P P2, {(BE05, BY65) P P},
e prieh,nieh,
T €T,02€DL,jaER
{[vkuk, W11 Pf P2} 1)
= (m ®ny)".
O

The PSVNHEFS also satisfies the above properties, and the process of the proof is omitted.

5. The Basic Aggregation Operators for PINHFSs

Definition 10. Let nj (x=1,2,---,X) be a non-empty collection of PINHFNs, then a probabilistic interval
neutrosophic hesitant fuzzy weighted averaging (PINHFWA) operator can be indicated as:

P =

PINHFWA(?Zl,nz,'-- ,nx) = w](n])

-
Il
—-

=yn Hl—a o, 1—@ (-l wfmp'} @
= ]
X
(rIeH. H 5&’)“’11\111?’} {H w,-L)wf,Hl(wbwfn_Hlpff}},
j=1 = j=

where [a]-L,oc]U] =& €T, [/S]L, ‘B]u} =Bicl, ['ij,'yju} =y€F, P P] and P; 5 are correspondmg hesitant
probabilities of&]v €T, Ej € ljand y; € F. j =12, , X, wj is the weight of nj and Z w; = 1. Ifall

wights are , then the PINHFWA operator reduces to the probabilistic interval neutrosophzc hesitant fuzzy
averaging (PINHFA) operator:

X1
PINHFA(ny,ny, - -+ ,nx) = P i(n]-)
=1
X 1 / X
=UJHn-TTO —ap)x, 1 =TT o) HHPJ} ®)
j=1 j=1

X X
{[ﬂ(ﬁ})i,n HHP’} {[H ) i,H HHP’}}
=
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Theorem 4. (Monotonicity) Let n; = {{Ec]-\PITf},{Bj\P].l]}, {’MP]F]}} and  m; =
T T Fr
{{ﬁj|Pj’ Iy {GZ\P].’ },{;Ij\P].’ }} be two collections of PINHFNs; w;(j = 1,2,---,X) is weight, and
"o T _pl ph_ph ph_ phi Lol o < U glos gl g~ gl oL L
j=1 0 = LI P =P, Pl= P, P= Pyl and oy < gy, a0 <y, By = 07, By = 07, 07 2 g
v = ufl, then:

PINHFWA (1,3, - ,nx) < PINHFWA(my,ma, - -, my). 6)

Proof. Since oc/L < 77/L, oc]L-J < r]]l-", ﬁ]L > GI-L, ‘Bjr’ > 6}", 'ij > ij, 'y]U > y}" for all j, we have:

1-TI( —af) <1 -T1(1 = 5/)™, 1 =TT — af)* < 1-TI(1 —7")"s;
TI(BL)™ > T1(61), TI(BY)* = TT(6Y)“;
TI(v)* = TI(r) ™, T1Ov)™ = T

.

. T; * I I* F: F* 3
Simultaneously, we have P] S = Pj T, P].’ = P].’ , Pj7 = Pj] , 50 we can obtain:

(1 =TI~ o)) TLB” ~ THB))" TP = TT(7}) " TTB)'} <
(=T 0" LR —TIH" 8] T 11
(1 =T~ &) 1B — T1(B)“ TLB) — TL(nf) T1P) <
RN LR TR G (TR E

then by the score function 6 and Definition 8, we have PINHFWA(ny, np,--- ,nx) <
PINHFWA(ml,m2,~~~,mX). OJ

Theorem 5. (Boundedness) Let n; = {{aj\P],Tf}, {B;|P"},{%;|P1}} bea PINHFN (j = 1,2, ,X), & €
T;, Bh €L,y €k, P]Tj; P]I’ and Pf’ are hesitant probabilities of &, Bj and ;, respectively. w; (j=12--,X)
is a weight, and 2;(:1 wj=1.1If

N = {{[min{ak}, min{al )] [min{P)'}}, {{max{pL}, max{BU}]max{P]}}, {{max{y}}, max{y+}][max{P}'}}},

N* = {{[max{al}, max{a'})max{P,"}}, {[min{p+}, min{'})|min{P]}}, {[min{y}}, min{o+}][min{P]}}}.

Then:
PINHFWA(N™) < PINHFWA(ny,ny, - - ,nx) < PINHFWA(N™) @)

Proof. For all PINHFNSs 7;, we have:
min{tij} < tij < max{och}, min{oc]u} < :x]u < mux{:xju};
min{pr} < B; < max{pr}, min{p{'} < B < max{p'};
min{y;} < of < max{y[}, min{y{'} < yf' < max{y{'};
min{PjT’} < P].T7 < max{PjTj}, min{Pij} < P]»I’ < max{l’].lj},

. F F, F;
min{P,'} <P < max{P;'}.
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Thus,
1-TJa- zij)wf >1-JJ(1- min{/ij})wf =1—(1—min{a}})EY = min{zij},
1-TJ- oc]-u)wf >1-JJ(1- min{zxu})wf =1—(1—min{al'})E% = min{oc]u},
[T8))™ < [ T(max{p}})* = (max{p}})>* = max{p}},
[TB™ < TT(max{B§'})" = (max{pi'})=" = max{p'},
[TO))™ < [T(max{y[ )™ = (max{y}})=" = max{~}},
[T < TT(max{~{H* = (max{%l,l})iw] = max{y{'}.

Next, by Definition 10, we have:
NHPFWA(N U{{[mm{zxL} mln{au} Hmln{P n, {[max{ﬁ]} max{ﬁ] |Hmax{PjI"}},
{[max{~}}, max{y'}]| H'ﬂﬂx{Pj’}}}

By score function 6 and Definition 8, we can obtain PINHFWA(N-) <
PINHFWA(ny,ny, - -+ ,nx). Similarly, we have PINHFWA (nq,ny,- - - ,nx) < PINHFWA(N"). O

Theorem 6. (Idempotency) Ifnj = {{[ak, a4 [Py}, {[B5 BY] P2}, {7 Y] IPs} ) j = 1,2, -+, X, wj is
the weight ofnj, —ywj =1, then:

PINHFWA(ny,np, -+ nx) = {{[a*, a"]|Pi}, {[B%, B][ P2}, {[7", 7] P} ). ®)
Proof. Since n; = {{[al, a4 P}, {1BY, BY1IP Y, {[7vE, 11| P53} ), thus we have:
T —ah)© 1—(1—0&)2“’1 =at, 1—]‘[(1—a”)wf =1—(1—aHkwi = oY,
H( by = (Bh)E =t TT(B) = (B)=" = B,
H( L)w] ( Zw/ _ L,H( w] _ )Zw]- — ,)/U,
H(Pl)w’ (P )Zw] =p, H(PZ)ZU] _ (PZ)):wj _ PZ/H(P3)wj _ (P3)):zu] — P

It is easy to get:

PINHFWA(iipy, 1ipy, -+ 1ipx) = {{la", ]| Py}, {[B" BY]I P2}, {[v", 1] IPs} -

O

Theorem 7. (Commutativity) If A = {ny,ny, - - - ,nx} is a collection and B = {my,my, - - - ,mx} is a new
permutation of A, then:

PINHFWA(nl,n2,~ H ,Tlx) = PINHFWA(ml,mz,- . ,‘ﬂ’lx).

Proof. By Definition 10, it is easy to prove it. [
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Definition 11. Let n; (j = 1,2,---,X) be a non-empty collection of PINHFNs; a probability interval
neutrosophic hesitant fuzzy weighted geometric (PINHFWG) operator can be indicated as:

X
PINHFWG(ny,ny, -+ ,nx) = Qwj(n;)
j=1

X X X r X X X
=UHT T T TT R AR =TT - )" 1 =TT = O™ TIPS, ©)
j=1 j=1 j=1 j=1 j=1 j=1
X X X .
(=TT =1 =TT =" I—!Pj’}},
j=

j=1 j=1

where [“]l’, “]L-]] =a;eTj [ﬁ]L, ,Bﬁ"} =Bicl, ['y}‘, ’y]U} =9€F P]Tj, P]I’ and P]F’ are corresponding hesitant
- X

probabilities of&]-, 5]- and ¥j- ji=12---,X, wj is the weight ofn]- and Y wj = 1. If all wights are %, then
j=1

the PINHFWG operator converts to the probabilistic interval neutrosophic hesitant fuzzy geometric (PINHFG)
operator:

X
PINHFG(ny,np,- -+ ,nx) = X %(nj)
=1
X 1 X 12 T; X 1 X 1 X I;
SIS0 IR VAR s CORTIES VCRVAERES § CETR y G AT
j= j= j= j= = =
X ) :
{1-TTa - h*1-TTa - H¥TTP 1
j=1 = =
Theorem 8. (Monotonicity) ~Let n; = {{&j\P]Tj},{Bj\P]»Ij},{'7j|19].Fj}} and  m; =

TR I F
{{ﬁj|13j/ Iy {92\1’]-’ },{ﬁj\Pj’ }} be two collections of PINHFNs; wj(j = 1,2,---,X) is weight, and
noo Ti _pl pli_pli ph_ ph Loc b U< U gl gl gU~ gU oL~ L
Yimwj = LR =Py, Plo= Py Pyl = Py and oy <y, < g, By > 67, By = 07, vf > g
'y}l Zy]lfl, then:

PINHFWG(ny,np, - -+ ,nx) < PINHFWG(mq,my, -+ ,mx). (11)
Proof. This is similar to Theorem 4. [

Ty (5 il .

Theorem 9. (Boundedness) Let nj = {{&j\Pj]}, {‘Bj|PIJ}, {’MPPJ}} bea PINHFN (j =1,2,--- ,X), & €
T;, By € I, 7; € F, P].Tj; P]I’ and Pf’ are hesitant probabilities of &;, Bj and ;, respectively. w; (j = 1,2,--- , X)
is a weight, and Z]X:l w;=1.1If

P~ = {{{min{at}, min{al}][min{P]"}}, {[max{B+}, max{BY Y |max{P}'}}, {{max{y+}, max{7F}]|max{P'}}},
P* = {{[max{al}, max{al'})max{P"}}, {[min{pL}, min{ Y} min{P)}}, {[min{y}}, min{7t}]|min{P}}},

then:
PINHFWG(P~) < PINHFWG(ny,n,- - - ,nx) < PINHFWG(P™) (12)

Proof. This is similar to Theorem 5. [J
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Theorem 10. (Idempotency) If nj = {{[aL,au] [P}, {[[&L,‘Bu} [P}, {['yL, ’yu] |Ps}},j=1,2,--- X% wj is
the weight ofnj, Z]X:1 w; = 1, then:

PINHFWG(ny,na, - -+ ,nx) = {{[a", a"]| Py}, {[B", B]| P2}, {[2" v"]Ps} ). 13)
Proof. This is similar to Theorem 6. [J

Theorem 11. (Commutativity) If A = {ny,ny, - - ,nx} is a collection and B = {my, my, - - - ,mx} is a new
permutation of A, then:

PINHFWG(ﬂl,ﬂz,' e ,ﬂx) = PINHFWG(ml,m2,~ e ,mx).
Proof. We can obtain it by Definition 13. [

Lemmal. [3]Letx; >0,w; >0,i=1,2,--- ,nand \'  w; = 1, then:
n n
H(xi)wi < ):xiwi,
i=1 i=1
Theorem 12. If nj = {{a,\P ’} {/3]\131 I {'y]|P '}} is a collection of PINHFNs and j = 1,2, -+ , X, wj is
the weight ofn], w; >0 and E;:l w; =1, then:

PINHFWG(ny,ny, -+ ,nx) < PINHFWA(ny,np,- -+ ,nx),
PINHFG(ny,ny, -+ ,nx) < PINHFA(ny,ny, - -+ ,nx).

Proof. Since &; = [ u] Bi= [ISL ﬁu] 5 = ['y] , .u], och,pc]U € [0,1]. Thus, By Lemma 1, we have:

[T < Ywaf =1- w1 —af) <1-TT(1 - af)",
H("‘]U)wj Szwja}”l:l—ij(l—tx]u) < l—H j

Thus, we can obtain:

_
|
=
=
RS

[Th™ TP < (1 -TTa-ab®) [P,
[T " < a-TTa-a)) T5.

Similarly, we can also get:

) (10§ CARYURS § CERVSN0N o (08§ (COK0 § GARTERS s CR O RN U
TTeH IR < a-TTa =) TP/ TI6H TP < (- TTa-9*) 15
Next, by the score function 6, we know:

PINHFWG(ny,ny, -+ ,nx) < PINHFWA(ny,ny,- -+, nx).

Similar to the above process of the proof, we know inequality PINHFG(ny,np, -+ ,nx) <
PINHFA(ny,ny, -+ - ,nx)isright. O

6. MADM Based on the PINHFWA and PINHFWG Operators

In this section, the PINHFWA and PINHFWG operators are used to solve MADM problems with
probabilistic interval neutrosophic hesitant fuzzy circumstances.
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Let A = {Ay,As,---,Am} be a collection of options and C = {Cy,Cy, -+ ,Cn} be a set of
attributes. In order to assess A, (h = 1,2, - - , M) with the attribute C; (k =1,2,--- , N) represented
by the PINHEN . = {Tjx|PTik, Ii| Pl | PTik }, next, we can construct a probabilistic interval
neutrosophic hesitant fuzzy decision matrix (PINHFDM) D = (np)mxn (B = 1,2,--- ,M;k =
1,2,---,N). The weight vector of C is w = (wy,wy, - - - ,wn). Then, the evaluation steps can select an
optimal option:

e  Step 1. Use the PINHFWA or PINHFWG operator to aggregate N PINHFNs for an alternative Ay,
h=12---,M.

° Step 2. Calculate the score values of all PINHENSs; if we get the same for s(n), then we need to
compare the deviation values.

e  Step 3. Rank and select the optimal option A,

7. Illustrative Example

The background of the numerical case comes from Example 1. Therefore, this section is not
covered in detail. The weight vector of C is w = (0.35,0.25,0.4). Thus, four PINHFDMs are established,
illustrated in Tables 5-8.

Table 5. A probabilistic interval neutrosophic hesitant fuzzy decision matrix (PINHFDM) D; with
respect to Aj.

Attributes Investment Selection Ap
Cq {{[0.3,0.4](0.1,[0.4,0.4]|0.1,[0.4,0.5]|0.8}, {[0.1,0.2]|1}, {0.3,0.4] |1} }
C {{[0:4,0.5]|0.5,[0.5,0.6]]|0.5},{[0.2,0.3]|1}, {[0.3,0.3]|0.7,[0.3,0.4][0.3} }
Cs {{[0.2,0.3]|1},{[0.1,0.2]|1}, {[0.4,0.5]|0.7,[0.5,0.6]|0.3} }

Table 6. PINHFDM D, with respect to A;.

Attributes Investment Selection A,
C1 {{[0.6,0.7]|1},{[0.1,0.2]|1}, {[0.1,0.2]|0.2, [0.2,0.3]|0.8} }
Cy {{[0.6,0.7]|1},{[0.1,0.1]|1}, {[0.2,0.3][1} }
Cs {{[0.6,0.7]|1},{[0.1,0.2]|1}, {[0.1,0.2] |1} }

Table 7. PINHFDM D3 with respect to Aj.

Attributes Investment Selection Aj
Cq {{[0.3,0.4]]0.3,[0.5,0.6]|0.7},{[0.2,0.4]|1},{[0.2,0.3]|1} }
Cy {{[0.5,0.6]|1},{[0.2,0.3]|1}, {[0.3,0.4]|1}}
Cs {{[0.5,0.6]|1},{[0.1,0.2]|0.4,[0.2,0.3]|0.6},{[0.2,0.3]|1} }

Table 8. PINHFDM Dy with respect to Ay.

Attributes Investment Selection Ay
G {{[0.7,0.8][1},{[0,0.1][1}, {[0.1,0.2][1}}
G {{[0.6,0.7]]1},{[0,0.1][1}, {[0.2,0.2][1}}
Cs {{[0.3,0.5]|1},{[0.2,0.3]|1},{[0.1,0.2]|0.2,[0.3,0.3]]0.8} }

e  Step 1. Select the PINHFWA operator to aggregate all PINHFNS of ny (h =1,2,3,4,k=1,2,3)
to obtain the collective PINHFN n;, (h = 1,2,3,4) for the alternative A;, (h =1,2,3,4).
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ny = PINHFWA(n11, n12, 113)
= {{[0.2895, 0.3903] 10.05, [0.3212, 0.4234] |0.05, [0.3268,0.3903] |0.05, [0.3568,0.4234] |0.05,
[0.3268,0.4280]|0.4, [0.3568, 0.4590] 0.4},
{]0.1189,0.2213] |1},
{]0.3366,0.407)(0.49, [0.368, 0.4378] 0.21, [0.3366, 0.4373]|0.21, [0.368, 0.4704] |0.09};
ny = PINHFWA (np1, n, h23)
= {{[0.6,0.7]|1},{[0.1,0.1682] |1}, {[0.1189,0.2213] 0.2, [0.1516,0.2551]|0.8} };
ng = PINHFWA (n31, n3p, 133)
= {{]0.4375,0.5390]|0.3, [0.5,0.6]|0.7}, {[0.1516,0.2821]|0.4, [0.2,0.3318]|0.6}, {[0.2213,0.3224] |1} };
ny = PINHFWA (41, ngp, 143)
= {{0.5476,0.6807]|1}, {[0,0.1552]|1}, {[0.1189,0.2][0.2, [0.1845,0.2352]|0.8} }.

e  Step 2. By (2), count the score values of all PINHFNSs n;, (h = 1,2,3,4),

ny = 0.6104, np = 0.7731, n3 = 0.6711, 1p, = 0.7789.
e  Step 3. Rank the PINHFENs by Definition 8; we have:

Ay > Ay > Az > Aq.

Thus, we know that Ay is the best choice.
Next, we will make use of the PINHFWG operator to solve the MADM problem.

e  Step 1'. Aggregate PINHFNS ny (h =1,2,3,4;k = 1,2,3) by taking advantage of the PINHFWG
operator to get the collective PINHFN #, for Aj,.

ny = PINHFWG(nyy,n13,n13)
= {{[0.2741,0.377]|0.05, [0.2898, 0.3946]|0.05, [0.3031, 0.377]0.05, [0.3205, 0.3946]|0.05,
0.3031, 0.4076]|0.4, [0.3205, 0.4266] 0.4}
{]0.1261,0.2263] |1},
{]0.3419,0.4203]|0.49, [0.3881, 0.4698]0.21, [0.3419,0.4422] |0.21, [0.3881, 0.4898]0.09} };
ny = PINHFWG(ny1, naa, 123)
= {{[0.6,0.7])[1}, {[0.1,0.1761]|1}, {[0.1261,0.2263]|0.2, [0.1614,0.2616] 0.8} };
ng = PINHFWG(n31, n3p, n33)
= {{[0.4181,0.5206]|0.3, [0.5,0.6]|0.7}, {[0.1614,0.3004] 0.4, [0.2000, 0.3368]|0.6},
{]0.2263,0.3265][1} };
ny = PINHFWG (141, n4p, 143)
= {{[0.4799,0.6411]|1}, {[0.0854,0.1861]|1}, {[0.1261,0.2000] 0.2, [0.2097,0.2416]0.8} }.

e  Step 2’. By Definition 6, we have:
ny = 0.595,n; = 0.7692, n3 = 0.6653, n4 = 0.7372.
e Step 3’. Rank Ay (h = 1,2,3,4) on the basis of Step 2/,

Ay > Ay > Az > Aq.
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Thus, A, is the best choice.

8. The Basic Aggregation Operator for PSVNHFS

In this subsection, we construct the PSVNHFWA operator and the PSVNHFWG operator.
The comparison method of PIVNHENSs is proposed.

Definition 12. Let rip, (x = 1,2,- -+, X) be a non-empty collection of PSVNHFNs , then a PSVNHFWA
operator can be indicated as:

X
PSVNHFWA(ripy, 1ipy, - - -, 1ipy) = @ wy (1p,)
(14)

= J{{( 1—H 1—a))" \pr} {Hﬁw’IHP’} {Hv‘”’\npff}}

- ~ = ., . . ~ X
where aj € tj,ﬁj €1j,7j € jfj,] =12, X wjis the weight ofnpj andj§1 wj=1.

Definition 13. Let #ip, (x = 1,2, -, X) be a non-empty collection of PSVNHFNS, then the PSVNHFWG
operator can be indicated as:

PSVNHFWG(1ipy, 1py, - - - ,1ipy) = ®wj(n~p/-)
- (15)

X X _
:U{{lllmnwf>|nlpff},{<1—r[ 1- )" HP‘}{l—H 1— ;)" HPff}}
j= j=

-~ ks = . . . ~ X
where aj € 1}, ﬁ]- €1, € f]-,] =1,2,---,X, wj is the weight ofnp]- and El wj = 1.

Since the PSVNHEN is a special case of PINHFN, thus the score function s(#p), deviation function
d(rip) and sorting method can utilize Definition 6, Definition 7 and Definition 8, respectively. In order to
solve the MADM problem of the probabilistic single-valued neutrosophic hesitant fuzzy circumstance,
the algorithm can use the same method described in Section 6. Next, The application can use
Example 1.

e  Step 1. Select the PSVNHFWA operator to aggregate all PSVNHENS of (1), (h =1,2,3,4;k =
1,2,3) to obtain the PSVNHEN 1ip,, (h = 1,2,3,4) for the option A, (h =1,2,3,4).

1ip, = {{0.3212]0.01,0.3568)0.015,0.3966|0.025, 0.3580|0.01,0.3917|0.015, 0.4293|0.025, 0.3565|0.09,
0.3903(0.1350, 0.4280[0.2250, 0.3914|0.09, 0.4234|0.1350, 0.4590/0.2250}, {0.1189]0.06, 0.15690.14, 0.1316|0.24,
0.1737]0.56}, {0.368]0.048, 0.407|0.032, 0.3955|0.072, 0.4373|0.048, 0.3959|0.192, 0.4378|0.128, 0.4254]0.288,
0.4704/0.192} }

1ip, = {{0.6]0.006,0.6435(0.014, 0.63830.054, 0.6776|0.126, 0.6278|0.024, 0.6682|0.056, 0.6634(0.216, 0.7|0.504},
{0.1/0.24,0.132(0.16,0.1275|0.36,0.1682]0.24}, {0.1677|0.35,0.22130.15,0.1933|0.35,0.2551|0.15} };

1ipy = {{0.5271]0.3,0.5675]0.2,0.5627|0.3,0.6(0.2}, {0.2138| 1}, {0.2797/0.2,0.3224/0.8} };

1ip, = {{0.5476]0.216,0.6045]0.024, 0.579]0.144, 0.632|0.016, 0.6074|0.324, 0.65690.036, 0.6347|0.216,
0.6807(0.024}, {0.132|1}, {0.1189]0.01, 0.1569|0.08, 0.1846|0.01, 0.1516|0.09, 0.2]0.72,0.2352|0.09} }.

e  Step 2. By (2), count the score values of all 1ip, (h =1,2,3,4),
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s(1p;) = 0.6108, s(rip,) = 0.7839, s(1ip;) = 0.6776,s(rip,) = 0.7579.
e  Step 3. Rank the PSVNHENSs by Definition 8; we have.
Ay > Ay > Az > Aq.
Thus, we know that A; is the best choice.
Next, we will make use of the PSVNHFWG operator to solve Example 1.

e Step 1. Aggregate PSVNHFNSs rip,k (h = 1,2,3,4;k = 1,2,3) by taking advantage of
the PSVNHFWG operator to get the 1ip,, for Aj,.

