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Abstract: The aim of this paper is to introduce some new operators for aggregating single-valued
neutrosophic (SVN) information and to apply them to solve the multi-criteria decision-making
(MCDM) problems. Single-valued neutrosophic set, as an extension and generalization of an
intuitionistic fuzzy set, is a powerful tool to describe the fuzziness and uncertainty, and Muirhead
mean (MM) is a well-known aggregation operator which can consider interrelationships among any
number of arguments assigned by a variable vector. In order to make full use of the advantages of
both, we introduce two new prioritized MM aggregation operators, such as the SVN prioritized MM
(SVNPMM) and SVN prioritized dual MM (SVNPDMM) under SVN set environment. In addition,
some properties of these new aggregation operators are investigated and some special cases are
discussed. Furthermore, we propose a new method based on these operators for solving the MCDM
problems. Finally, an illustrative example is presented to testify the efficiency and superiority of the
proposed method by comparing it with the existing method.

Keywords: neutrosophic set; prioritized operator; Muirhead mean; multicriteria decision-making;
aggregation operators; dual aggregation operators

1. Introduction

Multicriteria decision-making (MCDM) is one of the hot topics in the decision-making field to
choose the best alternative to the set of the feasible one. In this process, the rating values of each
alternative include both precise data and experts’ subjective information [1,2]. However, traditionally,
it is assumed that the information provided by them are crisp in nature. However, due to the complexity
of the system day-by-day, the real-life contains many MCDM problems where the information is either
vague, imprecise or uncertain in nature [3]. To deal with it, the theory of fuzzy set (FS) [4] or extended
fuzzy sets such as intuitionistic fuzzy set (IFS) [5], interval-valued IFS (IVIFS) [6] are the most successful
ones, which characterize the criterion values in terms of membership degrees. Since their existence,
numerous researchers were paying more attention to these theories and developed several approaches
using different aggregation operators [7–10] and ranking methods [11–13] in the processing of the
information values.

It is remarked that neither the FS nor the IFS theory are able to deal with indeterminate and
inconsistent data. For instance, consider an expert which gives their opinion about a certain object
in such a way that 0.5 being the possibility that the statement is true, 0.7 being the possibility that
the statement is false and 0.2 being the possibility that he or she is not sure. Such type of data is not
handled with FS, IFS or IVIFS. To resolve this, Smarandache [14] introduced the concept neutrosophic
sets (NSs). In NS, each element in the universe of discourse set has degrees of truth membership,
indeterminacy-membership and falsity membership, which takes values in the non-standard unit

Symmetry 2018, 10, 280; doi:10.3390/sym10070280 www.mdpi.com/journal/symmetry1
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interval (0−, 1+). Due to this non-standard unit interval, NS theory is hard to implement on the
practical problems. So in order to use NSs in engineering problems more easily, some classes of NSs
and their theories were proposed [15,16]. Wang et al. [16] presented the class of NS named as interval
NS while in Wang et al. [15], a class of single-valued NS (SVNS) is presented. Due to its importance,
several researchers have made their efforts to enrich the concept of NSs in the decision-making process
and some theories such as distance measures [17], score functions [18], aggregation operators [19–23]
and so on.

Generally, aggregation operators (AOs) play an important role in the process of MCDM problems
whose main target is to aggregate a collection of the input to a single number. In that direction,
Ye [21] presented the operational laws of SVNSs and proposed the single-valued neutrosophic
(SVN) weighted averaging (SVNWA) and SVN weighted geometric average (SVNWGA) operators.
Peng et al. [22] defined the improved operations of SVN numbers (SVNNs) and developed their
corresponding ordered weighted average/geometric aggregation operator. Nancy and Garg [24]
developed the weighted average and geometric average operators by using the Frank norm operations.
Liu et al. [25] developed some generalized neutrosophic aggregation operators based on Hamacher
operations. Zhang et al. [26] presented the aggregation operators under interval neutrosophic set (INS)
environment and Aiwu et al. [27] proposed some of its generalized operators. Garg and Nancy [19]
developed a nonlinear optimization model to solve the MCDM problem under the INS environment.

From the above mentioned AOs, it is analyzed that all these studies assume that all the
input arguments used during aggregation are independent of each other and hence there is no
interrelationship between the argument values. However, in real-world problems, there always occurs
a proper relationship between them. For instance, if a person wants to purchase a house then there is a
certain relationship between its cost and the locality. Clearly, both the factors are mutually dependent
and interacting. In order to consider the interrelationship of the input arguments, Bonferroni mean (BM)
[28], Maclaurin symmetric mean (MSM) [29], Heronian mean (HM) [30] etc., are the useful aggregation
functions. Yager [31] proposed the concept of BM whose main characteristic is its capability to capture
the interrelationship between the input arguments. Garg and Arora [32] presented BM aggregation
operators under the intuitionistic fuzzy soft set environment. In these functions, BM can capture
the interrelationship between two arguments while others can capture more than two relationships.
Taking the advantages of these functions in a neutrosophic domain, Liu and Wang [33] applied the
BM to a neutrosophic environment and introduce the SVN normalized weighted Bonferroni mean
(SVNNWBM) operator. Wang et al. [34] proposed the MSM aggregation operators to capture the
correlation between the aggregated arguments. Li et al. [20] presented HM operators to solve the
MCDM problems under SVNS environment. Garg and Nancy [35] presented prioritized AOs under
the linguistic SVNS environment to solve the decision-making problems. Wu et al. [36] developed
some prioritized weighted averaging and geometric aggregation operators for SVNNs. Ji et al. [37]
established the single-valued prioritized BM operator by using the Frank operations. An alternative to
these aggregations, the Muirhead mean (MM) [38] is a powerful and useful aggregation technique.
The prominent advantage of the MM is that it can consider the interrelationships among all arguments,
which makes it more powerful and comprehensive than BM, MSM and HM. In addition, MM has a
parameter vector which can make the aggregation process more flexible.

Based on the above analysis, we know the decision-making problems are becoming more and
more complex in the real world. In order to select the best alternative(s) for the MCDM problems, it is
necessary to express the uncertain information in a more profitable way. In addition, it is important to
deal with how to consider the relationship between input arguments. Keeping all these features in
mind, and by taking the advantages of the SVNS, we combine the prioritized aggregation and MM and
propose prioritized MM (PMM) operator by considering the advantages of both. These considerations
have led us to consider the following main objectives for this paper:

1. to handle the impact of the some unduly high or unduly low values provided by the decision
makers on to the final ranking;
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2. to present some new aggregation operators to aggregate the preferences of experts element;
3. to develop an algorithm to solve the decision-making problems based on proposed operators;
4. to present some example in which relevance of the preferences in SVN decision problems is

made explicit.

Since in our real decision-making problems, we always encounter a problem of some attributes’
values, provided by the decision makers, whose impact on the decision-making process are unduly
high or unduly low; this consequently results in a bad impression on the final results. To handle it,
in the first objective we utilize prioritized averaging (PA) as an aggregation function which can
handle such a problem very well. To achieve the second objective, we develop two new AOs,
named as SVN prioritized MM (SVNPMM) and SVN prioritized dual MM (SVNPDMM) operators,
by extending the operations of SVNNs by using MM and PA operators. MM operator is a powerful
and useful aggregation technique with the feature that it considers the interrelationships among all
arguments which makes it more powerful and comprehensive than BM [28], MSM [29] and HM [30].
Moreover, the MM has a parameter vector which can make the aggregation process more flexible.
Several properties and some special cases from the proposed operators are investigated. To achieve
the third objective, we establish an MCDM method based on these proposed operators under the
SVNS environment where preferences related to each alternative is expressed in terms of SVNNs.
An illustrative example is presented to testify the efficiency and superiority of the proposed method
by comparative analysis with the other existing methods for fulfilling the fourth objective. Further,
apart from these, we verify that the methods proposed in this paper have advantages with respect to
existing operators as follows: (1) some of the existing AOs can be taken as a special case of the proposed
operators under NSs environment, (2) they consider the interrelationship among all arguments, (3) they
are more adaptable and feasible than the existing AOs based on the parameter vector, (4) the presented
approach considers the preferences of the decision maker in terms of risk preference as well as
risk aversion.

The rest of the manuscript is organized as follows. In Section 2, we briefly review the concepts of
SVNS and the aggregation operators. In Section 3, two new AOs based on PA and MM operations
are developed under SVNS environment and their desirable properties are investigated. In addition,
some special cases of the operators by varying the parametric value are discussed. In Section 4,
we explore the applications of SVNN to MCDM problems with the aid of the proposed decision-making
method and demonstrate with a numerical example. Finally, Section 5 gives the concluding remarks.

2. Preliminaries

In this section, some basic concepts related to SVNSs have been defined over the universal set X
with a generic element x ∈ X.

Definition 1 ([14]). A neutrosophic set (NS) α comprises of three independent degrees in particular truth (μα),
indeterminacy (ρα), and falsity (να) which are characterized as

α =
{〈x, μα(x), ρα(x), να(x) | x ∈ X〉}, (1)

where μα(x), ρα(x), να(x) is the subset of the non-standard unit interval (0−, 1+) such that 0− ≤ μα(x) +
ρα(x) + να(x) ≤ 3+.

Definition 2 ([16]). A single-valued neutrosophic set (SVNS) α in X is defined as

α =
{〈x, μα(x), ρα(x), να(x) | x ∈ X〉}, (2)

where μα(x), ρα(x), να(x) ∈ [0, 1] such that 0 ≤ μα(x) + ρα(x) + να(x) ≤ 3 for all x ∈ X. A SVNS is an
instance of an NS.

3
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For convenience, we denote this pair as α = (μα, ρα, να), throughout this article, and called as
SVNN with the conditions μα, ρα, να ∈ [0, 1] and μα + ρα + να ≤ 3.

Definition 3 ([18]). Let α = (μα, ρα, να) be a SVNN. A score function s of α is defined as

s(α) =
1 + (μα − 2ρα − να)(2 − μα − να)

2
. (3)

Based on this function, an ordered relation between two SVNNs α and β is stated as, if s(α) > s(β) then α > β.

Definition 4 ([16,22]). Let α = (μ, ρ, ν), α1 = (μ1, ρ1, ν1) and α2 = (μ2, ρ2, ν2) be three SVNNs and λ > 0
be real number. Then, we have

1. αc = (ν, ρ, μ);
2. α1 ≤ α2 if μ1 ≤ μ2, ρ1 ≥ ρ2 and ν1 ≥ ν2;
3. α1 = α2 if and only if α1 ≤ α2 and α2 ≤ α1;
4. α1 ∩ α2 = (min(μ1, μ2), max(ρ1, ρ2), max(ν1, ν2));
5. α1 ∪ α2 = (max(μ1, μ2), min(ρ1, ρ2), min(ν1, ν2));
6. α1 ⊕ α2 = (μ1 + μ2 − μ1μ2, ρ1ρ2, ν1ν2);
7. α1 ⊗ α2 = (μ1μ2, ρ1 + ρ2 − ρ1ρ2, ν1 + ν2 − ν1ν2);
8. λα1 = (1 − (1 − μ1)

λ, ρλ
1 , νλ

1 );
9. αλ

1 = (μλ
1 , 1 − (1 − ρ1)

λ, 1 − (1 − ν1)
λ).

Definition 5 ([36]). For a collection of SVNNs αj = (μj, ρj, νj)(j = 1, 2, . . . , n), the prioritized weighted
aggregation operators are defined as

1. SVN prioritized weighted average (SVNPWA) operator

SVNPWA(α1, α2, . . . , αn) =

⎛⎜⎜⎝1 −
n

∏
j=1

(1 − μj)

Hj
n
∑

j=1
Hj

,
n

∏
j=1

(ρj)

Hj
n
∑

j=1
Hj

,
n

∏
j=1

(νj)

Hj
n
∑

j=1
Hj

⎞⎟⎟⎠ , (4)

2. SVN prioritized geometric average (SVNPGA) operator

SVNPGA(α1, α2, . . . , αn) =

⎛⎜⎜⎝ n

∏
j=1

(μj)

Hj
n
∑

j=1
Hj

, 1 −
n

∏
j=1

(1 − ρj)

Hj
n
∑

j=1
Hj

, 1 −
n

∏
j=1

(1 − νj)

Hj
n
∑

j=1
Hj

⎞⎟⎟⎠ , (5)

where H1 = 1 and Hj =
j−1
∏

k=1
s(αk); (j = 2, . . . , n).

Definition 6 ([38]). For a non-negative real numbers hj(j = 1, 2, . . . , n), (MM) operator over the parameter
P = (p1, p2, . . . , pn) ∈ Rn is defined as

MMP(h1, h2, . . . , hn) =

(
1
n! ∑

σ∈Sn

n

∏
j=1

h
pj
σ(j)

) 1
n
∑

j=1
pj

, (6)

where σ is the permutation of (1, 2, . . . , n) and Sn is set of all permutations of (1, 2, . . . , n).

By assigning some special vectors to P, we can obtain some special cases of the MM:

4
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1. If P = (1, 0, . . . , 0), the MM is reduced to

MM(1,0,...,0)(h1, h2, . . . , hn) =
1
n

n

∑
j=1

hj, (7)

which is the arithmetic averaging operator.
2. If P = (1/n, 1/n, . . . , 1/n), the MM is reduced to

MM(1/n,1/n,...,1/n)(h1, h2, . . . , hn) =
n

∏
j=1

h1/n
j , (8)

which is the geometric averaging operator.
3. If P = (1, 1, 0, 0, . . . , 0), then the MM is reduced to

MM(1,1,0,0,...,0)(h1, h2, . . . , hn) =

⎛⎜⎝ 1
n(n + 1)

n

∑
i,j=1
i �=j

hihj

⎞⎟⎠
1/2

, (9)

which is the BM operator [28].

4. If P = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0), then the MM is reduced to

MM(

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0)(h1, h2, . . . , hn) =

⎛⎜⎝ 1
Cn

k
∑

1≤i1<
...<ik≤n

k

∏
j=1

hij

⎞⎟⎠
1/k

, (10)

which is the MSM operator [29].

3. Neutrosophic Prioritized Muirhead Mean Operators

In this section, by considering the overall interrelationships among the multiple input arguments,
we develop some new prioritized based MM aggregation operators for a collection of SVNNs
αj; (j = 1, 2, . . . , n), denoted by Ω. Assume that σ is the permutation of (1, 2, . . . , n) such that
ασ(j−1) ≤ ασ(j) for j = 2, 3, . . . , n.

3.1. Single-Valued Neutrosophic Prioritized Muirhead Mean (SVNPMM) Operator

Definition 7. For a collection of SVNNs αj(j = 1, 2, . . . , n), a SVNPMM operator is a mapping SVNPMM :
Ω → Ω defined as

SVNPMM(α1, α2, . . . , αn) =

⎛⎜⎜⎜⎝ 1
n!

⊕
σ∈Sn

n

∏
j=1

⎛⎜⎜⎜⎝n
Hσ(j)
n
∑

j=1
Hj

ασ(j)

⎞⎟⎟⎟⎠
pj
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

, (11)

where H1 = 1, Hj =
j−1
∏

k=1
s(αk); (j = 2, . . . , n), Sn is collection of all permutations of (1, 2, . . . , n) and

P = (p1, p1, . . . , pn) ∈ Rn be a vector of parameters.

5
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Theorem 1. For a collection of SVNNs αj = (μj, ρj, νj)(j = 1, 2, . . . , n), the aggregated value by Equation (11)
is again a SVNN and given by

SVNPMM(α1, α2, . . . , αn)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

,

1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

,

1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − νσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Proof. For SVNN αj(j = 1, 2, . . . , n) and by Definition 4, we have

n
Hσ(j)
n
∑

j=1
Hj

ασ(j) =

⎛⎜⎜⎝1 − (1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj

, ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj

, νσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠

and

⎛⎜⎜⎜⎝n
Hσ(j)
n
∑

j=1
Hj

ασ(j)

⎞⎟⎟⎟⎠
pj

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝1 − (1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

, 1 −

⎛⎜⎜⎝1 − ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

,

1 −

⎛⎜⎜⎝1 − νσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus,

⊕
σ∈Sn

n

∏
j=1

⎛⎜⎜⎜⎝n
Hσ(j)
n
∑

j=1
Hj

ασ(j)

⎞⎟⎟⎟⎠
pj

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ∏
σ∈Sn

(
1 −

n

∏
j=1

(
1 − (1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj

)pj)
,

∏
σ∈Sn

(
1 −

n

∏
j=1

(
1 − ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj
)pj

)
,

∏
σ∈Sn

(
1 −

n

∏
j=1

(
1 − νσ(j)

n
Hσ(j)
n
∑

j=1
Hj
)pj

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

6
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Now,

SVNPMM(α1, α2, . . . , αn) =

⎛⎜⎜⎜⎝ 1
n!

⊕
σ∈Sn

n

∏
j=1

⎛⎜⎜⎜⎝n
Hσ(j)
n
∑

j=1
Hj

ασ(j)

⎞⎟⎟⎟⎠
pj
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

,

1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

,

1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − νσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus Equation (12) holds. Furthermore, 0 ≤ μσ(j), ρσ(j), νσ(j) ≤ 1 so we have

1 −
(

1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj ∈ [0, 1]

and

n

∏
j=1

⎛⎜⎜⎝1 − (1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

∈ [0, 1],

which implies that

1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠ ∈ [0, 1].

Hence,

0 ≤

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

≤ 1.

7
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Similarly, we have

0 ≤ 1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

≤ 1

and

0 ≤ 1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − νσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

≤ 1.

which complete the proof.

The working of the proposed operator is demonstrated through a numerical example, which is
illustrated as follow.

Example 1. Let α1 = (0.5, 0.2, 0.3), α2 = (0.3, 0.5, 0.4) and α3 = (0.6, 0.5, 0.2) be three SVNNs and

P = (1, 0.5, 0.3) be the given parameter vector. By utilizing the given information and Hj =
j−1
∏

k=1
s(αk);

(j = 2, 3), we get H1 = 1, H2 = 0.74 and H3 = 0.2257. Therefore,

∏
σ∈S3

⎛⎜⎜⎜⎝1 −
3

∏
j=1

⎛⎜⎜⎜⎝1 − (1 − μσ(j))

3
Hσ(j)
3
∑

j=1
Hj

⎞⎟⎟⎟⎠
pj
⎞⎟⎟⎟⎠

=

{
1 −

(
1 − (1 − 0.5)3×0.5087

)1

×
(

1 − (1 − 0.3)3×0.3765
)0.5

×
(

1 − (1 − 0.6)3×0.1148
)0.3

}

×
{

1 −
(

1 − (1 − 0.3)3×0.3765
)1

×
(

1 − (1 − 0.5)3×0.5087
)0.5

×
(

1 − (1 − 0.6)3×0.1148
)0.3

}

×
{

1 −
(

1 − (1 − 0.6)3×0.1148
)1

×
(

1 − (1 − 0.3)3×0.3765
)0.5

×
(

1 − (1 − 0.5)3×0.5087
)0.3

}

×
{

1 −
(

1 − (1 − 0.3)3×0.3765
)1

×
(

1 − (1 − 0.6)3×0.1148
)0.5

×
(

1 − (1 − 0.5)3×0.5087
)0.3

}

×
{

1 −
(

1 − (1 − 0.5)3×0.5087
)1

×
(

1 − (1 − 0.6)3×0.1148
)0.5

×
(

1 − (1 − 0.3)3×0.3765
)0.3

}

×
{

1 −
(

1 − (1 − 0.6)3×0.1148
)1

×
(

1 − (1 − 0.5)3×0.5087
)0.5

×
(

1 − (1 − 0.3)3×0.3765
)0.3

}
= 0.0052.
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Similarly, we have

∏
σ∈S3

⎛⎜⎜⎜⎜⎝1 −
3

∏
j=1

⎛⎜⎜⎜⎝1 − ρ

3
Hσ(j)
3
∑

j=1
Hj

σ(j)

⎞⎟⎟⎟⎠
pj
⎞⎟⎟⎟⎟⎠

=

{
1 −

(
1 − (0.2)3×0.5087

)1

×
(

1 − (0.5)3×0.3765
)0.5

×
(

1 − (0.5)3×0.1148
)0.3

}

×
{

1 −
(

1 − (0.5)3×0.3765
)1

×
(

1 − (0.2)3×0.5087
)0.5

×
(

1 − (0.5)3×0.1148
)0.3

}

×
{

1 −
(

1 − (0.5)3×0.1148
)1

×
(

1 − (0.5)3×0.3765
)0.5

×
(

1 − (0.2)3×0.5087
)0.3

}

×
{

1 −
(

1 − (0.5)3×0.3765
)1

×
(

1 − (0.5)3×0.1148
)0.5

×
(

1 − (0.2)3×0.5087
)0.3

}

×
{

1 −
(

1 − (0.2)3×0.5087
)1

×
(

1 − (0.5)3×0.1148
)0.5

×
(

1 − (0.5)3×0.3765
)0.3

}

×
{

1 −
(

1 − (0.5)3×0.1148
)1

×
(

1 − (0.2)3×0.5087
)0.5

×
(

1 − (0.5)3×0.3765
)0.3

}
= 0.000093196

and

∏
σ∈S3

⎛⎜⎜⎜⎜⎝1 −
3

∏
j=1

⎛⎜⎜⎜⎝1 − ν

3
Hσ(j)
3
∑

j=1
Hj

σ(j)

⎞⎟⎟⎟⎠
pj
⎞⎟⎟⎟⎟⎠

=

{
1 −

(
1 − (0.3)3×0.5087

)1

×
(

1 − (0.4)3×0.3765
)0.5

×
(

1 − (0.2)3×0.1148
)0.3

}

×
{

1 −
(

1 − (0.4)3×0.3765
)1

×
(

1 − (0.3)3×0.5087
)0.5

×
(

1 − (0.2)3×0.1148
)0.3

}

×
{

1 −
(

1 − (0.2)3×0.1148
)1

×
(

1 − (0.4)3×0.3765
)0.5

×
(

1 − (0.3)3×0.5087
)0.3

}

×
{

1 −
(

1 − (0.4)3×0.3765
)1

×
(

1 − (0.2)3×0.1148
)0.5

×
(

1 − (0.3)3×0.5087
)0.3

}

×
{

1 −
(

1 − (0.3)3×0.5087
)1

×
(

1 − (0.2)3×0.1148
)0.5

×
(

1 − (0.4)3×0.3765
)0.3

}

×
{

1 −
(

1 − (0.2)3×0.1148
)1

×
(

1 − (0.3)3×0.5087
)0.5

×
(

1 − (0.4)3×0.3765
)0.3

}
= 0.00000093195.
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Hence, by using Equation (12), we get the aggregated value by SVNPMM is

SVNPMM(α1, α2, α3)

=

⎛⎜⎜⎜⎜⎝
(

1 − (0.0052)1/6
)1/1.8

, 1 −
(

1 − (0.000093196)1/6
)1/1.8

,

1 −
(

1 − (0.00000093195)1/6
)1/1.8

⎞⎟⎟⎟⎟⎠
= (0.7415, 0.1246, 0.0562).

It is observed from the proposed operator that it satisfies the certain properties which are stated
as follows.

Theorem 2. If αj = (μj, ρj, νj) and α′j = (μ′
j, ρ′j, ν′j) are two SVNNs such that μj ≤ μ′

j, ρj ≥ ρ′j and νj ≥ ν′j
for all j, then

SVNPMM(α1, α2, . . . , αn) ≤ SVNPMM(α′1, α′2, . . . , α′n).

This property is called monotonicity.

Proof. For two SVNNs αj and α′j, we have ασ(j) ≤ α′
σ(j), for all j which implies that μσ(j) ≤ μ′

σ(j) and

(1 − μσ(j))

n
Hσ(j)
n
∑

j=1
Hj ≥ (1 − μ′

σ(j))

n
H′

σ(j)
n
∑

j=1
H′

j
, where H1 = 1, Hj =

j−1
∏

k=1
s(αk) and H′

1 = 1, H′
j =

j−1
∏

k=1
s(α′k) for

(j = 2, 3, . . . , n). Thus,

⎛⎜⎜⎝1 − (
1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

≤

⎛⎜⎜⎜⎝1 − (
1 − μ′

σ(j))

n
H′

σ(j)
n
∑

j=1
H′

j

⎞⎟⎟⎟⎠
pj

and
n

∏
j=1

⎛⎜⎜⎝1 − (
1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

≤
n

∏
j=1

⎛⎜⎜⎜⎝1 − (
1 − μ′

σ(j))

n
H′

σ(j)
n
∑

j=1
H′

j

⎞⎟⎟⎟⎠
pj

.

Further, we have

∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (
1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

≥ ∏
σ∈Sn

⎛⎜⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎜⎝1 − (
1 − μ′

σ(j))

n
H′

σ(j)
n
∑

j=1
H′

j

⎞⎟⎟⎟⎠
pj⎞⎟⎟⎟⎠

10
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and

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (
1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!

≥

⎛⎜⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎜⎝1 − (
1 − μ′

σ(j)
)n

H′
σ(j)

n
∑

j=1
H′

j

⎞⎟⎟⎟⎠
pj⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
1
n!

.

Hence, we get

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (
1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

≤

⎛⎜⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎜⎝1 − (
1 − μ′

σ(j)
)n

H′
σ(j)

n
∑

j=1
H′

j

⎞⎟⎟⎟⎠
pj⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
1
n!

⎞⎟⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

.

Similarly, we have

1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

≥ 1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − ρ′σ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

and

1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − νσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

≥ 1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − ν′σ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

.

11
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Therefore, by Definition 4, we have

SVNPMM(α1, α2, . . . , αn) ≤ SVNPMM(α′1, α′2, . . . , α′n).

Theorem 3. For a collection of SVNNs αj = (μj, ρj, νj)(j = 1, 2, . . . , n). Let α− = (μ−, ρ−, ν−) and
α+ = (μ+, ρ+, ν+) be the lower and upper bound, respectively, of the SVNNs where μ− = min

j
{μj},

ρ− = max
j

{ρj}, ν− = max
j

{νj}, μ+ = max
j

{μj}, ρ+ = min
j
{ρj} and ν+ = min

j
{νj}, then

α− ≤ SVNPMM(α1, α2, . . . , αn) ≤ α+.

This property is called boundedness.

Proof. Since min
j
{μj} ≤ μj, therefore min

j
{μj} ≤ μσ(j), which implies

(
1 − min

j
μj

)n
Hσ(j)
n
∑

j=1
Hj ≥

(
1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

and ⎛⎜⎜⎝1 −
(

1 − min
j

μj

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

≤

⎛⎜⎜⎝1 −
(

1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

.

Then,

n

∏
j=1

⎛⎜⎜⎝1 −
(

1 − min
j

μj

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

≤
n

∏
j=1

⎛⎜⎜⎝1 −
(

1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj

.

Further,

∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 −
(

1 − min
j

μj

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

≥ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 −
(

1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠ ,

12
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which implies that

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 −
(

1 − min
j

μj

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

≤

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 −
(

1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

,

i.e.,

μ− ≤

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (
1 − μσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

.

In the same manner, we get

ρ− ≥ 1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

and

ν− ≥ 1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − νσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

.

Hence, (μ−, ρ−, ν−) ≤ SVNPMM(α1, α2, . . . , αn). Similarly, we have

SVNPMM(α1, α2, . . . , αn) ≤ (μ+, ρ+, ν+),

which completes the proof.

Theorem 4. Let α̃j be any permutation of αj then we have

SVNPMM(α1, α2, . . . , αn) = SVNPMM(α̃1, α̃2, . . . , α̃n).

This property is called commutativity.

Proof. The proof of this theorem can be easily followed from Equation (12), so we omit it here.

Theorem 5. If the priority level of all the SVNNs is taken to be the same then SVNPMM operator reduces to
single-valued neutrosophic Muirhead mean (SVNMM) operator. This property is called reducibility.

13
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Proof. Take ξ j =
Hj

n
∑

j=1
Hj

= 1
n for all j denotes the prioritized level. As ξ j is same for all j, so, we have

(nξ j)ασ(j) = ασ(j), which implies

SVNPMM(α1, α2, . . . , αn) =

(
1
n!

⊕
σ∈Sn

n

∏
j=1

α
pj
σ(j)

) 1
n
∑

j=1
pj

= SVNMM(α1, α2, . . . , αn).

However, apart from these, the following particular cases are observed from the proposed
SVNPMM operator by assigning different values to P = (p1, p2, . . . , pn).

1. If P = (1, 0, . . . , 0), then SVNPMM operator becomes the SVN prioritized weighted average
(SVNPWA) operator which is given as

SVNPMM(α1, α2, . . . , αn) =

⎛⎜⎜⎜⎝ 1
n!

⊕
σ∈Sn

⎛⎜⎜⎜⎝n
Hσ(1)
n
∑

j=1
Hj

ασ(1)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

=
n⊕

j=1

Hj
n
∑

j=1
Hj

αj

= SVNPWA(α1, α2, . . . , αn).

2. When P = (λ, 0, . . . , 0), then SVNPMM operator yields to SVN generalized hybrid prioritized
weighted average (SVNGHPWA) operator as shown below

SVNPMM(α1, α2, . . . , αn) =

⎛⎜⎜⎜⎝ 1
n!

⊕
σ∈Sn

⎛⎜⎜⎜⎝n
Hσ(1)
n
∑

j=1
Hj

ασ(1)

⎞⎟⎟⎟⎠
λ⎞⎟⎟⎟⎠

1
λ

=

⎛⎜⎜⎜⎝ 1
n

n⊕
j=1

⎛⎜⎜⎜⎝n
Hj

n
∑

j=1
Hj

αj

⎞⎟⎟⎟⎠
λ⎞⎟⎟⎟⎠

1
λ

= SVNGHPWA(α1, α2, . . . , αn).

3. If P = (1, 1, 0, . . . , 0), then Equation (11) reduces to SVN prioritized bonferroni mean (SVNPBM)
operator as below

14
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SVNPMM(α1, α2, . . . , αn) =

⎛⎜⎜⎜⎝ 1
n!

⊕
σ∈Sn

⎛⎜⎜⎜⎝n
Hσ(1)
n
∑

j=1
Hj

ασ(1)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝n

Hσ(2)
n
∑

j=1
Hj

ασ(2)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
2

=

⎛⎜⎜⎝n2

n!

n⊕
r,s=1
r �=s

⎛⎜⎜⎝ Hr
n
∑

r=1
Hr

αr

⎞⎟⎟⎠
⎛⎜⎜⎝ Hs

n
∑

s=1
Hs

αs

⎞⎟⎟⎠
⎞⎟⎟⎠

1
2

= SVNPBM(α1, α2, . . . , αn).

4. If P = (

t terms︷ ︸︸ ︷
1, 1 . . . , 1,

n − t terms︷ ︸︸ ︷
0, 0 . . . , 0 ), then SVNPMM operator yields to SVN prioritized Maclaurin

symmetric mean (SVNPMSM) operator as follows

SVNPMM(α1, α2, . . . , αn) =

⎛⎜⎜⎝2ntt
n!

⊕
1<j1<···
<jt<n

t⊗
q=1

⎛⎜⎜⎝ Hjq
n
∑

r=1
Hr

αjq

⎞⎟⎟⎠
⎞⎟⎟⎠

1
t

.

3.2. Single-Valued Neutrosophic Prioritized Dual Muirhead Mean Operator

In this section, we propose prioritized dual aggregation operator based on the MM under the
SVNS environment.

Definition 8. A SVNPDMM operator is a mapping SVNPDMM : Ωn → Ω given by

SVNPDMM(α1, α2, . . . , αn) =
1

n
∑

j=1
pj

⎛⎜⎜⎝ ∏
σ∈Sn

n⊕
j=1

(
pjασ(j)

)n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
1
n!

. (13)

Theorem 6. The collective value by using Equation (13) is still a SVNN and is given as

SVNPDMM(α1, α2, . . . , αn)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − μσ(j)

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj
⎞⎟⎟⎠
⎞⎟⎟⎠

1
n!
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

,

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − ρσ(j))

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj
⎞⎟⎟⎠
⎞⎟⎟⎠

1
n!
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

,

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − νσ(j))

n
Hσ(j)
n
∑

j=1
Hj

⎞⎟⎟⎠
pj
⎞⎟⎟⎠
⎞⎟⎟⎠

1
n!
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Proof. The proof follows from Theorem 1.

In order to illustrate the working of this operator, we demonstrate it through an illustrative
example as follows.

15
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Example 2. If we have taken the data as considered in Example 1 to illustrate the aggregation operator as
defined in Theorem 6 then, we have

∏
σ∈S3

⎛⎜⎜⎜⎝1 −
3

∏
j=1

⎛⎜⎜⎜⎝1 − μ

3
Hσ(j)
3
∑

j=1
Hj

σ(j)

⎞⎟⎟⎟⎠
pj
⎞⎟⎟⎟⎠

=

{
1 −

(
1 − (0.5)3×0.5087

)1

×
(

1 − (0.3)3×0.3765
)0.5

×
(

1 − (0.6)3×0.1148
)0.3

}

×
{

1 −
(

1 − (0.3)3×0.3765
)1

×
(

1 − (0.5)3×0.5087
)0.5

×
(

1 − (0.6)3×0.1148
)0.3

}

×
{

1 −
(

1 − (0.6)3×0.1148
)1

×
(

1 − (0.3)3×0.3765
)0.5

×
(

1 − (0.5)3×0.5087
)0.3

}

×
{

1 −
(

1 − (0.3)3×0.3765
)1

×
(

1 − (0.6)3×0.1148
)0.5

×
(

1 − (0.5)3×0.5087
)0.3

}

×
{

1 −
(

1 − (0.5)3×0.5087
)1

×
(

1 − (0.6)3×0.1148
)0.5

×
(

1 − (0.3)3×0.3765
)0.3

}

×
{

1 −
(

1 − (0.6)3×0.1148
)1

×
(

1 − (0.5)3×0.5087
)0.5

×
(

1 − (0.3)3×0.3765
)0.3

}
= 0.00042495.

Similarly, we have

∏
σ∈S3

⎛⎜⎜⎝1 −
3

∏
j=1

⎛⎜⎜⎝1 − (1 − ρσ(j))

3
Hσ(j)
3
∑

j=1
Hj

⎞⎟⎟⎠
pj⎞⎟⎟⎠

=

{
1 −

(
1 − (1 − 0.2)3×0.5087

)1

×
(

1 − (1 − 0.5)3×0.3765
)0.5

×
(

1 − (1 − 0.5)3×0.1148
)0.3

}

×
{

1 −
(

1 − (1 − 0.5)3×0.3765
)1

×
(

1 − (1 − 0.2)3×0.5087
)0.5

×
(

1 − (1 − 0.5)3×0.1148
)0.3

}

×
{

1 −
(

1 − (1 − 0.5)3×0.1148
)1

×
(

1 − (1 − 0.5)3×0.3765
)0.5

×
(

1 − (1 − 0.2)3×0.5087
)0.3

}

×
{

1 −
(

1 − (1 − 0.5)3×0.3765
)1

×
(

1 − (1 − 0.5)3×0.1148
)0.5

×
(

1 − (1 − 0.2)3×0.5087
)0.3

}

×
{

1 −
(

1 − (1 − 0.2)3×0.5087
)1

×
(

1 − (1 − 0.5)3×0.1148
)0.5

×
(

1 − (1 − 0.5)3×0.3765
)0.3

}

×
{

1 −
(

1 − (1 − 0.5)3×0.1148
)1

×
(

1 − (1 − 0.2)3×0.5087
)0.5

×
(

1 − (1 − 0.5)3×0.3765
)0.3

}
= 0.0268

16
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and

∏
σ∈S3

⎛⎜⎜⎜⎝1 −
3

∏
j=1

⎛⎜⎜⎜⎝1 − (1 − νσ(j))

3
Hσ(j)
3
∑

j=1
Hj

⎞⎟⎟⎟⎠
pj
⎞⎟⎟⎟⎠

=

{
1 −

(
1 − (1 − 0.3)3×0.5087

)1

×
(

1 − (1 − 0.4)3×0.3765
)0.5

×
(

1 − (1 − 0.2)3×0.1148
)0.3

}

×
{

1 −
(

1 − (1 − 0.4)3×0.3765
)1

×
(

1 − (1 − 0.3)3×0.5087
)0.5

×
(

1 − (1 − 0.2)3×0.1148
)0.3

}

×
{

1 −
(

1 − (1 − 0.2)3×0.1148
)1

×
(

1 − (1 − 0.4)3×0.3765
)0.5

×
(

1 − (1 − 0.3)3×0.5087
)0.3

}

×
{

1 −
(

1 − (1 − 0.4)3×0.3765
)1

×
(

1 − (1 − 0.2)3×0.1148
)0.5

×
(

1 − (1 − 0.3)3×0.5087
)0.3

}

×
{

1 −
(

1 − (1 − 0.3)3×0.5087
)1

×
(

1 − (1 − 0.2)3×0.1148
)0.5

×
(

1 − (1 − 0.4)3×0.3765
)0.3

}

×
{

1 −
(

1 − (1 − 0.2)3×0.1148
)1

×
(

1 − (1 − 0.3)3×0.5087
)0.5

×
(

1 − (1 − 0.4)3×0.3765
)0.3

}
= 0.0791.

Hence,

SVNPDMM(α1, α2, α3) =

⎛⎜⎜⎜⎜⎝
1 −

(
1 − (0.00042495)

1
6

) 1
1.8

,
(

1 − (0.0268)
1
6

) 1
1.8

,

(
1 − (0.0791)

1
6

) 1
1.8

⎞⎟⎟⎟⎟⎠
= (0.1631, 0.6441, 0.5535).

Similar to SVNPMM operator, it is observed that this SVNPDMM operator also satisfies same
properties for a collection of SVNNs αj(j = 1, 2, . . . , n) which are stated without proof as below.

(P1) Monotonicity: If αj ≤ α′j for all j, then

SVNPDMM(α1, α2, . . . , αn) ≤ SVNPDMM(α′1, α′2, . . . , α′n).

(P2) Boundedness: If α−, and α+ are lower and upper bound of SVNNs then

α− ≤ SVNPDMM(α1, α2, . . . , αn) ≤ α+.

(P3) Commutativity: For any permutation (α̃1, α̃2, . . . , α̃n) of the (α1, α2, . . . , αn), we have

SVNPDMM(α1, α2, . . . , αn) = SVNPDMM(α̃1, α̃2, . . . , α̃n).

4. Multi-Criteria Decision-Making Approach Based on Proposed Operators

In this section, we present an MCDM approach for solving the decision-making problem under
the SVNS environment by using the proposed operators. A practical example from a field of
decision-making has been taken to illustrate it.
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4.1. Proposed Decision-Making Approach

Consider an MCDM problem which consists of m alternatives A1, A2, . . . , Am which are evaluated
under the n criteria C1, C2, . . . , Cn. For this, an expert was invited to evaluate these alternatives under
the SVN environment such that their rating values were given in the form of SVNNs. For instance,
corresponding to alternative Ai under criterion Cj, when we ask the opinion of an expert about the
alternative Ai with respect to the criterion Cj, he or she may observe that the possibility degree in which
the statement is good is μij, the statement is false is νij and the degree in which he or she is unsure is
ρij. In this case, the evaluation of these alternatives are represented as SVNN αij = (μij, ρij, νij) such
that 0 ≤ μij, ρij, νij ≤ 1 and μij + ρij + νij ≤ 3. This collective information is represented in the form of
the neutrosophic decision-matrix D which is represented as

D =

C1 C2 . . . Cn⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

A1 α11 α12 . . . α1n
A2 α21 α22 . . . α2n
...

...
...

. . .
...

Am αm1 αm2 . . . αmn

.

Based on this information, the procedure to find the best alternative(s) is summarized as follows:

Step 1: If in the considered decision-making problem, there exist two kinds of criteria, namely the
benefit and the cost types, then all the cost type criteria should be normalized into the benefit
type by using the following equation

rij =

{
(νij, ρij, μij) ; for cost type criteria,
(μij, ρij, νij) ; for benefit type criteria.

(15)

Step 2: Compute Hij(i = 1, 2, . . . , m) as

Hij =

⎧⎪⎨⎪⎩
1 ; j = 1,
j−1
∏

k=1
s(rik) ; j = 2, . . . , n.

(16)

Step 3: For a given parameter P = (p1, p2, . . . , pn), utilize either SVNPMM or SVNPDMM operator
to get the collective values ri = (μi, ρi, νi)(i = 1, 2, . . . , m) for each alternative as

ri = SVNPMM(ri1, ri2, . . . , rin)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − μiσ(j))

n
Hiσ(j)
n
∑

j=1
Hij

⎞⎟⎟⎠
pj
⎞⎟⎟⎠
⎞⎟⎟⎠

1
n!
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

,

1 −

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − ρiσ(j)

n
Hiσ(j)
n
∑

j=1
Hij

⎞⎟⎟⎠
pj
⎞⎟⎟⎠
⎞⎟⎟⎠

1
n!
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

,

1 −

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − νiσ(j)

n
Hiσ(j)
n
∑

j=1
Hij

⎞⎟⎟⎠
pj
⎞⎟⎟⎠
⎞⎟⎟⎠

1
n!
⎞⎟⎟⎟⎠

1
n
∑

j=1
pj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)
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or

ri = SVNPDMM(ri1, ri2, . . . , rin)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − μiσ(j)

n
Hiσ(j)
n
∑

j=1
Hij

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

,

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − ρiσ(j))

n
Hiσ(j)
n
∑

j=1
Hij

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

,

⎛⎜⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
σ∈Sn

⎛⎜⎜⎝1 −
n

∏
j=1

⎛⎜⎜⎝1 − (1 − νiσ(j))

n
Hiσ(j)
n
∑

j=1
Hij

⎞⎟⎟⎠
pj⎞⎟⎟⎠

⎞⎟⎟⎠
1
n!
⎞⎟⎟⎟⎟⎠

1
n
∑

j=1
pj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

Step 4: Calculate score values of the overall aggregated values ri = (μi, ρi, νi) (i = 1, 2, . . . , m) by
using equation

s(ri) =
1 + (μi − 2ρi − νi)(2 − μi − νi)

2
. (19)

Step 5: Rank all the feasible alternatives Ai(i = 1, 2, . . . , m) according to Definition 3 and hence select
the most desirable alternative(s).

The above mentioned approach has been illustrated with a numerical example discussed in
Section 4.2.

4.2. Illustrative Example

A travel agency named Marricot Tripmate has excelled in providing travel related services to
domestic and inbound tourists. The agency wants to provide more facilities like detailed information,
online booking capabilities, the ability to book and sell airline tickets, and other travel related services
to their customers. For this purpose, the agency intends to find an appropriate information technology
(IT) software company that delivers affordable solutions through software development. To complete
this motive, the agency forms a set of five companies (alternatives), namely, Zensar Tech (A1), NIIT
Tech (A2), HCL Tech (A3), Hexaware Tech (A4), and Tech Mahindra (A5) and the selection is held
on the basis of the different criteria, namely, technology expertise (C1), service quality (C2), project
management (C3) and industry experience (C4). The prioritization relationship for the criterion is
C1 � C2 � C3 � C4. In order to access these alternatives, an expert was invited and he gives their
preferences toward each alternative in the form of SVNN. Their complete preferences of the expert are
summarized in Table 1.

Table 1. Single-valued neutrosophic decision making matrix.

C1 C2 C3 C4

A1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4)
A2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2)
A3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3)
A4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2)
A5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6)
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Then, the following steps of the proposed approach have been executed as below

Step 1: As all the criteria values are of the same types, the original decision matrix need not be
normalized.

Step 2: Compute Hij(j = 1, 2, 3, 4) by using Equation (16), we get

H =

⎡⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎦

1 0.6650 0.4921 0.3642
1 0.9000 0.7200 0.4464
1 0.6650 0.5320 0.4575
1 0.6650 0.5154 0.1134
1 0.8250 0.6806 0.6024

.

Step 3: Without loss of generality, we take P = (0.25, 0.25, 0.25, 0.25) and use SVNPMM operator
given in Equation (17) to aggregate rij(j = 1, 2, 3, 4) and hence we get r1 = (0.9026, 0.0004,
0.0118); r2 = (0.9963, 0.0008, 0.0007); r3 = (0.9858, 0.0001, 0.0029); r4 = (0.9877, 0.0021,
0.0002) and r5 = (0.9474, 0.0000, 0.0093).

Step 4: By Equation (19), we get s(r1) = 0.9959, s(r2) = 0.9992, s(r3) = 0.9998, s(r4) = 0.9978 and
s(r5) = 0.9990.

Step 5: Since s(r3) > s(r2) > s(r5) > s(r4) > s(r1) and thus ranking order of their corresponding
alternatives is A3 � A2 � A5 � A4 � A1. Here � refers “preferred to”. Therefore, A3 is the
best one according to the requirement of the travel agency.

Contrary to this, if we utilize SVNPDMM operator then the following steps are executed as:

Step 1: Similar to above Step 1.
Step 2: Similar to above Step 2.
Step 3: For a parameter P = (0.25, 0.25, 0.25, 0.25), use SVNPDMM operator given in Equation (18)

we get r1 = (0.0069, 0.7379, 0.9413); r2 = (0.1034, 0.7423, 0.7782); r3 = (0.0428, 0.6021, 0.8672);
r4 = (0.0625, 0.8271, 0.6966) and r5 = (0.0109, 0.5340, 0.9125).

Step 4: The evaluated score values by using Equation (19) are s(r1) = 0.2226, s(r2) = 0.1628, s(r3) =

0.3396, s(r4) = −0.0554 and s(r5) = 0.4222.
Step 5: The ranking order of the alternatives, based on the score values, is A5 � A3 � A1 � A2 � A4

and hence A5 as the best alternative among the others.

4.3. Comparison Study

If we apply the existing prioritized aggregation operator named as SVN prioritized operator [36]
on the considered problem, then the following steps of the Wu et al. [36] approach have been executed
as follows:

Step 1: Use SVNPWA operator as given in Equation (4) to calculate the aggregated values
βi(i = 1, 2, 3, 4, 5) of each alternative Ai are β1 = (0.4392, 0.2407, 0.3981),
β2 = (0.6681, 0.1864, 0.2602), β3 = (0.5461, 0.1929, 0.3414), β4 = (0.6294, 0.2844, 0.2000)
and β5 = (0.4291, 0.1141, 0.3232).

Step 2: Compute the cross entropy E for each βi from A+ = (1, 0, 0) and A− = (0, 0, 1) based on
the equation E(α1, α2) = (sin μ1 − sin μ2) × (sin(μ1 − μ2)) + (sin ρ1 − sin ρ2) × (sin(ρ1 −
ρ2)) + (sin ν1 − sin ν2) × (sin(ν1 − ν2)) and then evaluate Sβi by using equation Sβi =

E(βi ,A+)
E(βi ,A+)+E(βi ,A−) . The values corresponding to it are: Sβ1 = 0.4642, Sβ2 = 0.1755, Sβ3 = 0.3199,
Sβ4 = 0.1914 and Sβ5 = 0.4007.

Step 3: The final ranking of alternative, according to the values of Sβi , is A2 � A4 � A3 � A5 � A1.

From above, we have concluded that the A2 is the best alternative and A1 is the worst one.
However, from their approach [36], it has been concluded that they have completely ignored the
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interrelationships among the multi-input arguments and hence the ranking order are quite different.
Thus, from it, we can see the influence of the interrelationships among all the criteria on the
decision-making process.

4.4. Influence of Parameter P on the Decision-Making Process

The proposed aggregation operators have two prominent advantages. First, it can reduce the
bad effects of the unduly high and low assessments on the final results. Second, it can capture the
interrelationship between SVN attributes values. Moreover, both of the two aggregation operators
have a parameter vector P, which leads to a more flexibility during the aggregation process. Further,
the parameter vector P plays a significant role in the final ranking results. In order to illustrate the
influence of the parameter vector P = (p1, p2, . . . , pn) on the score functions and the ranking results,
we set different values to P in the SVNPMM and SVNPDMM operators and their corresponding results
are summarized in Table 2. From this table, it is concluded that the score value of each alternative
decreases by SVNPMM operator while it increases by SVNPDMM operator. Therefore, based on the
decision maker behavior, either A3 or A5 are the best alternatives to be chosen for their desired goals.
Thus, the parameter vector P can be viewed as decision makers’ risk preference.

4.5. Further Discussion

The prominent advantage of the proposed aggregation operators is that the interrelationship
among all SVNNs can be taken into consideration. Moreover, it has a parameter vector that leads
to flexible aggregation operators. To show the validity and superiorities of the proposed operators,
we conduct a comparative analysis whose characteristics are presented in Table 3.

Table 2. Ranking results of alternatives using proposed operators for different values of P.

Parameter Vector
Operator

Score Values of Alternatives Ranking

P A1 A2 A3 A4 A5 Results

(1, 0, 0, 0) SVNPMM 0.9975 0.9997 0.9999 0.9989 0.9990 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.2184 0.0876 0.2942 -0.1233 0.3632 A5 � A3 � A1 � A2 � A4

(1, 1, 0, 0) SVNPMM 0.9844 0.9969 0.9988 0.9920 0.9940 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.3638 0.2891 0.4851 0.0162 0.5597 A5 � A3 � A1 � A2 � A4

(1, 1, 1, 0) SVNPMM 0.9723 0.9926 0.9968 0.9809 0.9887 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.4268 0.3846 0.5529 0.1219 0.6053 A5 � A3 � A1 � A2 � A4

(1, 1, 1, 1) SVNPMM 0.9624 0.9868 0.9942 0.9659 0.9851 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.4617 0.4507 0.5955 0.2079 0.6341 A5 � A3 � A1 � A2 � A4

(2, 2, 2, 2) SVNPMM 0.9443 0.9633 0.9836 0.9189 0.9767 A3 � A5 � A2 � A1 � A4
SVNPDMM 0.5165 0.5024 0.640 0.3016 0.6698 A5 � A3 � A1 � A2 � A4

(3, 3, 3, 3) SVNPMM 0.9322 0.9440 0.9744 0.8896 0.9715 A3 � A5 � A2 � A1 � A4
SVNPDMM 0.5369 0.5018 0.6490 0.3142 0.6853 A5 � A3 � A1 � A2 � A4(

1
2 , 1

2 , 1
2 , 1

2

) SVNPMM 0.9824 0.9965 0.9987 0.9903 0.9943 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.3652 0.3217 0.4982 0.0490 0.5661 A5 � A3 � A1 � A2 � A4(

1
4 , 1

4 , 1
4 , 1

4

) SVNPMM 0.9959 0.9992 0.9998 0.9978 0.9990 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.2226 0.1628 0.3396 -0.0554 0.4222 A5 � A3 � A1 � A2 � A4

(2, 0, 0, 0) SVNPMM 0.9890 0.9984 0.9990 0.9953 0.9931 A3 � A2 � A4 � A5 � A1
SVNPDMM 0.3571 0.1886 0.4228 -0.1009 0.4781 A5 � A3 � A1 � A2 � A4

(3, 0, 0, 0) SVNPMM 0.9814 0.9964 0.9974 0.9898 0.9860 A3 � A2 � A4 � A5 � A1
SVNPDMM 0.4139 0.2426 0.4645 -0.0595 0.5008 A5 � A3 � A1 � A2 � A4

SVNPMM: single-valued neutrosophic prioritized Muirhead mean, SVNPDMM: single-valued neutrosophic
prioritized dual Muirhead mean.
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Table 3. Comparison of different approaches and aggregation operators.

Approaches

Whether the Whether the Whether the Whether the Bad Whether It Makes the
Interrelationship of Interrelationship of Relationship of Effects of the Unduly High Method Flexible by

Two Attributes Three Attributes Multiple Attributes Unduly Low Arguments the Parameter
Is Captured Is Captured Is Captured Can Be Reduced Vector

NWA [21] × × × × ×
SVNWA [22] × × × × ×
SVNOWA [22] × × × × ×
SVNWG [22] × × × × ×
SVNOWG [22] × × × × ×
SVNHWA [25] × × × × ×
SVNHWG [25] × × × × ×
NWG [21] × × × × ×
SVNFWG [24] × × × × �
SVNFWA [24] × × × × �
SVNFNPBM [37] � × × × �
WSVNLMSM [34] � � � × �
SVNNWBM [33] � × × × �
SVNIGWHM [20] � � � × �
GNNHWA [25] × × × × �
The proposed method � � � � �

NWA: neutrosophic weighted averaging, SVNWA: single-valued neutrosophic weighted averaging, SVNOWA:
single-valued neutrosophic ordered weighted averaging, SVNWG: single-valued neutrosophic weighted
geometric, SVNOWG: single-valued neutrosophic ordered weighted geometric, SVNHWA: single-valued
neutrosophic hybrid weighted averaging, SVNHWG: single-valued neutrosophic hybrid weighted geometric,
NWG: neutrosophic weighted geometric, SVNFWG: single-valued neutrosophic Frank weighted geometric,
SVNFWA: single-valued neutrosophic Frank weighted averaging, SVNFNPBM: single-valued neutrosophic
Frank normalized prioritized Bonferroni mean, WSVNLMSM: weighted single-valued neutrosophic linguistic
Maclaurin symmetric mean, SVNNWBM: single-valued neutrosophic normalized weighted Bonferroni
mean, IGWHM: single-valued neutrosophic improved generalized weighted Heronian mean, GNNHWA:
generalized neutrosophic number Hamacher weighted averaging.

The approaches in [21,22,25] are based on a simple weighted averaging operator. However,
in these approaches, some of the weakness are (1) they assume that all the input arguments are
independent, which is somewhat inconsistent with reality; (2) they cannot consider the interrelationship
among input arguments. However, on the contrary, the proposed method can capture the
interrelationship among input arguments. In addition to that, the proposed operator has an additional
parameter P which provide a feasible aggregation process. In addition, some of the existing operators
are deduced from the proposed operators. Thus, the proposed method is more powerful and flexible
than the methods in [21,22,25].

In [33,37], authors presented an approach based on the BM aggregation operator where they
considered the interrelationship between the arguments. However, the main flaws of these approaches
are that they consider only two arguments during the interrelationship. On the other hand, in [34]
authors have presented an aggregation operator based on MSM by considering two or more arguments
during the interrelationship; however, these methods [33,34,37] fail to reflect the interrelationship
among all input arguments. Finally, in [20] authors used the Heronian mean AOs without considering
any interrelationship between the arguments.

As compared with these existing approaches, the merits of the proposed approach are that it can
reflect the interrelationships among all the input arguments. In addition, the proposed operators have
an additional parameter P which makes the proposed approach more flexible and feasible.

5. Conclusions

Muirhead mean aggregation operator is more flexible by using a variable and considering the
multiple interrelationships between the pairs of the input arguments. On the other hand, SVNS is more
of a generalization of the fuzzy set, intuitionistic fuzzy set to describe the uncertainties in the data.
In order to combine their advantages, in the present paper, we develop some new MM aggregation
operators for the SVNSs including the SVNPMM and the SVNPDMM. The desirable properties of these
proposed operators and some special cases are discussed in detail. Moreover, we presented two new
methods to solve the MCDM problem based on the proposed operators. The proposed method is more
general and flexible, not only by considering the parametric vector P but also by taking into account the
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multiple interrelationships between the input argument. Apart from this, the remarkable characteristic
of the proposed operator is to reflect the correlations of the aggregated arguments by considering the
fact that those different criteria having different priority levels. The mentioned approach has been
demonstrated through a numerical example and compares their corresponding proposed results with
some of the results of existing approaches. From the computed results, it has been observed that the
proposed approach can be efficiently utilized to solve decision-making problems where uncertainties
and vagueness in the data occur concurrently. Moreover, by changing the values of the parameter P,
an analysis has been done which concludes that the proposed operators provide more choices to the
decision makers according to their preferences. In addition, it is also regarded as considering the risk
preference of decision makers by the parameter P. So, the proposed approach is more suitable and
flexible to solve the practical and complex MCDM problems.

In future works, we will apply our proposed method for more practical decision-making problems.
In addition, considering the superiority of MM operator, we can extend it to some new fuzzy sets, such as
Pythagorean fuzzy sets [39–41], applications to MCDM [42–44], multiplicative sets [45,46] and so on.
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Abstract: As a new generalization of the notion of the standard group, the notion of the neutrosophic
triplet group (NTG) is derived from the basic idea of the neutrosophic set and can be regarded
as a mathematical structure describing generalized symmetry. In this paper, the properties and
structural features of NTG are studied in depth by using theoretical analysis and software calculations
(in fact, some important examples in the paper are calculated and verified by mathematics software,
but the related programs are omitted). The main results are obtained as follows: (1) by constructing
counterexamples, some mistakes in the some literatures are pointed out; (2) some new properties
of NTGs are obtained, and it is proved that every element has unique neutral element in any
neutrosophic triplet group; (3) the notions of NT-subgroups, strong NT-subgroups, and weak
commutative neutrosophic triplet groups (WCNTGs) are introduced, the quotient structures are
constructed by strong NT-subgroups, and a homomorphism theorem is proved in weak commutative
neutrosophic triplet groups.

Keywords: neutrosophic triplet group (NTG); NT-subgroup; homomorphism theorem; weak
commutative neutrosophic triplet group

1. Introduction

The importance of group theory is self-evident. It is widely used in many fields, such as physics,
chemistry, engineering, and so on. It is a very good mathematical tool to describe the symmetry of
nature [1,2]. As a more general concept, Molaei introduced the new notion of generalized group in
1999 [3,4], and some researchers studied its properties [5,6].

The concept of neutrosophic set is introduced by F. Smarandache, it is a generalization of
(intuitionistic) fuzzy sets [7]. The neutrosophic set theory is applied to algebraic structures, multiple
attribute decision-making, and so on [8–13]. Recently, F. Smarandache and Mumtaz Ali in [14,15],
for the first time, introduced the new notion of neutrosophic triplet group (NTG), which is another
generalization of classical group. It is easy to verify that all generalized groups are neutrosophic triplet
group. Note that, in this paper, the notion of neutrosophic triplet group, indeed, is the neutrosophic
extended triplet group in [14].

Until now, for neutrosophic triplet group, some research articles are published [16–21]. At the
same time, there are still some misunderstandings about this new algebraic structure. This paper will
clarify some misunderstandings, especially pointing out some erroneous conclusions in [18] and will
try to give improved results. In Section 2, we give some examples to illustrate which conclusions
are incorrect and some misunderstandings have led to the emergence of these results. In Section 3,
we prove some new important properties of neutrosophic triplet groups. In Section 4, we give some
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new concepts, include NT-subgroups, strong NT-subgroups, and weak commutative neutrosophic
triplet groups (WCNTGs), and prove a homomorphism theorem of weak commutative neutrosophic
triplet groups.

2. Preliminaries

As we all know, the concept of group is a useful tool to characterize symmetry. In the definition
of classical group, unit element has operation invariance for any element, i.e., e·x = x·e = x for all x
in a group (G, ·), where e in G is the unit element. Moreover, the inverse element x−1 of x is also
relative to the unit element e, and the inverse element is unique in the classical group. In [14,15],
starting from the basic idea of neutrosophic set, a new algebraic structure, neutrosophic triplet group
(briefly, NTG), is proposed. In NTG, the unit element is generalized as a neutral element, which is
relative and local; that is, each element has its own neutral element; and the original inverse element
concept is generalized as an anti (opposite) element, and it is relative to own neutral element, and it
cannot be unique. In this way, NTG can express more general symmetry and has important theoretical
and applied value.

Definition 1. Assume that N is an empty set and * is a binary operation on N. Then, N is called a neutrosophic
triplet set (NTS) if for any a ∈ N, there exists a neutral of “a” (denoted by neut(a)), and an opposite of “a”
(denoted by anti(a)) satisfying ([14,15]):

a*neut(a) = neut(a)*a = a;

a* anti(a) = anti(a)*a = neut(a).

And, the triple (a, neut(a), anti(a)) is called a neutrosophic triplet.

Note that, for a neutrosophic triplet set (N, *), a ∈ N, neut(a) and anti(a) may not be unique. In order
not to cause ambiguity, we use the notations {neut(a)} and {anti(a)}; they represent the sets of neut(a)
and anti(a), respectively.

Remark 1. In the original definition in [14,15], the neutral element cannot be a unit element in the usual sense,
and then this restriction is removed, using the concept of a neutrosophic extended triplet by F. Smarandache [14].
That is, the classical unit element can be regarded as a special neutral element. Here, the notion of neutrosophic
triplet refers to neutrosophic extended triplet.

Definition 2. Assume that (N, *) is a neutrosophic triplet set. Then, N is called a neutrosophic triplet group,
if it satisfies ([14,15]):

(1) The operation * is closed, i.e., a *b ∈ N, ∀a, b ∈ N;
(2) The operation* is associative, i.e., (a *b) *c = a * (b *c),∀ a, b, c ∈ N

A neutrosophic triplet group (N, *) is called to be commutative, if a * b = b* a, ∀a, b ∈ N.

3. Some Counterexamples and Misunderstandings on Neutrosophic Triplet Groups

The research idea of Ref. [18] is very good, but the main results are not true. This section first
gives some counterexamples, and then analyzes some of the misunderstandings on neutrosophic
triplet groups.

Example 1. Denote N = {1, 2, 3, 4, 5}; the operation * on N is defined by Table 1. Then, (N, *) is a commutative
neutrosophic triplet group, and:

neut(1) = 1, {anti(1) } = {1, 2, 3}; neut(2) = 3, anti(2) = 2; neut(3) = 3, anti(3) = 3;
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neut(4) = 4, {anti(4)} = {1, 2, 3, 4}; neut(5) = 4, anti(5) = 5.

Table 1. Commutative neutrosophic triplet group.

* 1 2 3 4 5

1 1 1 1 4 5
2 1 3 2 4 5
3 1 2 3 4 5
4 4 4 4 4 5
5 5 5 5 5 4

Denote H = {1, 2, 3, 4}, then (H, *) is a neutrosophic triplet subgroup (according to Definition 17 in [18]). And,

1H = {1, 4}, 2H = {1, 2, 3, 4}, 3H = {1, 2, 3, 4}, 4H = {4}, 5H = {5}.

This means that Lemma 1 (2), (4), (7), and (9) in [18] are not true:

1 ∈ H, but 1H �= H;

1H �= 2H and 1H∩ 2H �= ∅;

1 ∈ H, but 1H is a neutrosophic triplet subgroup (according to Definition 17 in [18]);

|1H| �= |2H|.

Moreover, |H| = 4, |N| = 5, it follows that |H|| |N|; and the number of distinct aH in N (according to
Definition 18 in [18]) is no |N|||H|. This means that Theorem 3 in [18] are not true.

Example 2. Denote N = {1, 2, 3, 4, 5}, the operation * on N is defined by Table 2. Then, (N, *) is
a non-commutative neutrosophic triplet group, and:

neut(1) = 1, anti(1) = 1; neut(2) = 2, anti(2) = 2; neut(3) = 3, anti(3) = 3;

neut(4) = 4, {anti(4)} = {3, 4}; neut(5) = 3, anti(5) = 5.

Table 2. Non-commutative neutrosophic triplet group.

* 1 2 3 4 5

1 1 1 1 1 1
2 2 2 2 2 2
3 4 4 3 4 5
4 4 4 4 4 4
5 4 4 5 4 3

Denote H = {1, 2, 3, 4}, then (H, *) is a neutrosophic triplet subgroup (according to Definition 17 in [18]). And:

1H = {1}, H1 = {1, 2, 4}; 2H = {2}, H2 = {1, 2, 4}; 3H = {3, 4}, H3 = {1, 2, 3, 4};

4H = {4}, H4 = {1, 2, 4}; 5H = {4, 5}, H5 = {1, 2, 4, 5}.

It follows that Theorem 4 in [18] is not true:

anti(1)*(H1) ⊆ H, anti(2)*(H2) ⊆ H, anti(3)*(H3) ⊆ H, anti(4)*(H4) ⊆ H, anti(5)*(H5) ⊆ H;
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but H is not normal (according to Definition 20 in [18]).
Moreover, anti(5)*4 = 4 ∈ H, thus 5 = l 4(mod H), according to Definition 19 in [18]. But 4 �= l 5 (mod H),

this means that = l is not an equivalence relation. Therefore, Proposition 2 in [18] is not true.

4. Some New and Important Properties of Neutrosophic Triplet Groups

As mentioned earlier, from the definition of neutrosophic triplet group, there may be multiple
neutral elements neut(a) of an element a. We used more than a dozen personal computers, hoping to
find an example to show that neutral elements of an element do not have to be unique. Unfortunately,
we spent several months without finding the desired examples. This prompted us to consider another
possibility: perhaps because of the associative law, every element in a neutrosophic triplet group has
a unique neutral element? Recently, we succeeded to prove that this conjecture is true.

Theorem 1. Assume that (N, *) is a neutrosophic triplet group. Then:

(1) a ∈ N, neut(a) is unique.
(2) a ∈ N, neut(a) * neut(a) = neut(a).

Proof. Assume s, t ∈ {neut(a)}. Then s*a = a*s = a, t*a = a*t = a, and there exists p, q such that:

p*a = a*p = s, q*a = a*q = t.

Thus:
s*t = (p*a)*t = p*(a*t) = p*a = s.

On the other hand:
s*t = (a*p)*(a*q) = [a*(p*a)]*q = (a*s)*q = a*q = t.

Therefore, s = t = s*t. This means that neut(a) is unique, and neut(a) * neut(a) = neut(a) for any a in N. �

Remark 2. For an element a in a neutrosophic triplet group (N, *), although neut(a) is unique, but we can see
from Examples 1 and 2 that anti(a) is usually not unique.

Theorem 2. Let (N, *) be a neutrosophic triplet group. Then ∀a ∈ N, ∀anti(a) ∈ {anti(a)},

(1) neut(a)*p = q*neut(a), for any p, q ∈ {anti(a)};.
(2) neut(neut(a)) = neut(a);
(3) anti(neut(a))*anti(a) ∈ {anti(a)};
(4) neut(a*a)*a = a*neut(a*a) = a; neut(a*a)*neut(a) = neut(a)*neut(a*a) = neut(a);
(5) neut(anti(a))*a = a*neut(anti(a)) = a; neut(anti(a))*neut(a) = neut(a)*neut(anti(a)) = neut(a);
(6) anti(neut(a))*a = a*anti(neut(a)) = a, for any anti(neut(a)) ∈ {anti(neut(a))};
(7) a ∈ {anti(neut(a)*anti(a))};
(8) neut(a)*anti(a) ∈ {anti(a)}; anti(a)*neut(a) ∈ {anti(a)};
(9) a ∈ {anti(anti(a))}, that is, there exists p ∈ {anti(a)} such that a ∈ {anti(p)};
(10) neut(a)*anti(anti(a)) = a.

Proof.

(1) For any p, q ∈ {anti(a)}, according the definition of neutral and opposite element, applying
Theorem 1 (1), we have:

p*a = a*p = neut(a), q*a = a*q = neut(a).
neut(a)*p = (q*a)*p = q*(a*p) = q*neut(a).
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(2) For any anti(a) ∈ {anti(a)} and anti(neut(a)) ∈ {anti(neut(a))},

[anti(neut(a))*anti(a)]*a = anti(neut(a))*[anti(a)*a] = anti(neut(a))*neut(a) = neut(neut(a)).

On the other hand:

{[anti(neut(a))*anti(a)]*a}*neut(a) = [anti(neut(a))*anti(a)]*[a*neut(a)] =
[anti(neut(a))*anti(a)]*a = neut(neut(a)).

Thus:
neut(neut(a))*neut(a) = {[anti(neut(a))*anti(a)]*a}*neut(a) = neut(neut(a)).

Moreover, the definition of neutral element, neut(neut(a))*neut(a) = neut(a). Therefore, neut(neut(a))
= neut(a).

(3) For any anti(a) ∈ {anti(a)} and anti(neut(a)) ∈ {anti(neut(a))}, applying (2), we have:

[anti(neut(a))*anti(a)]*a = anti(neut(a))*[anti(a)*a] = anti(neut(a))*neut(a) = neut(neut(a)) = neut(a);
a*[anti(neut(a))*anti(a)] = [a*neut(a)]*[anti(neut(a))*anti(a)] = a*[neut(a)*anti(neut(a))]*anti(a) =

a*neut(neut(a))*anti(a) = a*neut(a)*anti(a) = a*anti(a) = neut(a).

Thus, anti(neut(a))*anti(a) ∈ {anti(a)}.
(4) According to the definition of neutral element, using the associative law, we get:

(a*a)*neut(a*a) = (a*a),
anti(a)*[(a*a)*neut(a*a)] = anti(a)*(a*a),
[anti(a)*a]*[a*neut(a*a)] = [anti(a)*a]*a,

neut(a)*[a*neut(a*a)] = neut(a)*a,
[neut(a)*a]*neut(a*a) = neut(a)*a,

a*neut(a*a) = a.

Similarly, we can get that neut(a*a)*a = a. Moreover:

neut(a)*neut(a*a) = [anti(a)*a]*neut(a*a) = anti(a)*[a*neut(a*a)] = anti(a)*a = neut(a).
neut(a*a)*neut(a) = neut(a*a)*[a*anti(a)] = [neut(a*a)*a]*anti(a) = a *anti(a) = neut(a).

(5) For any anti(a) ∈ {anti(a)}, we have:

anti(a)*neut(anti(a)) = anti(a); neut(anti(a))*anti(a) = anti(a).
a*[anti(a)*neut(anti(a))] = a*anti(a); [neut(anti(a))*anti(a)]*a = anti(a)*a.
[a*anti(a)]*neut(anti(a)) = a*anti(a); neut(anti(a))*[anti(a)*a] = anti(a)*a.

neut(a)*neut(anti(a)) = neut(a); neut(anti(a))*neut(a) = neut(a).
a*[neut(a)*neut(anti(a))] = a*neut(a); [neut(anti(a))*neut(a)]*a = neut(a)*a.
[a*neut(a)]*neut(anti(a)) = a*neut(a); neut(anti(a))*[neut(a)*a] = neut(a)*a.

a*neut(anti(a)) = a; neut(anti(a))*a = a.