1ip; = {{0.2898]0.01,0.3409]0.09, 0.3033|0.01,0.3568|0.09, 0.32050.015, 0.377|0.135, 0.3355(0.015, 0.3946|0.135,
0.3466/0.025, 0.4076(0.225, 0, 3627|0.025, 0.42660.225}, {0.12610.06, 0.16630.14, 0.15480.24, 0.19370.56 },
{0.3881/0.048,0.4404(0.192,0.4113(0.072,0.46150.288, 0.4203]0.032, 0.4698|0.128, 0.4422|0.048, 0.4898|0.192} },

1ip, = {{0.6]0.006,0.6382(0.014,0.6236]0.024,0.6632|0.056,0.6333|0.054, 0.6735/0.126, 0.6581|0.216, 0.7|0.504},
£0.1]0.24,0.1414/0.16,0.13630.36,0.1761]0.24}, {0.1889]0.35,0.2263|0.15,0.226|0.35,0.2616]0.15} }.

1, = {{0.5233]0.3,0.5629/0.2,0.5578|0.3,0.6]0.2}, {0.2666(1}, {0.2942(0.2,0.3265(0.8} }.

1ip, = {{0.4799]0.216,0.5887|0.024,0.4988|0.144,0.6119(0.016,0.50290.324, 0.6169]0.036, 0.5226|0.216, 0.6411/0.024},
{0.14141}, {0.1261|0.01,0.1663|0.08,0.2097|0.01,0.1614/0.09,0.2(0.72, 0.2416|0.09} }.

e  Step 2’. By Formula (2), we have:
s(1ipy) = 0.5507,s(1ip,) = 0.7741,s(1ip;) = 0.6568,s(1ip,) = 0.7248.
e Step 3’. Rank A, (h = 1,2,3,4) by Definition 8,
Ay > Ay > Az > Aq.
Thus, A, is the best choice.

In order to demonstrated the effectiveness of our approaches, a comparison was established with
other methods. They are shown in Tables 9 and 10.

Table 9. Comparison of the results obtained by different methods under the single-valued neutrosophic
hesitant fuzzy circumstance.

Method Sort of Results Best Alternative  Worst Alternative
SVNHFWA operator [49] Ay > Ar > Az > A Az Ay
SVNHFWG operator [49] Ay > Ay > Az > Ay Ay Aq

PSVNHFWA operator Ay > Ag > A3 > Aq Ay Aq
PSVNHFWG operator Ay > Ag > A3 > Aq Ay Aq

Table 10. Comparison of the results obtained by different methods under the interval neutrosophic
hesitant fuzzy circumstance.

Method Sort of Results Best Alternative  Worst Alternative
GWA operator(1 < A <39)[50] Az > A; > Ay > Ay As Ay
PINHFWA operator Ay > Ap > A3 > Aq Ay Aq
PINHFWG operator Ay > Ay > A3 > Aq Ay Aq
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In [49], Ye introduced the single-valued neutrosophic hesitant fuzzy weighted averaging
(SVNHFWA) and single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG)
operators and applied them to the single-valued neutrosophic hesitant fuzzy circumstance. In [50], Liu
proposed the generalized weighted aggregation (GWA) operator and established the MADM method
under the interval neutrosophic hesitant fuzzy circumstance. However, probability is not considered
in [49,50]. The ranking results are presented in Table 9 and Table 10. According to the Table 9, A; is
always the best choice, A; is always the worst option. According to the Table 10, the best option is Ay
under the group’s major points, whereas the best selection is A, under the individual major points.
A is always the worst choice. Apparently, the SVNHFS, IVHFS and PSVNHES are special cases of
PINHFS. Thus, the PINHEFS is is wider than other methods.

9. Conclusions

In this paper, as a generation of fuzzy set theory, a new concept of PSVNHFS (PINHFS) is
proposed based on the NHS and INS. The score function and the deviation function are defined.
A comparison method is proposed. PSVNHFS is a special case of PINHFES; thus, PINHFS has a wider
range of applications. Therefore, this paper mainly discusses the situation of the interval. Then,
some basic operation laws of PINHFNS are introduced and investigated. Next, the PINHFWA and
PINHFWG operators are presented, and some properties are studied. PSVNHEFSs also satisfies the
properties mentioned above. We can determine the optimal alternative by utilizing the PINHFWA
(PINHFWG) operator. Finally, a numerical example was given. It is proven that the new approach is
more flexible and suitable for practical issues. In addition, an example raised in this paper is to explain
that PINHFS is more general than PSVNHFS. In the future, others aggregation operators of PINHFNs
can be researched, and more practical applications in other areas can be solved, like medical diagnoses.
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Abstract: In this paper, Bol-Moufang types of a particular quasi neutrosophic triplet loop (BCI-algebra),
chritened Fenyves BCl-algebras are introduced and studied. 60 Fenyves BCl-algebras are introduced
and classified. Amongst these 60 classes of algebras, 46 are found to be associative and 14 are
found to be non-associative. The 46 associative algebras are shown to be Boolean groups. Moreover,
necessary and sufficient conditions for 13 non-associative algebras to be associative are also obtained:
p-semisimplicity is found to be necessary and sufficient for a F3, Fs, Fyp and Fs5 algebras to be
associative while quasi-associativity is found to be necessary and sufficient for Fy9, Fs, Fss and Fsg
algebras to be associative. Two pairs of the 14 non-associative algebras are found to be equivalent
to associativity (Fs» and Fs5, and Fs5 and Fsg). Every BCl-algebra is naturally an Fs5; BCl-algebra.
The work is concluded with recommendations based on comparison between the behaviour of identities
of Bol-Moufang (Fenyves’ identities) in quasigroups and loops and their behaviour in BCl-algebra.
It is concluded that results of this work are an initiation into the study of the classification of finite
Fenyves’ quasi neutrosophic triplet loops (FQNTLs) just like various types of finite loops have been
classified. This research work has opened a new area of research finding in BClI-algebras, vis-a-vis the
emergence of 540 varieties of Bol-Moufang type quasi neutrosophic triplet loops. A ‘Cycle of Algebraic
Structures” which portrays this fact is provided.

Keywords: quasigroup; loop; BCI-algebra; Bol-Moufang; quasi neutrosophic loops; Fenyves identities

1. Introduction

BCK-algebras and BCl-algebras are abbreviated as two B-algebras. The former was raised in 1966
by Imai and Iseki [1], Japanese mathematicians, and the latter was put forward in the same year by
Iseki [2]. The two algebras originated from two different sources: set theory and propositional calculi.

There are some systems which contain the only implicational functor among logical functors,
such as the system of weak positive implicational calculus, BCK-system and BCI-system. Undoubtedly,
there are common properties among those systems. We know that there are close relationships
between the notions of the set difference in set theory and the implication functor in logical systems.
For example, we have the following simple inclusion relations in set theory:

(A-B)—(A-C)CC—B, A—(A-B)CB.

Symmetry 2018, 10, 427; doi:10.3390/sym10100427 202 www.mdpi.com/journal /symmetry
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These are similar to the propositional formulas in propositional calculi:

p=q9)—=>g—=r)=(p—=r), p=>Up—9q9) —9q),

which raise the following questions: What are the most essential and fundamental properties of these
relationships? Can we formulate a general algebra from the above consideration? How will we find
an axiom system to establish a good theory of general algebras? Answering these questions, K.Iseki
formulated the notions of two B-algebras in which BCI-algebras are a wider class than BCK-algebras.
Their names are taken from BCK and BCI systems in combinatory logic.

BCI-Algebras are very interesting algebraic structures that have generated wide interest among
pure mathematicians.

1.1. BCl-algebra, Quasigroups, Loops and the Fenyves Identities

We start with some definitions and examples of some varieties of quasi neutrosophic triplet loop.

Definition 1. A triple (X, *,0) is called a BCI-algebra if the following conditions are satisfied for any
X, Y,z € X:

1. ((xxy)*(xxz))*(zxy) =0;

2. xx0=x;

3. xxy=0andyxx=0=x=1y.

We call the binary operation * on X the multiplication on X, and the constant 0 in X the zero
element of X. We often write X instead of (X, *,0) for a BCI-algebra in brevity. Juxtaposition xy will at
times be used for x * y and will have preference over x i.e., xy %z = (x * y) * z.

Example 1. Let S be a set. Let 2° be the power set of S, — the set difference and @ the empty set. Then
(25, —, @) is a BCL-algebra.

Example 2. Suppose (G, -, e) is an abelian group with e as the identity element. Define a binary operation * on
G by putting x xy = xy~1. Then (G, ,e) is a BCl-algebra.

Example 3. (Z,—,0) and (R — {0}, +, 1) are BCI-algebras.

Example 4. Let S be a set. Let 25 be the power set of S, A the symmetric difference and @ the empty set. Then
(25, A,9) is a BCI-algebra.

The following theorems give necessary and sufficient conditions for the existence of a BCI-algebra.

Theorem 1. (Yisheng [3])
Let X be a non-empty set, x a binary operation on X and 0 a constant element of X. Then (X, *,0) is a
BCl-algebra if and only if the following conditions hold:

((xxy)*(xxz))*(zxy) =0;
(xx(xxy))xy=0;

x*xx=0;

xxy=0andyxx =0imply x =y.

L=

Definition 2. A BCI-algebra (X, *,0) is called a BCK-algebra if 0+ x = 0 for all x € X.

Definition 3. A BCI-algebra (X, *,0) is called a Fenyves BCI-algebra if it satisfies any of the identities of
Bol-Moufang type.

The identities of Bol-Moufang type are given below:
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Fl:
Fz:
F3:
F4:
Fs:
Fe:
F72

xy kzx = (xy * z)x
xy * zx = (x * yz)x (Moufang identity)
xy s zx = x(y * zx)
xy * zx = x(yz * x) (Moufang identity)

(xy*z)x = (x *yz)x
(xy * z)x = x(y * zx) (extra identity)
(xy*z)x = x(yz * x)

: (xxyz)x = x(y * zx)

s (xxyz)x = x(yz * x)

x(y *zx) = x(yz * x)

txy-xz = (xy*x)z
Pxyxxz= (X kyx)z

: xy x xz = x(yx * z) (extra identity)
xy x xz = x(y * xz)
(xy*x)z = (x *xyx)z

x(yx*z

P yxxzx = (yxkz)x
: yx xzx = (Y * xz)x (extra identity)
tyxkzx = y(xz*x)
tyxxzx = y(x *zx)
: (yx*z)x = (yxxz)x
)

(yx *z)x = y(xz * x) (right Bol identity)
(yx % z)x = y(x * zx) (Moufang identity)
(yxxz)x =y(xz *x)
(y * xz)x = y(x * zx)
y(xz s x) = y(x *zx)

Consequent upon this definition, there are 60 varieties of Fenyves BCl-algebras. Here are some

examples of Fenyves’ BCI-algebras:

Example 5. Let us assume the BCI-algebra (G, +,e) in Example 2. Then (G, *, e) is an Fg-algebra, Fi9-algebra,

D YxX ® Xz
T yxkxz = (Y *xx)z
s yxkxz = y(xx xz)
T yxxxz = y(x % x2)
: (yx*x)z

(
: (
: (

(

(yx *x)z

(y*xx)z

yx % x)z = y(xx * z) (RC identity)

y*xx)z=y(xx*z

)z=
( )z = )
: (yx*x)z = y(x * xz) (C identity)
( )z = 3

: (y*xx)z = y(x x xz) (LC identity)
s y(xxsz) =
: xxxyz = (x % xy)z (LC identity)
taxxyz = (xx*y)z
D axxyz = x(x *yz)
s xxxyz = x(xy xz)

y(x*xz)

s (xxay)z = (xxxy)z
x* xy)z = x(x * yz) (LC identity)
xxxy)z = x(xy * z)
xx *y)z = x(x * yz) (LC identity)
xx *y)z = x(xy * z)
x(x*yz) = x(xy *z)

s yzwxx = (yzxx)x
s yzsxx = (y*kzx)x
: Yz« xx = y(zx * x) (RC identity)
D yz s xx = y(z % xx)

(yz*x)x = (y * zx)x
(yz % x)x = y(zx * x) (RC identity)
(yz * x)x = y(z * xx) (RC identity)
(y *zx)x = y(zx * x)
(y*zx)x = y(z * xx)
y(zx % x) = y(z * xx)

Fyg-algebra, Fyg-algebra, Fys-algebra, Fsy-algebra, Fsy-algebra, Fso-algebra.

Example 6. Let us assume the BCl-algebra (25,

7,®) in Example 1. Then (25,7,®) is an Fs-algebra,

Fs-algebra, Fy1-algebra, Fxg-algebra, Fip-algebra, Fyg-algebra, Fss-algebra and Fss-algebra.

Example 7. The BCI-algebra (25, A, @) in Example 4 is associative.

Example 8. By considering the direct product of the BCl-algebras (G, *,e) and (25, —, @) of Example 2 and
Example 1 respectively, we have a BCI-algebra (G x 25, (x,—), (e, ®)> which is a Fxg-algebra and a Fyg-algebra.

Remark 1. Direct products of sets of BCl-algebras will result in BCI-algebras which are Fi-algebra for

distinct i’s.

Definition 4. A BCI-algebra (X, *,0) is called associative if (x xy) *z =

Definition 5. A BClI-algebra (X, *,0) is called p-semisimple if 0+ (0% x) = x forall x € X .
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Theorem 2. (Yisheng [3]) Suppose that (X, *,0) is a BCI-algebra. Define a binary relation < on X by which
x < yifand only if x xy = 0 for any x,y € X. Then (X, <) is a partially ordered set with 0 as a minimal
element (meaning that x < 0 implies x = 0 for any x € X).

Definition 6. A BCI-algebra (X, *,0) is called quasi-associative if (x x y) xz < x % (y x z) forall x,y,z € X.

The following theorems give equivalent conditions for associativity, quasi-associativity and
p-semisimplicity in a BCI-algebra:

Theorem 3. (Yisheng [3])
Given a BCI-algebra X, the following are equivalent x,y,z € X:

1. X is associative.
2. 0% x =x.
3. xxy=yxxVxyeX

Theorem 4. (Yisheng [3])
Let X be a BCI-algebra. Then the following conditions are equivalent for any x,y,z,u € X:

. X is p-semisimple

C(xwy)x(zxu) = (xkz) * (yxu).

O (y*x)=x%y.

(xxy)x (xkz) =zxy.

z % x = z* Yy implies x = y. (the left cancellation law i.e., LCL)
. x*y = 0implies x = y.

SR W=

Theorem 5. (Yisheng [3])
Given a BCI-algebra X, the following are equivalent for all x,y € X:

1. X is quasi-associative.

2. x* (0% y) = 0implies x xy = 0.
3. 0xx=0x(0xx).

4. (0*x)xx=0.

Theorem 6. (Yisheng [3])
A triple (X, *,0) is a BCI-algebra if and only if there is a partial ordering < on X such that the following
conditions hold for any x,y,z € X:

1 (xxy)*(x*xz) <zxy;
2. xx(xxy) <y,
3. xxy =0ifand only ifx < y.

Theorem 7. (Yisheng [3])
Let X be a BCI-algebra. X is p-semisimple if and only if one of the following conditions holds for any
XY,z € X:
1. x*z =y * z implies x = y. (the right cancellation law i.e., RCL)
2. (yxx)x(zxx) =y*z
3. (xxy)x(xxz) =0 (y*2z).

Theorem 8. (Yisheng [3])
Let X be a BCl-algebra. X is p-semisimple if and only if one of the following conditions holds for any x,y € X:

1. xx(0xy) =y.
2.0xx=0 = x=0.
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Theorem 9. (Yisheng [3]) Suppose that (X,*,0) is a BCl-algebra. X is associative if and only if X is
p-semisimple and X is quasi-associative.

Theorem 10. (Yisheng [3]) Suppose that (X, *,0) is a BCI-algebra. Then (x +y) xz = (x * z) x y for all
x,y,z € X.

Remark 2. In Theorem 9, quasi-associativity in BCI-algebra plays a similar role to that which weak associativity
(i.e., the F; identities) plays in quasigroup and loop theory.

We now move on to quasigroups and loops.

Definition 7. Let L be a non-empty set. Define a binary operation (-)on L. Ifx-y € Lforall x,y € L, (L, -)
is called a groupoid. If in a groupoid (L, -), the equations:

a-x=">b and  y-a=b

have unique solutions for x and y respectively, then (L, -) is called a quasigroup. If in a quasigroup (L, ), there
exists a unique element e called the identity element such that forallx € L, x-e = e-x = x, (L, -) is called
a loop.

Definition 8. Let (L, -) be a groupoid.
The left nucleus of L is the set Ny(L,-) = Nx(L) ={a€L:ax-y=a-xyVxy €L}
The right nucleus of L is the set Np(L,-) = No(L) ={a € L:y-xa=yx-aVx,y € L}.

The middle nucleus of L is the set Ny, (L,-) = NP,(L) ={ael:ya-x=y-axVx,yeclL}
The nucleus of L is the set N(L,-) = N(L) = Ny(L,-) " Np(L,-) "Ny (L,-).

The centrum of L is the set C(L,-) = C(L) ={a € L:ax =xaVx € L}.

The center of L is the set Z(L,-) = Z(L) = N(L,-) N C(L,-).

In the recent past, and up to now, identities of Bol-Moufang type have been studied on the
platform of quasigroups and loops by Fenyves [4], Phillips and Vojtechovsky [5], Jaiyeola [6-8],
Robinson [9], Burn [10-12], Kinyon and Kunen [13] as well as several other authors.

Since the late 1970s, BCI and BCK algebras have been given a lot of attention. In particular,
the participation in the research of polish mathematicians Tadeusz Traczyk and Andrzej Wronski
as well as Australian mathematician William H. Cornish, in addition to others, is causing this
branch of algebra to develop rapidly. Many interesting and important results are constantly
discovered. Now, the theory of BClI-algebras has been widely spread to areas such as general
theory which include congruences, quotient algebras, BCI-Homomorphisms, direct sums and direct
products, commutative BCK-algebras, positive implicative and implicative BCK-algebras, derivations
of BCl-algebras, and ideal theory of BCI-algebras ([1,14-17]).

1.2. BCI-Algebras as a Quasi Neutrosophic Triplet Loop

Consider the following definition.

Definition 9. (Quasi Neutrosophic Triplet Loops (QNTL), Zhang et al. [18])
Let (X, *) be a groupoid.

1. Ifthereexist b,c € X suchthataxb = aand a*c = b, then a is called an NT-element with (r-r)-property.
Ifevery a € X is an NT-element with (r-r)-property, then, (X, «) is called a (r-r)-quasi NTL.

2. Ifthereexistb,c € X suchthat a+b = aand c*a = b, then a is called an NT-element with (r-1)-property.
If every a € X is an NT-element with (r-1)-property, then, (X, ) is called a (r-1)-quasi NTL.

3. Ifthereexistb,c € X suchthatb+a = aand c xa = b, then a is called an NT-element with (I-1)-property.
If every a € X is an NT-element with (I-1)-property, then, (X, x) is called a (I-1)-quasi NTL.
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4. Ifthereexist b,c € X such thatbxa = aand a*c = b, then a is called an NT-element with (I-r)-property.
If every a € X is an NT-element with (I-r)-property, then, (X, ) is called a (I-r)-quasi NTL.

5. If there exist b,c € X such that axb = bxa = aand axc = b, then a is called an NT-element
with (Ir-r)-property. If every a € X is an NT-element with (Ir-r)-property, then, (X, *) is called a
(Ir-r)-quasi NTL.

6. If there exist b,c € X such that axb = bxa = aand cxa = b, then a is called an NT-element
with (Ir-1)-property. If every a € X is an NT-element with (Ir-1)-property, then, (X, ) is called a
(Ir-1)-quasi NTL.

7. If there exist b,c € X such that axb = aand axc = cxa = b, then a is called an NT-element
with (r-Ir)-property. If every a € X is an NT-element with (r-Ir)- property, then, (X, ) is called a
(r-Ir)-quasi NTL.

8. If there exist b,c € X such that bxa = aand axc = c+a = b, then a is called an NT-element
with (I-Ir)-property. If every a € X is an NT-element with (I-Ir)-property, then, (X, *) is called a
(I-Ir)-quasi NTL.

9. Ifthereexistb,c € Xsuchthataxb=bxa=aandaxc=cxa=>b, then ais called an NT-element
with (Ir-Ir)-property. If every a € X is an NT-element with (Ir-Ir)-property, then, (X, x) is called a
(Ir-Ir)-quasi NTL.

Consequent upon Definition 9 and the 60 Fenyves identities F;, 1 < i < 60, there are 60
varieties of Fenyves quasi neutrosophic triplet loops (FQNTLs) for each of the nine varieties of
QNTLs in Definition 9. Thereby making it 540 varieties of Fenyves quasi neutrosophic triplet loops
(FONTLs) in all. A BCl-algebra is a (r-r)-QNT, (r-1)-ONTL and (r-1r)-QNTL. Thus, any F; BCl-algebra,
1 < i < 60 belongs to at least one of the following varieties of Fenyves quasi neutrosophic triplet
loops: (r-r)-QNTL, (r-1)-ONTL and (r-lr)-QNTL which we refer to as (r-r)-FQNTL, (r-1)-FQNTL
and (r-Ir)-FONTL respectively. Any associative QNTL will be called quasi neutrosophic triplet
group (ONTG).

The variety of quasi neutrosophic triplet loop is a generalization of neutrosophic triplet group
(NTG) which was originally introduced by Smarandache and Ali [19]. Neutrosophic triplet set (NTS)
is the foundation of neutrosophic triplet group. New results and developments on neutrosophic triplet
groups and neutrosophic triplet loop have been reported by Zhang et al. [18,20,21], and Smarandache
and Jaiyéold [22,23].

It must be noted that triplets are not connected at all with intuitionistic fuzzy set. Neutrosophic
set [24] is a generalization of intuitionistic fuzzy set (a generalization of fuzzy set). In Intuitionistic
fuzzy set, an element has a degree of membership and a degree of non-membership, and the deduction
of the sum of these two from 1 is considered the hesitant degree of the element. These intuitionistic
fuzzy set components are dependent (viz. [25-28]). In the neutrosophic set, an element has three
independent degrees: membership (truth-t), indeterminacy (i), and non-membership (falsity-f),
and their sum is up to 3. However, the current paper utilizes the neutrosophic triplets, which are
not defined in intuitionistic fuzzy set, since there is no neutral element in intuitionistic fuzzy sets.
In a neutrosophic triplet set (X, %), for each element x € X there exists a neutral element denoted
neut(x) € X such that x % neut(x) = neut(x) * x = x, and an opposite of x denoted anti(x) € X
such that anti(x) * x = x *anti(x) = neut(x). Thus, the triple (x,neut(x),anti(x)) is called a
neutrosophic triplet which in the philosophy of ‘neutrosophy’, can be algebraically harmonized
with (t,, f) in neutrosophic set and then extended for neutrosophic hesitant fuzzy [29] set as proposed
for (t,i, f)-neutrosophic structures [30]. Unfortunately, such harmonization is not readily defined in
intuitionistic fuzzy sets.

Theorem 11. (Zhang et al. [18]) A (r-Ir)-QNTG or (I-Ir)-QNTG is a NTG.

This present study looks at Fenyves identities on the platform of BCI-algebras. The main objective
of this study is to classify the Fenyves BCI-algebras into associative and non-associative types. It will
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also be shown that some Fenyves identities play the roles of quasi-associativity and p-semisimplicity ,
vis-a-vis Theorem 9 in BCI-algebras.

2. Main Results

We shall first clarify the relationship between a BCI-algebra, a quasigroup and a loop.

Theorem 12.

1. A BClalgebra X is a quasigroup if and only if it is p-semisimple.
2. A BClalgebra X is a loop if and only if it is associative.
3. Anassociative BCI algebra X is a Boolean group.

Proof. We use Theorem 3, Theorem 7 and Theorem 4.

1.  From Theorems 7 and 4, p-semisimplicity is equivalent to the left and right cancellation laws,
which consequently implies that X is a quasigroup if and only if it is p-semisimple.

2. One of the axioms that a BCI-algebra satisfies is x * 0 = x for all x € X. So, 0 is already the right
identity element. Now, from Theorem 3, associativity is equivalent to 0 * x = x for all x € X. So,
0 is also the left identity element of X. The conclusion follows.

3. InaBCl-algebra, x + x = 0 for all x € X. And 0 is the identity element of X. Hence, every element
is the inverse of itself.

O

Lemma 1. Let (X, %,0) be a BCI-algebra.

1. 0€Ny(X).
2. 0 € Nx(X), Nu(X) implies X is quasi-associative.
3. If0 € N)(X), then the following are equivalent:

(a) X is p-semisimple.

(b) xy=0y-xforallx,yeL.

(c) xy=0x-yforallx,yecL.
4. If0 € Nx(X) or0 € Ny(X), then X is p-semisimple if and only if X is associative.
If0 € N(X), then X is p-semisimple if and only if X is associative.
6. If(X,,0) is a BCK-algebra, then

S

(a) 0e N)\ X
(b) 0 € Nu(X) implies X is a trivial BCK-algebra.

7. The following are equivalent:
(a) X is associative.

(b)  x € N)(X) forall x € X.
(c) xeN( ) forall x € X.
(X

(d) u(X) forall x € X.
(e) 0 6 C(X).
(H xeC(X)forallx € X.

() xe€Z(X)forallx € X.
(h) 0e€Z(X

(i) Xisa (lr—r)—QNTL.

(j)  Xisa(Ir-1)-QNTL.

(k) Xisa (Ir-Ir)-QNTL

8. If(X,*,0) is a BCK-algebra and 0 € C(X), then X is a trivial BCK-algebra.

Proof. This is routine by simply using the definitions of nuclei, centrum, center of a BCI-algebra and
QNTL alongside Theorems 3-10 appropriately. [J
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Remark 3. Based on Theorem 11, since an associative BCI-algebra is a (r-Ir)-QNTG, then, an associative
BCl-algebra is a NTG. This corroborates the importance of the study of non-associative BCI-algebra i.e.,
weak associative laws (Fi-identities) in BCI-algebra, as mentioned earlier in the objective of this work.

Theorem 13. Let (X, *,0) be a BCl-algebra. If X is any of the following Fenyves BCI-algebras, then X
is associative.

1. Fj-algebra 11. Fy4-algebra 21. Fy-algebra 31. Fsy-algebra 41. Fsp-algebra
2. F-algebra 12. Fys-algebra 22. Fy7-algebra 32. Fsg-algebra
3. Fy-algebra 13. Fy¢-algebra 23. Fyg-algebra 33. Fyp-algebra 42. Fsy-algebra
4. Fy-algebra 14. Fyy-algebra 24. Fxp-algebra 34. Fy-algebra 43, Fen-alech
5. Fy-algebra 15. Fig-algebra 25. F3y-algebra 35. Fyz-algebra - Fe3-akgeura
6. Fo-algebra 16. Fyo-algebra 26. Fzp-algebra 36. Fyy-algebra 44. Fsy-algebra
7. Fip-algebra 17. Fxp-algebra 27. Fzz-algebra 37. Fys-algebra
8. Fyj-algebra 18. Fyz-algebra 28. F3y-algebra 38. Fyy-algebra 45. Fsg-algebra
9. Fip-algebra 19. Fy4-algebra 29. Fss-algebra 39. Fug-algebra

10. Fy3-algebra 20. Fys-algebra 30. Fzg-algebra 40. Fag-algebra 46. Feo-algebra

Proof.

1. Let X be an Fy-algebra. Then xy * zx = (xy * z)x. With z = y, we have xy * yx = (xy * y)x which
implies xy * yx = (xy xx)y = (xxxy)y = (0% y)y = 0x (y*y) (since 0 € N, (X); this is achieved
by putting y = x in the F; identity) = 0+ 0 = 0. This implies xy * yx = 0. Now replacing x with y,
and y with x in the last equation gives yx * xy = 0 implying that x * y = y * x as required.

2. Let X be an F-algebra. Then xy % zx = (x % yz)x. With y = z, we have xz xzx = (x*zz)x =
(x#0) * x = x * x = 0 implying that xz * zx = 0. Now replacing x with z, and z with x in the last
equation gives zx * xz = 0 implying that x * z = z * x as required.

3. Let X be a Fy-algebra. Then, xy % zx = x(yz * x). Puty = x and z = 0, then you get 0 Ox = x
which means X is p-semisimple. Put x = 0 and y = 0 to get 0z = 0 * 0z which implies that X is
quasi-associative (Theorem 5). Thus, by Theorem 9, X is associative.

4. Let X be an F4-algebra. Then, (xy*z)x = x(y*zx). Putx = y = 0 to get 0z = 0 % 0z which
implies that X is quasi-associative (Theorem 5). Put y = 0 and z = x, then we have 0 * x = x.
Thus, X is associative.

5. Let X be an Fy-algebra. Then (xy *z)x = x(yz * x). With z = 0, we have xy * x = x(y * x).
Put y = x in the last equation to get xx % x = (x * xx) implying 0 * x = x.

6. Let X be an Fy-algebra. Then (x * yz)x = x(yz * x). With z = 0, we have (x*y) xx = x(y * x).
Put y = x in the last equation to get (x * x)x = x(x % x) implying 0 * x = x.

7. Let X be an Fjp-algebra. Then, x(y * zx) = x(yz * x). Put y = x = z, then we have x * 0x = 0. So,
0x = 0 = x = 0. which means that X is p-semisimple (Theorem 8(2)). Hence, X has the LCL by
Theorem 4. Thence, the Fy identity x(y * zx) = x(yz * x) = y * zx = yz * x which means that X
is associative.

8. Let X be an Fyj-algebra. Then xy * xz = (xy % x)z. Withy = 0, we have x % xz = xx *z. Putz = x
in the last equation to get x = 0 * x as required.

9. Let X be an Fyp-algebra. Then xy * xz = (x % yx)z. With z = 0, we have xy * x = x * yx. Puty = x
in the last equation to get xx * x = x * xx implying 0 * x = x as required.

10. Let X be an Fj3-algebra. Then xy * xz = x(yx * z). With z = 0, we have (x * y)x = x * yx which
implies (x * x)y = x * yx which implies 0 %y = x % yx. Put y = x in the last equation to get
0 * x = x as required.

11.  Let X be an Fy4-algebra. Then xy * xz = x(y % xz). With z = 0, we have xy * x = x x yx. Puty = x
in the last equation to get 0 * x = x as required.

12.  Let X be an Fys-algebra. Then (xy % x)z = (x % yx)z. With z = 0, we have (xy * x) = (x * yx).
Put y = x in the last equation to get 0 x x = x as required.

13.  Let X be an Fjg-algebra. Then (xy % x)z = x(yx * z). With z = 0, we have (xy * x) = (x % yx).

Put y = x in the last equation to get 0 * x = x as required.
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14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

Let X be an Fyy-algebra. Then (xy * x)z = x(y % xz). With z = 0, we have (xy * x) = x(y * x).
Put y = x in the last equation to get 0 * x = x as required.

Let X be an Fyg-algebra. Then (x * yx)z = x(yx x z). With y = 0, we have (x % 0x)z = x(0x * z).
Since 0 € N, (X) and 0 € N, (X), (these are obtained by putting x = 0 and x = y respectively
in the Fig-identity), the last equation becomes (x0 % x)z = x(0* xz) = x0 % xz = x * xz which
implies 0 % z = x * xz. Put x = z in the last equation to get 0 * z = z as required.

This is similar to the proof for Fyp-algebra.

Let X be an Fy-algebra. Then yx «zx = (y * xz)x. Puty = x,z = 0, then Ox = 0 * Ox which
implies that X is quasi-associative. By Theorem 10, the F,; identity implies that yx * zx = yx * xz.
Substitute x = 0 to get yz = y * 0z. Now, put y = zin this to get z* 0z = 0. So0,0z =0 = z = 0.
Hence, X is p-semisimple (Theorem 8(2)). Thus, by Theorem 9, X is associative.

Let X be an F3-algebra. Then yx  zx = y(xz % x). With z = 0, we have yx % 0x = y(x * x) which
implies yx * 0x = y. Since 0 € N (X), (this is obtained by putting z = x in the Fy3-identity),
the last equation becomes (yx * 0) * x = y which implies (yx * x) = y. Put x = y in the last
equation to get 0 * y = y as required.

Let X be an Fy-algebra. Then yx « zx = y(x % zx). With z = 0, we have yx * 0x = y(x * Ox).
Since 0 € N, (X),(this is obtained by putting x = 0 in the F,4-identity), the last equation becomes
((yx)0 * x) = y(x0 * x) which implies yx * x = y. Put y = x in the last equation to get 0 xy = y
as required.

Let X be an Fys-algebra. Then (yx * z)x = (y * xz)x. Put x = 0, then yz = y * 0z. Substitute z = y,
then y * Oy = 0. So, Oy = 0 = y = 0. Hence, X is p-semisimple (Theorem 8(2)). Hence, X has the
RCL by Theorem 7. Thence, the F»s identity (yx * z)x = (y * xz)x implies yx * z = y * xz. Thus,
X is associative.

Let X be an Fyg-algebra. Then (yx «z)x = y(xz * x). Withz = 0, we have yx x x = y. Putx = yin
the last equation to get 0 *x y = y as required.

Let X be an Fyy-algebra. Then (yx *z)x = y(x % zx). Put z = x = y, then Ox * x = 0 which implies
X is quasi-associative. Put x = 0and y = zto get z* 0z = 0. So, 0z = 0 = z = 0. Hence, X is
p-semisimple (Theorem 8(2)). Thus, by Theorem 9, X is associative.

Let X be an Fyg-algebra. Then (y * xz)x = y(xz * x). Withz = 0, we have yx * x = y. Putx = yin
the last equation to get 0 * y = y as required.

The proof of this is similar to the proof for Fjp-algebra.

Let X be an F3;-algebra. Then yx * xz = (yx * x)z. By Theorem 10, the F3; identity becomes Fys
identity which implies that X is associative.

Let X be an Fsp-algebra. Then yx « xz = (y % xx)z. Withz = 0, we have yx xx = y. Putx = y in
the last equation to get 0 x y = y as required.

Let X be an Fs3-algebra. Then yx * xz = y(xx * z). Withz = 0, we have yx * x = y. Putx = y in
the last equation to get 0 x y = y as required.

Let X be an Fay-algebra. Then yx « xz = y(x % xz). With z = 0, we have yx * x = y. Putx = yin
the last equation to get 0 x y = y as required.

Let X be an Fs-algebra. Then (yx  x)z = (y * xx)z. Withz = 0, we have yx * x = y. Putx = yin
the last equation to get 0 x y = y as required.

Let X be an Fzg-algebra. Then (yx * x)z = y(xx *z). Withz = 0, we have yx x x = y. Putx = yin
the last equation to get 0 x y = y as required.

Let X be an Fzy-algebra. Then (yx * x)z = y(x * xz). Withz = 0, we have yx x x = y. Putx = yin
the last equation to get 0 x y = y as required.

Let X be an Fzg-algebra. Then, yz = y x 0z. Putz = y, then y * Oy = 0. So, 0y = 0 = y = 0. Hence,
X is p-semisimple (Theorem 8(2)). Now, put iy = x, then xz = x * 0z. Now, substitute x = 0 to get
0z = 0 * 0z which means that X is quasi-associative. Thus, by Theorem 9, X is associative.

Let X be an Fyp-algebra. By the Fy identity, y * 0z = y(x * xz). Putz = x = y to get 0 % 0x = 0. So,
0x = 0 = x = 0. Hence, X is p-semisimple (Theorem 8(2)). Thus, X has the LCL by Theorem 4.
Thence, the Fy identity y(xx * z) = y(x * xz) becomes 0 * z = x * xz. Substituting z = x, we get
Ox = x which means that X is associative.

210



Symmetry 2018, 10, 427

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

|

Let X be an Fyj-algebra. Then xx * yz = (x * xy)z. Withz = 0, we have 0 xy = x * xy. Puty = x
in the last equation to get 0 * x = x as required.

Let X be an Fyz-algebra. Then xx * yz = x(x *yz). Withz = 0, wehave 0%y = x(x xy). Putx =y
in the last equation to get 0 * y = y as required.

Let X be an Fyy-algebra. Then xx * yz = x(xy *z). Withz = 0, wehave 0%y = x(x xy). Putx =y
in the last equation to get 0 * y = y as required.

Let X be an Fys-algebra. Then (x * xy)z = (xx xy)z. Withz = 0, wehave x x xy = 0xy. Putx =y
in the last equation to get 0 * y = y as required.

Let X be an Fy7-algebra. Then (x * xy)z = x(xy *z). Withy = 0, we have 0 xz = x(x *z). Put
x = zin the last equation to get 0 * z = z as required.

Let X be an Fyg-algebra. Then (xx x i)z = x(x *yz). Withz = 0, wehave 0y = x x xy. Putx =y
in the last equation to get 0 * y = y as required.

Let X be an Fyg-algebra. Then (xx )z = x(xy = z). Withy = 0, we have 0 xz = x * xz. Putx = z
in the last equation to get 0 * z = z as required.

This is similar to the proof for Fp-algebra.

Let X be an Fsy-algebra. Then yz # xx = (yz * x)x. Withz = 0, we have y = (y * x)x. Putx = yin
the last equation to get 0 x y = y as required.

Let X be an Fs3-algebra. Then yz * xx = y(zx * x) which becomes yz = y(zx * x). Putz = x to
get yx = y * 0x. Substituting y = x, we get x * 0x = 0. So, Ox = 0 = x = 0, which means that X
is p-semisimple (Theorem 8(2)). Now, put y = 0 in yx = y * Ox to get Ox = 0 * Ox. Hence, X is
quasi-associative. Thus, X is associative.

Let X be an Fsy-algebra. Then (yz * x)x = y(z * xx). Withz = 0, we have yx * x = y. Putx = yin
the last equation to get 0 x y = y as required.

Let X be an Fsg-algebra. Then (y * zx)x = y(zx xx). Puty = x = z to get x x0x = 0. So,
0x = 0 = x = 0, which means that X is p-semisimple (Theorem 8(2)). Now, putz = x,y = 0 to
get Ox = 0 x Ox. Hence, X is quasi-associative. Thus, X is associative.

Let X be an Fygp-algebra. Then y(zx *x) = y(z*xx). Puty = x = z to get x «O0x = 0. So,
0x = 0 = x = 0, which means that X is p-semisimple (Theorem 8(2)). Hence, X has the LCL by
Theorem 4. Thence, the Fy identity becomes zx * x = z * xx. Now, substitute z = x to get Ox = x.
Thus, X is associative.

Corollary 1. Let (X, *,0) be a BCI-algebra. If X is any of the following Fenyves’ BCI-algebras, then (X, *) is
a Boolean group.

[y

S © %N UR W=

. Fy-algebra 11. Fy4-algebra 21. Fyg-algebra 31. Fz7-algebra 41. Fsp-algebra
. Fy-algebra 12. Fy5-algebra 22. Fy7-algebra 32. Fsg-algebra

Fy-algebra 13. Fyg-algebra 23. Fyg-algebra 33. Fyp-algebra 42. Fsy-algebra
. Fe-algebra 14. Fyy-algebra 24. F3p-algebra 34. Fy-algebra .
. Fr-algebra 15. Fig-algebra 25. F3y-algebra 35. Fyz-algebra 43. Fsz-algebra
. Fo-algebra 16. Fy-algebra 26. Fzp-algebra 36. Fyy-algebra 44. Fsy-algebra
. Fyo-algebra 17. Fxp-algebra 27. Fzs-algebra 37. Fys-algebra

Fy1-algebra 18. E3-algebra 28. Fss-algebra 38. Fiy-algebra 45. Fsg-algebra

. Fip-algebra 19. Fyy-algebra 29. Fss-algebra 39. Fag-algebra
. Fi3-algebra 20. Fys-algebra 30. Fzg-algebra 40. Fag-algebra 46. Feo-algebra

Proof. This follows from Theorems 12 and 13. [

Theorem 14. Let (X, *,0) be a BCl-algebra.

1.
2.
3.
4.

Let X be an Fs-algebra. X is associative if and only if x(x * zx) = xz if and only if X is p-semisimple.
Let X be an Fs-algebra. X is associative if and only if (xy * x)x = yx.

Let X be an Fy-algebra. X is associative if and only if (yx  x)x = x * .

Let X be an Fyy-algebra. X is associative if and only if X is p-semisimple.
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2]

. Let X be an Fss-algebra. X is associative if and only if [(y * x) * x] x x = x x .
(a) X is an Fs-algebra and p-semisimple if and only if X is associative.

(b) Let X be an Fg-algebra. X is associative if and only if x(y * zx) = yz.

. Let X be an Fig-algebra. X is associative if and only if quasi-associative.

. X is an Fsg-algebra and obeys y(x * xz) = zy if and only if X is associative.

. Let X be a Fyg-algebra. X is associative if and only if 0(0 % 0x) = x.

(a) X is an Fsp-algebra and Fss-algebra if and only if X is associative.

(b) X is an Fsp-algebra and obeys (y * zx)x = zy if and only if X is associative.
(c) X isan Fss-algebra and p-semisimple if and only if X is associative.

(d) Let X be an Fspy-algebra. X is associative if and only if X is quasi-associative.
11. (a) X is an Fsg-algebra and Fss-algebra if and only if X is associative.

(b) X is an Fsp-algebra and obeys (y * zx)x = zy if and only if X is associative.
(c) Let X be a Fse-algebra. X is associative if and only if X is quasi-associative.
(d) Let X be an Fso-algebra. X is associative if and only if X is quasi-associative.

ISl

-
S © % N

Proof.

1.  Suppose X is a Fz-algebra. Then, xy *zx = x(y *zx). Puty = x to get 0 zx = x(x * zx).
Substituting x = 0, we have 0z = 0 * 0z which means X is quasi-associative. Going by Theorem 9,
X is associative if and only if X is p-semisimple. Furthermore, by Theorem 4(3) and 0 * zx =
x(x * zx), an Fz-algebra X is associative if and only if xy = x(x % zx).

2. Suppose X is associative. Then 0* x = x. X is F5 implies (xy *z)x = (x * yz)x. Withz = x,
we have (xy* x)x = (x *yx)x = (xy*x)x = (x % x)yx = (xy*x)x = 0% yx = (xy* x)x = yx
as required. Conversely, suppose (xy * x)x = yx. Putz = x in (xy *z)x = (x *yz)x to get
(xy*x)x = (x*xyx)x = (xy*x)x = (x*x)yx = (xy*x)x = 0xyx = yx = 0% yx (since
(xy * x)x = yx). So, X is associative.

3. Suppose X is associative. Then x *y = y x x. X is F»1 implies yx * zx = (yx *z)x. Withz = x,
we have (yx % x)x = y * x = x * i as required. Conversely, suppose (yx * x)x = x *y. Putz = x
in Fy to get (yx * x)x = y * x. S0, x * iy = Y * x as required.

4. Suppose X is associative. Then 0%z = z. X is Fyp implies xx * yz = (xx *y)z. Withy = 0,
we have 0% 0z = 0 * z = z as required. Conversely, suppose 0* 0z = z. Put y = 0in Fy to get
0%0z = 0%*z. 50,0 *z = z as required.

5. Suppose X is associative. Then x *y = y * x. X is Fs5 implies [(y * z) % x] % x = [y * (z* x)] * x.
With z = x, we have [(y * x) % x] * x = y * x = x %y as required. Conversely, suppose [(y * x) *
x| *x =x%y. Putz=xinFs5togety*x = [(y*x) * x| xx = x %Y. S0, y * X = x %y as required.

The proofs of 6 to 11 follow by using the concerned F; and F; identities (plus p-simplicity by Theorem 12
in some cases) to get an F, which is equivalent to associativity by Theorem 13 or which is not equivalent
to associativity by 1 to 5 of Theorem 14. [

3. Summary, Conclusions and Recommendations

In this work, we have been able to construct examples of Fenyves’ BCI-algebras. We have also
obtained the basic algebraic properties of Fenyves’ BCl-algebras. Furthermore, we have categorized
the Fenyves” BCl-algebras into a 46 member associative class (as captured in Theorem 13). Members
of this class include Fl, Fz, F4, F6, F7, F9, Flo, Fn, Fer F13, F14, F15, F16, F17, F18, on, Fzz, F23, F24, F25, F26,
Fa7, Fag, Fao, F31, Fso, F33, Faa, Fss, Fs6, Fa7, F3s, Fao, Fa1, Faz, Faa, Fas, Faz, Fas, Fao, Fso, Fs1, Fs3, Fsy, Fsg,
Fep-algebras; and a 14 member non-associative class. Those Fenyves identities that are equivalent to
associativity in BCI-algebras are denoted by v in the fifth column of Table 1. For those that belong
to the non-associative class, we have been able to obtain conditions under which they would be
associative (as reflected in Theorem 14). This class includes Fs, F5, Fg, Fi9, F21,F29, F39 , F12, Fag, Fsp, Fs4,
Fs5, Fs6, Fso-algebras. In Table 1 which summarizes the results, members of this class are identified by
the symbol “f'.

Other researchers who have studied Fenyves’ identities on the platform of loops, namely Phillips
and Vojtechovsky [5], Jaiyeola [6], Kinyon and Kunen (2004) found Moufang (F,, Fy, Fi7, F7), extra
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(Fe, F13, F2), Fo, Fi5, left Bol (Fp9), right Bol (Fa), Moufang (Fy, F27), Fso, Fss, Fse, C (F37), Fss, Fzo, Fao,
LC(F39, Fa1, Fue, Fig), Fap, Fa3, Fi5, Fs1, RC(F3¢, Fs3, Fs6, Fsy7), Fs4, and Fgg Fenyves’ identities not to be
equivalent to associativity in loops. Interestingly, in our study, some of these identities, particularly
the extra identity (Fs, Fi3, Fx»), F7, Fo, Fi5, F17, right Bol (F), Moufang (Fy, Fyy), Fao, Fs5, Fsg, Fao,
RC (Fz¢, Fs3, Fs7), C (F37), LC (Fa1, Fag), Fa3, Fs5, F51 and Fgp have been found to be equivalent to
associativity in BCI-algebras. In addition, the aforementioned researchers found Fy, F3, Fs, F;, Fg,
Fio, Fi1, Fra, Fa, Fie, Fis, F20, Fo1, Fo3, Foa, Fos, Fos, Fao, F31, Faa, Fs3, Faa, Faa, Faz, Fao, Fso, Fs, Fss,
Fsg and Fs9 identities to be equivalent to associativity in loops. We have also found some (F;, Fyo,
Fi1, Fio, Fia, Fis, Fis,F20, F23, Foa, Fo5, Fog, F31, F32, F33, Fua, Fa7, Fa9, Fso, F53) of these identities to
be equivalent to associativity in BCI-algebras while some others (F3, Fs5, Fs, Foo, Fo1, Fag,Fs5, Fs9)
were not equivalent to associativity in BCI-algebras.
In loop theory, it is well known that:

A loop is an extra loop if and only if the loop is both a Moufang loop and a C-loop.
A loop is a Moufang loop if and only if the loop is both a right Bol loop and a left Bol-loop.
A loop is a C-loop if and only if the loop is both a RC-loop and a LC-loop.