Moreover:

neut(a)*neut(anti(a)) = [anti(a)*a]*neut(anti(a)) = anti(a)*[a*neut(anti(a))] = anti(a)*a = neut(a).
neut(anti(a))*neut(a) = neut(anti(a))*[a*anti(a)] = [neut(anti(a))*a]*anti(a) = a *anti(a) = neut(a).

(6) For any anti(neut(a)) ∈ {anti(neut(a))}, by the definition of opposite element, we have:

neut(a)*anti(neut(a)) = anti(neut(a))*neut(a) = neut(neut(a)).

30



Symmetry 2018, 10, 289

Applying (2), neut(neut(a)) = neut(a), we get:

neut(a)*anti(neut(a)) = anti(neut(a))*neut(a) = neut(a).

Thus:
a*[neut(a)*anti(neut(a))] = a*neut(a); [anti(neut(a))*neut(a)]*a = neut(a)*a.
[a*neut(a)]*anti(neut(a)) = a*neut(a); anti(neut(a))*[neut(a)*a] = neut(a)*a.

a*anti(neut(a)) = a; anti(neut(a))*a = a.

(7) For any anti(a) ∈ {anti(a)}, we have:

a*anti(a) = anti(a)*a = neut(a).
[a*neut(a)]*anti(a) = anti(a)*[neut(a)*a] = neut(a).
a*[neut(a)*anti(a)] = [anti(a)*neut(a)]*a = neut(a).

Applying (1), anti(a)*neut(a) = neut(a)*anti(a), thus:

a*[neut(a)*anti(a)] = [neut(a)*anti(a)]*a = neut(a).

Using (5), neut(a)*neut(anti(a)) = neut(a), it follows that:

a*[neut(a)*anti(a)] = [neut(a)*anti(a)]*a = neut(a)*neut(anti(a)).

On the other hand, by (1) and Theorem 1 (2):

[neut(a)*anti(a)]*[neut(a)*neut(anti(a))] = neut(a)*neut(a)*[anti(a)*neut(anti(a))] = neut(a)*anti(a);
[neut(a)*neut(anti(a))]*[neut(a)*anti(a)] = neut(a)*[neut(anti(a))*anti(a)]*neut(a) = neut(a)*anti(a).

Therefore, a ∈ {anti(neut(a)*anti(a))}.
(8) Assume anti(a) ∈ {anti(a)}, then [neut(a)*anti(a)]*a = neut(a)*[anti(a)*a] = neut(a)*neut(a). By Theorem

1 (2), neut(a)*neut(a) = neut(a). Thus, [neut(a)*anti(a)]*a = neut(a). On the other hand,

a*[neut(a)*anti(a)] = [a*neut(a)]*anti(a) = a*anti(a) = neut(a).

Therefore:
[neut(a)*anti(a)]*a = a*[neut(a)*anti(a)] = neut(a).

This means that neut(a)*anti(a) ∈ {anti(a)}. Similarly, we can get anti(a)*neut(a) ∈ {anti(a)}.
(9) For any anti(a) ∈ {anti(a)}, denote p = neut(a)*anti(a). Using (8) we have p ∈ {anti(a)}. Moreover, by

Theorem 1 (2):

neut(a)*p = neut(a)*[neut(a)*anti(a)] = [neut(a)*neut(a)]*anti(a) = neut(a)*anti(a) = p.

From this and applying (7), a ∈ {anti(neut(a)*p)} = {anti(p)}, p ∈ {anti(a)}.
(10) Assume anti(a) ∈ {anti(a)} and anti(anti(a)) ∈ {anti(anti(a))}, by the definition of opposite element,

we have:
anti(a)*anti(anti(a)) = neut(anti(a)).

Thus:
a*[anti(a)*anti(anti(a))] = a*neut(anti(a)).
[a*anti(a)]*anti(anti(a)) = a*neut(anti(a)).

neut(a)*anti(anti(a)) = a*neut(anti(a)).
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Applying (5), a*neut(anti(a)) = a, it follows that:

neut(a)*anti(anti(a)) = a.

�

Example 3. Let Z6 = {[0], [1], [2], [3], [4], [5]}, * is classical mod multiplication, then (Z6, *) is a commutative
neutrosophic triplet group, see Example 10 in [16].

We can show that (they correspond to the conclusions of Theorem 2):

(1) [2]*[4] = [5]*[2], [2]*[5] = [4]*[2], that is, for any p, q ∈ {anti([2])}, neut([2])*p = q*neut([2]).
(2) neut(neut([0])) = neut([0]) = [0], neut(neut([1])) = neut([1]) = [1], neut(neut([2])) = neut([2]) = [4],

neut(neut([3])) = neut([3]) = [3], neut(neut([4])) = neut([4]) = [4], neut(neut([5])) = neut([5]) = [1].
(3) Since neut([2]) = [4], {anti([4])} = {[1], [4]} and {anti([2])} = {[2], [5]}, so anti(neut([2])) = anti([4]) =

{[1], [4]}, and [1]*[2] = [2] ∈ {anti([2])}, [1]*[5] = [5] ∈ {anti([5])}, [4]*[2] = [2] ∈ {anti([2])}, [4]*[5] =
[2] ∈ {anti([2])}. This means that anti(neut([2]))*anti([2]) ∈ {anti([2])} for any anti([2]) ∈ {anti([2])}
and any anti(neut([2])) ∈ {anti(neut([2]))}.

(4) neut([0]*[0])*[0] = [0]*neut([0]*[0]) = [0], neut([0]*[0])* neut([0]) = neut([0])*neut([0]*[0]) = [0];
neut([1]*[1])*[1] = [1]*neut([1]*[1]) = [1], neut([1]*[1])* neut([1]) = neut([1])*neut([1]*[1]) = [1]; and
so on. This means that (4) hold for all a ∈ Z6.

(5) Since {anti([2])} = {[2], [5]}, so neut(anti([2])) = [4] or [1]. From [4]*[2] = [2]*[4] = [2] and [1]*[2] =
[2]*[1] = [2] we know that neut(anti([2]))*[2] = [2]*neut(anti([2])) = [2] for any anti([2]) ∈ {anti([2])}
and any neut(anti([2])) ∈ {neut(anti([2]))}. Note that, since {neut(anti([2]))} = {[4], [1]}; when anti([2])
= [5], neut(anti([2])) = [1] �= neut([2]), this means that neut(anti(a)) = neut(a) is not true in general.

(6) Since {anti(neut([2]))} = {[1], [4]}, from this and [1]*[2] = [2]*[1] = [2] and [4]*[2] = [2]*[4] = [2] we
know that anti(neut([2]))*[2] = [2]*anti(neut([2])) = [2] for any anti(neut([2])) ∈ {anti(neut ([2]))}.
Note that, since {anti(neut([2]))} = {[1], [4]}; when anti(neut([2])) = [1], anti(neut([2])) �= neut([2]),
this means that anti(neut(a)) = neut(a) is not true in general.

(7) Since {anti(neut([2]))} = {[1], [4]} and {anti([2])} = {[2], [5]}, so {anti(neut([2]))*anti([2])} = {[2], [5]},
that is, [2] ∈ {anti(neut([2]))*anti([2])}.

(8) Since neut([2]) = [4] and {anti([2])} = {[2], [5]}, from [4]*[2] = [4]*[5] = [2] we know that
neut([2])*anti([2]) ∈ {anti([2])}.

(9) Since neut([2]) = [4] and {anti([2])} = {[2], [5]}, so {anti(anti([2]))} = {[2], [5]}. Thus, from
[4]*[2] = [4]*[5] = [2] we know that neut([2])*anti(anti([2])) = [2] for any anti([2]) ∈ {anti([2])}
and anti(anti([2])) ∈ {anti(anti([2]))}. Note that, since {anti(2)} = {[2], [5]}; when anti([2]) = [5],
anti(anti([2])) = [5] �= [2], this means that anti(anti(a)) = a is not true in general.

Theorem 3. Assume that (N, *) is a commutative neutrosophic triplet group. Then∀ a, b ∈ N:

(1) neut(a) * neut(b) = neut(a*b).
(2) anti(a) * anti(b) ∈ {anti(a*b)}.

Proof. If a, b ∈ N, then:

[neut(a)*neut(b)]*(a*b) = {[neut(a)*neut(b)]*a}*b = {[neut(a)*a]*neut(b)}*b = [a*neut(b)]*b
= a*[neut(b)*b] = a*b.

Similarly, we have (a*b)*[neut(a)*neut(b)] = a*b. That is:

(a*b)*[neut(a)*neut(b)] = [neut(a)*neut(b)]*(a*b) = a*b. (1)
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Moreover, for any anti(a) ∈ {anti(a)} and anti(b) ∈ {anti(b)}, we have:

[anti(a)*anti(b)]*(a*b) = {[anti(a)*anti(b)]*a}*b = {[anti(a)*a]*anti(b)}*b = [neut(a)*anti(b)]*b
= neut(a)*[anti(b)*b] = neut(a)*neut(b).

Similarly, we have (a*b)*[anti(a)*anti(b)] = neut(a)*neut(b). That is:

(a*b)*[anti(a)*anti(b)] = [anti(a)*anti(b)]*(a*b) = neut(a)*neut(b). (2)

Combining (1) and (2), we have neut(a)*neut(b) ∈ {neut(a*b)}. From this, by Theorem 1, we get:
neut(a)*neut(b) = neut(a*b). Therefore, using (2), we get anti(a)*anti(b) ∈ {anti(a*b)}. �

5. NT-subgroups and Weak Commutative Neutrosophic Tripet Groups

The notion of subgroup is an important basic concept for neutrosophic triplet groups, but the
definitions in the existing literatures are not consistent (see [14,15,18,20]). In order to avoid ambiguity,
this paper gives a new definition and formally named NT-subgroup. Moreover, this section will discuss
an important kind of neutrosophic triplet groups, call weak commutative neutrosophic triplet group
(WCNTG). We will prove some well-known properties of WCNTG and a homomorphism theorem by
special NT-subgroups.

Definition 3. Assume that (N,*) is a neutrosophic triplet group and H be a nonempty subset of N. Then H is
called a NT-subgroup of N if;

(1) a*b ∈ H for all a, b ∈ H;
(2) there exists anti(a) ∈ {anti(a)} such that anti(a) ∈ H for all a ∈ H, where {anti(a)} is the set of opposite

element of a in (N,*).

Proposition 1. Assume that (N,*) is a neutrosophic triplet group. If H is a NT- subgroup of N, then neut(a) ∈ H
for all a ∈ H, where neut(a) is the neutral element of a in (N,*).

Proof. For any a ∈ H, by Theorem 1 (1) we know that neut(a) is unique. Applying Definition 3, we get
that there exists anti(a) ∈ H and neut(a) = a*anti(a) ∈ H. �

Remark 3. (1) For a NT-subgroup H of N, where (N, *) is a neutrosophic triplet group, a ∈ H, by Definition
3 we know that not all anti(a) is in H; in fact, at least one can be in H. (2) By Proposition 1, a ∈ H implies
neut(a) ∈ H. But H does not necessarily contain neut(b) for all b ∈ N. For example, let N = Z6 in Example 3
and H = {[0], [2], [3], [4]}, then H is a NT-subgroup of (Z6, *), and (1) [2] ∈ H but {anti([2])} is not a subset of
H; (2) {neut(a)|a ∈ N = Z6} = {[0], [1], [3], [4]} is not a subset of H.

Definition 4. Assume that (N,∗) is a neutrosophic triplet group. N is called a weak commutative neutrosophic
triplet group (briefly, WCNTG) if a* neut(b) = neut(b)* a for all a, b ∈ N.

Obviously, every commutative neutrosophic triplet group is weak commutative. The following
example shows that there exists non-commutative neutrosophic triplet group which is weak
commutative neutrosophic triplet group.

Example 4. Put N = {1, 2, 3, 4, 5, 6, 7}, and define the operation * on N as Table 3. Then, (N, *) is a
non-commutative neutrosophic triplet group, and:

neut(1) = 1, anti(1) = 1; neut(2) = 1, anti(2) = 2; neut(3) = 1, anti(3) = 3; neut(4) = 1, anti(4) = 4;
neut(5) = 1, anti(5) = 6; neut(6) = 1, anti(6) = 5; neut(7) = 7, {anti(7)} = {1, 2, 3, 4, 5, 6, 7}.
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It is easy to verify that (N, *) is a weak commutative neutrosophic triplet group.

Table 3. Weak commutative neutrosophic triplet group.

* 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 1 6 5 4 3 7
3 3 5 1 6 2 4 7
4 4 6 5 1 3 2 7
5 5 3 4 2 6 1 7
6 6 4 2 3 1 5 7
7 7 7 7 7 7 7 7

Proposition 2. Assume that (N,*) is a neutrosophic triplet group. Then (N,*) is weak commutative if and only
if N satisfies the following conditions:

(1) neut(a)*neut(b) = neut(b)*neut(a) for all a, b ∈ N.
(2) neut(a)*neut(b)*a = a*neut(b) for all a, b ∈ N.

Proof. If (N, *) is a weak commutative neutrosophic triplet group, then (using Definition 4):

neut(a)*neut(b) = neut(b)*neut(a), ∀a, b ∈ N.

And:

neut(a)*neut(b)*a = neut(a)*[neut(b)*a] = neut(a)*[a*neut(b)] = [neut(a)*a]*neut(b) = a*neut(b).

Conversely, assume that N satisfies the conditions (1) and (2) above. Then:

a*neut(b) = [neut(a)*neut(b)]*a = [neut(b)*neut(a)]*a = neut(b)*[neut(a)*a] = neut(b)*a.

From Definition 4 we know that (N, *) is a weak commutative neutrosophic triplet group. �

Proposition 3. Let (N,*) be a weak commutative neutrosophic triplet group. Then ∀ a, b ∈ N:

(1) neut(a)*neut(b) = neut(b*a);
(2) anti(a)*anti(b) ∈ {anti(b*a)}.

Proof. If a, b ∈ N, then:

[neut(a)*neut(b)]*(b*a) = {[neut(a)*neut(b)]*b}*a = {neut(a)*[b*neut(b)]}*a = [neut(a)*b]*a
= [b*neut(a)]*a = b*[neut(a)*a] = b*a.

Similarly, we have (b*a)*[neut(a)*neut(b)] = b*a. That is:

(b*a)*[neut(a)*neut(b)] = [neut(a)*neut(b)]*(b*a) = b*a. (3)

Moreover, for any anti(a) ∈ {anti(a)} and anti(b) ∈ {anti(b)}, we have:

[anti(a)*anti(b)]*(b*a) = {[anti(a)*anti(b)]*b}*a = {anti(a)*[anti(b)*b]}*a = [anti(a)*neut(b)]*a
= anti(a)*[neut(b)*a] = anti(a)*[a*neut(b)] = [anti(a)*a]*neut(b) = neut(a)*neut(b).

Similarly, we have (b*a)*[anti(a)*anti(b)] = neut(a)*neut(b). That is:

(b*a)*[anti(a)*anti(b)] = [anti(a)*anti(b)]*(b*a) = neut(a)*neut(b). (4)
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Combining (3) and (4), we have neut(a)*neut(b) ∈ {neut(b*a)}. From this, by Theorem 1, we get
neut(a)*neut(b) = neut(b*a). Therefore, using (4), we get anti(a)*anti(b) ∈ {anti(b*a)}. �

Definition 5. Let (N,*) be a neutrosophic triplet group and H be a NT-subgroup of N. Then H is called a strong
NT- subgroup of N if:

(1) neut(a) ∈ H for all a ∈ N.
(2) if there exists anti(a) ∈ {anti(a)} and p ∈ N such that anti(a)*b*neut(p) ∈ H, then there exists anti(b) ∈

{anti(b)} and q ∈ N such that a*anti(b)*neut(q) ∈ H; and the inverse is true.

Example 5. Let (N, *) be the neutrosophic triplet group in Example 4 and H1 = {1, 7}, H2 = {1, 5, 6, 7}. Then H1
and H2 are two strong NT-subgroups of N.

Proposition 4. Let ((N, *) be a group (as a special neutrosophic triplet group) and H be a normal subgroup of N.
Then ((N, *) is a weak commutative neutrosophic triplet group and H is a strong NT-subgroup of N.

Proof. For group (N, *) with identity e, neut(a) = e and anti(a) = a−1 for any a ∈ N.
It is easy to verify that a* neut(b) = neut(b)* a for all a, b ∈ N. From this, by Definition 4 we know

that (N, *) is a weak commutative neutrosophic triplet group.
For normal subgroup H, by Definition 3, H is a NT-subgroup of N. Moreover, H satisfies the

condition in Definition 5 (1).
Now, assume that there exists anti(a) ∈ {anti(a)} and p ∈ N such that anti(a)*b*neut(p) ∈ H,

this means that a−1*b ∈ H. Denote h = a−1*b ∈ H. Then a = b*h−1. Since H is a normal subgroup
of N, h−1 ∈ H and there exists h1 ∈ H such that b*h−1 = h1*b. Thus, a = h1*b, a*b−1 = h1 ∈ H. That is,
there exists b−1 = anti(b) ∈ {anti(b)} and a ∈ N such that a*anti(b)*neut(a) = a*b−1*e = a*b−1 = h1 ∈ H.
Similarly, we can prove the inverse is true.

Therefore, H satisfies the condition in Definition 5 (2), and H is a strong NT-subgroup of N. �

Theorem 4. Let (N, *) be a weak commutative neutrosophic triplet group and H be a strong NT-subgroup of N.
Define binary relation ≈H on N as follows: ∀a, b ∈ N:

a ≈ Hb if and only if there exists anti(a) ∈ {anti(a)} and p ∈ N such that anti(a)*b*neut(p) ∈ H.

Then:

(1) the binary relation ≈ H is an equivalent relation on N;
(2) a ≈ Hb implies c*a ≈H c*b for all c ∈ N;
(3) a ≈ Hb implies a*c ≈H b*c and c*a ≈ H c*b for all c ∈ N;
(4) denote the equivalent class contained a by [a]H, and denote N/H = {[a]H|a ∈ N}, define binary operation *

on N/H as follows: [a]H *[b]H = [a*b]H,∀a, b ∈ N. We can obtain a homomorphism from (N, *) to (N/H, *),
that is, f: N→N/H; f(a) = [a]H for all a ∈ N.

Proof.

(1) For any a ∈ N, applying Theorem 1 we have:

anti(a)*a*neut(a) = [anti(a)*a]*neut(a) = neut(a)*neut(a) = neut(a) ∈ H.

Thus a ≈ H a.
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• If a ≈ H b, then there exists anti(a) ∈ {anti(a)} and p ∈ N such that anti(a)*b*neut(p) ∈ H. Denote
h = anti(a)*b*neut(p), then h ∈ H and:

a*h = a*[anti(a)*b*neut(p)],
a*h = neut(a)*b*neut(p),

a*h = b*neut(a)*neut(p), (by Definition 4)
anti(b)*(a*h) = anti(b)*[b*neut(a)*neut(p)],

[anti(b)*a]*h = neut(b)*neut(a)*neut(p),
{[anti(b)*a]*h}*anti(h) = [neut(b)*neut(a)*neut(p)]*anti(h),

anti(b)*a*neut(h) = [neut(b)*neut(a)*neut(p)]*anti(h).

Applying Definition 3 we have [neut(b)*neut(a)*neut(p)]*anti(h) ∈ H, thus anti(b)*a*neut(h) ∈ H,
this means that b ≈ H a.

• If a≈H b and b ≈ H c, then there exists anti(a) ∈ {anti(a)}, anti(a) ∈ {anti(a)}, p ∈ N and
q ∈ N such that anti(a)*b*neut(p) ∈ H, anti(b)*c*neut(q) ∈ H. Denote h1 = anti(a)*b*neut(p),
h2 = anti(b)*c*neut(q), then h1 ∈ H, h2 ∈ H and:

b*h2 = b*[anti(b)*c*neut(q)] = [b*anti(b)]*[c*neut(q)] = neut(b)*c*neut(q).

From this and h1 = anti(a)*b*neut(p), using Definition 4 we get:

h1*h2

= [anti(a)*b*neut(p)]*h2

= [anti(a)*b]*[neut(p)*h2]
= [anti(a)*b]*[h2*neut(p)]
= anti(a)*(b*h2)*neut(p)
= anti(a)*[neut(b)*c*neut(q)]*neut(p)

= anti(a)*[neut(b)*c]*[neut(q)*neut(p)]
= anti(a)*[c*neut(b)]*[neut(q)*neut(p)]
= [anti(a)*c]*[neut(b)*neut(q)*neut(p)]

By Definition 3 we have h1*h2 ∈ H; using Proposition 3 (1), neut(b)*neut(q)*neut(p) =
neut(p*q*b). Hence:

anti(a)*c*neut(p*q*b) = h1*h2 ∈ H.

This means that a ≈ H c. Therefore, ≈H is an equivalent relation on N.

(2) Assume a ≈ H b. Then there exists anti(a) ∈ {anti(a)} and p ∈ N such that anti(a)*b*neut(p) ∈ H.
Denote:h = anti(a)*b*neut(p), then h ∈ H and:

h*neut(c)
= [anti(a)*b*neut(p)]*neut(c)
= [anti(a)*b]*[neut(p)*neut(c)]
= [anti(a)*b]*[neut(c)*neut(p)]
= anti(a)*[b*neut(c)]*neut(p)
= anti(a)*[neut(c)*b]*neut(p)
= [anti(a)*neut(c)]*[b*neut(p)]
= [anti(a)*anti(c)*c]*[b*neut(p)]
= [anti(a)*anti(c)]*(c*b)*neut(p).

Using Proposition 3 (2), anti(a)*anti(c) ∈ {anti(c*a)}. Thus, there exists anti(c*a) ∈ {anti(c*a)}
such that:

anti(c*a)*(c*b)*neut(p) = h*neut(c) ∈ H.
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This means that (c*a) ≈ H (c*b).

(1) Assume a ≈H b. Then there exists anti(a) ∈ {anti(a)} and p ∈ N such that anti(a)*b*neut(p) ∈ H.
Applying Definition 5 (2), there exists anti(b) ∈ {anti(b)} and q ∈ N such that a*anti(b)*neut(q) ∈ H.
Denote h = a*anti(b)*neut(q), then h ∈ H and:

neut(c)*h
= neut(c)*[a*anti(b)*neut(q)]
= [neut(c)*a]*[anti(b)*neut(q)]
= [a*neut(c)]*[anti(b)*neut(q)]
= {a*[c*anti(c)]}*[anti(b)*neut(q)]
= (a*c)*[anti(c)*anti(b)]*neut(q).

Using Proposition 3 (2), anti(c)*anti(b) ∈ {anti(b*c)}. Thus, there exists anti(b*c) ∈ {anti(b*c)}
such that:

(a*c)*anti(b*c)*neut(q) = neut(c)*h ∈ H.

Applying Definition 5 (2), there exists anti(a*c) ∈ {anti(a*c)} and r ∈ N such that:

anti(a*c)*(b*c)*neut(r) ∈ H.

This means that (a*c) ≈H (b*c).
(2) Using (1)–(3) we can obtain (4). �

Example 6. Let N = {1, 2, 3, 4, 5, 6, 7}. The operation * on N is defined as Table 4. Then, (N, *) is a
non- commutative neutrosophic triplet group, and:

neut(1) = 1, anti(1) = 1; neut(2) = 1, anti(2) = 2;
neut(3) = 1, anti(3) = 3; neut(4) = 1, anti(4) = 4;

neut(5) = 1, anti(5) = 6; neut(6) = 1, anti(6) = 5; neut(7) = 7, anti(7) = 7.

Table 4. Weak commutative neutrosophic triplet group and its strong neutrosophic triplet (NT)-subgroup.

* 1 2 3 4 5 6 7

1 1 2 3 4 5 6 1
2 2 1 6 5 4 3 2
3 3 5 1 6 2 4 3
4 4 6 5 1 3 2 4
5 5 3 4 2 6 1 5
6 6 4 2 3 1 5 6
7 1 2 3 4 5 6 7

It is easy to verify that (N, *) is a weak commutative neutrosophic triplet group. Denote H = {1, 5,
6, 7}. Then H is a strong NT-subgroups of N.

Thus we can get that (they correspond to the conclusions of Theorem 4):

(1) The relation ≈H is an equivalent relation on N and N/H = {{1, 5, 6, 7}, {2, 3, 4}}.
(2) 1 ≈ H 5 implies 2*1 = 2 ≈H 4 = 2*5, and so on.
(3) 1 ≈ H 5 implies 1*2 = 2 ≈H 3 = 5*2, and so on.

(4) (N/H, *) = {[1]H, [2]H}, (N, *)
f�(N/H, *), where f (1) = f (5) = f (6) = f (7) = [1]H, and f (2) = f (3) =

f (4) = [2]H.
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Remark 4. Applying Proposition 4 we know that Theorem 4 is a generalization of homomorphism basic theorem
in classical group theory. Moreover, Theorem 4 is also a generalization of related results in [17].

6. Conclusions

This paper studied furtherly neutrosophic triplet group (NTG) and obtained some important
results. First, some examples are given to show that some results in [18] are not true. Second, some
new properties of neutrosophic triplet groups are presented, in particular, the fact of unique neutral
element in every neutrosophic triplet group is proved. Third, the notions of NT-subgroup and strong
NT-subgroup are proposed, a special kind of NTG (called weak commutative neutrosophic triplet
group) is studied, and a homomorphism theorem is presented. All these results are interesting for
exploring the structure characterizations of NTG. As the next research topics, we will explore the
structures of some special NTG and their relationships with related logic algebras (such as BE-algebras
and pseudo-BCI algebras [21–23]).
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Abstract: It is an interesting direction to study rough sets from a multi-granularity perspective.
In rough set theory, the multi-particle structure was represented by a binary relation. This paper
considers a new neutrosophic rough set model, multi-granulation neutrosophic rough set
(MGNRS). First, the concept of MGNRS on a single domain and dual domains was proposed.
Then, their properties and operators were considered. We obtained that MGNRS on dual domains
will degenerate into MGNRS on a single domain when the two domains are the same. Finally, a kind
of special multi-criteria group decision making (MCGDM) problem was solved based on MGNRS on
dual domains, and an example was given to show its feasibility.

Keywords: neutrosophic rough set; MGNRS; dual domains; inclusion relation; decision-making

1. Introduction

As we all know, Pawlak first proposed a rough set in 1982, which was a useful tool of granular
computing. The relation is an equivalent in Pawlak’s rough set. After that, many researchers proposed
other types of rough set theory (see the work by the following authors [1–8]).

In 1965, Zadeh presented a new concept of the fuzzy set. After that, a lot of scholars studied it
and made extensions. For example, Atanassov introduced an intuitionistic fuzzy set, which gives two
degrees of membership of an element; it is a generalization of the fuzzy set. Smarandache introduced
a neutrosophic set in 1998 [9,10], which was an extension of the intuitionistic fuzzy set. It gives three
degrees of membership of an element (T.I.F). Smarandache and Wang [11] proposed the definition of
a single valued neutrosophic set and studied its operators. Ye [12] proposed the definition of simplified
neutrosophic sets and studied their operators. Zhang et al. [13] introduced a new inclusion relation
of the neutrosophic set and told us when it was used by an example, and its lattice structure was
studied. Garg and Nancy proposed neutrosophic operators and applied them to decision-making
problems [14–16]. Now, some researchers have combined the fuzzy set and rough set and have
achieved many running results, such as the fuzzy rough set [17] and rough fuzzy set. Broumi and
Smarandache [18] proposed the definition of a rough neutrosophic set and studied their operators and
properties. In 2016, Yang et al. [19] proposed the definition of single valued neutrosophic rough sets
and studied their operators and properties.

Under the perspective of granular computing [20], the concept of a rough set is shown by the
upper and lower approximations of granularity. In other words, the concept is represented by the
known knowledge, which is defined by a single relationship. In fact, to meet the user’s needs or achieve

Symmetry 2018, 10, 296; doi:10.3390/sym10070296 www.mdpi.com/journal/symmetry40
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the goal of solving the problem, it is sometimes necessary to use multiple relational representation
concepts on the domain, such as illustrated by the authors of [21]. In a grain calculation, an equivalence
relation in the domain is a granularity, and a partition is considered as a granularity space [22].
The approximation that is defined by multiple equivalence relationships is a multi-granularity
approximation and multiple partitions are considered as multi-granularity spaces; the resulting
rough set is named a multi-granularity rough set, which has been proposed by Qian and Liang [23].
Recently, many scholars [24,25] have studied it and made extensions. Huang et al. [26] proposed the
notion of intuitionistic fuzzy multi-granulation rough sets and studied their operators. Zhang et al. [27]
introduced two new multi-granulation rough set models and investigated their operators. Yao et al. [28]
made a summary about the rough set models on the multi-granulation spaces.

Although there have been many studies regarding multi-granulation rough set theory, there have
been fewer studies about the multi-granulation rough set model on dual domains. Moreover,
a multi-granulation rough set on dual domains is more convenient, for example, medical diagnosis
in clinics [22,29]. The symptoms are the uncertainty index sets and the diseases are the decision
sets. They are associated with each other, but they belong to two different domains. Therefore,
it is necessary to use two different domains when solving the MCGDM problems. Sun et al. [29]
discussed the multi-granulation rough set models based on dual domains; their properties were
also obtained.

Although neutrosophic sets and multi-granulation rough sets are both useful tools to solve
uncertainty problems, there are few research regarding their combination. In this paper, we proposed
the definition of MGNRS as a rough set generated by multi-neutrosophic relations. It is useful to solve
a kind of special group decision-making problem. We studied their properties and operations and then
built a way to solve MCGDM problems based on the MGNRS theory on dual domains.

The structure of the article is as follows. In Section 2, some basic notions and operations are
introduced. In Section 3, the notion of MGNRS is proposed and their properties are studied. In Section 4,
the model of MGNRS on dual domains is proposed and their properties are obtained. Also, we obtained
that MGNRS on dual domains will degenerate into MGNRS on a single domain when the two domains
are same. In Section 5, an application of the MGNRS to solve a MCGDM problem was proposed.
Finally, Section 6 concludes this paper and provides an outlook.

2. Preliminary

In this section, we review several basic concepts and operations of the neutrosophic set and
multi-granulation rough set.

Definition 1 ([11]). A single valued neutrosophic set B is denoted by ∀ y ε Y, as follows:

B(y) = (TB(y), IB(y), FB(y))

TB(y), IB(y), FB(y) ε [0,1] and satisfies 0 ≤ TB(y) + IB(y) + FB(y) ≤ 3.

As a matter of convenience, ‘single valued neutrosophic set’ is abbreviated to ‘neutrosophic set’
later. In this paper, NS(Y) denotes the set of all single valued neutrosophic sets in Y, and NR(Y × Z)
denotes the set of all of the neutrosophic relations in Y × Z.

Definition 2 ([11]). If A and C are two neutrosophic sets, then the inclusion relation, union, intersection, and
complement operations are defined as follows:

(1) A ⊆ C iff ∀ y ε Y, TA(y) ≤ TC(y), IA(y) ≥ IC(y) and FA(y) ≥ FC(y)
(2) Ac = {(y, FA(y), 1 − IA(y), TA(y)) | y ε Y}
(3) A ∩ C = {(y, TA(y) ∧ TC(y), IA(y) ∨ IC(y), FA(y) ∨ FC(y)) | y ε Y}
(4) A ∪ C = {(y, TA(y) ∨ TC(y), IA(y) ∧ IC(y), FA(y) ∧ FC(y)) | y ε Y}
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Definition 3 ([19]). If (U, R) is a single valued neutrosophic approximation space. Then ∀ B ε SVNS(U),
the lower approximation N(B) and upper approximation N(B) of B are defined as follows:

TN(B)(y) = min
z∈U

[max(FR(y, z), TB(z))], IN(B)(y) = max
z∈U

[min((1 − IR(y, z)), IB(z))],

FN(B)(y) = max
z∈U

[min(TR(y, z), FB(z))]

TN(B)(y) = max
z∈U

[min(TR(y, z), TB(z))], IN(B)(y) = min
z∈U

[max(IR(y, z), IB(z))],

FN(B)(y) = min
z∈U

[max(FR(y, z), FB(z))]

The pair
(

N(B), N(B)
)

is called the single valued neutrosophic rough set of B, with respect
to (U, R).

According to the operation of neutrosophic number in [16], the sum of two neutrosophic sets in U
is defined as follows.

Definition 4. If C and D are two neutrosophic sets in U, then the sum of C and D is defined as follows:

C + D = {<y, C(y) ⊕ D(y)> | y ε U}.

Definition 5 ([30]). If b = (Tb, Ib, Fb) is a neutrosophic number, n* = (Tb*, Ib*, Fb*) = (1, 0, 0) is an ideal
neutrosophic number. Then, the cosine similarity measure is defined as follows:

S(b, b∗) =
Tb · Tb∗ + Ib · Ib∗ + Fb · Fb∗√

Tb
2 + Ib

2 + Fb
2 ·
√
(Tb∗)

2 + (Ib∗)
2 + (Fb∗)

2

3. Multi-Granulation Neutrosophic Rough Sets

In this part, we propose the concept of MGNRS and study their characterizations. MGNRS is
a rough set generated by multi-neutrosophic relations, and when all neutrosophic relations are same,
MGNRS will degenerated to neutrosophic rough set.

Definition 6. Assume U is a non-empty finite domain, and Ri (1 ≤ i ≤ n) is the binary neutrosophic relation
on U. Then, (U, Ri) is called the multi-granulation neutrosophic approximation space (MGNAS).

Next, we present the multi-granulation rough approximation of a neutrosophic concept in an
approximation space.

Definition 7. Let the tuple ordered set (U, Ri) (1 ≤ i ≤ n) be a MGNAS. For any B ε NS (U), the three
memberships of the optimistic lower approximation Mo(B)and optimistic upper approximationMo

(B) in (U, Ri)
are defined, respectively, as follows:

TMo(B)(y) =
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), TB(z)

))
IMo(B)(y) =

n
min
i=1

max
z∈U

(
min

((
1 − IRi (y, z)

)
, IB(z)

))
,

FMo(B)(y) =
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), FB(z)

))
, TMo

(B)(y) =
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), TB(z)

))
,

IMo
(B)(y) =

n
max
i=1

min
z∈U

(
max

(
IRi (y, z), IB(z)

))
, FMo

(B)(y) =
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), FB(z)

))
.

Then, Mo(B), Mo
(B) ε NS(U). In addition, B is called a definable neutrosophic set on (U, Ri) when

Mo(B) = Mo
(B). Otherwise, the pair

(
Mo(B), Mo

(B)
)

is called an optimistic MGNRS.
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Definition 8. Let the tuple ordered set (U, Ri) (1 ≤ i ≤ n) be a MGNAS. For any B ε NS(U), the three
memberships of pessimistic lower approximation Mp(B) and pessimistic upper approximation Mp

(B) in (U, Ri)
are defined, respectively, as follows:

TMp(B)(y) =
n

min
i=1

min
z∈U

(
max

(
FRi (y, z), TB(z)

))
, IMp(B)(y) =

n
max
i=1

max
z∈U

(
min

((
1 − IRi (y, z)

)
, IB(z)

))
,

FMp(B)(y) =
n

max
i=1

max
z∈U

(
min

(
TRi (y, z), FB(z)

))
, TMp

(B)(y) =
n

max
i=1

max
z∈U

(
min

(
TRi (y, z), TB(z)

))
,

IMp
(B)(y) =

n
min
i=1

min
z∈U

(
max

(
IRi (y, z), IB(z)

))
, FMp

(B)(y) =
n

min
i=1

min
z∈U

(
max

(
FRi (y, z), FB(z)

))
.

Similarly, B is called a definable neutrosophic set on (U, Ri) when Mp(B) = Mp
(B). Otherwise, the pair(

Mp(B), Mp
(B)

)
is called a pessimistic MGNRS.

Example 1. Define MGNAS (U, Ri), where U = {z1, z2, z3} and Ri (1 ≤ i ≤ 3) are given in Tables 1–3

Table 1. Neutrosophic relation R1.

R1 z1 z2 z3

z1 (0.4, 0.5, 0.4) (0.5, 0.7, 0.1) (1, 0.8, 0.8)
z2 (0.5, 0.6, 1) (0.2, 0.6, 0.4) (0.9, 0.2, 0.4)
z3 (1, 0.2, 0) (0.8, 0.9, 1) (0.6, 1, 0)

Table 2. Neutrosophic relation R2.

R2 z1 z2 z3

z1 (0.9, 0.2, 0.4) (0.3, 0.9, 0.1) (0.1, 0.7, 0)
z2 (0.4, 0.5, 0.1) (0, 0.1, 0.7) (1, 0.8, 0.8)
z3 (1, 0.5, 0) (0.4, 0.4, 0.2) (0.1, 0.5, 0.4)

Table 3. Neutrosophic relation R3.

R3 z1 z2 z3

z1 (0.7, 0.7, 0) (0.4, 0.8, 0.9) (1, 0.4, 0.5)
z2 (0.8, 0.2, 0.1) (1, 0.1, 0.8) (0.1, 0.3, 0.5)
z3 (0, 0.8, 1) (1, 0, 1) (1, 1, 0)

Suppose a neutrosophic set on U is as follows: C(z1) = (0.2, 0.6, 0.4), C(z2) = (0.5, 0.4, 1),
C(z3) = (0.7, 0.1, 0.5); by Definitions 7 and 8, we can get the following:

Mo(C)(z1) = (0.4, 0.3, 0.4), Mo(C)(z2) = (0.5, 0.4, 0.5), Mo(C)(z3) = (0.7, 0.4, 0.4)
Mo

(C)(z1) = (0.3, 0.6, 0.4), Mo
(C)(z2) = (0.5, 0.4, 0.5), Mo

(C)(z3) = (0.4, 0.6, 0.5)
Mp(C)(z1) = (0.2, 0.6, 0.5), Mp(C)(z2) = (0.2, 0.6, 0.1), Mp(C)(z3) = (0.2, 0.6, 0.1)
Mp

(C)(z1) = (0.7, 0.4, 0.4), Mp
(C)(z2) = (0.7, 0.2, 0.4), Mp

(C)(z3) = (0.7, 0.4, 0.4)

Proposition 1. Assume (U, Ri) is MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic relations. ∀ C ε NS(U), Mo(C)
and Mo

(C) are the optimistic lower and upper approximation of C. Then,

Mo(C) =
n∪

i=1
N(C)Mo

(C) =
n∩

i=1
N(C)

where
N(C)(y) = ∩

z∈U
(Ri

c(y, z) ∪ C(z)),N(C)(y) = ∪
z∈U

(Ri(y, z) ∩ C(z))

Proof. They can be proved by Definitions 7.
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Proposition 2. Assume (U, Ri) be MGNAS, Ri (1 ≤ i ≤ n) be neutrosophic relations. ∀ C ε NS(U), Mp(C)
and Mp

(C) are the pessimistic lower and upper approximation of C. Then

Mp(C) =
n∩

i=1
N(C)Mp

(C) =
n∪

i=1
N(C)

where
N(C)(y) = ∩

z∈U
(Ri

c(y, z) ∪ C(z)), N(C)(y) = ∪
z∈U

(Ri(y, z) ∩ C(z))

Proof. Proposition 2 can be proven by Definition 8.

Proposition 3. Assume (U, Ri) is MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic relations. ∀ C, D ε NS(U),
we have the following:

(1) Mo(C) =∼ Mo
(∼ C), Mp(C) =∼ Mp

(∼ C);

(2) Mo
(C) =∼ Mo(∼ C), Mp

(C) =∼ Mp(∼ C);
(3) Mo(C ∩ D) = Mo(C) ∩ Mo(D), Mp(C ∩ D) = Mp(C) ∩ Mp(D);

(4) Mo
(C ∪ D) = Mo

(C) ∪ Mo
(D), Mp

(C ∪ D) = Mp
(C) ∪ Mp

(D);
(5) C ⊆ D ⇒ Mo(C) ⊆ Mo(D), Mp(C) ⊆ Mp(D) ;

(6) C ⊆ D ⇒ Mo
(C) ⊆ Mo

(D), Mp
(C) ⊆ Mp

(D) ;
(7) Mo(C ∪ D) ⊇ Mo(C) ∪ Mo(D), Mp(C ∪ D) ⊇ Mp(C) ∪ Mp(D);

(8) Mo
(C ∩ D) ⊆ Mo

(C) ∩ Mo
(D), Mp

(C ∩ D) ⊆ Mp
(C) ∩ Mp

(D).

Proof. (1), (2), (5), and (6) can be taken directly from Definitions 7 and 8. We only show (3), (4), (7),
and (8).

(3) From Proposition 1, we have the following:

Mo(C ∩ D)(y) =
n∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ (C ∩ D)(z))
)

=
n∪

i=1

(
∩

z∈U
((Ri

c(y, z) ∪ C(z)) ∩ (Ri
c(y, z) ∪ D(z)))

)
=

(
n∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ C(z))
))

∩
(

n∪
i=1

(
∩

z∈U
(Ri

c(y, z) ∪ D(z))
))

= MoC(y) ∩ MoD(y).

Similarly, from Proposition 2, we can get the following:

Mp(C ∩ D)(y) = MpC(y) ∩ MpD(y).

(4) According to Propositions 1 and 2, in the same way as (3), we can get the proof.
(7) From Definition 7, we have the following:

TMo(C∪D)(y) =
n

max
i=1

min
z∈U

{
max

[
FRi (y, z), (max(TC(z), TD(z)))

]}
=

n
max
i=1

min
z∈U

{
max

[(
max

(
FRi (y, z), TC(z)

))
,
(
max

(
FRi (y, z), TD(z)

))]}
≥ max

{[
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), TC(z)

))]
,
[

n
max
i=1

min
z∈U

(
max

(
FRi (y, z), TD(z)

))]}
= max

(
TMo(C)(y), TMo(D)(y)

)
.
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IMo(C∪D)(y) =
n

min
i=1

max
z∈U

{
min

[(
1 − IRi (y, z)

)
, (min(IC(z), ID(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[(
min

((
1 − IRi (y, z)

)
, IC(z)

))
,
(
min

((
1 − IRi (y, z)

)
, ID(z)

))]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

((
1 − IRi (y, z)

)
, IC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

((
1 − IRi (y, z)

)
, ID(z)

))]}
= min

(
IMo(C)(y), IMo(D)(y)

)
.

FMo(C∪D)(y) =
n

min
i=1

max
z∈U

{
min

[
TRi (y, z), (min(FC(z), FD(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[
min

(
TRi (y, z), FC(z)

)]
,
[
min

(
TRi (y, z), FD(z)

)]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), FC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

(
TRi (y, z), FD(z)

))]}
= min

(
FMo(C)(y), FMo(D)(y)

)
.

Hence, Mo(C ∪ D) ⊇ Mo(C) ∪ Mo(D).
Also, according to Definition 8, we can get Mp(C ∪ D) ⊇ Mp(C) ∪ Mp(D).
(8) From Definition 7, we have the following:

TMo
(C∩D)(y) =

n
min
i=1

max
z∈U

{
min

[
TRi (y, z), (min(TC(z), TD(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[(
min

(
TRi (y, z), TC(z)

))
,
(
min

(
TRi (y, z), TD(z)

))]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), TC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

(
TRi (y, z), TD(z)

))]}
= min

(
TMo

(C)(y), TMo
(D)(y)

)
.

IMo
(C∩D)(y) =

n
max
i=1

min
z∈U

{
max

[
IRi (y, z), (max(IC(z), ID(z)))

]}
=

n
max
i=1

min
z∈U

{
max

[(
max

(
IRi (y, z), IC(z)

))
,
(
max

(
IRi (y, z), ID(z)

))]}
≤ min

{[
n

max
i=1

min
z∈U

(
max

(
IRi (y, z), IC(z)

))]
,
[

n
max
i=1

min
z∈U

(
max

(
IRi (y, z), ID(z)

))]}
= min

(
IMo

(C)(y), IMo
(D)(y)

)
.

FMo
(C∩D)(y) =

n
max
i=1

min
z∈U

[
FRi (y, z) ∨ (FC(z) ∨ FD(z))

]
=

n
max
i=1

min
z∈U

[(
FRi (y, z) ∨ FC(z)

) ∨ (FRi (y, z) ∨ FD(z)
)]

≥
[

n
max
i=1

min
z∈U

(
FRi (y, z) ∨ FC(z)

)] ∨ [ n
max
i=1

min
z∈U

(
FRi (y, z) ∨ FD(z)

)]
= max

(
FMo

(C)(y), FMo
(D)(y)

)
.

Hence, Mo
(C ∩ D) ⊆ Mo

(C) ∩ Mo
(D).

Similarly, according Definition 8, we can get Mp
(C ∩ D) ⊆ Mp

(C) ∩ Mp
(D).

Next, we will give an example to show that maybe Mo(C ∪ D) �= Mo(C) ∪ Mo(D).

Example 2. Define MGNAS (U, Ri), where U = {z1, z2, z3} and Ri (1 ≤ i ≤ 3) are given in Example 1.
Suppose there are two neutrosophic sets on universe U, as follows: C(z1) = (0.5, 0.1, 0.2), C(z2) = (0.5,

0.3, 0.2), C(z3) = (0.6, 0.2, 0.1), D(z1) = (0.7, 0.2, 0.1), D(z2) = (0.4, 0.2, 0.1), D(z3) = (0.2, 0.2, 0.5), we have
(C ∪ D)(z1) = (0.7, 0.1, 0.1), (C ∪ D)(z2) = (0.5, 0.2, 0.1), (C ∪ D)(z3) = (0.6, 0.2, 0.1), (C ∩ D)(z1) = (0.5, 0.1,
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0.2), (C ∩ D)(z2) = (0.4, 0.2, 0.2), (C ∩ D)(z3) = (0.2, 0.2, 0.5). Then, from Definitions 7 and 8, we can get
the following:

Mo(C)(z1) = (0.5, 0, 0.2), Mo(C)(z2) = (0.5, 0.1, 0.2), Mo(C)(z3) = (0.5, 0.1, 0.2);
Mo(D)(z1) = (0.4, 0, 0.1), Mo(D)(z2) = (0.2, 0.1, 0.2), Mo(D)(z3) = (0.4, 0.1, 0.2);

Mo(C ∪ D)(z1) = (0.5, 0, 0.1), Mo(C ∪ D)(z2) = (0.5, 0.1, 0.1), Mo(C ∪ D)(z3) = (0.5, 0.1, 0.1)
(Mo(C) ∪ Mo(D))(z1) = (0.5, 0, 0.1),(Mo(C) ∪ Mo(D))(z2) = (0.5, 0.1, 0.2),

(Mo(C) ∪ Mo(D))(z3) = (0.5, 0.1, 0.2)

So, Mo(C ∪ D) �= Mo(C) ∪ Mo(D).
Also, there are examples to show that maybe Mp(C ∪ D) �= Mp(C) ∪ Mp(D),
Mo

(C ∩ D) �= Mo
(C) ∩ Mo

(D), Mp
(C ∩ D) �= Mp

(C) ∩ Mp
(D). We do not say anymore here.

4. Multi-Granulation Neutrosophic Rough Sets on Dual Domains

In this section, we propose the concept of MGNRS on dual domains and study their
characterizations. Also, we obtain that the MGNRS on dual domains will degenerate into MGNRS,
defined in Section 3, when the two domains are same.

Definition 9. Assume that U and V are two domains, and Ri ε NS(U × V) (1 ≤ i ≤ n) is the binary
neutrosophic relations. The triple ordered set (U, V, Ri) is called the (two-domain) MGNAS.

Next, we present the multi-granulation rough approximation of a neutrosophic concept in
an approximation space on dual domains.

Definition 10. Let (U, V, Ri) (1 ≤ i ≤ n) be (two-domain) MGNAS. ∀ B ε NS(V) and y ε U, the three
memberships of the optimistic lower and upper approximation Mo(B), Mo

(B) in (U, V, Ri) are defined,
respectively, as follows:

TMo(B)(y) =
n

max
i=1

min
z∈V

[
max

(
FRi (y, z), TB(z)

)]
IMo(B)(y) =

n
min
i=1

max
z∈V

[
min

((
1 − IRi (y, z)

)
, IB(z)

)]
FMo(B)(y) =

n
min
i=1

max
z∈V

[
min

(
TRi (y, z), FB(z)

)]
TMo

(B)(y) =
n

min
i=1

max
z∈V

[
min

(
TRi (y, z), TB(z)

)]
I n

∑
i=1

Ri

o

(B)
(y) =

n
max
i=1

min
z∈V

[
max

(
IRi (y, z), IB(z)

)]
FMo

(B)(y) =
n

max
i=1

min
z∈V

[
max

(
FRi (y, z), FB(z)

)]

Then Mo(B), Mo
(B) ε NS(U). In addition, B is called a definable neutrosophic set on (U, V, Ri)

on dual domains when Mo(B) = Mo
(B). Otherwise, the pair

(
Mo(B), Mo

(B)
)

is called an optimistic
MGNRS on dual domains.

Definition 11. Assume (U, V, Ri) (1 ≤ i ≤ n) is (two-domain) MGNAS. ∀ B ε NS(V) and y ε U, the three
memberships of the pessimistic lower and upper approximation Mp(B), Mp

(B) in (U, V, Ri) are defined,
respectively, as follows:

TMp(B)(y) =
n

min
i=1

min
z∈V

[
max

(
FRi (y, z), TB(z)

)]
, IMp(B)(y) =

n
max
i=1

max
z∈V

[
min

((
1 − IRi (y, z)

)
, IB(z)

)]
,

FMp(B)(y) =
n

max
i=1

max
z∈V

[
min

(
TRi (y, z), FB(z)

)]
, TMp

(B)(y) =
n

max
i=1

max
z∈V

[
min

(
TRi (y, z), TB(z)

)]
,

IMp
(B)(y) =

n
min
i=1

min
z∈V

[
max

(
IRi (y, z), IB(z)

)]
, FMp

(B)(y) =
n

min
i=1

min
z∈V

[
max

(
FRi (y, z), FB(z)

)]
.
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Then, B is called a definable neutrosophic set on (U, V, Ri) when Mp(B) = Mp
(B). Otherwise,

the pair
(

Mp(B), Mp
(B)

)
is called a pessimistic MGNRS on dual domains.

Remark 1. Note that if U = V, then the optimistic and pessimistic MGNRS on the dual domains will be the
same with the optimistic and pessimistic MGNRS on a single domain, which is defined in Section 3

Proposition 4. Assume (U, V, Ri) (1 ≤ i ≤ n) is (two-domain) MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic
relations. ∀ C, D ε NS(U), we have the following:

(1) Mo(C) =∼ Mo
(∼ C), Mp(C) =∼ Mp

(∼ C);

(2) Mo
(C) =∼ Mo(∼ C), Mp

(C) =∼ Mp(∼ C);
(3) Mo(C ∩ D) = Mo(C) ∩ Mo(D), Mp(C ∩ D) = Mp(C) ∩ Mp(D);

(4) Mo
(C ∪ D) = Mo

(C) ∪ Mo
(D), Mp

(C ∪ D) = Mp
(C) ∪ Mp

(D);
(5) C ⊆ D ⇒ Mo(C) ⊆ Mo(D), Mp(C) ⊆ Mp(D) ;

(6) C ⊆ D ⇒ Mo
(C) ⊆ Mo

(D), Mp
(C) ⊆ Mp

(D) ;
(7) Mo(C ∪ D) ⊇ Mo(C) ∪ Mo(D), Mp(C ∪ D) ⊇ Mp(C) ∪ Mp(D);

(8) Mo
(C ∩ D) ⊆ Mo

(C) ∩ Mo
(D), Mp

(C ∩ D) ⊆ Mp
(C) ∩ Mp

(D).

Proof. These propositions can be directly proven from Definitions 10 and 11.

5. An Application of Multi-Granulation Neutrosophic Rough Set on Dual Domains

Group decision making [31] is a useful way to solve uncertainty problems. It has developed
rapidly since it was first proposed. Its essence is that in the decision-making process, multiple
decision makers (experts) are required to participate and negotiate in order to settle the corresponding
decision-making problems. However, with the complexity of the group decision-making problems,
what we need to deal with is the multi-criteria problems, that is, multi-criteria group decision making
(MCGDM). The MCGDM problem is to select or rank all of the feasible alternatives in multiple,
interactive, and conflicting standards.

In this section, we build a neo-way to solve a kind of special MCGDM problem using the MGNRS
theory. We generated the rough set according the multi-neutrosophic relations and then used it to
solve the decision-making problems. We show the course and methodology of it.

5.1. Problem Description

Firstly, we describe the considered problem and we show it using a MCGDM example of
houses selecting.

Let U = {x1, x2, . . . , xm} be the decision set, where x1 represents very good, x2 represents good,
x3 represents less good, . . . , and xm represents not good. Let V = {y1, y2, . . . , yn} be the criteria set to
describe the given house, where y1 represents texture, y2 represents geographic location, y3 represents
price, . . . , and yn represents solidity. Suppose there are k evaluation experts and all of the experts give
their own evaluation for criteria set yj (yj ε V) (j = 1, 2, . . . , n), regarding the decision set elements
xi (xi ε U) (i = 1, 2, . . . , m). In this paper, let the evaluation relation R1, R2, . . . , Rk between V and U
given by the experts, be the neutrosophic relation, R1, R2, . . . , Rk ε SNS (U × V). That is, Rl (xi, yj)
(l = 1, 2, . . . , k) represents the relation of the criteria set yj and the decision set element xi, which is
given by expert l, based on their own specialized knowledge and experience. For a given customer, the
criterion of the customer is shown using a neutrosophic set, C, in V, according to an expert’s opinion.
Then, the result of this problem is to get the opinion of the given house for the customer.

Then, we show the method to solve the above problem according to the theory of optimistic and
pessimistic MGNRS on dual domains.
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5.2. New Method

In the first step, we propose the multi-granulation neutrosophic decision information system
based on dual domains for the above problem.

According to Section 5.1′s description, we can get the evaluation of each expert as a neutrosophic
relation. Then, all of the binary neutrosophic relations Rl given by all of the experts construct a relation
set R (i.e., Rl ε R). Then, we get the multi-granulation neutrosophic decision information systems
based on dual domains, denoted by (U, V, R).

Secondly, we compute Mo(C), Mo
(C), Mp(C), Mp

(C) for the given customer, regarding (U, V, R).
Thirdly, according to Definition 4, we computed the sum of the optimistic and pessimistic

multi-granulation neutrosophic lower and upper approximation.
Next, according Definition 5, we computed the cosine similarity measure. Define the choice x∗

with the idea characteristics value α ∗ = (1, 0, 0) as the ideal choice. The bigger the value of S(αxi , α∗)
is, the closer the choice xi with the ideal alternative x ∗, so the better choice xi is.

Finally, we compared S(αxi , α∗) and ranked all of the choices that the given customer can choose
from and we obtained the optimal choice.

5.3. Algorithm and Pseudo-Code

In this section, we provide the algorithm and pseudo-code given in table Algorithm 1.

Algorithm 1. Multi-granulation neutrosophic decision algorithm.

Input Multi-granulation neutrosophic decision information systems (U, V, R).
Output The optimal choice for the client.
Step 1 Computing Mo(C), Mo

(C), Mp(C), Mp
(C) of neutrosophic set C about (U, V, R);

Step 2 From Definition 4., we get Mo(C) + Mo
(C) and Mp(A) + Mp

(A);
Step 3 From Definition 5., we computer So(αxi , α∗) and Sp(αxi , α∗) (i = 1, 2, . . . , m);
Step 4 The optimal decision-making is to choose xh if

S(αxh , α∗) = maxi∈{1,2,··· ,m}(S(αxi , α∗)).
pseudo-code
Begin
Input (U, V, R), where U is the decision set, V is the criteria set, and R denotes the binary neutrosophic

relation between criteria set and decision set.
Calculate Mo(C), Mo

(C), Mp(C), Mp
(C). Where Mo(C), Mo

(C), Mp(C), Mp
(C) , which represents the

optimistic and pessimistic multi-granulation lower and upper approximation of C, which is defined in
Section 4.

Calculate Mo(C) + Mo
(C) and Mp(C) + Mp

(C), which is defined in Definition 4.

Calculate So
(

Mo(C) + Mo
(C), α∗

)
and Sp

(
Mp(C) + Mp

(C), α∗
)

, which is defined in Definition 5.

For i = 1, 2, . . . , m; j = 1, 2, . . . , n; l = 1, 2, . . . , k;

If So(αxi , α∗) < So
(

αxj , α∗
)

, then So
(

αxj , α∗
)
→ Max,

else So(αxi , α∗) → Max,
If So(αxl , α∗) > Max, then So(αxl , α∗) → Max;

Print Max;
End

5.4. An Example

In this section, we used Section 5.2’s way of solving a MCGDM problem, using the example of
buying houses.

Let V = {y1, y2, y3, y4} be the criteria set, where y1 represents the texture, y2 represents the
geographic location, y3 represents the price, and y4 represents the solidity. Let U = {z1, z2, z3, z4} be
a decision set, where z1 represents very good, z2 represents good, z3 represents less good, and z4

represents not good.
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Assume that there are three experts. They provide their opinions about all of the criteria sets yj
(yj ε V) (j = 1, 2, 3, 4) regarding the decision set elements zi (xi ε U) (i = 1, 2, 3, 4). Like the discussion
in Section 5.1, the experts give three evaluation relations, R1, R2, and R3, which are neutrosophic
relations between V and U, that is, R1, R2, R3 ε NR(U × V). TRk(zi, yj) shows the expert, k, give the
truth membership of yj to zi; IRk(zi, yj) shows the expert, k, give the indeterminacy membership of yj to
zi; FRk(zi, yj) shows the expert, k, give the falsity membership of yj to zi. For example, the first value
(0.2, 0.3, 0.4) in Table 4, of 0.2 shows that the truth membership of the texture for the given house is
very good, 0.3 shows that the indeterminacy membership of the texture for the given house is very
good, and 0.4 shows that the falsity membership of the texture for the given house is very good.

Table 4. Neutrosophic relation R1.

R1 y1 y2 y3 y4

z1 (0.2, 0.3, 0.4) (0.3, 0.5, 0.4) (0.4, 0.6, 0.2) (0.1, 0.3, 0.5)
z2 (0.8, 0.7, 0.1) (0.2, 0.5, 0.6) (0.6, 0.6, 0.7) (0.4, 0.6, 0.3)
z3 (0.5, 0.7, 0.2) (0.6, 0.2, 0.1) (1, 0.9, 0.4) (0.5, 0.4, 0.3)
z4 (0.4, 0.6, 0.3) (0.5, 0.5, 0.4) (0.3, 0.8, 0.4) (0.2, 0.9, 0.8)

So, we build the multi-granulation neutrosophic decision information system (U, V, R) for
the example.

Assume that the three experts give three evaluation relations, the results are given in Tables 4–6.

Table 5. Neutrosophic relation R2.

R2 y1 y2 y3 y4

z1 (0.3, 0.4, 0.5) (0.6, 0.7, 0.2) (0.1, 0.8, 0.3) (0.5, 0.3, 0.4)
z2 (0.5, 0.5, 0.4) (1, 0, 1) (0.8, 0.1, 0.8) (0.7, 0.8, 0.5)
z3 (0.7, 0.2, 0.1) (0.3, 0.5, 0.4) (0.6, 0.1, 0.4) (1, 0, 0)
z4 (1, 0.2, 0) (0.8, 0.1, 0.5) (0.1, 0.2, 0.7) (0.2, 0.2, 0.8)

Table 6. Neutrosophic relation R3.

R3 y1 y2 y3 y4

z1 (0.6, 0.2, 0.2) (0.3, 0.1, 0.7) (0, 0.2, 0.9) (0.8, 0.3, 0.2)
z2 (0.1, 0.1, 0.7) (0.2, 0.3, 0.8) (0.7, 0.1, 0.2) (0, 0, 1)
z3 (0.8, 0.4, 0.1) (0.9, 0.5, 0.3) (0.2, 0.1, 0.6) (0.7, 0.2, 0.3)
z4 (0.6, 0.2, 0.2) (0.2, 0.2, 0.8) (1, 1, 0) (0.5, 0.3, 0.1)

Assume C is the customer’s evaluation for each criterion in V, and is given by the following:

C(y1) = (0.6, 0.5, 0.5), C(y2) = (0.7, 0.3, 0.2), C(y3) = (0.4, 0.5, 0.9), C(y4) = (0.3, 0.2, 0.6).

From Definitions 10 and 11, we can compute the following:

Mo(C)(z1) = (0.4, 0.5, 0.4), Mo(C)(z2) = (0.5, 0.4, 0.6), Mo(C)(z3) = (0.3, 0.3, 0.6),
Mo(C)(z4) = (0.6, 0.4, 0.4)

Mo
(C)(z1) = (0.4, 0.3, 0.5), Mo

(C)(z2) = (0.4, 0.5, 0.7), Mo
(C)(z3) = (0.6, 0.3, 0.4),

Mo
(C)(z4) = (0.5, 0.5, 0.5)

Mp(C)(z1) = (0.3, 0.5, 0.6), Mp(C)(z2) = (0.3, 0.5, 0.8), Mp(C)(z3) = (0.3, 0.5, 0.9),
Mp(C)(z4) = (0.3, 0.5, 0.9)

Mo
(C)(z1) = (0.6, 0.3, 0.2), Mo

(C)(z2) = (0.7, 0.2, 0.5), Mo
(C)(z3) = (0.7, 0.2, 0.2),

Mo
(C)(z4) = (0.7, 0.2, 0.4)
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According Definition 4, we have the following:(
Mo(C) + Mo

(C)
)
(z1) = (0.64, 0.15, 0.2),

(
Mo(C) + Mo

(C)
)
(z2) = (0.7, 0.2, 0.42),(

Mo(C) + Mo
(C)

)
(z3) = (0.72, 0.09, 0.24),

(
Mo(C) + Mo

(C)
)
(z4) = (0.8, 0.2, 0.2)

(
Mp(C) + Mp

(C)
)
(z1) = (0.72, 0.15, 0.12),

(
Mp(C) + Mp

(C)
)
(z2) = (0.79, 0.1, 0.4),(

Mp(C) + Mp
(C)

)
(z3) = (0.79, 0.1, 0.18),

(
Mp(C) + Mp

(C)
)
(z4) = (0.79, 0.1, 0.36)

Then, according Definition 5, we have the following:

So(αz1 , α∗) = 0.9315, So(αz2 , α∗) = 0.8329, So(αz3 , α∗) = 0.8588, So(αz4 , α∗) = 0.9428. (1)

Sp(αz1 , α∗) = 0.9662, Sp(αz2 , α∗) = 0.8865, Sp(αz3 , α∗) = 9677, Sp(αz4 , α∗) = 0.9040. (2)

Then, we have the following:

So(αz4 , α∗) > So(αz1 , α∗) > So(αz3 , α∗) > So(αz2 , α∗). (3)

Sp(αz3 , α∗) > Sp(αz1 , α∗) > Sp(αz4 , α∗) = Sp(αz2 , α∗). (4)

So, the optimistic optimal choice is to choose x4, that is, this given house is “not good” for the
customer; the pessimistic optimal choice is to choose x3, that is, this given house is “less good” for
the customer.

6. Conclusions

In this paper, we propose the concept of MGNRS on a single domain and dual domains, and
obtain their properties. I addition, we obtain that MGNRS on dual domains will be the same as the
MGNRS on a single domain when the two domains are same. Then, we solve a kind of special group
decision-making problem (based on neutrosophic relation) using MGNRS on dual domains, and we
show the algorithm and give an example to show its feasibility.

In terms of the future direction, we will study other types of combinations of multi-granulation
rough sets and neutrosophic sets and obtain their properties. At the same time, exploring the
application of MGNRS in totally dependent-neutrosophic sets (see [32]) and related algebraic systems
(see [33–35]), and a new aggregation operator, similarity measure, and distance measure (see [36–39]),
are also meaningful research directions for the future.
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Abstract: In classical group theory, homomorphism and isomorphism are significant to study the
relation between two algebraic systems. Through this article, we propose neutro-homomorphism and
neutro-isomorphism for the neutrosophic extended triplet group (NETG) which plays a significant
role in the theory of neutrosophic triplet algebraic structures. Then, we define neutro-monomorphism,
neutro-epimorphism, and neutro-automorphism. We give and prove some theorems related to these
structures. Furthermore, the Fundamental homomorphism theorem for the NETG is given and
some special cases are discussed. First and second neutro-isomorphism theorems are stated. Finally,
by applying homomorphism theorems to neutrosophic extended triplet algebraic structures, we have
examined how closely different systems are related.

Keywords: neutro-monomorphism; neutro-epimorphism; neutro-automorphism; fundamental
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1. Introduction

Groups are finite or infinite set of elements which are vital to modern algebra equipped with
an operation (such as multiplication, addition, or composition) that satisfies the four basic axioms of
closure, associativity, the identity property, and the inverse property. Groups can be found in geometry
studied by “Felix klein in 1872” [1], characterizing phenomenality like symmetry and certain types
of transformations. Group theory, firstly introduced by “Galois” [2], with the study of polynomials
has applications in physics, chemistry, and computer science, and also puzzles like the Rubik’s cube
as it may be expressed utilizing group theory. Homomorphism is both a monomorphism and an
epimorphism maintaining a map between two algebraic structures of the same type (such as two
groups, two rings, two fields, two vector spaces) and isomorphism is a bijective homomorphism
defined as a morphism, which has an inverse that is also morphism. Accordingly, homomorphisms
are effective in analyzing and calculating algebraic systems as they enable one to recognize how
intently distinct systems are associated. Similar to the classical one, neuro-homomorphism is the
transform between two neutrosophic triplet algebraic objects N and H. That is, if elements in N satisfy
some algebraic equation involving binary operation “*”, their images in H satisfy the same algebraic
equation. A neutro-isomorphism identifies two algebraic objects with one another. The most common
use of neutro-homomorphisms and neutro-isomorphisms in this study is to deal with homomorphism
theorems which allow for the identification of some neutrosophic triplet quotient objects with certain
other neutrosophic triplet subgroups, and so on.

The neutrosophic logic and a neutrosophic set, firstly made known by Florentin Smarandache [3]
in 1995, has been widely applied to several scientific fields. This study leads to a new
direction, exploration, path of thinking to mathematicians, engineers, computer scientists, and
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many other researchers, so the area of study grew extremely and applications were found
in many areas of neutrosophic logic and sets such as computational modelling [4], artificial
intelligence [5], data mining [6], decision making problems [7], practical achievements [8], and so forth.
Florentin Smarandache and Mumtazi Ali investigated the neutrosophic triplet group and neutrosophic
triplet as expansion of matter plasma, nonmatter plasma, and antimatter plasma [9,10]. By using
the concept of neutrosophic theory Vasantha and Smarandache introduced neutrosophic algebraic
systems and N-algebraic structures [11] and this was the first neutrosofication of algerbraic structures.
The characterization of cancellable weak neutrosophic duplet semi-groups and cancellable NTG are
investigated [12] in 2017. Florentin Smarandache and Mumtaz Ali examined the applications of the
neutrosophic triplet field and neutrosophic triplet ring [13,14] in 2017. Şahin Mehmet and Abdullah
Kargın developed the neutrosophic triplet normed space and neutrosophic triplet inner product [15,16].
The neutrosophic triplet G-module and fixed point theorem for NT partial metric space are given
in literature [17,18]. Similarity measures of bipolar neutrosophic sets and single valued triangular
neutrosophic numbers and their appliance to multi-attribute group decision making investigated
in [19,20]. By utilizing distance-based similarity measures, refined neutrosophic hierchical clustering
methods are achieved in [21]. Single valued neutrosophic sets to deal with pattern recognition problems
are given with their application in [22]. Neutrosophic soft lattices and neutrosophic soft expert sets are
analyzed in [23,24]. Centroid single valued neutrosophic numbers and their applications in MCDM
is considered in [25]. Bal Mikail, Moges Mekonnen Shalla, and Necati Olgun reviewed neutrosophic
triplet cosets and quotient groups [26] by using the concept of NET in 2018. The concepts concerning
neutrosophic sets and neutrosophic modules are described in [27,28], respectively. A method to handle
MCDM problems under the SVNSs are introduced in [29]. Bipolar neutrosophic soft expert set theory
and its basic operations are defined in [30].

The other parts of a paper is coordinated thusly. Subsequently, through the literature analysis
in the first section and preliminaries in the second section, we investigated neutro-monomorphism,
neutro-epimorphism, neutro-isomorphism, and neutro-automorphism in Section 3 and a fundamental
homomorphism theorem for NETG in Section 4. We give and prove the first neutro-isomorphism
theorem for NETG in Section 5, and then the second neutro-isomorphism theorem for NETG is given
in Section 6. Finally, results are given in Section 7.

2. Preliminaries

In this section, we provide basic definitions, notations and facts which are significant to develop
the paper.

2.1. Neutrosophic Extended Triplet

Let U be a universe of discourse, and (N, ∗) a set included in it, endowed with a well-defined
binary law ∗.

Definition 1 ([3]). The set N is called a neutrosophic extended triplet set if for any x ∈ N there exist eneut(x)

∈ N and eanti(x) ∈ N. Thus, a neutrosophic extended triplet is an object of the form (x, eneut(x), eanti(x)) where
eneut(x) is extended neutral of x, which can be equal or different from the classical algebraic unitary element if
any, such that

x ∗ eneut(x) = eneut(x) ∗ x = x

and eanti(x) ∈ N is the extended opposite of x such that

x ∗ eanti(x) = eanti(x) ∗ x = eneut(x)

In general, for each x ∈ N there are many existing eneut(x)′s and eanti(x)′s.