In this work, we have been able to establish (as stated below) somewhat similar results for a few
of the Fenyves’ identities in a BCI-algebra X:

e X is an F-algebra and F/—algebra if and only if X is associative, for the pairs: i = 52, j = 55,
i=259, j=>55.

Fenyves [31], and Phillips and Vojtéchovsky [32,33] found some of the 60 F; identities to be
equivalent to associativity in quasigroups and loops (i.e., groups), and others to describe weak
associative laws such as extra, Bol, Moufang, central, flexible laws in quasigroups and loops. Their
results are summarised in the second, third and fourth columns of Table 1 with the use of v'. In this
paper, we went further to establish that 46 Fenyves’ identities are equivalent to associativity in
BCl-algebras while 14 Fenyves’ identities are not equivalent to associativity in BCI-algebras. These
two categories are denoted by v' and 1 in the fifth column of Table 1.

After the works of [31-33], the authors in [34-38] did an extension by investigating and classifying
various generalized forms of the identities of Bol-Moufang types in quasigroups and one sided/two
sided loops into associative and non-associative categories. This answered a question originally posed
in [39] and also led to the study of one of the newly discovered generalized Bol-Moufang types of loop
in Jaiyéola et al. [40]. While all the earlier mentioned research works on Bol-Moufang type identities
focused on quasigroups and loop, this paper focused on the study of Bol-Moufang type identities
(Fenyves’ identities) in special types of groupoids (BCI-algebra and quasi neutrosophic triplet loops)
which are not necessarily quasigroups or loops (as proved in Theorem 12). Examples of such well
known varieties of groupoids were constructed by Ilojide et al. [41], e.g., Abel-Grassmann’s groupoid.

The results of this work are an initiation into the study of the classification of finite Fenyves’ quasi
neutrosophic triplet loops (FQNTLs) just like various types of finite loops have been classified (e.g.,
Bol loops, Moufang loops and FRUTE loops). In fact, a library of finite Moufang loops of small order is
available in the GAPS-LOOPS package [42]. It will be intriguing to have such a library of FQNTLs.

Overall, this research work (especially for the non-associative F;’s) has opened a new area of
research findings in BCI-algebras and Bol-Moufang type quasi neutrosophic triplet loops as shown in
Figure 1.
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Table 1. Characterization of Fenyves Identities in Quasigroups, Loops and BCI-Algebras by Associativity.

Fenyves F, = ASS F; # ASS Quassigroup F;+ BCI

Identity  Inaloop Inaloop = Loop = ASS
F v v v
F v v v
F v v b
Fy v v
Fs v b
Fe v v v
F v v
Fg v b
Fy v v
Fio v v
Fip v v v
Fip v v v
Fi3 v v v
Fiy v v
Fi5 v v
Fie v v
Fiz v v v
Fig v v v
Fio v T
Fy v v
F v v i
F v v v
Fx v v
Foy v v
Fs v v
F v v
Fyy v v v
Fg v v v
Fxo v i
F3o v v
F3 v v v
F3 v v v
F33 v v
F4 v v
F35 v v
F36 v v
F37 v v
Fsg v v v
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Table 1. Cont.

Fenyves F, = ASS F; # ASS Quassigroup F;+ BCI
Identity  Inaloop Inaloop = Loop = ASS
Fs9 v i
Fyo v v
Fy v v v
Fip v 1
Fy3 v v
Fyy v v
Fy5 v v
Fue v i
Fy7 v v v
Fug v v
Fyo v v
Fs5o v v
Fs1 v v
Fsp v 1
Fs3 v v v
F54 v i
Fs5 v T
Fs6 v T
Fs7 v v
Fsg v v v
Fs9 v i
Feo v v

540 Varintios of Guanl

Neutrodophic Triplet
14 Varieties of BO- Algebas Loogn [Femyves NTLs) Types of Groups
[Ferypves Algebeas) (exponant a, simple..}

Bovlean Group
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T

Figure 1. New Cycle of Algebraic Structures.
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Abstract: In this paper, we define the neutrosophic valued (and generalized or G) metric spaces for
the first time. Besides, we newly determine a mathematical model for clustering the neutrosophic big
data sets using G-metric. Furthermore, relative weighted neutrosophic-valued distance and weighted
cohesion measure, is defined for neutrosophic big data set. We offer a very practical method for data
analysis of neutrosophic big data although neutrosophic data type (neutrosophic big data) are in
massive and detailed form when compared with other data types.
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1. Introduction and Preliminaries

Neutrosophic Logic is a neonate study area in which each proposition is estimated to have the
proportion (percentage) of truth in a subset T, the proportion of indeterminacy in a subset I, and the
proportion of falsity in a subset F. We utilize a subset of truth (or indeterminacy, or falsity), instead of a
number only, since in many situations we do not have ability to strictly specify the proportions of truth
and of falsity but only approximate them; for instance, a proposition is between 25% and 55% true and
between 65% and 78% false; even worse: between 33% and 48% or 42 and 53% true (pursuant to several
observer), and 58% or between 66% and 73% false. The subsets are not essential intervals, but any sets
(open or closed or half open/half-closed intervals, discrete, continuous, intersections or unions of the
previous sets, etc.) in keeping with the given proposition. Zadeh initiated the adventure of obtaining
meaning and mathematical results from uncertainty situations (fuzzy) [1]. Fuzzy sets brought a
new dimension to the concept of classical set theory. Atanassov introduced intuitionistic fuzzy sets
including membership and non-membership degrees [2]. Neutrosophy was proposed by Smarandache
as a computational approach to the concept of neutrality [3]. Neutrosophic sets consider membership,
non-membership and indeterminacy degrees. Intuitionistic fuzzy sets are defined by the degree
of membership and non-membership and, uncertainty degrees by the 1-(membership degree plus
non-membership degree), while the degree of uncertainty is evaluated independently of the degree of
membership and non-membership in neutrosophic sets. Here, membership, non-membership, and
degree of uncertainty (uncertainty), such as degrees of accuracy and falsity, can be evaluated according
to the interpretation of the places to be used. It depends entirely on the subject area (the universe of
discourse). This reveals a difference between neutrosophic set and intuitionistic fuzzy set. In this sense,
the concept of neutrosophic is a possible solution and representation of problems in various fields.
Two detailed and mathematical fundamental differences between relative truth (IFL) and absolute
truth (NL) are:
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(i)  NL can discern absolute truth (truth in all possible worlds, according to Leibniz) from the relative
truth (truth in at least one world) because NL (absolute truth) = 1" while IFL (relative truth) = 1.
This has practice in philosophy (see the Neutrosophy). The standard interval [0, 1] used in IFL
has been extended to the unitary non-standard interval ]~ 0, 1* [ in NL. Parallel earmarks for
absolute or relative falsehood and absolute or relative indeterminacy are permitted in NL.

(i) There is no limit on T, I, F other than they are subsets of |~ 0, 1" [, thus: “0 <inf T +infI +inf F
<sup T +supI+supF <3*in NL. This permissiveness allows dialetheist, paraconsistent, and
incomplete information to be described in NL, while these situations cannot be described in IFL
since F (falsehood), T (truth), I (indeterminacy) are restricted either tot +i+f=1ortot? + 2 <1,
if T, I, F are all reduced to the points t, i, f respectively, or tosup T + sup I + sup F=1if T, I, F are
subsets of [0, 1] in IFL.

Clustering data is one of the most significant problems in data analysis. Useful and efficient
algorithms are needed for big data. This is even more challenging for neutrosophic data
sets, particularly those involving uncertainty. These sets are elements of some decision-making
problems, [4-8]. Several distances and similarities are used for decision-making problems [9,10].
Algorithms for the clustering big data sets use the distances (metrics). There are some metrics used in
algorithms to analysis neutrosophic data sets: Hamming, Euclidean, etc. In this paper, we examine
clustering of neutrosophic data sets via neutrosophic valued distances.

The big data notion is a new label for the giant size of data—both structured and unstructured—that
overflows several sectors on a time-to-time basis. It does not mean overall data are significant and
the significant aspect is to obtain desired specific data interpretation. Big data can be analyzed for
pre-cognition that make possible more consistent decisions and strategic having positions. Doug
Laney [11] sort to make the definition of big data the three Vs and Veracity widespread: (1) Velocity:
This refers to dynamic data and captures data streams in near real-time. Data streams in at an
exceptional speed and must be dealt with in a well-timed mode. (2) Variety: Data comes in all types of
formats—from structured, numeric data in traditional databases to formless materials. On the one
hand, variety denotes to the various sources and types of organized and formless data. Storing data
is made from sources like worksheets and databases. (3) Volume: Organizations gather data from a
range of sources, including social media, business operations, and data from the sensor or machine to
machine. (4) Veracity: It mentions to the biases, noise, and anomaly in data. That corresponds with
the question “Is the data that is being put in storage and extracted meaningful to the problem being
examined?”.

In this paper, we also focus on K-sets cluster algorithm which is a process of analyzing data with
the aim of evaluating neutrosophic big data sets. The K-sets cluster is an unrestrained type of learning
that is used when one wants to utilize unlabeled data, [12]. The goal of the algorithm is to find groups
of data with the number of groups represented by variable K. The algorithm works iteratively to
set-aside each data point obtained to one of the K groups based on the properties obtained. The data
points are clustered according to feature similarity. Instead of identifying groups before examining
patterns, clustering helps to find and analyze naturally occurring groups. “Choosing K” has the goal
of “how the number of groups can be determined”. Each center of a congregation is a collection of
property values describe the groups that emerged. Analysis of centroid feature weights can be used
to qualitatively interpret what kind of group is represented by each cluster. The algorithm finds the
clusters and data set labels for a particular pre-chosen K. To have the number of clusters in the data,
the user must run the K-means clustering algorithm for a range of K values and compare the results.
In general, there is no technique to determine a specific K value, but a precise estimate can be obtained
using the following methods. In general, one of the metrics used to compare the results between the
different K values as the average distance between the data points and their cluster synthesis. As the
number of sets increases, it will always reduce the distance to the data points, while the K increment
will always lower this metric as other criteria, and when K is the same as the number of data points,
reaching zero will be excessive. Thus, this metric cannot be used as a single purpose. Rather, the
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average distance to the center as a function of K is plotted where the shear rate falls sharply, it can be
used to determine K approximately.

A number of other techniques are available for verification of K, including cross-validation,
information criteria, information theoretical jump method, and G-tools algorithm. In addition,
monitoring the distribution of data points between groups provides information about how the
algorithm splits data for each K. K-sets algorithms base on the measurement of distances of sets.
A distance is a measurement of how far apart each pair of elements of a given set is. Distance
functions in mathematics and many other computational sciences are important concepts. They have
wide usage areas, for example, the goal of quantifying a dissimilarity (or equivalently similarity)
between two objects, sets or set of sets in some sense. However, due to the massive, complicated and
different type data sets today, definitions of distance functions are required to be more generalized and
detailed. For this purpose, we define a novel metric for similarity and distance to give Neutrosophic
Valued-Metric Spaces (NVGMS). We present relative weighted measure definition and finally K-sets
algorithm after given the definition of NVGMS.

Some readers who are unfamiliar with the topic in this paper need to have a natural example to
understand the topic well. There is a need for earlier data in everyday life to give a natural example for
the subject first described in this paper. There is no this type of data (we mean neutrosophic big data)
in any source, but we will give an example of how to obtain and cluster such a data in Section 6 of the
paper. If we encounter a sample of neutrosophic big data in the future, we will present the results with
a visual sample as a technical report. In this paper, we have developed a mathematically powerful
method for the notion of concepts that are still in its infancy.

1.1. G-Metric Spaces

Metric space is a pair of (A, d), where A is a non-empty set and d is a metric which is defined by
a certain distance and the elements of the set A. Some metrics may have different values such as a
complex-valued metric [13,14]. Mustafa and Sims defined G-metric by generalizing this definition [15].
Specifically, fixed point theorems on analysis have been used in G-metric spaces [16,17].

Definition 1. Let A be a non-empty set and d be a metric on A, then if the following conditions hold, the pair
(A, d) is called a metric space. Let x,y,z € A

(1) d(x,y) > 0, (non-negativity)

(2)  d(x,y) =0< x =y, (identity)

(3)  d(x,y) =d(y,x), (symmetry)

(4)  d(x,z) <d(x,y)+d(y,z) (triangle inequality).

u

where d : Ax A — RTU{0}.

Definition 2. [15] Let A be a non-empty set. A function G : A x A x A — [0, +00) is called G-distance if it
satisfies the following properties:

(1) G(x,y,z) =0ifandonly ifx =y =z,

(2) G(x y) # 0 whenever x # y,

3) G(x,x,y) <G(x,y,z) forany x,y,z € A, withz # y,

(4)  G(x,y,z) = G(x,z,y) = ... (symmetric for all elements),

(5) G(x,y,z) <G(x,a,a)+ G(u y,z) foralla,x,y,z € A (Rectangular inequality).

The pair (A, G) is called a G-metric space. Moreover, if G-metric has the following property then it
is called symmetric: G(x, x,y) = G(x,y,y),Vx,y € A.
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Example 1. In 3-dimensional Euclidean metric space, one can assume the G-metric space (E3, G) as the
following:
G(x,y,2) = 2([lx x yl| + [z x yll + [|x x z]])

where x,y,z € E3 and ||. x .|| represent the norm of the vector product of two vectors in E3. It is obvious that it
satisfies all conditions in the Definition 2 because of the norm has the metric properties, and it is symmetric.
Example 2. Let (A, d) is a metric space. Then

Gy z) =d(x,y) +d(y,z) —d(x,2)

is a G-metric, where x,y,z € A. The fact that d is a metric indicates that it has triangle inequality. Thus, G is
always positive definite.

Proposition 1. [17] Let (A, G) be a G-metric space then a metric on A can be defined from a G-metric:

dg(x,y) = G(x, x,y) + G(x,y,y)
1.2. Neutrosophic Sets

Neutrosophy is a generalized form of the philosophy of intuitionistic fuzzy logic. In neutrosophic
logic, there is no restriction for truth, indeterminacy, and falsity and they have a unit real interval
value for each element neutrosophic set. These values are independent of each other. Sometimes,
intuitionistic fuzzy logic is not enough for solving some real-life problems, i.e., engineering problems.
So, mathematically, considering neutrosophic elements are becoming important for modelling these
problems. Studies have been conducted in many areas of mathematics and other related sciences
especially computer science since Smarandache made this philosophical definition, [18,19].

Definition 3. Let E be a universe of discourse and A C E. A = {(x,T(x),I(x),F(x)):x € E} is
a neutrosophic set or single valued neutrosophic set (SVNS), where Ta,14,Fa: A — | 0,17 are the
truth-membership function, the indeterminacy-membership function and the falsity-membership function,
respectively. Here, ~0 < T4 (x) + I4(x) + Fa(x) < 3.

Definition 4. For the SVNS A in E, the triple (T, 14, Fs) is called the single valued neutrosophic number
(SVNN).

Definition 5. Let n = (T, I, F,) be an SVNN, then the score function of n can be given as follow:

14T, 2L, — Fy

1
Sn > o
where s, € [—1,1].
Definition 6. Let n = (T}, I, F,) be an SVNN, then the accuracy function of n can be given as follow:
2+ T, —I,—F
h” — + n 3 n n (2)

where hy, € [0,1].

Definition 7. Let nq and ny be two SVNNs. Then, the ranking of two SVNNs can be defined as follows:

() If sy, > sy, then 1y > ny;
(I)  If sy, = sp, and hy, > hy,, then ny > ny.
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2. Neutrosophic Valued Metric Spaces

The distance is measured via some operators which are defined in some non-empty sets. In
general, operators in metric spaces have zero values, depending on the set and value.

2.1. Operators

Definition 8. [20,21], Let A be non-empty SVNS and x = (Tx, Iy, Fx),y = (Ty, I, F,) be two SVNNE.
The operations that addition, multiplication, multiplication with scalar « € R, and exponential of SVNNs are
defined as follows, respectively:

x@y = (Tu+ T, — TuTy, I, F:F,)
xOy=(TxTy, L + Iy — L1, Fx + F, — FxF)
ax = {1—(1—Ty)", I, F¥)

= (T¢,1—(1—-1;)%1—(1—-F)")

From this definition, we have the following theorems as a result:

Theorem 1. Let x = (T, Iy, Fy) be an SVNN. The neutral element of the additive operator of the set A is
04 =¢(0,1,1).

Proof. Let x = (Ty, Iy, Fx) and 04 = (Tp, Iy, Fy) are two SVNN and using Definition 8 we have

x® 04 = (T + To — TxTo, I Io, FxFo) = (Tx, L, Fx)
= (To, lo, o) = (0,1,1) = 04

(There is no need to show left-hand side because the operator is commutative in every component).
O

To compare the neutrosophic values based on a neutral element, we shall calculate the score and
accuracy functions of a neutral element 04 = (0,1, 1), respectively:
- 14+Ty—2Ih— F -

50 f——landhoz

2+T0—10—F07

3 0

Theorem 2. Let x = (Ty, Iy, Fx) be an SVNN. The neutral element of the multiplication operator of the A is
14 = (1,0,0).

Proof. Let x = (T, I, Fy) and 14 = (T4, I1, F;) are two SVNN and using Definition 8 we have

xO1lg = <TxT1/Ix+Il — Ly, Fx+F —FxF1> = <Tx/1x/Fx>
= (T, I, F) = (1,0,0) =14

In addition, score and accuracy functions of the neutral element 1, = (1,0,0) are s; =

14T 21— F, 24T~ —F .
——"1—1 =1land h; = ~—51—1 =1, respectively. [J

2.2. Neutrosophic Valued Metric Spaces

In this section, we consider the metric and generalized metric spaces in the neutrosophic meaning.

Definition 9. Ordering in the Definition 6 gives an order relation for elements of the conglomerate SVNN.
Suppose that the mapping d : X x X — A, where X and A are SVNS, satisfies:
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(D 04 <d(x,y)and d(x,y) =04 < sy =syand hy = hy forall x,y € X.
(I d(x,y) =d(y,x) forall x,y € X.

Then d is called a neutrosophic valued metric on X, and the pair (X, d) is called neutrosophic
valued metric space. Here, the third condition (triangular inequality) of the metric spaces is not suitable
for SVNS because the addition is not ordinary addition.

Theorem 3. Let (X,d) be a neutrosophic valued metric space. Then, there are relationships among truth,
indeterminacy and falsity values:

(I 0<T(xy)—2I(x,y) —F(x,y) +3and if s, = s; then0 < T(x,y) — I(x,y) — F(x,y) +2
() If d(x,y) =04 < T(x,y) =0,I(x,y) = F(x,y) = 1.
) T(x,y)=T(y,x), I(x,y) = I(y,x), F(x,y) = F(y, x) so, each distance function must be symmetric.

where T(.,.), I(.,.) and F(.,.) are distances within themselves of the truth, indeterminacy and falsity functions,
respectively.

Proof.
04 <d(x,y) <« (0,1,1) <(T(x,y),I(x,y),F(x,y))
(I) <:>So<sd<$fl< )
<0< T(x,y)—2I(x,y) — F(x
d(xy) =d(y,x) < (T(xy) 1(xy) Fxy)) = (T(y,x) 1{y,x), Fy.x) 4
& T(x,y) =T(y,x),I(x,y) = 1(y,x), F(x,y) = F(y,x)

(I

Example 3. Let A be non-empty SVNS and x = (Ty, Iy, ),y = (Ty, Iy, Fy) be two SVNNGs. If we define the
metricd: X x X — A, as:

d(x,y) = (T(x,y), 1(x,y), F(x,y)) = ([T - 1B~ F])

e -

then
0 < |Te—Ty|—2(1—|L—1]) — (1— |Fx = F|) +3
=0 < |Te — Ty| +2| L — L] + |Fx —
Then it satisfies the first condition.
(1) Since the properties of the absolute value function, this condition is obvious.
So, (X, d) is a neutrosophic-valued metric space.

(¢

3. Neutrosophic Valued G-Metric Spaces

Definition 10. Let X and A be a non-empty SVNS. A function G : X x X x X — A is called neutrosophic
valued G-metric if it satisfies the following properties:

(1) G(x,y,z) =04 ifandonly if x =y = z,

(2)  G(x,x,y) # 04 whenever x #y,

(3) G(x,x,y) <Gxyz )forany x,y,z € X, withz #y,
4 G(x,y,z) = G(x,z,y) = ... (symmetric for all elements).

The pair (X, G) is called a neutrosophic valued G-metric space.

Theorem 4. Let (X, G) be a neutrosophic valued G-metric space then, it satisfies followings:
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(1) T(x,x,x)=0,I(x,x,x) = F(x,x,x) = 1.

(2)  Assumex #y,then T(x,y,z) #0,1(x,y,z) # 1,F(x,y,z) # 1.

(3) 0<T(xyz)—T(x,xy)+2(I(x,x,y) —I(x,y,2)) + F(x,x,y) — F(x,y,2)
(4) T(x,y,2),I(x,y,z)and F(x,y, z) are symmetric for all elements.

where T(.,.,.), I(.,.,.) and F(.,.,.) are G-distance functions of truth, indeterminacy and falsity values of the
element of the set, respectively.

Proofs are made in a similar way to neutrosophic valued metric spaces.

Example 4. Let X be non-empty SVNS and the G-distance function defined by:

Glx,y,2) = 3(d(xy) ©d(x,2) © d(y,2)

where d(.,.) is a neutrosophic valued metric. The pair (X, G) is obviously a neutrosophic valued G-metric space
because of d(.,.). Further, it has commutative properties.

4. Relative Weighted Neutrosophic Valued Distances and Cohesion Measures

The relative distance measure is a method used for clustering of data sets, []. We define the
relative weighted distance, which is a more sensitive method for big data sets.

Let x; = (Ty,, Fx,, Iy;) € A(non-empty SVNS),i = 0...1n be SVNNs. Then neutrosophic weighted
average operator of these SVNNs is defined as:

A)= Lo = <1 “T10- Tx,.w,f[(fxi)’ff,f[(w"'>

i=1 i=1 i=1

where x; is weighted for the i th data. For a given a neutrosophic data set W = {wy, wy, w3,. .., wy,}
and a neutrosophic valued metric d, we define a relative neutrosophic valued distance for choosing
another reference neutrosophic data and compute the relative neutrosophic valued distance as the
average of the difference of distances for all the neutrosophic data w; € W.

Definition 11. The relative neutrosophic valued distance from a neutrosophic data w; to another neutrosophic
data w; is defined as follows:

RD (w;l|wy) :% Y (d(wj, wy)=d(w;, wy))

wreW

Here, since T, I, F values of SVNNs cannot be negative, we can define the expression d (wj, w;)=d(w;, wy)
as the distance between these two neutrosophic-valued metrics. Furthermore, the distance of metrics is again
neutrosophic-valued here so, a related neutrosophic-valued distance can be defined as:

d(wj, w; )»Ad wi,w) = (T(w;, wj I(wl wj), F(w;, w; ))={T (wj, wi), I(w;, wi), F(w;, wy)) 3
< |T w;, wj) — (T(w;,wy) — 1) ‘ 1- |I(wl w;) — I(w;, wy) ‘ 1- ‘F(w, wj) — F(w,,wk)zb ©)
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The difference operator = generally is not a neutrosophic-valued metric (or G-metric). We used some
abbreviations for saving space.

RD(Z,U,HZU]) = % Zelw(d(w,-,wj)ed(wi,wk))
Wi

:d(wf,w,‘)*;% Z d(w;, wy)

T(wi,w]-),l(wl,w] wl,w] )= (d(w;, wr) & d(w;, wy) & ... & d(w;, wy))

(
= <T(wi/w]')rl(w1/w] wlrw] >

<L U(T(w;,wr), L(w;, wr), F(wi, 1)) @ ... & (T(w;, wy), L(w;,wi), F(w;, wy))]
= (T(w;,w;), 1(w;, w;), F(w;, w;))
«»%K L T(wi,we) — TT T(w;w), T Iwi,wy), I1 F “""'wk)ﬂ

k

cew kew kew kew
T(wil w])/ I(wi/ w])l F(wi/ w])>

1/n
9<1 {1* Y T(wj,wy) + I1 T(wi/wk)] , T H(wj,w)™, T1 F(wilwk)l/n>
keWw keWw keWw keW

= (T, I1, F)=(T2, I, F»)

_<17)T17(T271

h

[~ E2])

where Ty, Iy, Fy and Ty, I, F, are the first, second, and third elements of SVNN in the previous equation,
respectively.

Definition 12. The relative weighted neutrosophic valued distance from a neutrosophic data w; to another
neutrosophic data w; is defined as follows:

RDy (wilw;) = %w X (d (wj, w;)=d(w;, wy))
wy
i kit
= xijd(wi,wj)= L xud(wi, wi)
weW
],k

= X1]<T(w1/ w])/ I(wl/ w])/ F(wl/ w])>

$(?(il <T(wif wl)r I(wir ZU]), F(wir wl)) D... D Xin <T(wir wn), I(wir wn)r F(wir wn)>)

= <1 = (1= T(wi,w))™, L(w;, w))™, F(w;, wj)Xif>

(1= (1= T(wj, wy))X, I(w;, wy), F(w;, wy) ) & ...
= Xin Xin Xin
O(1 = (1= T(w;, wy))X", I(w;, wy )™, F(w;, wy) ™)

1= (1 = T(ewi, 7)), I(w;, w;) ¥, F(w, wj)Xij>

n ~ n
=( X Ti— H H Izk/Hsz

k=1 k=1
k#i,j k#ij k#:] k#w
= (Ty, I, Fi)= <T2/ 12,F2>

= (1|7 - (R -1y

|

B~ B2

where %ik =1- (1 — T(wi, wk))Xik, 71‘;( = I(wi,wk)x"k, ;ik = F(w,‘, wk)Xik.
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Definition 13. The relative weighted neutrosophic valued distance (from a random neutrosophic data w;) to a
neutrosophic data w is defined as follows:

RD)((wf) L XiRDy (wz”wf)

w;eW

Y X Z Xew(d (wirwj)ﬁ‘d(wi/wk)):|

w;eW wreW

= ¥ x| T xw(6(ddi ))]

w;eW wreW

Definition 14. The relative weighted neutrosophic valued distance from a neutrosophic data set W to another
neutrosophic data set Wy is defined as follows:

RDx(WIHWZ) = Z Xx Z XyRDX(xHy)
xeWy yeW,

Definition 15. (Weighted cohesion measure between two neutrosophic data) The difference of the relative
weighted neutrosophic-valued distance to w; and the relative weighted neutrosophic-valued distance from w; to
ZU] , Le.,

px(wi, w;) = RDy(w;)=RDy (w;|[w)) 4)
is called the weighted neutrosophic-valued cohesion measure between two neutrosophic data w; and wj. If
px(w,‘,w]v) > Ow (resp. oy (wi, w]v) < Ow) then w; and wj are said to be cohesive (resp. incohesive). So, the
relative weighted neutrosophic distance from w; and wj is not larger than the relative weighted neutrosophic
distance (from a random neutrosophic data) to w;.

Definition 16. (Weighted cohesion measure between two neutrosophic data sets) Let w; and wj are elements of
the neutrosophic data sets U and V, respectively. Then the measure

V)= Z Xu Z XvP)((wirwj) ®)

w;el w]-EV
is called weighted cohesion neutrosophic-valued measure of the neutrosophic data sets U and V.

Definition 17. (Cluster) The non-empty neutrosophic data set W is called a cluster if it is cohesive, i.e.,
o(W, W) > 0.

5. Clustering via Neutrosophic Valued G-Metric Spaces

In this section, we can cluster neutrosophic big data thank to defined weighted distance definitions
in Section 4 and G-metric definition.

Definition 18. The neutrosophic valued weighted G-distance from a neutrosophic data w to a neutrosophic big
data set U is defined as follows:

(w,y,2) = Y xu Y, xu(d(w,y) ®d(w,z)=d(y,z)) ©)
yeld zel
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Algorithm (K-sets algorithm)

Input: A neutrosophic big data set W = {wy, w», ..., w, }, a neutrosophic distance measure d(.,.), and the
number of sets K.
Output: A partition of neutrosophic sets {Uj, Uy, ..., Uk }.

1. Initially, choose arbitrarily K disjoint nonempty sets Uy, Uy, ..., Uk as a partition of W.
2. forifrom1tondo

begin

Compute G(x;, yk, z) for each set Uy.

Find the set to which the point x; is closest in terms of G-distance.

Assign point x; to that set.

end
3. Repeat from 2 until there is no further change.

6. Application and Example

We will give an example of the definition of the data that could have this kind of data and fall into
the frame to fit this definition. We can call a data set a big data set if it is difficult and/or voluminous to
define, analyze and visualize a data set. We give a big neutrosophic data example in accordance with
this definition and possible use of G-metric, but it is fictional since there is no real neutrosophic big
data example yet. It is a candidate for a good example that one of the current topics, image processing
for big data analysis. Imagine a camera on a circuit board that is able to distinguish colors, cluster all
the tools it can capture in the image and record that data. The camera that can be used for any color
(for example white color vehicle) assigns the following degrees:

(I)  The vehicle is at a certain distance at which the color can be detected, and the truth value of the
portion of the vehicle is determined.

(I) The rate at which the vehicle can be detected by the camera is assigned as the uncertainty value
(the mixed color is the external factors such as the effect of daylight and the color is determined
on a different scale).

(IIT) The rate of not seeing a large part of the vehicle or the rate of out of range of the color is assigned
as the value of falsity.

Thus, data of the camera is clustering via G-metric. This result gives that the numbers according to
the daily quantities and colors of vehicles passing by are determined. The data will change continuously
as long as the road is open, and the camera records the data. There will be a neutrosophic data for each
vehicle. So, a Big Neutrosophic Data Clustering will occur.

Here, the weight functions we have defined for the metric can be given 1 value for the main colors
(red-yellow-blue). For other secondary or mixed colors, the color may be given a proportional value
depending on which color is closer.

A Numerical Toy Example

Take 5 neutrosophic data with their weights are equal to 1 to make a numerical example:
W = {w1(0.6,0.6,0.6), w,(0.8,0.4,0.5), w3(0.5,0.8,0.7), w4(0.9,0.5,0.6), w5(0.1,0.2,0.7) }

K = 3 disjoint sets can be chosen U; = {wy, wy, w5}, Uy = {wy, w3}.

227



Symmetry 2018, 10, 430

Then
(0,1,1) (0.2,0.8,0.9) (0.1,0.8,0.9) (0.3,0.9,1.0) (0.5,0.6,0.9)
(0.2,0.8,0.9) (0,1,1) (0.3,0.6,0.8) (0.1,0.9,0.9) (0.7,0.8,0.8)
d(w;, w]-) = (0.1,0.8,0.9) (0.3,0.6,0.8) (0,1,1) (0.4,0.7,0.9) (0.4,04,1.0)
(0.3,0.9,1.0) (0.1,0.9,0.9) (0.4,0.7,0.9) (0,1,1) (0.2,0.8,0.9)
(0.5,0.6,0.9) (0.7,0.8,0.8) (0.4,0.4,1.0) (0.2,0.8,0.9) (0,1,1)

where we assume the d(w;, w;) as in Example 3. So, we can compute the G-metrics of the data as in
Equation (3):

G(wq, Uy) = G(wq, wg, ws) = (0.99,0.90,0.91)

G(wq, Uy) = G(wq, wp, w3) = (0.79,0.72,0.83)

G(wy, Uy) = G(wy, w1, wy) ® G(wy, w1, ws) & G(wy, ws, ws) = (0.9874,0.6027,0.6707)
G(ZUz, UZ) G(ZUQ,ZUz, ZU3) (0 1 1>

G(ws, Uy) = G(ws, wy, wg) © G(ws, w1, ws) & G(ws, wy, ws) = (1,0.4608,0.6707)
G("LU3, UZ) G(W3,ZU2, ZU3) <0, 1,1>

G(W4, U1) G(ZU4,'(/U1,ZU5) (0.81,0.64, 0.91>

G(ZU4, U2) G(W4, wy, W3) <0.97, 0.73, 083>

So, according to the calculations above, wy belongs to set U; and the other data belong to U,.
Here, we have made the data belonging to the clusters according to the fact that the truth values of the
G-metrics are mainly low. If the truth value of G-distance is low, then the data is closer to the set.

7. Conclusions

This paper has introduced many new notions and definitions for clustering neutrosophic big
data and geometric similarity metric of the data. Neutrosophic data sets have density. For example,
sets having indeterminacy density or neutrosophic density and these are adding the more data and
complexity. So, neutrosophic data sets are complex big data sets. Separation and clustering of these
sets are evaluated according to weighted distances. Neutrosophic data sets in the last part of the paper,
K-sets algorithm has been given for neutrosophic big data sets. We hope that the results in this paper
can be applied to other data types like interval neutrosophic big data sets and can be analyzed in
other metric spaces such as neutrosophic complex valued G-metric spaces etc. and can help to solve
problems in other study areas.
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Abstract: Smarandache defined a neutrosophic set to handle problems involving incompleteness,
indeterminacy, and awareness of inconsistency knowledge, and have further developed it
neutrosophic soft expert sets. In this paper, this concept is further expanded to generalized
neutrosophic soft expert set (GNSES). We then define its basic operations of complement, union,
intersection, AND, OR, and study some related properties, with supporting proofs. Subsequently,
we define a GNSES-aggregation operator to construct an algorithm for a GNSES decision-making
method, which allows for a more efficient decision process. Finally, we apply the algorithm to a
decision-making problem, to illustrate the effectiveness and practicality of the proposed concept.
A comparative analysis with existing methods is done and the result affirms the flexibility and
precision of our proposed method.

Keywords: aggregation operator; complement; intersection; membership; neutrosophic soft set

1. Introduction

For a proper description of objects in an uncertain and ambiguous environment, indeterminate
and incomplete information has to be properly handled. Intuitionistic fuzzy sets were introduced by
Atanassov [1], followed by Molodtsov on soft sets [2] and neutrosophy logic [3] and neutrosophic
sets [4] were introduced by Smarandache. The term neutro-sophy means knowledge of neutral
thought and this neutral represents the main distinction between fuzzy and intuitionistic fuzzy logic
and a set. At present, work on the soft set theory is progressing rapidly. Various operations and
applications of soft sets have been developed rapidly, including the possibility of fuzzy soft set [5],
soft multiset theory [6], multiparameterized soft set [7], soft intuitionistic fuzzy sets [8], Q-fuzzy soft
sets [9-11], multi Q-fuzzy sets [12-14], N-soft set [15], Hesitant N-soft set [16], and Fuzzy N-soft set [17],
thereby, opening avenues to genetic applications [18,19]. Later, Maji [20] have introduced a more
generalized concept—which is a combination of neutrosophic sets and soft sets—and have studied its
properties. Alhazaymeh and Hassan [21,22] have studied the concept of vague soft set, which were
later extended to vague soft expert set theory [23,24], bipolar fuzzy soft expert set [25], and multi
Q-fuzzy soft expert set [26]. Sahin et al. [27] introduced neutrosophic soft expert sets, while Al-Quran
and Hassan [28,29] extended it further to neutrosophic vague soft expert set. Neutrosophic set theory
has also been applied to multiple attribute decision-making [30-32]. Fuzzy modelling has long
been widely applied to physical problems, which include intuitionistic hesitant fuzzy [33], t-concept
lattices [34], fuzzy operators [35], medical image retrieval [36], and artificial bee colony [37] and multi
criteria decision making [38,39]. Neutrosophic sets have also gained traction with recent publications
on neutrosophic triplets [40,41], Q-neutrosophic soft relations [42], Q-neutrosophic soft sets [43],
and Q-neutrosophic soft expert set [44].

Symmetry 2018, 10, 437; doi:10.3390/sym10100437 230 www.mdpi.com/journal /symmetry
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This paper anticipates the neutrosophic set discussions to handle problems involving
incompleteness, indeterminacy, and awareness of inconsistency of knowledge, which is further
developed to neutrosophic soft expert sets. We intend to extend the discussion further, by proposing
the concept of generalized neutrosophic soft expert set (GNSES) and its basic operations of complement,
union, intersection, AND, and OR, along with a definition of GNSES-aggregation operator, to construct
an algorithm of a GNSES decision method. Finally we provide an application of the constructed
algorithm to solve a decision-making problem.

2. Preliminaries

In this section, we review the basic definitions of a neutrosophic set, neutrosophic soft set, soft
expert sets, neutrosophic soft expert sets, and neutrosophic parametrized (NP)-aggregation operator,
which are required as preliminaries.

Definition 1. [4] Let U be a universe of discourse, with a generic element in U denoted by u, then a neutrosophic
(NS) set A is an object having the form

A={<u: Ta(u), In(u) ,Fa(u) >, uec U}

where the functions T, I, F: U— ]~ 0, 1*[ define, respectively, the degree of membership (or Truth), the degree
of indeterminacy, and the degree of non-membership (or Falsehood) of the element u € U to the set A with
the condition.

0 < TA(M) + IA(M)+ FA(M) < 3+

Definition 2. [20] Let U be an initial universe set and E be a set of parameters. Consider A C E. Let NS(U)
denote the set of all neutrosophic sets of U. The collection (F, A) is termed to be the neutrosophic soft set over U,
where F is a mapping given by F: A — NS(U).

Definition 3. [23] U is an initial universe, E is a set of parameters, X is a set of experts (agents), and
O = {agree = 1,disagree = 0} a set of opinions. Let Z = E x X x O and A C Z. A pair (F, A) is called a
soft expert set over U, where F is a mapping given by F : A — P(U) where P(U) denoted the power set of U.

Definition 4. [27] A pair (F, A) is called a neutrosophic soft expert set over U, where F is a mapping given by
F: A — P(U) where P(U) denotes the power neutrosophic set of U.

Definition 5. [27] The complement of a neutrosophic soft expert set (F, A) is denoted by (F, A), and is
defined as (F, A)" = (F°,—A) where F* = = A — P(U) is a mapping given by F¢(x) = neutrosophic soft
expert complement with  Tre(yy = Fp(y), Ire(x) = Ipx)s Frex) = Tp(x)-

Definition 6. [27] The agree-neutrosophic soft expert set (F, A); over U is a neutrosophic soft expert subset of
(F, A) defined as
(F,A); ={F(m):me ExXx{1}}.

Definition 7. [27] The disagree-neutrosophic soft expert set (F, A), over U is a neutrosophic soft expert subset
of (F, A), defined as
(F,A)y={Fo(m):me ExXx{0}}.

Definition 8. [27] Let (H, A) and (G, B) be two neutrosophic soft expert sets (NSESs) over the common
universe U. Then the union of (H,A) and (G,B) is denoted by “(H, A) U (G,B)”, and is defined by
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(H,A) U (G,B) = (K,C), where C AU B and the truth-membership, indeterminacy-membership,
and falsity-membership of (K, C) are as follows:

Th(ey(m), ifec A—B
T () (m) = TG(L)(m) , ifecB—A
max (TH(e (Wl) (e)(m )), ifec ANB

Definition 9. [27] Let (H, A) and (G, B) be two NSESs over the common umverse U. Then the intersection

of (H,A) and (G, B) is denoted by “(H, A) (G, B)” and is defined by (H, A) (G,B) = (K,C), where
C = AN B and the truth-membership, indeterminacy-membership, and falsity-membership of (K,C) are
as follows:

Ty (ey(m) = min(TH(e)(m)/TG(e)(m))
Ty (1) + Ige
IK( )( m) = H()(m)z Gle)(m)

() (m) = max( (L)(m),FG(e)(m)), ifee ANB.

Definition 10. [45] Let ¥x € NP-soft set. Then an NP-aggregation operator of ¥, denoted by ‘Y%gg, is
defined by

Y88 = {(< 1188, 958 ¢ f;(gg>> —_ U}, (1)

which is a neutrosophic set over U,

HEW = T, o g k() M (), 1 U [0,1] @
ueld

W) =L, o g Ox(W)Afk (), 8 U —[0,1] (3)
ueld

W = ﬁz ccE wi (). Afgy (1), Wi U — [0,1] 4)
uel

and where,

Afk() (1) = { Lxe fK(x)'(u),

0, otherwise,

such that |U| is the cardinality of U.

3. Generalized Neutrosophic Soft Expert Set

In this section, we introduce the concept of generalized neutrosophic soft expert set (GNSES) and
define some of its properties. Throughout this paper, U is an initial universe, E is a set of parameters,
X is a set of experts (agents), and O = {agree = 1, disagree = 0} a set of opinions. Let Z = E X X x O
and A C Z and u is a fuzzy set of A; thatis, u: A — I =[0,1].
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Definition 11. A pair (F¥, A) is called a generalized neutrosophic soft expert set (GNSES) over U, where F" is
a mapping given by
F': A= N(U) xI

with N'(U) being the set of all neutrosophic soft expert subsets of U. For any parameter e € A, F(e) is referred
as the neutrosophic value set of parameter e, i.e.,

F(e) = { {1/ To(e) (), Tege) (), Feiey () },

where T,I,F : U — ]~ 0, 1*[ are the membership function of truth, indeterminacy, and falsity, respectively,
of the element u € U. Foranyu € Uande € A

70 < Tpgey () + Ipgey (4) + Fe(ey (u) < 3%
In fact, F" is a parameterized family of neutrosophic soft expert sets on U, which has the degree of

possibility of the approximate value set which is prepresented by u(e) for each parameter e, which can
be written as follows:

F(e) = { (raltary reftay Fetmy Ftan ) 40 |

Example 1. Suppose that U = {uy,up,uz} is a set of computers and E = {e1,ep,e3} is a set of decision
parameters. Let X = {p,q,r} be set of experts. Suppose that

Fi(e1, p,1) (0.4,0.3,0.2f 0.6,041,0.8’ 0.5,0.7,0.2)

Ft (91/ "7' ((13,0,2/0.5/ 05,0,5,0.2/ 0A8,0,1,0.4)
F(ey, 7 { (0.8,0.4,0.3’ 0.7,0.3,0.5f 0.2,0.6,[).5

F "(32, P, ) [).7,0.3,0.6 0.5,0.1,0.4' 0.8,0.6,0.3 /0.2
F'(ep,q,1) = 0.6,0.7,[).1 ’ 0,8,0.4,0.7’ 0.5,0.1,0.7 ,0.6
F(eg,1,1) = 0,5,0.1,[).8' 0,9,0.3,(].6’ 0.4,0.1,0,7 ,0.5
F'(es, p,1) = (o.e,o.s,o.zf 0.5,(16,0.7/ 0.8,0.1,0,4 /0
F*(e3,q,1) = (17,0,3,0.4/ 0A6,0,2/0.5/ 07,0,4,0.6 /0
F(es,r,1) = 0.8,0.4,0.3’ 0.5,0.3/[].6’ 0.1,0.4,0.2 /0
F'(er, p,0) = 0.4,0.1,0.2' 0.7,0.3,0.5' 0.4,0.1,0.6 /0
F'(e1,9,0) = { (& 70 z 05" 0,6,0.2,0.4’ 0.4,0.5,0.1 /03
F'(e1,1,0) = 0,6,0.4,[).3' 0.7,0.2,0.6’ 0.4,0.1,0,3 ,0.2
F'(ez, p,0) = (0.5,0.1,0.7/ 0.4,05,0.1/ 0.7,0.1,0,4 ,0.2
F(ep,q,0) = 0A4,0A3,0.6/ 07,0,2/0.5/ 0A8,0,1,0.4 /0.6
F'(ep,7,0) = 0.3,0.2,0.6’ 0.4,0.3/0.5' 0.5,0.1,0.4 04
F(es, p,0) = go 4,0. 506/ 0.5,0.1,0.6 0.6,0.2,0.5 /0.5
F(es,9,0) = 0,6,0.2,0.7' 0,8,0.1,0.4’ 0.5,0.3,0.4)
F(e3,7,0) = 0.5,0,4,0.6’ RS (17,0.2,0.1) }

The generalized neutrosophic soft expert set (GNSES) is a parameterized family {F(e;), i =1,2,...} of
all neutrosophic sets of U and describes a collection of approximation of an object.

Definition 12. Let (F¥, A) and (G", B) be two generalized neutrosophic soft expert sets (GNSESs) over U.
Then (F", A) is said to be a generalized neutrosophic soft expert subset of (G, B) if
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1 B C A, and
ii.  G'(e) is a generalized neutrosophic soft expert subset F*(g), forall e € B,

Example 2. Consider Example 1. Suppose that A and B are as follows.

A= {(61,]9,1), (Eer’/l)/ (62/‘1/ ) e3, 1,1 }B _{ e, p, ) (lepll)/ (6317‘/1)}'

Since B is a neutrosophic soft expert subset of A, clearly B C A. Let (G", B) and (F*, A) be defined
as follows:

(F", A) = Eerr 040302’060108’050702) 0'3}
(e2,p,1 070306’045,0.1,0.4’080603 02,
(e2,4,0) 040306’070205’080104 /06,
(e3,7,1), o3 0403’050306’010402) 0.5

(G",B) = (e, p,1 (040302’060108’050702) 03],

(e2,p,1) <O70306’050104'080603>’02 ’

(e3,7,1), (0.8,0.4,03’ 50506/ 0.1,0.4,042)' 05}

Therefore (G',B) C (F", A).

Definition 13. Two GNSESs (F", A) and (G, B) over U are said to be equal if (F*, A) is a GNSES subset of
(G",B) and (G, B) is a GNSES subset of (F", A).

Definition 14. An agree-GNSESs (F", A); over U is a GNSES subset of (F", A) defined as follows.

(F", A), = {F(x) :x€ E x X x {1}}.