Theorem 1 ([11]). Let (N, ∗) be a commutative NET with respect to ∗ and a, b ∈ N;
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(i) neut(a) ∗ neut(b) = neut(a ∗ b);
(ii) anti(a) ∗ anti(b) = anti(a ∗ b);

Theorem 2 ([11]). Let (N, ∗) be a commutative NET with respect to ∗ and a ∈ N;

(i) neut(a) ∗ neut(a) = neut(a);
(ii) anti(a) ∗ neut(a) = neut(a) ∗ anti(a) = anti(a)

2.2. NETG

Definition 2 ([3]). Let (N, ∗) be a neutrosophic extended triplet set. Then (N, ∗) is called a NETG, if the
following classical axioms are satisfied.

(a) (N, ∗) is well defined, i.e., for any x, y ∈ N one has x ∗ y ∈ N.
(b) (N, ∗) is associative, i.e., for any x, y, z ∈ N one has x ∗ (y ∗ z) = (x ∗ y) ∗ z.

We consider, that the extended neutral elements replace the classical unitary element as well the extended
opposite elements replace the inverse element of classical group. Therefore, NETGs are not a group in classical
way. In the case when NETG enriches the structure of a classical group, since there may be elements with more
extended opposites.

2.3. Neutrosophic Extended Triplet Subgroup

Definition 3 ([26]). Given a NETG (N, ∗), a neutrosophic triplet subset H is called a neutrosophic extended
triplet subgroup of N if it itself forms a neutrosophic extended triplet group under ∗. Explicity this means

(1) The extended neutral element eneut(x) lies in H.
(2) For any x, y ∈ H, x ∗ y ∈ H.

(3) If x ∈ H then eanti(x) ∈ H.

In general, we can show H ≤ N as x ∈ H and then eanti(x) ∈ H, i.e x ∗ eanti(x) = eneut(x) ∈ H.

Definition 4. Suppose that N is NETG and H1, H2 ≤ N.H1 and H2 are called neutrosophic triplet conjugates
of N if n ∈ N thereby H1 = nH2(anti(n)).

2.4. Neutro-Homomorphism

Definition 5 ([26]). Let (N1, ∗) and (N2, ◦) be two NETGs. A mapping f : N1 → N2 is called a
neutro-homomorphism if

(a) For any x, y ∈ N, we have
f (x ∗ y) = f (x) ◦ f (y)

(b) If (x, neut(x), anti(x) is a neutrosophic extended triplet from N1, then

f (neut(x)) = neut( f (x))

and
f (anti(x)) = anti( f (x)).
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Definition 6 ([26]). Let f: N1→N2 be a neutro-homomorphism from a NETG (N1, ∗) to a NETG (N2, ◦).
The neutrosophic triplet image of f is

Im( f ) = { f (g) : g ∈ N1, ∗}.

Definition 7 ([26]). Let f: N1→N2 be a neutro-homomorphism from a NETG (N1, ∗) to a NETG (N2, ◦) and B
⊆ N2. Then

f−1(B) = {x ∈ N1 : f (x) ∈ B}
is the neutrosophic triplet inverse image of B under f.

Definition 8 ([26]). Let f : N1 → N2 be a neutro-homomorphism from a NETG (N1, ∗) to a NETG (N2, ◦).
The neutrosophic triplet kernel of f is a subset

Ker( f ) = {x ∈ N1 : f (x) = neut(x)} o f N1,

where neut(x) denotes the neutral element of N2.

Definition 9. The neutrosophic triplet kernel of φ is called the neutrosophic triplet center of NETG N and it is
denoted by Z(N). Explicitly,

Z(N) = {a ∈ N : ϕa = neutN}
= {a ∈ N : ab(anti(a)) = b, ∀b ∈ N}
= {a ∈ N : ab = ba, ∀b ∈ N}.

Hence Z(N) is the neutrosophic triplet set of elements in N that commute with all elements in N. Note that
obviously Z(N) is a neutrosophic triplet. We have Z(N) = N in the case that N is abelian.

Definition 10 ([26]). Let N be a NETG and H ⊆ N.∀x ∈ N, the set xh/h ∈ H is called neutrosophic triplet
coset denoted by xH. Analogously,

Hx = hx/h ∈ H

and
(xH)anti(x) = (xh)anti(x)/h ∈ H.

When h ≤ N, xH is called the left neutrosophic triplet coset of H in N containing x, and Hx is called the
right neutrosophic triplet coset of H in N containing x. | xH | and | Hx | are used to denote the number of
elements in xH and Hx, respectively.

2.5. Neutrosophic Triplet Normal Subgroup and Quotient Group

Definition 11 ([26]). A neutrosophic extended triplet subgroup H of a NETG of N is called a neutrosophic
triplet normal subgroup of N if aH(anti(a)) ⊆ H, ∀x ∈ N and we denote it as H � N and H � N i f H �= N.

Example 1. Let N be NETG. {neut} � N and N � N.

Definition 12 ([26]). If N is a NETG and H � N is a neutrosophic triplet normal subgroup, then the
neutrosophic triplet quotient group N/H has elements xH : x ∈ N, the neutrosophic triplet cosets of H in N,
and operation (xH)(yH) = (xy)H.
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3. Neutro-Monomorphism, Neutro-Epimorphism, Neutro-Isomorphism, Neutro-Automorphism

In this section, we define neutro-monomorphism, neutro-epimorphism, neutro-isomorphism, and
neutro-automorphism. Then, we give and some important theorems related to them.

3.1. Neutro-Monomorphism

Definition 13. Assume that (N1, ∗) and (N2, ◦) be two NETG’s. If a mapping f : N1 → N2 of NETG is only
one to one (injective) f is called neutro-monomorphism.

Theorem 3. Let (N1, ∗) and (N2, ◦) be two NETG’s. ϕ : N1 → N2 is a neutro-monomorphism of NETG if
and only if kerϕ = {neutN1}.

Proof. Assume ϕ is injective. If a ∈ kerϕ, then

ϕ(a) = neutN2 = ϕ(neutN1), ∀a ∈ N1

and hence by injectivity a = neutN1. Conversely, assume kerϕ = ϕ(neutN1). Let a,b ∈ N1 such that ϕ(a) =
ϕ(b). We need to show that a = b.

neutH = ϕ(b)anti(ϕ(a))
= ϕ(b)ϕ(anti(a))
= ϕ(b(anti(a))).

Thus b(anti(a))) ∈ kerϕ, and hence, by assumption kerϕ = ϕ(neutN1). We conclude that
b(anti(a))) = neutN1, i.e., a = b.

Definition 14. Let (N1, ∗) and (N2, ◦) be two NETG’s. If a mapping f : N1 → N is only onto (surjective) f is
called neutro-epimorphism.

Theorem 4. Let N and H be two NETG’s. If ϕ : N → H is a neutro-homomorphism of NETG, then so is ϕ−1:
H → N.

Proof. Let x = ϕ(a), y = ϕ(b), ∀a, b ∈ N and ∀x, y ∈ H. So a = anti(ϕ(x)), b = anti(ϕ(y)). Now

anti(xy) = ϕ(ϕ(a)ϕ(b))
= anti(ϕ(ab) = ab
= anti(ϕ(x))anti(ϕ(y)).

Theorem 5. Let N be NETG and a, b ∈ N. The map φ : N → AutN. Then, a → ϕ a, is a
neutro-homomorphism.

Proof. For any fixed n ∈ N, we have

ϕab(N) = abn(anti(ab)) = abn(anti(a))anti(b)
= ϕa(bn(anti(b)) = ϕa ϕb(n),

So ϕab = ϕa ϕb, i.e., φ(ab) = φ(a)φ(b).
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It is in fact has anti-neutral element i.e., ϕ(anti(n)) = anti(ϕn). Since ϕnanti(ϕn(a)) =

n(anti(n)an)anti(n) = a, and so ϕn is injective.

Theorem 6. Let f : N → H be a neutro-homomorphism of NETG N and H. For h ∈ H and x ∈
f−1(h), f−1(h) = x ∈ ker f .

Proof. (1) Let’s show that f−1(h) ⊆ x ker f . If x ∈ f−1(h), then f (x) = h and b ∈ f−1(h), then
f (b) = h. If f (x) = f (y), then:

anti( f (x)) f (x) = anti( f (x)) f (b)(by theorem 1)

neutH = f (anti(x)) f (b) (by definition 1)

⇒ anti(x)b ∈ ker f .

For at least k ∈ ker f , anti(x)b = k. If b = xk, then,

b ∈ xker f ⇒ f−1(h) ⊆ xker f (1)

(2) Let’s show that xker f ⊆ f−1(h). Let b ∈ xker f . For at least k ∈ ker f , b = xk

⇒ f (b) = f (xk) = f (x) f (k) = h neutH = h

If f−1(h) = b and b ∈ f−1(h), then
xker f ⊆ f−1(h) (2)

by (1) and (2), we obtain xker f = f−1(h).

Theorem 7. Let ϕ : N1 → N2 be a neutro-homomorphism of NETG N1 and N2.

(1) I f H2 � N2, then ϕ−1(H2) � N1.
(2) I f H1 � N1 and ϕ is a neutro − epimorhism then ϕ(H1) � N2.

Proof. (1) If x ∈ ϕ−1(H2) and a ∈ N1, then ϕ(x) ∈ H2 and so
ϕ((ax)(anti(a)) = ϕ(a)ϕ(x)anti(ϕ(a)) ∈ H2 . Since H2 is neutrosophic triplet normal subgroup.
We conclude ax(anti(a)) ∈ ϕ−1(H2).

(2) Since H1 is neutrosophic triplet normal subgroup, we have ϕ(a)ϕ(H1)anti(ϕ(a)) ⊆ ϕ(H1).
Since we assume ϕ is surjective, every b ∈ N2 can be written as b = ϕ(a), a ∈ N1. Therefore,
bϕ(H1)anti(b) ∈ ϕ(H1).

Theorem 8 ([26]). Let f : N → H be a neutro-homomorphism from a NETG N to a NETG H. Ker f � N.

Theorem 9. Let N be NETG and H � N. The map ϕ : N → N/H, n → nH, is a neutro-homomorphism
with neutrosophic triplet kernel kerϕ = H.
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Proof. We have ϕ(ab) = (ab)H = (aH)(bH) = ϕ(a)ϕ(a), so φ is a neutro-homomorphism. As to
the neutrosophic triplet kernel, a ∈ kerϕ ⇔ ϕ(a) = H (since H is neutral in N/H) ⇔ aH = H (by
definition of φ) ⇔ a ∈ H.

Theorem 10. Let N be NETG and H ⊆ N be a non-empty neutrosophic extended triplet subset. Then H � N,
if and only if there exists a neutro-homomorphism ϕ : N1 → N2 with H = kerϕ.

Proof. Its straight forward.

3.2. Neutro-Isomorphism

Definition 15. Let (N1, ∗) and (N2, ◦) be two NETGs. If a mapping f : N1 → N2 neutro-homomorphism is
one to one and onto f is called neutro-isomorphism. Here, N1 and N2 are called neutro-isomorphic and denoted
as N1

∼= N2.

Theorem 11. Let (N1, ∗) and (N2, ◦) be two NETG’s. If f : N1 → N2 is a neutro-isomorphism of NETG’s,
then so is f−1 : N2 → N1.

Proof. It is obvious to show that f is one to one and onto. Now let’s show that f is
neutro-homomorphism. Let x = ϕ(a), y = ϕ(b), ∀a, b ∈ N1, ∀x, y ∈ N2 and so, a = anti(ϕ(x)), b =

anti(ϕ(y)). Now anti(xy) = anti(ϕ(ϕ(a)ϕ(b))) = anti(ϕ(ϕ(ab))) = ab = anti(ϕ(x))anti(ϕ(y)).

3.3. Neutro-Automorphism.

Definition 16. Let (N1, ∗) and (N2, ◦) be two NETG’S. If a mapping f : N1 → N2 is one to one and onto f is
called neutro-automorphism.

Definition 17. Let N be NETG. ϕ ∈ AutN is called a neutro-inner automorphism if there is a n ∈ N such
that ϕ = ϕn.

Proposition 1. Let N be a NETG. For a ∈ N, fa : N → N such that x → ax(anti(a) is a
neutro-automorphism (AutN).

Proof. (1) ∀x, y ∈ N, we have to show that

f (x) = f (y) ⇒ x = y.ax(anti(a)) = ay(anti(a)) ⇒ ax(anti(a))a = ay(anti(a))a ⇒ ax(neut(a)) = ay(neut(a)) ⇒

Therefore, f is one to one.
(2) ∀x, y ∈ N, we have to show that

f (x) = ax(anti(a)) = y.ax(anti(a))a = ya⇒ ax(neut(a)) = ya ⇒ ax = ya ⇒ anti(a)ax = anti(a)ya ⇒ neut(a)x =

So, f is onto. Therefore, fa is a neutro-automorphism.
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Lemma 1. Let a be an element of NETG N such that a2 = a. Then a = neut(a).

Proof. We have
= (anti(a) ∗ a) ∗ a for anti(a) ∈ N (anti axiom)

= anti(a) ∗ a2 (associativity axiom)

= anti(a) ∗ a (by assumption)
= neut(a) (by definition of anti)

Theorem 12. Let N be NETG and H1, H2 ≤ N. Then the neutrosophic extended triplet set H1H2 =

{ab : a ∈ H1, b ∈ H2} is a neutrosophic extended triplet subgroup in the case that H1H2 = H2H1.

Proof. Suppose H1H2 is a neutrosophic extended triplet subgroup. Then, for all a ∈ H1, b ∈ H2, we
have anti(a)anti(b) ∈ H1H2, i.e., H2H1 ⊆ H1H2. But also for h ∈ H1H2 we find a ∈ H1, b ∈ H2 thereby
anti(h) = ab, and then h = anti(b)anti(a) ∈ H2H1. So H1H2 ⊆ H2H1, that’s, H1H2 = H2H1. On the
other hand, assume that H1H2 = H2H1. Then ∀a, a′ ∈ H1, b, b′ ∈ H2 we have aba′b′ ∈ aH2H1b′ =
aH1H2b′ = H1H2. Furthermore, ∀a ∈ H1, b ∈ H2 we have anti(ab) = anti(b)anti(a) ∈ H2H1 =

H1H2.

4. Fundamental Theorem of Neutro-Homomorphism

The fundamental theorem of neutro-homomorphism relates the structure of two objects between
which a neutrosophic kernel and image of the neutro-homomorphism is given. It is also significant
to prove neutro-isomorphism theorems. In this section, we give and prove the fundamental theorem
of neutro-homomorphism. Then, we discuss a few special cases. Finally, we give examples by
using NETG.

Theorem 13. Let N1, N2 be NETG’s and φ : N1 → N2 be a neutro-homomorphism. Then, N1/ker(φ) ∼=
im(φ). Furthermore if ϕ is neutro-epimorphism, then

N1/kerφ ∼= N2.

  N1         im( ) 

        i 

N1/ker( ) 

Proof. We will construct an explicit map i : N1/ker(φ) → im(φ) and prove that it is a
neutro-isomorphism and well defined. Since ker(ϕ) is neutrosophic triplet normal subgroup of N1.
Let K = ker(φ), and recall that N1/K = {aK : a ∈ N1}. Define i : N1/K → im(φ), i : nK → φ(n), n ∈ N1.
Thus, we need to check the following conditions.

(1) i is well defined
(2) i is injective
(3) i is surjective
(4) i is a neutro-homomorphism
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(1) We must show that if aK = bK, then i(aK) = (bK). Suppose aK = bK. We have
aK = bK ⇒ anti(b)aK = K ⇒ anti(b)a ∈ K. Here, neut(n2) = φ(anti(b)a) = φ(anti(b)φ(a)
= anti(φ(b))φ(a) ⇒ φ(a) = φ(b). Hence, i(aK) = φ(a) = φ(b) = i(bK). Therefore, it is
well defined.

(2) We must show that i(aK) = i(bK) ⇒ aK = bK. Suppose that i(aK) = i(bK). Then

( ) ( )    .i aK i bK aK bK= =  

( )( ) ( ) ( )( ) ( )( ) ( )2 2     n nanti b a neut anti b a neut anti b a Kφ φ φ= = ∈  

( ) 2 2 2 ( )   .anti b aK K aN N a N= = ⇔ ∈
 

Thus, i is injective.
(3) We must show that for any element in the domain (N1/K) gets mapped to it by i. let’s pick any

element φ(a) ∈ im(φ). By definition, i(aK) = φ(a), hence i is surjective.
(4) We must show that i(aK bK) = i(aK)i(bK).i(aK bK) = i(abK)(aK bK = abK) = φ(ab) =

φ(a)φ(b) = i(aK bK) = i(aK)i(bK). Thus, i is a neutro-homomorphism.

In summary, since i : N1/K → im(φ) is a well-defined neutro-homomorphism that is injective
and surjective. Therefore, it is a neutro-isomorphism. i.e., N1/K ∼= im(φ), and the fundamental
theorem of neutro-homomorphism is proven.

Corollary 1 (A Few Special Cases of Fundamental Theorem of Neutro-homomorphism).

• Let N = (1, 1, 1) be a trivial neutrosophic extended triplet. If ϕ: N1→N2 is an embedding, then neutrosophic
ker(ϕ) = {neut(1) = 1N1}. The Theorem 12 says that im(ϕ) ∼= {N1/1N1} ∼= N1.

• If ϕ: N1→N2 is a map ϕ(n) = neut(1) = 1N2 for all n2 ∈ N1, then neutrosophic ker(ϕ) = N1, so Theorem
13 says that 1N2 = im(ϕ) ∼= N1/N1.

Example 2. The neutrosophic extended triplet alternating group An (the neutrosophic extended triplet subgroup
of even permutation in NETG Sn) has index 2 in Sn.

Solution. To prove that [Sn:An] = 2. We will construct a surjective neutro-homomorphism φ: Sn→Z2 with
neutrosophic triplet kerφ = An. Here the neutrosophic extended triplets of Z2 are (0, 0, 0) and (1, 1, 1). If this
is achieved, it would follow that Sn/An ∼= Z2, so |Sn/An| = |Z2| = 2, and therefore [Sn:An] = |Sn/An| = 2,

as desired. Define φ: Sn→Z2 by φ(f) =

{
[0] i f f is even
[1] i f f is odd

By construction φ is surjective. To prove that φ is a neutro-homomorphism we need to show that
φ(x) + φ(y) = φ(xy), ∀x, y ∈ Sn. Here if x and y are both even or both odd, then xy is even. If x is even
and y is odd, or if x is odd and y is even, then xy is odd. Let us see these four different cases as follows:

(1) x and y are both even. Then xy is also even. So, φ(x) = φ(y) = φ(xy) = [0]. Since [0] + [0] =
[0] holds.

(2) x is even, and y is odd. Then xy is odd. So, φ(x) + φ(y) = [0] + [1] = [1] = φ(xy).
(3) x is odd, and y is even. This case is analogous to case 2.
(4) x and y are both odd. Then xy is even, so φ(x) + φ(y) = [1] + [1] = [0] = φ(xy). Thus, we verified

that φ is a neutro-homomorphism. Finally, neutrosophic trplet kerφ = {x ∈ Sn: φ(x) = [0]2} is the
neutrosophic extended triplet set of all even permutations, so neutrosophic triet kerϕ = An.

61



Symmetry 2018, 10, 321

5. First Neutro-Isomorphism Theorem

The first neutro-isomorphism theorem relates two neutrosophic triplet quotient groups involving
products and intersections of neutrosophic extended triplet subgroups. In this section, we give and
prove the first neutro-isomorphism theorem. Finally, we give an example by using NETG.

Theorem 14. Let N be NETG and H, K be two neutrosophic extended triplet subgroup of N and H is a
neutrosophic triplet normal in K. Then

(a) HK is neutrosophic triplet subgroup of N.
(b) H

⋂
K is neutrosophic triplet normal subgroup in K.

(c) HK
H

∼= K
H
⋂

K

Proof. (a) Let xy ∈ HK. If x = h1k1 and y = h2k2, h1h2 ∈ H and k1, k2 ∈ K. Consider

x(anti(y)) = (h1k1) anti(h2k2)

= (h1k1)anti(k2)anti(h2)

= h1(k1(anti(k2)))anti(h2), (k3 = k1(anti(k2)) : k3 ∈ K
= h1k3(anti(h2))

= h1k3(anti(h2))anti(k3)k3

= h1k3(anti(h2))anti(k3)k3

= h1h2k3 because H � kso h3 = k3(anti(h2))anti(k3) ∈ H
⇒ x(anti(y) = h4k3 ∈ HK, (h4 = h1h2)

⇒ HK is NETG of N.

(b) We have to prove H ∩ K is neutrosophic triplet normal subgroup in k or H ∩ K � k. Let x ∈ H ∩ K
and x ∈ K. If x ∈ H and x ∈ K, then kx(anti(k)) ∈ H because H � k and kx(anti(k)) ∈ K because
xk ∈ K. Thus, kx(anti(k)) ∈ H ∩ K. Since H ∩ K � k.

(c) HK
H

∼= K
H
⋂

K . Let H
⋂

K = D, so K
D = K

H
⋂

K . Now let’s define a mapping ϕ: HK→ K
D by φ(hk) = KD.

1. ϕ is well defined
h1k1 = h2k2, h1h2 ∈ H and k1k2 ∈ K

k1h′1 = k2h′2
⇒ anti(k2)k1h′1 = h′2
⇒ anti(k2)k1 = h′2(anti(h1)), h′2(anti(h1)) ∈ H
⇒ anti(k2)k1 ∈ H, but anti(k2)k1 ∈ K
⇒ anti(k2)k1 ∈ H ∩ K = D
⇒ anti(k2)k1 ∈ D
⇒ anti(k2)k1D = D
⇒ k1D = k2D
⇒ φ(h1k1) = φ(h2k2).

2. ϕ is neutro-homomorphism.

Φ(h1k1.h2k2) = φ(h1(k1h2)k2

= φ(h1h2′k1k2)

= K1k2D
= k1Dk2D
= φ(h1k1).φ(h2k2)

3. ϕ is onto.
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Since for every KD ∈ K/D,� neut.k ∈ HK under ϕ such that φ(neut.k) = KD. Hence, ϕ is onto.
Now by Theorem 13,

HK/Kerφ ∼= K/D

Now it is enough to prove that kerφ = H. Let h ∈ H, h(neut) ∈ HK. Thus

φ(h) = φ(h.neut) = neut.D = D
⇒ φ(h) = D
⇒ h ∈ kerφ.i.eH ⊆ kerφ

Conversly, hk ∈ kerφ, where h ∈ H and k ∈ K. If φ(hk) = D, then

KD = D ⇒ k ∈ D = H ∩ K
⇒ h ∈ H and k ∈ K
⇒ hk ⊆ H
⇒ kerφ ⊆ H. Thus H = kerφ

by (1) HK
H

∼= K
H
⋂

K .

Example 3. Let N be NETG. Neutro-isomorphism theorems are for instance useful in the calculation of NETG
orders, since neutro-isomorphic groups have the same order. If H ≤ N and K � N so that HK is finite, then
Lagrange’s theorem [26] in neutrosophic triplet with theorem 13 yield

|HK|/|K| = |HK : K|
= |HK/K|
= |H/H

⋂
K|

= |H : H
⋂

K|
= |H|/|H

⋂
K|, that is

|HK| = |H||K|/|H
⋂

K|

6. Second Neutro-Isomorphism Theorem

The second neutro- isomorphism theorem is extremely useful in analyzing the neutrosophic
extended normal subgroups of a neutrosophic triplet quotient group. In this section, we give and
prove the second neutro-homomorphism theorem for NETG.

Theorem 15. Let N be a NETG. Let H and K be neutrosophic triplet normal subgroup of N with K ⊆ H. Then
H/K � N/K and N/KH/K ∼= N/H

Proof. Consider the natural map Ψ:N→N/H. The neutrosophic triplet kernel, H contains K. Thus, by
the universal property of N/K, it follows that there is a neutro-homomorphism N/K → N/H. This
map is clearly surjective. In fact, it sends the neutrosophic triplet left coset nK to the neutrosophic
triplet left coset nH. Now suppose that nK is in the neutrosophic triplet kernel. Then the neutrosophic
triplet left coset nH is the neutral neutrosophic triplet coset, that is, nH = H, so that n ∈ H. Thus the
neutrosophic triplet kernel consists of those neutrosophic triplet left cosets of the form nK, for n ∈ H,
that is, H/K.
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1. Ψ is well defined. Let ak = bk.

anti(b)ak = k
anti(b)a ∈ k
⇒ K � H

anti(b)a ∈ H
aH = bH(anti(b)aH = H)

Ψ(ak) = Ψ(bk)

2. Ψ is neutro-homomorphism

ak, bk ∈ N/K
Ψ(akbk) =Ψ(abk) = abH = aHbH =Ψ(ak)Ψ(bk).

3. Ψ is onto
For all y = aH ∈ N/H, x = ak ∈ N/K ⇒Ψ(x) = y.

4. kerΨ = H/K
The neutral element of N/H is H. Therefore

ker Ψ: {xk ∈ N/K : Ψ(xk) = H}
= {xk ∈ N/K : Ψ(xk) = xH = H}
= {xk ∈ N/K : x ∈ H}
= {xk ∈ H/K}
= H/K.

By Theorem 13 N/KH/K ∼= N/H.

7. Conclusions

This paper is mainly focused on fundamental homomorphism theorems for neutrosophic extended
triplet groups. We gave and proved the fundamental theorem of neutro-homomorphism, as well
as first and second neutro-isomorphism theorems explained for NETG. Furthermore, we define
neutro-monomorphism, neutro-epimorphism, neutro-automorphism, inner neutro-automorphism,
and center for neutrosophic extended triplets. Finally, by applying them to neutrosophic algebraic
structures, we have examined how closely different systems are related. By using the concept of a
fundamental theorem of neutro-homomorphism and neutro-isomorphism theorems, the relation
between neutrosophic algebraic structures (neutrosophic triplet ring, neutrosophic triplet field,
neutrosophic triplet vector space, neutrosophic triplet normed space, neutrosophic modules, etc.) can
be studied and the field of study in neutrosophic algebraic structures will be extended.
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16. Şahin, M.; Kargın, A. Neutrosophic triplet inner product space. Neutrosophic Oper. Res. 2017, 2, 193–215.
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Abstract: In this paper, we introduce the concept of neutrosophic number from different viewpoints.
We define different types of linear and non-linear generalized triangular neutrosophic numbers
which are very important for uncertainty theory. We introduced the de-neutrosophication concept
for neutrosophic number for triangular neutrosophic numbers. This concept helps us to convert a
neutrosophic number into a crisp number. The concepts are followed by two application, namely in
imprecise project evaluation review technique and route selection problem.

Keywords: linear and non-linear neutrosophic number; de-neutrosophication methods

1. Introduction

1.1. Theory of Uncertainty and Uncertainty Quantification

Uncertainty theory playsanimportant role in modeling sciences and engineering problems.
However, there is a basic question regarding how we can define or use the uncertainty concept
in our mathematical modeling. Researchers around the globe defined many approaches to defining
them, and give their various recommendations to using uncertainty theory. There are several
literaturestudiesthatclassify some basic uncertain parameters. It should be noted that there is no
unique reorientation of the uncertain parameter. For the problem’s purpose or decision makers’ choice,
it can be varied and presented as a different application. We now, here, give some info about uncertain
parameters, and show how they differ from eachother using the concept of uncertainty using some
definition, flowcharts, and diagrams. In this paper, we recommend the researcher to take the uncertain
parameter as a parametric interval valued neutrosophic number.

Some basic differences between some uncertain parameters:
If we take Interval number [1] then we can see,

1. The information belongs to a certain interval
2. There is no concept of membership function

Symmetry 2018, 10, 327; doi:10.3390/sym10080327 www.mdpi.com/journal/symmetry67
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If we take Fuzzy number [2,3], then we can see,

1. The concept of belongingness of the elements comes
2. The use of membership function is present

If we take Intuitionistic fuzzy number [4], then we can see,

1. The concept of belongingness and non-belongingness of the elementscomes
2. The use of membership and non-membership function is present

If we take Neutrosophic fuzzy number [5], then we can see,

1. The concept of truthiness, falsity, and indeterminacy of the elements comes
2. The use of membership function for truthiness, falsity, and indeterminacy is present

Please follow the idea given in the flowchart below, as shown in Figure 1:

Figure 1. Flowchart for different uncertain parameter.

1.2. Neutrosophic Number

Fuzzy systems (FSs) and Intuitionistic fuzzy systems (IFSs) cannot successfully deal with
a situation where the conclusion is adequate, unacceptable, and decision-maker declaration is
uncertain. Therefore, some novel theories are mandatory for solving the problem with uncertainty.
The neutrosophic sets (NSs) [5] reflect on the truth membership, indeterminacy membership, and falsity
membership concurrently, which is more practical and adequate than FSs and IFSs in commerce,
which areuncertain, incomplete, and inconsistent in sequence. Single-valued neutrosophic sets are an
extension of NSs which were introduced by Wang et al. [6]. Ye [7] introduced simplify neutrosophic
sets, and Peng et al. [8,9] definite their novel operations and aggregation operators. Finally, there
are different extensions of NSs, such as interval neutrosophic set [10], bipolar neutrosophic sets [11],
and multi-valued neutrosophic sets [12,13]. The decision-making problem [14–38] is very important in
study, when it is with uncertainty.

Although many researchers and scientists have worked in the recently developed neutrosophic
method, and applied it in the field of decision making, there is, however, still some viewpoints
regarding defining neutrosophic numbers in different forms, and their corresponding de-impreciseness
is very important.

1.3. Ranking and De-Impreciseness

The ranking and de-impreciseness of the imprecise numbers are not a new concept.However,
what is the basic concept of the above-said important results and what is the relation. Figure 2 shows
the flowchart for de-impreciseness and ranking.
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Figure 2. Flowchart for de-impreciseness and ranking.

Ranking is a concept where we can compare two imprecise numbers, and de-impreciseness is
a technique where the imprecise number is converted to a crisp number. Somewhere, the decision
maker takes the two concepts as the same. In this case, they convert the imprecise number into crisp
number, and compares them on the basis of crisp value.

1.4. Structure of the Paper

The paper is organized as follows. In Section 1, the basic concept on imprecise set theory and
neutrosophic set theory are discussed. Section 2 contains the preliminaries section. Section 3 goes for
the known definition of neutrosophic sets and numbers. Single valued linear neutrosophic number
and its variation are showing in Section 3. In Section 4, we address the basic concept of neutrosophic
non-linear number and generalized neutrosophic number. In Section 5, the de-neutrosophication
of linear neutrosophic triangular fuzzy number is performed. The PERT problem is considered
in Section 6. The application in assignment problem, considering aproblem, is taken in Section 7.
The conclusions are written in Section 8.

2. Neutrosophic Number

Definition 1. (Neutrosophic Set) A set S̃neu in the universal discourse X, which is denoted generically

by x, is said to be a neutrosophic set if S̃neu = {〈x; [πS̃neu
(x), μS̃neu

(x), ϑS̃neu
(x)]〉...x ∈ X}, where

πS̃neu
(x) : X → [0, 1] is called the truth membership function which represents the degree of confidence,

μS̃neu
(x) : X → [0, 1] is called the indeterminacy membership function which represents the degree of

uncertainty, and ϑS̃neu
(x) : X → [0, 1] is called the falsity membership function which represents the degree of

scepticism on the decision given the decision maker.

πS̃neu
(x), μS̃neu

(x)&ϑS̃neu
(x) exhibits the following relation:

0 ≤ πS̃neu
(x) + μS̃neu

(x) + ϑS̃neu
(x) ≤ 3

Definition 2. (Single Valued Neutrosophic Set) Neutrosophic set S̃neu in the definition 2.3, is
called a Single Valued Neutrosophic Set (S̃neu) if x is a single valued independent variable. Thus

S̃neu = {〈x; [πS̃neu
(x), μS̃neu

(x), ϑS̃neu
(x)]〉...x ∈ X}, where πS̃neu

(x), μS̃neu
(x)&ϑS̃neu

(x) represents the truth,
indeterminacy, and falsity membership function, respectively, as stated in definition 2.3, and also exhibits the
same relationship as stated earlier.
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If there exists three points, a0, b0&c0, for which πS̃neu
(a0) = 1, μS̃neu

(b0) = 1 &ϑS̃neu
(c0) = 1, then

the S̃neu is called neut-normal.
A S̃neu is said to be neut-convex, which implies that it is a subset of a real line, by satisfying the

following conditions:

1. πS̃neu
〈ρa1 + (1 − ρ)a2〉 ≥ min〈πS̃neu

(a1), πS̃neu
(a2)〉

2. μS̃neu
〈ρa1 + (1 − ρ)a2〉 ≤ max〈μS̃neu

(a1), μS̃neu
(a2)〉

3. ϑS̃neu
〈ρa1 + (1 − ρ)a2〉 ≤ max〈ϑS̃neu

(a1), ϑS̃neu
(a2)〉

where, a1&a2 ∈ R and ρ ∈ [0, 1].

Definition 3. (Single Valued Neutrosophic Number)Single Valued Neutrosophic Number (z̃) is defined as
z̃ = 〈[(p1, q1, r1, s1); α], [(p2, q2, r2, s2); β], [(p3, q3, r3, s3); γ]〉 where α, β, γ ∈ [0, 1], the truth membership
function (πz̃) : R → [0, α] , the indeterminacy membership function (μz̃) : R → [β, 1] , and the falsity
membership function (ϑz̃) : R → [γ, 1] is given as:

πz̃(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πz̃l(x)

α

πz̃u(x)
0

p1 ≤ x ≤ q1

q1 ≤ x ≤ r1

r1 ≤ x ≤ s1

otherwise

,

μz̃(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μz̃l(x)

β

μz̃u(x)
1

p2 ≤ x ≤ q2

q2 ≤ x ≤ r2

r2 ≤ x ≤ s2

otherwise

ϑz̃(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϑz̃l(x)

γ

ϑz̃u(x)
1

p3 ≤ x ≤ q3

q3 ≤ x ≤ r3

r3 ≤ x ≤ s3

otherwise

3. Single Valued Linear Neutrosophic Number

1. Triangular Single Valued Neutrosophic number of Type 1: The quantity of the truth, indeterminacy
and falsity are not dependent: A Triangular Single Valued Neutrosophic number of Type 1 is
defined as ÃNeu = (p1, p2, p3; q1, q2, q3; r1, r2, r3) whose truth membership, indeterminacy and
falsity membership is defined as follows:

TÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−p1
p2−p1

when p1 ≤ x < p2

1 when x = p2
p3−x
p3−p2

when p2 < x ≤ p3

0 otherwise

and

TÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−p1
p2−p1

when p1 ≤ x < p2

1 when x = p2
p3−x
p3−p2

when p2 < x ≤ p3

0 otherwise

IÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q2−x
q2−q1

when q1 ≤ x < q2

0 when x = q2
x−q2
q3−q2

when q2 < x ≤ q3

1 otherwise
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and

TÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−p1
p2−p1

when p1 ≤ x < p2

1 when x = p2
p3−x
p3−p2

when p2 < x ≤ p3

0 otherwise

where, 0 ≤ TÃNeu
(x) + IÃNeu

(x) + FÃNeu
(x) ≤ 3, x ∈ ÃNeu.

The parametric form of the above type number is (ÃNeu)α,β,γ =

[TNeu1(α), TNeu2(α); INeu1(β), INeu2(β); FNeu1(γ), FNeu2(γ)],
where,

TNeu1(α) = p1 + α(p2 − p1)

TNeu2(α) = p3 − α(p3 − p2)

INeu1(β) = q2 − β(q2 − q1)

INeu2(β) = q2 + β(q3 − q2)

FNeu1(γ) = r2 − γ(r2 − r1)

FNeu2(γ) = r2 + γ(r3 − r2)

here, 0 < α ≤ 1, 0 < β ≤ 1, 0 < γ ≤ 1 and 0 < α + β + γ ≤ 3

Example 1. Take ÃNe = (10, 15, 20; 14, 16, 22; 12, 15, 19).

The parametric representation is

TNe1(α) = 10 + 5α

TNe2(α) = 20 − 5α

INe1(β) = 16 − 2β

INe1(β) = 16 + 6β

FNe1(γ) = 15 − 3γ

FNe2(γ) = 15 + 4γ

Table 1 and Figure 3 show the value of TNe1(α), TNe2(α), INe1(β), INe1(β), FNe1(γ), and FNe2(γ)

and graphical representation of triangular single valued neutrosophic numbers (TrSVNNs) respectively.

Table 1. Value of TNe1(α), TNe2(α), INe1(β), INe1(β), FNe1(γ), and FNe2(γ).

α,β,γ TNe1(α) TNe2(α) INe1(β) INe1(β) FNe1(γ) FNe2(γ)

0 10 20 16 16 15 15
0.1 10 19.5 15.8 16.6 14.7 15.4
0.2 11 19 15.6 17.2 14.4 15.8
0.3 11.5 18.5 15.4 17.8 14.1 16.2
0.4 12 18 15.2 18.4 13.8 16.6
0.5 12.5 17.5 15 19 13.5 17
0.6 13 17 14.8 19.6 13.2 17.4
0.7 13.5 16.5 14.6 20.2 12.9 17.8
0.8 14 16 14.4 20.8 12.6 18.2
0.9 14.5 15.5 14.2 21.4 12.3 18.6
1 15 15 14 22 12 19

2. Triangular Single Valued Neutrosophic Number of Type 2: The quantity of indeterminacy and
falsity are dependent: A triangular single valued neutrosophic number (TrSVNN) of Type 2
is defined as ÃNeu = (p1, p2, p3; q1, q2, q3; uNeu, yNeu) whose truth membership, indeterminacy,
and falsity membership are defined as follows:
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TÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−p1
p2−p1

when p1 ≤ x < p2

1 when x = p2
p3−x
p3−p2

when p2 < x ≤ p3

0 otherwise

and

IÃNeu
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q2−x+uNeu(x−q1)

q2−q1
when q1 ≤ x < q2

uNeu when x = q2
x−q2+uNeu(q3−x)

q3−q2
when q2 < x ≤ q3

1 otherwise

and

FÃNeu
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q2−x+yNeu(x−q1)

q2−q1
when q1 ≤ x < q2

yNeu when x = q2
x−q2+yNeu(q3−x)

q3−q2
when q2 < x ≤ q3

1 otherwise

where, 0 ≤ TÃNeu
(x) + IÃNeu

(x) + FÃNeu
(x) ≤ 2, x ∈ ÃNeu.

The parametric form of the above type number is (ÃNeu)α,β,γ =

[TNeu1(α), TNeu2(α); INeu1(β), INeu2(β); FNeu1(γ), FNeu2(γ)], where

TNeu1(α) = p1 + α(p2 − p1)

TNeu2(α) = p3 − α(p3 − p2)

INeu1(β) = q2−uNeuq1−β(q2−q1)
1−uNeu

INeu2(β) = q2−uNeuq3+β(q3−q2)
1−uNeu

FNeu1(γ) =
q2−yNeuq1−γ(q2−q1)

1−yNeu

FNeu2(γ) =
q2−yNeuq3+γ(q3−q2)

1−yNeu
.

Here, 0 < α ≤ 1, uNeu < β ≤ 1, yNeu < γ ≤ 1 and 0 < β + γ ≤ 1 and 0 < α + β + γ ≤ 2.

Figure 3. Graphical representation of TrSVNNs.
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Example 2. Take ÃNe = (10, 15, 20; 14, 16, 22; 0.4, 0.5)

The parametric representation is,

TNe1(α) = 10 + 5α

TNe2(α) = 20 − 5α

INe1(β) = 1
3 (52 − 10β)

INe1(β) = 12 + 10β

FNe1(γ) = 18 − 4γ

FNe2(γ) = 10 + 12γ.

Table 2 and Figure 4 show the value of TNe1(α), TNe2(α), INe1(β), INe1(β), FNe1(γ), and FNe2(γ)

and graphical representation of type-2 TrSVNNs.

Table 2. Value of TNe1(α), TNe2(α), INe1(β), INe1(β), FNe1(γ), and FNe2(γ).

α,β,γ TNe1(α) TNe2(α) INe1(β) INe1(β) FNe1(γ) FNe2(γ)

0 10 20 – – – –
0.1 10.5 19.5 – – – –
0.2 11 19 – – – –
0.3 11.5 18.5 – – – –
0.4 12 18 16 16 – –
0.5 12.5 17.5 15.6667 17 16 16
0.6 13 17 15.3333 18 15.6 17.2
0.7 13.5 16.5 15. 19 15.2 18.4
0.8 14 16 14.6667 20 14.8 19.6
0.9 14.5 15.5 14.3333 21 14.4 20.8
1 15 15 14 22 14 22

Figure 4. Graphical representation of type-2 TrSVNNs.

3. Triangular Single Valued Neutrosophic number of Type 3: The quantity of the truth,
indeterminacy, and falsity are dependent: A TrSVNN of Type 3 is defined as ÃNeu =

(p1, p2, p3; wNe, uNeu, yNeu), whose truth membership, indeterminacy, and falsity membership are
defined as follows:

73



Symmetry 2018, 10, 327

TÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wNeu

x−p1
p2−p1

when p1 ≤ x < p2

wNeu when x = p2

wNeu
p3−x
p3−p2

0 otherwise
when p2 < x ≤ p3

and

IÃNeu
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p2−x+uNeu(x−p1)

p2−p1
when p1 ≤ x < p2

uNeu when x = p2
x−p2+uNeu(p3−x)

p3−p2

1 otherwise
when p2 < x ≤ p3

and

IÃNeu
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p2−x+uNeu(x−p1)

p2−p1
when p1 ≤ x < p2

uNeu when x = p2
x−p2+uNeu(p3−x)

p3−p2

1 otherwise
when p2 < x ≤ p3

where, 0 ≤ TÃNeu
(x) + IÃNeu

(x) + FÃNeu
(x) ≤ 1, x ∈ ÃNeu.

The parametric form of the above type number is (ÃNeu)α,β,γ =

[TNeu1(α), TNeu2(α); INeu1(β), INeu2(β); FNeu1(γ), FNeu2(γ)], where

TNeu1(α) = p1 +
α

wNeu
(p2 − p1)

TNeu2(α) = p3 − α
wNeu

(p3 − p2)

INeu1(β) = p2−uNeu p1−β(p2−p1)
1−uNeu

INeu2(β) = p2−uNeu p3+β(p3−p2)
1−uNeu

FNeu1(γ) =
p2−yNeu p1−γ(p2−p1)

1−yNeu

FNeu2(γ) =
p2−yNeu p3+γ(p3−p2)

1−yNeu
.

Here, 0 < α ≤ wNeu, uNeu < β ≤ 1, yNeu < γ ≤ 1, and 0 < α + β + γ ≤ 1.

Example 3. Take ÃNe = (14, 16, 22; 0.5, 0.8, 0.7)

The parametric representation is,

TNe1(α) = 14 + 4α

TNe2(α) = 22 − 12α

INe1(β) = 16 − 5
2 β

INe1(β) = 16 + 15
2 β

FNe1(γ) = 16 − 20
7 γ

FNe2(γ) = 16 + 60
7 γ.

Table 3 and Figure 5 show the value of TNe1(α), TNe2(α), INe1(β), INe1(β), FNe1(γ) and FNe2(γ).
and Graphical representation of type-3 TrSVNNs
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Table 3. Value of TNe1(α), TNe2(α), INe1(β), INe1(β), FNe1(γ) and FNe2(γ).

α,β,γ TNe1(α) TNe2(α) INe1(β) INe1(β) FNe1(γ) FNe2(γ)

0 14 22
0.1 14.4 20.8
0.2 14.8 19.6
0.3 15.2 18.4
0.4 15.6 17.2
0.5 16 16
0.6
0.7 16 16
0.8 16 16 16.2857 15.1429
0.9 15.75 16.75 16.5714 14.2857
1 15.5 17.5 16.8571 13.4286

Figure 5. Graphical representation of type-3 TrSVNNs.

Different Operational Laws of Two Triangular Neutrosophic Numbers: If ÃNeu and B̃Neu are two
single valued neutrosophic numbers with nine components having truthmembership TÃNeu

&TB̃Neu
,

indeterminacymembership IÃNeu
&IB̃Neu

, and falsitymembership FÃNeu
&FB̃Neu

, respectively, such as:

ÃNeu = 〈a1, a2, a3; b1, b2, b3; c1, c2, c3〉 and B̃Neu = 〈a4, a5, a6; b4, b5, b6; c4, c5, c6〉

where a, band c are the scores given by the decision maker in the scale, ranging from lower limit Ll to
upper limit Ul.

• Addition

C̃Neu = ÃNeu + B̃Neu

= 〈 {min(a1 + a4, Ul), min(a2 + a5, Ul), min(a3 + raphical representation o f type 3 TrSVNNsa6, Ul)};

{min(b1 + b4, Ul), min(b2 + b5, Ul), min(b3 + b6, Ul)}; {min(c1 + c4, Ul), min(c2 + c5, Ul), min(c3 + c6, Ul)}
〉
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• Negative of SVNNs

S̃Neu = −ÃNeu
= 〈−a3,−a2,−a1;−b3,−b2,−b1;−c3,−c2,−c1〉

• Subtraction

D̃Neu = ÃNeu − B̃Neu
= ÃNeu + (−B̃Neu)

= 〈
{max(a1 − a6, Ll), max(a2 − a5, Ll), max(a3 − a4, Ll)};
{max(b1 − b6, Ll), max(b2 − b5, Ll), max(b3 − b4, Ll)};
{max(c1 − c6, Ll), max(c2 − c5, Ll), max(c3 − c4, Ll)}

〉

• Multiplications

D̃Neu = ÃNeu − B̃Neu
= ÃNeu + (−B̃Neu)

= 〈
{max(a1 − a6, Ll), max(a2 − a5, Ll), max(a3 − a4, Ll)};
{max(b1 − b6, Ll), max(b2 − b5, Ll), max(b3 − b4, Ll)};
{max(c1 − c6, Ll), max(c2 − c5, Ll), max(c3 − c4, Ll)}

〉

• Multiplication by a constant

ẼNeu = k
[

ÃNeu

]
= k × 〈a1, a2, a3; b1, b2, b3; c1, c2, c3〉

= 〈ka1, ka2, ka3; kb1, kb2, kb3; kc1, kc2, kc3〉

• Inverse of SVNNs
F̃Neu = Ã−1

Neu = 1
〈a1,a2,a3;b1,b2,b3;c1,c2,c3〉

= 〈 1
a3

, 1
a2

, 1
a1

; 1
b3

, 1
b2

, 1
b1

; 1
c3

, 1
c2

, 1
c1
〉 f or (a, b, c) > 0

= 〈 1
a1

, 1
a2

, 1
a3

; 1
b1

, 1
b2

, 1
b3

; 1
c1

, 1
c2

, 1
c3
〉 f or (a, b, c) < 0

• Divisions

G̃Neu ÃNeu ÷ B̃Neu
= ÃNeu ÷ B̃Neu
= 〈a1, a2, a3; b1, b2, b3; c1, c2, c3〉 × 〈 1

a6
, 1

a5
, 1

a4
; 1

b6
, 1

b5
, 1

b4
; 1

c6
, 1

c5
, 1

c4
〉

= 〈

⎧⎪⎨⎪⎩
min( a1

a4
, a1

a5
, a1

a6
, a2

a4
, a2

a5
, a2

a6
= vision o f SVNNs, a3

a4
, a3

a5
, a3

a6
),

mean( a1
a4

, a1
a5

, a1
a6

, a2
a4

, a2
a5

, a2
a6

= vision o f SVNNs, a3
a4

, a3
a5

, a3
a6
),

max( a1
a4

, a1
a5

, a1
a6

, a2
a4

, a2
a5

, a2
a6

= vision o f SVNNs, a3
a4

, a3
a5

, a3
a6
)

⎫⎪⎬⎪⎭;

⎧⎪⎨⎪⎩
min( b1

b4
, b1

b5
, b1

b6
, b2

b4
, b2

b5
, b2

b6
, b3

b4
, b3

b5
, b3

b6
),

mean( b1
b4

, b1
b5

, b1
b6

, b2
b4

, b2
b5

, b2
b6

, b3
b4

, b3
b5

, b3
b6
),

max( b1
b4

, b1
b5

, b1
b6

, b2
b4

, b2
b5

, b2
b6

, b3
b4

, b3
b5

, b3
b6
),

⎫⎪⎬⎪⎭;

⎧⎪⎨⎪⎩
min( c1

c4
, c1

c5
, c1

c6
, c2

c4
, c2

c5
, c2

c6
, c3

c4
, c3

c5
, c3

c6
),

mean( c1
c4

, c1
c5

, c1
c6

, c2
c4

, c2
c5

, c2
c6

, c3
c4

, c3
c5

, c3
c6
),

max( c1
c4

, c1
c5

, c1
c6

, c2
c4

, c2
c5

, c2
c6

, c3
c4

, c3
c5

, c3
c6
),

⎫⎪⎬⎪⎭

〉
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Example 4. If ÃNeu = 〈5, 10, 15; 2.5, 5, 7.5; 10, 17.5, 25〉 and B̃Neu = 〈4, 6, 8; 3, 6, 9; 1, 1.75, 2.5〉 are two
single valued neutrosophic numbers with independent truth, indeterminate, and false values in the scale of 0 to

25, then find the ÃNeu + B̃Neu, ÃNeu − B̃Neu, ÃNeu × B̃Neu, ÃNeu
B̃Neu

and kB̃Neu where k = 3.

• Addition
ÃNeu + B̃Neu = 〈9, 16, 23; 5.5, 11, 16.5; 11, 19.25, 25〉,

• Subtraction
ÃNeu − B̃Neu = 〈0, 4, 11; 0, 0, 4.5; 7.5, 15.75, 24〉

• Multiplication
ÃNeu × B̃Neu = 〈20, 60, 120; 7.5, 30, 67.5; 10, 30.625, 62.5〉

• Division
ÃNeu

B̃Neu
= 〈0.625, 1.806, 3.75; 0.278, 1.0185, 2.5; 4, 11.5, 25〉,

• Multiplication by a constant

kB̃Neu = 〈12, 18, 24; 9, 18, 27; 3, 5.25, 7.5〉

4. Neutrosophic Non-Linear Number and Generalized Neutrosophic Number

4.1. Single Valued Non-Linear Triangular Neutrosophic Number with Nine Components

A single valued non-linear triangular neutrosophic number with nine components is defined
as ÃNeu = (p1, p2, p3; q1, q2, q3; r1, r2, r3), whose truth membership, indeterminacy, and falsity
membership is defined as:

TÃNeu
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( x−p1

p2−p1
)

a1 when p1 ≤ x < p2

1 when x = p2

( p3−x
p3−p2

)
a2

0 otherwise
when p2 < x ≤ p3

and

IÃNeu
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( x−q1

q2−q1
)

b1 when q1 ≤ x < q2

0 when x = q2

( x−q3
q3−q2

)
b2

1 otherwise
when q2 < x ≤ q3

and

FÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( x−r1

r2−r1
)

c1 when r1 ≤ x < r2

0 when x = r2

( x−r3
r3−r2

)
c2

1 otherwise
when r2 < x ≤ r3

where, 0 ≤ TÃNeu
(x) + IÃNeu

(x) + FÃNeu
(x) ≤ 3, x ∈ ÃNeu.

Note. If a1, a2, b1, b2, c1,c2 = 1, then single valued non-linear triangular neutrosophic number with
nine components will be converted into single valued linear triangular neutrosophic number with
nine components.
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4.2. Single Valued Generalized Triangular Neutrosophic Number with Nine Components

A single valued triangular neutrosophic number with nine components is defined as
ÃNe = (p1, p2, p3; q1, q2, q3; r1, r2, r3), whose truth membership, indeterminacy, and falsity membership
is defined as:

TÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω

x−p1
p2−p1

when p1 ≤ x < p2

ω when x = p2

ω
p3−x
p3−p2

0 otherwise
when p2 < x ≤ p3

and

IÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ

x−q1
q2−q1

when q1 ≤ x < q2

0 when x = q2

ρ
x−q3
q3−q2

ρ otherwise
when q2 < x ≤ q3

and

FÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ x−r1

r2−r1
when r1 ≤ x < r2

0 when x = r2

λ x−r3
r3−r2

λ otherwise
when r2 < x ≤ r3

where, 0 ≤ TÃNeu
(x) + IÃNeu

(x) + FÃNeu
(x) ≤ 3, x ∈ ÃNeu.

4.3. Single Valued Generalized Non-Linear Triangular Neutrosophic Number with Nine Components

A single valued non-linear triangular neutrosophic number with nine components is defined
as ÃNeu = (p1, p2, p3; q1, q2, q3; r1, r2, r3), whose truth membership, indeterminacy, and falsity
membership is defined as:

TÃNeu
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω( x−p1

p2−p1
)

a1 when p1 ≤ x < p2

ω when x = p2

ω( p3−x
p3−p2

)
a2

0 otherwise
when p2 < x ≤ p3

and

IÃNeu
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ( x−q1

q2−q1
)

b1 when q1 ≤ x < q2

0 when x = q2

ρ( x−q3
q3−q2

)
b2

ρ otherwise
when q2 < x ≤ q3

and

FÃNeu
(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ( x−r1

r2−r1
)

c1 when r1 ≤ x < r2

0 when x = r2

λ( x−r3
r3−r2

)
c2

λ otherwise
when r2 < x ≤ r3

where, 0 ≤ TÃNeu
(x) + IÃNeu

(x) + FÃNeu
(x) ≤ 3, x ∈ ÃNeu.

Note. if a1, a2, b1, b2, c1,c2 = 1, then single valued generalized non-linear triangular neutrosophic
number with nine components will be converted into single valued generalized linear triangular
neutrosophic number with nine components.
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5. De-Neutrosophication of Linear Neutrosophic Triangular Fuzzy Number

De-Neutrosophication Using Removal Area Method

Let us consider a linear neutrosophic triangular fuzzy number as follows:

ÃNe = (a, b, c; d, e, f ; g, h, k)

whose pictorial representation is as follows.
Firstly, we consider the graphical representation of linear neutrosophic triangular fuzzy number

in Figure 6.

Figure 6. Linear neutrosophic number.

We consider an ordinary number k ∈ R and a fuzzy number Ǎ for the lower triangle, then left
side removal of Ǎ with respect to k is Rl(Ǎ, k), defined as the area bounded by k and the left side of
the fuzzy number Ǎ. Similarly, the right side removal of Ǎ with respect to k is Rr(Ǎ, k). Also consider
an ordinary number k ∈ R and a fuzzy number B̌ for the left most upper triangle(Δdef), then the left
side removal of B̌ with respect to k is Rl(B̌, k), defined as the area bounded by k and the left side of the
fuzzy number B̌. Similarly, the right side removal of B̌ with respect to k is Rr(B̌, k). A fuzzy number
Č for the right most upper triangle(Δghk), then left side removal of Č with respect to k is Rl(Č, k),
defined as the area bounded by k and the left side of the fuzzy number Č. Similarly, the right side
removal of Č with respect to k is Rr(Č, k).

Mean is defined as (Ǎ, k) = Rl(Ǎ,k)+Rr(Ǎ,k)
2 , R(B̌, k) = Rl(B̌,k)+Rr(B̌,k)

2 , R(Č, k) = Rl(Č,k)+Rr(Č,k)
2 .

Then, we defined the defuzzification of a linear neutrosophic triangular fuzzy as

R(Ď, k) = R(Ǎ,k)+R(B̌,k)+R(Č,k)
3 .

For k = 0,
R(Ǎ, 0) = Rl(Ǎ,0)+Rr(Ǎ,0)

2

R(B̌, 0) = Rl(B̌,0)+Rr(B̌,0)
2

R(Č, 0) = Rl(Č,0)+Rr(Č,0)
2

Then,

R(Ď, 0) =
R(Ǎ, 0) + R(B̌, 0) + R(Č, 0)

3

We take Ǎ = (a, b, c), B̌ = (d, e, f ), Č = (g, h, k).
Figure 7 shows the pictorial representation of de-neutrosophication.
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(a)
(b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Pictorial representation of de-neutrosophication. (a) Area of trapezium OABR; (b) Area of
trapezium OABR; (c) Area of trapezium OEDR;(d) Area of trapezium OEFR; (e) Area of trapezium
OHGR: (f) Area of trapezium OHKR.

Then,
Rl(Ǎ, 0) =Area of trapezium OABR = (a+b)

2 .1

Rl(Ǎ, 0) =Area of trapezium OABR = (a+b)
2 .1

Rl(B̌, 0) =Area of trapezium OABR = (d+e)
2 .1

Rr(B̌, 0) =Area of trapezium OABR = (e+ f )
2 .1

Rl(Č, 0) =Area of trapezium OABR = (g+h)
2 .1

Rr(C, 0) =Area of trapezium OABR = (k+h)
2 .1.

Hence, (Ǎ, 0) = (a+2b+c)
4 , R(B̌, 0) = (d+2e+ f )

4 , R(Č, 0) = (g+2h+k)
4 .

So, R(Ď, 0) = (a+2b+c+d+2e+ f+g+2h+k)
12 .

Example 5. Finding De-neutrosophication value of Neutrosophic number.

Table 4 shows the de-neutrosophication value of Neutrosophic number.

Table 4. De-neutrosophication value of Neutrosophic number.

Experiment No. Neutrosophic Number De-Neutrosophication Value

Set 1 Ǎ = (1, 2, 3; 0.5, 1.5, 2.5; 1.2, 2.7, 3.5) 2.0083
Set 2 B̌ = (0.5, 1.5, 2.5; 0.3, 1.3, 2.2; 0.7, 1.7, 2.2) 1.45
Set 3 Č = (0.3, 1.2, 2.8; 0.5, 1.5, 2.5; 0.8, 1.7, 2.7) 1.533
Set 4 Ď = (1, 3, 5; 0.5, 1.5, 2.5; 1.2, 2.7, 4.5) 2.425
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6. PERT in Triangular Neutrosophic Environment and the Proposed Model

The full form of PERT method is project evaluation and review technique, which is a project
management tool used to schedule, organize, and coordinate tasks within a project. It is basically a
method to analyze the tasks involved in completing a given project, especially the time needed to
complete each task, and to identify the minimum time needed to complete the total project.

PERT planning involves the following steps:

1. Identify the specific activities and milestones.
2. Determine the proper sequence of the activities.
3. Construct a network diagram.
4. Estimate the time required for each activity.
5. Determine the critical path.
6. Update the PERT chart as the project progresses.

The main objective of PERT is to facilitate decision making and to reduce both the time and cost
required to complete a project. PERT is intended for very large-scale, one-time, non-routine, complex
projects with a high degree of dependency, projects which require a series of activities, some of which
must be performed sequentially, and others that can be performed in parallel with other activities.
PERT has been mainly used in new projects which have large uncertainty with respect to design of a
structure, technology, and networking system. To take care of associated uncertainties, we introduced
triangular neutrosophic environment for PERT activity duration.

The three time estimates for activity duration are as follows:
Optimistic time (ǒ): Generally, the shortest time in which the activity can be completed. It is

common practice to specify optimistic time to be three standards deviations from the mean so that
there is approximately a 1% chance that the activity will be completed within the optimistic time.

Pessimistic time ( p̌): Generally, the longest time that an activity might require. Three standard
deviations from the mean are commonly used for the pessimistic time.

Most likely time (m̌): Generally, it is the completion time, in normal circumstances, having the
highest probability. Note that this time is different from the expected time.

Note 2. In Ref. [22], the authors introduced the concept of score and accuracy function to compute
the crisp value of a trapezoidal neutrosophic number. In our proposed model, we choose all the three
different times (optimistic, pessimistic, most likely) as triangular neutrosophic number.

To obtain the crisp value, we introduced the de-neutrosophication value R(Ď, 0) =
(a+2b+c+d+2e+ f+g+2h+k)

12 of triangular neutrosophic number (a, b, c; d, e, f ; g, h, k).
Now, the expected time and standard deviation can be calculated by the formula Ejk =

o+4m+p
6

and σjk = p−o
6 , where o, p, and m are all crisp value of optimistic, pessimistic, and most likely time

estimations, respectively.
Now, we use CPM method for further calculation of earliest/latest time, critical path, and float.
In forward pass, starting with a time of zero for the first event, the computation proceeds from

left to right, up to the final event. For any activity (i, j), let ESi denote the earliest time of event i,
then ESj = ESi + tij. If more than one activity enters an event, the earliest start time for that event is
computed as ESj = max

{
ESi + tij

}
for all activities emanating from node i entering into j.

In case of backward pass, starting with the final node, the computation proceeds from right to
left, up to the initial event. For any activity (i, j), let LFi denote the latest finished time of event i,
then LFi = LFj − tij. If more than one activity enters an event, the latest finish time for that event is
computed as LFi = min

{
LFj − tij

}
for all activities emanating from node j entering into i.

After calculating the critical path, compute project length variance, which is the sum of the
variances of all the critical activities. Next, calculate the standard normal variable Z = Ts−Te

σ , where Ts

is the scheduled time to complete the project, and Te is the normal expected project length duration.
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Using a normal curve, we can estimate the probability of completing the project within a specified
time. The steps of the said method are shown in Figure 8. We also set the numerical value for the said
problem to show the importance of our method in Table 5.

Figure 8. Flowchart for the solution procedure.
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Draw the project network and find the probability that the project is completed in 16 days.

Solution. Now, we solve the problem by the following steps, as shown in Table 6, Figures 9 and 10.

Step-1.

Table 6. The value of Ejk and σjk
2 for the above problem.

Optimistic Time
(o)

Pessimistic Time
(p)

Most Likely Time
(m)

Ejk =
o+4m+p

6 σjk
2 = ( p−o

6 )
2

2.26 5.42 3.33 3.50 0.277
4.92 2.00 4.92 4.43 0.244
4.67 1.71 5.42 4.68 0.243
2.96 3.33 2.67 2.83 0.004
2.75 5.54 2.42 3.00 0.216
3.83 2.26 4.67 4.13 0.068
2.83 4.92 2.00 2.63 0.121
3.33 3.50 2.26 2.65 0.001
5.42 2.67 4.92 4.63 0.210
3.50 2.42 2.00 2.32 0.032
4.88 4.67 1.71 2.73 0.001

Figure 9. The network diagram for the problem.

Figure 10. Critical path analysis for the problem.
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Therefore, the expected project duration is 15.9 days.
Critical path A→C→G→J→K.
Project length variance σ2 = 0.962, standard deviation0.98.
Probability that the project will be finished within 16 days is P(z ≤ 16−15.9

0.98 ) = P(z ≤ 0.1)
Area under the normal curve P(z ≤ 0.1) = 0.5 +∅(0.1) = 0.5398
The related normal curve is drawn in Figure 11.

Figure 11. The normal curve for the above problem.

7. Application of Triangular Neutrosophic Fuzzy Number in Assignment Problem Using
De-Neutrosophic Value

The assignment problem is very important for transferring goods from one place to another place.
In the assignment problem, if uncertainty occurs, then it is more complicated to solve. By the concept
of impreciseness and its corresponding crispified value, we can easily handle the assignment problem.
In this section, we take a route selection problem with neutrosophic cost data and solve the problem.

We consider a problem of assigning three different trucks to three different destinations.
The assigning costs that are the travelling costs in rupees are given here. How should the trucks
be dispatched so as to minimize the total travelling cost? Note, that all the costs are triangular
neutrosophic numbers.

Let us consider that the transportation cost for the three trucks are neutrosophic in nature. For that
viewpoint, we take that the cost of the three trucks are as follows in Table 1, in units of dollar. Each
component represents the moneys in units of dollars.

Here, red car denotes Truck 1, yellow car denotes Truck 2, and green car denotes Truck 3 as shown
in the Figure 12.

Figure 12. Pictorial representation of the problem.
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We apply the defuzzification result of triangular neutrosophic number from Table 7.

Table 7. Neutrosophic value for the transportation costs.

Destination-1 Destination-2 Destination-3

Truck 1 (1,4,7;1,3,5;3.5,6,7.5) (0.5,2.5,4.5;1,2,3;1.5,3.5,5.5) (1,3,5;0.5,1.5,3.5;2,4,6)
Truck 2 (1,2,3;0.5,1.5,2.5;1.5,2.5,3.5) (1,1.5,4;0.5,1,2.5;1.25,3,4.25) (1.5,2.5,3.5;1,1.5,3;2,3,4)
Truck 3 (2,4,6;1.5,2.5,4.5;3,5,7) (1,5,8;1.5,4.5,7.5;4,6.5,9) (1,5,8;1.5,3,6.5;4,7,9)

R(Ď, 0) = (a+2b+c+d+2e+ f+g+2h+k)
12 to convert the numbers into a crisp number.

Then, we have the following Table 8.

Table 8. De-neutrosophication value for the transportation costs.

Destination-1 Destination-2 Destination-3

Truck 1 4.25 2.67 2.92
Truck 2 2.00 1.71 2.75
Truck 3 3.92 5.25 5.08

Now, we consider row minimum from each row, and subtract it from the other element (row-wise).
Thus, we get Table 9.

Table 9. Row minimum from each row, and subtract it from the other element (row-wise).

Destination-1 Destination-2 Destination-3

Truck 1 1.58 0 0.25
Truck 2 0.29 0 1.04
Truck 3 0 1.33 1.16

Now, we consider column minimum from each column and subtract it from the other element
(column-wise). Thus, we get Table 10.

Table 10. Column minimum from each column and subtract it from the other element (column-wise).

Destination-1 Destination-2 Destination-3

Truck 1 1.58 0 0
Truck 2 0.29 0 0.79
Truck 3 0 1.33 0.91

Here, the minimum number of straight lines to cover all the zeros is 3 (which is also equal to the
order of the matrix), as shown in Table 11.

Table 11. Minimum number of straight lines to cover all the zeros.

Destination-1 Destination-2 Destination-3

Truck 1 1.58 0 0
Truck 2 0.29 0 0.79
Truck 3 0 1.33 0.91

From the Table 12, we see that if the Truck1 goes to Destination-3, Truck2 goes to Destination-2,
and Truck3 goes to Destination-1, then the carrying is minimum.
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Table 12. Transformed table.

Destination-1 Destination-2 Destination-3

Truck 1 1.58 0 [0]
Truck 2 0.29 [0] 0.79
Truck 3 [0] 1.33 0.91

That means from the Figure 13 Truck-1→Destination-3, Truck-2→Destination-2,
Truck-3→Destination-1.

Figure 13. Pictorial representation of the solution.

The corresponding Min cost = (3.92 + 1.71 + 2.92) = 8.55 units of dollar.
Then, we get Table 13.

Table 13. Neutrosophic value of destinations.

Destination-1 Destination-2 Destination-3

Truck 1 (1,4,7;1,3,5;3.5,6,7.5) (0.5,2.5,4.5;1,2,3;1.5,3.5,5.5) (1,3,5;0.5,1.5,3.5;2,4,6)
Truck 2 (1,2,3;0.5,1.5,2.5;1.5,2.5,3.5) (1,1.5,4;0.5,1,2.5;1.25,3,4.25) (1.5,2.5,3.5;1,1.5,3;2,3,4)
Truck 3 (2,4,6;1.5,2.5,4.5;3,5,7) (1,5,8;1.5,4.5,7.5;4,6.5,9) (1,5,8;1.5,3,6.5;4,7,9)

Ye [21] built up the concept of score function and accuracy function. The score function S and the
accuracy function H are applied to compare the grades of triangular fuzzy numbers (TFNS). These
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functions show that greater is the value, the greater is the TFNS, and by using these, concept paths can
be ranked.

We apply the result of triangular neutrosophic number.
Let, Ǎ = (a, b, c; d, e, f ; g, h, k) be a triangular neutrosophic fuzzy number, then the score

function is defined as S(Ǎ) = {8+(a+2b+c)−(d+2e+ f )−(g+2h+k)}
12 , and accuracy function is defined as

H(Ǎ) = {(a+2b+c)−(g+2h+k)}
4 .

In order to make comparisons between two triangular neutrosophic values, Ye [21] presented the
order relations between two triangular neutrosophic values.

Let Ǎ1 = (a1, b1, c1; d1, e1, f1; g1, h1, k1) and Ǎ2 = (a2, b2, c2; d2, e2, f2; g2, h2, k2) be two triangular
neutrosophic values, then the ranking method is defined as follows.

(i) if S(Ǎ1) > S(Ǎ2), then Ǎ1 > Ǎ2

(ii) if S(Ǎ1) = S(Ǎ2) and H(Ǎ1) > H(Ǎ2), then Ǎ1 > Ǎ2

We apply the score function result of triangular neutrosophic number S(Ǎ) =
{8+(a+2b+c)−(d+2e+ f )−(g+2h+k)}

12 to convert the numbers into a crisp number.
Then we have the following table, as shown in Table 14.

Table 14. Converted the numbers into a crisp number.

Destination-1 Destination-2 Destination-3

Truck 1 −0.92 −0.33 −0.25
Truck 2 0.00 −0.04 −0.08
Truck 3 −0.58 −1.42 −1.17

Take the most negative cost (−1.42), add it with all the elements of the matrix we get Table 15.

Table 15. Corrosponing positive value table.

Destination-1 Destination-2 Destination-3

Truck 1 0.50 1.09 1.17
Truck 2 1.42 1.38 1.34
Truck 3 0.84 0.00 0.25

Now, we consider row minimum from each row and subtract it from the other elements (row-wise).
Thus, we get Table 16.

Table 16. Row minimum from each row and subtract it from the other elements (row-wise).

Destination-1 Destination-2 Destination-3

Truck 1 0 0.59 0.67
Truck 2 0.08 0.04 0
Truck 3 0.84 0 0.25

Now, we consider column minimum from each column, and subtract it from the other elements
(column-wise). Thus, we get Table 17.

Table 17. Column minimum from each column, and subtract it from the other elements (column-wise).