Example 3. Consider Example 1. The agree-GNSES (F*, Z), over U is

u U u
(F*,2), = { (er,p, 1), (0.4,0.13,042f 060108 05070 2r>/0 3/
4|,

1 1y iy 13
71 0.3,02,05” 05,0.6,0.27 0.8,0.1,04" )

e, 1,1 ! LA 43

1,7,1), \ 0804037 07,0305 02,0605

uy [ u3
(e2,p, 1), 0.7,0.3,0.6” 0.5,0.1,04” 0.8,0.603"
[ Uy U3
(e2,7.1), ( 55008 090508 050107

g 1y u3
e3, P, 1), ( 060502 050607 0801047 ,

)
)
)
e2,0,1), 560701 0804077 050107
)
)
)

[ Uy iz
(e3,,1), 570503 060205 0704067 ) 04|/
51 L] U3
[(33' r1), (03,044,0.3' 050306 0.1,044,0.2')'0'5] }

Definition 15. A disagree-GNSESs (F", A), over U is a GNSES subset of (F*, A) is defined as follows:

(F*, A)y = {Fy(x) :xe E x X x {0}}.
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Example 4. Consider Example 1. The disagree-GNSES (F", Z),, over U is

Definition 16. The complement of a GNSES (F*, A), denoted by (F*, A), is defined as (F*, A)°

(F*,Z)o =

{ (61,p, ) (040102’070305’040106’ /0.1

e1,4,0), 0.7,0.3,05/ 046,0.2,0.4/ 0.4,0.5,0.1r /03],

(
(e1,7,0), ( 060403 070506 0.4,331,043r /0.2,
(e2,p,
(e2,4,0)
(e2,7,0
(

)

’

i iy iz
0.4,0.3,0.6” 0.7,0.2,0.57 0.8,0.1,04”

’

’

1] Up U3
#\ 05,0.1,0.77 0.4,0.5,0.1 0.7,0.1,0.4~

)

[ Uy usz
0.3,0.2,0.67 0.4,0.3,05” 0.5,0.1,0.4”

0)
€2,
0)

uy 1y u3
€3,P:Y), \ 04,0306 050.1,06” 0.60.2,05”

(93, q, 0

(F ), = A) where F*€) :=A — N (U) x I is a mapping given by

for each <€ E.

1 L] 13 0.7
+\ 0602077 080.1,047 0503047 )Y/ |/
uy Uy us
[(33/ r,0), (0.5,04,0.6/ 060.403" 0.7,02,0.1/)/0-2] }

’

Example 5. Consider Example 1. By using the definition of GNSES complement, the complement of F" denoted

by F“@, is as follows:

(F49),2) = { (ﬁelfpll)'(().2,6{.17/0.4'().8,[1;.%),0.6’0.2/[1;3,0.5’)’0'7 ’

51 Uy us
—e1,9,1),  os08037 020405 040908 ), 06/,

—e2,q,1), 010306'070608’070905’5’04

—e,1,1), | 0809057 060,09 0709047

L] L) U3
0.4,0.7,0.77 0.5,0.8,0.6” 0.6,0.6,0.7

.81,
iy ip i3
0.2,0.7,0.6” 0.7,0.4,05” 0.4,0.9,0.8”
iy iy u3 5,
0.3,0.6,0.8” 0.6,0.7,05” 020601’ ’

020904'050707'060904' /0

0.5,0.7,0.7' 0,4,0.8,06’ 0,1,0.5,0 4’;

iy iy U3
0.3,0.6,0.6” 0.6,0.8,0.77 0.3,09,0.4"

g iy u3
0.6,0.7,0.47 0.5,0.8,0.7” 0.4,09,0.8”

,0.71,
iy iy u3
0.7,0.9,05 0.1,0.5,0.4” 0.4,09,0.7"
g iy u3
0.6,0.8,0.3” 0.5,0.7,0.4” 0.4,09,05”

0 51,

e~~~

L5 up us
0.6,0.7,0.47 0.6,0.9,0.5” 0.5,0.8,0.6 6' 4

Uy Uy us
—e3,4,0), { 070806 020908 04,0.7,05/)/0-3 ¢

1 L] Uz
(es,7,0), (06&6,0,5’ 03,0606 01,0,8/0.7/)'0‘8} }

235



Symmetry 2018, 10, 437

Proposition 1. If (F", A) is a generalized neutrosophic soft expert set over U, then

1. ((Fu/A)C)C = (FurA)
2. ((FY,A))) = (F*, A),
3. ((FurA)o)C = (FurA)l
Proof. (1) From Definition 16, we have (F*, A)° = (F”(C), —A),

where Fu(c) (O() = TF(O()(E) = FF(o()/I () = T— 1 F(ex) F (c) = TF(o() and MC(O() = I— M(O() for
each «€ E.

F(x) ")
Now ((F4, A)°)" = ((F*))", A) where

(FO) () = { Ty = Freg T = 1= e }
Fri@ = Tr(eg, u() = 1= u(x)

B { Tre) = Fppyo T = T=T 00 ]

| Fre = T (e #(e) = T— u(ex)

=T (T-Ipe) =T (T-u(®) = Iy
= u(x).

Thus ((F*, A)°) = ((F*©)°, A) = (F", A), for all € E.
The proofs of assertions (2) and (3) are obvious. |

Definition 17. The union of two GNSESs (F*, A) and (G, B) over U, denoted by (F", A) U (G",B),
is the GNSESs (HQ,C), where C = AU B and the truth-membership, indeterminacy-membership,

and falsity-membership of (H?, C) are as follows:

(m) ifeec A—B
Tho() = T (m) ifeeB—A
(m), Ta(ey(m)) if e ANB
Ipugey(m) ifec A—B
Iyog) = Igi() (m) ifecB—A

FFM(E) (m) lf ec A—B
FC'/(e) (m) lf ecB—A

Fo() = _ ’
min (Fpu(e)(m),FG)](e)(m)> ifeec ANB

where Q(m) = mux(u(e)(m), r](e)(m)>,

Example 6. Suppose that (F*, A) and (G, B) are two GNSESs over U, such that

(F, A) = { (e, p, 1), (0.4,(1){5,042' 0601035 05,337,0.2)'03]
(e2,9,1), 0.7,313,0.6/ 0.5,5‘.21/0.4' 0.7,3%,0,3 02|,
(e2,9,0), 0,4,0.3,0‘6’ 0‘7,0.2,0.5' 0.8,0.1,044 0.6/,
(e3,7,1), 08,0.4,0.3’ 0.5/03,0‘6’ 01,0.4,02)/ 0.5 }
(G",B) = { e, pl 046,0.5,0.1' 0.8,0‘2,0.3’ o.9,0.2,0.3) 01}]
(e2,9,1) 0.6,07,0‘1' 08,031,0.7/ 0.5,01,07) 0.4
(@3/ r1), (0.4,0.1,0.2/ 050402 0.3,0.6,044) 0. 8} }
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Then (F, A) U (G, B) = (H®,C) where

Q — Lo L) U3
(H?,C) = { (eerrl)r<0A6,o43,o.1ro.s,oAl,oAsr09,02,0.2)!0'3 ’

u U us
(e2,9,1), 060301/ 0802057 070104 )- 04|/

Uy U Uz
(e2,9,0), 040506 07,0205 080104 ) 0-6

Uy Uy us
(e3,7,1),  os0r02- 0505027 030402 )08

Proposition 2. If (F¥, A), (G, B) and (HO, C) are three GNSESs over U, then
1. <(F“,A) 0 (Gﬂ,B)) U (H?,C) = (F*, A) U ((c'i,B) 0 (HQ,C)>.
2. (F*,A)U(F", A) C (F*, A).
Proof. (1) We want to prove that
((F“,A) 0 (G”,B)) 0 (HQ,C> = (F*,A)0 ((G’?,B) 0 (H“,c))

By using Definition 17, we consider the case when e € AN B, as other cases are trivial. We will have

@y

(F*, A)

. Tpu ey (m),
(G",B) = u/ mm( IZW((:)((m)) >, , mux( () (m), ),u cu
)

Also consider the case when e € H, as the other cases are trivial. We will have

max (Tpu oy (m), Tane (m) ),

((P“,A)CJ(G”,B))D(HO,C) = u [ min (T (m), Ign(e (m)

min (Fpuey (m), Fa(e) (m ))
(WHuWHm(mBn(D

max  Tgu(ey(m), Ty e)(m))
u min (Igu(e) (m), Ly (e (m))

W"%m(ﬁm&@)
= (F",A) U ((G",B) y (HO,C)).

(/T (m) Ty (m), Py (m)
max(u (1), 1(¢y (m), Q(m )),ueu

max(tz(e) (m), 1) (m),Q(m)) Ju € U}

(2) The proof is straightforward. O
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Definition 18. Let (F*, A) and (G', B) be two GNSESs over a common universe U. Then the intersection of
(F*, A) and (G, B) is denoted by (F*, A) N (G, B) = (K%,C), where C = AN B and the truth-membership,
indeterminacy-membership, and falsity-membership of (K°,C) are as follows:

(

Tis(e) = Tgn(ey (m
min (Tu(e) (m), Tan (o) (m )) ifec ANB

Lu(e) (m) ifec A-B

Igse) = Igie) (m) ifecB-A
min(lpu (), Tgn (o) (m )) ifec ANB

Frue) (m) 1fe€A7B

FK5(e) = FG’I( ) (m) ife €B-A
max (Fpl,(e)(m),FG;,<e)(m)> ifee ANB

where §(m) = min (u@ (m), 1) (m))

Example 7. Suppose that (F*, A) and (G, B) are two GNSESs over U, such that

(F", A) = { (e, p, 1), <0A4,043,0.2r 046,0,1,08’ 0A5,047,0.2r>r 03,
(e2,4,1), (0.7,0.3,0.6’ 0.5/0.1,0.4/ O.7,0,6,0.3’>’0 2],
(e2,9,0), (0.4,0.3,046’ 0‘7,0‘2,0.5' 0,8,0.1,0‘4’)’ 0.6

(G",B) = [(31, 1), (06,0.5/01 080503/ 09,0.203/)/ 0.1,
{(9& 1), (044,5’.11,0.2' 050402/ 0,3,64.36,0.4’) 08

Then (F*, A) 0 (GY,B) = (K°,C) where
) Uy Up uz
- 1| b
(K 'C> { {(31"”’1)' (0.4,0.3,0.2’ 0.6,0.1,0.8" 0.5,0.2,0.3’)’0 } }

Proposition 3. If (F*, A), (G, B) and (H®, C) are three GNSESs over U, then

1. <(P” A (G, B)ﬁ (F¥, )ﬁ((cv,B)ﬁ(K{c))
2. (F,A)N(F",A) C (F" )

Proof. (1) We want to prove that
((F“,A) A (G”,B)) A (K‘S,C) = (F", A)N ((G’i,B) A <K‘5,C))
By using Definition 18, consider the case when e € A N B, since other cases are trivial. We have

mzn(Tpu (m), Tn(e) (m)),
(F*,A)N (G",B) = u mm(IFu (m), Tgn(e (m)), , min (u<e)(m),17(g)(m)>,u € LI}.
max (FFM(F)(m)/FGV(E)(m))
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Also consider the case when e € K, as the other cases are trivial. Then we have

min (Tpu ey (m), Tan ey (m
u min(lpl( (m), Ign (e (m)

? (W&mmnw(>&mm®,}

(<FH’A) n (GW'B)) 1(K,0) mm(u o) (1), 11¢) (m), 6 (m )) uel

mux(FFA (m), Fc,g)(m))
OMwmeM%MM,
mm(TGu o (m), Tgs() m)),

mm(u(g)(m) (e (m), 5(m)),u € U}

u / min (IG“ (m), T o) m))
mux(FG“ (m), Fyo gy (m) )
:mm(wm<ﬂm

(2) The proof is straightforward. O

Proposition 4. If (F*, A), (G',B) and (K‘s, C) are three GNSESs over U. Then
1 ((ra) (K%,C) = ((F",4) A (K°,C) ) U ((G,B) 1 (K%, C)).
2. ((F",A) G'7,B)) (K%,C) = ((P“,A) 0 (K5,C)) A ((G'I,B) 0 (K5,C)>.

Proof. The proofs can be easily obtained from Definitions 17 and 18. O

Definition 19. If (F*, A) and (G", B) are two GNSESs over U, then “(F*, A) AND (G",B)” denoted by
(F*, A) A (G",B), is defined by

(F*, A) A (G",B) = (HQ,A x B)

such that, H®(a,) =  F*(«) N G"(B) and the truth-membership, indeterminacy-membership,
and falsity-membership of (H?, A x B) are as follows.

THo (a,p) (M) = (TF"( y(m), TGv(ﬁ)(m))r
10 () = min (Tga () (1), T ) (m)),
Fro(,p) (m) = max Fp,(a)(m),FGq(ﬁ)(m))

and Q(m) = min (u(e)(m),ry(e>(m)> , Va € A, VB € B.

Example 8. Suppose that (F*, A) and (G, B) are two GNSESs over U, such that

(F',A) = { (er,p, 1), (0.2,313,0& 0.4,61.21,0.2/ 0.6,&%,0.%)/04] ’
(e3,7,0), (0.5,61.12,0.1 0603077 o.z,gal,osr)f 0-3]

(G",B) = (er, 1), (0.3,61.]2/0.6' 060502/ 0.8,(1;.31/0.2')’0'5 ,
(e2,4,0), (0.1,5’.13,0& 047,(1;.21,0.6' 0.4,(1)4433,04@)' 0-6]
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Then (F*, A) A (GY,B) = (H?, A x B) where

(H?, A xB) = {[(el'f’fl)f (e1, 7. 1) oz0508 00002 060107 ) 04|/

U] Up Uz
(e1,p,1), (e2,9,0), 010505/ 040406/ 040307 ) 04|,

Uy Up us
(e3,7,0), (e1, . 1), 530206 0605077 020108 ) 03]

1 iy u3
(e3,7,0), (e2,9,0), (041,0.2,0.5/ 060.1,07" 02,0,1,0.8’) , 0'3] }

Definition 20. If (F¥, A) and (G, B) are two GNSESs over U, then “(F", A) OR (G",B)” denoted by
(F", A) Vv (G", B), is defined by

(F*, A)V (G",B) = <K5,A x B)

such that K’(a,B) = F'(a) U G"(B) and the truth-membership, indeterminacy-membership,
and falsity-membership of (K°, A x B) are as follows.

Tys aﬁ)(m) ax(TFu( )(m),TGq(ﬁ)(m)),
Igs (o) (M) = <IF“( y(m )fIGV(/S)(m))r
FKﬁ(a/ﬁ)(m) = min (Fp‘(a)(m),lfcq(ﬁ)(m))

and 6(m )*max( (¢) (M), 1(¢) (m )),V(XEA,W%GB.

Example 9. Suppose that (F*, A) and (G", B) are two GNSESs over U, such that

(F,A) = { (e, p, 1), (02,03,0.5/ 0.4,01,02'06,03,0.7’)’04]
(e3,7,0), <0.5,0.2,0.1' 0.6,043,0.7’ 0,2,0.1,08’)’ 0-3]

(G",B) = (e1,p. 1), (03,0.2,06’ 0A6,0A3,042r oAs,o.l,oAzr)'05
(2.9,0), 00505+ 070406 040508 ) 0-6

Then (F*, A) V (G",B) = (K°, A x B) where

s —
(K°, AxB) = { {(elrf"l)' (e1,p,1) 043,5‘.12,0.5/ 0,6,(1)4.21,0‘2’ 048,5’.31,0.2' 05),

(e1,p,1), (e2,9,0), 042,0.3,0A5r 0A7,0A1,042f 046,0.3,06’ /0.6,

(e3,7,0), (er, p. 1), ( 550507/ 070506 o804027) 05|/
u u: Uu
(es,7,0), (e2,4,0), (05,0412,0.1' 070106/ 0A4,0431,o.6r>r 06] }

Proposition 5. Let (F", A) and (G", B) be GNSESs over U. Then

1. ((F%, A)A(G7,B) ) = (F*, A)° V (GY, B)°
2. ((F*, A)V (G",B))* = (F*, A)° A (G, B)°

Proof. The proofs can be easily obtained from Definitions 16, 19 and 20. O
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4. GNSES-Aggregation Operator

In this section, we define a GNSES-aggregation operator of a GNSES to construct a decision
method by which approximate functions of a soft expert set are combined to produce a neutrosophic
set that can be used to evaluate each alternative.

Definition 21. Let Y4 € GNSESs. Then a GNSES-aggregation operator of Y 4, denoted by Yi‘gg , is defined by

Y = (0, T ), 155 ), S ) )) 2w € Ut 5)
which is a GNSES over U,
1
T8 U — (0,1, T (u)= @E ecp Talwm (6)
ueld
1
Fi$8 .U —[0,1], F5¥¥(u) = m): ecp Falwm @)
ueld
1
1588 U — [0,1], 5% (u) = WZ ecp la().m ®)
ueld

where |U| is the cardinality of U and y is defined below
1 .
u= ;'Zizl p(ei). (e, 1=1,2,3,...,n). &)

Definition 22. Let Y4 € GNSESs, YﬂAgg be the corresponding GNSES aggregation operator. Then a reduced
fuzzy set of Y'jfg is a fuzzy set over U, denoted by

NS
Y88 = {Tf‘u(”) ‘e u}, (10)

where TYS (u) : U — [0,1] and u; = Tzéfg - szg - I:fffg).

5. An Application of Generalized Neutrosophic Soft Expert Set

In this section, we present an application of generalized neutrosophic soft expert set theory in a
decision-making problem. Based on Definitions 21 and 22, we constructed an algorithm for the GNSES
decision-making method as follows.

Step 1—Choose a feasible subset of the set of parameters.

Step 2—Construct the GNSES tables for each opinion (agree, disagree) of experts.

Step 3—Compute the aggregation operator GNSES Yggg of Y 4 and the reduced fuzzy set Tfﬁg , Fgg , If:fg
ags

of Y 2°.

Step 4—Score(u;) = maxagree(u;) — mindisagree(u;).

Step 5—Choose the element of u; that has maximum score. This will be the optimal solution.

Example 10. Suppose a company needs to employ a worker, which is to be decided by a few experts. The employee
has to be chosen from five potential workers, U = {uy, up, u3,14,1s}. Suppose there are four parameters

s s

E = {e1,ep,e3,e4} where the parameters e; (i =1,2,3,4) stand for “education,” “age,” “capability” and
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“experience”, respectively. Let X = {p, q,r} be a set of experts. After a serious discussion, the experts construct
the following generalized neutrosophic soft expert set.

Step 1—Choose a feasible subset of the set of parameters

(F*,72) = { [(51' p1 0.2,0.3,0,4r o.s,o,z,o,s/ 0.6,0,3,0.5’ 0,4,0’,2,0.3r 0,6,0.3,0.1'>’ 0. 7} ’
(e1,q,1), 50.3,0.1,0.4' 020105 0.4,0.2,0.3f 0.4,042,0.3/ 0.7,0.2,0.5/ 06/,
(er,7,1), (ozokot o,e,o.z,osr 0.1,0.4,02/ 0.5,02,0,3/ 0.4,03,0,2/ 0‘2} ’
(e2,p,1), 0.6,0.2,0.3’ 0.4,0.2,0.5' 0.3,0.4/0.1/ 0.7,[).3,0.6’ 0.5,0.2,0.4' 08,
(e2,9,1), 0.1,0.3,0.6’ 070501/ 0.6,0.2,0.5 0.3,0.1,0.6 0.4,0.3,0.2' 04,
(e2,7,1), \ ow0505/ 0.7,0.3,0,6’ o.5,o.3,0.4r 0.2,01,0.3! o.e,o,z,o.sr 0-5} ’
(es,p,1), (0,2,0.4,0.6' 0,7,0.4,0.2' 04,0.1,0.2/ 0.8,0.4,0,3’ 0.7,0.3,0,4f /03],
(es,q,1), go.4,o.2,o.e' 050506 0.6,0.2,0.7’ [).8,042,0.4’ 0.6,02,0,3 ; 04,
(es,7,1), (ozo05 o,e,o.z,osr 0.2,0.1,0A4r 0.5,03,0,2/ 0.4,01,0,5/ ’ 0‘5} ’
(ea,p, 1), 0.2,0.3,0.6’ 0.7,0.1,0.5' 0.4,0.2/[].8’ 0.9,0.2,0.4' w3005 )06,
(es,9,1), o.s,o.z,o.v o.z,o.3,o.4r o.4,0.1,0.5r 0.6,0.3,0.2' o705 ) 06,
(ea,r, 1), o50501/ 0.6,0.3,0,5’ 0.2,0,5,0.3r 0.5,0,1,0.4r 0,3,0’,2,0.5r ’ 0-3} ’
(e1,p,0), <0.2,0.3,0.4' 0,5,0.3,0.1' 0.5,0.3,0.4' 0.6,0.2,0.4’ 0.7,0.5,0,6’ /09,
(e1,9,0), 50.5,0.1,0.7' 040503 0,8,0.5,0A4f [).7,03,0.6’ 0.5,(13,0,4/ 07},
(e1,7,0), ( ozotos 0,6,0.3,07’ 0.3,0.2,04/ [].8,01,0,4’ 0.6,04,0,5/ ’ 0‘6} ’
(e2,p,0), ( 70505/ 0.6,0.2,0.4’ 0.4,0.3/0.5' 30505/ 0.4,0.3,0.5' 08,
(e2,4,0), 0.6,0.2,0.4’ 0.5,0.3,0.7r 0.8,0.1,0.3’ 020506 0.6,0.2,0.4' 04/,
(e2,7,0), \ ow00ar 0.5,0,2,0,4f 0.7,0,4,0.5r 0.5,02,0.4! 0,4,0,3,0.5r 0-2_ ’
(e3,p,0), (0 CREY 0.6,0.1,0.5' 045,0.4,0.6' 0,8,0.3,0.6' 0.7,0.2,0.4' 05|,
(e3,4,0), 0.7,0.1,0.6’ 0,4,0.5,(18' 0,4,0.3,05/ o.e,oAz,o.5/ 0.4,03,0,5/ 03},
(e3,7,0), 0,2/0.3,01)' 0,7/0.4,05' 0.4,0.2,08’ 0.9,01,0,4/ o.e,os,o,zr 0-3} ’
(es,p,0), 0.4,0.2,0.6’ 50505/ 0.9,0.5,0.1 ’ 0.3,0.2,0.6’ a03057) 06,

(es,q, ), 0.3,0.2,0.1 ’ 0.6,0.1,0.5’ o.a,o.z,o.sr o.s,o.s,o.zr 0z05047):0- 5} ’
(e,7,0), 0,6,0,2,0.5’ 070106’ 050501 0302067 040305 ,),O 1} }

Step 2—Construct the GNSES tables for each opinion (agree, disagree) of experts, as shown in
Tables 1 and 2.

Table 1. Agree-GNSES.

u uy uy u3 Uy us 12

(e1,p) 02,03,04 08,0206 0.6,0305 04,0203 06,0301 0.7
(e2,p) 0.6,02,03 04,0205 0.3,04,01 07,0306 050204 0.8
(es,p) 0.2,04,0.6 07,04,02 04,0.1,02 08,04,03 0.703,04 03
(es,p) 02,03,06 0.7,01,05 04,0208 09,0204 03,04,06 0.6
(
(
(

e;,q) 03,01,04 02,0105 04,0203 04,0203 07,0205 06
e,q) 0.1,03,06 07,0301 06,0205 03,01,06 04,0302 04
e3,q) 04,0206 05,0306 06,0207 08,0204 06,0203 04
(es,q) 05,02,01 02,03,04 04,01,05 06,0302 07,0304 06
(ey,r) 03,0501 06,0205 0.1,04,02 05,0203 04,0302 0.2

) 06,0305 07,0306 050304 020103 06,0205 05
(es,r) 03,0605 06,0205 02,01,04 05,0302 04,0105 05

) 05,0201 06,0305 020503 05,0104 03,0205 03
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Table 2. Disagree-GNSES.

u U 1773 uz Uy us "
(e1,p) 02,03,04 05,03,01 0.6,03,04 06,0204 07,0506 09
(e2,p) 0.7,03,05 0.6,02,04 04,0305 03,0205 04,0305 0.8
(es,p) 0.6,02,04 0.6,01,05 05,04,06 08,0306 070204 05
(eq,p) 04,02,06 05,0206 09,0501 03,0206 04,0305 0.6
(e1,9) 05,0.1,0.7 04,0.2,03 08,0504 070306 050304 0.7
(e2,9) 0.6,02,04 05,03,07 08,01,03 020306 06,0204 04
(es,q) 0.7,0.1,0.6 04,0508 04,03,05 06,0205 04,0305 03
(es,q) 03,02,01 06,0.1,05 0.6,0.2,05 08,03,02 0.2,03,04 05
(eq,7) 03,01,0.6 06,03,07 0.3,02,04 08,01,04 06,0405 0.6
(es,7) 0.6,03,04 05,0204 0.7,04,05 05,0204 04,0305 02
(e3,r) 0.2,03,0.6 07,04,05 04,0208 09,0.1,04 06,0302 03
(eq,r) 0.6,02,05 07,01,06 050301 03,0206 04,0205 0.1

Step 3—Now calculate the scores of agree (u;) by using the data in Table 1, to obtain values in
Table 3.

agg _ ([ Tar+Tao+Tas+T, Pt pot pat pa
T8 (puy) = (TartlaztTastTas) t )
— (0‘2+0.6+0.2+0.2) (O.7+0.8+0‘3+0.6)
- 4 . 4
=0.18
agg _ (Laat+lao+Ias+Iag Pt pot pat pa
58 um) = ; (et ),
0.34+0.240.4+0.3 (0.7+048+0.3+0.6)
4 . 4
=0.18
agg — ( FartFas+Fas+Fy pat pot gzt pa
Eoo(rm) = 17242724 4, i .

0.44+0.3+0.6+0.6 (O.7+0.8+0,3+0.6)
4 . 4

=0285
uy = | T8 — PS8 — 158 ‘ =10.18 — 0.18 — 0.285| = 0.285.

Table 3. Degree table of agree-GNSES.

u us us Uy us
0.285 0.015 0.135 0.015 0.09

018 015 0.105 0.12  0.015
0.165 0.09 024 0.06 0.045

R T~ T I

Now calculate the score of disagree (u;) by using the data in Table 2, to obtain values in Table 4.

agg — (Ta1+Ta2+Tas+Tas Pt pot pat p4
T (pow) = I : I

0.2+0.7+0.6+0.4 ( 0.9+0.840.5+0.6 )
4 . 4

= 0.3325
agg — (Laitlas+laz+is Mt ot p3t pa
Iy (qu) = 1Az i), I .
_ (0.3+0.3+0.2+0.2) (0.9+O.8+0‘5+0.6)
- 4 . 4
=0.175
agg _ ( Fa1+Fa2+Fa3+F Mt pot pa+ pa
F88(r,up) = (FatFaztFastFas) . )

0.4+0.5+0.4+0.6 ( 0.9+0.840.5+0.6 )
4 : 4

=0.3325
uy = | T8 — B8 — 158 ‘ =10.3325 — 0.175 — 0.3325| = 0.175.
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Table 4. Degree table of disagree-GNSES.

u U1 1773 u3 Uy us

p 0.175 0.035 0.1225 0.175 0.1925
q 0.0525 0.2625 0.035 0.1225 0.0875
r 0.2275 0.1225 0.175 0.0175 0.1575

Step 4—The final score of u; is computed as follows.

Score(u1) = 0.285 — 0.0525 = 0.2325,
Score(uy) = 0.15 — 0.035 = 0.115,
Score(usz) = 0.24 — 0.035 = 0.205,

Score(1y) = 0.12 — 0.0175 = 0.1025,

Score(us) = 0.09 — 0.0875 = 0.0025.

Step 5—Score(u1) = 0.2325 is the maximum. Hence, the best decision for the experts is to select
worker 1 as the company’s employee.

6. Comparison Analysis

A generalized neutrosophic soft expert model gives more precision, flexibility, and compatibility
than the existing neutrosophic models. These are verified by a comparison analysis, using neutrosophic
soft expert decision method, with those methods used by Sahin et al. [27], Hassan [44], and Maji [20],
as given in Table 5. The comparison is done based on the same example as in Section 5. The ranking
order results obtained are consistent with those in [20,27,44].

Table 5. Comparison of neutrosophic soft set to other variants.

. . . Generalized
Methods Neutrosophic Soft  Neutrosophic Soft Q-Neutrosophic Neutrosophic Soft
Set Expert Set Soft Expert Set
Expert Set
Authors Maji [20] Sahin et al. [27] Hassan et al. [44] Proposed Method
. Universe of Universe of Universe of Universe of
Domain . . . .
discourse discourse discourse discourse
Co-domain [0,1]? [01p [01P [01P
True Yes Yes Yes Yes
Falsity Yes Yes Yes Yes
Indeterminacy Yes Yes Yes Yes
Expert No Yes Yes Yes
Q No No Yes No
Ranking Uy > uz > up > Uy > Uy > ujp > uz > uyp > upy > uyp > uz > up >
Uy > Us Uy > Us Uy > Us Uy > Us

7. Conclusions

We have established the concept of generalized neutrosophic soft expert set (GNSES) as a
generalization of NSES. The basic operations of GNSES of complement, union, intersection AND,
and OR were defined. Subsequently, a definition of GNSES-aggregation operator was proposed
to construct an algorithm of a GNSES decision method. Finally, an application of the constructed
algorithm, to solve a decision-making, was provided. This new extension provides a significant
contribution to current theories for handling indeterminacy, and it spurs the development of further
research and pertinent applications.
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Abstract: The neutrosophic cubic set (NCS) is a hybrid structure, which consists of interval
neutrosophic sets (INS) (associated with the undetermined part of information associated with
entropy) and single-valued neutrosophic set (SVNS) (associated with the determined part of
information). NCS is a better tool to handle complex decision-making (DM) problems with INS
and SVNS. The main purpose of this article is to develop some new aggregation operators for cubic
neutrosophic numbers (NCNs), which is a basic member of NCS. Taking the advantages of Muirhead
mean (MM) operator and power average (PA) operator, the power Muirhead mean (PMM) operator is
developed and is scrutinized under NC information. To manage the problems upstretched, some new
NC aggregation operators, such as the NC power Muirhead mean (NCPMM) operator, weighted NC
power Muirhead mean (WNCPMM) operator, NC power dual Muirhead mean (NCPMM) operator
and weighted NC power dual Muirhead mean (WNCPDMM) operator are proposed and related
properties of these proposed aggregation operators are conferred. The important advantage of the
developed aggregation operator is that it can remove the effect of awkward data and it considers the
interrelationship among aggregated values at the same time. Furthermore, a novel multi-attribute
decision-making (MADM) method is established over the proposed new aggregation operators
to confer the usefulness of these operators. Finally, a numerical example is given to show the
effectiveness of the developed approach.

Keywords: NC power dual MM operator (NCPDMM) operator; NCPMM operator; MADM; MM
operator; Neutrosophic cubic sets; PA operator

1. Introduction

One of the drawbacks of real MADM problems is expressing attribute values in fuzzy and
indeterminate DM environments. Fuzzy sets (FSs) developed by Zadeh [1] emerged as a tool for
describing and communicating uncertainties and vagueness. Since its beginning, FS has gained a
significant focus from researchers all over the world who studied its practical and theoretical aspects.
Several extensions of FSs have been developed, such as interval-valued FS (IVFS) [2], which explained
the truth membership degree (TMD) on a closed interval value in the interval [0, 1], and intuitionistic
FS (IFS) [3], which explained the TMD and falsity-membership degree (FMD). Therefore, IFS defines
fuzziness and uncertainty more comprehensively than FS. However, neither FS nor IFS are capable to
handle indeterminate and inconsistent information. For example, when we take a student opinion
about the teaching skills of a professor with about 0.6 being the possibility that the teaching skills
of the professor are good, 0.5 being the possibility that the teaching skills of the professor are bad
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and 0.3 is the possibility that he/she may not be sure about the teaching skills of the professor
whether bad or good. To handle such type of information, Smarandache [4] added a new component
“indeterminacy membership degree” (IMD) to the TMD and FMD, all being independent elements
lying in |0, 1" [. The resulting set is now familiarly known as neutrosophic set (NS). To use NS in
practical and engineering problems, some scholars developed simplified forms of NS, such as SVNS [5],
INS [6,7], simplified neutrosophic sets [8,9], multi-valued NS [10], Q-neutrosophic soft set [11], complex
neutrosophic soft expert set [12] and others.

In the real world, sometimes it is difficult to express the TMD in some fuzzy problems completely
by an exact value or interval value. Therefore, Jun et al. [13] developed the concept of cubic set
(CS) by combining FS and IVFS. CS defined uncertainty and vagueness by an interval value and
a fuzzy value concurrently. In recent years, some researchers established some extended forms of
CS. Garg et al. [14,15] combined IFS and interval-valued intuitionistic FS (IVIFS) to form cubic IFS
(CIFS), while Ali et al. [16] and Jun et al. [17] combined INS and SVNS to develop the cubic NS (CNS),
consisting of internal and external NCSs. Jun et al. [18] further investigated P-union and P-intersection
of NCS and discussed their related properties. Since then, various studies to solve MADM problems
based on NCSs are developed. Zhang et al. [19] and Ye [20] developed some aggregation operators
such as weighted averaging operators and weighted geometric operators on NCSs and applied these
to MADM. Shi et al. [21], developed some aggregation operator for NCNs based on Dombi T-norm
and T-conorm and applied these to MADM. To solve MADM problems under NC information, various
similarity measures are developed for NCSs [22,23]. Pramanik et al. [24] introduced the NC-TODIM
method to solve multiple-attribute group decision-making (MAGDM) problem.

Aggregation operator (AO) plays a dominant role in DM. Consequently, many scholars
proposed different aggregation operators and their generalizations, such as Bonferroni mean (BM)
operator [25,26], Heronian mean (HM) operator [27], Muirhead mean (MM) operator [28], Maclaurin
symmetric mean (MSM) operator [29,30] and others. Certainly, different AOs have different functions.
Some can remove the effect of awkward data given by prejudiced DMs, such as power average (PA)
operator [31,32] developed by Yager [31] which can aggregate the input information by giving the
weighted vector based on support degree among the input arguments. Some aggregation operators
are capable to consider the interrelationship among two or more input arguments such as BM operator,
HM operators, MSM operator and MM operator.

Due to the enhanced complexity in real decision-making problems, it is necessary to look over the
following questions when selecting the best alternative. Firstly, the values of the attributes provided
by the decision makers may be too low or too high, thus giving a negative impact on the final ranking
results. The PA operator, however, permits the evaluated values to be mutually supported and
enhanced. Therefore, we may use the PA operator to diminish such awful impact by designating
distinct weights produced by the support measure. Secondly, the values of attributes are required to
be dependent. Hence, the interrelationship among the values of the attributes should be examined.
Some advantages of MM operator over BM and HM are discussed by Liu et al. [33,34]. Some existing
aggregation operator such as the BM and MSM operators are special cases of the MM operator. The MM
operator consists of the parameter vector, which enlarges the flexibility in the aggregation process.
Recently, Li et al. [35] developed the concept of power Muirhead mean operator under Pythagorean
fuzzy environment. From the existing literature, the PA operator and MM operator have not been yet
combined to deal with NC information. To handle the issues raised, a few new aggregation operators
will be proposed by incorporating both the PA and MM operators. These new aggregation operators
are NC power MM operator (NCPMM), weighted NC power MM operator, NC power dual MM
operator (NCPDMM) and weighted NC power dual MM (WNCPDMM) operator. Discussions on
some basic properties and related cases with respect to the parameter vector will be dealt at length. The
advantages of these proposed aggregation operators are to capture the interrelationship among input
arguments by the MM operator, and simultaneously eliminate the effect of awkward data. Finally,
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a novel approach to solve MADM problems based on these proposed aggregation operators will
be developed.

The rest of the article is organized as follows. In Section 2, some basic definitions and properties of
NCSs, MM and PA operators are recalled. In Section 3, the PA and MM operators in the construction of
new operators, namely NCPMM, WNCPMM, NCPDMM and WNCPDMM operators are incorporated
followed by discussions on their related properties. In Section 4, a novel method to MADM is
established based on the developed aggregation operators. In Section 5, a numerical example is
illustrated to show the effectiveness of the proposed method to solve a MADM problem. In Section 6,
a comparison with the existing methods is given followed by the conclusion.

2. Preliminaries

In this part, some basic concepts about SVNSs, INSs, NCSs, PA and MM operators are
briefly overviewed.

2.1. The NCSs and Their Operations

Definition 1 ([4]). Let I be a space of points (objects), with a generic element in I denoted by n. A neutrosophic
set N in T is defined as N = {(n; Tn(n), In(n), Fx(n))n € T'} where Ty (1), In(1n) and Fy(n) are the truth
membership function, the indeterminacy membership function and the falsity-membership function respectively,
such that T;F;1:T —]07,1"[ and 0~ < Tn(n) + In(n) + En(n) < 3%.

Smarandache [4] developed the concept of NS as a generalization of FS, IFS and IVIFS. To apply
NS to real and engineering problems easily, its parameters should be specified. Hence, Wang et al. [5]
provided the following definition.

Definition 2 ([5]). Let T be a space of points (objects), with a generic element in T denoted by n. A single-valued
neutrosophic set S in I is defined as:

S= /r (Ts(n), Is(n), Fs(n))|n,n € T (1)
when T is continuous, and
S =Y (Ts(n),Is(n;), Fs(n;))|nj,n; €T )
=

when T is discrete, where Tg(n), Is(n) and Fs(n) are the truth membership function, the indeterminacy
membership function and the falsity-membership function respectively, such that T;F;1:T — [0,1] and
0< Ts(?l) + Is(?l) +F5(71) <3.

Definition 3 ([6]). Let I be a space of points (objects), with a generic element in I denoted by n. An interval
neutrosophic set A in T is defined as:

A= [ (Ta(0), 1a(w), Ea(m) |, € T 3)

when T is continuous, and

A=

B

(Ta(ni), 1a(ni), Fa(ni))|ni,n; € T 4)

—_

i
when T is discrete, where Ty(n), [o(n) and Fao(n) are the truth membership function, the indeterminacy
membership function and the falsity-membership function respectively. For each element n in T, we have

Tp(n) = [T},(n), T}{(n)] C[0,1],Ia(n) = [Ig(n), Ig(n)] C[0,1], and Fa(n) = {F},@),F}((n)} C [0,1] such that
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0 < supTY(n) +supI¥(n) + supF{(n) < 3.

Definition 4 ([16,17]). Let T be a non-empty set. A neutrosophic cubic set (NCS) in T is a pair
Z = (A\), where A = {(n,Ta(n),Ia(n),Fa(n))|n € T} is an interval neutrosophic set in T and
A= {{n,Ar(n),A1(n),Ap(n))|n € T} is a neutrosophic set in T.

For simplicity, a basic element {n, (T(n),I(n), F(n)), (Ar(n),A;(n), Ap(n))} in a NCS can be
expressed by z = ((T, I, F), (A1, A1, Ar)), which is called neutrosophic cubic number (NCN), where
T,I,F C[0,1] and Ar, Aj, Ap € [0,1], satisfying 0 < TY 4+ 1Y + FU < 3and 0 < Ar+ A;+ Ap < 3.

Definition 5 ([20]).  Let z; = (([TL,TH], [IE 17, [FE EY]), (Aq, Ap, AR)) and zp =
(([TF, TS, (1, 13, [EY, E]), (A1y, ALy, AR, ) be any two NCNs and & > 0. Then the operational laws for
NCNs defined by Ye [20] are as follows:

() mezm= ([TF+TE—TETE, T8+ T - THTY, [F18, B8], (FLEE, FORY)),
(At + A1, — A Any, AL AL, ARAR));

®)

@Quoen= (05, ][I +15 - 55 5+ 5 - F5, [F + B - R R+ B - FE),
(A ATy, AL + AL —AnAL, AR, + AR, — ARAR));

@ &z = (([1- = )Sa- = @) [ahs @) [ EDT ) (1= 0= An)% ()% (an)F))s @)
@z = ([ - @ i-a-hS- - - - - - B ) (0n)S 1= -y 1- (- an) ). (8)
Definition 6 ([21]). Let z; = ({ [TlL, Tlu], [IlL, IH, [FlL,FH Y, {A1,, AL, AR, )) bean NCN. Then, the score,

(6)

accuracy, and certainty functions of NCN are defined as follows:

. 44 TE b FLyTU U _FU L Ap 42— AL — Ap
S — 1 1 1 1 1 1 1 1 1. 9
(z1) ) ©)
N TE—IF+TU U4 Ap — A . TE+TH + A
Az) = A=A = and C(zy) = L (10)
Theorem 1 ([21]).  Let z; = ({[TE, TH], [IF 11, [FE EY]), (Agy, Ay, AR ) and zo =

(([TF, T, (1, I3, [EY, EXT]), (ATy, AL, AR)). Then the comparison rules for NCNs can be defined
as follows:

(i) If $(z1) > S(z2), then zy is greater than z,, and is denoted by z, > z,;

(i) If $(z1) = S(z2), and A(z1) > A(z2), then zy is greater than zo, and is denoted by z; > z;

(iii) If 5(z1) = S(22), A(z1) = A(z), and C(z1) > C(zy), then z is greater than zp, and is denoted by
Z1 > Zp;

(iv) If 8(z1) = 8(z2), A(z1) = A(z2), and C(z1) = C(zp), then zy is equal to zo, and is denoted by z; = z.

2.2. Power Average (PA) Operator

The PA operator was first introduced by Yager [31] for classical number. The dominant edge of
PA operator is its capacity to diminish the inadequate effect of unreasonably too high and too low
arguments on the inconclusive results.
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Definition 7 ([31]). Let Ro(g = 1,2,...,a) be a group of classical numbers. The PA operator is then
represented as follows:

PA(Ry Ry o) = 3 | LT (11)

where, T(R,) = i Supp (Re, Ry) and Supp(Rz, Ry) is the support degree for R and R. The support
=1
sh
degree must satisfy the following axioms:
(1) Supp(Re, Ry) € [0,1];
(2)  Supp(Re, Rx) = Supp(Rx, Re);
(3) Ifﬁ(?ﬁg, Ry) < 5(3?1, Rin), then Supp (R, Rx) > Supp(Ry, R), where ﬁ(ﬁ)?g, Ry ) is the distance
measure among Rq and RNy.

2.3. Muirhead Mean (MM) Operator

The MM operator was first introduced by Muirhead [28] for classical numbers. MM operator has
the advantage of considering the interrelationship among all aggregated arguments.
Definition 8 ([28]). Let R¢(g = 1,2,...,a) be a group of classical numbers and Q = (41,92, - --,qa) € R" be
a vector of parameters. Then, the MM operator is described as:

1

1 a i qg
MM (Ry, Ry, ..., R,) = <a, Yy ngﬁgJ §=1 12)
“0eS, g=1

where, S, is the group of permutation of (1,2,...,a) and 6(g) is any permutation of (1,2,...,a).

Now we can give some special cases with respect to the parameter vector Q of the MM operator,
which are shown as follows:

(1) IfQ=1(1,0,0,...,0), then the MM operator degenerates to the following form:

MM (R, Ry, Ry) = ©

Y Ry (13)
g=1

That is, the MM operator degenerates into arithmetic averaging operator.
2 IfQ= (1 Lo ) , then the MM operator degenerates to the following form:

a’a’ "’ a

1
a

1
MM (R, Ry, ..., Ra) = [ R 14)

That is, the MM operator degenerates into geometric averaging operator.
(3) IfQ=1(1,1,0,...,0), then the MM operator degenerates to the following form:

1
2

1 a

MMOL0-0) (R R,y R, = RS YRR | (15)
gx=1
§7#x
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That is, the MM operator degenerates into BM operator.

c a—c
4 Ifo={(11...,10,...,0 |, then the MM operator degenerates to the following form:

d
,_EH,_H;L r IT §Rgy
MM<1'1'~-"1'0'~~~f0)(§Rl Ra,... Ra) = 1<x<xp<..<xg<ay=1

= (16)

That is, the MM operator degenerates into MSM operator.

3. Some Power Muirhead Mean Operator for NCNs

In this part, we first give the definitions of PMM operator and propose the concept of power
dual Muirhead mean (PDMM) operator. Then, we extended both the aggregation operator to
NCN environment.

Definition 9 ([35]). Let §Rg(g =1,2,...,a) bea group of classical numbers and Q = (q1,92,...,qa) € R* be
a vector of parameters. Then, the PMM operator is explained as,

1
qg a
L 4g
1 a a 1+T %9(3) g=1
10e5, 8= +
x=1 *

where, T(Rg) = i Supp(Rg, V) and Supp (R, Ry) is the support degree for Ry and Ry, satisfying
x=1,x#g
the above conditions.

Definition 10. Let R¢(g = 1,2,...,a) be a group of classical numbers and Q = (q1,92,...,92) € R* bea
vector of parameters. Then, the PDMM operator is described as,

1
(14T (Rg(g)) \ al

Y (1+T(Rx))

1 ok
PDMMR(R1,Ry,...,Ry) = Y [Tas®s) (18)

a
) ' 0eS, g=1
g=1

where, T(Ry) = f Supp(Rg, V) and Supp(Rg, Ry) is the support degree for Re and R, satisfying
x=1x#1
the above conditions.

3.1. The Neutrosophic Cubic Power Muirhead Mean (NCPMM) Operator

In this subsection, we extend the PMM operator to neutrosophic cubic environment and discuss
some basic properties, and special cases of these developed aggregation operators with respect to the
parameter Q.
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Definition 11. Let z¢(g = 1,2,...,a) be a group of NCNs and Q = (41,92, --.,4a) € R® be a vector of
parameters. If,

qg

£ g

1 a a 1+T Zg(g) g=1

NCPMMO(ey 5 ) = | 3 2 T M "
€54 8= + Zyx

x=1
then, we call NCPMM® the neutrosophic cubic power Muirhead mean operator, where S, is the group of all
a
permutation, 6(g) is any permutation of (1,2,...,a) and T(zy) = Y. Supp(zg, zx), Supp(zg, zx) is the
x=1,x#g
support degree for z and zy, satisfying the following axioms:

(1) Supp(zq,zx) € [0,1];

(2)  Supp(zg,zx) = Supp(zx,2z);

(3)  If D(zg,2x) < D(zu, o), then Supp(zq,zx) > Supp(zu, o), where D(zg, zy) is the distance among zq
and zy.

To write Equation (20) in a simple form, we can specify it as:

Q. = a(1+T(Zg)) . (20)
L (1+T(z))

x=1

For suitability, we can call (®1,0, ..., ©,)" the power weight vector (PMV), such that @, € [0,1]

a
and Y5 ©¢ = 1. From the use of Equation (20), Equation (19) can be expressed as:
g=1
ul
1 a g\ L8
NCPMM®(z1,23, ..., 24) = <“'ezs; Hl(a®gz9(g)> ) =1 1)
€Sag=

Based on the operational rules given in Definition 3 for NCNs, and Definition 11, we can have the
following Theorem 2.