Destination-1 Destination-2 Destination-3

Truck 1 0 0.59 0.67
Truck 2 0.08 0.04 0
Truck 3 0.84 0 0.25
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Here, the minimum number of straight lines to cover all the zeros is 3(which is also equal to the
order of the matrix), as shown in Table 18.

Table 18. Minimum number of straight lines to cover all the zeros is 3.

Destination-1 Destination-2 Destination-3

Truck 1 0 0.59 0.67
Truck 2 0.08 0.04 0
Truck 3 0.84 0 0.25

From the Table 19, we see that if the Truck1 goes to Destination-1, Truck2 goes to Destination-3,
and Truck3 goes to Destination-2, then the carrying is minimum.

Table 19. Decision table.

Destination-1 Destination-2 Destination-3

Truck 1 [0] 0.59 0.67
Truck 2 0.08 0.04 [0]
Truck 3 0.84 [0] 0.25

That means from the Figure 14 the destination is as follows Truck1→Destination-1,
Truck2→Destination-3, Truck3→Destination-2.

Figure 14. Pictorial representation of the solution.

The corresponding Min cost = (−0.92 − 1.42 − 0.08) = −2.42 units of dollar.
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Note: Since, using de-neutrosophic value, we observe that min cost is 8.55 units of dollar, whereas
using score function, we get min cost in negative quantity that is loss, hence de-neutrosophication
gives us a better result than the score function.

8. Conclusions

The theory of uncertainty plays a key role in applied mathematical modeling. The concept of
neutrosophic number is very popular nowadays. The formation and de-neutrosophication of the
corresponding number can be very important for the researcher who deals with uncertainty and
decision-making problems. In this paper, we construct the concept triangular neutrosophic number
from different viewpoints, which is not defined earlier. We use the concept of linear and non-linear
form with generalization of the pick value of truth, falsity, and indeterminacy functions by considering
triangular neutrosophic numbers, which are very important for uncertainty theory. We introduced the
de-neutrosophication concept for triangular neutrosophic numbers. This concept helps us to convert
a neutrosophic number into a crisp number, which is surely helpful for decision-making problems.
In future, we can extend the concept into different types of neutrosophic numbers, which can be more
applicable in modeling with uncertainty.
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Abstract: In this paper we provide an application of neutrosophic bipolar fuzzy sets in daily
life’s problem related with HOPE foundation that is planning to build a children hospital, which
is the main theme of this paper. For it we first develop the theory of neutrosophic bipolar fuzzy
sets which is a generalization of bipolar fuzzy sets. After giving the definition we introduce some
basic operation of neutrosophic bipolar fuzzy sets and focus on weighted aggregation operators in
terms of neutrosophic bipolar fuzzy sets. We define neutrosophic bipolar fuzzy weighted averaging
(NBFWA) and neutrosophic bipolar fuzzy ordered weighted averaging (NBFOWA) operators.
Next we introduce different kinds of similarity measures of neutrosophic bipolar fuzzy sets. Finally
as an application we give an algorithm for the multiple attribute decision making problems under
the neutrosophic bipolar fuzzy environment by using the different kinds of neutrosophic bipolar
fuzzy weighted/fuzzy ordered weighted aggregation operators with a numerical example related
with HOPE foundation.

Keywords: neutrosophic set; bipolar fuzzy set; neutrosophic bipolar fuzzy set; neutrosophic bipolar
fuzzy weighted averaging operator; similarity measure; algorithm; multiple attribute decision
making problem

MSC: (2010 Mathematics Subject Classifications) 62C05; 62C86; 03B52; 03E72; 90B50; 91B06; 91B10;
46S40; 47H99

1. Introduction

Zadeh [1] started the theory of fuzzy set and since then it has been a significant tool in learning logical
subjects. It is applied in many fields, see [2]. There are numbers of over simplifications/generalization of
Zadeh’s fuzzy set idea to interval-valued fuzzy notion [3], intuitionistic fuzzy set [4], L-fuzzy notion [5],
probabilistic fuzzy notion [6] and many others. Zhang [7,8], provided the generality of fuzzy sets as
bipolar fuzzy sets. The extensions of fuzzy sets with membership grades from [−1, 1], are the bipolar
fuzzy sets. The membership grade [−1, 0) of a section directs in bipolar fuzzy set that the section
fairly fulfils the couched stand-property, the membership grade ]0, 1] of a section shows that the
section fairly fulfils the matter and the membership grade 0 of a section resources that the section is
unrelated to the parallel property. While bipolar fuzzy sets and intuitionistic fuzzy sets aspect parallel
to one another, they are really distinct sets (see [3]). When we calculate the place of an objective
in a universe, positive material conveyed for a collection of thinkable spaces and negative material
conveyed for a collection of difficult spaces [9]. Naveed et al. [10–12], discussed theoretical aspects of
bipolar fuzzy sets in detail. Smarandache [13], gave the notion of neutrosophic sets as a generalization
of intutionistic fuzzy sets. The applications of Neutrosophic set theory are found in many fields

Symmetry 2018, 10, 331; doi:10.3390/sym10080331 www.mdpi.com/journal/symmetry94
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(see http://fs.gallup.unm.edu/neutrosophy.htm). Recently Zhang et al. [14], Majumdar et al. [15],
Liu et al. [16,17], Peng et al. [18] and Sahin et al. [19] have discussed various uses of neutrosophic set
theory in deciding problems. Now a days, neutrosophic sets are very actively used in applications
and MCGM problems. Bausys and Juodagalviene [20], Qun et al. [21], Zavadskas et al. [22], Chan and
Tan [23], Hong and Choi [24], Zhan et al. [25] studied the applications of neutrosophic cubic sets in
multi-criteria decision making in different directions. Anyhow, these approaches use the maximum,
minimum operations to workout the aggregation procedure. This leads to subsequent loss of data and,
therefore, inaccurate last results. How ever this restriction can be dealt by using famous weighted
averaging (WA) operator [26] and the ordered weighted averaging (OWA) operator [27]. Medina
and Ojeda-Aciego [28], gave t-notion lattice as a set of triples related to graded tabular information
explained in a non-commutative fuzzy logic. Medina et al. [28] introduces a new frame work for
the symbolic representation of informations which is called to as signatures and given a very useful
technique in fuzzy modelling. In [29], Nowaková et al., studied a novel technique for fuzzy medical
image retrieval (FMIR) by vector quantization (VQ) with fuzzy signatures in conjunction with fuzzy
S-trees. In [30] Kumar et al., discussed data clustering technique, Fuzzy C-Mean algorithem and
moreover Artificial Bee Colony (ABC) algorithm. In [31] Scellato et al.,discuss the rush of vehicles in
urban street networks. Recently Gulistan et al. [32], combined neutrosophic cubic sets and graphs and
gave the concept of neutrosophic cubic graphs with practical life applications in different areas. For
more application of neutrosophic sets, we refer the reader to [33–37]. Since, the models presented in
literature have different limitations in different situations. We mainly concern with the following tools:

(1) Neutrosophic sets are the more summed up class by which one can deal with uncertain
informations in a more successful way when contrasted with fuzzy sets and all other versions
of fuzzy sets. Neutrosophic sets have the greater adaptability, accuracy and similarity to the
framework when contrasted with past existing fuzzy models.

(2) And bipolar fuzzy sets are proved to very affective in uncertain problems which can characterized
not only the positive characteristics but also the negative characteristics of a certain problem.

We try to blend these two concepts together and try to develop a more powerful tool in the form
of neutrosophic bipolar fuzzy sets. In this work we initiate the study of neutrosophic bipolar fuzzy
sets which are the generalization of bipolar fuzzy sets and neutrosophic sets. After introducing the
definition we give some basic operations, properties and applications of neutrosophic bipolar fuzzy
sets. And the rest of the paper is structured as follows; Section 2 provides basic material from the
existing literature to understand our proposal. Section 3 consists of the basic notion and properties of
neutrosophic bipolar fuzzy set. Section 4 gives the role of weighted aggregation operator in terms of
neutrosophic bipolar fuzzy sets. We define neutrosophic bipolar fuzzy weighted averaging operator
(NBFWA) and neutrosophic bipolar fuzzy ordered weighted averaging

(NBFOWA) operators.
Section 5 includes different kinds of similarity measures. In Section 6, an algorithm for the multiple
attribute decision making problems under the neutrosophic bipolar fuzzy environment by using the
different kinds of similarity measures of neutrosophic bipolar fuzzy sets and neutrosophic bipolar
fuzzy weighted/fuzzy ordered weighted aggregation operators is proposed. In Section 7, we provide
a daily life example related with HOPE foundation, which shows the applicability of the algorithm
provided in Section 6. In Section 8, we provide a comparison with the previous existing methods. In
Section 9, we discuss conclusion and some future research directions.
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2. Preliminaries

Here we provide some basic material from the literature for subsequent use.

Definition 1. Let Y be any nonempty set. Then a bipolar fuzzy set [7,8], is an object of the form

B = 〈u, 〈μ+(u), μ−(u)〉 : u ∈ Y〉,

and μ+ (u) : Y → [0, 1] and μ− (u) : Y → [−1, 0], μ+(u) is a positive material and μ−(u) is a negative
material of u ∈ Y . For simplicity, we donate the bipolar fuzzy set as B = 〈μ+, μ−〉 in its place of B =

〈u, 〈μ+(u), μ−(u)〉 : u ∈ Y〉.

Definition 2. Let B1 = 〈μ+
1 , μ−

1 〉 and B2 = 〈μ+
2 , μ−

2 〉 be two bipolar fuzzy sets [7,8], on Y . Then we define
the following operations.

(1) B
′
1 =

{〈1 − μ+
1 (u) ,−1 − μ−

1 (u)〉};
(2) B1 ∪ B2 = 〈max(μ+

1 (u) , μ+
2 (u)), min(μ−

1 (u) , μ−
2 (u))〉;

(3) B1 ∩ B2 = 〈min(μ+
1 (u) , μ+

1 (u)), max(μ−
1 (u) , μ−

2 (u))〉.

Definition 3. A neutrosophic set [13], is define as:

L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

where X is a universe of discoveries and L is characterized by a truth-membership function TruL : X →]0−, 1+[,
an indtermency-membership function IndL : X →]0−, 1+[ and a falsity-membership function FalL : X →
]0−, 1+[ such that 0 ≤ TruL(x) + IndL(x) + FalL(x) ≤ 3.

Definition 4. A single valued neutrosophic set [16], is define as:

L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

where X is a universe of discoveries and L is characterized by a truth-membership function TruL : X → [0, 1],
an indtermency-membership function IndL : X → [0, 1] and a falsity-membership function FalL : X → [0, 1]
such that 0 ≤ TruL(x) + IndL(x) + FalL(x) ≤ 3.

Definition 5. Let [16]
L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

and
B = {〈x, TruB(x), IndB(x), FalB(x)〉 : x ∈ X} ,

be two single valued neutrosophic sets. Then

(1) L ⊂ B if and only if TruL(x) ≤ TruB(x), IndL(x) ≤ IndB(x), FalL(x) ≥ FalB(x).
(2) L = B if and only if TruL(x) = TruB(x), IndL(x) = IndB(x), FalL(x) = FalB(x), for any x ∈ X.
(3) The complement of L is denoted by Lc and is defined by

Lc = {〈x, FalL(x), 1 − IndL(x), TruL(x)〉 /x ∈ X} .

(4) The intersection

L ∩ B = {〈x, min {TruL(x), TruB(x)} , max {IndL(x), IndB(x)} , max {FalL(x), FalB(x)}〉 : x ∈ X} .
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(5) The Union

L ∪ B = {〈x, max {TruL(x), TruB(x)} , min {IndL(x), IndB(x)} , min {FalL(x), FalB(x)}〉 : x ∈ X} .

Definition 6. Let Ã1 = 〈Tru1, Ind1, Fal1〉 and Ã2 = 〈Tru2, Ind2, Fal2〉 be two single valued neutrosophic
number [16]. Then, the operations for NNs are defined as below:

(1) λÃ =
〈

1 − (1 − Tru1)
λ, Indλ

1 , Falλ
1

〉
;

(2) Ãλ
1 =

〈
Truλ

1 , 1 − (1 − Ind1)
λ, 1 − (1 − Fal1)

λ
〉

;

(3) Ã1 + Ã2 = 〈Tru1 + Tru2 − Tru1Tru2, Ind1 Ind2, Fal1Fal2〉;
(4) Ã1 Ã2 = 〈Tru1Tru2, Ind1 + Ind2− Ind1 Ind2, Fal1 + Fal2 − Fal1Fal2〉 where λ > 0.

Definition 7. Let Ã1 = 〈Tru1, Ind1, Fal1〉 be a single valued neutrosophic number [16]. Then, the score
function s(Ã1),accuracy function L(Ã1), and certainty function c(Ã1), of an NNs are define as under:

(1) s(Ã1) =
(Tru1+1−Ind1+1−Fal1)

3 ;
(2) L(Ã1) = Tru1 − Fal1;
(3) c(Ã1) = Tru1.

3. Neutrosophic Bipolar Fuzzy Sets and Operations

In this section we apply bipolarity on neutrosophic sets and initiate the notion of neutrosophic
bipolar fuzzy set with the help of Section 2, which is the generalization of bipolar fuzzy set. We also
study some basic operation on neutrosophic bipolar fuzzy sets.

Definition 8. A neutrosophic bipolar fuzzy set is an object of the form NB = (NB+,NB−) where

NB+ = 〈u, 〈TruNB+ , IndNB+ , FalNB+〉 : u ∈ Y〉,
NB− = 〈u, 〈TruNB− , IndNB− , FalNB−〉 : u ∈ Y〉,

where TruNB+ , IndNB+ , FalNB+ : Y → [0, 1] and TruNB− , IndNB− , FalNB− : Y → [−1, 0].

Note: In the Definition 8, we see that a neutrosophic bipolar fuzzy sets NB = (NB+,NB−),
consists of two parts, positive membership functions NB+ and negative membership functions NB−.
Where positive membership function NB+ denotes what is desirable and negative membership
function NB− denotes what is unacceptable. Desirable characteristics are further characterize as:
TruNB+ denotes what is desirable in past, IndNB+ denotes what is desirable in future and FalNB+
denotes what is desirable in present time. Similarly TruNB− denotes what is unacceptable in
past, IndNB− denotes what is unacceptable in future and FalNB− denotes what is unacceptable
in present time.

Definition 9. Let NB
1 = (NB+

1 ,NB−
1 ) and NB

2 = (NB+
2 ,NB−

2 ) be two neutrosophic bipolar fuzzy sets.
Then we define the following operations:

(1) NBc

1 =
{〈

1− TruNB+
1

, 1− IndNB+
1

,−1− FalNB+
1

and 1− TruNB−
1

, 1− IndNB−
1

,−1− FalNB−
1

〉}
;

(2)

NB
1 ∪NB

2 =

〈
max(TruNB+

1
, TruNB+

2
), max(IndNB+

1
, IndNB+

2
), min(FalNB+

1
, FalNB+

2
),

max(TruNB−
1

, TruNB−
2

), max(IndNB−
1

, IndNB−
2

), min(FalNB−
1

, FalNB−
2

)

〉
;
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(3)

NB
1 ∩NB

2 =

〈
min(TruNB+

1
, TruNB+

2
), min(IndNB+

1
, IndNB+

2
), max(FalNB+

1
, FalNB+

2
),

min(TruNB−
1

, TruNB−
2

), min(IndNB−
1

, IndNB−
2

), max(FalNB−
1

, FalNB−
2

).

〉
.

Definition 10. Let NB
1 = (NB+

1 ,NB−
1 ) and NB

2 = (NB+
2 ,NB−

2 ) be two neutrosophic bipolar fuzzy sets.
Then we define the following operations:

(1)

NB+
1 ⊕NB+

2 =

〈
TruNB+

1
+ TruNB+

2
− TruNB+

1
· TruNB+

2
, IndNB+

1
+ IndNB+

2
− IndNB+

1
· IndNB+

2
,

−(
∣∣∣FalNB+

1

∣∣∣ · ∣∣∣FalNB+
2

∣∣∣)
〉

,

and

NB−
1 ⊕NB−

2 =

〈
TruNB−

1
+ TruNB−

2
− TruNB−

1
· TruNB−

2
, IndNB−

1
+ IndNB−

2
− IndNB−

1
· IndNB−

2
,

−(
∣∣∣FalNB−

1

∣∣∣ · ∣∣∣FalNB−
2

∣∣∣)
〉

;

(2)

NB+
1 ⊗NB+

2 =
〈

TruNB+
1

· TruNB+
2

, IndNB+
1

· IndNB+
2

, FalNB+
1

+ FalNB+
2

− (
∣∣∣FalNB+

1

∣∣∣ · ∣∣∣FalNB+
2

∣∣∣)〉 ,

and

NB−
1 ⊗NB−

2 =
〈

TruNB−
1

· TruNB−
2

, IndNB−
1

· IndNB−
2

, FalNB−
1

+ FalNB−
2

− (
∣∣∣FalNB−

1

∣∣∣ · ∣∣∣FalNB−
2

∣∣∣)〉 ;

(3)

NB+
1 −NB+

2 =
〈

min(TruNB+
1

, TruNB+
2

), min(IndNB+
1

, IndNB+
2

), max(FalNB+
1

, FalNB+
2

)
〉

,

and

NB−
1 −NB−

2 =
〈

min(TruNB−
1

, TruNB−
2

), min(IndNB−
1

, IndNB−
2

), max(FalNB−
1

, FalNB−
2

)
〉

.

Definition 11. Let NB = (NB+,NB−) be a neutrosophic bipolar fuzzy set and λ � 0. Then,

(1)

λNB+ = 〈1 − (1 − TruNB+)λ, 1 − (1 − IndNB+)λ,− |FalNB+ |λ〉,
λNB− = 〈1 − (1 − TruNB−)λ, 1 − (1 − IndNB−)λ,− |FalNB− |λ〉.

(2)

NB+λ
= 〈(TruNB+)λ , (IndNB+)λ,−1 + |−1 + FalNB+ |λ〉,

NB−λ = 〈(TruNB−)λ, (IndNB−)λ,−1 + |−1 + FalNB−(u)|λ〉.

Theorem 1. Let NB
1 = (NB+

1 ,NB−
1 ), NB

2 = (NB+
2 ,NB−

2 ) and NB
3 = (NB+

3 ,NB−
3 ) be neutrosophic

bipolar fuzzy sets. Then, the following properties hold:

(1) Complementary law: (NBc
1 )c = NB

1 .
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(2) Idempotent law:

(i) NB
1 ∪NB

1 = NB
1 ,

(ii) NB
1 ∩NB

1 = NB
1 .

(3) Commutative law:

(i) NB
1 ∪NB

2 = NB
2 ∪NB

1 ,

(ii) NB
1 ∩NB

2 = NB
2 ∩NB

1 ,

(iii) NB
1 ⊕NB

2 = NB
2 ⊕NB

1 ,

(iv) NB
1 ⊗NB

2 = NB
2 ⊗NB

1 .

(4) Associative law:

(i) (NB
1 ∪NB

2 ) ∪NB
3 = NB

1 ∪ (NB
2 ∪NB

3 ),

(ii) (NB
1 ∩NB

2 ) ∩NB
3 = NB

1 ∩
(
NB

2 ∩NB
3

)
,

(iii) (NB
1 ⊕NB

2 )⊕NB
3 = NB

1 ⊕ (NB
2 ⊕NB

3 ),

(iv) (NB
1 ⊗NB

2 )⊗NB
3 = NB

1 ⊗ (NB
2 ⊗NB

3 ).

(5) Distributive law:

(i) NB
1 ∪ (NB

2 ∩NB
3 ) = (NB

1 ∪NB
2 ) ∩ (NB

1 ∪NB
3 ),

(ii) NB
1 ∩ (NB

2 ∪NB
3 ) = (NB

1 ∩NB
2 ) ∪ (NB

1 ∩NB
3 ),

(iii) NB
1 ⊕ (NB

2 ∪NB
3 ) = (NB

1 ⊕NB
2 ) ∪ (NB

1 ⊕NB
3 ),

(iv) NB
1 ⊕ (NB

2 ∩NB
3 ) = (NB

1 ⊕NB
2 ) ∩ (NB

1 ⊕NB
3 ),

(v) NB
1 ⊗ (NB

2 ∪NB
3 ) = (NB

1 ⊗NB
2 ) ∪ (NB

1 ⊗NB
3 ),

(vi) NB
1 ⊗ (NB

2 ∩NB
3 ) = (NB

1 ⊗NB
2 ) ∩ (NB

1 ⊗NB
3 ).

(6) De Morgan
′
s laws:

(i) (NB
1 ∪NB

2 )
c

= NBc
1 ∩NBc

2 ,

(ii)
(
NB

1 ∩NB
2

)c
= NBc

1 ∪NBc
2 ,

(iii) (NB
1 ⊕NB

2 )
c �= NBc

1 ⊗NBc
2 ,

(iv)
(
NB

1 ⊗NB
2

)c �= NBc
1 ⊕NBc

2 .

Proof. Straightforward.

Theorem 2. Let NB
1 = (NB+

1 ,NB−
1 ) and NB

2 = (NB+
2 ,NB−

2 ) be two neutrosophic bipolar fuzzy sets
and let NB

3 = NB
1 ⊕NB

2 and NB
4 = λNB

1 (λ > 0). Then both NB
3 and NB

4 are also neutrosophic bipolar
fuzzy sets.

Proof. Straightforward.

Theorem 3. Let NB
1 = (NB+

1 ,NB−
1 ) and NB

2 = (NB+
2 ,NB−

2 ) be two neutrosophic bipolar fuzzy sets,
λ, λ1, λ2 > 0. Then, we have:
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(i) λ(NB
1 ⊕NB

2 ) = λNB
1 ⊕ λNB

2 ,

(ii) λ1NB
1 ⊕ λ2NB

2 = (λ1 ⊕ λ2)NB
1 .

Proof. Straightforward.

4. Neutrosophic Bipolar Fuzzy Weighted/Fuzzy Ordered Weighted Aggregation Operators

After defining neutrosophic bipolar fuzzy sets and some basic operations in Section 3. We in
this section as applications point of view we focus on weighted aggregation operator in terms of
neutrosophic bipolar fuzzy sets. We define (NBFWA) and

(NBFOWA) operators.

Definition 12. Let NB
j = (NB+

j ,NB−
j ) be the collection of neutrosophic bipolar fuzzy values. Then we define

NBFWA as a mapping NBFWAk : Ωn → Ω by

NBFWAk

(
NB

1 ,NB
2 , ...,NB

n

)
= k1NB

1 ⊕ k2NB
2 ⊕, ...,⊕knNB

n .

If k =
(

1
n , 1

n , ..., 1
n

)
then the NBFWA operator is reduced to

NBFA
(
NB

1 ,NB
2 , ...,NB

n

)
=

1
n

(
NB

1 ⊕NB
2 ⊕, ...,⊕NB

n

)
.

Theorem 4. Let NB
j = (NB+

j ,NB−
j ) be the collection of neutrosophic bipolar fuzzy values. Then

NBFWAk

(
NB+

1 ,NB+
2 , ...,NB+

j

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − Πn
j=1

(
1 − TruNB+

j

)kj

,

1 − Πn
j=1

(
1 − IndNB+

j

)kj

,

−Πn
j=1

∣∣∣∣∣
(

FalNB+
j

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

NBFWAk

(
NB−

1 ,NB−
2 , ...,NB−

j

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − Πn
j=1

(
1 − TruNB−

j

)kj

,

1 − Πn
j=1

(
1 − IndNB−

j

)kj

,

−Πn
j=1

∣∣∣∣∣
(

FalNB−
j

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

Proof. Let NB
j = (NB+

j ,NB−
j ) be a collection of neutrosophic bipolar fuzzy values. We first prove

the result for n = 2. Since

k1NB+
L =

[
1 −

(
1 − TruNB+

L

)k1
, 1 −

(
1 − IndNB+

L

)k1
,−(

∣∣∣FalNB+
L

∣∣∣)k1

]
,

k1NB−
L =

[
1 −

(
1 − TruNB−

L

)k1
, 1 −

(
1 − IndNB−

L

)k1
,−(

∣∣∣FalNB−
L

∣∣∣)k1

]
,

k1NB+
b =

[
1 −

(
1 − TruNB+

b

)k2
, 1 −

(
1 − IndNB+

b

)k2
,−(

∣∣∣FalNB+
b

∣∣∣)k2

]
,

k1NB+
b =

[
1 −

(
1 − TruNB−

b

)k2
, 1 −

(
1 − IndNB−

b

)k2
,−(

∣∣∣FalNB−
b

∣∣∣)k2

]
,
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then

NBFWAk

(
NB

L ,NB
b

)
= k1NB

1 ⊕ k2NB
2 ,

NBFWAk

(
NB+

L ,NB+
b

)
= k1NB+

1 ⊕ k2NB+
2 ,

NBFWAk

(
NB−

L ,NB−
b

)
= k1NB−

1 ⊕ k2NB−
2 ,

NBFWAk

(
NB+

L ,NB+
b

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −
(

1 − TruNB+
L

)k1 −
(

1 − TruNB+
b

)k2 −
(

1 −
(

1 − TruNB+
L

)k1
)

×
(

1 −
(

1 − TruNB+
b

)k2
)

,

2 −
(

1 − IndNB+
L

)k1 −
(

1 − IndNB+
b

)k2 −
(

1 −
(

1 − IndNB+
L

)k1
)

×
(

1 −
(

1 − IndNB+
b

)k2
)

,

−(
∣∣∣FalNB+

L

∣∣∣)k1 (
∣∣∣FalNB+

b

∣∣∣)k2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

NBFWAk

(
NB+

L ,NB+
b

)
=

⎡⎢⎣ 1 −
(

1 − TruNB+
L

)k1
(

1 − TruNB+
b

)k2
, 1 −

(
1 − IndNB+

L

)k1
(

1 − IndNB+
b

)k2
,

−(
∣∣∣FalNB+

L

∣∣∣)k1 (
∣∣∣FalNB+

b

∣∣∣)k2

⎤⎥⎦ ,

NBFWAk

(
NB−

L ,NB−
b

)
= k1NB−

1 ⊕ k2NB−
2 ,

NBFWAk

(
NB−

L ,NB−
b

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −
(

1 − TruNB−
L

)k1 −
(

1 − TruNB−
b

)k2 −
(

1 −
(

1 − TruNB−
L

)k1
)

×
(

1 −
(

1 − TruNB−
b

)k2
)

,

2 −
(

1 − IndNB−
L

)k1 −
(

1 − IndNB−
b

)k2 −
(

1 −
(

1 − IndNB−
L

)k1
)

×
(

1 −
(

1 − IndNB−
b

)k2
)

,

−(
∣∣∣FalNB−

L

∣∣∣)k1 (
∣∣∣FalNB−

b

∣∣∣)k2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

NBFWAk

(
NB−

L ,NB−
b

)
=

⎡⎢⎣ 1 −
(

1 − TruNB−
L

)k1
(

1 − TruNB−
b

)k2
, 1 −

(
1 − IndNB−

L

)k1
(

1 − IndNB−
b

)k2
,

−(
∣∣∣FalNB−

L

∣∣∣)k1 (
∣∣∣FalNB−

b

∣∣∣)k2

⎤⎥⎦ .

So NBFWAk
(NB

L ,NB
b
)
= k1NB

1 ⊕ k2NB
2 . If result is true for n = k, that is

NBFWAk

(
NB+

1 ,NB+
2 , ...,NB+

j

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 − Πk

j=1

(
1 − TruNB+

J

)kj

,

1 − Πk
j=1

(
1 − IndNB+

J

)kj

,

−Πk
j=1

∣∣∣∣∣
(

FalNB+
j

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

NBFWAk

(
NB−

1 ,NB−
2 , ...,NB−

j

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 − Πk

j=1

(
1 − TruNB−

J

)kj
,

1 − Πk
j=1

(
1 − IndNB−

J

)kj

,

−Πk
j=1

∣∣∣∣∣
(

FalNB−
j

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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then, when k + 1, we have

NBFWAk

(
NB+

1 ,NB+
2 , ...,NB+

j

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − Πk
j=1

(
1 − TruNB+

j

)kj
+

(
1 −

(
1 − TruNB+

k+1

)kk+1
)

−(1 − Πk
j=1

(
1 − TruNB+

j

)kj
)×

(
1 −

(
1 − TruNB+

k+1

)kk+1
)

,

1 − Πk
j=1

(
1 − IndNB+

j

)kj

+

(
1 −

(
1 − IndNB+

k+1

)kk+1
)

−(1 − Πk
j=1

(
1 − IndNB+

j

)kj
)×

(
1 −

(
1 − IndNB+

k+1

)kk+1
)

,

−Πk+1
j=1

∣∣∣∣∣
(

FalNB+
j

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 − Πk+1

j=1

(
1 − TruNB+

j

)kj

,

1 − Πk+1
j=1

(
1 − IndNB+

j

)kj

,

−Πk+1
j=1

∣∣∣∣∣
(

FalNB+
j

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

NBFWAk

(
NB−

1 ,NB−
2 , ...,NB−

j

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − Πk
j=1

(
1 − TruNB−

j

)kj

+

(
1 −

(
1 − TruNB−

k+1

)kk+1
)

−(1 − Πk
j=1

(
1 − TruNB+

j

)kj
)×

(
1 −

(
1 − TruNB−

k+1

)kk+1
)

,

1 − Πk
j=1

(
1 − IndNB−

j

)kj
+

(
1 −

(
1 − IndNB−

k+1

)kk+1
)

−(1 − Πk
j=1

(
1 − IndNB+

j

)kj
)×

(
1 −

(
1 − IndNB−

k+1

)kk+1
)

,

−Πk+1
j=1

∣∣∣∣∣
(

FalNB−
j

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 − Πk+1

j=1

(
1 − TruNB−

j

)kj
,

1 − Πk+1
j=1

(
1 − IndNB−

j

)kj

,

−Πk+1
j=1

∣∣∣∣∣
(

FalNB−
j

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

So result holds for n = k + 1.

Theorem 5. Let NB
j = (NB+

j ,NB−
j ) be the collection of neutrosophic bipolar fuzzy values and k =

(k1, k2, ..., kn)
T is the weight vector of NB

j (j = 1, 2, ..., n), with kj ∈ [0, 1] and Σn
j=1kj = 1. Then we have

the following:

(1) (Idempotency): If all NB∼
j (j = 1, 2, ..., n) are equal, i.e.,NB

j = NB
j , for all j, then

NBFWAk

(
NB

1 ,NB
2 , ...,NB

n

)
= NB .

(2) (Boundary):
NB− ≤ NBFWAk

(
NB

1 ,NB
2 , ...,NB

n

)
≤ NB+

, for every k.

(3) (Monotonicity) If TruNB+
j

≤ TruNB+∗
j

, IndNB+
j

≤ IndNB+∗
j

and FalNB−
j

≥ FalNB−∗
j

, for all j, then

NBFWAk

(
NB

1 ,NB
2 , ...,NB

n

)
≤ NBFWAk

(
NB

1∗ ,NB
2∗ , ...,NB

n∗
)

, for every k.
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Definition 13. Let NB
j = (NB+

j ,NB−
j ) be the NBFWA be a collection of neutrosophic bipolar fuzzy values.

An neutrosophic bipolar fuzzy OWA(NBFOWA) operator of dimension is a mapping NBFOWA : Ωn →
Ω defined by

NBFOWAk

(
NB+

1 ,NB+
2 , ...,NB+

n

)
= k1NB+

σ(1) ⊕ k2NB+
σ(2)⊕, ...,⊕knNB+

σ(n),

NBFOWAk

(
NB−

1 ,NB−
2 , ...,NB−

n

)
= k1NB−

σ(1) ⊕ k2NB−
σ(2)⊕, ...,⊕knNB−

σ(n),

where (σ (1) , σ (2) , ..., σ (n)) is a permutation of (1, 2, ..., n) such that NB
σ(j−1) ≥ NB

σ(j) for all j. If k =(
1
n , 1

n , ..., 1
n

)T
then BFOWA operator is reduced to BFA operator having dimension n.

Theorem 6. Let NB
j = (NB+

j ,NB−
j ) be the collection of neutrosophic bipolar fuzzy values. Then

NBFOWAk

(
NB+

1 ,NB+
2 , ...,NB+

n

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − Πn
j=1

(
1 − TruNB+

(σ(j))

)kj

,

1 − Πn
j=1

(
1 − IndNB+

(σ(j))

)kj

,

−Πn
j=1

∣∣∣∣∣
(

TruNB+
(σ(j))

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

NBFOWAk

(
NB+

1 ,NB+
2 , ...,NB+

n

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − Πn
j=1

(
1 − TruNB−

(σ(j))

)kj

,

1 − Πn
j=1

(
1 − IndNB−

(σ(j))

)kj

,

−Πn
j=1

∣∣∣∣∣
(

TruNB−
(σ(j))

)kj
∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2)

where
k = (k1, k2, ..., kn)

T ,

is the weight vector of NBFOWA operator with kj ∈ [0, 1] and Σn
j=1kj = 1, for all j = 1, 2, ..., n, i.e., all

NB∼
j (j = 1, 2, ..., n), are reduced to the following form:

NBFOWAk

(
NB+

1 ,NB+
2 , ...,NB+

n

)
= 1 − Πn

j=1

(
1 − TruNB+

(σ(j))

)kj

,

NBFOWAk

(
NB−

1 ,NB−
2 , ...,NB−

n

)
= 1 − Πn

j=1

(
1 − TruNB−

(σ(j))

)kj

.

Theorem 7. Let NB∼
j = 〈NB+

NB∼
j

,NB−
NB∼

j
〉 (j = 1, 2, ..., n) be a collection of neutrosophic bipolar fuzzy values and

k = (k1, k2, ..., kn)
T ,

is the weighting vector of NBFOWA operator with kj ∈ [0, 1] and Σn
j=1kj = 1; then we have the following.

(1) Idempotency: If all NB
j (j = 1, 2, ..., n) are equal, i.e., NB

j = NB , for all j, then

NBFOWAk

(
NB

1 ,NB
2 , ...,NB

n

)
= NB .

(2) Boundary:
NB− ≤ NBFOWAk

(
NB

1 ,NB
2 , ...,NB

n

)
≤ NB+

,
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for where k, where NB
j = (NB+

j ,NB−
j ) be the NBFWA NB+

j = 〈TruNB+
j

, IndNB+
j

, FalNB+
j

〉
(j = 1, 2, ..., n) and NB−

j = 〈TruNB−
j

, IndNB−
j

, FalNB−
j

〉 (j = 1, 2, ..., n) be a collection of neutrosophic

bipolar fuzzy values

NB−
=

[
min

j

(
TruNB−

j

)
, min

j

(
IndNB−

j

)
,−max

j

(
FalNB−

j

)]
,

NB+
=

[
max

j

(
TruNB+

j

)
, max

j

(
IndNB+

j

)
,−min

j

(
FalNB+

j

)]
.

(3) Monotonicity: Let NB+∗
j and NB−∗

j (j = 1, 2, ..., n) be a collection of neutrosophic bipolar fuzzy values.
If TruNB+

j
≤ TruNB+∗

j
, IndNB+

j
≤ IndNB+∗

j
and FalNB−

j
≥ FalNB−∗

j
, for all j, then

NBFOWAk

(
NB

1 ,NB
2 , ...,NB

n

)
≤ BFWLk

(
NB

1∗ ,NB
2∗ , ...,NB

n∗
)

, for every k.

(4) Commutativity: Let NB
j = (NB+

j ,NB−
j ) be a collection of neutrosophic bipolar fuzzy values. Then

BFOWLk

(
NB

1 ,NB
2 , ...,NB

n

)
= BFOWLk

(
NB′

1 ,NB′
2 , ...,NB′

n

)
,

for every w, where
(
NB′

1 ,NB′
2 , ...,NB′

n

)
is any permutation of

(NB
1 ,NB

2 , ...,NB
n
)

.

Theorem 8. Let NB
j = (NB+

j ,NB−
j ) be a collection of neutrosophic bipolar fuzzy values

k = (k1, k2, ..., kn)
T ,

is the weighting vector of NBFOWA operator with

kj ∈ [0, 1] and Σn
j=1kj = 1;

then we have the following:

(1) If k = (1, 0, ..., 0)T , then

NBFOWAk

(
NB

1 ,NB
2 , ...,NB

n

)
= max

j

(
NB

j

)
.

(2) If k = (0, 0, ..., 1)T , then

NBFOWAk

(
NB

1 ,NB
2 , ...,NB

n

)
= min

j

(
NB

j

)
.

(3) If kj = 1, ki = 0, and i �= j, then

BFOWAk

(
NB∼

1 ,NB∼
2 , ...,NB∼

n

)
= NB∼

σ(j),

where NB
σ(j) is the largest of NB

i (i = 1, 2, ..., n) .

5. Similarity Measures of Neutrosophic Bipolar Fuzzy Sets

In Section 4 we define different aggregation operators with the help of operations defined in
Section 3. Next in this section we are aiming to define some similarity measures which will be used
in the next Section 6. A comparisons of several different fuzzy similarity measures as well as their
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aggregations have been studied by Beg and Ashraf [38,39]. Theoretical and computational properties
of the measures was further investigated with the relationships between them [15,40–42]. A review, or
even a listing of all these similarity measures is impossible. Here in this section we define different
kinds of similarity measures of neutrosophic bipolar fuzzy sets.

5.1. Neutrosophic Bipolar Fuzzy Distance Measures

Definition 14. A function E : NBFSs (X) → [0, 1] is called an entropy for NBFSs (X) ,

(1) E
(NB) = 1 ⇔ NB is a crisp set.

(2) E
(NB) = 0 ⇔

TruNB+
1

(x) = −TruNB−
1

(x), IndNB+
1

(x) = −IndNB−
1

(x), FalNB+
1

(x) = −FalNB−
1

(x) ∀ x ∈ X.

(3) E
(NB) = E

(NBc) for each ∀NB ∈ BFSs (X).
(4) E

(NB
1
) ≤ E

(NB
2
)

if NB
1 is less than NB

2 , that is,

TruNB+
1

(x) ≤ TruNB+
2

(x) ,IndNB+
1

(x) ≤ IndNB+
2

(x), FalNB+
1

(x) ≥ FalNB+
2

(x),

TruNB−
1

(x) ≤ TruNB−
2

(x) ,IndNB−
1

(x) ≤ IndNB−
2

(x), FalNB−
1

(x) ≥ FalNB−
2

(x),

for TruNB+
2

(x) ≤
∣∣∣TruNB−

2
(x)

∣∣∣
or TruNB+

1
(x) ≥ TruNB+

2
(x), IndNB+

1
(x) ≥ IndNB+

2
(x),

and
FalNB−

1
(x) ≤ FalNB−

2
(x) ≤ NB−

B2
(x) for TruNB+

1
(x) ≥ FalNB−

2
(x).

Definition 15. Let X = {x1, x2, ..., xn} and NB = (NB+,NB−) be an NBFS. The entropy of NBFS is
denoted by E(NB+,NB−) and given by

E(NB+) = 1
n ∑n

i=1

min((TruNB+
1

(́x)),min(IndNB+
1

(́x)),
∣∣∣∣FalNB+

1
(́x)

∣∣∣∣)
max((TruNB+

1
(́x)),max(IndNB+

1
(́x)),

∣∣∣∣FalNB+
1

(x)

∣∣∣∣)
E(NB−) = 1

n ∑n
i=1

min((TruNB−
1

(́x)),min(IndNB−
1

(́x)),
∣∣∣∣FalNB−

1
(́x)

∣∣∣∣)
max((TruNB−

1
(́x)),max(IndNB−

1
(́x)),

∣∣∣∣FalNB−
1

(x)

∣∣∣∣)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (3)

and for a neutrosophic bipolar fuzzy number NB = 〈N B+
L ,NB−

L 〉, the bipolar fuzzy entropy is given by

E(NB+
L ) =

min((TruL+1
(́x),min(Ind

L+1
(x)́),

∣∣∣∣FalL+1
(x)́

∣∣∣∣)
max(TruL+1

(x)́),max(Ind
L+1

(x)́),
∣∣∣∣Fal

L+1
(́x)

∣∣∣∣)
E(NB−

L ) =
min((TruL−1

(́x),min(Ind
L−1

(x)́),
∣∣∣∣FalL−1

(x)́

∣∣∣∣)
max(TruL−1

(x)́),max(Ind
L−1

(x)́),
∣∣∣∣Fal

L−1
(́x)

∣∣∣∣)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (4)

Definition 16. Let X = {x1, x2, ..., xn}. We define the Hamming distance between NB
1 and NB

2 belonging to
NBFSs(X) defined as follows:
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(1) The Hamming distance:

d(NB+
1 ,NB+

2 ) = 1
2 ∑n

j=1(|TruNB+
1

(xj)− TruNB+
2

(xj)|
+|IndNB+

1
(xj)− IndNB+

2
(xj)|

+||FalNB+
1

(xj)− FalNB+
1

(xj)||)
Hamming distance for positive neutrosophic bipolar sets

d(NB−
1 ,NB−

2 ) = 1
2 ∑n

j=1(|TruNB−
1

(xj)− TruNB−
2

(xj)|
+|IndNB−

1
(xj)− IndNB−

2
(xj)|

+||FalNB−
1

(xj)− FalNB−
1

(xj)||)
Hamming distance for negative neutrosophic bipolar sets

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5)

(2) The normalized Hamming distance:

d(NB+
1 ,NB+

2 ) = 1
2n ∑n

j=1(|TruNB+
1

(xj)− TruNB+
2

(xj)|
+|IndNB+

1
(xj)− IndNB+

2
(xj)|

+||FalNB+
1

(xj)− FalNB+
1

(xj)||)
normalized Hamming distance for positive neutrosophic bipolar sets

d(NB−
1 ,NB−

2 ) = 1
2n ∑n

j=1(|TruNB+
1

(xj)− TruNB+
2

(xj)|
+|IndNB+

1
(xj)− IndNB+

2
(xj)|

+||FalNB+
1

(xj)− FalNB+
1

(xj)||)
normalized Hamming distance for negative neutrosophic bipolar sets

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

(3) The Euclidean distance:

d(NB+
1 ,NB+

2 ) =

√√√√√√√
1
2 ∑n

j=1(TruNB+
1

(xj)− TruNB+
2

(xj))
2

+(IndNB+
1

(xj)− IndNB+
2

(xj))
2

+(FalNB+
1

(xj)− FalNB+
1

(xj))
2

d(NB−
1 ,NB−

2 ) =

√√√√√√√
1
2 ∑n

j=1(TruNB−
1

(xj)− TruNB−
2

(xj))
2

+(IndNB−
1

(xj)− IndNB−
2

(xj))
2

+(FalNB−
1

(xj)− FalNB−
1

(xj))
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (7)

(4) The normalized Euclidean distance:

d(NB+
1 ,NB+

2 ) =

√√√√√√√
1

2n ∑n
j=1(TruNB+

1
(xj)− TruNB+

2
(xj))

2

+(IndNB+
1

(xj)− IndNB+
2

(xj))
2

+(FalNB+
1

(xj)− FalNB+
1

(xj))
2

d(NB−
1 ,NB−

2 ) =

√√√√√√√
1

2n ∑n
j=1(TruNB−

1
(xj)− TruNB−

2
(xj))

2

+(IndNB−
1

(xj)− IndNB−
2

(xj))
2

+(FalNB−
1

(xj)− FalNB−
1

(xj))
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (8)
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(5) Based on the geometric distance formula, we have

d(NB+
1 ,NB+

2 ) =

⎡⎢⎢⎣
1
2 ∑n

j=1(TruNB+
1

(xj)− TruNB+
2

(xj))
L

+(IndNB+
1

(xj)− IndNB+
2

(xj))
L

+(FalNB+
1

(xj)− FalNB+
1

(xj))
L

⎤⎥⎥⎦
1
α

d(NB−
1 ,NB−

2 ) =

⎡⎢⎢⎣
1
2 ∑n

j=1(TruNB−
1

(xj)− TruNB−
2

(xj))
L

+(IndNB−
1

(xj)− IndNB−
2

(xj))
L

+(FalNB−
1

(xj)− FalNB−
1

(xj))
L

⎤⎥⎥⎦
1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (9)

(6) Normalized geometric distance formula:

d(NB+
1 ,NB+

2 ) =

⎡⎢⎢⎣
1

2n ∑n
j=1(TruNB+

1
(xj)− TruNB+

2
(xj))

L

+(IndNB+
1

(xj)− IndNB+
2

(xj))
L

+(FalNB+
1

(xj)− FalNB+
1

(xj))
L

⎤⎥⎥⎦
1
α

d(NB−
1 ,NB−

2 ) =

⎡⎢⎢⎣
1

2n ∑n
j=1(TruNB−

1
(xj)− TruNB−

2
(xj))

L

+(IndNB−
1

(xj)− IndNB−
2

(xj))
L

+(FalNB−
1

(xj)− FalNB−
1

(xj))
L

⎤⎥⎥⎦
1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (10)

where α > 0.

(i) If α = 1, then Equations (9) and (10), reduce to Equations (5) and (6).
(ii) If α = 2, then Equations (9) and (10), reduce to Equations (7) and (8).

(iii) We define a weighted distance as follows:

d(NB+
1 ,NB+

2 ) =

⎡⎢⎢⎢⎢⎣ 1
2 ∑n

j=1 kj

⎛⎜⎜⎜⎜⎝
∣∣∣(TruNB+

1
(xj)− TruNB+

2
(xj))

∣∣∣L
+
∣∣∣(IndNB+

1
(xj)− IndNB+

2
(xj))

∣∣∣L
+
∣∣∣(FalNB+

1
(xj)− FalNB+

1
(xj))

∣∣∣L
⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

1
α

d(NB−
1 ,NB−

2 ) =

⎡⎢⎢⎢⎢⎣ 1
2 ∑n

j=1 kj

⎛⎜⎜⎜⎜⎝
∣∣∣(TruNB−

1
(xj)− TruNB−

2
(xj))

∣∣∣L
+
∣∣∣(IndNB−

1
(xj)− IndNB−

2
(xj))

∣∣∣L
+
∣∣∣(FalNB−

1
(xj)− FalNB−

1
(xj))

∣∣∣L
⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (11)

where k = (k1, k2, ..., kn)T is the weight vector of xj(j = 1, 2, ..., n), and α > 0.

(i) Especially, if α = 1, then Equation (11) is reduced as

d(NB+
1 ,NB+

2 ) =

⎡⎢⎢⎢⎣ 1
2 ∑n

j=1 kj

⎛⎜⎜⎜⎝
∣∣∣(TruNB+

1
(xj)− TruNB+

2
(xj))

∣∣∣
+
∣∣∣(IndNB+

1
(xj)− IndNB+

2
(xj))

∣∣∣
+
∣∣∣(FalNB+

1
(xj)− FalNB+

1
(xj))

∣∣∣

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

d(NB−
1 ,NB−

2 ) =

⎡⎢⎢⎢⎣ 1
2 ∑n

j=1 kj

⎛⎜⎜⎜⎝
∣∣∣(TruNB+

1
(xj)− TruNB+

2
(xj))

∣∣∣
+
∣∣∣(IndNB+

1
(xj)− IndNB+

2
(xj))

∣∣∣
+
∣∣∣(FalNB+

1
(xj)− FalNB+

1
(xj))

∣∣∣

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (12)
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If k = ( 1
n , 1

n , ..., 1
n )

T, then Equation (11) goes to Equation (10), and Equation (12) goes to
Equation (6).

(ii) If α = 2, then Equation (11) is reduced to the as:

d(NB+
1 ,NB+

2 ) =

√√√√√√√
1
2 ∑n

j=1(TruNB+
1

(xj)− TruNB+
2

(xj))
2

+(IndNB+
1

(xj)− IndNB+
2

(xj))
2

+(FalNB+
1

(xj)− FalNB+
1

(xj))
2

d(NB−
1 ,NB−

2 ) =

√√√√√√√
1
2 ∑n

j=1(TruNB−
1

(xj)− TruNB−
2

(xj))
2

+(IndNB−
1

(xj)− IndNB−
2

(xj))
2

+(FalNB−
1

(xj)− FalNB−
1

(xj))
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (13)

If k = ( 1
n , 1

n , ..., 1
n )

T , then Equation (13) is reduced to Equation (8).

5.2. Similarity Measures of Neutrosophic Bipolar Fuzzy Set

Definition 17. Let ŝ be a mapping ŝ : Ω(X)2 → [0, 1], then the degree of similarity between NB
1 ∈ Ω(X) and

NB
2 ∈ Ω(X) is defined as ŝ(NB

1 ,NB
2 ), which satisfies the following properties: [43,44].

(1) 0 ≤ ŝ(NB
1 ,NB

2 ) ≤ 1;
(2) ŝ(NB

1 ,NB
2 ) = 1 if NB

1 = NB
2 ;

(3) ŝ(NB
1 ,NB

2 ) = ŝ(NB
2 ,NB

1 );
(4) If ŝ(NB

1 ,NB
2 ) = 0 and ŝ(NB

1 ,NB
3 ) = 0, NB

3 ∈ Ω(X), then ŝ(NB
2 ,NB

3 ) = 0. We define a similarity
measure of NB

1 and NB
2 as:

ŝ(NB+
1 ,NB+

2 ) = 1 −

⎡⎢⎢⎣
1

2n ∑n
j=1(TruNB+

1
(xj)− TruNB+

2
(xj))

L

+(IndNB+
1

(xj)− IndNB+
2

(xj))
L

+(FalNB+
1

(xj)− FalNB+
1

(xj))
L

⎤⎥⎥⎦
1
α

ŝ(NB−
1 ,NB−

2 ) = 1 −

⎡⎢⎢⎣
1

2n ∑n
j=1(TruNB−

1
(xj)− TruNB−

2
(xj))

L

+(IndNB−
1

(xj)− IndNB−
2

(xj))
L

+(FalNB−
1

(xj)− FalNB−
1

(xj))
L

⎤⎥⎥⎦
1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (14)

where α > 0, and ŝ(NB
1 ,NB

2 ) is the degree of similarity of NB
1 and NB

2 . Now by considering the weight
of every element we have,

ŝ(NB+
1 ,NB+

2 ) = 1 −

⎡⎢⎢⎢⎢⎣ 1
2 ∑n

j=1 kj

⎛⎜⎜⎜⎜⎝
∣∣∣(TruNB+

1
(xj)− TruNB+

2
(xj))

∣∣∣L
+
∣∣∣(IndNB+

1
(xj)− IndNB+

2
(xj))

∣∣∣L
+
∣∣∣(FalNB+

1
(xj)− FalNB+

1
(xj))

∣∣∣L
⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

1
α

d(NB−
1 ,NB−

2 ) = 1 −

⎡⎢⎢⎢⎢⎣ 1
2 ∑n

j=1 kj

⎛⎜⎜⎜⎜⎝
∣∣∣(TruNB−

1
(xj)− TruNB−

2
(xj))

∣∣∣L
+
∣∣∣(IndNB−

1
(xj)− IndNB−

2
(xj))

∣∣∣L
+
∣∣∣(FalNB−

1
(xj)− FalNB−

1
(xj))

∣∣∣L
⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15)
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If we give equal importance to every member then Equation (15) is reduced to Equation (14). Similarly we
may use

ŝ(NB+
1 ,NB+

2 ) = 1 −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
j=1(

∣∣∣(TruNB+
1

(xj)− TruNB+
2

(xj))
∣∣∣α

+
∣∣∣(IndNB+

1
(xj)− IndNB+

2
(xj))

∣∣∣L
+
∣∣∣(FalNB+

1
(xj)− FalNB+

1
(xj))

∣∣∣L
∑n

j=1(
∣∣∣(TruNB+

1
(xj)− TruNB+

2
(xj))

∣∣∣α
+
∣∣∣(IndNB+

1
(xj)− IndNB+

2
(xj))

∣∣∣L
+
∣∣∣(FalNB+

1
(xj)− FalNB+

1
(xj))

∣∣∣L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
α

ŝ(NB−
1 ,NB−

2 ) = 1 −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
j=1(

∣∣∣(TruNB−
1

(xj)− TruNB−
2

(xj))
∣∣∣α

+
∣∣∣(IndNB−

1
(xj)− IndNB−

2
(xj))

∣∣∣L
+
∣∣∣(FalNB−

1
(xj)− FalNB−

1
(xj))

∣∣∣L
∑n

j=1(
∣∣∣(TruNB−

1
(xj)− TruNB−

2
(xj))

∣∣∣α
+
∣∣∣(IndNB−

1
(xj)− IndNB−

2
(xj))

∣∣∣L
+
∣∣∣(FalNB−

1
(xj)− FalNB−

1
(xj))

∣∣∣L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (16)

Now by considering the weight of every element we have

ŝ(NB+
1 ,NB+

2 ) = 1 −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
j=1 kj(

∣∣∣(TruNB+
1

(xj)− TruNB+
2

(xj))
∣∣∣α

+
∣∣∣(IndNB+

1
(xj)− IndNB+

2
(xj))

∣∣∣L
+
∣∣∣(FalNB+

1
(xj)− FalNB+

2
(xj))

∣∣∣L
∑n

j=1 kj(
∣∣∣(TruNB+

1
(xj)− TruNB+

2
(xj))

∣∣∣α
+
∣∣∣(IndNB+

1
(xj)− IndNB+

2
(xj))

∣∣∣L
+
∣∣∣(FalNB+

1
(xj)− FalNB+

2
(xj))

∣∣∣L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
α

ŝ(NB−
1 ,NB−

2 ) = 1 −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
j=1 kj(

∣∣∣(TruNB−
1

(xj)− TruNB−
2

(xj))
∣∣∣α

+
∣∣∣(IndNB−

1
(xj)− IndNB−

2
(xj))

∣∣∣L
+
∣∣∣(FalNB−

1
(xj)− FalNB−

2
(xj))

∣∣∣L
∑n

j=1 kj(
∣∣∣(TruNB−

1
(xj)− TruNB−

2
(xj))

∣∣∣α
+
∣∣∣(IndNB−

1
(xj)− IndNB−

2
(xj))

∣∣∣L
+
∣∣∣(FalNB−

1
(xj)− FalNB−

2
(xj))

∣∣∣L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (17)

If we give equal importance to every member, then Equation (17) is reduced to Equation (16).
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5.3. Similarity Measures Based on the Set-Theoretic Approach

Definition 18. Let NB
1 ∈ Ω(X) and NB

2 ∈ Ω(X). Then, we define a similarity measure NB
1 and NB

2 from
the point of set-theoretic view as:

ŝ(NB+
1 ,NB+

2 ) =

∑n
j=1〈min(TruNB+

1
(xj), TruNB+

2
(xj))

+min(IndNB+
1

(xj), IndNB+
2

(xj))

+min(|FalNB+
1

(xj)|, |FalNB+
2

(xj)|)
∑n

j=1〈max(TruNB+
1

(xj), TruNB+
2

(xj))

+max(IndNB+
1

(xj), IndNB+
2

(xj))

+max(|FalNB+
1

(xj)|, |FalNB+
2

(xj)|))

ŝ(NB−
1 ,NB−

2 ) =

∑n
j=1〈min(TruNB−

1
(xj), TruNB−

2
(xj))

+min(IndNB−
1

(xj), IndNB−
2

(xj))

+min(|FalNB−
1

(xj)|, |FalNB−
2

(xj))|))
∑n

j=1〈max(TruNB−
1

(xj), TruNB−
2

(xj))

+max(IndNB−
1

(xj), IndNB−
2

(xj))

+max(|FalNB−
1

(xj)|, |FalNB−
2

(xj)|))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (18)

Now by considering the weight of every element we have

ŝ(NB+
1 ,NB+

2 ) =

∑n
j=1 kj(min(TruNB+

1
(xj), TruNB+

2
(xj)) + min(IndNB+

1
(xj),

IndNB+
2

(xj)) + min(|FalNB+
1

(xj)|, |FalNB+
2

(xj)|))
∑n

j=1 kj(max(TruNB+
1

(xj), TruNB+
2

(xj)) + max(IndNB+
1

(xj),

IndNB+
2

(xj) + max(|FalNB+
1

(xj)|, |FalNB+
2

(xj)|))

ŝ(NB−
1 ,NB−

2 ) =

∑n
j=1 kj(min(TruNB−

1
(xj), TruNB−

2
(xj)) + min(IndNNB−

1
(xj),

IndNB−
2

(xj)) + min(|FalNB−
1

(xj)|, |FalNB−
2

(xj)|))
∑n

j=1 kj(max(TruNB+
1

(xj), TruNB+
2

(xj)) + max(IndNB+
1

(xj),

IndNB+
2

(xj) + max(|FalNB−
1

(xj)|, |FalNB−
2

(xj)|))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (19)

If we give equal importance to every member, then Equation (19) is reduced to Equation (18).

5.4. Similarity Measures Based on the Matching Functions

We cover the matching function to agreement through the similarity measure of NBFSs.

Definition 19. Let NB
1 ∈ Ω(X) and NB

2 ∈ Ω(X), formerly we explain the degree of similarity of NB
1 and

NB
2 based on the matching function as:

ŝ(NB+
1 ,NB+

2 ) =
∑n

j=1((Tru
NNB+

1
(xj).TruNB+

2
(xj))+(IndNB+

1
(xj).IndNB+

2
(xj))+|FalNB+

1
(xj)|.|FalNB+

2
(xj)|)

max〈∑n
j=1((TruNB+

1
)2(xj) + (IndNB+

1
)2(xj) + (FalNB+

1
)2(xj)),

∑n
j=1 kj((TruNB+

2
)2(xj) + (IndNB+

2
)2(xj) + (FalNB+

2
)2(xj)))

ŝ(NB−
1 ,NB−

2 ) =
∑n

j=1((TruNB−
1

(xj).TruNB−
2

(xj))+(IndNB−
1

(xj).IndNB−
2

(xj))+|FalNB−
1

(xj)|.|FalNB−
2

(xj)|)

max〈∑n
j=1((TruNB−

1
)2(xj) + (IndNB−

1
)2(xj) + (FalNB−

1
)2(xj)),

∑n
j=1 kj((TruNB−

2
)2(xj) + (IndNB−

2
)2(xj) + (FalNB−

2
)2(xj)))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (20)
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Now by considering the weight of every element we have

ŝ(NB+
1 ,NB+

2 ) =
∑n

j=1 kj(TruNB+
1

(xj).TruNB+
2

(xj))+(IndNB+
1

(xj).IndNB+
2

(xj))+|FalNB+
1

(xj)|.|FalNB+
2

(xj)|)

max〈∑n
j=1 kj((TruNB+

1
)2(xj) + (IndNB+

1
)2(xj) + (FalNB+

1
)2(xj)),

∑n
j=1 kj((TruNB+

2
)2(xj) + (IndNB+

2
)2(xj) + (FalNB+

2
)2(xj)))

ŝ(NB−
1 ,NB−

2 ) =
∑n

j=1 kj((TruNB−
1

(xj).TruNB−
2

(xj))+(IndNB−
1

(xj).IndNB−
2

(xj))+|FalNB−
1

(xj)|.|FalNB−
2

(xj)|)

max〈∑n
j=1((TruNB−

1
)2(xj) + (IndNB−

1
)2(xj) + (FalNB−

1
)2(xj)),

∑n
j=1 kj((TruNB−

2
)2(xj) + (IndNB−

2
)2(xj) + (FalNB−

2
)2(xj)))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (21)

(1) If we give equal importance to every member, then Equation (21) is reduced to Equation (20).
(2) If the value of ŝ(NB

1 ,NB
2 ) is larger then its mean NB

1 and NB
2 are more closer to each other.

6. Application

In this Section 5 after defining some similarity measures we proceed towards the main section
namely application of the developed model. In this section we provide an algorithm for solving
a multiatribute decision making problem related with the HOPE foundation with the help of
neutrosophic bipolar fuzzy aggregation operators, neutrosophic bipolar similarity measures under the
neutrosophic bipolar fuzzy sets. For detail see [13,42].

Definition 20. Let L = {L1, L2, ..., Lm} consists of alternatives, and let P = {P1, P2, ..., Pn} containing the
attributes and k = (k1, k2, ..., kn)T be the weight vector that describe the importance of attributes such that
kj ∈ [0, 1] and ∑n

j=1 kj = 1. Let us use the neutrosophic bipolar fuzzy sets for Li as under:

L+
i = {〈Pj, (Tru)+Li(Pj), (Ind)+Li(Pj), (Fal)+Li

(
Pj
)〉|Pj ∈ P}, i = 1, 2, 3, ..., m

L−
i = {〈Pj, (Tru)−Li(Pj), (Ind)−LiPj), (Fal)−Li

(
Pj
)〉|Pj ∈ P}, i = 1, 2, 3, ..., m

}
. (22)

such that

(Tru)+Li(Pj) ∈ [0, 3], (Ind)+Li(Pj) ∈ [0, 3], (Fal)+Li
(

Pj
) ∈ [0, 3],

0 ≤ (Tru)+Li(Pj), (Ind)+LiPj), (Fal)+Li
(

Pj
)〉 ≤ 3.

(Tru)−Li(Pj) ∈ [−3, 0], (Ind)−Li(Pj) ∈ [−3, 0], (Fal)−Li
(

Pj
) ∈ [−3, 0],

−3 ≤ (Tru)−Li(Pj), (Ind)−LiPj), (Fal)−Li
(

Pj
)〉 ≤ 0.

Now we define the positive and negative ideal solutions as under:

L+
i = {〈Pj, (Tru)+L+(Pj), (Ind)+L+(Pj), (Fal)+L+(Pj)〉|Pj ∈ P}}

L−
i = {〈Pj, (Tru)−L+(Pj), (Ind)−L+(Pj), (Fal)−L+(Pj)〉|Pj ∈ P}}

}
, (23)

and
L+ = {〈Pj, (Tru)+L−(Pj), (Ind)+L−(Pj), (Fal)+L−(Pj)〉|Pj ∈ P}}
L− = {〈Pj, (Tru)−L−(Pj), (Ind)−L−(Pj), (Fal)−L−(Pj)〉|Pj ∈ P}}

}
, (24)

where

(Tru)+L+(Pj) = max
i

{(Tru)+Li(Pj), (Tru)−L+(Pj)} = min
i
{(Tru)+Li(Pj)}, (Tru)−Li(Pj)

= max
i

{(Tru)−Li(Pj), (Tru)+L+(Pj)} = min
i
{(Tru)−Li(Pj)}(Ind)+L+(Pj)

= max
i

{(Ind)+Li(Pj), (Ind)−L+(Pj)} = min
i
{(Ind)+Li(Pj)}(Ind)−L+(Pj)

= max
i

{(Ind)−Li(Pj), (Ind)+L+(Pj)} = min
i
{(Ind)+Li(Pj)}.
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(Fal)+Li
(

Pj
)

= min
i
{(Fal)+Li

(
Pj
)

, (Fal)−L+(Pj)} = max
i

{ (Fal)+Li
(

Pj
)}.

(Fal)−Li
(

Pj
)

= min
i
{(Fal)−Li

(
Pj
)

, (Fal)+L+(Pj)} = max
i

{ (Fal)−Li
(

Pj
)}.

Now using Equation (15), we find the degree of similarity for L+, Li, and L−, Li, as under:

ŝ1(L+, L+
i ) = 1 −

⎡⎢⎣
1
2 ∑n

j=1 kj(|(Tru)+L+(xj)− (Tru)+Li(xj)|α
+|(Ind)+L+(xj)− (Ind)+Li(xj)|α
+|(Fal)+L+(xj)− (Fal)+Li(xj)|α)

⎤⎥⎦
1
α

ŝ1(L+, L−
i ) = 1 −

⎡⎢⎣
1
2 ∑n

j=1 kj(|(Tru)−L+(xj)− (Tru)−Li(xj)|α
+|(Ind)−L+(xj)− (Ind)−Li(xj)|α
+|(Fal)−L+(xj)− (Fal)−Li(xj)|α)

⎤⎥⎦
1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (25)

and

ŝ1(L−, L+
i ) = 1 −

⎡⎢⎣
1
2 ∑n

j=1 kj(|(Tru)+L−(xj)− (Tru)+Li(xj)|α
+|(Ind)+L−(xj)− (Ind)+Li(xj)|α
+|(Fal)+L−(xj)− (Fal)+Li(xj)|α)

⎤⎥⎦
1
α

ŝ1(L−, L−
i ) = 1 −

⎡⎢⎣
1
2 ∑n

j=1 kj(|(Tru)−L−(xj)− (Tru)−Li(xj)|α
+|(Ind)−L−(xj)− (Ind)−Li(xj)|α
+|(Fal)−L−(xj)− (Fal)−Li(xj)|α)

⎤⎥⎦
1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (26)

Using Equations (25) and (26), calculate di of Li as under:

d+i =
s1(L+ ,L+

i )

s1(L+ ,L+
i )+s1(L− ,L+

i )
, i = 1, 2, ..., n.

d−i =
s1(L+ ,L−

i )

s1(L+ ,L−
i )+s1(L− ,L−

i )
, i = 1, 2, ..., n.

⎫⎪⎬⎪⎭ . (27)

If the value of di is greater, then the alternative Li is better.
Also using Equations (17), (19) and (21), we find the degree of similarity for L+, Li, and L−, Li,

as under:

(1) Based on Equation (17), we define the following: We define the following:

ŝ1(L+, L+
i ) = 1 −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
j=1 kj(

∣∣∣(TruL+(xj)− TruL+
i
(xj))

∣∣∣α
+
∣∣∣(IndL+(xj)− IndL+

i
(xj))

∣∣∣L
+
∣∣∣(FalL+(xj)− FalL+

i
(xj))

∣∣∣L
∑n

j=1 kj(
∣∣∣(TruL+(xj)− TruL+

i
(xj))

∣∣∣α
+
∣∣∣(IndL+(xj)− IndL+

i
(xj))

∣∣∣L
+
∣∣∣(FalL+(xj)− FalL+

i
(xj))

∣∣∣L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
α

ŝ3(L+, L−
i ) = 1 −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑n
j=1 kj(

∣∣∣(TruL−(xj)− TruL−
i
(xj))

∣∣∣α
+
∣∣∣(IndL−(xj)− IndL−

i
(xj))

∣∣∣L
+
∣∣∣(FalL−(xj)− FalL−

i
(xj))

∣∣∣L
∑n

j=1 kj(
∣∣∣(TruL−(xj)− TruL−

i
(xj))

∣∣∣α
+
∣∣∣(IndL−(xj)− IndL−

i
(xj))

∣∣∣L
+
∣∣∣(FalL−(xj)− FalL−

i
(xj))

∣∣∣L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
α

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (28)
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(2) Based on Equation (19), we define the following: We define the following:

ŝ2(L+, L+
i ) =

∑n
j=1 kj(min(TruL+(xj),TruL+i

(xj))+min(IndL+(xj),IndL+i
(xj))+min(|FalL+(xj)|,|FalL+i

(xj)|))
∑n

j=1 kj(max(TruL+(xj),TruL+i
(xj))+max(IndL+(xj),IndL+i

(xj)+max(|FalL+(xj)|,|FalL+i
(xj)|))

ŝ2(L−, L−
i ) =

∑n
j=1 kj(min(TruL−(xj), TruL−

i
(xj))

+min(IndL−(xj), IndL−
i
(xj))

+min(|FalL−(xj)|, |FalL−
i
(xj)|))

∑n
j=1 kj(max(TruL−(xj), TruL−

i
(xj))

+max(IndL−(xj), IndL−
i
(xj)

+max(|FalL−(xj)|, |FalL−
i
(xj)|))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (29)

(3) Based on Equation (21), we define the following: We define the following:

ŝ3(L+, L+
i ) =

∑n
j=1 kj(min((Tru)+L+(xj), (Tru)+Li(xj))

+min((Ind)+L+(xj), (Ind)+Li(xj))

+min(|(Fal)+L+(xj)|, |(Fal)+Li(xj)|))
∑n

j=1 kj(max((Tru)+L+(xj), (Tru)+Li(xj))

+(max((Ind)+L+(xj), (Ind)+Li(xj))

+max(|(Fal)+L+(xj)|, |(Fal)+Li(xj)|)

ŝ3(L+, L−
i ) =

∑n
j=1 kj(min((Tru)−L+(xj), (Tru)−Li(xj))

+min((Ind)−L+(xj), (Ind)−Li(xj))

+min(|(Fal)−L+(xj)|, |(Fal)−Li(xj)|))
∑n

j=1 kj(max((Tru)−L+(xj), (Tru)−Li(xj))

+(max((Ind)−L+(xj), (Ind)−Li(xj))

+max(|(Fal)−L+(xj)|, |(Fal)−Li(xj)|)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30)

Then use (27).

7. Numerical Example

Now we provide a daily life example which shows the applicability of the algorithm provided in
Section 6.

Example 1. The HOPE foundation is an international organization which provides the financial support to
the health sector of children of many families in round about 22 different countries in southwest Missouri.
This organization provides the support when other organization does not play their role. Every day a child is
diagnosed with a severe illness, sustains a debilitating injury, and a family loses the battle with an illness. With
these emergencies come unexpected expenses. Here we discuss a problem related with HOPE foundation as:

HOPE foundation is planning to build a children hospital and they are planning to fit a suitable air
conditioning system in the hospital. Different companies offers them different systems. Companies offer three
feasible alternatives Li = (i = 1, 2, 3), by observing the hospital’ physical structures. Assume that P1 and
P2, are the two attributes which are helpful in the installation of air conditioning system with the weight
vector as k = (0.4, 0.6)T for the attributes. Now using neutrosophic bipolar fuzzy sets for the alternatives
Li = (i = 1, 2, 3) by examining the different characteristics as under:

L+
1 = {〈P1, 0.3, 0.4, 0.7〉, 〈P2, 0.8, 0.8, 0.6〉},

L−
1 = {〈P1,−0.3,−0.2,−0.1〉, 〈P2,−0.4,−0.6,−0.8〉}.

L+
2 = {〈P1, 0.4, 0.6, 0.2〉, 〈P2, 0.3, 0.9, 0.2〉},

L−
2 = {〈P1,−0.1,−0.3,−0.4〉, 〈P2,−0.8,−0.7,−0.1〉}.
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L+
3 = {〈P1, 0.3, 0.5, 0.7〉, 〈P2, 0.2, 0.30.6〉},

L−
3 = {〈P1,−0.5,−0.1,−0.4〉, 〈P2,−0.3,−0.2,−0.8〉}.

where L+
1 = {〈P1, 0.3, 0.4, 0.7〉, 〈P2, 0.8, 0.8, 0.6〉} means that the alternative L1 has the positive preferences

which is desirable: 0.3, 0.8 as a truth function for past, 0.4, 0.8 as a indeterminacy function for future and 0.7, 0.6
as a falsity function for present time with respect to the attributes P1 and P2 respectively.

Similarly L−
1 = {〈P1,−0.3,−0.2,−0.1〉, 〈P2,−0.4,−0.6,−0.8〉} means that the alternative L1 has

the negative preferences which is unacceptable: −0.3,−0.4 as a truth function for past, −0.2,−0.6 as a
indeterminacy function for future and −0.1,−0.8 as a falsity function for present time with respect to
the attributes P1 and P2 respectively.

(1) By Equations (23) and (24) we first calculate L+ and L− of the alternatives Li = (i = 1, 2, 3), as

L+ = {〈P1, 0.4, 0.6, 0.7〉, 〈P2, 0.5, 0.9, 0.6〉},

L− = {〈P1, 0.3, 0.4, 0.2〉, 〈P2, 0.2, 0.3, 0.2〉},

and

L+ = {〈P1,−0.1,−0.1,−0.1〉, 〈P2,−0.3,−0.2,−0.1〉},

L− = {〈P1,−0.5,−0.3,−0.4〉, 〈P2,−0.8,−0.7,−0.8〉}.

Then by using Equations (25)–(27), (suppose that α = 2 and k = 1), we have

ŝ1(L+, L+
1 ) = 0.8267, ŝ1(L+, L+

2 ) = 0.775, ŝ1(L+, L+
3 ) = 0.5152,

ŝ1(L+, L−
1 ) = −0.5732, ŝ1(L+, L−

2 ) = −0.8721, ŝ1(L+, L−
3 ) = −0.7776.

ŝ1(L−, L+
1 ) = 0.3876, ŝ1(L−, L+

2 ) = 0.5, ŝ1(L−, L+
3 ) = 0.5417,

ŝ1(L−, L−
1 ) = −0.1038, ŝ1(L−, L−

2 ) = −0.2449, ŝ1(L−, L−
3 ) = −0.1119,

and

ŝ1(L+, L+
1 ) = −0.2609, ŝ1(L+, L+

2 ) = −0.1157, ŝ1(L+, L+
3 ) = −0.2439,

ŝ1(L+, L−
1 ) = −0.1485, ŝ1(L+, L−

2 ) = −0.075, ŝ1(L+, L−
3 ) = −0.0243.

ŝ1(L−, L+
1 ) = −0.6229, ŝ1(L−, L+

2 ) = −0.7146, ŝ1(L−, L+
3 ) = −0.7958,

ŝ1(L−, L−
1 ) = 0.6062, ŝ1(L−, L−

2 ) = 0.3636, ŝ1(L−, L−
3 ) = 0.4803.

Now by Equation (27), we have

d+1 = 0.7207, d+2 = 0.1393, d+3 = 0.9093,
L1 > L2 > L3

}
, (31)

d−1 = −0.3244, d−2 = −0.2598, d−3 = −0.0532,
L3 > L1 > L2

}
, (32)

and
d+1 = 0.2813, d+2 = 0.4031, d+3 = 0.4728,

L3 > L2 > L1

}
, (33)
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d−1 = 0.06184, d−2 = 0.1190, d−3 = 0.1942,
L3 > L2 > L1

}
. (34)

(2) Now by Equations (28) and (29) (suppose that α = 3), we have

ŝ2(L+, L+
1 ) = 0.9051, ŝ2(L+, L+

2 ) = 0.7283, ŝ2(L+, L+
3 ) = 0.6873,

ŝ2(L+, L−
1 ) = −1.9845, ŝ2(L+, L−

2 ) = −2.338, ŝ2(L+, L−
3 ) = −1.3894.

ŝ2(L−, L+
1 ) = 0.6940, ŝ2(L−, L+

2 ) = 0.4952, ŝ2(L−, L+
3 ) = 0.577,

ŝ2(L−, L−
1 ) = −1.0988, ŝ2(L−, L−

2 ) = −1.0717, ŝ2(L−, L−
3 ) = −1.004,

and

ŝ2(L+, L+
1 ) = −0.6210, ŝ2(L+, L+

2 ) = −0.6086, ŝ2(L+, L+
3 ) = −0.4944,

ŝ2(L+, L−
1 ) = 0.3714, ŝ2(L+, L−

2 ) = 0.5139, ŝ2(L+, L−
3 ) = 0.3358.

ŝ2(L−, L+
1 ) = −2.3840, ŝ2(L−, L+

2 ) = −1.968, ŝ2(L−, L+
3 ) = −2.2632,

ŝ2(L−, L−
1 ) = 0.6972, ŝ2(L−, L−

2 ) = 0.5752, ŝ2(L−, L−
3 ) = 0.6691.

Now again using Equation (27), we have

d+1 = 0.5660, d+2 = 0.5952, d+3 = 0.5436,
L2 > L1 > L3

}
, (35)

d−1 = 0.6436, d−2 = 0.6856, d−3 = 0.5805,
L2 > L1 > L3

}
, (36)

and
d+1 = 0.2066, d+2 = 0.2362, d+3 = 0.179,

L2 > L1 > L3

}
, (37)

d−1 = 0.3475, d−2 = 0.4719, d−3 = 0.3341,
L2 > L1 > L3

}
. (38)

(3) Thus, by Equations (27), (30) and (31), we have

ŝ3(L+, L+
1 ) = 0.4285, ŝ3(L+, L+

2 ) = 0.5675, ŝ3(L+, L+
3 ) = 0.7027,

ŝ3(L+, L−
1 ) = −0.6468, ŝ3(L+, L−

2 ) = −0.6486, ŝ3(L+, L−
3 ) = −0.6316,

and

ŝ3(L−, L+
1 ) = 0.4848, ŝ3(L−, L+

2 ) = 0.1538, ŝ3(L−, L+
3 ) = 0.6153,

ŝ3(L−, L−
1 ) = −1.375, ŝ3(L−, L−

2 ) = −1.0625, ŝ2(L−, L−
3 ) = −1.4375.

By Equations (30)–(32) we have

ŝ3(L+, L+
1 ) = −0.2727, ŝ3(L+, L+

2 ) = −0.3913, ŝ3(L+, L+
3 ) = −0.3461,

ŝ3(L+, L−
1 ) = 2.6666, ŝ3(L+, L−

2 ) = 2.6666, ŝ3(L+, L−
3 ) = 2.5555.
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ŝ3(L−, L+
1 ) = −1.060, ŝ3(L−, L+

2 ) = −1.3461, ŝ3(L−, L+
3 ) = −1.4000,

ŝ3(L−, L−
1 ) = 1.4585, ŝ3(L−, L−

2 ) = 1.7500, ŝ3(L−, L−
3 ) = 5217.

By Equations (30)–(32), we have

d+1 = 0.4691, d+2 = 0.7868, d+3 = 0.5331,
L2 > L3 > L1

}
, (39)

d−1 = 0.3199, d−2 = 0.3790, d−3 = 0.3018,
L2 > L1 > L3

}
, (40)

and
d+1 = 0.2046, d+2 = 0.2252, d+3 = 0.1982,

L2 > L1 > L3

}
, (41)

d−1 = 0.3475, d−2 = 0.6037, d−3 = 0.6267,
L2 > L3 > L1

}
. (42)

From the Equations (35)–(42), we have that the alternative L2 (feasible alternative) is the best one
obtained by all the similarity measures. Thus we conclude that air-conditioning system L2 is better to
installed in the hospital after considering its negative and the positive preferences for past, future and
present time.

8. Comparison Analysis

There are a lot of different techniques used so for in decision making problems. For example
Chen et al. [23] used fuzzy sets, Atanassov [26] used intutionistic fuzzy sets, Dubios et al. [9], used
bipolar fuzzy sets, Zavadskas et al. [37] used neutrosophic sets, Zhan et al. [25], used neutrosophic
cubic sets, Ali et al. [33] used bipolar neutrosophic soft sets and so many others discuss decision
making problems with respect to the different versions of fuzzy sets. Beg et al., and Xu [38,39,41]
discussed similarity measures for fuzzy sets, intutionistic fuzzy sets respectively. In this paper by
applying bipolarity to neutrosophic sets allow us to distinguish between the negative and the positive
preferences with respect to the past, future and present time which is the unique future of our model.
Negative preferences denote what is unacceptable while positive preferences are less restrictive and
express what is desirable with respect to the past, future and present time. If we consider only one
time frame from the set {past, future and present} one can see our model coincide with bipolar fuzzy
sets in decision making as Dubios et al. [9] and Xu [41].

9. Conclusions

We define neutrosophic bipolar fuzzy sets, aggregation operators for neutrosophic bipolar fuzzy
sets, similarity measures for neutrosophic bipolar fuzzy sets and produce a real life application in
decision making problems. This model can easily used in many directions such as,

(1) Try to solve traffic optimization in transport networks based on local routing using neutrosophic
bipolar fuzzy sets.

(2) A hybrid clustering method based on improved artificial bee colony and fuzzy C-Means algorithm
using neutrosophic bipolar fuzzy sets.

(3) Hybrid multiattribute group decision making based on neutrosophic bipolar fuzzy sets
information and GRA method.

(4) Signatures theory by using neutrosophic bipolar fuzzy sets.
(5) Risk analysis using neutrosophic bipolar fuzzy sets.
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Abstract: The notions of neutrosophy, neutrosophic algebraic structures, neutrosophic duplet and
neutrosophic triplet were introduced by Florentin Smarandache. In this paper, the neutrosophic
duplets of Zpn , Zpq and Zp1 p2...pn are studied. In the case of Zpn and Zpq, the complete characterization
of neutrosophic duplets are given. In the case of Zp1...pn , only the neutrosophic duplets associated with
pis are provided; i = 1, 2, . . . , n. Some open problems related to neutrosophic duplets are proposed.

Keywords: neutrosophic duplets; semigroup; neutrosophic triplet groups

1. Introduction

Real world data, which are predominately uncertain, indeterminate and inconsistent, were
represented as neutrosophic set by Smarandache [1]. Neutrosophy deals with the existing neutralities
and indeterminacies of the problems. Neutralities in neutrosophic algebraic structures have been
studied by several researchers [1–8]. Wang et al. [9] proposed Single-Valued Neutrosophic Set (SVNS)
to overcome the difficulty faced in relating neutrosophy to engineering discipline and real world
problems. Neutrosophic sets have evolved further as Double Valued Neutrosophic Set (DVNS) [10]
and Triple Refined Indeterminate Neutrosophic Set (TRINS) [11]. Neutrosophic sets are useful in
dealing with real-world indeterminate data, which Intuitionistic Fuzzy Set (IFS) [12] and Fuzzy sets [13]
are incapable of handling accurately [1].

The current trends in neutrosophy and related theories of neutrosophic triplet, related triplet
group, neutrosophic duplet, and duplet set was presented by Smarandache [14]. Neutrosophic duplets
and neutrosophic triplets have been of interest and many have studied them [15–24]. Neutrosophic
duplet semigroup were studied in [19] and the neutrosophic triplet group was introduced in [8].
Neutrosophic duplets and neutrosophic duplet algebraic structures were introduced by Smarandache.

In the case of neutrosophic duplets, we see ax = a and x = neut(a), where, as in L-fuzzy sets [25]
as per definition is a mapping from A : X → L, L may be semigroup or a poset or a lattice or a Boolean
σ-ring; however, neutrosophic duplets are not mapping, more so in our paper algebraic properties of
them are studied for Zn for specific values of n. However, in the case of all structures, the semigroup
or lattice or Boolean σ-ring or a poset, there are elements which are neutrosophic duplets. Here,
we mainly analyze neutrosophic duplets in the case of Zn only number theoretically.

In this paper, we investigate the neutrosophic duplets of {Zpn ,×}, where p is a prime (odd or
even) and n ≥ 2. Similarly, neutrosophic duplets in the case of Zpq and Zp1 p2...pn are studied. It is noted
that the major difference between the neutrals of neutrosophic triplets and that of neutrosophic duplets
is that in the former case they are idempotents and in the latter case they are units. Idempotents in the
neutrosophic duplets are called trivial neutrosophic duplets.

This paper is organized as five sections, Section 1 is introductory in nature and Section 2 provides
the important results of this paper. Neutrosophic duplets in the case of Zpn ; p an odd prime are studied
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in Section 3. In Section 4, neutrosophic duplets of Zpq and Zp1 p2...pn , and their properties are analyzed.
Section 5 discusses the conclusions, probable applications and proposes some open problems.

2. Results

The basic definition of neutrosophic duplet is recalled from [8].
Consider U to be the universe of discourse, and D a set in U, which has a well-defined law #.

Definition 1. Consider 〈a, neut(a)〉, where a, and neut(a) belong to D. It is said to be a neutrosophic duplet
if it satisfies the following conditions:

1. neut(a) is not the same as the unitary element of D in relation with the law # (if any);
2. a# neut(a) = neut(a) # a = a; and
3. anti(a) /∈ D for which a # anti(a) = anti(a) # a = neut(a).

Here, the neutrosophic duplets of {Zpn ,×}, p is a prime (odd or even) and n ≥ 2 are analyzed
number theoretically. Similarly, neutrosophic duplets in the case of Zpq and Zp1 p2...pn are studied in
this paper.

The results proved by this study are:

1. The neutrals of all nontrivial neutrosophic duplets are units of {Zpn ,×}, {Zpq,×} and
{Zp1 p2...pn ,×}.

2. If p is a prime in anyone of the semigroups ({Zpn ,×} or {Zpq,×} or {Zp1 p2...pn ,×}) as mentioned
in 1, then mp has only p number of neutrals, for the appropriate m.

3. The neutrals of any mpt for a prime p; (m, p) = 1 are obtained and they form a special collection.

3. Neutrosophic Duplets of {Zpn ,×} and its Properties

Neutrosophic duplets and neutrosophic duplet algebraic structures were introduced by Florentin
Smarandache in 2016. Here, we investigate neutrosophic duplets of {Zpn ,×}, where p is a prime (odd
or even) and n ≥ 2. First, neutrosophic duplets in the case of Z24 and Z33 and their associated number
theoretic properties are explored to provide a better understanding of the theorems proved. Then,
several number theoretical properties are derived.

Example 1. Let S = {Z16,×} be the semigroup under × modulo 16. Z16 has no idempotents. The units of Z16

are {1, 3, 5, 7, 9, 11, 13, 15}. The elements which contribute to the neutrosophic duplets are {2, 4, 6, 8, 10, 12, 14}.
The neutrosophic duplet sets under usual product modulo 16 are:

{{2, 1}, {2, 9}}, {{4, 1}, {4, 5}, {4, 9}, {4, 13}},
{{6, 1}, {6, 9}}, {{8, 1}, {8, 3}, {8, 5}, {8, 7}, {8, 9}, {8, 11}, {8, 13}, {8, 15}},
{{10, 1}, {10, 9}}, {{12, 1}, {12, 5}, {12, 9}, {12, 13}}, {{14, 1}, {14, 9}}

The observations made from this example are:

1. Every non-unit of Z16 is a neutrosophic duplet.
2. Every non-unit divisible by 2, viz. {2, 6, 10, 14}, has only {1, 9} as their neutrals.
3. Every non-unit divisible by 4 are 4 and 12, which has {1, 5, 9, 13} as neutrals.

The biggest number which divides 16 is 8 and all units act as neutrals in forming neutrosophic duplets.
Thus, A = {1, 3, 5, 7, 9, 11, 13, 15}, which forms a group of order 8, yields the 8 neutrosophic duplets; 8 × i = 8
for all i ∈ A and A forms a group under multiplication modulo 16; and {1, 9} and {1, 5, 9, 13} are subgroups
of A.

In view of this, we have the following theorem.

Theorem 1. Let S = {Z2n ,×}, be the semigroup under product modulo 2n, n ≥ 2.
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(i) The set of units of S are A = {1, 3, 5, . . . , 2n − 1}, forms a group under × and |A| = 2n−1.
(ii) The set of all neutrosophic duplets with 2n−1 is A; neutrals of 2n−1 are A.

(iii) All elements of the form 2m ∈ Z2n (m an odd number) has only the elements {1, 2n−1 + 1} to contribute
to neutrosophic duplets (neutrals are 1, 2n−1 + 1).

(iv) All elements of the form m2t ∈ Z2n ; 1 < t < n − 1; m odd has its neutrals from B = {1, 2n−t +

1, 2n−t+1 + 1, 2n−t+2 + 1, . . . , 2n−1 + 1, 2n−t + 2n−t+1 + 1, . . . , 2n−t + 2n−1 + 1, . . . , 1 + 2n−t +

2n−t+1 + . . . + 2n−1}.

Proof.

(i) Given S = {Z2n ,×} where n ≥ 2 and S is a semigroup under product modulo 2n. A =

{1, 3, 5, 7, . . . , 2n − 1} is a group under product as every element is a unit in S and closure axiom
is true by property of modulo integers and |A| = 2n−1. Hence, Claim (i) is true.

(ii) Now, consider the element 2n−1; the set of duplets for 2n−1 is A for 2n−1 × 1 = 2n−1; 2n−1 × 3 =

2n−1[2 + 1] = 2n + 2n−1 = 2n−1, . . . , 2n−1(m); (m is odd) will give only m2n−1. Hence, this proves
Claim (ii).

(iii) Consider 2m ∈ Z2n ; we see 2m × 1 = 2m and 2m(2n−1 + 1) = m2n + 2m = 2m. (2m, 2n−1 + 1) is
a neutrosophic duplet pair; hence, the claim.

(iv) Let m2t ∈ Z2n ; clearly, m2t × x = m2t for all x ∈ B.

Next, we proceed onto describe the duplet pairs in S = {Z33 ,×}.

Example 2. Let S = {Z33 ,×} be a semigroup under product modulo 33. The units of S are A = {1, 2, 4, 5, 7, 8,
10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26}. Clearly, A forms a group under a product. The non-units of S
are {3, 6, 9, 12, 15, 18, 21, 24}. Zero can be included for 0 × x = 0 for all x ∈ S, in particular for x ∈ A.
The duplet pairs related to 3 are B1 = {{3, 1}, {3, 10}, {3, 19}}. The duplet pairs related to 6 are B2 =

{{6, 1}, {6, 10}, {6, 19}}. The duplet pairs related to 9 are

B3 = {{9, 1}, {9, 4}, {9, 7}, {9, 13}, {9, 10}, {9, 16}, {9, 19}, {9, 22}, {9, 25}}.

The neutrosophic duplets of 12 are B4 = {{12, 1}, {12, 10}, {12, 19}}. The neutrosophic duplets of 15 are
B5 = {{15, 1}, {15, 10}, {15, 19}}. Finally, the neutrosophic duplets of 18 are

B6 = {{18, 1}, {18, 4}, {18, 7}, {18, 13}, {18, 10}, {18, 16}, {18, 19}, {18, 22}, {18, 25}}.

The neutrosophic duplets associated with 21 are B7 = {{21, 1}, {21, 10}, {21, 19}} and 24 are B8 =

{{24, 1}, {24, 10}, {24, 19}}. Now, the trivial duplet of 0, which we take is

B0 = {{0, 1}, {0, 4}, {0, 7}, {0, 13}, {0, 10}, {0, 16}, {0, 19}, {0, 22}, {0, 25}}.

We see L = {B0 ∪ B1 ∪ B2 ∪ . . . ∪ B8} forms a semigroup under product modulo 27 and o(L) = 45.

We have the following result.

Theorem 2. Let S = {Zpn ,×}, where p is an odd prime, n ≥ 2 is a semigroup under ×, and product modulo
is pn. The units of S are denoted by A and non-units of S are denoted by B. The neutrosophic duplets of S
associated with B are groups under product and are subgroups of A. The neutrals of tps = b ∈ B are of the form
D = {1, 1 + pn−s, 1 + pn−s+1, 1 + pn−s+2, . . . , 1 + pn−1, 1 + pn−s + pn−s+1, 1 + pn−s + pn−s+2, . . . , 1 +

pn−1 + pn−s, . . . 1 + pn−s + . . . + pn−1}; 1 ≤ t < m, p/m; 1 < s < n.

Proof. Let tps ∈ Zpn all elements which act as neutrosophic duplets for tps are from the set D. For any
x ∈ D and tps ∈ Zps , we see xtps = tps; hence, the claim.
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It is important to note that S = {Zpn ,×} has no non-trivial neutrosophic triplets as Zpn has no
non-trivial idempotents.

Next, we proceed to finding the neutrosophic duplets of Zpq; p and q are distinct primes.

4. Neutrosophic Duplets of Zpq and Zp1 p2...pn

In this section, we study the neutrosophic duplets of Zpq where p and q are primes. Further, we
see Zpq also has neutrosophic triplets. The neutrosophic triplets in the case of Zpq have already been
characterized in [23]. We find the neutrosophic duplets of Z2p, p a prime. We find the neutrosophic
duplets and neutrosophic triplets groups of Z26 in the following.

Example 3. Let S = {Z26,×} be the semigroup under product modulo 26. The idempotents of S are 13 and 14.
We see 13 is just a trivial neutrosophic triplet, however only 14 contributes to non-trivial neutrosophic triplets.
We now find the neutrosophic duplets of Z26. The units of Z26 are A = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
and they act as neutrals of the duplets. The non-units which contribute for neutrosophic duplets are B =

{2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24}. 0 is the trivial duplet as 0 × x = 0 for all x ∈ A. Consider 2 ∈ B
the pairs of duplets are {2, 1}, 2 × 14 = 2 but 14 cannot be taken as anti(2) = 20 and anti(2) exists so 2 is not
a neutrosophic duplet for (2, 14, 20) is a neutrosophic triplet group.

Consider 4 ∈ B; {4, 1} is a trivial neutrosophic duplet. Then, 4 × 14 = 4 and (4, 14, 16) are again
a neutrosophic triplet as anti(4) = 16 so 4 is not a neutrosophic duplet. Thus, 16 and 20 are also not
neutrosophic duplets. Consider 6 ∈ B; we see {6, 1} is a non-trivial neutrosophic duplet. In addition, (6, 14, 10)
are neutrosophic triplet groups so 6 and 10 are not non-trivial neutrosophic duplets. Consider 8 ∈ B, (8, 14, 18)
is a neutrosophic triplet group. hence 8 and 18 are not neutrosophic duplets. Then, (12, 14, 12) is also
a neutrosophic triplet group. Thus, 12 is not a neutrosophic duplet. Let 22 ∈ B be such that (22, 14, 24) is
a neutrosophic triplet group, hence 22 and 24 are not neutrosophic duplets.

Consider 13 ∈ B; we see the neutrals are {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}. We see the collection of
neutrosophic duplets associated with 13 ∈ Z26 happens to yield a semigroup under product if 13 is taken as the
trivial neutrosophic duplets, as it is an idempotent in Z26, and, in all pairs, it is treated as semigroup of order 13,
where (13, 1) and (13, 13) are trivial neutrosophic duplets.

In view of this, we have the following theorem.

Theorem 3. Let S = {Z2p,×} be a semigroup under product modulo 2p; p an odd prime. This S has only p
and p + 1 to be the idempotents and only p contributes for a neutrosophic duplet collection with all units of Z2p
and the collection B = {(p, x)|x ∈ Z2p}, x is a unit in Z2p forms a commutative semigroup of order p which
includes 1 and p which result in the trivial duplets pair (p, 1) and (p, p).

Proof. Given S = {Z2p,×} is a semigroup under × and p is an odd prime. We see from [23] p and
p + 1 are idempotents of Z2p. It is proven in [23] that p + 1 acts for the neutrosophic triplet group of
Z2p (formed by elements 2, 4, 6, . . . , 2p − 2) as the only neutral. (p, p, p) is a trivial neutrosophic triplet.
However, Z2p has no neutrosophic duplet other than those related with p alone and p × x = p for all x
belonging to the collection of all units of Z2p including 1. If x is a unit in Z2p, two things are essential:
x is odd and x �= p. Since x is odd, we see x = 2y + 1 and p(x) = p(2y + 1) = 2yp + p = p, hence
(p, x) is a neutrosophic duplet. The units of Z2p are (p − 1) in number. Further, (p, p) and (p, 1) form
trivial neutrosophic duplets. Thus, the collection of all neutrosophic duplets B = {(p, x)}, x is a unit
and x = p is also taken to form the semigroup of order p and is commutative as the collection of all
odd numbers forms a semigroup under product modulo 2p; hence, the claim.

It is important and interesting to note that, unlike Zpn , p is a prime and n ≥ 2. We see Z2p has both
non-trivial neutrosophic triplet groups which forms a classical group [23] as well as has a neutrosophic
duplet which forms a semigroup of order p.

Next, we study the case when Zpq is taken where both p and q are odd primes first by an example.
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Example 4. Let S = {Z15,×} be a semigroup under product. The idempotents of Z15 are 10 and 6.
However, 10 does not contribute to non-trivial neutrosophic triplet groups other than {5, 10, 5}, {10, 10, 10}.
The neutrosophic triplet groups associated with 6 are (3, 6, 12), (12, 6, 3), (9, 6, 9) and (6, 6, 6). The neutrosophic
duplets of Z15 are contributed by {5}, {10} and {3, 12, 6, 9} in a unique way.

D1 = {{5, 1}, {5, 4}, {5, 7}, {5, 13}, {5, 10}},
D2 = {{10, 13}, {10, 7}, {10, 1}, {10, 4}, {10, 10}},

D3 = {{3, 11}, {3, 1}, {3, 6}, {12, 11}, {12, 1}, {12, 6}, {6, 11}, {6, 1}, {6, 6}, {9, 11}, {9, 1}, {9, 6}}
All three collections of duplets put together is not closed under ×; however, D2 and D3 form a semigroup

under product modulo 15. If we want to make D1 a semigroup, we should adjoin the trivial duplets {0, 4},
{0, 7}, {0, 13}, {0, 1}, {0, 6}, {0, 10} as well as D2. Further, we see D1 ∪ D2 ∪ D3 is not closed under product.

Thus, the study of Zpq where p and q are odd primes happens to be a challenging problem.
We give the following examples in the case when p = 5 and q = 7.

Example 5. Let S = {Z35,×} be a semigroup of order 35. The idempotents of Z35 are 15 and 21.
The neutrosophic triplets associated with 15 are {(15, 15, 15), (5, 15, 10), (25, 15, 30), (20, 15, 20), (30, 15, 25),
(10, 15, 5)}, a cyclic group of order six. The cyclic group contributed by the neutrosophic triplet groups associated
with 21 is as follows: {(21, 21, 21), (7, 21, 28), (28, 21, 7), (14, 21, 14)}, which is of order four. The neutrosophic
duplets are tabulated in Table 1. Similarly, the neutrosophic duplets associated with S = {Z105,×} are tabulated
in Table 2.

Table 1. Neutrosophic Duplets of {Z35,×}.

Neutrals for duplets Neutrals for duplets
5, 10, 15, 20, 25, 30 7, 14, 21, 28

1, 8, 15, 22, 24 1, 6, 11, 16, 21, 26, 31

Table 2. Neutrosophic Duplets of {Z105,×}.

Neutrals for duplets Neutrals for duplets
3, 6, 9, 12, 18, 21, 24, 27, 5, 10, 20, 25, 40, 50,

33, 36, 39, 48, 51, 54, 57, 66, 55, 65, 80, 85, 95, 100
69, 78, 81, 87, 93, 96, 99, 102

1, 36, 71 1, 22, 43, 64, 84

Neutrals for duplets Neutrals for duplets
7, 14, 28, 49, 56, 77, 91, 98 15, 30, 45, 60, 75, 90

1, 16, 31, 46, 61, 76, 91 1, 8, 15, 22, 29, 36, 43, 50,
57, 64, 71, 78, 85, 92, 99

Neutrals for duplets Neutrals for duplets
21, 42, 63, 84 35, 70

1, 6, 11 16, 21, 26, 31, 36, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28,
41, 46, 51, 56, 61, 66, 71, 31, 34, 37, 40, 43, 46, 49, 52, 55,

76, 81, 86, 91, 96, 101 58, 61, 64, 67, 70, 73, 76, 79,
82, 85, 88, 91, 94, 97, 100, 103

Theorem 4. Let {Zn,×} be a semigroup under product modulo n; x ∈ Zn \ {0} has a neutral y ∈ Zn \ {0}
or is a non-trivial neutrosophic duplet if and only if x is not unit in Zn.
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Proof. x ∈ Zn \ {0} is a neutrosophic duplet if x × y = x(mod n) and y is called the neutral of x.
If x2 = x, then we call the pair (x, x) as trivial neutrosophic duplet pair. We see x × y = x, if x is a
unit in Zn, then there exists a z ∈ Zn such that z × (x × y) = z × x, so that y = 1 as z × x = 1(mod n);
so y = 1 gives trivial neutrosophic duplets. Thus, x is not a unit if it has to form a non-trivial
neutrosophic duplet pair; x × y = x and y �= 1 then if x is a unit we arrive at contradiction; hence, the
theorem.

Theorem 5. Let S = {Zpq,×} be a semigroup under product modulo pq, p and q distinct odd primes.
There is p number of neutrosophic duplets for every p, 2p, 3p, . . . , (q − 1)p. Similarly, there is q number of
neutrosophic duplets associated with every q, 2q, . . . (p − 1)q. The neutrals of sq and tp is given by 1 + nq for
1 ≤ t ≤ q − 1, 0 ≤ n ≤ p − 1 and that of sq is given by 1 + mp; 1 ≤ s ≤ p − 1, 0 ≤ m ≤ q − 1.

Proof. Given {Zpq,×} is a semigroup under product modulo pq (p and q two distinct odd primes).
The neutrals associated with any tp; 1 ≤ t ≤ q − 1 is given by the sequence {1 + q, 2q + 1, 3q +

1, . . . , (p − 1)q + 1} for every tp ∈ {p, 2p, . . . , (q − 1)p}. We see, if tp ∈ Zpq,

tp × (1 + nq) = tp + tpnq
= tp + tnpq = tp(mod pq).

A similar argument for sq completes the proof; hence, the claim.

Theorem 6. Let S = {Zp1 p2...pn ,×} be the semigroup under product modulo p1 p2 . . . pn, where p1, p2, . . . , pn

are n distinct primes. The duplets are contributed by the non-units of S. The neutrosophic duplets associated
with Ai = {pi, 2pi, . . . , (p1 p2 . . . pi−1 pi+1 . . . pn − 1)pi} are {1 + (p1 p2 . . . pi−1 pi+1 . . . pn)t} where t =

1, 2, . . . , pi − 1; and i = 1, 2, . . . , n. Thus, every element xi of Ai has only pi − 1 number of elements which
neutralizes xi; thus, using each xi, we have pi − 1 neutrosophic duplets.

Proof. Given S = {Zp1 p2...pn ,×} is a semigroup under product modulo p1 . . . pn, where pis are distinct
primes, i = 1, 2, . . . , n. Considering Ai = {pi, 2pi, . . . , (p1 p2 . . . pi−1 pi+1 . . . pn − 1)pi}, we have to
prove that, for any spi, spi × [1 + (p1 p2 . . . pi−1 pi+1 . . . pn)t] = spi; 1 ≤ t ≤ pi−1.

Clearly,

spi × [1 + (p1 p2 . . . pi−1 pi+1 . . . pn)t] = spi + spi[(p1 p2 . . . pi−1 pi+1 . . . pn)t]

= spi + st[(p1 p2 . . . pi−1 pi pi+1 . . . pn)] = spi

as p1 p2 . . . pn = 0(mod (p1 p2 . . . pn)). Hence, the claim.

Thus, for varying t and varying s given in the theorem, we see

{spi, (1 + (p1 p2 . . . pi−1 pi+1 . . . pn)t)}
is a neutrosophic duplet pair 1 ≤ t ≤ pi − 1; 1 ≤ s ≤ p1 p2 . . . pi−1 pi+1 . . . pn and i = 1, 2, . . . , n.

5. Discussions and Conclusions

This paper studies the neutrosophic duplets in the case Zpn , Zpq and Zp1 p2...pn . In the case of
Zpn and Zpq, a complete characterization of them is given; however, in the case Zp1...pn , only the
neutrosophic duplets associated with pis are provided; i = 1, 2, . . . n. Further, the following problems
are left open:

1. For Zpq, p and q odd primes, how many neutrosophic duplet pairs are there?
2. For Zp1...pn , what are the neutrals of pi pj, pi pj pk, . . . , p1 p2 . . . pi−1 pi+1 . . . pn?
3. The study of neutrosophic duplets of Z

p
t1
1 pt2

2 ...ptn
n

; p1, . . . , pn are distinct primes and ti ≥ 1; 1 ≤ i ≤
n is left open.
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For future research, one can apply the proposed neutrosophic duplets to SVNS, DVNS or TRINS.
These neutrosophic duplets can be applied in problems where neutral elements for a given a in Zpn or
Zpq happens to be many. However, the concept of anti(a) does not exist in the case of neutrosophic
duplets. Finally, these neutrosophic duplet collections form a semigroup only when all the trivial
neutrosophic duplet pairs (0, a) for all appropriate a are taken. These neutrosophic duplets from Zpn

and Zpq can be used to model suitable problems where the anti(a) under study does not exist and
many neutrals are needed. This study can be taken up for further development.
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Abstract: Fault diagnosis is an important issue in various fields and aims to detect and identify the
faults of systems, products, and processes. The cause of a fault is complicated due to the uncertainty
of the actual environment. Nevertheless, it is difficult to consider uncertain factors adequately with
many traditional methods. In addition, the same fault may show multiple features and the same
feature might be caused by different faults. In this paper, a neutrosophic set based fault diagnosis
method based on multi-stage fault template data is proposed to solve this problem. For an unknown
fault sample whose fault type is unknown and needs to be diagnosed, the neutrosophic set based on
multi-stage fault template data is generated, and then the generated neutrosophic set is fused via the
simplified neutrosophic weighted averaging (SNWA) operator. Afterwards, the fault diagnosis results
can be determined by the application of defuzzification method for a defuzzying neutrosophic set.
Most kinds of uncertain problems in the process of fault diagnosis, including uncertain information
and inconsistent information, could be handled well with the integration of multi-stage fault template
data and the neutrosophic set. Finally, the practicality and effectiveness of the proposed method are
demonstrated via an illustrative example.

Keywords: neutrosophic set; fault diagnosis; normal distribution; defuzzification; simplified
neutrosophic weighted averaging operator

1. Introduction

Fault diagnosis aims to identify and repair faults in systems, products, and processes, and has been
widely applied to various fields, for instance, military [1,2], economic [3,4], and medicine [5,6], and
plays a significant part in the prevention of accidents during the normal operation of equipment [7,8].
Owing to the complexity and uncertainty of the actual environment, fault information is usually
imprecise, incomplete, and uncertain, and it is thus, difficult to cope with [9–12]. The challenge
is to devise a fault diagnosis process to reduce the impact of such imprecision, incompletion, and
uncertainty as much as possible. Furthermore, the fault information obtained from multiple sources
may be different or even conflicting [13]. In such cases, it is important to check conflicts between the
information and to aggregate the information into consistent information.

A great deal of research work has been performed in the field of fault diagnosis, some of which
has resulted in the application of efficient approaches to exactly and expeditiously diagnose certain
types of faults. Nevertheless, most of these methods fail to diagnose multiple types of faults [14–16].
To solve this problem, some methods based on Bayes theory were proposed [17–19], though efficient
aggregation results could only be obtained when the proper and qualified a priori and conditional
probabilities were obtainable in the methods based on Bayes theory [20]. As a development of the Bayes
theory, the Depmster–Shafer evidence theory was proposed to deal with uncertainty problems [21–24].
Reference [25] describes the integration of the fuzzy set theory and evidence theory to improve the
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accuracy of various diagnoses. In addition, there have been several research works based on the use of
acoustic signals [26–28] for the fault diagnosis of rotating machines. Lee et al. [29] presented a power
transformer fault diagnosis method based on set pair analysis (SPA) and association rules. He et al. [30]
proposed a novel fault diagnosis method based on the relevance vector machine (RVM) to deal with
small data samples. Vibration signal-based fault diagnosis methods [31–33] have also proposed in
recent years.

However, uncertain factors in the process of fault diagnosis have not been well handled. In order
to deal with uncertain problems under fuzzy information and incoherent information, Smarandache
defined the concept of a neutrosophic set [34–37], which is a set of elements that exist in a non-standard
unit interval, such as the realness degree, uncertainty degree, or false degree, as a summarization of
concepts of the classic set [38], fuzzy set (FS) [39], intuitionistic fuzzy set (IFS) [40,41] and interval
valued intuitionistic fuzzy set (IVIFS) [42]. To facilitate the application of the neutrosophic set to
practical problems, Wang et al. [43] proposed the concepts of the interval neutrosophic set (INS) and
single valued neutrosophic set (SVNS), and Ye [44] defined the concept of the simplified neutrosophic
set (SNS). In order to fuse the neutrosophic information to solve realistic problems under a neutrosophic
environment, some researchers proposed neutrosophic aggregation operators. For instance, Liu and
Wang [45] introduced a single-valued neutrosophic normalised weighted Bonferroni mean operator
based on the SVNS. Furthermore, Peng et al. [46] developed simplified neutrosophic information
aggregation operators, such as the simplified neutrosophic weighted averaging (SNWA) operator and
the simplified neutrosophic weighted geometric (SNWG) operator.

Several methods based on the neutrosophic set have been proposed for fault diagnosis.
For instance, Ye proposed cotangent similarity measures for SVNSs based on a cotangent function
for the fault diagnosis of steam turbines [47] and the dimension root similarity measure of SVNSs
for the fault diagnosis of hydraulic turbines [48], which are all used for fault diagnosis under a
single-valued neutrosophic environment. Kong et al. proposed the misfire fault diagnosis method for
the fault diagnosis of gasoline engines [49]. Zhang et al. proposed a single-valued neutrosophic (SVN)
multi-granulation rough set over a two universe model for the diagnosis of steam turbine faults [50].

There is still a requirement to deal with the uncertainty, imprecision, and incompletion of
information and to improve the accuracy of fault diagnosis results with reduced calculations
[51–53]. Nevertheless, the complex relationships among fault types and various features of faults
in fault diagnosis problems leads to difficulty in fault diagnosis. In addition, with changes in time,
the unsteadiness of the actual environment causes uncertainty in fault template data collected at
different stages. The uncertainty of multi-stage fault template data, however, fails to be dealt with well.
In order to solve this problem, a neutrosophic set based fault diagnosis method based on multi-stage
fault template data is proposed in this paper. An unknown fault sample whose fault type is unknown
is diagnosed by generating its neutrosophic sets based on multi-stage fault template data, and then
the SNWA operator is applied to fuse the multi-stage neutrosophic sets of the unknown fault sample
under each feature and to fuse the neutrosophic sets of all features of the unknown fault sample again.
Afterward, the fault diagnosis results are determined by the application of the defuzzification method
to defuzzy the neutrosophic set of each fault type. This proposed method has several main traits.
Firstly, in comparison to some traditional fault methods, for instance, the method based on the relevance
vector machine [30], the multi-stage fault template data can deal with the uncertainty of collected
data due to the unsteadiness of the actual environment. Afterwards, compared with the method
based on random fuzzy variables [54], the application of the neutrosophic set gives consideration
to the uncertainty of the fault types and the unknown fault sample, which reflects and handles the
uncertainty of fault information well. Compared with former neutrosophic set based methods for fault
diagnosis [47–50], the generation of a neutrosophic set based on multi-stage fault template data in this
paper can deal with uncertain information better and diagnose the faults efficiently.

The rest of this paper is arranged as follows: Section 2 briefly introduces the concepts of the
neutrosophic set, SNS, and the SNWA operator. The proposed method for fault diagnosis is listed step
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by step in Section 3. In Section 4, a numerical example is used to demonstrate the reasonableness of
this proposed method, and to interpret the proposed method. Some summary remarks are shown in
Section 5.

2. Preliminaries

The neutrosophic set, introduced by Smarandache [34], is an extension of the classical FS [39],
IFS [40], and IVIFS [42]. It is an efficient tool for dealing with the problem with uncertain information.
The neutrosophic set concept is defined as follows [43]:

Definition 1. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic set
(A) in X is characterized by a truth-membership function (TA), an indeterminacy-membership function (IA)
and a falsity-membership function (FA). TA(x), IA(x), and FA(x) are real standard or non-standard subsets of
]0−, 1+[. That is,

TA : X �→]0−, 1+[

IA : X �→]0−, 1+[

FA : X �→]0−, 1+[.

(1)

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0− ≤ supTA(x)+ supIA(x)+ supFA(x) ≤ 3+.

In order to promote the application of the neutrosophic set in practical problems, the notion of
SNS [44] was proposed as a subclass of the neutrosophic set. The definition of SNS is as follows [44]:

Definition 2. Let X be a space of points, with a generic element in X denoted by x. A neutrosophic set
(A) in X is characterized by a truth-membership function (TA(x)), a indeterminacy-membership function
(IA(x)) and a falsity-membership function (FA(x)). If TA(x) : X → [0, 1], IA(x) : X → [0, 1] and
FA(x) : X → [0, 1] satisfied:

x ∈ X �→ TA(x) ∈ [0, 1]

x ∈ X �→ IA(x) ∈ [0, 1]

x ∈ X �→ FA(x) ∈ [0, 1] and

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

(2)

Then an SNS A in X can be denoted as

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X} (3)

Which is called an SNS. In particular, if X includes only one element, N = 〈TA(x), IA(x), FA(x)〉
is called a SNN and is denoted by α = 〈μ, π, ν〉. The numbers μ, π, ν denote, respectively, the degree
of membership, the degree of indeterminacy-membership, and the degree of non-membership.

For any two SNSs (A = 〈TA(x), IA(x), FA(x)〉, B = 〈TB(x), IB(x), FB(x)〉), the operational
relations are defined as the following [44]:

A+B = 〈TA(x)+TB(x)−TA(x)TB(x), IA(x) + IB(x)− IA(x)IB(x), FA(x) + FB(x)− FA(x)FB(x)〉,
A × B = 〈TA(x)TB(x), IA(x)IB(x), FA(x)FB(x)〉,
λA = 〈1 − (1 − TA(x))λ, 1 − (1 − IA(x))λ, 1 − (1 − FA(x))λ〉, λ > 0,

Aλ = 〈TA(x)λ, TA(x)λ, TA(x)λ〉, λ > 0.

(4)

130



Symmetry 2018, 10, 346

Peng et al. [46] developed some simplified neutrosophic information aggregation operators,
such as the SNWA operator, which is based on the conception of SNS. It is defined as follows [46]:

Definition 3. Let αi = 〈μi, πi, νi〉, i = 1, 2, . . . , n be a collection of SNNs. Then,

SNWA(α1, α2, . . . , αn) = w1α1 + w2α2 + . . . + wnαn

= 〈1 −
n

∏
i=1

(1 − μi)
wi ,

n

∏
i=1

(πi)
wi ,

n

∏
i=1

(νi)
wi 〉, i = 1, 2, . . . , n.

(5)

where w = (w1, w2, . . . , wn)T is the weight vector of αi(i = 1, 2, . . . , n), with wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

3. The Proposed Method

The characteristics of the actual environment in which a system, product, or process is used,
for instance, the temperature, location and air, are unstable over time in the fault diagnosis process,
even if the equipment works under the same conditions normally, which leads to uncertainty in the
data collected at different stages. These factors have obvious impacts on fault diagnosis results. Thus,
the uncertainty of fault information must be dealt with to achieve more efficient diagnosis results.
In the face of this problem, a neutrosophic set based fault diagnosis method based on multi-stage fault
template data is proposed to diagnose the unknown fault sample in this paper. Consider an unknown
fault sample (S) with n features (C = {C1, C2, . . . , Cn}), whose data have been collected under each
feature. The aim of this fault diagnosis method is to identify the fault type of the unknown fault
sample (S). The flow-process diagram of the proposed method is shown in Figure 1, and the detailed
procedures are elaborated step by step in the following text.

Figure 1. Block diagram of the proposed method.

Step 1 Collect the multi-stage data of fault types under each feature. Suppose that there are m fault
types (F = {F1, F2, . . . , Fm}) with n features (C = {C1, C2, . . . , Cn}). Firstly, collect the multi-stage
data of each fault type under each feature. Each stage’s data for each fault type under each
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feature are obtained by continuously collecting within the time interval (T). Suppose that data
from k stages of every fault type under every feature are obtained. The multi-stage data of each
fault type under each feature are shown as follows:

· · · Cj · · ·

...

Fi

...

⎡⎢⎢⎢⎣
. . .

...
. . .

. . . k stages data o f Fi under Cj
. . .

. . .
...

. . .

⎤⎥⎥⎥⎦

where i = 1, 2, . . . , m and j = 1, 2, . . . , n.
Step 2 Generate the SNS for an unknown fault sample (S) based on the multi-stage data of each

fault type under each feature. For each stage’s data for each fault type under every feature,
and for the data of every feature of the unknown fault sample (S), a normal distribution model
is established which is obtained by using the arithmetic average (m) and variance (σ2) of a
stage’s data as the arithmetic average and standard deviation of the normal distribution model,
denoted as N(m, σ2). Then, k normal distribution models and k normal distribution figures
are generated according to k stages of data of each fault type under each feature. In addition,
a normal distribution model is generated based on the data of the unknown fault sample
under each feature. The normal distribution figures generated from the data of Cj of unknown
fault sample S and k stages of data for Cj of Fi are shown in Figure 2. As the figure shows,
each stage’s data collected drift to a certain extent in a certain range. In particular, there are
distinct differences between the fault type’s data collected in the fourth stage and the data of the
unknown fault sample.

Figure 2. Distribution of S under Cj and Fi under Cj.

The normal distribution function indicates the distribution probability density of the data.
The membership degree of SNS is defined as the ratio of the maximum value of the vertical
coordinate of the intersection point between the unknown fault sample and the fault type and

132



Symmetry 2018, 10, 346

the peak value of the unknown fault sample. The two normal distribution curves (Figure 3) and
the definition of the membership degree (μ) are as follows:

μ =
yh
ym

, (6)

where yh represents the maximum value of the vertical coordinate of the intersection point of
distribution between the unknown fault sample (S) and the fault type (Fi), and ym represents the
peak value of the unknown fault sample’s distribution.

As the figure shown, the intersection points of distribution between the unknown fault sample
and Fi are marked with X, and the peak point of S’ distribution is marked with X in the same
way. Then, from the Equation (6), the membership degree is generated.

Figure 3. Generation of the membership degree.

In this paper, it is assumed that the non-membership degree and the membership degree
are interdependent. The indeterminacy-membership degree indicates the uncertainty degree
of neutrosophic information. Entropy represents the uncertainty of the information and has
been widely used in many fields. Shannon introduced the quantitative and qualitative model
of communication as a statistical process that underlies information theory [55], which is a
formalism that was originally applied to digital communication. The indeterminacy-membership
degree and non-membership degree are defined as follows:

(1) ν = 1 − μ,

(2) π = μlog2(
1
μ
) + νlog2(

1
ν
), μ �= 0, ν �= 0.

(7)

The indeterminacy-membership degree (π) represents the Shannon entropy of the membership
degree (μ) and the non-membership degree (ν), and π equals 0 if μ or ν equal 0. Hence, the SNS
can be obtained. The generated SNS is shown in Table 1:
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Table 1. The generated simplified neutrosophic set (SNS) for S based on multi-stage data.

Fault Type Stage
Feature

C1 C2 · · · Cn

F1 1 (μ1
11, π1

11, ν1
11) (μ1

12, π1
12, ν1

12) · · · (μ1
1n, π1

1n, ν1
1n)

2 (μ2
11, π2

11, ν2
11) (μ2

12, π2
12, ν2

12) · · · (μ2
1n, π2

1n, ν2
1n)

...
...

...
. . .

...
k (μk

11, πk
11, νk

11) (μk
12, πk

12, νk
12) · · · (μk

1n, πk
1n, νk

1n)

F2 1 (μ1
21, π1

21, ν1
21) (μ1

22, π1
22, ν1

22) · · · (μ1
2n, π1

2n, ν1
2n)

2 (μ2
21, π2

21, ν2
21) (μ2

22, π2
22, ν2

22) · · · (μ2
2n, π2

2n, ν2
2n)

...
...

...
. . .

...
k (μk

21, πk
21, νk

21) (μk
22, πk

22, νk
22) · · · (μk

2n, πk
2n, νk

2n)

...
...

...
...

. . .
...

Fm 1 (μ1
m1, π1

m1, ν1
m1) (μ1

m2, π1
m2, ν1

m2) · · · (μ1
mn, π1

mn, ν1
mn)

2 (μ2
m1, π2

m1, ν2
m1) (μ2

m2, π2
m2, ν2

m2) · · · (μ2
mn, π2

mn, ν2
mn)

...
...

...
. . .

...
k (μk

m1, πk
m1, νk

m1) (μk
m2, πk

m2, νk
m2) · · · (μk

mn, πk
mn, νk

mn)

Step 3 Aggregate the generated SNS based on each fault type under each feature. In this paper, it is
assumed that the weights of data from k stages collected under the same working conditions
are equal. The k SNNs of each fault type under each feature are fused via the SNWA operator,
as shown in Equation (5). For instance,

α11 = SNWA(α1
11, α2

11, . . . , αk
11). (8)

Then, the fused SNS matrix (A) is as follows:

A =

· · · Cj · · ·

...

Fi

...

⎡⎢⎢⎢⎣
. . .

...
. . .

. . . (μij, πij, νij)
. . .

. . .
...

. . .

⎤⎥⎥⎥⎦

where i = 1, 2, . . . , m and j = 1, 2, . . . , n.
Step 4 Aggregate the fused SNS based on all features of each fault type. If the weights of n features are

equal, n SNNs of each fault type are fused via the SNWA operator, as shown in Equation (5).
For instance,

α1 = SNWA(α11, α12, . . . , α1n). (9)

Then, the fused SNS matrix (F) is as follows:

F =

F1

F2
...

Fm

⎡⎢⎢⎢⎢⎣
(μ1, π1, ν1)

(μ2, π2, ν2)
...

(μm, πm, νm)

⎤⎥⎥⎥⎥⎦ .

134



Symmetry 2018, 10, 346

Step 5 Determine the fault type of the unknown fault sample. Considering the fuzziness of the unknown
fault sample and the fault types, direct application of the defuzzification method can intuitively
reflect the results of the fault diagnosis and reduce the amount of calculation in the process of
fault diagnosis. The crisp number of each SNN is defuzzied and calculated as follows [56]:

Ci = μi + (πi)(
μi

μi + νi
). (10)

Ci is the degree to which the information extracted from the data of untested fault supports each
fault type. As a result, the ranking order of all the fault types can be determined according to the
descending order of their crisp numbers (Ci).

4. Illustrative Example and Discussion

In this section, an example of a motor rotor is used to demonstrate the validity and accuracy rate
of the proposed method.

The experimental equipment is a multi-functional flexible rotor test-bed. The vibration displacement
sensor and acceleration sensor were placed in the horizontal and vertical directions of the rotor support
pedestal, respectively, to collect the rotor vibration signals, and the signals were transmitted to the upper
computer through the acquisition box. Then, using the data analysis software under the LabVIEW
environment, the vibration acceleration spectrum of the rotor and the average amplitude of vibration
displacement in the time domain were obtained as the fault feature signals. An unknown fault sample,
S1, was used. When the rotor was running normally, the amplitude of each vibration frequency did
not exceed 0.1 m/s2. When the fault occurred, the frequency and augmentation of the amplitudes
of different faults were distinct. The vibration energy of three kinds of fault types were mostly
concentrated at 1 − 3X. Therefore, S1 was determined to have four features:

1. C1: The vibration amplitude when the acceleration frequency of the rotor is the basic frequency,
1X.

2. C2: The vibration amplitude when the acceleration frequency of the rotor is the frequency 2X.
3. C3: The vibration amplitude when the acceleration frequency of the rotor is the frequency 3X.
4. C4: The average amplitude of vibration displacement in the time-domain.

The data in this paper originated from ref. [57]. The data of S1 under each feature was collected.
For instance, the data of S1 under C1 was as follows:

S1C1
Data = [0.1421 0.1426 0.1422 0.1422 0.1423 0.1433 0.144 0.1439 0.1437 0.1436

0.1432 0.1434 0.1437 0.1428 0.1424 0.1427 0.1431 0.1425 0.1428 0.1421

0.1424 0.142 0.1422 0.1426 0.1431 0.1428 0.1426 0.1424 0.1422 0.1416

0.1424 0.1429 0.1424 0.1423 0.1421 0.142 0.142 0.1423 0.1425 0.1426].

Step 1 Collect the multi-stage data of each fault type under each feature. There are three fault types set
up on the test-bed:

1. F1: Rotor imbalance.
2. F2: Rotor misalignment.
3. F3: Support base loosening.

For each feature of each fault type, data from five stages were collected, and for each stage’s data,
forty consecutive observation values were collected continuously within a time interval of 16 s.
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The data in this paper originated from Reference [57]. For instance, the first stage’s data of F1

under C1 was as follows:

F1C1
First Stage′s Data = [0.1663 0.1590 0.1568 0.1485 0.1723 0.2006 0.1903

0.1908 0.1986 0.1843 0.1785 0.1610 0.1579 0.1511 0.1532 0.1647 0.1628 0.1646

0.1634 0.1642 0.1648 0.1640 0.1674 0.0661 0.1659 0.1650 0.1633 0.1632 0.1604

0.1542 0.1555 0.1562 0.1540 0.1564 0.1557 0.1542 0.1546 0.1571 0.1537 0.1536].

Step 2 Generate the SNS for the unknown fault sample based on the multi-stage data from each fault
type under each feature. Each stage’s data collected is used to establish the normal distribution
model. The generated normal distributions of fault types and the unknown fault sample are
listed in Table 2. For instance, the normal distribution of S1C1

data and F1C1
with five stages of

data is shown in Figure 4. As the figure shows, each stage’s data collected drift to a certain extent
in a certain range. In particular, there were distinct differences between the fault types collected
in each stage and the data of unknown fault samples. Therefore, it is significant to collect data in
multiple stages and to use its integration with the neutrosophic set to deal with the uncertainty
of fault information.

Table 2. Multiple distributions of fault types and the unknown fault sample.

Fault Type Stage
Feature

C1 C2 C3 C4

F1 1 N(0.1619, 0.0200) N(0.1538, 0.0112) N(0.1163, 0.0098) N(4.3057, 0.1124)
2 N(0.1596, 0.0073) N(0.1509, 0.0052) N(0.1095, 0.0021) N(4.4143, 0.0226)
3 N(0.1644, 0.0009) N(0.1468, 0.0024) N(0.1063, 0.0037) N(4.2626, 0.6336)
4 N(0.1617, 0.0006) N(0.1519, 0.0316) N(0.1117, 0.0022) N(4.3138, 0.0249)
5 N(0.1598, 0.0010) N(0.1428, 0.0025) N(0.1182, 0.0017) N(4.3319, 0.0347)

F2 1 N(0.1696, 0.0096) N(0.3266, 0.0108) N(0.2772, 0.0250) N(4.9825, 0.1882)
2 N(0.1742, 0.0045) N(0.3278, 0.0083) N(0.2726, 0.0095) N(4.5844, 0.1226)
3 N(0.1932, 0.0138) N(0.3384, 0.0115) N(0.2217, 0.0339) N(4.4358, 0.4015)
4 N(0.1916, 0.0037) N(0.3350, 0.0063) N(0.2131, 0.0053) N(5.0105, 0.6455)
5 N(0.1804, 0.0031) N(0.3187, 0.0041) N(0.2255, 0.0135) N(4.5631, 0.0678)

F3 1 N(0.3387, 0.0071) N(0.3413, 0.0207) N(0.1501, 0.0120) N(9.8483, 0.0709)
2 N(0.3296, 0.0026) N(0.3511, 0.0090) N(0.1341, 0.0080) N(9.7652, 0.0953)
3 N(0.3247, 0.0074) N(0.3409, 0.0135) N(0.1341, 0.0113) N(9.7802, 0.0608)
4 N(0.3265, 0.0049) N(0.3357, 0.0098) N(0.1330, 0.0052) N(9.8739, 0.1267)
5 N(0.3275, 0.0023) N(0.3503, 0.0060) N(0.1295, 0.0048) N(9.7856, 0.1010)

S1 1 N(0.1427, 0.0006) N(0.1109, 0.0316) N(0.1337, 0.0022) N(4.0938, 0.0249)
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Figure 4. Distribution of S1 under C1 and F1 under C1.

Then, μ, π, ν are calculated with Equations (6) and (7). For instance, the distribution of S1C1
Data

was N(0.1427, 0.0006), the normal distribution of F1C1
’s first stage of data was N(0.1619, 0.0200),

and the membership degree of SNN generated from the two distributions is shown in Figure 5.
As the figure shows, the intersection points of distribution between the unknown fault sample
(S1) and F1C1

’s first stage data are marked with X, and the peak point of S1’s distribution is
marked with X in the same way. Then, from the Equations (6) and (7), the SNN was generated
and denoted as (0.0197, 0.0969, 0.9803). The generated SNSs are listed in Table 3.

Figure 5. Generation of membership degree.
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Table 3. The generated SNS for S1 based on the multi-stage data from every fault type under
every feature.

Fault Type Stage
Feature

C1 C2 C3 C4

F1 1 (0.0197, 0.0969, 0.9803) (0.7400, 0.5731, 0.2600) (0.0973, 0.3191, 0.9027) (0.0841, 0.2888, 0.9159)
2 (0.0092, 0.0521, 0.9908) (0.6576, 0.6426, 0.3424) (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000)
3 (0.0000, 0.0000, 1.0000) (0.6382, 0.6545, 0.3618) (0.0000, 0.0000, 1.0000) (0.0388, 0.1641, 0.9612)
4 (0.0000, 0.0000, 1.0000) (0.8108, 0.4851, 0.1892) (0.0000, 0.0000, 1.0000) (0.0001, 0.0006, 0.9999)
5 (0.0000, 0.0000, 1.0000) (0.7177, 0.5951, 0.2823) (0.0004, 0.0032, 0.9996) (0.0003, 0.0026, 0.9997)

F2 1 (0.0021, 0.0152, 0.9979) (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000)
2 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.0010, 0.0082, 0.9990)
3 (0.0001, 0.0010, 0.9999) (0.0000, 0.0000, 1.0000) (0.0038, 0.0249, 0.9962) (0.0486, 0.1944, 0.9514)
4 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.0164, 0.0836, 0.9836)
5 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000)

F3 1 (0.0000, 0.0000, 1.0000) (0.0001, 0.0008, 0.9999) (0.1118, 0.3502, 0.8882) (0.0000, 0.0000, 1.0000)
2 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.2525, 0.5650, 0.7475) (0.0000, 0.0000, 1.0000)
3 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.1847, 0.4785, 0.8153) (0.0000, 0.0000, 1.0000)
4 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.3815, 0.6648, 0.6185) (0.0000, 0.0000, 1.0000)
5 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.4364, 0.6850, 0.5636) (0.0000, 0.0000, 1.0000)

Step 3 Aggregate the generated SNSs based on each fault type under each feature. Fuse the five stages
of SNNs for each fault type under each feature with the SNWA operator, Equation (5). It is
assumed that the weights (w) of the five SNNs are [0.20, 0.20, 0.20, 0.20, 0.20]. For example,
the SNNs based on the fault type F1 under feature C1 could be fused as follows:

α11 = SNWA(α1
11, α2

11, α3
11, α4

11, α5
11)

= SNWA((0.0197, 0.0969, 0.9803), (0.0092, 0.0521, 0.9908),

(0, 0, 1), (0, 0, 1), (0, 0, 1))

= (0.0058, 0.0000, 0.9942).

The others are shown in Table 4.

Table 4. The results of fusing the five SNNs of each fault type under each feature.

Fault Type C1 C2 C3 C4

F1 (0.0058, 0.0000, 0.9942) (0.7200, 0.5868, 0.2800) (0.0203, 0.0000, 0.9797) (0.0252, 0.0008, 0.9748)
F2 (0.0004, 0.0000, 0.9996) (0.0000, 0.0000, 1.0000) (0.0008, 0.0000, 0.9992) (0.0134, 0.0038, 0.9866)
F3 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) (0.2836, 0.5332, 0.7164) (0.0000, 0.0000, 1.0000)

Step 4 Aggregate the fused SNSs based on all features of each fault type. Fusing the SNNs is based
on the four features of each fault type by the SNWA operator, Equation (5). In addition, it is
supposed the weights (w) of the four SNNs are [0.25, 0.25, 0.25, 0.25]. For example, the SNNs
based on fault type F1 could be fused as follows:

α1 = SNWA(α11, α12, α13, α14)

= SNWA((0.0058, 0, 0.9942), (0.72, 0.5868, 0.28), (0.0203, 0, 0.9797),

(0.0252, 0.0008, 0.9748))

= (0.2633, 0.0000, 0.7367).

The others are shown in Table 5.
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Table 5. The results of fusing the SNNs containing four features based on each fault type.

Fault Type SNS

F1 (0.2633, 0.0000, 0.7367)
F2 (0.0030, 0.0000, 0.9970)
F3 (0.0952, 0.0000, 0.9048)

Step 5 Determine the fault type of the unknown fault sample. Finally, Table 5 can be regarded as an
SNN fault diagnosis matrix which can be used to rank the three fault types via the defuzzification
method (Equation (10)). The descendant ranks of the crisp numbers of the three fault types are
shown in Table 6.

Table 6. The ranks of the crisp numbers of three fault types.

Fault Type Crisp Number Rank

F1 0.263335 1
F2 0.003040 3
F3 0.095221 2

The above ranking results show that the fault type diagnosed by the proposed method is F1,
which is consistent with the true fault type.

In addition, taking the distribution of the data of S1 under a certain feature, for instance,
C3, and the distribution of the first stage’s data of each fault type under the identical feature as an
example, the distribution figure is shown in Figure 6. As the figure shows, the maximum intersection
points of the ordinate of distribution between S1 and each fault type (Fi) are marked with X, and the
peak point of S1’s distribution is marked with X in the same way. Then, from the calculation formula
of the membership degree (Equation (6)), it is clear that the membership of S1 to F3 is the maximal
one, which conflicts with the originally known information that S1’s actual fault type is F1, and this
situation is not rare. Therefore, the integration of multi-stage fault template data and the neutrosophic
set is efficient and significant, and it fuses the conflicting information into coordinated information
and obtains the correct diagnosis results.

Figure 6. The distribution of S1 and the three fault types.
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Moreover, the proposed method was used to verify the other two unknown fault samples,
and these diagnosis results were also correct. The diagnosis result of the three unknown fault samples
are shown in Figure 7, where the ordinate indicates the crisp number of the defuzzification result,
and the abscissa indicates the fault types. As shown in this figure, the crisp numbers of the unknown
fault sample of each fault type are plotted with a line chart. When the crisp number of an unknown
fault sample for a certain fault type (Fi) is maximal, the diagnosed fault type of the unknown fault
sample is Fi.

Figure 7. The diagnosis results of the three unknown fault samples.

Compared with Xu’s method [54], which was used to diagnose three unknown fault samples
(S1, S2, S3), the proposed method was also applied to diagnose identical three unknown fault samples
(S1, S2, S3) to demonstrate the reasonableness of this proposed method. The diagnosis results are
shown in Table 7.

Table 7. Diagnosis results of the proposed method and Xu’s method.

Unknown Fault Mehod
Rank of Fault Types

Diagnosis Result Validity
F1 F2 F3

S1
The proposed method 1 3 2 F1 Correct

Xu’ method [54] 1 3 2 F1 Correct

S2
The proposed method 2 1 3 F2 Correct

Xu’ method [54] 2 1 3 F2 Correct

S3
The proposed method 3 2 1 F3 Correct

Xu’ method [54] 3 2 1 F3 Correct

From the diagnosis results in Table 7, it is concluded that the similar rankings for all fault types and
diagnosis results indicates the practicality and effectiveness of the proposed method. Xu’s method [54]
only applies to the minimum and maximum mean values of five stages of data, whose boundary
rests with the several stages of data collected. However, it is widely admitted that each stage’s data
would drift to a certain extent over a certain range, and the deviation of data due to the unsteadiness
of the actual environment is one of most influencing causes in fault diagnosis results. It is difficult
for Xu’s method [54] to express and deal with the uncertainty of multi-stage fault template data,
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which the proposed method coped with appropriately due to the integration of multi-stage fault
template data and the neutrosophic set. In adition, the crisp numbers fail to precisely express the
information extracted from the data collected due to the unsteadiness of measuring the environment.
The neutrosophic set, however, was able to accurately describe the uncertain phenomenon, as it gives
consideration to both the uncertainty of fault types and the unknown fault sample. Most kinds of
uncertain problems in the process of fault diagnosis, including uncertain information and inconsistent
information could be handled well with the integration of multi-stage fault template data and the
neutrosophic set.

5. Conclusions

In this paper, to deal with uncertain problems in fault diagnosis, a fault diagnosis method was
developed by defuzzying the neutrosophic set obtained from multi-stage data. The focus of this
method is the collection of data in multiple stages and the generation of SNS, which was expected
to appropriately minimize the uncertainty of fault type information and unknown fault sample
information. An illustrative example was provided in this paper, and the results of this example
indicate that the proposed method can effectively diagnose the fault type of an unknown fault sample.
This neutrosophic set based fault diagnosis method based on multi-stage fault template data not only
handles the uncertainty of information collected in fault diagnosis well, but also provides a method for
fault diagnosis where there are complicated corresponding relationships between multiple fault types
and their features. It is both efficient and convenient when dealing with fault diagnosis problems.
Further work will focus on the following directions. An appropriate method for the calculation of
features’ weights based on the information collected is planned. In addition, for the convenience of
calculation, the double aggregation of netrosophic sets may be simplified in future work.
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1. Introduction

In 1965, Zadeh introduced the concept of fuzzy set in which the degree of membership is expressed
by one function (that is, truth or t). The theory of fuzzy set is applied to many fields, including fuzzy
logic algebra systems (such as pseudo-BCI-algebras by Zhang [1]). In 1986, Atanassov introduced
the concept of intuitionistic fuzzy set in which there are two functions, membership function (t) and
nonmembership function (f). In 1995, Smarandache introduced the new concept of neutrosophic
set in which there are three functions, membership function (t), nonmembership function (f) and
indeterminacy/neutrality membership function (i), that is, there are three components (t, i, f) =
(truth, indeterminacy, falsehood) and they are independent components.

Neutrosophic algebraic structures in BCK/BCI-algebras are discussed in the papers [2–10].
Moreover, Zhang et al. studied totally dependent-neutrosophic sets, neutrosophic duplet semi-group
and cancellable neutrosophic triplet groups (see [11,12]). Song et al. proposed the notion of generalized
neutrosophic set and applied it to BCK/BCI-algebras.

In this paper, we propose the notion of a commutative generalized neutrosophic ideal in a
BCK-algebra, and investigate related properties. We consider characterizations of a commutative
generalized neutrosophic ideal. Using a collection of commutative ideals in BCK-algebras, we obtain
a commutative generalized neutrosophic ideal. We also establish some equivalence relations on the
family of all commutative generalized neutrosophic ideals in BCK-algebras, and discuss related basic
properties of these ideals.

2. Preliminaries

A set X with a constant element 0 and a binary operation ∗ is called a BCI-algebra, if it satisfies
(∀x, y, z ∈ X):
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(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(II) (x ∗ (x ∗ y)) ∗ y = 0,
(III) x ∗ x = 0,
(IV) x ∗ y = 0, y ∗ x = 0 ⇒ x = y.

A BCI-algebra X is called a BCK-algebra, if it satisfies (∀x ∈ X):

(V) 0 ∗ x = 0,

For any BCK/BCI-algebra X, the following conditions hold (∀x, y, z ∈ X):

x ∗ 0 = x, (1)

x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x, (2)

(x ∗ y) ∗ z = (x ∗ z) ∗ y, (3)

(x ∗ z) ∗ (y ∗ z) ≤ x ∗ y (4)

where the relation ≤ is defined by: x ≤ y ⇐⇒ x ∗ y = 0. If the following assertion is valid for a
BCK-algebra X, ∀x, y ∈ X,

x ∗ (x ∗ y) = y ∗ (y ∗ x). (5)

then X is called a commutative BCK-algebra.
Assume I is a subset of a BCK/BCI-algebra X. If the following conditions are valid, then we call

I is an ideal of X:

0 ∈ I, (6)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (7)

A subset I of a BCK-algebra X is called a commutative ideal of X if it satisfies (6) and

(∀x, y, z ∈ X) ((x ∗ y) ∗ z ∈ I, z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I) . (8)

Recall that any commutative ideal is an ideal, but the inverse is not true in general (see [7]).

Lemma 1 ([7]). Let I be an ideal of a BCK-algebra X. Then I is commutative ideal of X if and only if it satisfies
the following condition for all x, y in X:

x ∗ y ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I. (9)

For further information regarding BCK/BCI-algebras, please see the books [7,13].