Theorem 2. Let zg(g = 1,2,...,a) be a group of NCNs and Q = (q1,92,...,q2) € R" be a vector of
parameters. Then, the aggregated value obtained by using Equation (21) is still an NCN and,

NCPMMQ(z1,23,...,24) =

S B ) e A —
b }{(u(u((>)))7(11(11(())))7}
<(1 (ﬂ(l }j,(‘ (1-0n),, )U>'>>i>ﬁ1 (1 ﬂ”(l xlil‘(1 M:);i“)’“y)ﬁ 1 (1 Hl-!<1 x]j(I <\,>s‘,’\)’>i)‘7>)

Proof. According to the operational laws for NCNs, we have

)
> 22)

—
—
—
I
=

=]
—
|
1=
—
|
I
32
N
N

a0, a0, © © © © © s} a0,
sty = ({1 (1 g ) 0 (g ) L0250 [R5 D) (-0 g i o )

Therefore,

e [ 5 W o I PO A A (T o R (R R (R G ) R (R GO 2
{ (1= (- 0rdogg)"®) 1= (1= s ) - (1= apes) ™) )
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Therefore,

.
- n
and
& o) = (1 (50- 090 ™) Ja- g (80 0-0000)®) ) i (- -0 )
T RO RAES i (YRR Y e
Furthermore,

This is the required proof of Theorem 2. O

In the above equations, we calculate the PWV ©, after calculating the support degree Supp(zg, zx).
First, we determined the Supp(zg, zx) using

Supp(zg zx) =1- D(zg zx) (23)

where,

%((TL TL (T8 - T“) +(I§—[£)2+(Ig—l,(”)er(F;—FxL)er(Fé,"—l—"}l)z

AN (20

Therefore, we use the equation

D(zg,2:) =

(24)

a
T(zg) = ), Supp(zg 2x) (25)
g=187x

to obtain the values of T(z¢) (¢ = 1,2,...,a). Then using Equation (20) we can get the PWV.
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Theorem 3. (Idempotency) Let zg(g =12,..., a) be a group of NCNs, and zg =z, forallg =1,2,...,a. Then,
NCPMM®(zy,25,...,2,) = CN. (26)

Proof. As zg = zforall g = 1,2,...,a, we have Supp(zq,zy) = 1forall g,x = 1,2,...,a. Therefore,
we can get ®g = % for all g. Moreover,

CNPMMQ(z1,2,...,24) = CNPMMC(z,2,...,2)

T A L ey DR A T
bV o)) o o eom) )

oo )T (g (o) )T (e ) ) )
1- ((l, (a- (1#));"“')”)7’)’“{”\ , (17 ((l, a- <1r“>>v£""“)M)?) A ] [17 (17 (l, (1#)?’”’)"%) fe ,

= (([T5, TU], [1, 14, [FL, BU]), (g, Ap, Ap)) = =

—~
-
I
=
fiten)
—

Il
—_—
o~
—_—

This is the required proof of Theorem 3. O

Theorem 4. (Boundedness) Let z¢(g = 1,2,.. ., a) be a group of NCNs. Where
z = min(zy,2y, .. ., zq) = (([T7L, T7Y], [I*L, 1+U], [FHL FHU)), (Ar =, At A T)), and
L =max(z1,2,...,20) = (([TL, T+U], [I7L, 17U], [F~L, F=U]), (Ar*, A=, Ap 7).
Then
m < NCPMMO®(z1,23,...,24) <n (27)
where,

255



Furthermore,

Thus,

Symmetry 2018, 10, 444

Proof.
and

— T
= FE o -
F— G-

E o~ <
- — — &= =

| = T —

= — — .

= = ¢

I s =
- I T N
=L 3
N
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= I =
=7 - !
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I g T —_
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This implies that m < NCPMMQ(zl,zz,. . 2q).0

In a similar way we can show that NCPMMR (z1,2z2,...,20) < mn. Hence, m <
NCPMM®(zy,25,...,24) < 1.

The NCPMM operator does not have the property of monotonicity.

One of the leading advantages of NCPMM is its capacity to represent the interrelationship among
NCNs. Furthermore, the NCPMM operator is more flexible in aggregation process due to parameter
vector. Now, we discuss some special cases of NCPMM operators by assigning different values to the
parameter vector.

Case1.If Q = (1,0,...,0), then the NCPMM operator degenerates into the following form:

(14T
NCPMMWO-0) (21 25, ..., 24) = ZM@ . (28)

§=1 Y (14 T(zy))
1

M™M=

pe

This is the NC power averaging operator.

Case2.If Q = (%, %, e, %) , then the NCPMM operator degenerates into the following form:
(14T (zg()))
1o A (TG)
NCPMM a3 (21,2y,...,2) = [ 2" . (29)
g=1

This is the NC power geometric operator.
Case3.If Q = (1,1,...,0), then the NCPMM operator degenerates into the following form:

NCPMMIMO-0) = (21,23, .., 2) =

I N R

(30)

S EsT =yt
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1 z—1
Case4.IfQ = [ 1,1,...,1,0,0,...,0 |, then the NCPMM operator degenerates into the following

form:

—
—_
|
—
—

|

Pri

®
—
=

I
—
iy
|
—

| E
= :
— =
|

|

2
— <
~— I

|
—_
I
—
|
—

|

|
=

|
—_

o) ) (o)) (e ) )
([t (B0 )™ )T ) (o)) (oo, 0 G ewi)®) )

This is the NC power Maclaurin symmetric mean operator.

3.2. Weighted Neutrosophic Cubic Power Muirhead Mean (WNCPMM) Operator

The NCPMM operator does not consider the weight of the aggregated NCNs. In this subsection,
we develop the WNCPMM operator, which has the capacity of taking the weights of NCNss.

Definition 12. Let z4(g = 1,2,...,a) be a group of NCNs and Q = (41,92, --.,4a) € R® be a vector of
parameters. If,

9 T
1 Z9(3)Op(g) i
WNCPMMO (21,25, ..., 2a) = | — — %24 (32)
6€S.g=1\ ) 5,0y
x=1

then, we WNCPMMS the weighted neutrosophic cubic power Muirhead mean operator, where & =
(B1,3a,...,84) T is the weight vector of 2¢(§=1,2,...,a) such that 2, € [0,1], Z B, =1, Sy is the group
of all permutation, 9(2) is any permutation of (1,2,...,a) and @ is power welght vector (PWYV) satisfying

0, = M Y O =1,T(z) = i Supp(zg,zx), Supp(zg,2x) is the support degree for zq
q);l(l+T(Zg)) §=1 x=lxAg

and z,, satisfying the following axioms:

(1) Supp(zq,zx) € [0,1];

(2) Supp(zq,2x) = Supp(zx,2¢);

3) If ﬁ(zg, zy) < ﬁ(zu,zv), then Supp(zq,zx) > Supp(zu, zv), where ﬁ(zg,zx) is distance among zq
and zy.
From Definition 12, we have the following Theorem 5.

Theorem 5. Let zo(g = 1,2,...,a) be a group of NCNs and Q = (q1,92,...,42) € R" be a vector of
parameters. Then, the aggregated value obtained by using Equation (32) is still an NCN and

WNCPMMO (21,22, 2)

o

Proof. Proof of Theorem 5 is same as Theorem 2. O
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3.3. The Neutrosophic Cubic Power Dual Muirhead Mean (NCPDMM) Operator

In this subsection, we develop the NCPDMM operator and discuss some related properties.

Definition 13. Let z¢(g = 1,2,...,a) be a group of NCNs and Q = (41,92, --.,4a) € R® be a vector of
parameters. If,

a(1+T(29(g))) %
0 1 a il(l+T(zx))
NCPDMM®(z1,2,....,2a) = — 11X qug(*g) (34)
Y qq | 6€5.g=1
g=1

then, we call NCPDMMRQ the neutrosophic cubic power dual Muirhead mean operator, where S, is the group

of all permutation, 0(g) is any permutation of (1,2,...,a) and T(zy) = )E Supp(zg,2x), Supp(zg, 2x)
x=1,x#g

is the support degree for zg and zy, satisfying the following axioms:

(1) Supp(zq,zx) € [0,1];

(2)  Supp(zq,2x) = Supp(zz,2g);

(3)  If D(zg,2x) < D(2u,z0), then Supp(zg,zx) > Supp(zu, zo), where D(zg, zy) is distance among zq

and zy.

To write Equation (34) in a simple form, we can specify it as:

o (4T -
£ (14 T(z)

For suitability, we can call (®1,0, ..., ®ﬂ)T the power weight vector (PMV), such that @, < [0, 1]
a
and ) ©¢ = 1. From, the use of Equation (35), Equation (34) can be expressed as,

g=1

1
al

a al
NCPDMMQ(zl,zz,.‘..,za) = al <H Z <qug(®;)(g)>> . (36)

0€S, g=1

g=1

Theorem 6. Let zg(g =1,2,...,a) be a group of SVNNs and Q = (q1,42,...,4a) € R” be a vector of
parameters. Then, the aggregated value obtained by using Equation (36) is still an NCN and,

NCPDMM® (21,23, 24) =

(37)

Proof. Proof of Theorem 6 is similar to that of Theorem 2. O
Theorem 7 (Idempotency). Let zg(§ = 1,2,...,a) be a group of NCNs, and zy = z, forall g = 1,2,...,a. Then,

NCPDMM®(zy,2,...,24) = 2. (38)
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Theorem 8 (Boundedness). Let zg(g = 1,2,..., a) be a group of NCNs, z =
LU [4L U7 [4l U
min(zy, 2, .. ., Zq) = <<[T T ][1 1 HF F D,(AT*,Aﬁ,Aﬁ)), and z© = max(zy,2,..., Za) =
L u _L_Uu _L_Uu
(<[? T ,[1 I HF JF ]>/<AT+,A,’,AF’>>.
Then,
m < NCPDMM®(zy, 25, ...,24) < n. (39)
where

Now we will discuss some special cases of NCPDMM operator with respect to the parameter vector Q.

Case1.If Q = (1,0,...,0), then NCPDMM operators degenerate into the following form:

(14T(zg))
10..0) a é(ur(zx))
NCPDMMW0) (21, 2,,..., z) = |1z (40)
g=1
This is the NC power geometric averaging operator.
Case2.If Q = (%, % ...... %) , then NCPMM operators degenerate into the following form:
a 1+ T(z

NCPDMM&ari) (z1,2,,...., -y Mzg 1)

=i )i; (1+T(z))

This is NC power arithmetic averaging operator.
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Case3.IfQ = (1,1,0,...,0), then NCPDMM operators degenerate into the following form:

NCPDMMOA00) (21,25, .., 20) = <1 1 1 (- (=) (- ) a1 (- (@) (- ()
gx=1 gx=1
gFx 8#

gx=1 & 1
&7 $#
1 11 (1 (1 ¢ (FL)X)O’)(I i (rl)r)"')) L1 11 (1 (1 ¢ (r“]xjo‘>(1 & (1'“)()"‘)) > (42)
gx=1 gx=1
&7 $#

75\

This is the NC power geometric Bonferroni mean operator (p = q = 1).

i z—i
Cased. If Q = 1, 1,...,1,0,0,...,0), then the NCPDMM operator degenerates into the

following form:

————s
NCPDMMM1710.0,-,0) (2,

(<[F(“ww{1 «f"(lixl"l‘(li‘T']?‘»)‘L“)%,17(f.,,w‘} ) 1 10 ) } K § “( (1=, )" )>—)“
P e AN

This is the NC power dual Maclaurin symmetric mean operator.

3.4. Weighted Neutrosophic Cubic Power Dual Muirhead Mean (WNCPDMM) Operator

The NCPDMM operator does not consider the weight of the aggregated NCNs. In this subsection,
we develop the WNCPDMM operator, which has the capacity of taking the weights of NCNs.

Definition 14. Let z4(g = 1,2,...,a) be a group of NCNs and Q = (41,92, --.,4a) € R® be a vector of
parameters. If,

1
“Eg<g>@e<g> al

Z ExOy
WNCPDMM® (21,25, ....,24) = 11 Z 95%g(g) (44)

Z qq \ 0€Sa8=1
g=1"
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then, we call WNCPDMM® the weighted neutrosophic cubic power dual Muirhead mean operator, where
a
8 = (8,8, .. .,Eu)T is the weight vector of z¢(g =1,2,...,a) such that 2, € [0,1], ¥ 8¢ =1, Sy is

the group of all permutation, 6(g) is any permutation of (1,2,...,a) and @, is PVW satisfying @, =
M, i Op =1,T(zy) = i Supp(zq,zx), and Supp (zg, zx) is the support degree for zg and
21(1+T(zg)) g=1 x=1,x#g

Zy, satisfying the following axioms:

(1) Supp(zq,zx) € [0,1];

(2) Supp(zg zx) = Supp(zx,2g);

(3)  If D(zg,2x) < D(2zu,20), then Supp(zg,zx) > Supp(zu, zo), where D(zg, zy) is distance among zg
and z.

From Definition 14, we have the following Theorem 9.

Theorem 9. Let zo(g = 1,2,...,a) be a group of NCNs and Q = (q1,92,...,q2) € R" be a vector of
parameters. Then, the aggregated value obtained by using Equation (44) is still an NCN and

(45)

Proof. Proof of Theorem 9 is similar to that of Theorem 2. O

4. The MADM Approach Based on WNCPMM Operator and WNCPDMM Operator

In this section, we give a novel method to MADM with NCNs, in which the attributes values
gain the form of NCNs. For a MADM problem, let the series of alternatives is represented by /i =

{h1,a, ..., ha}, and the series of attributes is represented by r= {7”, A 2., A, }. The weight vector of
b
the attributes is denoted by @ = (@1, @, . . A,wb)T such that @, € [0,1], ¥ @, = 1. Assume that Zgp =
p=1
(< [Tth, T;ﬂ , [Ith, Igh] , [Fth, Fgl] >, <ATgh' /\Igh, /\[:gh >) is the assessment values of the alternatives /iy
on the attribute [;,, which is expressed by the form of NCN. Then, the main aim is to rank the
alternatives. The following decision steps are to be followed.

Step 1. Standardize the decision matrix. Generally, there are two types of attributes, one is of cost type
and the other is of benefit type. We need to convert the cost type of attributes into benefit types of
attributes by using the following formula:

z = (75 T [t 1), (B F] ) (A Ars ),
B (< [Tth' T(éﬂ , [I!{h/ 151] , [F;h' Fgl] >, ATx/x’)”xh’ )\px/’ >), for benefit attribute Ty, (46)
L (R RS [ = 141 = 18] [T5 TS] ) ATyt = Aty Ary, ), for cost attribute T
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Hence, the decision matrix M = [zgh] . can be transformed into normalized decision matrix

ax
N= [5gh]a><b'
Step 2. Determine the supports Supp (5gh,§g,) (¢=12,...,a4;h,1=1,2,...,b) by,

Supp((sgh,égl) -1-D <5gh,(sgh> 47)

where, D <(5gh, 58;,) is the distance measure among two NCNss d¢j, and 6y defined in Equation (25).
Step 3. Determine T((Sgh> by,

b

T(égh) > Supp(agh,ég,)(g =1,2,...,a;h,1=1,2,...,b) (48)
=1
1#h

Step 4. Determine the weights related with the NCN 5gh (¢§=1,2,...,a;h =1,2,...,b) with the formula

¥y = ban (147 (00)) (§=1,2,...,a;h,d =12,...,b), (49)

Eeu(re1(s)

b
where, T<5gh> = Y. Supp <<Sgh,<5g1) (¢=12,...,a;h,1=1,2,...,b) is weighted support of NCN
1=1
1#h
Jgn by the other NCN 5gl(g =12,...,4;h1=1,2,...,b).
Step 5. Use the WNCPMM or WNCPDMM operators

b = <[TgL, Tﬂ, [Ig,zg], {F;,Fﬂ,hg, Mg, Apg> — WNCPMM® (5g1,5g2,...,5g,,) (50)

b = <[TgL, Tgﬂ, [1;, Iy], {F;,Fﬂ,ATg, Mg, Apg> — WNCPDMM® (5g1,5g2,...,5g,,) 1)

to calculate the overall NCNs, dg(g = 1,2,...,a).
Step 6. Determine the score values of the collective NCNs d¢ (g =1,2,...,a), using Definition 6.

Step 7. Rank all the alternatives according to their score values, and the select the best one using
Theorem 1.

5. An Illustrative Example

To show the application of the developed MADM method, an illustrative example is embraced
from [19,21] with NC information.

Example 1. A passenger wants to travel and select the best vans (alternatives) hg(g = 1,2,3,4) among
the possible four vans. The customer takes the following four attributes into account to evaluate the possible

four alternatives: (1) the facility *+; (2) saving rent :5(3) comfort *s; (4) safety *4. The importance degree
of the attributes is expressed by @ = (0.5,0.25, 0.125,0.125)T. Therefore, the following decision matrix
M = I:Zgh} s SO be obtained in the form of NCNs shown in Table 1.

X
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Table 1. The decision matrix M = {CNgh]

4x4’
xl x‘l xS xﬂ‘

5 (([0:2,0.5],[0.3,0.7), (([0.2,0.4],[0.4,0.5], (([0:2,0.7], [0.4,0.9], (([0.1,0.6],[0.3,04] ,

" (0.1, 02]),(09,0.7,02))  [0.2,0.5]),(0.7,04,05))  [0.5,0.7]),(0.7,0.7,05))  [0.5,0.8]),(0.5,05,0.7))
; (([0.3,0.9],0.2,0.7], (([0.3,0.7],[0.6,0.8], (([0.3,0.9],0.4,0.6] , (([0:2,0.5], [0.4,0.9],
2 [0.3,0.5]),(0.5,0.7,0.5))  [0.2,04]),(0.7,0.6,0.8))  [0.6,0.8]),(0.9, 0.4,0.6))  [0.5,0.8]),(0.5,0.2,0.7))
; (([0.3,0.4],[0.4,0.8] , (([0.2,0.4], [0.2,0.3], (([0:4,0.7],[0.1,0.2], (([0.6,0.7], [0.3,0.6],

ks [0.2,0.6]), (0.1,0.4,02))  [02,0.5]),(0.2,02,02))  [0.4,0.5]),(0.9,0.5,0.5)) [0.3,0.7]),(0.7,0.5,0.3))
5 (([0.5,0.9], [0.1,0.8], (([0.4,0.6], [0.5,0.7], (([05,0.6], [0.2,0.4], (([0:3,0.7] ,[0.7,0.8],

4 [0.2,0.6]),(0.4,0.6,02))  [0.1,0.2]),(0.5,03,0.2))  [0.3,0.5)),(0.5,04,0.5))  [0.6,0.7]), (0.4,0.2,0.8))

Then, we apply the WNCPMM operator or WNCPDMM operator to solve the MADM problem.
Now, we use the WNCPMM operator for this decision-making problem as follows:

Step 1. Since all the attributes are the same, hence there is no need for conversion.
Step 2. Use Equation (47), to calculate the support degrees Supp (zgh, zgl> (1,2,...,4h1=1,2,...,4).
We denote Supp <zgh,zgl> by Suppepql-

Suppii2 = Suppian = 0.79452, Suppi1,13 = Suppizn = 0.735425, Suppyi 14 = Suppirann = 0.65359,
Suppipiz = Suppizi2 = 0.771478, Suppip1a = Suppiai2 = 0.805635, Suppiza = Suppiaz = 0.786563;
Suppoipn = Suppapr = 0.7972, Suppoi oz = Suppaz oy = 0.7667, Suppai pa = Suppospy = 0.727155,
Suppz = Supps o = 0.750556, Suppro 24 = Supprsry = 0.750556, Supprsa = Supprs e = 0.76906,
Suppsi 32 = Suppsz = 0.8, Suppsizz = Suppszzr = 0.614139, Suppsi 34 = Suppss sz = 0.735425,
Suppszzz = Suppszzz = 0.690879, Suppsnzs = Suppasszs = 0.711325, Suppaz 34 = Suppazzs = 0.797241,
Suppai g = Suppaoar = 0.7551, Suppyi a3 = Suppaz a1 = 0.783975, Suppay as = Suppas a1 = 0.645662,
Suppapaz = Suppaz 4o = 0.783975, Suppao aa = Suppasar = 0.675107, Suppaz a4 = Suppas sz = 0.7152.

Step 3. Use Equation (48), to get T((Sgh> (g,h =1to4). We denote T(égh> by Ty,
Ty = 2.183534, Tys = 2371633, Ty3 = 2.293466, Tys = 2.245787;
Ty = 2.291063, Typ = 2.298354, T3 = 2.286283, Ty = 2.246771
Ty, = 2149564, T3p = 2.202204, T35 = 2.102259, T3, = 2.243991,
Ty = 2.184688, Tyy = 2.214133, Ty3 = 2.28315, Tyy = 2.035969.
Step 4. Use Equation (49), to obtain ‘I’gh( g,h=1,2,3,4).
¥, = 1.957844, %1, = 1.036761, ¥ 13 = 0.506363, ¥14 = 0.499032,
¥,y = 2.002623, ¥5y = 1.00353, ¥a3 = 0.499929, ¥,, — 0.493918,
Y31 = 1.987975, Y3, = 1.010601, Y33 = 0.489529, Y34 = 0.511894,

Step 5. Use the WNCPMM given in Equation (50),
zg = (([18 18], [t 1), [FE ] ) (Mg Argy Arg ) ) = WENPMMO (201,202, 204) (8 = 1,2, 4).

To get the overall NCNs z¢ (¢ = 1,2,...,4). Assume that Q = (1,1,1,1).

= (([0.1399,0.4650], [0.4421,0.7027], [0.4691,0.6847]), (0.5483,0.6368,0.6029) );
= ((]0.2238,0.6021], [0.5236, 0.8162], [0.5122,0.715]), (0.5617, 0.5505, 0.7294) );

= ([0.3002, 0.4736], [0.3232,0.5782], [0.3881, 0.6445]), (0.3255, 0.4952, 0.415668);
24 = ([0.3413,0.5540], [0.5437, 0.7485), [0.4487,0.5965]), (0.3762,0.4451,0.5976).
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Step 6. Using Definition 6, we calculate the score values of the collective NCNs z,(¢ = 1,2,...,4).
5C(z1) = 0.4022, 5C(z5) = 0.393352, SC(z3) = 0.472717,5C (z4) = 0.4324.
Step 7. According to the score values, ranking order of the alternative is i3 > iy > iy > hy.

Hence using Theorem 1, the best alternative is /i3 and the worst is .
Similarly, by using WNCPDMM operator for this decision-making problem, we will have, the
Steps 1 to 4 are similar to that of weighted neutrosophic cubic power Muirhead mean operator.

Step 5. Use the WNCPDMM given in Equation (51),

zg = ([T 1Y) [1E 18], [FEEY) ), (g, ArgiArg ) = WNCPDMMO (201,20, 1) (8 = 1,2, 4).

To get the overall NCNs zg (g = 1,2,...,4). Assume that, Q = (1,1,1,1).

,(0.7682,0.4666,0.3905);
,(0.7416,0.3336,0.5561);
,(0.6502,0.3206,0.2330);
,(0.5355,0.2744,0.3248).

7

([0.2569, 0.6239], [0.2929, 0.5112], [0.2375,0.4571]
([0.3642,0.8179], [0.3110,0.6479], [0.3194, 0.5430]
([0.4935,0.6438], [0.1794,0.3224], [0.2248, 0.4812)]
([0.4995,0.7691], [0.2570,0.5332], [0.2130, 0.3815]

’

7

\/\/\/\/
=

21
22
23 =
24 =
Step 6. Using Definition 6, we calculate the score values of the collective NCNs zo(¢ = 1,2,...,4).
SC(z1) = 0.5881,5C(z,) = 0.5782,5C(z3) = 0.6688, 5C(z4) = 0.6467.

Step 7. According to the score values, ranking order of the alternative is h3 > hy > iy > hy.

Hence using T