Let X be a nonempty set. A fuzzy set in X is a function μ : X → [0, 1], and the complement of
μ, denoted by μc, is defined by μc(x) = 1 − μ(x), ∀x ∈ X. A fuzzy set μ in a BCK/BCI-algebra X is
called a fuzzy ideal of X if

(∀x ∈ X)(μ(0) ≥ μ(x)), (10)

(∀x, y ∈ X)(μ(x) ≥ min{μ(x ∗ y), μ(y))}. (11)

Assume that X is a non-empty set. A neutrosophic set (NS) in X (see [14]) is a structure of
the form:

A := {〈x; AT(x), AI(x), AF(x)〉 | x ∈ X}
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where AT : X → [0, 1] , AI : X → [0, 1] , and AF : X → [0, 1] . We shall use the symbol A = (AT , AI , AF)

for the neutrosophic set

A := {〈x; AT(x), AI(x), AF(x)〉 | x ∈ X}.

A generalized neutrosophic set (GNS) in a non-empty set X is a structure of the form (see [15]):

A := {〈x; AT(x), AIT(x), AIF(x), AF(x)〉 | x ∈ X, AIT(x) + AIF(x) ≤ 1}

where AT : X → [0, 1], AF : X → [0, 1] , AIT : X → [0, 1] , and AIF : X → [0, 1] .
We shall use the symbol A = (AT , AIT , AIF, AF) for the generalized neutrosophic set

A := {〈x; AT(x), AIT(x), AIF(x), AF(x)〉 | x ∈ X, AIT(x) + AIF(x) ≤ 1}.

Note that, for every GNS A = (AT , AIT , AIF, AF) in X, we have (for all x in X)

(∀x ∈ X) (0 ≤ AT(x) + AIT(x) + AIF(x) + AF(x) ≤ 3) .

If A = (AT , AIT , AIF, AF) is a GNS in X, then �A = (AT , AIT , Ac
IT , Ac

T) and ♦A = (Ac
F, Ac

IF,
AIF, AF) are also GNSs in X.

Given a GNS A = (AT , AIT , AIF, AF) in a BCK/BCI-algebra X and αT , αIT , βF, β IF ∈ [0, 1],
we define four sets as follows:

UA(T, αT) := {x ∈ X | AT(x) ≥ αT},

UA(IT, αIT) := {x ∈ X | AIT(x) ≥ αIT},

LA(F, βF) := {x ∈ X | AF(x) ≤ βF},

LA(IF, β IF) := {x ∈ X | AIF(x) ≤ β IF}.

A GNS A = (AT , AIT , AIF, AF) in a BCK/BCI-algebra X is called a generalized neutrosophic
ideal of X (see [15]) if

(∀x ∈ X)

(
AT(0) ≥ AT(x), AIT(0) ≥ AIT(x)

AIF(0) ≤ AIF(x), AF(0) ≤ AF(x)

)
, (12)

(∀x, y ∈ X)

⎛⎜⎜⎜⎜⎝
AT(x) ≥ min{AT(x ∗ y), AT(y)}
AIT(x) ≥ min{AIT(x ∗ y), AIT(y)}
AIF(x) ≤ max{AIF(x ∗ y), AIF(y)}
AF(x) ≤ max{AF(x ∗ y), AF(y)}

⎞⎟⎟⎟⎟⎠ . (13)

3. Commutative Generalized Neutrosophic Ideals

Unless specified, X will always represent a BCK-algebra in the following discussion.

Definition 1. A GNS A = (AT , AIT , AIF, AF) in X is called a commutative generalized neutrosophic ideal
of X if it satisfies the condition (12) and

(∀x, y, z ∈ X)

⎛⎜⎜⎜⎜⎝
AT(x ∗ (y ∗ (y ∗ x))) ≥ min{AT((x ∗ y) ∗ z), AT(z)}
AIT(x ∗ (y ∗ (y ∗ x))) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)}
AIF(x ∗ (y ∗ (y ∗ x))) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)}
AF(x ∗ (y ∗ (y ∗ x))) ≤ max{AF((x ∗ y) ∗ z), AF(z)}

⎞⎟⎟⎟⎟⎠ . (14)

Example 1. Denote X = {0, a, b, c}. The binary operation ∗ on X is defined in Table 1.
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Table 1. The operation “∗”.

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

We can verify that (X, ∗, 0) is a BCK-algebra (see [7]). Define a GNS A = (AT , AIT , AIF, AF) in X by
Table 2.

Table 2. GNS A = (AT , AIT , AIF, AF).

X AT(x) AIT(x) AIF(x) AF(x)

0 0.7 0.6 0.1 0.3
a 0.5 0.5 0.2 0.4
b 0.3 0.2 0.4 0.6
c 0.3 0.2 0.4 0.6

Then A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.

Theorem 1. Every commutative generalized neutrosophic ideal is a generalized neutrosophic ideal.

Proof. Assume that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.
∀x, z ∈ X, we have

AT(x) = AT(x ∗ (0 ∗ (0 ∗ x))) ≥ min{AT((x ∗ 0) ∗ z), AT(z)} = min{AT(x ∗ z), AT(z)},

AIT(x) = AIT(x ∗ (0 ∗ (0 ∗ x))) ≥ min{AIT((x ∗ 0) ∗ z), AIT(z)} = min{AIT(x ∗ z), AIT(z)},

AIF(x) = AIF(x ∗ (0 ∗ (0 ∗ x))) ≤ max{AIF((x ∗ 0) ∗ z), AIF(z)} = max{AIF(x ∗ z), AIF(z)},

and

AF(x) = AF(x ∗ (0 ∗ (0 ∗ x))) ≤ max{AF((x ∗ 0) ∗ z), AF(z)} = max{AF(x ∗ z), AF(z)}.

Therefore A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal.

The following example shows that the inverse of Theorem 1 is not true.

Example 2. Let X = {0, 1, 2, 3, 4} be a set with the binary operation ∗ which is defined in Table 3.

Table 3. The operation “∗”.

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 4 4 3 0

We can verify that (X, ∗, 0) is a BCK-algebra (see [7]). We define a GNS A = (AT , AIT , AIF, AF) in X
by Table 4.
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Table 4. GNS A = (AT , AIT , AIF, AF).

X AT(x) AIT(x) AIF(x) AF(x)

0 0.7 0.6 0.1 0.3
1 0.5 0.4 0.2 0.6
2 0.3 0.5 0.4 0.4
3 0.3 0.4 0.4 0.6
4 0.3 0.4 0.4 0.6

It is routine to verify that A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of X, but A is not
a commutative generalized neutrosophic ideal of X since

AT(2 ∗ (3 ∗ (3 ∗ 2))) = AT(2) = 0.3 � min{AT((2 ∗ 3) ∗ 0), AT(0)}

and/or

AIF(2 ∗ (3 ∗ (3 ∗ 2))) = AIF(2) = 0.4 � max{AIF((2 ∗ 3) ∗ 0), AIF(0)}.

Theorem 2. Suppose that A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of X. Then A = (AT ,
AIT , AIF, AF) is commutative if and only if it satisfies the following condition.

(∀x, y ∈ X)

⎛⎜⎜⎜⎜⎝
AT(x ∗ y) ≤ AT(x ∗ (y ∗ (y ∗ x)))

AIT(x ∗ y) ≤ AIT(x ∗ (y ∗ (y ∗ x)))

AIF(x ∗ y) ≥ AIF(x ∗ (y ∗ (y ∗ x)))

AF(x ∗ y) ≥ AF(x ∗ (y ∗ (y ∗ x)))

⎞⎟⎟⎟⎟⎠ . (15)

Proof. Assume that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.
Taking z = 0 in (14) and using (12) and (1) induces (15).

Conversely, let A = (AT , AIT , AIF, AF) be a generalized neutrosophic ideal of X satisfying the
condition (15). Then

AT(x ∗ (y ∗ (y ∗ x))) ≥ AT(x ∗ y) ≥ min{AT((x ∗ y) ∗ z), AT(z)},

AIT(x ∗ (y ∗ (y ∗ x))) ≥ AIT(x ∗ y) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)},

AIF(x ∗ (y ∗ (y ∗ x))) ≤ AIF(x ∗ y) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)}

and

AF(x ∗ (y ∗ (y ∗ x))) ≤ AF(x ∗ y) ≤ max{AF((x ∗ y) ∗ z), AF(z)}

for all x, y, z ∈ X. Therefore A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal
of X.

Lemma 2 ([15]). Any generalized neutrosophic ideal A = (AT , AIT , AIF, AF) of X satisfies:

(∀x, y, z ∈ X)

⎛⎜⎜⎝x ∗ y ≤ z ⇒

⎧⎪⎪⎨⎪⎪⎩
AT(x) ≥ min{AT(y), AT(z)}
AIT(x) ≥ min{AIT(y), AIT(z)}
AIF(x) ≤ max{AIF(y), AIF(z)}
AF(x) ≤ max{AF(y), AF(z)}

⎞⎟⎟⎠ . (16)

We provide a condition for a generalized neutrosophic ideal to be commutative.
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Theorem 3. For any commutative BCK-algebra, every generalized neutrosophic ideal is commutative.

Proof. Assume that A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of a commutative
BCK-algebra X. Note that

((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z)) ∗ z = ((x ∗ (y ∗ (y ∗ x))) ∗ z) ∗ ((x ∗ y) ∗ z)

≤ (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y)

= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x)) = 0,

thus, (x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z) ≤ z, ∀x, y, z ∈ X. By Lemma 2 we get

AT(x ∗ (y ∗ (y ∗ x))) ≥ min{AT((x ∗ y) ∗ z), AT(z)},

AIT(x ∗ (y ∗ (y ∗ x))) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)},

AIF(x ∗ (y ∗ (y ∗ x))) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)},

AF(x ∗ (y ∗ (y ∗ x))) ≤ max{AF((x ∗ y) ∗ z), AF(z)}.

Therefore A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.

Lemma 3 ([15]). If a GNS A = (AT , AIT , AIF, AF) in X is a generalized neutrosophic ideal of X, then the
sets UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are ideals of X for all αT, αIT, βF, β IF ∈ [0, 1]
whenever they are non-empty.

Theorem 4. If a GNS A = (AT , AIT , AIF, AF) in X is a commutative generalized neutrosophic ideal of X,
then the sets UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are commutative ideals of X for all αT, αIT,
βF, β IF ∈ [0, 1] whenever they are non-empty.

The commutative ideals UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are called level
neutrosophic commutative ideals of A = (AT , AIT , AIF, AF).

Proof. Assume that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal
of X. Then A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of X. Thus UA(T, αT),
UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are ideals of X whenever they are non-empty applying
Lemma 3. Suppose that x, y ∈ X and x ∗ y ∈ UA(T, αT) ∩ UA(IT, αIT). Using (15),

AT(x ∗ (y ∗ (y ∗ x))) ≥ AT(x ∗ y) ≥ αT ,

AIT(x ∗ (y ∗ (y ∗ x))) ≥ AIT(x ∗ y) ≥ αIT ,

and so x ∗ (y ∗ (y ∗ x)) ∈ UA(T, αT) and x ∗ (y ∗ (y ∗ x)) ∈ UA(IT, αIT). Suppose that a, b ∈ X and
a ∗ b ∈ LA(IF, β IF) ∩ LA(F, βF). It follows from (15) that AIF(a ∗ (b ∗ (b ∗ a))) ≤ AIF(a ∗ b) ≤ β IF and
AF(a ∗ (b ∗ (b ∗ a))) ≤ AF(a ∗ b) ≤ βF. Hence a ∗ (b ∗ (b ∗ a)) ∈ LA(IF, β IF) and a*(b*(b*a)) ∈
LA(F, βF). Therefore UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF) are commutative ideals
of X.

Lemma 4 ([15]). Assume that A = (AT , AIT , AIF, AF) is a GNS in X and UA(T, αT), UA(IT, αIT),
LA(F, βF) and LA(IF, β IF) are ideals of X, ∀αT, αIT, βF, β IF ∈ [0, 1]. Then A = (AT , AIT , AIF, AF) is a
generalized neutrosophic ideal of X.

Theorem 5. Let A = (AT , AIT , AIF, AF) be a GNS in X such that UA(T, αT), UA(IT, αIT), LA(F, βF) and
LA(IF, β IF) are commutative ideals of X for all αT, αIT, βF, β IF ∈ [0, 1]. Then A = (AT , AIT , AIF, AF) is a
commutative generalized neutrosophic ideal of X.
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Proof. Let αT , αIT , βF, β IF ∈ [0, 1] be such that the non-empty sets UA(T, αT), UA(IT, αIT), LA(F, βF)

and LA(IF, β IF) are commutative ideals of X. Then UA(T, αT), UA(IT, αIT), LA(F, βF) and LA(IF, β IF)

are ideals of X. Hence A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of X applying
Lemma 4. For any x, y ∈ X, let AT(x ∗ y) = αT . Then x ∗ y ∈ UA(T, αT), and so x ∗ (y ∗ (y ∗ x)) ∈
UA(T, αT) by (9). Hence AT(x ∗ (y ∗ (y ∗ x))) ≥ αT = AT(x ∗ y). Similarly, we can show that

(∀x, y ∈ X)(AIT(x ∗ (y ∗ (y ∗ x))) ≥ AIT(x ∗ y)).

For any x, y, a, b,∈ X, let AF(x ∗ y) = βF and AIF(a ∗ b) = β IF. Then x ∗ y ∈ LA(F, βF) and a ∗ b ∈
LA(IF, β IF). Using Lemma 1 we have x ∗ (y ∗ (y ∗ x)) ∈ LA(F, βF) and a ∗ (b ∗ (b ∗ a)) ∈ LA(IF, β IF).
Thus AF(x ∗ y) = βF ≥ AF(x ∗ (y ∗ (y ∗ x))) and AIF(a ∗ b) = β IF ≥ AIF((a ∗ b) ∗ b). Therefore
A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.

Theorem 6. Every commutative generalized neutrosophic ideal can be realized as level neutrosophic
commutative ideals of some commutative generalized neutrosophic ideal of X.

Proof. Given a commutative ideal C of X, define a GNS A = (AT , AIT , AIF, AF) as follows

AT(x) =
{

αT if x ∈ C ,
0 otherwise,

AIT(x) =
{

αIT if x ∈ C ,
0 otherwise,

AIF(x) =
{

β IF if x ∈ C ,
1 otherwise,

AF(x) =
{

βF if x ∈ C ,
1 otherwise,

where αT , αIT ∈ (0, 1] and βF, β IF ∈ [0, 1). Let x, y, z ∈ X. If (x ∗ y) ∗ z ∈ C and z ∈ C,
then x ∗ (y ∗ (y ∗ x)) ∈ C. Thus

AT(x ∗ (y ∗ (y ∗ x))) = αT = min{AT((x ∗ y) ∗ z), AT(z)},

AIT(x ∗ (y ∗ (y ∗ x))) = αIT = min{AIT((x ∗ y) ∗ z), AIT(z)},

AIF(x ∗ (y ∗ (y ∗ x))) = β IF = max{AIF((x ∗ y) ∗ z), AIF(z)},

AF(x ∗ (y ∗ (y ∗ x))) = βF = max{AF((x ∗ y) ∗ z), AF(z)}.

Assume that (x ∗ y) ∗ z /∈ C and z /∈ C. Then AT((x ∗ y) ∗ z) = 0, AT(z) = 0, AIT((x ∗ y) ∗ z) = 0,
AIT(z) = 0, AIF((x ∗ y) ∗ z) = 1, AIF(z) = 1, and AF((x ∗ y) ∗ z) = 1, AF(z) = 1. It follows that

AT(x ∗ (y ∗ (y ∗ x))) ≥ min{AT((x ∗ y) ∗ z), AT(z)},

AIT(x ∗ (y ∗ (y ∗ x))) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)},

AIF(x ∗ (y ∗ (y ∗ x))) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)},

AF(x ∗ (y ∗ (y ∗ x))) ≤ max{AF((x ∗ y) ∗ z), AF(z)}.

If exactly one of (x ∗ y) ∗ z and z belongs to C, then exactly one of AT((x ∗ y) ∗ z) and AT(z) is
equal to 0; exactly one of AIT((x ∗ y) ∗ z) and AIT(z) is equal to 0; exactly one of AF((x ∗ y) ∗ z) and
AF(z) is equal to 1 and exactly one of AIF((x ∗ y) ∗ z) and AIF(z) is equal to 1. Hence

AT(x ∗ (y ∗ (y ∗ x))) ≥ min{AT((x ∗ y) ∗ z), AT(z)},

AIT(x ∗ (y ∗ (y ∗ x))) ≥ min{AIT((x ∗ y) ∗ z), AIT(z)},

AIF(x ∗ (y ∗ (y ∗ x))) ≤ max{AIF((x ∗ y) ∗ z), AIF(z)},

AF(x ∗ (y ∗ (y ∗ x))) ≤ max{AF((x ∗ y) ∗ z), AF(z)}.

It is clear that AT(0) ≥ AT(x), AIT(0) ≥ AIT(x), AIF(0) ≤ AIF(x) and AF(0) ≤ AF(x) for all
x ∈ X. Therefore A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.
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Obviously, UA(T, αT) = C, UA(IT, αIT) = C, LA(F, βF) = C and LA(IF, β IF) = C. This completes
the proof.

Theorem 7. Let {Ct | t ∈ Λ} be a collection of commutative ideals of X such that

(1) X =
⋃

t∈Λ
Ct,

(2) (∀s, t ∈ Λ) (s > t ⇐⇒ Cs ⊂ Ct)

where Λ is any index set. Let A = (AT , AIT , AIF, AF) be a GNS in X given by

(∀x ∈ X)

(
AT(x) = sup{t ∈ Λ | x ∈ Ct} = AIT(x)

AIF(x) = inf{t ∈ Λ | x ∈ Ct} = AF(x)

)
. (17)

Then A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of X.

Proof. According to Theorem 5, it is sufficient to show that U(T, t), U(IT, t), L(F, s) and L(IF, s) are
commutative ideals of X for every t ∈ [0, AT(0) = AIT(0)] and s ∈ [AIF(0) = AF(0), 1]. In order to
prove U(T, t) and U(IT, t) are commutative ideals of X, we consider two cases:

(i) t = sup{q ∈ Λ | q < t},
(ii) t �= sup{q ∈ Λ | q < t}.

For the first case, we have

x ∈ U(T, t) ⇐⇒ (∀q < t)(x ∈ Cq) ⇐⇒ x ∈ ⋂
q<t

Cq,

x ∈ U(IT, t) ⇐⇒ (∀q < t)(x ∈ Cq) ⇐⇒ x ∈ ⋂
q<t

Cq.

Hence U(T, t) =
⋂

q<t
Cq = U(IT, t), and so U(T, t) and U(IT, t) are commutative ideals of X.

For the second case, we claim that U(T, t) =
⋃

q≥t
Cq = U(IT, t). If x ∈ ⋃

q≥t
Cq, then x ∈ Cq for

some q ≥ t. It follows that AIT(x) = AT(x) ≥ q ≥ t and so that x ∈ U(T, t) and x ∈ U(IT, t).
This shows that

⋃
q≥t

Cq ⊆ U(T, t) and
⋃

q≥t
Cq ⊆ U(IT, t). Now, suppose x /∈ ⋃

q≥t
Cq. Then x /∈ Cq, ∀q ≥ t.

Since t �= sup{q ∈ Λ | q < t}, there exists ε > 0 such that (t − ε, t) ∩ Λ = ∅. Thus x /∈ Cq, ∀q > t − ε,
this means that if x ∈ Cq, then q ≤ t − ε. So AIT(x) = AT(x) ≤ t − ε < t, and so x /∈ U(T, t) =

U(IT, t). Therefore U(T, t) = U(IT, t) ⊆ ⋃
q≥t

Cq. Consequently, U(T, t) = U(IT, t) =
⋃

q≥t
Cq which

is a commutative ideal of X. Next we show that L(F, s) and L(IF, s) are commutative ideals of X.
We consider two cases as follows:

(iii) s = inf{r ∈ Λ | s < r},
(iv) s �= inf{r ∈ Λ | s < r}.

Case (iii) implies that

x ∈ L(IF, s) ⇐⇒ (∀s < r)(x ∈ Cr) ⇐⇒ x ∈ ⋂
s<r

Cr,

x ∈ U(F, s) ⇐⇒ (∀s < r)(x ∈ Cr) ⇐⇒ x ∈ ⋂
s<r

Cr.

It follows that L(IF, s) = L(F, s) =
⋂

s<r
Cr, which is a commutative ideal of X. Case (iv) induces

(s, s + ε) ∩ Λ = ∅ for some ε > 0. If x ∈ ⋃
s≥r

Cr, then x ∈ Cr for some r ≤ s, and so AIF(x) = AF(x) ≤
r ≤ s, that is, x ∈ L(IF, s) and x ∈ L(F, s). Hence

⋃
s≥r

Cr ⊆ L(IF, s) = L(F, s). If x /∈ ⋃
s≥r

Cr, then x /∈ Cr
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for all r ≤ s which implies that x /∈ Cr for all r ≤ s + ε, that is, if x ∈ Cr then r ≥ s+ ε. Hence AIF(x) =
AF(x) ≥ s + ε > s, and so x /∈ L(AIF, s) = L(AF, s). Hence L(AIF, s) = L(AF, s) =

⋃
s≥r

Cr which is a

commutative ideal of X. This completes the proof.

Assume thta f : X → Y is a homomorphism of BCK/BCI-algebras ([7]). For any GNS A = (AT ,
AIT , AIF, AF) in Y, we define a new GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X, which is called the induced

GNS, by

(∀x ∈ X)

(
A f

T(x) = AT( f (x)), A f
IT(x) = AIT( f (x))

A f
IF(x) = AIF( f (x)), A f

F(x) = AF( f (x))

)
. (18)

Lemma 5 ([15]). Let f : X → Y be a homomorphism of BCK/BCI-algebras. If a GNS A = (AT , AIT , AIF,
AF) in Y is a generalized neutrosophic ideal of Y, then the new GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X is a

generalized neutrosophic ideal of X.

Theorem 8. Let f : X → Y be a homomorphism of BCK-algebras. If a GNS A = (AT , AIT , AIF, AF) in Y
is a commutative generalized neutrosophic ideal of Y, then the new GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X is a

commutative generalized neutrosophic ideal of X.

Proof. Suppose that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of Y.
Then A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of Y by Theorem 1, and so A f = (A f

T ,

A f
IT , A f

IF, A f
F) is a generalized neutrosophic ideal of Y by Lemma 5. For any x, y ∈ X, we have

A f
T(x ∗ (y ∗ (y ∗ x))) = AT( f (x ∗ (y ∗ (y ∗ x))))

= AT( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))

≥ AT( f (x) ∗ f (y))

= AT( f (x ∗ y)) = A f
T(x ∗ y),

A f
IT(x ∗ (y ∗ (y ∗ x))) = AIT( f (x ∗ (y ∗ (y ∗ x))))

= AIT( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))

≥ AIT( f (x) ∗ f (y))

= AIT( f (x ∗ y)) = A f
IT(x ∗ y),

A f
IF(x ∗ (y ∗ (y ∗ x))) = AIF( f (x ∗ (y ∗ (y ∗ x))))

= AIF( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))

≤ AIF( f (x) ∗ f (y))

= AIF( f (x ∗ y)) = A f
IF(x ∗ y),

and

A f
F(x ∗ (y ∗ (y ∗ x))) = AF( f (x ∗ (y ∗ (y ∗ x))))

= AF( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x))))

≤ AF( f (x) ∗ f (y))

= AF( f (x ∗ y)) = A f
F(x ∗ y).

Therefore A f = (A f
T , A f

IT , A f
IF, A f

F) is a commutative generalized neutrosophic ideal of X.
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Lemma 6 ([15]). Let f : X → Y be an onto homomorphism of BCK/BCI-algebras and let A = (AT , AIT ,
AIF, AF) be a GNS in Y. If the induced GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X is a generalized neutrosophic

ideal of X, then A = (AT , AIT , AIF, AF) is a generalized neutrosophic ideal of Y.

Theorem 9. Assume thta f : X → Y is an onto homomorphism of BCK-algebras and A = (AT , AIT , AIF,
AF) is a GNS in Y. If the induced GNS A f = (A f

T , A f
IT , A f

IF, A f
F) in X is a commutative generalized

neutrosophic ideal of X, then A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic ideal of Y.

Proof. Suppose that A f = (A f
T , A f

IT , A f
IF, A f

F) is a commutative generalized neutrosophic ideal of

X. Then A f = (A f
T , A f

IT , A f
IF, A f

F) is a generalized neutrosophic ideal of X, and thus A = (AT , AIT ,
AIF, AF) is a generalized neutrosophic ideal of Y. For any a, b, c ∈ Y, there exist x, y, z ∈ X such that
f (x) = a, f (y) = b and f (z) = c. Thus,

AT(a ∗ (b ∗ (b ∗ a))) = AT( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x)))) = AT( f (x ∗ (y ∗ (y ∗ x))))

= A f
T(x ∗ (y ∗ (y ∗ x))) ≥ A f

T(x ∗ y)

= AT( f (x) ∗ f (y)) = AT(a ∗ b),

AIT(a ∗ (b ∗ (b ∗ a))) = AIT( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x)))) = AIT( f (x ∗ (y ∗ (y ∗ x))))

= A f
IT(x ∗ (y ∗ (y ∗ x))) ≥ A f

IT(x ∗ y)

= AIT( f (x) ∗ f (y)) = AIT(a ∗ b),

AIF(a ∗ (b ∗ (b ∗ a))) = AIF( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x)))) = AIF( f (x ∗ (y ∗ (y ∗ x))))

= A f
IF(x ∗ (y ∗ (y ∗ x))) ≤ A f

IF(x ∗ y)

= AIF( f (x) ∗ f (y)) = AIF(a ∗ b),

and

AF(a ∗ (b ∗ (b ∗ a))) = AF( f (x) ∗ ( f (y) ∗ ( f (y) ∗ f (x)))) = AF( f (x ∗ (y ∗ (y ∗ x))))

= A f
F(x ∗ (y ∗ (y ∗ x))) ≤ A f

F(x ∗ y)

= AF( f (x) ∗ f (y)) = AF(a ∗ b).

It follows from Theorem 2 that A = (AT , AIT , AIF, AF) is a commutative generalized neutrosophic
ideal of Y.

Let CGNI(X) denote the set of all commutative generalized neutrosophic ideals of X and t ∈ [0, 1].
Define binary relations Ut

T , Ut
IT , Lt

F and Lt
IF on CGNI(X) as follows:

(A, B) ∈ Ut
T ⇔ UA(T, t) = UB(T, t), (A, B) ∈ Ut

IT ⇔ UA(IT, t) = UB(IT, t),
(A, B) ∈ Lt

F ⇔ LA(F, t) = LB(F, t), (A, B) ∈ Lt
IF ⇔ LA(IF, t) = LB(IF, t)

(19)

for A = (AT , AIT , AIF, AF) and B = (BT , BIT , BIF, BF) in CGNI(X). Then clearly Ut
T , Ut

IT , Lt
F

and Lt
IF are equivalence relations on CGNI(X). For any A = (AT , AIT , AIF, AF) ∈ CGNI(X),

let [A]Ut
T

(resp., [A]Ut
IT

, [A]Lt
F

and [A]Lt
IF

) denote the equivalence class of A = (AT , AIT , AIF, AF)

modulo Ut
T (resp, Ut

IT , Lt
F and Lt

IF). Denote by CGNI(X)/Ut
T (resp., CGNI(X)/Ut

IT , CGNI(X)/Lt
F

and CGNI(X)/Lt
IF) the system of all equivalence classes modulo Ut

T (resp, Ut
IT , Lt

F and Lt
IF); so

CGNI(X)/Ut
T = {[A]Ut

T
| A = (AT , AIT , AIF, AF) ∈ CGNI(X)}, (20)
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CGNI(X)/Ut
IT = {[A]Ut

IT
| A = (AT , AIT , AIF, AF) ∈ CGNI(X)}, (21)

CGNI(X)/Lt
F = {[A]Lt

F
| A = (AT , AIT , AIF, AF) ∈ CGNI(X)}, (22)

and

CGNI(X)/Lt
IF = {[A]Lt

IF
| A = (AT , AIT , AIF, AF) ∈ CGNI(X)}, (23)

respectively. Let CI(X) denote the family of all commutative ideals of X and let t ∈ [0, 1]. Define maps

ft : CGNI(X) → CI(X) ∪ {∅}, A �→ UA(T, t), (24)

gt : CGNI(X) → CI(X) ∪ {∅}, A �→ UA(IT, t), (25)

αt : CGNI(X) → CI(X) ∪ {∅}, A �→ LA(F, t), (26)

and

βt : CGNI(X) → CI(X) ∪ {∅}, A �→ LA(IF, t). (27)

Then the definitions of ft, gt, αt and βt are well.

Theorem 10. Suppose t ∈ (0, 1), the definitions of ft, gt, αt and βt are as above. Then the maps ft, gt, αt and
βt are surjective from CGNI(X) to CI(X) ∪ {∅}.

Proof. Assume t ∈ (0, 1).We know that 0∼ = (0T , 0IT , 1IF, 1F) is in CGNI(X) where 0T , 0IT , 1IF and 1F
are constant functions on X defined by 0T(x) = 0, 0IT(x) = 0, 1IF(x) = 1 and 1F(x) = 1 for all x ∈ X.
Obviously ft(0∼) = U0∼(T, t), gt(0∼) = U0∼(IT, t), αt(0∼) = L0∼(F, t) and βt(0∼) = L0∼(IF, t) are
empty. Let G( �= ∅) ∈ CGNI(X), and consider functions:

GT : X → [0, 1], G �→
{

1 if x ∈ G ,
0 otherwise,

GIT : X → [0, 1], G �→
{

1 if x ∈ G ,
0 otherwise,

GF : X → [0, 1], G �→
{

0 if x ∈ G ,
1 otherwise,

and

GIF : X → [0, 1], G �→
{

0 if x ∈ G ,
1 otherwise.

Then G∼ = (GT , GIT , GIF, GF) is a commutative generalized neutrosophic ideal of X, and
ft(G∼) = UG∼(T, t) = G, gt(G∼) = UG∼(IT, t) = G, αt(G∼) = LG∼(F, t) = G and βt(G∼) =

LG∼(IF, t) = G. Therefore ft, gt, αt and βt are surjective.

Theorem 11. The quotient sets

CGNI(X)/Ut
T, CGNI(X)/Ut

IT, CGNI(X)/Lt
F and CGNI(X)/Lt

IF
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are equipotent to CI(X) ∪ {∅}.

Proof. For t ∈ (0, 1), let f ∗t (resp, g∗t , α∗t and β∗
t ) be a map from CGNI(X)/Ut

T

(resp., CGNI(X)/Ut
IT , CGNI(X)/Lt

F and CGNI(X)/Lt
IF) to CI(X) ∪ {∅} defined by f ∗t

(
[A]Ut

T

)
=

ft(A) (resp., g∗t
(
[A]Ut

IT

)
= gt(A) , α∗t

(
[A]Lt

F

)
= αt(A) and β∗

t

(
[A]Lt

IF

)
= βt(A)) for all A = (AT ,

AIT , AIF, AF) ∈ CGNI(X). If UA(T, t) = UB(T, t), UA(IT, t) = UB(IT, t), LA(F, t) = LB(F, t)
and LA(IF, t) = LB(IF, t) for A = (AT , AIT , AIF, AF) and B = (BT , BIT , BF, BIF) in CGNI(X),
then (A, B) ∈ Ut

T , (A, B) ∈ Ut
IT , (A, B) ∈ Lt

F and (A, B) ∈ Lt
IF. Hence [A]Ut

T
= [B]Ut

T
, [A]Ut

IT
= [B]Ut

IT
,

[A]Lt
F

= [B]Lt
F

and [A]Lt
IF

= [B]Lt
IF

. Therefore f ∗t (resp, g∗t , α∗t and β∗
t ) is injective. Now let

G( �= ∅) ∈ CGNI(X). For G∼ = (GT , GIT , GIF, GF) ∈ CGNI(X), we have

f ∗t
(
[G∼]Ut

T

)
= ft(G∼) = UG∼(T, t) = G,

g∗t
(
[G∼]Ut

IT

)
= gt(G∼) = UG∼(IT, t) = G,

α∗t
(
[G∼]Lt

F

)
= αt(G∼) = LG∼(F, t) = G

and

β∗
t

(
[G∼]Lt

IF

)
= βt(G∼) = LG∼(IF, t) = G.

Finally, for 0∼ = (0T , 0IT , 1IF, 1F) ∈ CGNI(X), we have

f ∗t
(
[0∼]Ut

T

)
= ft(0∼) = U0∼(T, t) = ∅,

g∗t
(
[0∼]Ut

IT

)
= gt(0∼) = U0∼(IT, t) = ∅,

α∗t
(
[0∼]Lt

F

)
= αt(0∼) = L0∼(F, t) = ∅

and

β∗
t

(
[0∼]Lt

IF

)
= βt(0∼) = L0∼(IF, t) = ∅.

Therefore, f ∗t (resp, g∗t , α∗t and β∗
t ) is surjective.

∀t ∈ [0, 1], define another relations Rt and Qt on CGNI(X) as follows:

(A, B) ∈ Rt ⇔ UA(T, t) ∩ LA(F, t) = UB(T, t) ∩ LB(F, t)

and

(A, B) ∈ Qt ⇔ UA(IT, t) ∩ LA(IF, t) = UB(IT, t) ∩ LB(IF, t)

for any A = (AT , AIT , AIF, AF) and B = (BT , BIT , BIF, BF) in CGNI(X). Then Rt and Qt are
equivalence relations on CGNI(X).
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Theorem 12. Suppose t ∈ (0, 1), consider the following maps

ϕt : CGNI(X) → CI(X) ∪ {∅}, A �→ ft(A) ∩ αt(A), (28)

and

ψt : CGNI(X) → CI(X) ∪ {∅}, A �→ gt(A) ∩ βt(A) (29)

for each A = (AT , AIT , AIF, AF) ∈ CGNI(X). Then ϕt and ψt are surjective.

Proof. Assume t ∈ (0, 1). For 0∼ = (0T , 0IT , 1IF, 1F) ∈ CGNI(X),

ϕt(0∼) = ft(0∼) ∩ αt(0∼) = U0∼(T, t) ∩ L0∼(F, t) = ∅

and

ψt(0∼) = gt(0∼) ∩ βt(0∼) = U0∼(IT, t) ∩ L0∼(IF, t) = ∅.

For any G ∈ CI(X), there exists G∼ = (GT , GIT , GIF, GF) ∈ CGNI(X) such that

ϕt(G∼) = ft(G∼) ∩ αt(G∼) = UG∼(T, t) ∩ LG∼(F, t) = G

and

ψt(G∼) = gt(G∼) ∩ βt(G∼) = UG∼(IT, t) ∩ LG∼(IF, t) = G.

Therefore ϕt and ψt are surjective.

Theorem 13. For any t ∈ (0, 1), the quotient sets CGNI(X)/Rt and CGNI(X)/Qt are equipotent to
CI(X) ∪ {∅}.

Proof. Let t ∈ (0, 1) and define maps

ϕ∗
t : CGNI(X)/Rt → CI(X) ∪ {∅}, [A]Rt �→ ϕt(A)

and

ψ∗
t : CGNI(X)/Qt → CI(X) ∪ {∅}, [A]Qt �→ ψt(A).

If ϕ∗
t ([A]Rt) = ϕ∗

t ([B]Rt) and ψ∗
t

(
[A]Qt

)
= ψ∗

t

(
[B]Qt

)
for all [A]Rt , [B]Rt ∈ CGNI(X)/Rt and

[A]Qt , [B]Qt ∈ CGNI(X)/Qt, then ft(A) ∩ αt(A) = ft(B) ∩ αt(B) and gt(A) ∩ βt(A) = gt(B) ∩ βt(B),
that is, UA(T, t) ∩ LA(F, t) = UB(T, t) ∩ LB(F, t) and UA(IT, t) ∩ LA(IF, t) = UB(IT, t) ∩ LB(IF, t).
Hence (A, B) ∈ Rt, (A, B) ∈ Qt. So [A]Rt = [B]Rt , [A]Qt = [B]Qt , which shows that ϕ∗

t and ψ∗
t are

injective. For 0∼ = (0T , 0IT , 1IF, 1F) ∈ CGNI(X),

ϕ∗
t ([0∼]Rt) = ϕt(0∼) = ft(0∼) ∩ αt(0∼) = U0∼(0T , t) ∩ L0∼(1F, t) = ∅

and

ψ∗
t

(
[0∼]Qt

)
= ψt(0∼) = gt(0∼) ∩ βt(0∼) = U0∼(0IT , t) ∩ L0∼(1IF, t) = ∅.

If G ∈ CI(X), then G∼ = (GT , GIT , GIF, GF) ∈ CGNI(X), and so

ϕ∗
t ([G∼]Rt) = ϕt(G∼) = ft(G∼) ∩ αt(G∼) = UG∼(GT , t) ∩ LG∼(GF, t) = G
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and

ψ∗
t

(
[G∼]Qt

)
= ψt(G∼) = gt(G∼) ∩ βt(G∼) = UG∼(GIT , t) ∩ LG∼(GIF, t) = G.

Hence ϕ∗
t and ψ∗

t are surjective, and the proof is complete.

4. Conclusions

Based on the theory of generalized neutrosophic sets, we proposed the new concept of
commutative generalized neutrosophic ideal in a BCK-algebra, and obtained some characterizations.
Moreover, we investigated some homomorphism properties related to commutative generalized
neutrosophic ideals.

The research ideas of this paper can be extended to a wide range of logical algebraic systems such
as pseudo-BCI algebras (see [1,16]). At the same time, the concept of generalized neutrosophic set
involved in this paper can be further studied according to the thought in [11,17], which will be the
direction of our next research work.
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Abstract: Competition among different universities depends largely on the competition for talent.
Talent evaluation and selection is one of the main activities in human resource management (HRM)
which is critical for university development. Firstly, linguistic neutrosophic sets (LNSs) are introduced
to better express multiple uncertain information during the evaluation procedure. We further merge
the power averaging operator with LNSs for information aggregation and propose a LN-power
weighted averaging (LNPWA) operator and a LN-power weighted geometric (LNPWG) operator.
Then, an extended technique for order preference by similarity to ideal solution (TOPSIS) method
is developed to solve a case of university HRM evaluation problem. The main contribution and
novelty of the proposed method rely on that it allows the information provided by different decision
makers (DMs) to support and reinforce each other which is more consistent with the actual situation
of university HRM evaluation. In addition, its effectiveness and advantages over existing methods
are verified through sensitivity and comparative analysis. The results show that the proposal is
capable in the domain of university HRM evaluation and may contribute to the talent introduction
in universities.

Keywords: linguistic neutrosophic sets; multi-criteria group decision-making; power aggregation
operator; extended TOPSIS method

1. Introduction

Human resource management (HRM) refers to a process of hiring and developing employees to
enhance the core competitiveness of an organization [1]. Acting as the root of national competitiveness,
a success in HRM may bring benefit to both the organization and employee well-being; thus, effective
HRM has received a higher demand and recognition during the 21st century. Over the past three
decades, theory and research on HRM has made considerable progress in various fields, such as
tourism industries, health services and universities [2–5]. For example, Zhang et al. [5] investigated a
case of HRM for teaching quality assessment using a multi-criteria group decision-making (MAGDM)
framework. This framework aimed to improve the teaching quality of college teachers and further
enhance the competitiveness of colleges and universities. Apart from the classroom teaching quality
evaluation problems in universities, talent introduction also plays a significant role in universities’
HRM. Particularly, selecting or evaluating these applicants by inappropriate methods may lead
to a failure in HRM and even influence the overall efficiency of the university. Since various
applicants and influential criteria are usually involved in the evaluation procedures of HRM by several
decision makers (DMs), the evaluation should be recognized as a multi-criteria group decision-making
(MCGDM) problem.

Symmetry 2018, 10, 364; doi:10.3390/sym10090364 www.mdpi.com/journal/symmetry159
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The theory of fuzzy set (FS) can handle uncertainty and fuzziness. The neutrosophic set (NS) [6]
was initially proposed to express membership, nonmembership and indeterminacy, which is a
generalization of FS [7]. Later, many extensions emerged to tackle real engineering and scientific
problems [8], among which the popularly used forms are the simplified neutrosophic set (SNS) [9]
and the single-valued trapezoidal neutrosophic set (SVTNS) [10–12]. These extensions have been
successfully applied in various domains, including green product development [13], outsourcing
provider selection [14], clustering analysis [15,16].

However, on some real occasions, people may tend to provide their evaluation information using
natural languages rather than the above extensions which are too complex to obtain. For example,
people can give some linguistic terms like “excellent”, “medium” or “poor” to evaluate the performance
of a company staff based on various criteria. Moreover, it may be also difficult for a single person
to evaluate all alternatives under each influential aspect due to the high complexity of decision
environments. Therefore, the linguistic MCGDM under fuzzy environments has received extensive
research attention and gained many excellent results [17]. Up to now, various extensions have been
studied in depth to describe linguistic information, such as hesitant fuzzy linguistic term set and
some of its extended forms [18–22], linguistic intuitionistic fuzzy set (LIFS) [23,24], Z-number [25],
and probabilistic linguistic term set [26,27] etc. However, the drawback of these extensions for
linguistic MCGDM is that they cannot cover the inconsistent linguistic decision information which
will appear with increasing complexity of the internal and external decision-making environments.
Another example is that when one DM was asked to give some evaluations on a teacher from overseas
under the aspect teaching skill, the DM may describe his or her bad judgments on the teaching
attitude but the good or neutral aspects of the teacher’s teaching capacity and teaching method as well.
An example of that can be seen from the evaluation: “The teacher is rather average in writing and oral
language, and he is able to tailor his teaching method to different students. But my only complaint
is that the teacher is a little strict in teaching attitude”. It can be noted that the above evaluation
includes positive, neutral and negative information all at once. Therefore, this poses a great challenge
for linguistic MCGDM methods on how to capture such inconsistent information.

To tackle the above problem, Fang and Ye [28] proposed the linguistic neutrosophic set (LNS),
which was generalized from the concept of LIFS [23,24]. By contrast, one LNS is represented by three
independent functions of truth-membership, indeterminacy-membership, and falsity-membership in
the form of linguistic terms. Thus, the LNS has its prominent advantages in depicting inconsistent
and indeterminate linguistic information, and several scholars have extended the LNS in several
aspects, such as aggregation operators and similarity (or distance) measures. Li et al. [29] introduced a
linguistic neutrosophic geometric Heronian mean (LNGHM) operator and a linguistic neutrosophic
prioritized geometric Horonian mean (LNGHM) operator. Fan et al. [30] merged the LNSs with
Bonferroni mean operator and proposed a linguistic neutrosophic number normalized weighted
Bonferroni mean (LNNNWBM) operator and a linguistic neutrosophic number normalized weighted
geometric Bonferroni mean (LNNNWGBM) operator. Shi and Ye [31] introduced two cosine similarity
measures of LNSs to tackle MCGDM problems. Liang et al. [32] defined several distance measures of
LNS and presented an extended TOPSIS method under the LNS environment.

To facilitate the mathematical operation, several quantification tools of natural language have
been introduced, such as 2-type [33], triangular (or trapezoidal) fuzzy number [34,35], cloud model [36]
and symbol model [37,38]. These models have greatly contributed to the ease of computation for
linguistic information; however, they cannot cover all types of problems and have some limitations to
be addressed. To tackle the limitations of prior research, Wang et al. [39] introduced a series of linguistic
scale functions (LSFs) for converting linguistic information into real numbers. Through this model,
flexibility of modeling information has been greatly enhanced by considering different semantic
situations and loss and distortion of information has been mitigated to a great extent. Thus, we apply
the LSFs to tackle linguistic neutrosophic information in this paper.
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The power averaging (PA) operator, proposed by Yager [40], has been used as one effective
information aggregation tool in solving MCDM [41–43] problems since its appearance. Unlike other
common aggregation tools, such as weighted averaging [44] and ordered weighted averaging [45,46],
which implicate the independent hypothesis among inputs. The PA operator allows the information
between inputs to support and reinforce each other. In the HRM evaluation problems, it is very suitable
for PA operator to integrate evaluation information of different teams of DMs, as these DMs are not
completely independent and the PA operator can measure their support degree among one another.

TOPSIS method was first presented by Huang and Yoon [47]. It considered that the better scheme
would be closer to ideal solution [48]. Due to the inevitable vagueness inherent in decision information,
fuzzy TOPSIS and its extensions have been deployed [49–51] in real world applications. Considering
the advantages of this method, an extended TOPSIS technique is introduced to evaluate alternatives.

As discussed above, our study developed an integrated method by combining PA operator
with LNSs and constructing an extended TOPSIS technique to tackle the university HRM evaluation
problem. The novelties and contributions of the proposal are listed as following. (1) New algorithms
for LNNs based on LSFs is defined, which can reflect differences between various semantics.
(2) Based on LSFs and the new operations, a generalized distance measure for LNNs is introduced,
which can be reduced to Hamming distance and Euclidean distance of LNNs. The proposed distance
measure is more flexible than prior studies because of the application of LSFs and novel operations.
(3) Considering the fact that DMs in case of university HRM evaluation may support each other,
this paper merges the PA operator with LNSs to tackle information fusion. The proposed method can
improve the adaptability of LNNs in real decision.

The context in the rest of this paper is as follows: Section 2 defines some operations and distance
measurements of LNSs. Section 3 proposes two aggregation operators for LNSs and investigates their
properties. Next, the detailed procedures for a linguistic MCGDM problem are given in Section 4.
Then, a case of university HRM evaluation problem verifies the feasibility and validity of our method
in Section 5. Finally, Section 6 presents the conclusion and future work.

2. New Operations and Distance Measure for LNNs

After introducing the concepts of linguistic term set (LTS) and LNS, this section defines some
new operations and a distance measure for LNNs based on the Archimedean t-norm and t-conorm.
For better representation, some preliminaries about LSFs and the Archimedean t-norm and t-conorm
are provided in Appendix A and Appendix B, respectively.

2.1. Linguistic Neutrosophic Set

H = {hτ |τ = 0 , 1, · · · , 2t, t ∈ N∗} is a discrete term set, which is finite and totally ordered. Herein,
N∗ presents a positive integers’ set, hτ is the value of a linguistic variable. Thus, the linguistic variable
hτ in H meets the following two properties [34]: (1) The LTS is ordered: hτ < hυ if and only if τ < υ,
where (hτ , hυ ∈ H); and (2) With existing of a negation operator neg(hτ) = h(2t−τ) (τ, υ = 0, 1, · · · , 2t).

In order to preserve as much of the given information and avoid information loss, Xu [52]
extended H = {hτ |τ = 0, 1 , · · · , 2t} into a continuous LTS H = {hτ |1 ≤ τ ≤ L}, which satisfies the
properties of discrete term set H. When hτ ∈ H, hτ is called the original linguistic term; otherwise,
hτ is called the virtual linguistic term.

Definition 1 ([28,29]). Let X be a universe of discourse and H = {hα|h0 ≤ hα ≤ h2t, α ∈ [0, 2t]}, and the
LNSs can be defined as follows:

ã =
{〈

x, hTã(x), hIã(x), hF̃a(x)
〉|x ∈X

}
, (1)

where 0 ≤ Tã + Iã + F̃a ≤ 6t and the values hTã(x), hIã(x), hF̃a
(x) ∈ H represent the degrees of

truth-membership, indeterminacy-membership, and falsity-membership, respectively.
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Noteworthy, if there contains only one element in X, ã is called a LNN, for notational simplicity,
it can be denoted by ã =

〈
hTã , hIã , hF̃a

〉
.

2.2. New Operations for LNNs

According to the LSFs in Appendix A and the Archimedean t-norm and t-conorm presented in
Appendix B, some novel operations for LNNs are defined as follows.

Definition 2. Let ã =
〈

hTã , hIã , hF̃a

〉
and b̃ =

〈
hTb̃

, hIb̃
, hF̃b

〉
be two arbitrary LNNs, and ζ ≥ 0; then the

operations for LNNs are defined as follows:

(1) ã ⊕ b̃ =

〈
f ∗−1

(
f ∗(hTã )+ f ∗

(
hT̃

b

)
1+ f ∗(hTã ) f ∗

(
hT̃

b

)
)

, f ∗−1

(
f ∗(hIã )+ f ∗

(
hI

b̃

)
1+(1− f ∗(hIã ))

(
1− f ∗

(
hI

b̃

))
)

, f ∗−1

(
f ∗(hF̃a )+ f ∗

(
hF̃

b

)
1+(1− f ∗(hF̃a ))

(
1− f ∗

(
hF̃

b

))
)〉

;

(2) ã ⊗ b̃ =

〈
f ∗−1

(
f ∗(hTã )+ f ∗

(
hT̃

b

)
1+(1− f ∗(hTã ))

(
1− f ∗

(
hT̃

b

))
)

, f ∗−1

(
f ∗(hIã )+ f ∗

(
hI

b̃

)
1+ f ∗(hIã ) f ∗

(
hI

b̃

)
)

, f ∗−1

(
f ∗(hF̃a )+ f ∗

(
hF̃

b

)
1+ f ∗(hF̃a ) f ∗

(
hF̃

b

)
)〉

;

(3) ζ ã =

〈
f ∗−1

(
(1+ f ∗(hTã ))

ζ−(1− f ∗(hTã ))
ζ

(1+ f ∗(hTã ))
ζ
+(1− f ∗(hTã ))

ζ

)
, f ∗−1

(
2( f ∗(hIã ))

ζ

(2− f ∗(hIã ))
ζ
+( f ∗(hIã ))

ζ

)
, f ∗−1

(
2( f ∗(hF̃a ))

ζ

(2− f ∗(hF̃a ))
ζ
+( f ∗(hF̃a ))

ζ

)〉
;

(4) ãζ =

〈
f ∗−1

(
2( f ∗(hTã ))

ζ

(2− f ∗(hTã ))
ζ
+( f ∗(hTã ))

ζ

)
, f ∗−1

(
(1+ f ∗(hIã ))

ζ−(1− f ∗(hIã ))
ζ

(1+ f ∗(hIã ))
ζ
+(1− f ∗(hIã ))

ζ

)
,

f ∗−1
(
(1+ f ∗(hF̃a ))

ζ−(1− f ∗(hF̃a ))
ζ

(1+ f ∗(hF̃a ))
ζ
+(1− f ∗(hF̃a ))

ζ

)〉
; and

(5) neg(ã) =
〈

hF̃a , 1 − hIã , hTã

〉
.

Example 1. Let H = {h0, h1, h2, h3, h4, h5, h6} ={very poor, poor, slightly poor, f air, slightly good,
good, very good}, ã = 〈h3, h2, h2〉, b̃ = 〈h2, h3, h3〉, and ζ = 2, if a = 1.4, and f1(hx) = θx =
x
2t (x = 0, 1, · · · , 2t). The calculated results are as follows:

(1) ã ⊕ b̃ = 〈h4.29, h3.75, h3.75〉;
(2) ã ⊗ b̃ = 〈h3.75, h4.29, h4.29〉;
(3) 2ã = 〈h4.8, h0.46, h0.46〉; and
(4) ã2 = 〈h1.2, h3.6, h3.6〉.

Theorem 1. Let ã, b̃, and c̃ be three LNNs, and ζ ≥ 0; then the following equations are true:

(1) ã ⊕ b̃ = b̃ ⊕ ã;

(2)
(

ã ⊕ b̃
)
⊕ c̃ = ã ⊕

(
b̃ ⊕ c̃

)
;

(3) ã ⊗ b̃ = b̃ ⊗ ã;

(4)
(

ã ⊗ b̃
)
⊗ c̃ = ã ⊗

(
b̃ ⊗ c̃

)
;

(5) ζ ã ⊕ ζ b̃ = ζ
(

b̃ ⊕ ã
)

; and

(6)
(

ã ⊗ b̃
)ζ

= ãζ ⊗ b̃ζ .

Theorem 1 holds according to Definition 2, so the proof is omitted here.

2.3. Distance between Two LNNs

Definition 3. Let ã =
〈

hTã , hIã , hF̃a

〉
and b̃ =

〈
hTb̃

, hIb̃
, hF̃b

〉
be two arbitrary LNNs, f ∗ is a LSF. Then,

the generalized distance measure between ã and b̃ is defined as follows:

d
(

ã, b̃
)
=

1
3

(∣∣∣ f ∗
(
hTã

)− f ∗
(

hTb̃

)∣∣∣λ +
∣∣∣ f ∗

(
hIã

)− f ∗
(

hIb̃

)∣∣∣λ +
∣∣∣ f ∗

(
hF̃a

)− f ∗
(

hF̃b

)∣∣∣λ) 1
λ

. (2)
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When λ = 1, the above distance measure can be reduced to the Hamming distance; when λ = 2, it can be
reduced to the Euclidean distance. We can see that Equation (2) is a generalized form of distance measure.

Theorem 2. Let ã =
〈

hTã , hIã , hF̃a

〉
, b̃ =

〈
hTb̃

, hIb̃
, hF̃b

〉
and c̃ =

〈
hTc̃ , hIc̃ , hFc̃

〉
be three arbitrary LNNs, then,

the following properties are required for the generalized distance measure in Definition 3.

(1) d(ã, b̃) ≥ 0;
(2) d(ã, ã) = 0;

(3) d(ã, b̃) = d(b̃, ã); and

(4) d(ã, c̃) ≤ d(ã, b̃) + d(b̃, c̃).

Theorem 2 is proved in the Appendix C for better representation.

3. Linguistic Neutrosophic Aggregation Operators

Yager [40] introduced the PA operator to allow input arguments to support each other. Thus,
the traditional PA operator are first reviewed; then, the LNPWA and LNPWG operators are proposed
in an environment featuring LNNs.

Definition 4 ([40]). Let aj(j = 1, 2, · · · , n) be a collection of positive values and Ω be the set of all given
values; then the PA operator is the mapping PA : Ωn → Ω , which can be defined as follows:

PA(a1, a2, · · · , an) =
n

∑
j=1

1 + G(aj)
n
∑

j=1

(
1 + G(aj)

) aj, (3)

where

G(aj) =
n

∑
i=1,i �=j

Sup(aj, ai), (4)

Sup(aj, ai) represents the support for aj from ai, and meets the following properties:

(1) Sup(ai, aj) ∈ [0, 1];

(2) Sup(ai, aj) = Sup(aj, ai); and
(3) Sup(ai, aj) ≥ Sup(al , ar), when d(ai, aj) < d(al , ar), and d(ai, aj) is the distance between ai and aj.

3.1. Linguistic Neutrosophic Power Weighted Averaging Operator

This subsection extends the traditional PA operator to LNN. Then, a LNPWA operator is proposed
and discussed.

Definition 5. Let ãj =
〈

hTã j, hIã j, hF̃a j
〉
(j = 1, 2, . . . , n) be a set of LNNs. Then, the LNPWA operator can be

defined as

LNPWA(ã1, ã2, · · · , ãn) =
n⊕

j=1

wj
(
1 + G(ãj)

)
ãj

n
∑

j=1
wj
(
1 + G(ãj)

) , (5)

where w = (w1, w2, . . . , wn)
T is the weight vector of ãj, wi ∈ [0, 1], and

n
∑

i=1
wi = 1, G(aj) =

∑n
i=1,i �=j wiSup(ãj, ãi), Sup(ãj, ãi) is the support for ãj from ãi, which also satisfies the similar properties

in Definition 4.
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Theorem 3. Let ãj =
〈

hTã j, hIã j, hF̃a j
〉
(j = 1, 2, . . . , n) be a set of LNNs, and w = (w1, w2, . . . , wn)

T is the

weight vector of ãj, wi ∈ [0, 1], and
n
∑

i=1
wi = 1. Then, the aggregated result using Equation (5) is also a LNN.

For notational simplicity, we assume that ζ j = wj
(
1 + G(ãj)

)
/

n
∑

j=1
wj
(
1 + G(ãj)

)
.

LNPWA(ã1, ã2, · · · , ãn) =〈
f ∗−1

⎛⎜⎝
n
∏
j=1

(
1+ f ∗

(
hTã

))ζ j− n
∏
j=1

(
1− f ∗

(
hTã

))ζ j

n
∏
j=1

(
1+ f ∗

(
hTã

))ζ j
+

n
∏
j=1

(
1− f ∗

(
hTã

))ζ j

⎞⎟⎠, f ∗−1

⎛⎜⎝ 2
n
∏
j=1

(
f ∗
(

hIã

))ζ j

n
∏
j=1

(
2− f ∗

(
hIã

))ζ j
+

n
∏
j=1

(
f ∗
(

hIã

))ζ j

⎞⎟⎠,

f ∗−1

⎛⎜⎝ 2
n
∏
j=1

(
f ∗
(

hF̃a

))ζ j

n
∏
j=1

(
2− f ∗

(
hF̃a

))ζ j
+

n
∏
j=1

(
f ∗
(

hF̃a

))ζ j

⎞⎟⎠〉.

(6)

“Appendix D” details the proof of Theorem 3.

The traditional PA operator has the properties of idempotency, monotonicity, and boundedness.
It can be proved that the LNPWA operator also satisfies these properties.

Theorem 4. Let ãj =
〈

hTã j, hIã j, hF̃a j
〉
(j = 1, 2, . . . , n) be a set of LNNs, and w = (w1, w2, . . . , wn)

T is the

weight vector of ãj, wi ∈ [0, 1], and
n
∑

i=1
wi = 1. If Sup(ãj, ãi) = 0 or Sup(ãj, ãi) = k (k ∈ [0, 1]) for all ãi and

ãj. Hence, the LNPWA operator reduces to the linguistic neutrosophic weighted averaging (LNWA) operator.

LNWA(ã1, ã2, · · · , ãn) =
n⊕

j=1
wjãj

=

〈 f ∗−1

⎛⎜⎝
n
∏
j=1

(
1+ f ∗

(
hTã

))wj− n
∏
j=1

(
1− f ∗

(
hTã

))wj

n
∏
j=1

(
1+ f ∗

(
hTã

))wj
+

n
∏
j=1

(
1− f ∗

(
hTã

))wj

⎞⎟⎠,

f ∗−1

⎛⎜⎝ 2
n
∏
j=1

(
f ∗
(

hIã

))wj

n
∏
j=1

(
2− f ∗

(
hIã

))wj
+

n
∏
j=1

(
f ∗
(

hIã

))wj

⎞⎟⎠, f ∗−1

⎛⎜⎝ 2
n
∏
j=1

(
f ∗
(

hF̃a

))wj

n
∏
j=1

(
2− f ∗

(
hF̃a

))wj
+

n
∏
j=1

(
f ∗
(

hF̃a

))wj

⎞⎟⎠
〉 (7)

The proof for Theorem 4 is similar to the proof for Theorem 3; thus, it is omitted here.

3.2. Linguistic Neutrosophic Power Weighted Geometric Operator

Definition 6. Let ãj =
〈

hTã j, hIã j, hF̃a j
〉
(j = 1, 2, . . . , n) be a set of LNNs. Then, the LNPWG operator can be

defined as

LNPWG(ã1, ã2, · · · , ãn) =
n⊗

j=1

(
ãj
) wj

(
1 + G(ãj)

)
n
∑

j=1
wj
(
1 + G(ãj)

) , (8)

where w = (w1, w2, . . . , wn)
T is the weight vector of ãj, wi ∈ [0, 1], and

n
∑

i=1
wi = 1, G(aj) =

∑n
i=1,i �=j wiSup(ãj, ãi), Sup(ãj, ãi) is the support for ãj from ãi and also satisfies the properties in Definition 4.

Theorem 5. Let ãj =
〈

hTã j, hIã j, hF̃a j
〉
(j = 1, 2, . . . , n) be a set of LNNs, and w = (w1, w2, . . . , wn)

T is the

weight vector of ãj, wi ∈ [0, 1], and
n
∑

i=1
wi = 1. Then, the aggregated result using Equation (8) is still a LNN,

For notational simplicity, we assume that ζ j = wj
(
1 + G(ãj)

)
/

n
∑

j=1
wj
(
1 + G(ãj)

)
.
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LNPWG(ã1, ã2, · · · , ãn) =〈
f ∗−1

⎛⎜⎝ 2
n
∏
j=1

(
f ∗
(

hTã

))ζ j

n
∏
j=1

(
2− f ∗

(
hTã

))ζ j
+

n
∏
j=1

(
f ∗
(

hTã

))ζ j

⎞⎟⎠, f ∗−1

⎛⎜⎝
n
∏
j=1

(
1+ f ∗

(
hIã

))ζ j− n
∏
j=1

(
1− f ∗

(
hIã

))ζ j

n
∏
j=1

(
1+ f ∗

(
hIã

))ζ j
+

n
∏
j=1

(
1− f ∗

(
hIã

))ζ j

⎞⎟⎠,

f ∗−1

⎛⎜⎝
n
∏
j=1

(
1+ f ∗

(
hF̃a

))ζ j− n
∏
j=1

(
1− f ∗

(
hF̃a

))ζ j

n
∏
j=1

(
1+ f ∗

(
hF̃a

))ζ j
+

n
∏
j=1

(
1− f ∗

(
hF̃a

))ζ j

⎞⎟⎠〉.

(9)

The proof of Theorem 5 is also omitted duo to the same way as Theorem 3.

4. MCGDM Method Based on the LNPWA and LNPWG Operators

In this part, a MCGDM method based on the LNPWA and LNPWG operators is developed to
solve university HRM evaluation problems.

For a MCGDM problem with a finite set of m alternatives, let D = {D1, D2, . . . , Ds} be the set of
DMs, A = {A1, A2, . . . , Am} be the set of alternatives, and C = {C1, C2, . . . , Cn} be the set of criteria.
Assume that the weight vector of the criteria is � =

(
�1, �2, . . . , �n

)T , such that �j ∈ [0, 1] and
n
∑

j=1
�j = 1. Analogously, the weight vector of the DMs is specified as w = (w1, w2, . . . , ws)

T , where

wk ≥ 0, and
s
∑

k=1
wk = 1. The evaluation values provided by the DMs are transformed into LNNs,

and ãk
ij =

〈
hk

Tãij, hk
Iãij, hk

F̃aij

〉
, (k = 1, 2, . . . , s; j = 1, 2, . . . , n; i = 1, 2, . . . , m) represents the evaluation

value of DM Dk(k = 1, 2, . . . , s) for alternative ãi(i = 1, 2, . . . , m) on criteria Cj(j = 1, 2, . . . , n).
The detailed procedures of the MCGDM method involve the following steps:

Step 1: Normalize the decision matrices.

In general, criteria can be divided into two categories: benefit type and cost type. Using
operation (5) in Definition 2, the cost criteria can be transformed into benefit ones as follows:

rk
ij =

⎧⎨⎩
〈

hk
Tãij, hk

Iãij, hk
F̃aij

〉
, f or beni f it criterion cj〈

hk
F̃aij, 1 − hk

Iãij, hk
Tãij

〉
, otherwise

, (10)

Step 2: Obtain the weighted decision matrices.

Using operations in Definition 2, the weighted decision matrices can be constructed by multiplying
the given criteria weight vector into the decision matrices.

Step 3: Calculate the supports.

Utilizing the distance measure defined in Definition 3, the support degrees can be obtained by
Equation (11):

Sup(rk1
ij. , rk2

ij ) = 1 − d(rk1
ij , rk2

ij )(i = 1, 2, · · · , m; j = 1, 2, · · · , n; k1, k2 = 1, 2, · · · , s) (11)

Step 4: Calculate the weights associated with rk1
ij (k1 = 1, 2, · · · , s).

ηk1
ij, = wk1

(
1 + G(r̃k1)

)
/

q

∑
k1=1

wk1

(
1 + G(r̃k1)

)
(12)

where G(rk1) = ∑s
k2=1,k2 �=k1

wk2 Sup(rk1 , rk2), and wk2 is interpreted as the weight of DM Dk2 .
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Step 5: Obtain the comprehensive evaluation information.

Using Equation (5) or Equation (9), the normalized evaluation information provided by DMs can
be aggregated, and the integrated decision matrix R =

[
rij
]

m×n can be obtained.

Step 6: Determine the ideal decision vectors of all alternative decisions.

After aggregating the DMs’ evaluation information into the decision matrix R =
[
rij
]

m×n, which is
as follow:

C1 C2 · · · Cn

R =
[
rij
]

m×n =

A1

A2
...

Am

⎛⎜⎜⎜⎜⎝
r11 r12 · · ·
r21 r22 · · ·
...

...
rm1 rm2 · · ·

r1n
r2n

...
rmn

⎞⎟⎟⎟⎟⎠ , (13)

We can determine the ideal alternative vector A∗ among all the alternatives below:

C1 C2 · · · Cn

A∗ =
(〈

hT2t. , hI0 , hF0

〉
,

〈
hT2t , hI0 , hF0

〉
, . . . ,

〈
hT2t , hI0 , hF0

〉) . (14)

Similarly, the negative ideal alternative vector A∗
c can be obtained by the negation of A∗, which has

the maximum separation from A∗, as follows:

C1 C2 . . . Cn

A∗
c =

(〈
hT0., hI2t , hF2t

〉
,

〈
hT0 , hI2t , hF2t

〉
, . . . ,

〈
hT0 , hI2t , hF2t

〉) . (15)

In addition, we can obtain the left maximum separation from A∗ denoted as A∗−:

C1 C2 . . . Cn

A∗− =
(〈

hTA∗−1
, hIA∗−1

, hFA∗−1

〉
,

〈
hTA∗−2

, hIA∗−2
, hFA∗− i2

〉
, . . . ,

〈
hTA∗−n

, hIA∗−n
, hFA∗−n

〉) , (16)

where hTA∗− j
= min

i

{
hTA∗− j

}
, hIA∗− j

= max
i

{
hIA∗− j

}
, and hFA∗− j

= max
i

{
hFA∗− j

}
.

In the same way, we can also obtain the right maximum separation from A∗ denoted as A∗+:

C1 C2 . . . Cn

A∗+ =
(〈

hTA∗+1
, hIA∗+1

, hFA∗+1

〉
,

〈
hTA∗+2

, hIA∗+2
, hFA∗+2

〉
, . . . ,

〈
hTA∗+n

, hIA∗+n
, hFA∗+n

〉) , (17)

where hTA∗+ j
= max

i

{
hTA∗+ j

}
, hIA∗+ j

= min
i

{
hIA∗+ j

}
, and hFA∗+ j

= min
i

{
hFA∗+ j

}
.

Step 7: Calculate the separations of each alternative decision vector from the ideal decision vector.

Utilizing the distance measure in Definition 3, we can calculate the separations between each
alternative vector and the ideal decision vectors of all alternative decisions, they are respectively
represented as follows:

d(Ai, A∗) =
n

∑
j=1

1
3

(∣∣∣ f ∗
(

hTαj

)
− f ∗

(
hT2t

)∣∣∣λ +
∣∣∣ f ∗

(
hIαj

)
− f ∗

(
hI0

)∣∣∣λ +
∣∣∣ f ∗

(
hFαj

)
− f ∗

(
hF0

)∣∣∣λ) 1
λ

, (18)

d(Ai, A∗
c ) =

n

∑
j=1

1
3

(∣∣∣ f ∗
(

hTαj

)
− f ∗(hT0 )

∣∣∣λ +
∣∣∣ f ∗

(
hIαj

)
− f ∗(hI2t )

∣∣∣λ +
∣∣∣ f ∗

(
hFαj

)
− f ∗(hF2t )

∣∣∣λ) 1
λ

, (19)

d
(

Ai , A∗−) = n

∑
j=1

1
3

(∣∣∣ f ∗
(

hTαj

)
− f ∗

(
hTA∗− j

)∣∣∣λ +
∣∣∣ f ∗

(
hIαj

)
− f ∗

(
hIA∗− j

)∣∣∣λ +
∣∣∣ f ∗

(
hFαj

)
− f ∗

(
hFA∗− j

)∣∣∣λ) 1
λ

, (20)
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d
(

Ai , A∗+) = n

∑
j=1

1
3

(∣∣∣ f ∗
(

hTαj

)
− f ∗

(
hTA∗− j

)∣∣∣λ +
∣∣∣ f ∗

(
hIαj

)
− f ∗

(
hIA∗− j

)∣∣∣λ +
∣∣∣ f ∗

(
hFαj

)
− f ∗

(
hFA∗− j

)∣∣∣λ) 1
λ

. (21)

Step 8: Calculate the relative closeness of each alternative decision.

The relative closeness of each alternative decision can be obtained using the following formula:

Ii =
d(Ai, A∗

c ) + d(Ai, A∗−) + d(Ai, A∗+)
d(Ai, A∗) + d(Ai, A∗

c ) + d(Ai, A∗−) + d(Ai, A∗+)
(22)

Step 9: Rank all the alternatives.

According to the relative closeness of each alternative decision Ii, we can rank all the alternatives.
The larger the value of Ii, the better the alternative Ai is.

5. A Case of Human Resource Management Problem

5.1. Problem Definition

The present study focuses on a case of HRM problem in a Chinese university to test the proposed
MCGDM method. Specifically, the school of management in the university plans to introduce talents
from home and abroad to strengthen discipline construction and try to realize the goal of building
a high-level innovative university. Three teams of DMs are assembled as a committee and will
take the whole responsibility for this recruitment process, these teams are university presidents D1,
deans of management school D2, and human resource officers D3, respectively. After strict first
interview, six candidates Ai(i = 1, 2, . . . , 6) remain for the second review. Before the evaluation
procedures, an appropriate evaluation index system should be constructed through literature review
and expert consultation. In the literature research, Abdullah et al. [1] and Chou et al. [53] identified
three dimensions and eight criteria for the HRM evaluation problem; the three dimensions used in
their work were infrastructures, input and output. Zhang et al. [5] constructed an evaluation index
system of classroom teaching quality; dimensions included in their work were usage of teaching
attitude, teaching capacity, teaching content, teaching method and teaching effect. We can see that
different evaluation index systems serve for different purposes of HRM evaluation in various industries.
This study mainly tackles the HRM evaluation for talent introduction in universities which exists in
real-life decision environments. According to Ref. [54], experts agree on the four criteria included in
the evaluation index system for the evaluation of HRM, they are teaching skill (C1), morality (C2),
education background (C3) and research capability (C4), respectively. A brief description of each
criterion is shown as follows.

Teaching skill is an overall reflect of one teacher’s classroom teaching quality which includes
several sub-attributes, such as teaching attitude, teaching capacity, teaching content, teaching method
and teaching effect.

Morality refers to the teachers’ morality in this study. It is a kind of professional morality of
teachers which takes up the first place of education and can greatly affects the education’s level and
quality as a whole. More specifically, the teachers’ morality includes the moral consciousness, moral
relations and moral activity of the teachers in universities.

Education background is an overview of a person’s learning environment and learning ability.
It includes the person’s educational level, graduate school, major courses, academic achievements,
and some other highlights.

Research capability denotes the scientific research ability that is required for scientific research
or the research competence someone shows during the process of scientific research. The former is
closer to the potential, including someone’s abilities in logical thinking, writing and oral language, etc.,
whereas the latter emphasizes someone’s practical scientific research capacity.
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With the reform of education and fierce competition among universities, the current form
of university education needs more and more modern teachers with the above four abilities.
Therefore, this study applies the above four criteria for the case of HRM evaluation, and the
six candidates Ai(i = 1, 2, . . . , 6) are evaluated by the three teams of DMs under each criterion.
The weight vector of criteria was assigned by DMs as � = (0.3, 0.12, 0.31, 0.27)T , and the weight

vector of DMs was w =
(

1
3 , 1

3 , 1
3

)T
. In addition, the LTS was denoted as H = {h0, h1, · · · , h6}=

{extremely poor , very poor, poor, medium, good, very good, extremely good}. By interviewing the DMs
one by one anonymously, all of their linguistic assessments for each alternative under each criterion are
collected together. During this process, DMs in each group are isolated and don’t negotiate with each
other at all. Consequently, the decision information is provided independently in the form of linguistic
terms. Take the evaluation value ã1

11 = 〈h5, h3, h2〉 as an example, which represents the evaluation
value of DM D1 for alternative A1 under criterion C1. Since the criterion C1 (teaching skill) includes
various aspects, such as teaching attitude, teaching capacity, teaching content, teaching method and
teaching effect, the group of DMs D1 may hold inconsistent linguistic judgments for alternative A1

with respect to C1. After collecting all the linguistic assessments for alternative A1, the linguistic
neutrosophic information ã1

11 = 〈h5, h3, h2〉 is obtained by calculating the weighted mean values of
all the labels of linguistic terms with respect to active, neutral and passive information, respectively.
Similarly, the overall evaluation information provided by the teams of DMs can be represented in the
form of LNNs in Tables 1–3.

Table 1. Evaluation information of D1.

D1 C1 C2 C3 C4

A1 〈h5, h3, h2〉 〈h5, h3, h0〉 〈h5, h3, h0〉 〈h5, h3, h2〉
A2 〈h5, h3, h1〉 〈h5, h3, h0〉 〈h5, h3, h0〉 〈h0, h3, h0〉
A3 〈h5, h3, h2〉 〈h5, h3, h0〉 〈h5, h3, h0〉 〈h5, h3, h0〉
A4 〈h5, h3, h2〉 〈h5, h3, h0〉 〈h5, h3, h2〉 〈h5, h3, h0〉
A5 〈h5, h3, h2〉 〈h5, h3, h2〉 〈h5, h3, h2〉 〈h0, h3, h2〉
A6 〈h6, h3, h2〉 〈h5, h3, h0〉 〈h5, h3, h0〉 〈h0, h3, h2〉

Table 2. Evaluation information of D2.

D2 C1 C2 C3 C4

A1 〈h6, h3, h0〉 〈h5, h3, h2〉 〈h5, h3, h2〉 〈h5, h3, h0〉
A2 〈h5, h3, h0〉 〈h5, h3, h0〉 〈h5, h3, h0〉 〈h5, h3, h0〉
A3 〈h5, h3, h0〉 〈h5, h3, h0〉 〈h5, h3, h2〉 〈h5, h0, h0〉
A4 〈h6, h3, h2〉 〈h6, h3, h2〉 〈h5, h3, h2〉 〈h5, h3, h2〉
A5 〈h5, h5, h0〉 〈h5, h3, h0〉 〈h6, h3, h0〉 〈h0, h3, h2〉
A6 〈h5, h3, h2〉 〈h5, h3, h0〉 〈h6, h3, h2〉 〈h5, h3, h1〉

Table 3. Evaluation information of D3.

D3 C1 C2 C3 C4

A1 〈h6, h3, h0〉 〈h5, h3, h0〉 〈h6, h3, h2〉 〈h5, h3, h0〉
A2 〈h5, h3, h2〉 〈h5, h3, h0〉 〈h5, h3, h2〉 〈h5, h3, h2〉
A3 〈h5, h3, h2〉 〈h5, h3, h0〉 〈h6, h3, h0〉 〈h5, h3, h0〉
A4 〈h5, h3, h2〉 〈h5, h3, h0〉 〈h6, h3, h2〉 〈h0, h3, h2〉
A5 〈h5, h3, h2〉 〈h5, h3, h0〉 〈h6, h3, h2〉 〈h5, h3, h2〉
A6 〈h5, h3, h2〉 〈h0, h3, h2〉 〈h5, h3, h0〉 〈h5, h3, h0〉

5.2. Evaluation Steps of the Proposed Method

The following steps describe the procedures of evaluation for all candidates, and the ranking
order of the six alternatives can be obtained. For simplicity of calculation, we chose the LSF f ∗1 .
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Step 1: Normalize the decision matrices.

It is obvious that all the four criteria are of the benefit type; then, there is no need for normalization.

Step 2: Obtain the weighted decision matrices.

Using operation in Definition 2, the weighted decision matrices can be constructed in Tables 4–6:

Table 4. Weighted evaluation information of D1.

D1 C1 C2 C3 C4

A1 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h0〉 〈h1.8772, h5.1166, h4.7165〉
A2 〈h2.0696, h5.0201, h3.9304〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h0〉 〈h0, h5.1166, h0〉
A3 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h0〉 〈h0, h5.1166, h0〉
A4 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h4.5335〉 〈h0, h5.1166, h0〉
A5 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h5.4224〉 〈h2.1327, h4.9881, h4.5335〉 〈h0, h5.1166, h4.7165〉
A6 〈h6, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h0〉 〈h0, h5.1166, h4.7165〉

Table 5. Weighted evaluation information of D2.

D2 C1 C2 C3 C4

A1 〈h6, h5.0201, h0〉 〈h0.8573, h5.6051, h5.4224〉 〈h2.1327, h4.9881, h4.5335〉 〈h1.8772, h5.1166, h0〉
A2 〈h2.0696, h5.0201, h0〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h0〉 〈h1.8772, h5.1166, h0〉
A3 〈h2.0696, h5.0201, h0〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h4.5335〉 〈h1.8772, h0, h0〉
A4 〈h6, h5.0201, h4.579〉 〈h6, h5.6051, h5.4224〉 〈h2.1327, h4.9881, h4.5335〉 〈h1.8772, h5.1166, h4.7165〉
A5 〈h2.0696, h5.6974, h0〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h0〉 〈h0, h5.1166, h4.7165〉
A6 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h4.5335〉 〈h1.8772, h5.1166, h4.1228〉

Table 6. Weighted evaluation information of D3.

D3 C1 C2 C3 C4

A1 〈h6, h5.0201, h0〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h4.5335〉 〈h1.8772, h5.1166, h0〉
A2 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h4.5335〉 〈h1.8772, h5.1166, h4.7165〉
A3 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h0〉 〈h1.8772, h5.1166, h0〉
A4 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h4.5335〉 〈h0, h5.1166, h4.7165〉
A5 〈h2.0696, h5.0201, h4.579〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h4.5335〉 〈h1.8772, h5.1166, h4.7165〉
A6 〈h2.0696, h5.0201, h4.579〉 〈h0, h5.6051, h5.4224〉 〈h2.1327, h4.9881, h0〉 〈h1.8772, h5.1166, h0〉

Step 3: Calculate the supports.

Utilizing the distance measure defined in Definition 3 and Equation (11), the supports can be
obtained. Here, we assume that λ = 2 in the distance measure.

sup
(

r1
ij, r2

ij

)
= sup

(
r2

ij, r1
ij

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.6647 0.6988 0.7481 0.738
0.7816 1 1 0.8957
0.7456 1 0.7481 0.7157
0.7816 0.5848 1 0.738
0.7428 0.6988 0.6689 1
0.7816 1 0.6689 0.8906

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

sup
(

r1
ij, r3

ij

)
= sup

(
r3

ij, r1
ij

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.6647 1 0.6689 0.738
0.964 1 0.7481 0.718

1 1 0.7852 1
1 1 0.7852 0.718
1 0.6988 0.7852 0.8957

0.7816 0.695 1 0.718

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and
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sup
(

r2
ij, r3

ij

)
= sup

(
r3

ij, r2
ij

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0.6988 0.7852 1
0.7456 1 0.7481 0.738
0.7456 1 0.6689 0.7157
0.7816 0.5848 0.7852 0.8957
0.7428 1 0.7481 0.8957

1 0.695 0.6689 0.771

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Step 4: Calculate the weights associated with rk1

ij (k1 = 1, 2, · · · , s).

The weights can be calculated by Equation (12) as follows:

η1
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.317 0.3406 0.3295 0.3208
0.3394 0.3333 0.3393 0.3367
0.3394 0.3333 0.3382 0.3402
0.3385 0.3437 0.3384 0.3252
0.3395 0.3188 0.3323 0.3357
0.323 0.3407 0.3414 0.3349

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, η2

ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.3415 0.3188 0.3382 0.3396
0.3238 0.3333 0.3393 0.3381
0.3212 0.3333 0.3295 0.3197
0.323 0.3126 0.3384 0.3381

0.3211 0.3406 0.3295 0.3357
0.3385 0.3407 0.3172 0.3388

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and

η3
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.3415 0.3406 0.3323 0.3396
0.3368 0.3333 0.3213 0.3252
0.3394 0.3333 0.3323 0.3402
0.3385 0.3437 0.3232 0.3367
0.3395 0.3406 0.3382 0.3286
0.3385 0.3186 0.3414 0.3263

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Step 5: Obtain the comprehensive evaluation information.

Using Equation (5) or Equation (9), the integrated decision matrix R =
[
rij
]

m×n are
calculated below:

(i) When using Equation (5), the results are listed in Table 7.

Table 7. Comprehensive evaluation information by LNPWA operator.

D2 C1 C2 C3 C4

A1 〈h6, h5.0201, h0〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h0〉 〈h1.8772, h5.1166, h0〉
A2 〈h2.0696, h5.0201, h0〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h0〉 〈h1.2689, h5.1166, h0〉
A3 〈h2.0696, h5.0201, h0〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h0〉 〈h1.8772, h0, h0〉
A4 〈h6, h5.0201, h4.579〉 〈h6, h5.6051, h0〉 〈h6, h4.9881, h4.5335〉 〈h1.2689, h5.1166, h0〉
A5 〈h2.0696, h5.2356, h0〉 〈h0.8573, h5.6051, h0〉 〈h6, h4.9881, h0〉 〈h0.6358, h5.1166, h4.7165〉
A6 〈h2.0696, h5.0201, h4.579〉 〈h0.5864, h5.6051, h0〉 〈h6, h4.9881, h0〉 〈h1.2721, h5.1166, h0〉

(ii) When using Equation (9), the results are listed in Table 8.

Table 8. Comprehensive evaluation information by LNPWG operator.

D2 C1 C2 C3 C4

A1 〈h4.5387, h5.0201, h1.8471〉 〈h0.8573, h5.6051, h2.6567〉 〈h3.1737, h4.9881, h3.4741〉 〈h1.8772, h5.1166, h1.9671〉
A2 〈h2.0696, h5.0201, h3.2402〉 〈h0.8573, h5.6051, h0〉 〈h2.1327, h4.9881, h1.8396〉 〈h0, h5.1166, h1.9918〉
A3 〈h2.0696, h5.0201, h3.5544〉 〈h0.8573, h5.6051, h0〉 〈h3.1737, h4.9881, h1.8834〉 〈h1.8772, h4.182, h0〉
A4 〈h3.0839, h5.0201, h4.579〉 〈h1.7569, h5.6051, h2.6119〉 〈h3.1414, h4.9881, h4.5335〉 〈h0, h5.1166, h3.6868〉
A5 〈h2.0696, h5.3227, h3.5549〉 〈h0.8573, h5.6051, h2.6553〉 〈h4.5051, h4.9881, h3.4741〉 〈h0, h5.1166, h4.7165〉
A6 〈h3.0839, h5.0201, h4.579〉 〈h0, h5.6051, h2.6553〉 〈h3.1201, h4.9881, h1.8174〉 〈h0, h5.1166, h3.3929〉
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Step 6: Determine the ideal decision vectors of all alternative decisions.

(i) When using Equation (5), we can determine the ideal alternative vectors among all the
alternatives respectively as follows:

A∗ = (〈h6, h0, h0〉, 〈h6, h0, h0〉, 〈h6, h0, h0〉, 〈h6, h0, h0〉),
A∗

c = (〈h0, h6, h6〉, 〈h0, h6, h6〉, 〈h0, h6, h6〉, 〈h0, h6, h6〉),
A∗− = (〈h2.0696, h5.2356, h4.579〉, 〈h0.5864, h5.6051, h0〉, 〈h2.1327, h4.9881, h4.5335〉, 〈h0.6358, h5.1166, h4.7165〉), and
A∗+ = (〈h6, h5.0201, h0〉, 〈h6, h5.6051, h0〉, 〈h6, h4.9881, h0〉, 〈h1.8772, h0, h0〉).

(ii) When using Equation (9), the results are:

A∗ = (〈h6, h0, h0〉, 〈h6, h0, h0〉, 〈h6, h0, h0〉, 〈h6, h0, h0〉),
A∗

c = (〈h0, h6, h6〉, 〈h0, h6, h6〉, 〈h0, h6, h6〉, 〈h0, h6, h6〉),
A∗− = (〈h2.0696, h5.3227, h4.579〉, 〈h0, h5.6051, h2.6119〉, 〈h2.1327, h4.9881, h4.5335〉, 〈h0, h5.1166, h4.7165〉), and
A∗+ = (〈h4.5387, h5.0201, h1.8417〉, 〈h1.7569, h5.6051, h0〉, 〈h4.4051, h4.9881, h1.8174〉, 〈h1.8772, h4.182, h0〉).

Step 7: Calculate the separations of each alternative decision vector from the ideal decision vector.

The separations between each alternative and the ideal decision vector by the LNPWA and
LNPGA operators are shown in Tables 9 and 10, respectively.

Table 9. Separations by the LNPWA operator.

Distance d(Ai, A∗ ) d(Ai, A∗
c ) d

(
Ai, A∗− )

d
(
Ai, A∗+ )

Ii

A1 2.1903 2.1162 1.6257 1.7055 0.7132
A2 2.3229 2.0653 1.5863 1.7175 0.698
A3 1.3743 2.8968 2.3562 0 0.7926
A4 2.3229 2.0653 1.5863 1.7175 0.698
A5 2.9288 0.561 0 2.3562 0.499
A6 2.3222 2.0656 1.5864 1.7174 0.6981

Table 10. Separations by the LNPWG operator.

Distance d(Ai, A∗ ) d(Ai, A∗
c ) d

(
Ai, A∗− )

d
(
Ai, A∗+ )

Ii

A1 2.2863 1.5118 1.1097 0.7259 0.5942
A2 2.711 1.3681 0.9082 0.9641 0.5445
A3 1.9575 2.1815 1.7206 0 0.6659
A4 2.9016 0.8254 0.3432 1.4138 0.4709
A5 3.0628 0.5194 0 1.7205 0.4224
A6 2.8615 0.9176 0.4412 1.3295 0.4844

Step 8: Calculate the relative closeness of each alternative decision.

The results of relative closeness of each alternative decision are shown in the last column of
Tables 9 and 10.

Step 9: Rank all the alternatives.

According to the relative closeness of each alternative decision Ii, we can rank all the alternatives.
When using LNPWA operator, the ranking result is A3 � A1 � A6 � A2 = A4 � A5, whereas when
using LNPWG operator, the result turns out A3 � A1 � A2 � A6 � A4 � A5. There is a subtle
distinction between the results obtained by the LNPWA and LNPWG operators, but the alternative A3

remains the most performant and competitive candidate.
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5.3. Sensitivity Analysis and Discussion

The aim of sensitivity analysis is to investigate the effects of different semantics and the distance
parameter λ on the final ranking results of alternatives. To do so, the calculated results are shown in
Tables 11 and 12 and Figures 1 and 2, respectively.

Figure 1. Ranking results by the LNPWA operator.

Figure 2. Ranking results by the LNPWG operator.

Table 11. Results of different LSFs f ∗ (λ = 2).

Alternatives
Ranking Results

A1 A2 A3 A4 A5 A6

f ∗1
LNPWA 0.713 0.698 0.793 0.698 0.499 0.698 A3 � A1 � A6 � A2 = A4 � A5
LNPWG 0.594 0.544 0.666 0.471 0.422 0.484 A3 � A1 � A2 � A6 � A4 � A5

f ∗2
LNPWA 0.7 0.69 0.773 0.69 0.48 0.69 A3 � A1 � A6 � A2 � A4 � A5
LNPWG 0.578 0.549 0.64 0.447 0.401 0.462 A3 � A1 � A2 � A6 � A4 � A5

f ∗3
LNPWA 0.721 0.704 0.806 0.704 0.514 0.704 A3 � A1 � A6 � A2 = A4 � A5
LNPWG 0.608 0.54 0.684 0.486 0.439 0.496 A3 � A1 � A2 � A6 � A4 � A5
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It can be seen from Table 11 and Figures 1 and 2 that the alternative A3 remained to be the best
one, and A5 was consistently identified as the worst choice no matter how the aggregation operator
or semantics change. When using the LNPWA operator, the ranking result remains A3 � A1 �
A6 � A2 = A4 � A5. The difference in semantics slightly influenced the values of Ii, but did not
result in different ranking orders. Similarly, when using the LNPWG operator, the ranking result
always is A3 � A1 � A2 � A6 � A4 � A5. It is clear that the ranking results varied when using
different aggregation operators. This may be caused by the distinct inherent characteristic of these
two operators, since the LNPWA operator is based on the arithmetic averaging, whereas the LNPWG
operator is based on the geometric averaging. This demonstrates that the ranking results have stability
by our proposed method in some degree.

The following Table 12 the influence of the distance parameter λ on the final ranking results of
alternatives when the semantics were fixed as f ∗ = f ∗1 . It can be seen that the ranking results kept the
same as A3 � A1 � A2 � A6 � A4 � A5 when using the LNPWG operator. However, results by the
LNPWA operator change among A3 � A1 � A2 � A6 � A4 � A5, A3 � A1 � A6 � A2 = A4 � A5

and A1 � A6 � A2 = A4 � A3 � A5. Thus, we can conclude that the differences in the aggregation
operators and the parameter λ could influence the evaluation results, DMs should choose appropriate
parameter λ and aggregation operators according to their own inherent characteristics.

Table 12. Results of different parameter λ( f ∗ = f ∗1 ).

λ f ∗ = f ∗1
Ranking by LNPWA operator Ranking by LNPWG operator

1 A3 � A1 � A6 � A2 = A4 � A5 A3 � A1 � A2 � A6 � A4 � A5
2 A3 � A1 � A2 � A6 � A4 � A5 A3 � A1 � A2 � A6 � A4 � A5
3 A3 � A1 � A2 � A6 � A4 � A5 A3 � A1 � A2 � A6 � A4 � A5
4 A3 � A1 � A6 � A2 = A4 � A5 A3 � A1 � A2 � A6 � A4 � A5
5 A3 � A1 � A2 = A6 = A4 � A5 A3 � A1 � A2 � A6 � A4 � A5
6 A3 � A1 � A6 � A2 = A4 � A5 A3 � A1 � A2 � A6 � A4 � A5
7 A1 � A3 � A6 � A2 = A4 � A5 A3 � A1 � A2 � A6 � A4 � A5
8 A1 � A6 � A2 = A4 � A3 � A5 A3 � A1 � A2 � A6 � A4 � A5
9 A1 � A6 � A2 = A4 � A3 � A5 A3 � A1 � A2 � A6 � A4 � A5

10 A1 � A6 � A2 = A4 � A3 � A5 A3 � A1 � A2 � A6 � A4 � A5

5.4. Comparison Analysis and Discussion

This subsection conducts a comparative study to validate the practicality and advantages of the
proposed method in the LNS contexts, and the results are shown in Table 13. Brief descriptions about
the comparative methods are as follows.

(1) Weighted arithmetic and geometric averaging operators of LNNs [28]: the concept of LNNs
was first proposed by Fang and Ye [28]. In their study, two aggregation operators including the
LNN-weighted arithmetic averaging (LNNWAA) operator and LNN-weighted geometric averaging
(LNNWGA) operator are utilized to derive collective evaluations. Then, based on their proposed score
function and accuracy function of LNNs, the ranking order of alternatives is obtained.

(2) Bonferroni mean operators of LNNs [30]: the LNNNWBM operator and LNNNWGBM
operator are proposed to aggregate evaluations to obtain the collective LNN for each alternative.
Subsequently, the results are derived by expected value.

(3) An extended TOPSIS method [32]: a weighted model based on maximizing deviation is used
to determine criteria weights. Subsequently, an extended TOPSIS method with LNNs is proposed to
rank alternatives.
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Table 13. Comparison results with the existing methods.

MCGDM Ranking Results

Proposed method by LNPWA operator A3 � A1 � A6 � A2 = A4 � A5
Proposed method by LNPWG operator A3 � A1 � A2 � A6 � A4 � A5

LNNWAA operator [28] A3 � A1 � A2 � A6 � A5 � A4
LNNWGA operator [28] A3 � A1 � A2 � A6 � A4 � A5

LNNNWBM operator [30] (p = q = 1) A1 � A3 � A6 � A2 � A5 � A4
LNNNWGBM operator [30] (p = q = 1) A1 � A3 � A6 � A2 � A4 � A5

An extended TOPSIS method [32] (λ = 2) A3 � A1 � A6 � A2 = A4 � A5

As shown in Table 13, different methods resulted in different ranking results, but the optimal
candidate remained to be A3, despite the results obtained by the Bonferroni mean operators of
LNNs [30]. The main reasons for these differences may be as follows: (1) The operations for LNNs
between this study and the comparative methods are remarkably different. The operations in the
existing methods [28,30,32] just considered the linguistic variables’ labels which may cause information
loss and distortion. (2) Different aggregation operators and ranking rules might also cause different
ranking results. Specifically, the LNNWAA and LNNWGA operators defined in [28] were respectively
based on the arithmetic mean and geometric mean operators, whereas the Bonferroni mean operators
of LNNs [30] implicated the interactive hypothesis among inputs. Unlike the existing aggregation tools,
the proposed PA operator for LNNs allows the information provided by different DMs to support and
reinforce each other, and it is a nonlinear weighted average operator.

From above discussions, the unique features of the proposal and its main advantages over others
can be simply summarized below.

(1) The comparative methods [28,30,32] dealt with the LNNs only considering the labels of
linguistic variables while ignoring the differences in various semantics. It has been contended that the
same linguistic variable possesses different meanings for different people and has diverse meanings for
the same person under various situations [55]. Therefore, directly using the labels of linguistic variables
may lead to information loss during information aggregation. To cover this challenge, this study
redefines the operations for LNNs based on the LSFs and Archimedean t-norm and t-conorm, which
increases the flexibility and accuracy of linguistic information transformation.

(2) The extended TOPSIS method [32] only considered two relatively positive and negative ideal
solutions to determine the values of correlation coefficient for each alternative. By contrast, this study
takes both the relatively and absolutely positive and negative ideal solutions into account. Therefore,
the ranking result by this proposed method may be somewhat more comprehensive than the existing
method [32].

(3) For information fusion, all the existing methods [28,30,32] failed to consider the support
degree among different DMs during the aggregation processes. Although it is true that different
aggregation operators cater to different practical decision situations, the proposed PA operators within
LNN contexts are more feasible in dealing with the university HRM evaluation problem in this study.

6. Conclusions and Future Work

Talent introduction plays an important role in the long-term development of a university. This is
closely related to the university’s discipline development and comprehensive strength. Therefore,
there is a need for proper HRM evaluation that uses group decision-making methods efficiently
in order to utilize human resources. This study recognized the HRM evaluation procedures as a
complex MCGDM problems within the LNNs’ circumstances. Through merging the PA operator
with LNSs, we developed two aggregation operators (LNPWA and LNPWG) for information fusion.
Then, we made some modifications in the classical TOPSIS method to determine the ranking order of
alternatives. The strengths of the proposed method have been discussed via comparative analysis.
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Nevertheless, this study also holds several limitations which can suggest several avenues for
future research. First, the information fusion process adds to the computational complexity of the
obtained results because the proposed LNPWA and LNPWG operators are both nonlinear weighted
average operators, where the weights associated with each DM should be calculated by their input
arguments. Fortunately, the pressure from complex computation can be remarkably eased with the
assistance of programming software. Second, with the rapid development of information technology,
it is also possible to extend the current results for other management systems under the network-based
environments [56,57].

By analyzing the achieved results, the practical implications of our research may be summarized
in two aspects. On the one hand, this study proposes a novel linguistic neutrosophic MCGDM method
which contributes to expanding the theoretical depth of university HRM. It may offer comprehensive
supports for decision-making of modern universities’ talent introduction. In addition, the developed
method can also be further expanded to solving group decision-making problems in other fields,
such as tourism. On the other hand, this study further explores the application of linguistic MCGDM
methods in HRM. The obtained knowledge can be very helpful to improve the performance of the
human resource of universities accordingly.
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Appendix A. Linguistic Scale Function

By means of literature review, we can gather the following choices acting as LSFs.

(1) The LSF f1 is based on the subscript function sub(hτ) = τ:

f1(hx) = θx =
x
2t

(x = 0, 1, · · · , 2t), θx ∈ [0, 1]. (A1)

The above function is divided on average. It is commonly used for its simple form and easy
calculation, but it lacks a reasonable theoretical basis [58].

(2) The LSF f2 is based on the exponential scale:

f2(hy) = θy =

{
αt−αt−y.

2αt−2 (y = 0, 1, · · · , t)
αt+αy−t−2

2αt−2 (y = t + 1, t + 2, · · · , 2t)
(A2)

Here, the absolute deviation between any two adjacent linguistic labels decreases with the increase
of y in the interval [0, t], and increases with the increase of y in the interval [t + 1, 2t].

(3) The LSF f3 is based on prospect theory:

f3(hz) = θz =

⎧⎨⎩ tβ−(t−z).β

2tβ (z = 0, 1, · · · , t)
tγ+(z−t)γ

2tγ (z = t + 1, t + 2, · · · , 2t)
(A3)

Here, β, γ ∈ [0, 1], and when β = γ = 1, the LSF f3 is reduced to f1. Moreover, the absolute
deviation between any two adjacent linguistic labels increases with the increase of y in the interval
[0, t], and decreases with the increase of y in the interval [t + 1, 2t].
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Each of the above LSFs f1, f2, and f3 can be expanded to a strictly monotonically increasing and
continuous function: f ∗ : S → R+ (R+ = {r|r ≥ 0, r ∈ R}) , which satisfies f ∗(sτ) = θτ . Therefore,
the inverse function of f ∗, denoted as f ∗−1, exists due to its monotonicity.

Appendix B. The Archimedean T-norm and T-conorm

According to Reference [59], a t-norm T(x, y) is called Archimedean t-norm if it is continuous
and T(x, x) < x, for all x ∈ (0, 1). An Archimedean t-norm is called a strict Archimedean t-norm
if it is strictly increasing in every variable for x, y ∈ (0, 1). In addition, a t-conorm S(x, y) is called
Archimedean t-conorm if it is continuous and S(x, x) > x, for all x ∈ (0, 1). An Archimedean t-conorm
is called a strict Archimedean t-conorm if it is strictly increasing in every variable for x, y ∈ (0, 1).

In this study, we apply one well-known Archimedean t-norm and t-conorm [60], as S(x, y) =

(x + y)/(1 + xy) and T(x, y) = xy/[1 + (1 − x)(1 − y)], respectively.

Appendix C. The Proof of Theorem 2

Proof. It is clear that properties (1)–(3) in Theorem 2 hold. The proof of property (4) in Theorem 2 is
shown below.

First, the distances d(ã, c̃), d(ã, b̃) and d(b̃, c̃) can be easily determined respectively as follows:

d(ã, c̃) = 1
3

(∣∣ f ∗
(
hTã

)− f ∗
(
hTc̃

)∣∣λ +
∣∣ f ∗

(
hIã

)− f ∗
(
hIc̃

)∣∣λ +
∣∣ f ∗

(
hF̃a

)− f ∗
(
hFc̃

)∣∣λ) 1
λ ,

d
(

ã, b̃
)
= 1

3

(∣∣∣ f ∗
(
hTã

)− f ∗
(

hTb̃

)∣∣∣λ +
∣∣∣ f ∗

(
hIã

)− f ∗
(

hIb̃

)∣∣∣λ +
∣∣∣ f ∗

(
hF̃a

)− f ∗
(

hF̃b

)∣∣∣λ) 1
λ

, and

d
(

b̃, c̃
)
= 1

3

(∣∣∣ f ∗
(

hTb̃

)
− f ∗

(
hTc̃

)∣∣∣λ +
∣∣∣ f ∗

(
hIb̃

)
− f ∗

(
hIc̃

)∣∣∣λ +
∣∣∣ f ∗

(
hF̃b

)
− f ∗

(
hFc̃

)∣∣∣λ) 1
λ

.

Since |a + b| ≤ |a|+ |b|, then
∣∣ f ∗

(
hTã

)− f ∗
(
hTc̃

)∣∣ = ∣∣∣ f ∗
(
hTã

)− f ∗
(

hTb̃

)
+ f ∗

(
hTb̃

)
− f ∗

(
hTc̃

)∣∣∣, and∣∣∣ f ∗
(
hTã

)− f ∗
(

hTb̃

)
+ f ∗

(
hTb̃

)
− f ∗

(
hTc̃

)∣∣∣ ≤ ∣∣∣ f ∗
(
hTã

)− f ∗
(

hTb̃

)∣∣∣+ ∣∣∣ f ∗
(

hTb̃

)
− f ∗

(
hTc̃

)∣∣∣.
Thus,

∣∣ f ∗
(
hTã

)− f ∗
(
hTc̃

)∣∣ ≤ ∣∣∣ f ∗
(
hTã

)− f ∗
(

hTb̃

)∣∣∣+ ∣∣∣ f ∗
(

hTb̃

)
− f ∗

(
hTc̃

)∣∣∣.
Similarly, we can obtain

∣∣ f ∗
(
hIã

)− f ∗
(
hIc̃

)∣∣ ≤ ∣∣∣ f ∗
(
hIã

)− f ∗
(

hIb̃

)∣∣∣ + ∣∣∣ f ∗
(

hIb̃

)
− f ∗

(
hIc̃

)∣∣∣, and∣∣ f ∗
(
hF̃a

)− f ∗
(
hFc̃

)∣∣ ≤∣∣∣ f ∗
(
hF̃a

)− f ∗
(

hF̃b

)∣∣∣+ ∣∣∣ f ∗
(

hF̃b

)
− f ∗

(
hFc̃

)∣∣∣.
Then
1
3

(∣∣ f ∗
(
hTã

)− f ∗
(
hTc̃

)∣∣λ +
∣∣ f ∗

(
hIã

)− f ∗
(
hIc̃

)∣∣λ +
∣∣ f ∗

(
hF̃a

)− f ∗
(
hFc̃

)∣∣λ) 1
λ ≤

1
3

(∣∣∣ f ∗
(
hTã

)− f ∗
(

hTb̃

)∣∣∣λ +
∣∣∣ f ∗

(
hIã

)− f ∗
(

hIb̃

)∣∣∣λ +
∣∣∣ f ∗

(
hF̃a

)− f ∗
(

hF̃b

)∣∣∣λ) 1
λ

+

1
3

(∣∣∣ f ∗
(

hTb̃

)
− f ∗

(
hTc̃

)∣∣∣λ +
∣∣∣ f ∗

(
hIb̃

)
− f ∗

(
hIc̃

)∣∣∣λ +
∣∣∣ f ∗

(
hF̃b

)
− f ∗

(
hFc̃

)∣∣∣λ) 1
λ

Thus, property (4) in Theorem 2 holds. �

Appendix D. The Proof of Theorem 3

For ease of computation, we assume that ζ j = wj
(
1 + G(ãj)

)
/

n
∑

j=1
wj
(
1 + G(ãj)

)
. In the following

steps, Equation (5) will be proven using mathematical induction on n.
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(1) Utilizing the operations for LNNs defined in Definition 2, when n = 2, we have

LNPWA(ã1, ã2) = ζ1 ã1 ⊕ ζ2 ã2 =〈
f ∗−1

((
1+ f ∗

(
hTã1

))ζ1
(

1+ f ∗
(

hTã2

))ζ2−
(

1− f ∗
(

hTã1

))ζ1
(

1− f ∗
(

hTã2

))ζ2(
1+ f ∗

(
hTã1

))ζ1
(

1+ f ∗
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))ζ2
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(

1− f ∗
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hTã1
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(

1− f ∗
(

hTã2

))ζ2

)
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f ∗−1

(
2
(

f ∗
(

hIã1

))ζ1
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f ∗
(

hIã2

))ζ2(
2− f ∗

(
hIã1
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(

2− f ∗
(

hIã2

))ζ2
+
(

f ∗
(

hIã1

))ζ1
(

f ∗
(

hIã2
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)
,
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(
2
(

f ∗
(
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(

f ∗
(
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))ζ2(
2− f ∗

(
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))ζ1
(
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(
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))ζ2
+
(

f ∗
(

hF̃a1

))ζ1
(

f ∗
(

hF̃a2

))ζ2

)〉
.

(A4)

That is

LNPWA(ã1, ã2) = ζ1 ã1 ⊕ ζ2 ã2 =〈
f ∗−1

⎛⎜⎝
2
∏
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(
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(
hTã

))ζ j− 2
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(
1− f ∗

(
hTã

))ζ j
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(
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))ζ j
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2
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(
1− f ∗
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))ζ j
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2
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(
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))ζ j
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2
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2
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⎞⎟⎠〉
(A5)

Thus, when n = 2, Equation (5) is true.

(2) Suppose that when n = k, Equation (5) is true. That is,

LNPWA(ã1, ã2, · · · , ãk) =〈
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))ζ j
+

k
∏
j=1

(
1− f ∗

(
hTã
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(A6)

Then, when n = k + 1, the following result can be obtained:

LNPWA(ã1, ã2, · · · , ãk+1) = LNPWA(ã1, ã2, · · · , ãk)⊕ ζk+1 ãk+1
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Then, when n = k + 1, Equation (5) is true. Therefore, Equation (5) is true for all n.
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Abstract: The uncertainty and concurrence of randomness are considered when many practical
problems are dealt with. To describe the aleatory uncertainty and imprecision in a neutrosophic
environment and prevent the obliteration of more data, the concept of the probabilistic single-valued
(interval) neutrosophic hesitant fuzzy set is introduced. By definition, we know that the probabilistic
single-valued neutrosophic hesitant fuzzy set (PSVNHFS) is a special case of the probabilistic interval
neutrosophic hesitant fuzzy set (PINHFS). PSVNHFSs can satisfy all the properties of PINHFSs.
An example is given to illustrate that PINHFS compared to PSVNHFS is more general. Then, PINHFS
is the main research object. The basic operational relations of PINHFS are studied, and the comparison
method of probabilistic interval neutrosophic hesitant fuzzy numbers (PINHFNs) is proposed. Then,
the probabilistic interval neutrosophic hesitant fuzzy weighted averaging (PINHFWA) and the
probability interval neutrosophic hesitant fuzzy weighted geometric (PINHFWG) operators are
presented. Some basic properties are investigated. Next, based on the PINHFWA and PINHFWG
operators, a decision-making method under a probabilistic interval neutrosophic hesitant fuzzy
circumstance is established. Finally, we apply this method to the issue of investment options.
The validity and application of the new approach is demonstrated.

Keywords: probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; multi-attribute
decision making; aggregation operator

1. Introduction

In real life, uncertainty widely exists, like an expert system, information fusion, intelligent
computations and medical diagnoses. When some decision problems need to be solved, establishing
mathematical models of uncertainty plays an important role. Especially when dealing with big data
problems, the uncertainty must be considered. Therefore, to describe the uncertainty of the problems,
Zadeh [1] presented the fuzzy set theory. Next, many new types of fuzzy set theory have been
developed, including the intuitionistic fuzzy set [2], hesitant fuzzy set (HFS) [3], dual hesitant fuzzy
set (DHFS) [4], interval-valued intuitionistic fuzzy set (IVIFS) [5,6], necessary and possible hesitant
fuzzy sets [7] and dual hesitant fuzzy probability [8]. The fuzzy set theory is a useful tool to figure
out uncertain information [9]. In addition, Fuzzy set theory has also been applied to algebraic
systems [10–13].
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Simultaneously, in actual productions, statistical uncertainty needs to be considered. The
probabilistic method is not always effective when we deal with epistemic uncertain problems [14].
Thus, those problems makes researchers attempt to combine fuzzy set theory with probability
theory as a new fuzzy concept. For example, (1) probability theory as a method of knowledge
representation [15–18]; (2) increase the probability value when processing fuzzy decision making
problems [19–21]; (3) through the combination of stochastic simulation with nonlinear programming,
the fuzzy values can be generated [22,23]. In [24], Hao et al. lists a detailed summary. In the
probabilistic fuzzy circumstances, probabilistic data will be lost easily. Thus, under the fuzzy linguistic
environments [25–27], Pang et al. [28] established a new type of probabilistic fuzzy linguistic term
set and successfully solved these issues. In some practical issues, it is necessary to fully consider
the ambiguity and probability. In 2016, Xu and Zhou [29] produced the hesitant probabilistic fuzzy
set (HPFS). Then, Hao et al. [24] researched a new probabilistic dual hesitant fuzzy set (PDHFS) and
applied it to the uncertain risk evaluation issues.

In [30], Smarandache introduced the neutrosophic set (NS) as a new type of fuzzy set. The NS A
includes three independent members: truth membership TA(x) ∈ [0, 1], indeterminacy membership
IA(x) ∈ [0, 1] and falsity membership FA(x) ∈ [0, 1]. NS theory has been widely used in algebraic
systems [31–36]. Next, some new types of NS were introduced, like single-valued NS (SVNS) [37]
and interval NS (INS) [38]. Ye utilized SVNS theory applied to different types of decision making
(DM) issues [39–41]. In [42], Ye presented a simplified neutrosophic set (SNS). Xu and Xia utilized HFS
theory for actual life productions [43–46]. Next, in a hesitant fuzzy environment, a group DM method
was introduced by Xu et al. [47]. However, there are some types of questions that are difficult to solve
by HFS. Thus, Zhu [4] introduced a DHFS theory. Then, Ye [48] established a correlation coefficient
of DHFS. When decision makers are making decisions, DHFS theory cannot express the doubts of
decision makers, completely. Next, in 2005, a single-valued neutrosophic hesitant fuzzy set (SVNHFS)
was established by Ye [49], and interval neutrosophic hesitant fuzzy set (INHFS) was introduced by
Liu [50]. Recently, neutrosophic fuzzy set theory has been widely researched and applied [51–55].

The aleatory uncertainty needs to be considered under the probabilistic neutrosophic hesitant
fuzzy environments. Recently, fuzzy random variables have been used to describe probability
information in uncertainty. However, in the above NS theories, the probabilities is not considered.
Thus, if a neutrosophic multi-attribute decision making (MADM) problem under the probabilistic
surroundings needs to be solved, the probabilities as a part of a fuzzy system will be lost. Until
now, this problem has not given an effective solution. Peng et al. [56] proposed a new method:
the probability multi-valued neutrosophic set (PMVNS). The PMVNS theory successfully solves
multi-criteria group decision-making problems without loss of information. Then, we offer the notion
of probabilistic SVNHFS (the probabilistic interval neutrosophic hesitant fuzzy set (PINHFS)) based on
fuzzy set, HFS, PDHFS, NS and IVNHFS. To solve the MADM problems under the probabilistic interval
neutrosophic hesitant fuzzy circumstance, the concept of PINHFS is used. By comparison, we find that
the application of PINHFS is wider than that of the probabilistic single-valued neutrosophic hesitant
fuzzy set (PSVNHFS), and it is closer to real life. Thus, we can study the case of the interval.

The rest of the paper is organized as follows: Section 2 briefly describes some basic definitions.
In Section 3, the concepts of PSVNHFS and PINHFS are introduced, respectively. Next, PINHFS
is the main research object. The comparison method of probabilistic interval neutrosophic hesitant
fuzzy numbers (PINHFNs) is proposed. In Section 4, the basic operation laws of PINHFN are
investigated. The probabilistic interval neutrosophic hesitant fuzzy weighted averaging (PINHFWA)
and the probability interval neutrosophic hesitant fuzzy weighted geometric (PINHFWG) operators
are established, and some basic properties are studied in Section 5. In Section 6, a MAMD method
based on the PINHFWA and PINHFWG operators is proposed. Section 7 gives an illustrative example
according to our method. To explain that PINHFS comparedto PSVNHFS is more extensive, in Section 8,
the PSVNHFS being a special case of PINHFS, the probabilistic single-valued neutrosophic hesitant
fuzzy weighted averaging (PSVNHFWA) and probabilistic single-valued neutrosophic hesitant fuzzy
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weighted geometric (PSVNHFWG) operators are introduced and a numerical example given to
illustrate. Last, we summarize the conclusion and further research work.

2. Preliminaries

Let us review some fundamental definitions of HFS, SVNHFS and INHFS in this section.

Definition 1. ([3]) Let X be a non-empty finite set; an HFS A on X is defined in terms of a function hA(x)
that when applied to X returns a finite subset of [0, 1], and we can express HFSs by:

A = {〈x, hA(x)〉|x ∈ X},

where hA(x) is a set of some different values in [0, 1], representing the possible membership degrees of the element
x ∈ X to A. We call hA(x) a hesitant fuzzy element (HFE), denoted by h, which reads h = {λ|λ ∈ h}.

Definition 2. ([49]) Let X be a fixed set; an SVNHFS on X is defined as:

N = {〈x, t̃(x), ĩ(x), f̃ (x)〉|x ∈ X}

in which t̃(x), ĩ(x) and f̃ (x) are three sets of some values in [0, 1], denoting the possible truth-membership
hesitant degrees, indeterminacy-membership hesitant degrees and falsity-membership hesitant degrees of
the element x ∈ X to the set N, respectively, with the conditions 0 ≤ δ, γ, η ≤ 1 and 0 ≤ δ+ + γ+ + η++ ≤ 3,
where δ ∈ t̃(x), γ ∈ ĩ(x), η ∈ f̃ (x), δ+ ∈ t̃(x) =

⋃
δ∈t̃(x) maxδ, γ+ ∈ ĩ(x) =

⋃
γ∈ĩ(x) maxγ,

η+ ∈ f̃ (x) =
⋃

η∈ f̃ (x) maxη for x ∈ X.

Definition 3. ([50]) Let X be a non-empty finite set; an interval neutrosophic hesitant fuzzy set (INHFS) on X
is represented by:

A = {(x, TA(x), IA(x), FA(x))|x ∈ X},

where TA(x) = {α̃|α̃ ∈ TA(x)}, IA(x) = {β̃|β̃ ∈ IA(x)} and TA(x) = {γ̃|γ̃ ∈ FA(x)} are three sets of
some interval values in real unit interval [0, 1], which denotes the possible truth-membership hesitant degrees,
indeterminacy-membership hesitant degrees and falsity-membership hesitant fuzzy degrees of element x ∈ X
to the set A and satisfies these limits: α̃ = [αL, αU ] ⊆ [0, 1], β̃ = [βL, βU ] ⊆ [0, 1], γ̃ = [γL, γU ] ⊆ [0, 1]
and 0 ≤ supα̃+ + supβ̃+ + supγ̃+ ≤ 3, where α̃+ =

⋃
α̃∈TA(x) max{α̃}, β̃+ =

⋃
β̃∈IA(x) max{β̃} and

γ̃+ =
⋃

γ̃∈FA(x) max{γ̃} for x ∈ X.

3. The Probabilistic Single-Valued (Interval) Neutrosophic Hesitant Fuzzy Set

In this section, the concepts of PSVNHFS and PINHFS are introduced. Since PINHFS is more
general than PSVNHFS, the situation of PINHFS is mainly discussed.

Definition 4. Let X be a fixed set. A probabilistic single-valued neutrosophic hesitant fuzzy set (PSVNHFS)
on X is defined by the following mathematical symbol:

NP = {〈x, t̃(x)|Pt̃(x), ĩ(x)|Pĩ(x), f̃ (x)|P f̃ (x)〉|x ∈ X}. (1)

The components t̃(x)|Pt̃(x), ĩ(x)|Pĩ(x) and f̃ (x)|P f̃ (x) are three sets of some possible elements where
t̃(x), ĩ(x) and f̃ (x) represent the possible truth-membership hesitant degrees, indeterminacy-membership
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hesitant degrees and falsity-membership hesitant degrees to the set X of x, respectively. Pt̃(x), Pĩ(x) and P f̃ (x)
are the corresponding probabilistic information for these three types of degrees. There is:

0 ≤ α, β, γ ≤ 1, 0 ≤ δ+ + γ+ + η++ ≤ 3; Pt̃
a ∈ [0, 1], Pĩ

b ∈ [0, 1], P f̃
c ∈ [0, 1];

#t̃

∑
a=1

Pt̃
a = 1,

#ĩ

∑
b=1

Pĩ
b = 1,

# f̃

∑
c=1

P f̃
c = 1.

where α ∈ t̃(x), β ∈ ĩ(x), γ ∈ f̃ (x). α+ ∈ t̃+(x) ==
⋃

α∈t̃(x) maxα, β+ ∈ ĩ+(x) =
⋃

β∈ĩ(x) maxβ,

γ+ ∈ f̃+(x) =
⋃

γ∈ f̃ (x) maxγ, Pt̃
a ∈ Pt̃, Pĩ

b ∈ Pĩ, P f̃
c ∈ P f̃ . The symbols #t̃, #ĩ and # f̃ are the total numbers

of elements in the components t̃(x)|Pt̃(x), ĩ(x)|Pĩ(x) and f̃ (x)|P f̃ (x), respectively.

For convenience, we call ñp = 〈t̃(x)|Pt̃(x), ĩ(x)|Pĩ(x), f̃ (x)|P f̃ (x)〉 a probabilistic single-valued
neutrosophic hesitant fuzzy number (PSVNHFN). It is defined by the mathematical symbol: ñ =

{t̃|Pt̃, ĩ|Pĩ, f̃ |P f̃ }.
Next, a numerical example about investment options is used to explain the PSVNHFS.

Example 1. OF four investment selections Ah, select the only investment option of an investment company.
The investment corporation wants to have an effective evaluation and to choose the best investment opportunity;
thus, the decision maker needs to use the PSVNHFS theory. According to the practical situation, there are three
main attributes: (1) C1 is the hazard of investment; (2) C2 is the future outlook; (3) C3 is the environment index.
Thus, the data on these four options are represented by SVNHFS, as illustrated in Tables 1–4. Every table is
called a probabilistic single-valued neutrosophic hesitant fuzzy decision matrix (PSVNHFDM).

Table 1. A probabilistic single-valued neutrosophic hesitant fuzzy decision matrix (PSVNHFDM) D1

with respect to A1.

Attributes Investment Selection A1

C1 {{0.3|0.2, 0.4|0.3, 0.5|0.5}, {0.1|1}, {0.3|0.6, 0.4|0.4}}
C2 {{0.5|0.5, 0.6|0.5}, {0.2|0.2, 0.3|0.8}, {0.3|0.4, 0.4|0.6}}
C3 {{0.2|0.1, 0.3|0.9}, {0.1|0.3, 0.2|0.7}, {0.5|0.2, 0.6|0.8}}

Table 2. PSVNHFDM D2 with respect to A2.

Attributes Investment Selection A2

C1 {{0.6|0.1, 0.7|0.9}, {0.1|0.4, 0.2|0.6}, {0.2|0.5, 0.3|0.5}}
C2 {{0.6|0.2, 0.7|0.8}, {0.1|1}, {0.3|1}}
C3 {{0.6|0.3, 0.7|0.7}, {0.1|0.6, 0.2|0.4}, {0.1|0.7, 0.2|0.3}}

Table 3. PSVNHFDM D3 with respect to A3.

Attributes Investment Selection A3

C1 {{0.5|0.5, 0.6|0.5}, {0.4|1}, {0.2|0.2, 0.3|0.8}}
C2 {{0.6|1}, {0.3|1}, {0.4|1}}
C3 {{0.5|0.6, 0.6|0.4}, {0.1|1}, {0.3|1}}

Table 4. PSVNHFDM D4 with respect to A4.

Attributes Investment Selection A4

C1 {{0.7|0.4, 0.8|0.6}, {0.1|1}, {0.1|0.1, 0.2|0.9}}
C2 {{0.6|0.6, 0.7|0.4}, {0.1|1}, {0.2|1}}
C3 {{0.3|0.9, 0.5|0.1}, {0.2|1}, {0.1|0.1, 0.2|0.8, 0.3|0.1}}
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In general, in the real world, if the three types of hesitant degrees of the PSVNHFS are interval
values, this is a special case of INHFS. This kind of interval is more able to express the problems that
people encounter when making choices in real life. However, the PSVNHFS is not an effective tool to
solve this problem. Thus, we need to propose a new method to solve this problem. Then, the SVNHFS
can be used as a special case of the probabilistic interval neutrosophic hesitant fuzzy circumstance.
Thus, the probabilistic interval neutrosophic hesitant fuzzy set (PINHFS) is proposed and studied.
The advantages of this are: SVNHFS can be studied in a wider range; the scope of application is also
broader and closer to real life. Hence, we will give the concept of PINHFS. Simultaneously, in the rest
of this paper, we take PINHFS as an example to conduct research.

Definition 5. Let X be a fixed set, a probabilistic interval neutrosophic hesitant fuzzy set (PINHFS) on X is
defined by the following mathematical symbol:

N = {〈x, T(x)|PT(x), I(x)|PI(x), F(x)|PF(x)〉|x ∈ X}.

The components T(x)|PT(x), I(x)|PI(x) and F(x)|PF(x) are three sets of possible elements where T(x),
I(x) and F(x) are three sets of some interval values in the real unit interval [0, 1], which denotes the possible
truth-membership hesitant degrees, indeterminacy-membership hesitant degrees and falsity-membership hesitant
fuzzy degrees of element x ∈ X to the set N, respectively. PT(x), PI(x) and PF(x) are the corresponding
probabilistic information for these three types of degrees. There is:

α̃ = [αL, αU ] ⊆ [0, 1], β̃ = [βL, βU ] ⊆ [0, 1], γ̃ = [γL, γU ] ⊆ [0, 1]; 0 ≤ supα̃+ + supβ̃+ + supγ̃+ ≤ 3;

PT
a ∈ [0, 1], PI

b ∈ [0, 1], PF
c ∈ [0, 1],

#T

∑
a=1

PT
a = 1,

#I

∑
b=1

PI
b = 1,

#F

∑
c=1

PF
c = 1;

where α̃ ∈ T(x), β̃ ∈ I(x) and γ̃ ∈ F(x). α̃+ =
⋃

α̃∈TA(x) max{α̃}, β̃+ =
⋃

β̃∈IA(x) max{β̃}, and γ̃+ =⋃
γ̃∈FA(x) max{γ̃}. PT

a ∈ PT, PI
b ∈ PI, PF

c ∈ PF. The symbols #T, #I and # f̃ are the total numbers of elements
in the components T(x)|PT(x), I(x)|PI(x) and F(x)|PF(x), respectively.

For convenience, we call n = 〈T(x)|PT(x), I(x)|PI(x), F(x)|PF(x)〉 a probabilistic interval
neutrosophic hesitant fuzzy number (PINHFN). It is defined by the mathematical symbol: n =

{T|PT , I|PI , F|PF}
If αL = αU , βL = βU , γL = γU , the PINHFS is transformed into the PSVNHFS.
Therefore, we know PINHFS is more general than PSVNHFS. PSVNHFS can satisfy all

the properties of PINHFS. Thus, this paper mainly studies PINHFS.

Definition 6. For a PINHFN n, where a = 1, 2, ..., #T, b = 1, 2, ..., #I, c = 1, 2, ..., #F, the score function s(n)
is defined as:

s(n) =
∑#T

a=1(α
L
a + αU

a )PT
a + ∑#I

b=1(2 − (βL
b + βU

b ))PI
b + ∑#F

c=1(2 − (γL
c + βU

c ))PF
c

6
, (2)

where #T, #I and # f̃ are the total numbers of elements in the components T(x)|PT(x), I(x)|PI(x) and
F(x)|PF(x), respectively.

Definition 7. For a PINHFN n, where a = 1, 2, ..., #T, b = 1, 2, ..., #I, c = 1, 2, ..., #F, the deviation function
d(n) is defined as:

d(n) =
∑#T

a=1(α
L
a + αU

a − 2s(n))2 · PT
a + ∑#I

b=1(2 − βL
b − βU

b − 2s(n))2 · PI
b + ∑#F

c=1(2 − γL
c − βU

c − 2s(n))2 · PF
c

4
(3)
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where #T, #I and # f̃ are the total numbers of elements in the components T(x)|PT(x), I(x)|PI(x) and
F(x)|PF(x), respectively.

Definition 8. Let n1 and n2 be two PINHFNs, the comparison of the method for n1 and n2 is as follows:

(1) If s(n1) > s(n2), then n1 > n2;
(2) If s(n1) = s(n2), d(n1) > d(n2), then n1 > n2;
(3) If s(n1) = s(n2), d(n1) = d(n2), then n1 = n2.

4. Some Basic Operations of PINHFNs

Definition 9. Let n1 = {T1|PT1 , I1|PI1 , F1|PF1} and n2 = {T2|PT2 , I2|PI2 , F2|PF2} be two PINHFNs, then:

(1) (n1)
c =

⋃
α̃1∈T1,β̃1∈I1,γ̃1∈F1

{γ̃1|PF1
1 , [1 − βU

1 , 1 − βL
1 ]|PI1

1 , α̃1|PT1
1 },

(2) n1 ∩ n2 =
⋂

α̃1∈T1,β̃∈I1,γ̃1∈F1,
η̃2∈T2,θ̃∈I2,μ̃2∈F2

{{α̃1 ∩ η̃2| P
T1
2 PT2

2

∑ P
T1
1 PT2

2

}, {β̃1 ∪ θ̃2| P
I1
1 PI2

2

∑ P
I1
1 PI2

2

},

{γ̃1 ∪ μ̃2| P
F1
1 PF2

2

∑ P
F1
1 PF2

2

}},

(3) n1 ∪ n2 =
⋃

α̃1∈T1,β̃∈I1,γ̃2∈F1,η̃2∈T2,θ̃∈I2,μ̃2∈F2

{{α̃1 ∪ η̃2| P
T1
1 PT2

2

∑ P
T1
1 PT2

2

}, {β̃1 ∩ θ̃2| P
I1
1 PI2

2

∑ P
I1
b′ PI2

2

},

{γ̃1 ∩ μ̃2| P
F1
1 PF2

2

∑ P
F1
1 PF2

2

}},

(4) (n1)
λ =

⋃
α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[(αL
1 )

λ, (αU
1 )

λ]|PT1
1 }, {[1 − (1 − βL

1 )
λ, 1 − (1 − βU

1 )
λ]|PI1

1 },

{[1 − (1 − γL
1 ), 1 − (1 − γU

1 )]
λ|PF1

1 }},

(5) λ(n1) =
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[1 − (1 − λL
1 )

λ, 1 − (1 − λL
1 )

λ]|PT1
1 }, {[(βL

1 )
λ, (βU

1 )
λ]|PI1

1 }, {[(γL
1 )

λ, (γU
1 )λ]|PF1

1 }},

(6) n1 ⊕ n2 =
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[αL
1 + ηL

2 − αL
2 ηL

2 , αU
1 + ηU

2 − αU
2 ηU

2 ]|PT1
1 PT2

2 },

{[βL
1 θL

2 , βU
1 θU

2 ]|PI1
1 PI2

2 }, {[γL
1 μL

2 , γU
1 μU

2 ]|PF1
1 PF2

c2 }},

(7) n1 ⊗ n2 =
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[αL
1 ηL

2 , αU
1 ηU

2 ]|PT1
1 PT2

2 },

{[βL
1 + θL

2 − βL
1 θL

2 , βU
1 + θU

2 − βU
1 θU

2 |PI1
1 PI2

2 },
{[γL

1 + μL
2 − γL

1 μL
2 , γU

1 + μU
2 − γU

1 μU
2 ]|PF1

1 PF2
c2 }},

where PT1
1 ; PI1

1 and PF1
1 are hesitant probabilities of α̃1 ∈ T1, β̃1 ∈ I1 and γ̃1 ∈ F1, respectively. PT2

2 ; PI2
2

and PF2
1 are corresponding hesitant probabilities of η̃2 ∈ T2, θ̃2 ∈ I2 and μ̃2 ∈ F2.

Theorem 1. Let n1 and n2 be two PINHFNs, then (n1)
c, n1 ∩ n2, n1 ∪ n2, (n1)

λ, λ(n1), n1 ⊕ n2 and n1 ⊗ n2

are PINHFNs.
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Proof. By Definition 5, Definition 9, it is easy to prove the result.

Theorem 2. Let n1 = (T1|PT1 , I1|PI1 , F1|PF1), n2 = (T2|PT2 , I2|PI2 , F2|PF2) and n3 =

(T3|PT3 , I3|PI3 , F3|PF3) be three PINHFNs, λ, λ1, λ2 ≥ 0, then:

(1) n1 ⊕ n2 = n2 ⊕ n1; n1 ⊗ n2 = n2 ⊗ n1,
(2) (n1 ⊕ n2)⊕ n3 = n1 ⊕ (n2 ⊕ n3); (n1 ⊗ n2)⊗ n3 = n1 ⊗ (n2 ⊗ n3),
(3) λ(n1 ⊕ n2) = λ(n1)⊕ λ(n2),
(4) (n1 ⊗ n2)

λ = (n1)
λ ⊗ (n2)

λ,
(5) (n1)

λ1+λ2 = (n1)
λ1 ⊗ (n1)

λ2 ; (λ1 + λ2)n1 = λ1(n1)⊕ λ2(n1).

Proof. If PT1
1 ; PI1

1 and PF1
1 are probabilities of α̃1 ∈ T1, β̃1 ∈ I1 and γ̃1 ∈ F1, respectively. PT2

2 , PI2
2 and

PF2
2 are corresponding probabilities of η̃2 ∈ T2, θ̃2 ∈ I2 and μ̃2 ∈ F2. PT3

3 , PI3
3 and PF3

3 are corresponding
probabilities of ξ̃3 ∈ T3, σ̃3 ∈ I3 and φ̃3 ∈ F3, then we have:

(1) By Definition 9, we can get that (1) is true.

(2)

(n1 ⊕ n2)⊕ n3 =
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2
ξ̃3∈T3,σ̃3∈I3,φ̃3∈F3

{{[αL
1 + (ηL

2 + ξL
3 − ηL

2 ξL
3 )− αL

1 (η
L
2 + ξL

3 − ηL
2 ξL

3 ),

αU
1 + (ηU

2 + ξU
3 − ηU

2 ξU
3 )− αU

1 (η
U
2 + ξU

3 − ηU
2 ξU

3 )]|PT1
1 (PT2

2 PT3
3 )},

{[βL
1 (θ

L
2 σL

3 ), βU
1 (θ

U
2 σU

3 )]|PI1
1 (PI2

2 PI3
3 )},

{[λL
1 (μ

L
2 φL

3 ), λU
1 (μ

U
2 φU

3 )]|PF1
1 (PF2

2 PF3
3 )}}

= n1 ⊕ (n2 ⊕ n3).

Similarly, we can obtain (n1 ⊗ n2)⊗ n3 = n1 ⊗ (n2 ⊗ n3).

(3)

λ(n1 ⊕ n2) =
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[1 − (1 − (αL
1 + ηL

2 − αL
1 ηL

2 ))
λ, 1 − (1 − (αU

1 + ηU
2 − αU

1 ηU
2 ))λ]|PT1

1 PT22}

{[(βL
1 )

λ(θL
2 )

λ, (βU
1 )

λ(θU
2 )λ]|PI1

1 PI2
2 }, {[(γL

1 )
λ(μL

2 )
λ, (γU

1 )λ(μU
2 )

λ]|PF1
1 PF2

2 }}

=
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[1 − (1 − αL
1 )

λ, 1 − (1 − αU
1 )

λ]|PT1
1 }, {[(βL

1 )
λ, (βU

1 )
λ|PI1

1 }, {[(γL
1 )

λ, (γU
1 )λ]|PF1

1 }}

⊕ ⋃
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[1 − (1 − ηL
2 )

λ, 1 − (1 − ηU
2 )λ]|PT2

2 }, {[(θL
2 )

λ, (θU
2 )λ]|PI2

2 }, {[(μL
2 )

λ, (μU
2 )

λ]|PF2
2 }}

= λ(n1)⊕ λ(n2).
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(4)

(n1 ⊗ n2)
λ =

⋃
α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[(αL
1 ηL

2 )
λ, (αU

1 ηU
2 )λ]|PT1

1 PT2
2 )},

{[1 − (1 − (βL
1 + θL

2 − βL
1 θL

2 ))
λ, 1 − (1 − (βU

1 + θU
2 − βU

1 θU
2 ))λ]|PI1

1 PI2
2 },

{[1 − (1 − (γL
1 + μL

2 − γL
1 μL

2 ))
λ, 1 − (1 − (γU

1 + μU
2 − γU

1 μU
2 ))

λ]|PF1
1 PF2

2 }}

=
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[(αL
1 )

λ, (αU
1 )

λ]|PT1
1 }, {[1 − (1 − βL

1 )
λ, 1 − (1 − βU

1 )
λ]|PI1

1 },

{[1 − (1 − γL
1 )

λ, 1 − (1 − γU
1 )

λ]|PF1
1 }}

⊗ ⋃
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[(ηL
2 )

λ, (ηU
2 )λ]|PT2

2 }, {[1 − (1 − θL
2 )

λ, 1 − (1 − θU
2 )λ]|PI2

2 },

{[1 − (1 − μL
2 )

λ, 1 − (1 − μU
2 )

λ]|PF2
2 }}

= (n1)
λ ⊗ (n2)

λ.

(5)

(n1)
λ1+λ2 =

⋃
α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[(αL
1 )

λ1+λ2 , (αU
1 )

λ1+λ2 ]|PT1
1 }, {[1 − (1 − βL

1 )
λ1+λ2 , 1 − (1 − βU

1 )
λ1+λ2 ]|PI1

1 },

{[1 − (1 − γL
1 )

λ1+λ2 , 1 − (1 − γU
1 )λ1+λ2 ]|PF1

1 }}

=
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{αλ1
a′ |Pt̃1

a′ }, {(1 − (1 − βb′ )
λ1 )|Pĩ1

b′ }, {(1 − (1 − γc′ )
+λ1 )|P f̃1

c′ }}

⊗ ⋃
α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[(αL
1 )

λ2 , (αU
1 )

λ2 ]|PT1
1 }, {[1 − (1 − βL

1 )
λ2 , 1 − (1 − βU

1 )
λ2 ]|PI1

1 },

{[1 − (1 − γL
1 )

λ2 , 1 − (1 − γU
1 )λ2 ]|PF1

1 }}

= (n1)
λ1 ⊗ (n1)

λ2 .

Similarly, we have (λ1 + λ2)n1 = λ1(n1)⊕ λ2(n1).

Theorem 3. Let n1 and n2 be two PINHFNs, λ ≥ 0, then:

(1) ((n1)
c)λ = (λ(n1))

c,
(2) λ(n1)

c = ((n1)
λ)c,

(3) (n1)
c ⊕ n2

c = (n1 ⊗ n2)
c,

(4) (n1)
c ⊗ (n2)

c = (n1 ⊕ n2)
c.

Proof. PT1
1 ; PI1

1 and PF1
1 are hesitant probabilities of α̃1 ∈ T1, β̃1 ∈ I1 and γ̃1 ∈ F1, respectively. PT2

2 , PI2
2

and PF2
2 are corresponding hesitant probabilities of η̃2 ∈ T2, θ̃2 ∈ I2 and μ̃2 ∈ F2. Then:
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(1)

((n1)
c)λ = (

⋃
α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[γL
1 , γU

1 ]|PF1
1 }, {[1 − βU

1 , 1 − βU
1 ]|PI1

1 }, {αL
1 , αU

1 ]|PT1
1 }})λ

=
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[(γL
1 )

λ, (γU
1 )

λ]|PF1
1 }, {[1 − (βU

1 )
λ, 1 − (βU

1 )
λ]|PI1

1 },

[1 − (1 − αL
1 )

λ, 1 − (1 − αU
1 )

λ]|Pt̃1
1 }

= (λ(
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[αL
1 , αU

1 ]|PT1
1 }, [βL

1 , βU
1 ]|PI1

1 }, [γL
1 , γU

1 ]|PF1
1 }}))c

= (λ(n1))
c.

(2)

λ(n1)
c = λ(

⋃
α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[γL
1 , γU

1 ]|PF1
1 }, [1 − βU

1 , 1 − βU
1 ]|PI1

1 }, {[αL
1 , αL

1 ]|PT1
1 }})

=
⋃

αa′ ∈t̃1,βb′ ∈ĩ1,γc′ ∈ f̃1

{{1 − (1 − γL
1 )

λ, 1 − (1 − γU
1 )

λ]|PF1
1 }, {[(1 − βU

1 )
λ, (1 − βL

1 )
λ]|PI1

1 },

{[(αL
1 )

λ, (αU
1 )

λ]|PT1
1 }}

= (
⋃

αa′ ∈t̃1,βb′ ∈ĩ1,γc′ ∈ f̃1

{{[(αL
1 )

λ, (αU
1 )

λ]|PT1
1 }, {[1 − (1 − βL

1 )
λ, 1 − (1 − βU

1 )
λ]|PI1

1 },

{[1 − (1 − γL
1 )

λ, 1 − (1 − γU
1 )

λ]|PF1
1 }})c

= ((n1)
λ)c.

(3)

(n1)
c ⊕ (n2)

c = (
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[γL
1 , γU

1 ]|PF1
1 }, {[1 − βU

1 , 1 − βL
1 ]|PI1

1 }, {[αL
1 , αU

1 ]|PT1
1 }})

⊕ (
⋃

η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{[μL
2 , μU

2 ]|PF2
2 }, {[1 − θU

2 , 1 − θL
2 ]|PI2

2 }, {[ηL
2 , ηU

2 ]|PT2
2 }})

=
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[γL
1 + μL

2 − γL
1 μL

2 , γU
1 + μU

2 − γU
1 μU

2 ]|PF1
1 PF2

2 },

{[(1 − βL
2 )(1 − θL

2 ), (1 − βU
2 )(1 − θU

2 )]|PI1
1 PI2

2 }, {[αL
1 ηL

2 , αU
1 ηU

2 ]|PT1
1 PT2

2 }}

= (
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[αL
1 ηL

2 , αU
1 ηU

2 ]|PT1
1 PT2

2 }, {[βL
1 + θL

2 − βL
1 θL

2 , βU
1 + θU

2 − βU
1 θU

2 ]|PI1
1 PI2

2 },

{[γL
1 + μL

2 − γL
1 μL

2 , γU
1 + μU

2 − γU
1 μU

2 ]|PF1
1 PF2

2 }})c

= (n1 ⊗ n2)
c.
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(4)

(n1)
c ⊗ (n2)

c = (
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1

{{[γL
1 , γU

1 ]|PF1
1 }, {[1 − βU

1 , 1 − βL
1 ]|PI1

1 }, {[αL
1 , αU

1 ]|PT1
1 }})

⊗ (
⋃

η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[μL
2 , μU

2 ]|PF2
2 }, {[1 − θU

2 , 1 − θL
2 ]|PI2

2 }, {[ηL
2 , ηU

2 ]|PT2
2 }})

=
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[γL
1 μL

2 , γU
1 μU

2 ]|PF1
1 PF2

2 }, {[1 − βU
1 θU

2 , 1 − βL
1 θL

2 ]|PI1
1 PI2

2 },

{[αL
1 + ηL

2 − αL
1 ηL

2 , αU
1 + ηU

2 − αU
1 ηU

2 ]|PT1
1 PT2

2 }}

= (
⋃

α̃1∈T1,β̃1∈I1,γ̃1∈F1,
η̃2∈T2,θ̃2∈I2,μ̃2∈F2

{{[αL
1 + ηL

2 − αL
1 ηL

2 , αU
1 + ηU

2 − αU
1 ηU

2 ]|PT1
1 PT2

2 }, {[βL
1 θL

2 , βU
1 θU

2 ]|PI1
1 PI2

2 },

{[γL
1 μL

2 , γU
1 μU

2 ]|PF1
1 PF2

2 }})c

= (n1 ⊕ n2)
c.

The PSVNHFS also satisfies the above properties, and the process of the proof is omitted.

5. The Basic Aggregation Operators for PINHFSs

Definition 10. Let nj (x = 1, 2, · · · , X) be a non-empty collection of PINHFNs, then a probabilistic interval
neutrosophic hesitant fuzzy weighted averaging (PINHFWA) operator can be indicated as:

PINHFWA(n1, n2, · · · , nX) =
X⊕

j=1

wj(nj)

=
⋃{{[1 −

X

∏
j=1

(1 − αL
j )

wj , 1 −
X

∏
j=1

(1 − αU
j )

wj ]|
X

∏
j=1

P
Tj
j },

{[
X

∏
j=1

(βL
j )

wj ,
X

∏
j=1

(βU
j )

wj ]|
X

∏
j=1

P
Ij
j }, {[

X

∏
j=1

(γL
j )

wj ,
X

∏
j=1

(γL
j )

wj ]|
X

∏
j=1

P
Fj
j }},

(4)

where [αL
j , αU

j ] = α̃j ∈ Tj, [βL
j , βU

j ] = β̃ j ∈ Ij, [γL
j , γU

j ] = γ̃ ∈ Fj, P
Tj
j , P

Ij
j and P

Fj
j are corresponding hesitant

probabilities of α̃j ∈ Tj, β̃ j ∈ Ij and γ̃j ∈ Fj. j = 1, 2, · · · , X, wj is the weight of nj and
X
∑

j=1
wj = 1. If all

wights are 1
X , then the PINHFWA operator reduces to the probabilistic interval neutrosophic hesitant fuzzy

averaging (PINHFA) operator:

PINHFA(n1, n2, · · · , nX) =
X⊕

j=1

1
X
(nj)

=
⋃{{[1 −

X

∏
j=1

(1 − αL
j )

1
X , 1 −

X

∏
j=1

(1 − αL
j )

1
X ]|

X

∏
j=1

P
Tj
j },

{[
X

∏
j=1

(βL
j )

1
X ,

X

∏
j=1

(βU
j )

1
X ]|

X

∏
j=1

P
Ij
j }, {[

X

∏
j=1

(γL
j )

1
X ,

X

∏
j=1

(γU
j )

1
X ]|

X

∏
j=1

P
Fj
j }}.

(5)
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Theorem 4. (Monotonicity) Let nj = {{α̃j|PTj
J }, {β̃ j|PIj

j }, {γ̃j|PFj
j }} and mj =

{{η̃j|P
T∗

j
j }, {θ̃2|P

I∗j
j }, {μ̃j|P

F∗
j

j }} be two collections of PINHFNs; wj(j = 1, 2, · · · , X) is weight, and

∑n
j=1 wj = 1. If P

Tj
j = P

T∗
j

j , P
Ij
j = P

I∗j
j , P

Fj
j = P

F∗
j

j and αL
j ≤ ηL

j , αU
j ≤ ηU

j , βL
j ≥ θL

j , βU
j ≥ θU

j , γL
j ≥ μL

j ,
γU

j ≥ μU
j , then:

PINHFWA(n1, n2, · · · , nX) ≤ PINHFWA(m1, m2, · · · , mX). (6)

Proof. Since αL
j ≤ ηL

j , αU
j ≤ ηU

j , βL
j ≥ θL

j , βU
j ≥ θU

j , γL
j ≥ μL

j , γU
j ≥ μU

j for all j, we have:

1 − ∏(1 − αL
j )

wj ≤ 1 − ∏(1 − ηL
j )

wj , 1 − ∏(1 − αU
j )

wj ≤ 1 − ∏(1 − ηU
j )

wj ;

∏(βL
j )

wj ≥ ∏(θL
j )

wj , ∏(βU
j )

wj ≥ ∏(θU
j )

wj ;

∏(γL
j )

wj ≥ ∏(μL
j )

wj , ∏(γU
j )

wj ≥ ∏(μU
j )

wj .

Simultaneously, we have P
Tj
j = P

T∗
j

j , P
Ij
j = P

I∗j
j , P

Fj
j = P

F∗
j

j , so we can obtain:

(1 − ∏(1 − αL
j )

wj)∏ P
Tj
j − ∏(βL

j )
wj ∏ P

Ij
j − ∏(γL

j )
wj ∏ P

Fj
j } ≤

(1 − ∏(1 − ηL
j )

wj)∏ P
T∗

j
j − ∏(θL

j )
wj ∏ P

I∗j
j ∏(μL

j )
wj ∏ P

F∗
j

j ,

(1 − ∏(1 − αU
j )

wj)∏ P
Tj
j − ∏(βU

j )
wj ∏ P

Ij
j − ∏(γU

j )
wj ∏ P

Fj
j } ≤

(1 − ∏(1 − ηU
j )

wj)∏ P
T∗

j
j − ∏(θU

j )
wj ∏ P

I∗j
j ∏(μU

j )
wj ∏ P

F∗
j

j ,

then by the score function 6 and Definition 8, we have PINHFWA(n1, n2, · · · , nX) ≤
PINHFWA(m1, m2, · · · , mX).

Theorem 5. (Boundedness) Let nj = {{α̃j|PTj
j }, {β̃ j|PIj}, {γ̃j|PFj}} be a PINHFN (j = 1, 2, · · · , X), α̃j ∈

Tj, β̃b ∈ Ij, γ̃j ∈ Fj, P
Tj
j ; P

Ij
j and P

Fj
j are hesitant probabilities of α̃j, β̃ j and γ̃j, respectively. wj (j = 1, 2, · · · , X)

is a weight, and ∑X
j=1 wj = 1. If:

N− = {{[min{αL
j }, min{αU

j }]|min{P
Tj
j }}, {[max{βL

j }, max{βU
j }]|max{P

Ij
j }}, {[max{γL

j }, max{γL
j }]|max{P

Fj
j }}},

N+ = {{[max{αL
j }, max{αU

j }]|max{P
Tj
j }}, {[min{βL

j }, min{βU
j }]|min{P

Ij
j }}, {[min{γL

j }, min{γL
j }]|min{P

Fj
j }}}.

Then:

PINHFWA(N−) ≤ PINHFWA(n1, n2, · · · , nX) ≤ PINHFWA(N+) (7)

Proof. For all PINHFNs nl , we have:

min{αL
j } ≤ αL

j ≤ max{αL
j }, min{αU

j } ≤ αU
j ≤ max{αU

j };

min{βL
j } ≤ βL

j ≤ max{βL
j }, min{βU

j } ≤ βU
j ≤ max{βU

j };

min{γL
j } ≤ γL

j ≤ max{γL
j }, min{γU

j } ≤ γU
j ≤ max{γU

j };

min{P
Tj
j } ≤ P

Tj
j ≤ max{P

Tj
j }, min{P

Ij
j } ≤ PIl

j ≤ max{P
Ij
j },

min{P
Fj
j } ≤ P

Fj
j ≤ max{P

Fj
j }.
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Thus,

1 − ∏(1 − αL
j )

wj ≥ 1 − ∏(1 − min{αL
j })wj = 1 − (1 − min{αL

l })∑ wj = min{αL
j },

1 − ∏(1 − αU
j )

wj ≥ 1 − ∏(1 − min{αU
j })wj = 1 − (1 − min{αU

l })∑ wj = min{αU
j },

∏(βL
j )

wj ≤ ∏(max{βL
j })wj = (max{βL

j })∑ wj = max{βL
j },

∏(βU
j )

wj ≤ ∏(max{βU
j })wj = (max{βU

j })∑ wj = max{βU
j },

∏(γL
j )

wj ≤ ∏(max{γL
j })wj = (max{γL

j })∑ wj = max{γL
j },

∏(γU
j )

wj ≤ ∏(max{γU
j })wj = (max{γU

j })∑ wj = max{γU
j }.

Next, by Definition 10, we have:

NHPFWA(N−) =
⋃{{[min{αL

j }, min{αU
j }]|∏ min{P

Tj
j }, {[max{βL

j }, max{βU
j }]|∏ max{P

Ij
j }},

{[max{γL
j }, [max{γU

j }]|∏ max{P
Fj
j }}}.

By score function 6 and Definition 8, we can obtain PINHFWA(N−) ≤
PINHFWA(n1, n2, · · · , nX). Similarly, we have PINHFWA(n1, n2, · · · , nX) ≤ PINHFWA(N+).

Theorem 6. (Idempotency) If nj = {{[αL, αU ]|P1}, {[βL, βU ]|P2}, {[γL, γU ]|P3}}, j = 1, 2, · · · , X, wj is
the weight of nj, ∑X

j=1 wj = 1, then:

PINHFWA(n1, n2, · · · , nX) = {{[αL, αU ]|P1}, {[βL, βU ]|P2}, {[γL, γU ]|P3}}. (8)

Proof. Since nj = {{[αL, αU ]|P1}, {[βL, βU ]|P2}, {[γL, γU ]|P3}}, thus we have:

1 − ∏(1 − αL)wj = 1 − (1 − αL)∑ wj = αL, 1 − ∏(1 − αU)wj = 1 − (1 − αU)∑ wj = αU ;

∏(βL)wj = (βL)∑ wj = βL, ∏(βU)wj = (βU)∑ wj = βU ,

∏(γL)wj = (γL)∑ wj = γL, ∏(γU)wj = (γU)∑ wj = γU ,

∏(P1)
wj = (P1)

∑ wj = P1, ∏(P2)
wj = (P2)

∑ wj = P2, ∏(P3)
wj = (P3)

∑ wj = P3.

It is easy to get:

PINHFWA(ñp1, ñp2, · · · , ñpX) = {{[αL, αU ]|P1}, {[βL, βU ]|P2}, {[γL, γU ]|P3}}.

Theorem 7. (Commutativity) If A = {n1, n2, · · · , nX} is a collection and B = {m1, m2, · · · , mX} is a new
permutation of A, then:

PINHFWA(n1, n2, · · · , nX) = PINHFWA(m1, m2, · · · , mX).

Proof. By Definition 10, it is easy to prove it.
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Definition 11. Let nj (j = 1, 2, · · · , X) be a non-empty collection of PINHFNs; a probability interval
neutrosophic hesitant fuzzy weighted geometric (PINHFWG) operator can be indicated as:

PINHFWG(n1, n2, · · · , nX) =
X⊗

j=1

wj(nj)

=
⋃{{[

X

∏
j=1

(αL
j )

wj ,
X

∏
j=1

(αU
j )

wj ]|
X

∏
j=1

P
Tj
j }, {[1 −

X

∏
j=1

(1 − βL
j )

wj , 1 −
X

∏
j=1

(1 − βU
j )

wj ]|
X

∏
j=1

P
Ij
j },

{[1 −
X

∏
j=1

(1 − γL
j )

wj , 1 −
X

∏
j=1

(1 − γU
j )

wj ]|
X

∏
j=1

P
Fj
j }},

(9)

where [αL
j , αU

j ] = α̃j ∈ Tj, [βL
j , βU

j ] = β̃ j ∈ Ij, [γL
j , γU

j ] = γ̃ ∈ Fj, P
Tj
j , P

Ij
j and P

Fj
j are corresponding hesitant

probabilities of α̃j, β̃ j and γ̃j. j = 1, 2, · · · , X, wj is the weight of nj and
X
∑

j=1
wj = 1. If all wights are 1

X , then

the PINHFWG operator converts to the probabilistic interval neutrosophic hesitant fuzzy geometric (PINHFG)
operator:

PINHFG(n1, n2, · · · , nX) =
X⊗

j=1

1
X
(nj)

=
⋃{{[

X

∏
j=1

(αL
j )

1
X ,

X

∏
j=1

(αU
j )

1
X ]|

X

∏
j=1

P
Tj
j }, {[1 −

X

∏
j=1

(1 − βL
j )

1
X , 1 −

X

∏
j=1

(1 − βU
j )

1
X ]|

X

∏
j=1

P
Ij
j },

{[1 −
X

∏
j=1

(1 − γL
j )

1
X , 1 −

X

∏
j=1

(1 − γU
j )

1
X ]|

X

∏
j=1

P
Fj
j }}.

(10)

Theorem 8. (Monotonicity) Let nj = {{α̃j|PTj
J }, {β̃ j|PIj

j }, {γ̃j|PFj
j }} and mj =

{{η̃j|P
T∗

j
j }, {θ̃2|P

I∗j
j }, {μ̃j|P

F∗
j

j }} be two collections of PINHFNs; wj(j = 1, 2, · · · , X) is weight, and

∑n
j=1 wj = 1. If P

Tj
j = P

T∗
j

j , P
Ij
j = P

I∗j
j , P

Fj
j = P

F∗
j

j and αL
j ≤ ηL

j , αU
j ≤ ηU

j , βL
j ≥ θL

j , βU
j ≥ θU

j , γL
j ≥ μL

j ,
γU

j ≥ μU
j , then:

PINHFWG(n1, n2, · · · , nX) ≤ PINHFWG(m1, m2, · · · , mX). (11)

Proof. This is similar to Theorem 4.

Theorem 9. (Boundedness) Let nj = {{α̃j|PTj
j }, {β̃ j|PIj}, {γ̃j|PFj}} be a PINHFN (j = 1, 2, · · · , X), α̃j ∈

Tj, β̃b ∈ Ij, γ̃j ∈ Fj, P
Tj
j ; P

Ij
j and P

Fj
j are hesitant probabilities of α̃j, β̃ j and γ̃j, respectively. wj (j = 1, 2, · · · , X)

is a weight, and ∑X
j=1 wj = 1. If:

P− = {{[min{αL
j }, min{αU

j }]|min{P
Tj

j }}, {[max{βL
j }, max{βU

j }]|max{P
Ij

j }}, {[max{γL
j }, max{γL

j }]|max{P
Fj

j }}},

P+ = {{[max{αL
j }, max{αU

j }]|max{P
Tj

j }}, {[min{βL
j }, min{βU

j }]|min{P
Ij

j }}, {[min{γL
j }, min{γL

j }]|min{P
Fj

j }}},

then:

PINHFWG(P−) ≤ PINHFWG(n1, n2, · · · , nX) ≤ PINHFWG(P+) (12)

Proof. This is similar to Theorem 5.
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Theorem 10. (Idempotency) If nj = {{[αL, αU ]|P1}, {[βL, βU ]|P2}, {[γL, γU ]|P3}}, j = 1, 2, · · · , X, wj is
the weight of nj, ∑X

j=1 wj = 1, then:

PINHFWG(n1, n2, · · · , nX) = {{[αL, αU ]|P1}, {[βL, βU ]|P2}, {[γL, γU ]|P3}}. (13)

Proof. This is similar to Theorem 6.

Theorem 11. (Commutativity) If A = {n1, n2, · · · , nX} is a collection and B = {m1, m2, · · · , mX} is a new
permutation of A, then:

PINHFWG(n1, n2, · · · , nX) = PINHFWG(m1, m2, · · · , mX).

Proof. We can obtain it by Definition 13.

Lemma 1. [3] Let xi ≥ 0, wi ≥ 0, i = 1, 2, · · · , n and ∑n
i=1 wi = 1, then:

n

∏
i=1

(xi)
wi ≤

n

∑
i=1

xiwi,

Theorem 12. If nj = {{α̃j|PTj
j }, {β̃ j|PIj}, {γ̃j|PFj}} is a collection of PINHFNs and j = 1, 2, · · · , X, wj is

the weight of nj, wj ≥ 0 and ∑X
j=1 wj = 1, then:

PINHFWG(n1, n2, · · · , nX) ≤ PINHFWA(n1, n2, · · · , nX),

PINHFG(n1, n2, · · · , nX) ≤ PINHFA(n1, n2, · · · , nX).

Proof. Since α̃j = [αL
j , αU

j ], β̃ j = [βL
j , βU

j ], γ̃j = [γL
j , γU

j ], αL
j , αU

j ∈ [0, 1]. Thus, By Lemma 1, we have:

∏(αL
j )

wj ≤ ∑ wjα
L
j = 1 − ∑ wj(1 − αL

j ) ≤ 1 − ∏(1 − αL
j )

wj ,

∏(αU
j )

wj ≤ ∑ wjα
U
j = 1 − ∑ wj(1 − αU

j ) ≤ 1 − ∏(1 − αU
j )

wj .

Thus, we can obtain:

∏(αL
j )

wj ∏ P
Tj
j ≤ (1 − ∏(1 − αL

j )
wj)∏ P

Tj
j ,

∏(αU
j )

wj ∏ P
Tj
j ≤ (1 − ∏(1 − αU

j )
wj)∏ P

Tj
j .

Similarly, we can also get:

∏(βL
j )

wj ∏ P
Ij
j ≤ (1 − ∏(1 − βL

j )
wj)∏ P

Ij
j , ∏(βU

j )
wj ∏ P

Ij
j ≤ (1 − ∏(1 − βU

j )
wj)∏ P

Ij
j ,

∏(γL
j )

wj ∏ P
Fj
j ≤ (1 − ∏(1 − γL

j )
wj)∏ P

Fj
j , ∏(γU

j )
wj ∏ P

Fj
j ≤ (1 − ∏(1 − γU

j )
wj)∏ P

Fj
j .

Next, by the score function 6, we know:

PINHFWG(n1, n2, · · · , nX) ≤ PINHFWA(n1, n2, · · · , nX).

Similar to the above process of the proof, we know inequality PINHFG(n1, n2, · · · , nX) ≤
PINHFA(n1, n2, · · · , nX) is right.

6. MADM Based on the PINHFWA and PINHFWG Operators

In this section, the PINHFWA and PINHFWG operators are used to solve MADM problems with
probabilistic interval neutrosophic hesitant fuzzy circumstances.
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Let A = {A1, A2, · · · , AM} be a collection of options and C = {C1, C2, · · · , CN} be a set of
attributes. In order to assess Ah (h = 1, 2, · · · , M) with the attribute Ck (k = 1, 2, · · · , N) represented
by the PINHFN nhk = {Thk|PThk , Ihk|PIhk , Fhk|PFhk}, next, we can construct a probabilistic interval
neutrosophic hesitant fuzzy decision matrix (PINHFDM) D = (nhk)M×N (h = 1, 2, · · · , M; k =

1, 2, · · · , N). The weight vector of C is w = (w1, w2, · · · , wN). Then, the evaluation steps can select an
optimal option:

• Step 1. Use the PINHFWA or PINHFWG operator to aggregate N PINHFNs for an alternative Ah,
h = 1, 2, · · · , M.

• Step 2. Calculate the score values of all PINHFNs; if we get the same for s(n), then we need to
compare the deviation values.

• Step 3. Rank and select the optimal option Ah.

7. Illustrative Example

The background of the numerical case comes from Example 1. Therefore, this section is not
covered in detail. The weight vector of C is w = (0.35, 0.25, 0.4). Thus, four PINHFDMs are established,
illustrated in Tables 5–8.

Table 5. A probabilistic interval neutrosophic hesitant fuzzy decision matrix (PINHFDM) D1 with
respect to A1.

Attributes Investment Selection A1

C1 {{[0.3, 0.4]|0.1, [0.4, 0.4]|0.1, [0.4, 0.5]|0.8}, {[0.1, 0.2]|1}, {0.3, 0.4]|1}}
C2 {{[0.4, 0.5]|0.5, [0.5, 0.6]]|0.5}, {[0.2, 0.3]|1}, {[0.3, 0.3]|0.7, [0.3, 0.4]|0.3}}
C3 {{[0.2, 0.3]|1}, {[0.1, 0.2]|1}, {[0.4, 0.5]|0.7, [0.5, 0.6]|0.3}}

Table 6. PINHFDM D2 with respect to A2.

Attributes Investment Selection A2

C1 {{[0.6, 0.7]|1}, {[0.1, 0.2]|1}, {[0.1, 0.2]|0.2, [0.2, 0.3]|0.8}}
C2 {{[0.6, 0.7]|1}, {[0.1, 0.1]|1}, {[0.2, 0.3]|1}}
C3 {{[0.6, 0.7]|1}, {[0.1, 0.2]|1}, {[0.1, 0.2]|1}}

Table 7. PINHFDM D3 with respect to A3.

Attributes Investment Selection A3

C1 {{[0.3, 0.4]|0.3, [0.5, 0.6]|0.7}, {[0.2, 0.4]|1}, {[0.2, 0.3]|1}}
C2 {{[0.5, 0.6]|1}, {[0.2, 0.3]|1}, {[0.3, 0.4]|1}}
C3 {{[0.5, 0.6]|1}, {[0.1, 0.2]|0.4, [0.2, 0.3]|0.6}, {[0.2, 0.3]|1}}

Table 8. PINHFDM D4 with respect to A4.

Attributes Investment Selection A4

C1 {{[0.7, 0.8]|1}, {[0, 0.1]|1}, {[0.1, 0.2]|1}}
C2 {{[0.6, 0.7]|1}, {[0, 0.1]|1}, {[0.2, 0.2]|1}}
C3 {{[0.3, 0.5]|1}, {[0.2, 0.3]|1}, {[0.1, 0.2]|0.2, [0.3, 0.3]|0.8}}

• Step 1. Select the PINHFWA operator to aggregate all PINHFNs of nhk (h = 1, 2, 3, 4; k = 1, 2, 3)
to obtain the collective PINHFN nh (h = 1, 2, 3, 4) for the alternative Ah (h = 1, 2, 3, 4).
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n1 = PINHFWA(n11, n12, n13)

= {{[0.2895, 0.3903]|0.05, [0.3212, 0.4234]|0.05, [0.3268, 0.3903]|0.05, [0.3568, 0.4234]|0.05,

[0.3268, 0.4280]|0.4, [0.3568, 0.4590]|0.4},

{[0.1189, 0.2213]|1},

{[0.3366, 0.407]|0.49, [0.368, 0.4378]|0.21, [0.3366, 0.4373]|0.21, [0.368, 0.4704]|0.09};

n2 = PINHFWA(n21, n22, n23)

= {{[0.6, 0.7]|1}, {[0.1, 0.1682]|1}, {[0.1189, 0.2213]|0.2, [0.1516, 0.2551]|0.8}};

n3 = PINHFWA(n31, n32, n33)

= {{[0.4375, 0.5390]|0.3, [0.5, 0.6]|0.7}, {[0.1516, 0.2821]|0.4, [0.2, 0.3318]|0.6}, {[0.2213, 0.3224]|1}};

n4 = PINHFWA(n41, n42, n43)

= {{0.5476, 0.6807]|1}, {[0, 0.1552]|1}, {[0.1189, 0.2]|0.2, [0.1845, 0.2352]|0.8}}.

• Step 2. By (2), count the score values of all PINHFNs nh (h = 1, 2, 3, 4),

n1 = 0.6104, n2 = 0.7731, n3 = 0.6711, ñp4 = 0.7789.

• Step 3. Rank the PINHFNs by Definition 8; we have:

A4 > A2 > A3 > A1.

Thus, we know that A4 is the best choice.

Next, we will make use of the PINHFWG operator to solve the MADM problem.

• Step 1’. Aggregate PINHFNs nhk (h = 1, 2, 3, 4; k = 1, 2, 3) by taking advantage of the PINHFWG
operator to get the collective PINHFN nh for Ah.

n1 = PINHFWG(n11, n12, n13)

= {{[0.2741, 0.377]|0.05, [0.2898, 0.3946]|0.05, [0.3031, 0.377]|0.05, [0.3205, 0.3946]|0.05,

[0.3031, 0.4076]|0.4, [0.3205, 0.4266]|0.4}
{[0.1261, 0.2263]|1},

{[0.3419, 0.4203]|0.49, [0.3881, 0.4698]|0.21, [0.3419, 0.4422]|0.21, [0.3881, 0.4898]|0.09}};

n2 = PINHFWG(n21, n22, n23)

= {{[0.6, 0.7]|1}, {[0.1, 0.1761]|1}, {[0.1261, 0.2263]|0.2, [0.1614, 0.2616]|0.8}};

n3 = PINHFWG(n31, n32, n33)

= {{[0.4181, 0.5206]|0.3, [0.5, 0.6]|0.7}, {[0.1614, 0.3004]|0.4, [0.2000, 0.3368]|0.6},

{[0.2263, 0.3265]|1}};

n4 = PINHFWG(n41, n42, n43)

= {{[0.4799, 0.6411]|1}, {[0.0854, 0.1861]|1}, {[0.1261, 0.2000]|0.2, [0.2097, 0.2416]|0.8}}.

• Step 2’. By Definition 6, we have:

n1 = 0.595, n2 = 0.7692, n3 = 0.6653, n4 = 0.7372.

• Step 3’. Rank Ah (h = 1, 2, 3, 4) on the basis of Step 2’,

A2 > A4 > A3 > A1.
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Thus, A2 is the best choice.

8. The Basic Aggregation Operator for PSVNHFS

In this subsection, we construct the PSVNHFWA operator and the PSVNHFWG operator.
The comparison method of PIVNHFNs is proposed.

Definition 12. Let ñpx (x = 1, 2, · · · , X) be a non-empty collection of PSVNHFNs , then a PSVNHFWA
operator can be indicated as:

PSVNHFWA(ñp1, ñp2, · · · , ñpX) =
X⊕

x=1

wx(ñpx)

=
⋃{{(1 −

X

∏
j=1

(1 − αj)
wj)|

X

∏
j=1

Pt̃j}, {
X

∏
j=1

β
wj
j |

X

∏
k=1

Pĩj}, {
X

∏
j=1

γ
wj
j |

X

∏
j=1

P f̃j}},

(14)

where αj ∈ t̃j, β j ∈ ĩj, γj ∈ f̃ j, j = 1, 2, · · · , X, wj is the weight of ñpj and
X
∑

j=1
wj = 1.

Definition 13. Let ñpx (x = 1, 2, · · · , X) be a non-empty collection of PSVNHFNs, then the PSVNHFWG
operator can be indicated as:

PSVNHFWG(ñp1, ñp2, · · · , ñpX) =
X⊗

j=1

wj(ñpj)

=
⋃{{

X

∏
j=1

(αj)
wj)|

X

∏
j=1

Pt̃j}, {(1 −
X

∏
j=1

(1 − β j)
wj)|

X

∏
j=1

Pĩj}, {(1 −
X

∏
j=1

(1 − γj)
wj)|

X

∏
j=1

P f̃j}},

(15)

where αj ∈ t̃j, β j ∈ ĩj, γj ∈ f̃ j, j = 1, 2, · · · , X, wj is the weight of ñpj and
X
∑

j=1
wj = 1.

Since the PSVNHFN is a special case of PINHFN, thus the score function s(ñp), deviation function
d(ñp) and sorting method can utilize Definition 6, Definition 7 and Definition 8, respectively. In order to
solve the MADM problem of the probabilistic single-valued neutrosophic hesitant fuzzy circumstance,
the algorithm can use the same method described in Section 6. Next, The application can use
Example 1.

• Step 1. Select the PSVNHFWA operator to aggregate all PSVNHFNs of (ñp)hk (h = 1, 2, 3, 4; k =

1, 2, 3) to obtain the PSVNHFN ñph (h = 1, 2, 3, 4) for the option Ah (h = 1, 2, 3, 4).

ñp1 = {{0.3212|0.01, 0.3568|0.015, 0.3966|0.025, 0.3580|0.01, 0.3917|0.015, 0.4293|0.025, 0.3565|0.09,

0.3903|0.1350, 0.4280|0.2250, 0.3914|0.09, 0.4234|0.1350, 0.4590|0.2250}, {0.1189|0.06, 0.1569|0.14, 0.1316|0.24,

0.1737|0.56}, {0.368|0.048, 0.407|0.032, 0.3955|0.072, 0.4373|0.048, 0.3959|0.192, 0.4378|0.128, 0.4254|0.288,

0.4704|0.192}}
ñp2 = {{0.6|0.006, 0.6435|0.014, 0.6383|0.054, 0.6776|0.126, 0.6278|0.024, 0.6682|0.056, 0.6634|0.216, 0.7|0.504},

{0.1|0.24, 0.132|0.16, 0.1275|0.36, 0.1682|0.24}, {0.1677|0.35, 0.2213|0.15, 0.1933|0.35, 0.2551|0.15}};

ñp3 = {{0.5271|0.3, 0.5675|0.2, 0.5627|0.3, 0.6|0.2}, {0.2138|1}, {0.2797|0.2, 0.3224|0.8}};

ñp4 = {{0.5476|0.216, 0.6045|0.024, 0.579|0.144, 0.632|0.016, 0.6074|0.324, 0.6569|0.036, 0.6347|0.216,

0.6807|0.024}, {0.132|1}, {0.1189|0.01, 0.1569|0.08, 0.1846|0.01, 0.1516|0.09, 0.2|0.72, 0.2352|0.09}}.

• Step 2. By (2), count the score values of all ñph (h = 1, 2, 3, 4),
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s(ñp1) = 0.6108, s(ñp2) = 0.7839, s(ñp3) = 0.6776, s(ñp4) = 0.7579.

• Step 3. Rank the PSVNHFNs by Definition 8; we have.

A2 > A4 > A3 > A1.

Thus, we know that A2 is the best choice.

Next, we will make use of the PSVNHFWG operator to solve Example 1.

• Step 1’. Aggregate PSVNHFNs ñphk (h = 1, 2, 3, 4; k = 1, 2, 3) by taking advantage of
the PSVNHFWG operator to get the ñph for Ah.

ñp1 = {{0.2898|0.01, 0.3409|0.09, 0.3033|0.01, 0.3568|0.09, 0.3205|0.015, 0.377|0.135, 0.3355|0.015, 0.3946|0.135,

0.3466|0.025, 0.4076|0.225, 0, 3627|0.025, 0.4266|0.225}, {0.1261|0.06, 0.1663|0.14, 0.1548|0.24, 0.1937|0.56},

{0.3881|0.048, 0.4404|0.192, 0.4113|0.072, 0.4615|0.288, 0.4203|0.032, 0.4698|0.128, 0.4422|0.048, 0.4898|0.192}},

ñp2 = {{0.6|0.006, 0.6382|0.014, 0.6236|0.024, 0.6632|0.056, 0.6333|0.054, 0.6735|0.126, 0.6581|0.216, 0.7|0.504},

{0.1|0.24, 0.1414|0.16, 0.1363|0.36, 0.1761|0.24}, {0.1889|0.35, 0.2263|0.15, 0.226|0.35, 0.2616|0.15}}.

ñp3 = {{0.5233|0.3, 0.5629|0.2, 0.5578|0.3, 0.6|0.2}, {0.2666|1}, {0.2942|0.2, 0.3265|0.8}}.

ñp4 = {{0.4799|0.216, 0.5887|0.024, 0.4988|0.144, 0.6119|0.016, 0.5029|0.324, 0.6169|0.036, 0.5226|0.216, 0.6411|0.024},

{0.1414|1}, {0.1261|0.01, 0.1663|0.08, 0.2097|0.01, 0.1614|0.09, 0.2|0.72, 0.2416|0.09}}.

• Step 2’. By Formula (2), we have:

s(ñp1) = 0.5507, s(ñp2) = 0.7741, s(ñp3) = 0.6568, s(ñp4) = 0.7248.

• Step 3’. Rank Ah (h = 1, 2, 3, 4) by Definition 8,

A2 > A4 > A3 > A1.

Thus, A2 is the best choice.

In order to demonstrated the effectiveness of our approaches, a comparison was established with
other methods. They are shown in Tables 9 and 10.

Table 9. Comparison of the results obtained by different methods under the single-valued neutrosophic
hesitant fuzzy circumstance.

Method Sort of Results Best Alternative Worst Alternative

SVNHFWA operator [49] A4 > A2 > A3 > A1 A3 A4
SVNHFWG operator [49] A2 > A4 > A3 > A1 A2 A1

PSVNHFWA operator A2 > A4 > A3 > A1 A2 A1
PSVNHFWG operator A2 > A4 > A3 > A1 A2 A1

Table 10. Comparison of the results obtained by different methods under the interval neutrosophic
hesitant fuzzy circumstance.

Method Sort of Results Best Alternative Worst Alternative

GWA operator(1 ≤ λ ≤ 39) [50] A3 > A1 > A2 > A4 A3 A4
PINHFWA operator A4 > A2 > A3 > A1 A4 A1
PINHFWG operator A2 > A4 > A3 > A1 A2 A1
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In [49], Ye introduced the single-valued neutrosophic hesitant fuzzy weighted averaging
(SVNHFWA) and single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG)
operators and applied them to the single-valued neutrosophic hesitant fuzzy circumstance. In [50], Liu
proposed the generalized weighted aggregation (GWA) operator and established the MADM method
under the interval neutrosophic hesitant fuzzy circumstance. However, probability is not considered
in [49,50]. The ranking results are presented in Table 9 and Table 10. According to the Table 9, A2 is
always the best choice, A1 is always the worst option. According to the Table 10, the best option is A4

under the group’s major points, whereas the best selection is A2 under the individual major points.
A1 is always the worst choice. Apparently, the SVNHFS, IVHFS and PSVNHFS are special cases of
PINHFS. Thus, the PINHFS is is wider than other methods.

9. Conclusions

In this paper, as a generation of fuzzy set theory, a new concept of PSVNHFS (PINHFS) is
proposed based on the NHS and INS. The score function and the deviation function are defined.
A comparison method is proposed. PSVNHFS is a special case of PINHFS; thus, PINHFS has a wider
range of applications. Therefore, this paper mainly discusses the situation of the interval. Then,
some basic operation laws of PINHFNs are introduced and investigated. Next, the PINHFWA and
PINHFWG operators are presented, and some properties are studied. PSVNHFSs also satisfies the
properties mentioned above. We can determine the optimal alternative by utilizing the PINHFWA
(PINHFWG) operator. Finally, a numerical example was given. It is proven that the new approach is
more flexible and suitable for practical issues. In addition, an example raised in this paper is to explain
that PINHFS is more general than PSVNHFS. In the future, others aggregation operators of PINHFNs
can be researched, and more practical applications in other areas can be solved, like medical diagnoses.
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Abstract: In this paper, Bol-Moufang types of a particular quasi neutrosophic triplet loop (BCI-algebra),
chritened Fenyves BCI-algebras are introduced and studied. 60 Fenyves BCI-algebras are introduced
and classified. Amongst these 60 classes of algebras, 46 are found to be associative and 14 are
found to be non-associative. The 46 associative algebras are shown to be Boolean groups. Moreover,
necessary and sufficient conditions for 13 non-associative algebras to be associative are also obtained:
p-semisimplicity is found to be necessary and sufficient for a F3, F5, F42 and F55 algebras to be
associative while quasi-associativity is found to be necessary and sufficient for F19, F52, F56 and F59

algebras to be associative. Two pairs of the 14 non-associative algebras are found to be equivalent
to associativity (F52 and F55, and F55 and F59). Every BCI-algebra is naturally an F54 BCI-algebra.
The work is concluded with recommendations based on comparison between the behaviour of identities
of Bol-Moufang (Fenyves’ identities) in quasigroups and loops and their behaviour in BCI-algebra.
It is concluded that results of this work are an initiation into the study of the classification of finite
Fenyves’ quasi neutrosophic triplet loops (FQNTLs) just like various types of finite loops have been
classified. This research work has opened a new area of research finding in BCI-algebras, vis-a-vis the
emergence of 540 varieties of Bol-Moufang type quasi neutrosophic triplet loops. A ‘Cycle of Algebraic
Structures’ which portrays this fact is provided.

Keywords: quasigroup; loop; BCI-algebra; Bol-Moufang; quasi neutrosophic loops; Fenyves identities

1. Introduction

BCK-algebras and BCI-algebras are abbreviated as two B-algebras. The former was raised in 1966
by Imai and Iseki [1], Japanese mathematicians, and the latter was put forward in the same year by
Iseki [2]. The two algebras originated from two different sources: set theory and propositional calculi.

There are some systems which contain the only implicational functor among logical functors,
such as the system of weak positive implicational calculus, BCK-system and BCI-system. Undoubtedly,
there are common properties among those systems. We know that there are close relationships
between the notions of the set difference in set theory and the implication functor in logical systems.
For example, we have the following simple inclusion relations in set theory:

(A − B)− (A − C) ⊆ C − B, A − (A − B) ⊆ B.

Symmetry 2018, 10, 427; doi:10.3390/sym10100427 www.mdpi.com/journal/symmetry202
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These are similar to the propositional formulas in propositional calculi:

(p → q) → ((q → r) → (p → r)), p → ((p → q) → q),

which raise the following questions: What are the most essential and fundamental properties of these
relationships? Can we formulate a general algebra from the above consideration? How will we find
an axiom system to establish a good theory of general algebras? Answering these questions, K.Iseki
formulated the notions of two B-algebras in which BCI-algebras are a wider class than BCK-algebras.
Their names are taken from BCK and BCI systems in combinatory logic.

BCI-Algebras are very interesting algebraic structures that have generated wide interest among
pure mathematicians.

1.1. BCI-algebra, Quasigroups, Loops and the Fenyves Identities

We start with some definitions and examples of some varieties of quasi neutrosophic triplet loop.

Definition 1. A triple (X, ∗, 0) is called a BCI-algebra if the following conditions are satisfied for any
x, y, z ∈ X:

1. ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
2. x ∗ 0 = x;
3. x ∗ y = 0 and y ∗ x = 0 =⇒ x = y.

We call the binary operation ∗ on X the multiplication on X, and the constant 0 in X the zero
element of X. We often write X instead of (X, ∗, 0) for a BCI-algebra in brevity. Juxtaposition xy will at
times be used for x ∗ y and will have preference over ∗ i.e., xy ∗ z = (x ∗ y) ∗ z.

Example 1. Let S be a set. Let 2S be the power set of S, − the set difference and ∅ the empty set. Then(
2S,−, ∅

)
is a BCI-algebra.

Example 2. Suppose (G, ·, e) is an abelian group with e as the identity element. Define a binary operation ∗ on
G by putting x ∗ y = xy−1. Then (G, ∗, e) is a BCI-algebra.

Example 3. (Z,−, 0) and (R− {0},÷, 1) are BCI-algebras.

Example 4. Let S be a set. Let 2S be the power set of S, � the symmetric difference and ∅ the empty set. Then(
2S,�, ∅

)
is a BCI-algebra.

The following theorems give necessary and sufficient conditions for the existence of a BCI-algebra.

Theorem 1. (Yisheng [3])
Let X be a non-empty set, ∗ a binary operation on X and 0 a constant element of X. Then (X, ∗, 0) is a

BCI-algebra if and only if the following conditions hold:

1. ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;
2. (x ∗ (x ∗ y)) ∗ y = 0;
3. x ∗ x = 0;
4. x ∗ y = 0 and y ∗ x = 0 imply x = y.

Definition 2. A BCI-algebra (X, ∗, 0) is called a BCK-algebra if 0 ∗ x = 0 for all x ∈ X.

Definition 3. A BCI-algebra (X, ∗, 0) is called a Fenyves BCI-algebra if it satisfies any of the identities of
Bol-Moufang type.

The identities of Bol-Moufang type are given below:
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F1: xy ∗ zx = (xy ∗ z)x
F2: xy ∗ zx = (x ∗ yz)x (Moufang identity)
F3: xy ∗ zx = x(y ∗ zx)
F4: xy ∗ zx = x(yz ∗ x) (Moufang identity)
F5: (xy ∗ z)x = (x ∗ yz)x
F6: (xy ∗ z)x = x(y ∗ zx) (extra identity)
F7: (xy ∗ z)x = x(yz ∗ x)
F8: (x ∗ yz)x = x(y ∗ zx)
F9: (x ∗ yz)x = x(yz ∗ x)
F10: x(y ∗ zx) = x(yz ∗ x)
F11: xy · xz = (xy ∗ x)z
F12: xy ∗ xz = (x ∗ yx)z
F13: xy ∗ xz = x(yx ∗ z) (extra identity)
F14: xy ∗ xz = x(y ∗ xz)
F15: (xy ∗ x)z = (x ∗ yx)z
F16: (xy ∗ x)z = x(yx ∗ z)
F17: (xy ∗ x)z = x(y ∗ xz) (Moufang identity)
F18: (x ∗ yx)z = x(yx ∗ z)
F19: (x ∗ yx)z = x(y ∗ xz) (left Bol identity)
F20: x(yx ∗ z) = x(y ∗ xz)
F21: yx ∗ zx = (yx ∗ z)x
F22: yx ∗ zx = (y ∗ xz)x (extra identity)
F23: yx ∗ zx = y(xz ∗ x)
F24: yx ∗ zx = y(x ∗ zx)
F25: (yx ∗ z)x = (y ∗ xz)x
F26: (yx ∗ z)x = y(xz ∗ x) (right Bol identity)
F27: (yx ∗ z)x = y(x ∗ zx) (Moufang identity)
F28: (y ∗ xz)x = y(xz ∗ x)
F29: (y ∗ xz)x = y(x ∗ zx)
F30: y(xz ∗ x) = y(x ∗ zx)

F31: yx ∗ xz = (yx ∗ x)z
F32: yx ∗ xz = (y ∗ xx)z
F33: yx ∗ xz = y(xx ∗ z)
F34: yx ∗ xz = y(x ∗ xz)
F35: (yx ∗ x)z = (y ∗ xx)z
F36: (yx ∗ x)z = y(xx ∗ z) (RC identity)
F37: (yx ∗ x)z = y(x ∗ xz) (C identity)
F38: (y ∗ xx)z = y(xx ∗ z)
F39: (y ∗ xx)z = y(x ∗ xz) (LC identity)
F40: y(xx ∗ z) = y(x ∗ xz)
F41: xx ∗ yz = (x ∗ xy)z (LC identity)
F42: xx ∗ yz = (xx ∗ y)z
F43: xx ∗ yz = x(x ∗ yz)
F44: xx ∗ yz = x(xy ∗ z)
F45: (x ∗ xy)z = (xx ∗ y)z
F46: (x ∗ xy)z = x(x ∗ yz) (LC identity)
F47: (x ∗ xy)z = x(xy ∗ z)
F48: (xx ∗ y)z = x(x ∗ yz) (LC identity)
F49: (xx ∗ y)z = x(xy ∗ z)
F50: x(x ∗ yz) = x(xy ∗ z)
F51: yz ∗ xx = (yz ∗ x)x
F52: yz ∗ xx = (y ∗ zx)x
F53: yz ∗ xx = y(zx ∗ x) (RC identity)
F54: yz ∗ xx = y(z ∗ xx)
F55: (yz ∗ x)x = (y ∗ zx)x
F56: (yz ∗ x)x = y(zx ∗ x) (RC identity)
F57: (yz ∗ x)x = y(z ∗ xx) (RC identity)
F58: (y ∗ zx)x = y(zx ∗ x)
F59: (y ∗ zx)x = y(z ∗ xx)
F60: y(zx ∗ x) = y(z ∗ xx)

Consequent upon this definition, there are 60 varieties of Fenyves BCI-algebras. Here are some
examples of Fenyves’ BCI-algebras:

Example 5. Let us assume the BCI-algebra (G, ∗, e) in Example 2. Then (G, ∗, e) is an F8-algebra, F19-algebra,
F29-algebra, F39-algebra, F46-algebra, F52-algebra, F54-algebra, F59-algebra.

Example 6. Let us assume the BCI-algebra
(
2S,−, ∅

)
in Example 1. Then (2S,−, ∅) is an F3-algebra,

F5-algebra, F21-algebra, F29-algebra, F42-algebra, F46-algebra, F54-algebra and F55-algebra.

Example 7. The BCI-algebra (2S,�, ∅) in Example 4 is associative.

Example 8. By considering the direct product of the BCI-algebras (G, ∗, e) and
(
2S,−, ∅

)
of Example 2 and

Example 1 respectively, we have a BCI-algebra
(

G × 2S, (∗,−), (e, ∅)
)

which is a F29-algebra and a F46-algebra.

Remark 1. Direct products of sets of BCI-algebras will result in BCI-algebras which are Fi-algebra for
distinct i’s.

Definition 4. A BCI-algebra (X, ∗, 0) is called associative if (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ X.

Definition 5. A BCI-algebra (X, ∗, 0) is called p-semisimple if 0 ∗ (0 ∗ x) = x for all x ∈ X .
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Theorem 2. (Yisheng [3]) Suppose that (X, ∗, 0) is a BCI-algebra. Define a binary relation � on X by which
x � y if and only if x ∗ y = 0 for any x, y ∈ X. Then (X,�) is a partially ordered set with 0 as a minimal
element (meaning that x � 0 implies x = 0 for any x ∈ X).

Definition 6. A BCI-algebra (X, ∗, 0) is called quasi-associative if (x ∗ y) ∗ z ≤ x ∗ (y ∗ z) for all x, y, z ∈ X.

The following theorems give equivalent conditions for associativity, quasi-associativity and
p-semisimplicity in a BCI-algebra:

Theorem 3. (Yisheng [3])
Given a BCI-algebra X, the following are equivalent x, y, z ∈ X:

1. X is associative.
2. 0 ∗ x = x.
3. x ∗ y = y ∗ x ∀ x, y ∈ X.

Theorem 4. (Yisheng [3])
Let X be a BCI-algebra. Then the following conditions are equivalent for any x, y, z, u ∈ X:

1. X is p-semisimple
2. (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u).
3. 0 ∗ (y ∗ x) = x ∗ y.
4. (x ∗ y) ∗ (x ∗ z) = z ∗ y.
5. z ∗ x = z ∗ y implies x = y. (the left cancellation law i.e., LCL)
6. x ∗ y = 0 implies x = y.

Theorem 5. (Yisheng [3])
Given a BCI-algebra X, the following are equivalent for all x, y ∈ X:

1. X is quasi-associative.
2. x ∗ (0 ∗ y) = 0 implies x ∗ y = 0.
3. 0 ∗ x = 0 ∗ (0 ∗ x).
4. (0 ∗ x) ∗ x = 0.

Theorem 6. (Yisheng [3])
A triple (X, ∗, 0) is a BCI-algebra if and only if there is a partial ordering � on X such that the following

conditions hold for any x, y, z ∈ X:

1. (x ∗ y) ∗ (x ∗ z) � z ∗ y;
2. x ∗ (x ∗ y) � y;
3. x ∗ y = 0 if and only if x � y.

Theorem 7. (Yisheng [3])
Let X be a BCI-algebra. X is p-semisimple if and only if one of the following conditions holds for any

x, y, z ∈ X:

1. x ∗ z = y ∗ z implies x = y. (the right cancellation law i.e., RCL)
2. (y ∗ x) ∗ (z ∗ x) = y ∗ z.
3. (x ∗ y) ∗ (x ∗ z) = 0 ∗ (y ∗ z).

Theorem 8. (Yisheng [3])
Let X be a BCI-algebra. X is p-semisimple if and only if one of the following conditions holds for any x, y ∈ X:

1. x ∗ (0 ∗ y) = y.
2. 0 ∗ x = 0 =⇒ x = 0.
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Theorem 9. (Yisheng [3]) Suppose that (X, ∗, 0) is a BCI-algebra. X is associative if and only if X is
p-semisimple and X is quasi-associative.

Theorem 10. (Yisheng [3]) Suppose that (X, ∗, 0) is a BCI-algebra. Then (x ∗ y) ∗ z = (x ∗ z) ∗ y for all
x, y, z ∈ X.

Remark 2. In Theorem 9, quasi-associativity in BCI-algebra plays a similar role to that which weak associativity
(i.e., the Fi identities) plays in quasigroup and loop theory.

We now move on to quasigroups and loops.

Definition 7. Let L be a non-empty set. Define a binary operation (·) on L . If x · y ∈ L for all x, y ∈ L, (L, ·)
is called a groupoid. If in a groupoid (L, ·), the equations:

a · x = b and y · a = b

have unique solutions for x and y respectively, then (L, ·) is called a quasigroup. If in a quasigroup (L, ·), there
exists a unique element e called the identity element such that for all x ∈ L, x · e = e · x = x, (L, ·) is called
a loop.

Definition 8. Let (L, ·) be a groupoid.
The left nucleus of L is the set Nλ(L, ·) = Nλ(L) = {a ∈ L : ax · y = a · xy ∀ x, y ∈ L}.
The right nucleus of L is the set Nρ(L, ·) = Nρ(L) = {a ∈ L : y · xa = yx · a ∀ x, y ∈ L}.
The middle nucleus of L is the set Nμ(L, ·) = Nμ(L) = {a ∈ L : ya · x = y · ax ∀ x, y ∈ L}.
The nucleus of L is the set N(L, ·) = N(L) = Nλ(L, ·) ∩ Nρ(L, ·) ∩ Nμ(L, ·).
The centrum of L is the set C(L, ·) = C(L) = {a ∈ L : ax = xa ∀ x ∈ L}.
The center of L is the set Z(L, ·) = Z(L) = N(L, ·) ∩ C(L, ·).

In the recent past, and up to now, identities of Bol-Moufang type have been studied on the
platform of quasigroups and loops by Fenyves [4], Phillips and Vojtechovsky [5], Jaiyeola [6–8],
Robinson [9], Burn [10–12], Kinyon and Kunen [13] as well as several other authors.

Since the late 1970s, BCI and BCK algebras have been given a lot of attention. In particular,
the participation in the research of polish mathematicians Tadeusz Traczyk and Andrzej Wronski
as well as Australian mathematician William H. Cornish, in addition to others, is causing this
branch of algebra to develop rapidly. Many interesting and important results are constantly
discovered. Now, the theory of BCI-algebras has been widely spread to areas such as general
theory which include congruences, quotient algebras, BCI-Homomorphisms, direct sums and direct
products, commutative BCK-algebras, positive implicative and implicative BCK-algebras, derivations
of BCI-algebras, and ideal theory of BCI-algebras ([1,14–17]).

1.2. BCI-Algebras as a Quasi Neutrosophic Triplet Loop

Consider the following definition.

Definition 9. (Quasi Neutrosophic Triplet Loops (QNTL), Zhang et al. [18])
Let (X, ∗) be a groupoid.

1. If there exist b, c ∈ X such that a ∗ b = a and a ∗ c = b, then a is called an NT-element with (r-r)-property.
If every a ∈ X is an NT-element with (r-r)-property, then, (X, ∗) is called a (r-r)-quasi NTL.

2. If there exist b, c ∈ X such that a ∗ b = a and c ∗ a = b, then a is called an NT-element with (r-l)-property.
If every a ∈ X is an NT-element with (r-l)-property, then, (X, ∗) is called a (r-l)-quasi NTL.

3. If there exist b, c ∈ X such that b ∗ a = a and c ∗ a = b, then a is called an NT-element with (l-l)-property.
If every a ∈ X is an NT-element with (l-l)-property, then, (X, ∗) is called a (l-l)-quasi NTL.
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4. If there exist b, c ∈ X such that b ∗ a = a and a ∗ c = b, then a is called an NT-element with (l-r)-property.
If every a ∈ X is an NT-element with (l-r)-property, then, (X, ∗) is called a (l-r)-quasi NTL.

5. If there exist b, c ∈ X such that a ∗ b = b ∗ a = a and a ∗ c = b, then a is called an NT-element
with (lr-r)-property. If every a ∈ X is an NT-element with (lr-r)-property, then, (X, ∗) is called a
(lr-r)-quasi NTL.

6. If there exist b, c ∈ X such that a ∗ b = b ∗ a = a and c ∗ a = b, then a is called an NT-element
with (lr-l)-property. If every a ∈ X is an NT-element with (lr-l)-property, then, (X, ∗) is called a
(lr-l)-quasi NTL.

7. If there exist b, c ∈ X such that a ∗ b = a and a ∗ c = c ∗ a = b, then a is called an NT-element
with (r-lr)-property. If every a ∈ X is an NT-element with (r-lr)- property, then, (X, ∗) is called a
(r-lr)-quasi NTL.

8. If there exist b, c ∈ X such that b ∗ a = a and a ∗ c = c ∗ a = b, then a is called an NT-element
with (l-lr)-property. If every a ∈ X is an NT-element with (l-lr)-property, then, (X, ∗) is called a
(l-lr)-quasi NTL.

9. If there exist b, c ∈ X such that a ∗ b = b ∗ a = a and a ∗ c = c ∗ a = b, then a is called an NT-element
with (lr-lr)-property. If every a ∈ X is an NT-element with (lr-lr)-property, then, (X, ∗) is called a
(lr-lr)-quasi NTL.

Consequent upon Definition 9 and the 60 Fenyves identities Fi, 1 ≤ i ≤ 60, there are 60
varieties of Fenyves quasi neutrosophic triplet loops (FQNTLs) for each of the nine varieties of
QNTLs in Definition 9. Thereby making it 540 varieties of Fenyves quasi neutrosophic triplet loops
(FQNTLs) in all. A BCI-algebra is a (r-r)-QNT, (r-l)-QNTL and (r-lr)-QNTL. Thus, any Fi BCI-algebra,
1 ≤ i ≤ 60 belongs to at least one of the following varieties of Fenyves quasi neutrosophic triplet
loops: (r-r)-QNTL, (r-l)-QNTL and (r-lr)-QNTL which we refer to as (r-r)-FQNTL, (r-l)-FQNTL
and (r-lr)-FQNTL respectively. Any associative QNTL will be called quasi neutrosophic triplet
group (QNTG).

The variety of quasi neutrosophic triplet loop is a generalization of neutrosophic triplet group
(NTG) which was originally introduced by Smarandache and Ali [19]. Neutrosophic triplet set (NTS)
is the foundation of neutrosophic triplet group. New results and developments on neutrosophic triplet
groups and neutrosophic triplet loop have been reported by Zhang et al. [18,20,21], and Smarandache
and Jaiyéo. lá [22,23].

It must be noted that triplets are not connected at all with intuitionistic fuzzy set. Neutrosophic
set [24] is a generalization of intuitionistic fuzzy set (a generalization of fuzzy set). In Intuitionistic
fuzzy set, an element has a degree of membership and a degree of non-membership, and the deduction
of the sum of these two from 1 is considered the hesitant degree of the element. These intuitionistic
fuzzy set components are dependent (viz. [25–28]). In the neutrosophic set, an element has three
independent degrees: membership (truth-t), indeterminacy (i), and non-membership (falsity-f),
and their sum is up to 3. However, the current paper utilizes the neutrosophic triplets, which are
not defined in intuitionistic fuzzy set, since there is no neutral element in intuitionistic fuzzy sets.
In a neutrosophic triplet set (X, ∗), for each element x ∈ X there exists a neutral element denoted
neut(x) ∈ X such that x ∗ neut(x) = neut(x) ∗ x = x, and an opposite of x denoted anti(x) ∈ X
such that anti(x) ∗ x = x ∗ anti(x) = neut(x). Thus, the triple (x, neut(x), anti(x)) is called a
neutrosophic triplet which in the philosophy of ‘neutrosophy’, can be algebraically harmonized
with (t, i, f ) in neutrosophic set and then extended for neutrosophic hesitant fuzzy [29] set as proposed
for (t, i, f )-neutrosophic structures [30]. Unfortunately, such harmonization is not readily defined in
intuitionistic fuzzy sets.

Theorem 11. (Zhang et al. [18]) A (r-lr)-QNTG or (l-lr)-QNTG is a NTG.

This present study looks at Fenyves identities on the platform of BCI-algebras. The main objective
of this study is to classify the Fenyves BCI-algebras into associative and non-associative types. It will
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also be shown that some Fenyves identities play the roles of quasi-associativity and p-semisimplicity ,
vis-a-vis Theorem 9 in BCI-algebras.

2. Main Results

We shall first clarify the relationship between a BCI-algebra, a quasigroup and a loop.

Theorem 12.

1. A BCI algebra X is a quasigroup if and only if it is p-semisimple.
2. A BCI algebra X is a loop if and only if it is associative.
3. An associative BCI algebra X is a Boolean group.

Proof. We use Theorem 3, Theorem 7 and Theorem 4.

1. From Theorems 7 and 4, p-semisimplicity is equivalent to the left and right cancellation laws,
which consequently implies that X is a quasigroup if and only if it is p-semisimple.

2. One of the axioms that a BCI-algebra satisfies is x ∗ 0 = x for all x ∈ X. So, 0 is already the right
identity element. Now, from Theorem 3, associativity is equivalent to 0 ∗ x = x for all x ∈ X. So,
0 is also the left identity element of X. The conclusion follows.

3. In a BCI-algebra, x ∗ x = 0 for all x ∈ X. And 0 is the identity element of X. Hence, every element
is the inverse of itself.

Lemma 1. Let (X, ∗, 0) be a BCI-algebra.

1. 0 ∈ Nρ(X).
2. 0 ∈ Nλ(X), Nμ(X) implies X is quasi-associative.
3. If 0 ∈ Nλ(X), then the following are equivalent:

(a) X is p-semisimple.
(b) xy = 0y · x for all x, y ∈ L.
(c) xy = 0x · y for all x, y ∈ L.

4. If 0 ∈ Nλ(X) or 0 ∈ Nμ(X), then X is p-semisimple if and only if X is associative.
5. If 0 ∈ N(X), then X is p-semisimple if and only if X is associative.
6. If (X, ∗, 0) is a BCK-algebra, then

(a) 0 ∈ Nλ(X).
(b) 0 ∈ Nμ(X) implies X is a trivial BCK-algebra.

7. The following are equivalent:

(a) X is associative.
(b) x ∈ Nλ(X) for all x ∈ X.
(c) x ∈ Nρ(X) for all x ∈ X.
(d) x ∈ Nμ(X) for all x ∈ X.
(e) 0 ∈ C(X).
(f) x ∈ C(X) for all x ∈ X.
(g) x ∈ Z(X) for all x ∈ X.
(h) 0 ∈ Z(X).
(i) X is a (lr-r)-QNTL.
(j) X is a (lr-l)-QNTL.
(k) X is a (lr-lr)-QNTL

8. If (X, ∗, 0) is a BCK-algebra and 0 ∈ C(X), then X is a trivial BCK-algebra.

Proof. This is routine by simply using the definitions of nuclei, centrum, center of a BCI-algebra and
QNTL alongside Theorems 3–10 appropriately.
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Remark 3. Based on Theorem 11, since an associative BCI-algebra is a (r-lr)-QNTG, then, an associative
BCI-algebra is a NTG. This corroborates the importance of the study of non-associative BCI-algebra i.e.,
weak associative laws (Fi-identities) in BCI-algebra, as mentioned earlier in the objective of this work.

Theorem 13. Let (X, ∗, 0) be a BCI-algebra. If X is any of the following Fenyves BCI-algebras, then X
is associative.

1. F1-algebra
2. F2-algebra
3. F4-algebra
4. F6-algebra
5. F7-algebra
6. F9-algebra
7. F10-algebra
8. F11-algebra
9. F12-algebra

10. F13-algebra

11. F14-algebra
12. F15-algebra
13. F16-algebra
14. F17-algebra
15. F18-algebra
16. F20-algebra
17. F22-algebra
18. F23-algebra
19. F24-algebra
20. F25-algebra

21. F26-algebra
22. F27-algebra
23. F28-algebra
24. F30-algebra
25. F31-algebra
26. F32-algebra
27. F33-algebra
28. F34-algebra
29. F35-algebra
30. F36-algebra

31. F37-algebra
32. F38-algebra
33. F40-algebra
34. F41-algebra
35. F43-algebra
36. F44-algebra
37. F45-algebra
38. F47-algebra
39. F48-algebra
40. F49-algebra

41. F50-algebra

42. F51-algebra

43. F53-algebra

44. F57-algebra

45. F58-algebra

46. F60-algebra

Proof.

1. Let X be an F1-algebra. Then xy ∗ zx = (xy ∗ z)x. With z = y, we have xy ∗ yx = (xy ∗ y)x which
implies xy ∗ yx = (xy ∗ x)y = (xx ∗ y)y = (0 ∗ y)y = 0 ∗ (y ∗ y) (since 0 ∈ Nλ(X); this is achieved
by putting y = x in the F1 identity) = 0 ∗ 0 = 0. This implies xy ∗ yx = 0. Now replacing x with y,
and y with x in the last equation gives yx ∗ xy = 0 implying that x ∗ y = y ∗ x as required.

2. Let X be an F2-algebra. Then xy ∗ zx = (x ∗ yz)x. With y = z, we have xz ∗ zx = (x ∗ zz)x =

(x ∗ 0) ∗ x = x ∗ x = 0 implying that xz ∗ zx = 0. Now replacing x with z, and z with x in the last
equation gives zx ∗ xz = 0 implying that x ∗ z = z ∗ x as required.

3. Let X be a F4-algebra. Then, xy ∗ zx = x(yz ∗ x). Put y = x and z = 0, then you get 0 ∗ 0x = x
which means X is p-semisimple. Put x = 0 and y = 0 to get 0z = 0 ∗ 0z which implies that X is
quasi-associative (Theorem 5). Thus, by Theorem 9, X is associative.

4. Let X be an F6-algebra. Then, (xy ∗ z)x = x(y ∗ zx). Put x = y = 0 to get 0z = 0 ∗ 0z which
implies that X is quasi-associative (Theorem 5). Put y = 0 and z = x, then we have 0 ∗ x = x.
Thus, X is associative.

5. Let X be an F7-algebra. Then (xy ∗ z)x = x(yz ∗ x). With z = 0, we have xy ∗ x = x(y ∗ x).
Put y = x in the last equation to get xx ∗ x = (x ∗ xx) implying 0 ∗ x = x.

6. Let X be an F9-algebra. Then (x ∗ yz)x = x(yz ∗ x). With z = 0, we have (x ∗ y) ∗ x = x(y ∗ x).
Put y = x in the last equation to get (x ∗ x)x = x(x ∗ x) implying 0 ∗ x = x.

7. Let X be an F10-algebra. Then, x(y ∗ zx) = x(yz ∗ x). Put y = x = z, then we have x ∗ 0x = 0. So,
0x = 0 ⇒ x = 0. which means that X is p-semisimple (Theorem 8(2)). Hence, X has the LCL by
Theorem 4. Thence, the F10 identity x(y ∗ zx) = x(yz ∗ x) ⇒ y ∗ zx = yz ∗ x which means that X
is associative.

8. Let X be an F11-algebra. Then xy ∗ xz = (xy ∗ x)z. With y = 0, we have x ∗ xz = xx ∗ z. Put z = x
in the last equation to get x = 0 ∗ x as required.

9. Let X be an F12-algebra. Then xy ∗ xz = (x ∗ yx)z. With z = 0, we have xy ∗ x = x ∗ yx. Put y = x
in the last equation to get xx ∗ x = x ∗ xx implying 0 ∗ x = x as required.

10. Let X be an F13-algebra. Then xy ∗ xz = x(yx ∗ z). With z = 0, we have (x ∗ y)x = x ∗ yx which
implies (x ∗ x)y = x ∗ yx which implies 0 ∗ y = x ∗ yx. Put y = x in the last equation to get
0 ∗ x = x as required.

11. Let X be an F14-algebra. Then xy ∗ xz = x(y ∗ xz). With z = 0, we have xy ∗ x = x ∗ yx. Put y = x
in the last equation to get 0 ∗ x = x as required.

12. Let X be an F15-algebra. Then (xy ∗ x)z = (x ∗ yx)z. With z = 0, we have (xy ∗ x) = (x ∗ yx).
Put y = x in the last equation to get 0 ∗ x = x as required.

13. Let X be an F16-algebra. Then (xy ∗ x)z = x(yx ∗ z). With z = 0, we have (xy ∗ x) = (x ∗ yx).
Put y = x in the last equation to get 0 ∗ x = x as required.
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14. Let X be an F17-algebra. Then (xy ∗ x)z = x(y ∗ xz). With z = 0, we have (xy ∗ x) = x(y ∗ x).
Put y = x in the last equation to get 0 ∗ x = x as required.

15. Let X be an F18-algebra. Then (x ∗ yx)z = x(yx ∗ z). With y = 0, we have (x ∗ 0x)z = x(0x ∗ z).
Since 0 ∈ Nλ(X) and 0 ∈ Nμ(X), (these are obtained by putting x = 0 and x = y respectively
in the F18-identity), the last equation becomes (x0 ∗ x)z = x(0 ∗ xz) = x0 ∗ xz = x ∗ xz which
implies 0 ∗ z = x ∗ xz. Put x = z in the last equation to get 0 ∗ z = z as required.

16. This is similar to the proof for F10-algebra.
17. Let X be an F22-algebra. Then yx ∗ zx = (y ∗ xz)x. Put y = x, z = 0, then 0x = 0 ∗ 0x which

implies that X is quasi-associative. By Theorem 10, the F22 identity implies that yx ∗ zx = yx ∗ xz.
Substitute x = 0 to get yz = y ∗ 0z. Now, put y = z in this to get z ∗ 0z = 0. So, 0z = 0 ⇒ z = 0.
Hence, X is p-semisimple (Theorem 8(2)). Thus, by Theorem 9, X is associative.

18. Let X be an F23-algebra. Then yx ∗ zx = y(xz ∗ x). With z = 0, we have yx ∗ 0x = y(x ∗ x) which
implies yx ∗ 0x = y. Since 0 ∈ Nμ(X), (this is obtained by putting z = x in the F23-identity),
the last equation becomes (yx ∗ 0) ∗ x = y which implies (yx ∗ x) = y. Put x = y in the last
equation to get 0 ∗ y = y as required.

19. Let X be an F24-algebra. Then yx ∗ zx = y(x ∗ zx). With z = 0, we have yx ∗ 0x = y(x ∗ 0x).
Since 0 ∈ Nμ(X),(this is obtained by putting x = 0 in the F24-identity), the last equation becomes
((yx)0 ∗ x) = y(x0 ∗ x) which implies yx ∗ x = y. Put y = x in the last equation to get 0 ∗ y = y
as required.

20. Let X be an F25-algebra. Then (yx ∗ z)x = (y ∗ xz)x. Put x = 0, then yz = y ∗ 0z. Substitute z = y,
then y ∗ 0y = 0. So, 0y = 0 ⇒ y = 0. Hence, X is p-semisimple (Theorem 8(2)). Hence, X has the
RCL by Theorem 7. Thence, the F25 identity (yx ∗ z)x = (y ∗ xz)x implies yx ∗ z = y ∗ xz. Thus,
X is associative.

21. Let X be an F26-algebra. Then (yx ∗ z)x = y(xz ∗ x). With z = 0, we have yx ∗ x = y. Put x = y in
the last equation to get 0 ∗ y = y as required.

22. Let X be an F27-algebra. Then (yx ∗ z)x = y(x ∗ zx). Put z = x = y, then 0x ∗ x = 0 which implies
X is quasi-associative. Put x = 0 and y = z to get z ∗ 0z = 0. So, 0z = 0 ⇒ z = 0. Hence, X is
p-semisimple (Theorem 8(2)). Thus, by Theorem 9, X is associative.

23. Let X be an F28-algebra. Then (y ∗ xz)x = y(xz ∗ x). With z = 0, we have yx ∗ x = y. Put x = y in
the last equation to get 0 ∗ y = y as required.

24. The proof of this is similar to the proof for F10-algebra.
25. Let X be an F31-algebra. Then yx ∗ xz = (yx ∗ x)z. By Theorem 10, the F31 identity becomes F25

identity which implies that X is associative.
26. Let X be an F32-algebra. Then yx ∗ xz = (y ∗ xx)z. With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
27. Let X be an F33-algebra. Then yx ∗ xz = y(xx ∗ z). With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
28. Let X be an F34-algebra. Then yx ∗ xz = y(x ∗ xz). With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
29. Let X be an F35-algebra. Then (yx ∗ x)z = (y ∗ xx)z. With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
30. Let X be an F36-algebra. Then (yx ∗ x)z = y(xx ∗ z). With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
31. Let X be an F37-algebra. Then (yx ∗ x)z = y(x ∗ xz). With z = 0, we have yx ∗ x = y. Put x = y in

the last equation to get 0 ∗ y = y as required.
32. Let X be an F38-algebra. Then, yz = y ∗ 0z. Put z = y, then y ∗ 0y = 0. So, 0y = 0 ⇒ y = 0. Hence,

X is p-semisimple (Theorem 8(2)). Now, put y = x, then xz = x ∗ 0z. Now, substitute x = 0 to get
0z = 0 ∗ 0z which means that X is quasi-associative. Thus, by Theorem 9, X is associative.

33. Let X be an F40-algebra. By the F40 identity, y ∗ 0z = y(x ∗ xz). Put z = x = y to get 0 ∗ 0x = 0. So,
0x = 0 ⇒ x = 0. Hence, X is p-semisimple (Theorem 8(2)). Thus, X has the LCL by Theorem 4.
Thence, the F40 identity y(xx ∗ z) = y(x ∗ xz) becomes 0 ∗ z = x ∗ xz. Substituting z = x, we get
0x = x which means that X is associative.
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34. Let X be an F41-algebra. Then xx ∗ yz = (x ∗ xy)z. With z = 0, we have 0 ∗ y = x ∗ xy. Put y = x
in the last equation to get 0 ∗ x = x as required.

35. Let X be an F43-algebra. Then xx ∗ yz = x(x ∗ yz). With z = 0, we have 0 ∗ y = x(x ∗ y). Put x = y
in the last equation to get 0 ∗ y = y as required.

36. Let X be an F44-algebra. Then xx ∗ yz = x(xy ∗ z). With z = 0, we have 0 ∗ y = x(x ∗ y). Put x = y
in the last equation to get 0 ∗ y = y as required.

37. Let X be an F45-algebra. Then (x ∗ xy)z = (xx ∗ y)z. With z = 0, we have x ∗ xy = 0 ∗ y. Put x = y
in the last equation to get 0 ∗ y = y as required.

38. Let X be an F47-algebra. Then (x ∗ xy)z = x(xy ∗ z). With y = 0, we have 0 ∗ z = x(x ∗ z). Put
x = z in the last equation to get 0 ∗ z = z as required.

39. Let X be an F48-algebra. Then (xx ∗ y)z = x(x ∗ yz). With z = 0, we have 0 ∗ y = x ∗ xy. Put x = y
in the last equation to get 0 ∗ y = y as required.

40. Let X be an F49-algebra. Then (xx ∗ y)z = x(xy ∗ z). With y = 0, we have 0 ∗ z = x ∗ xz. Put x = z
in the last equation to get 0 ∗ z = z as required.

41. This is similar to the proof for F10-algebra.
42. Let X be an F51-algebra. Then yz ∗ xx = (yz ∗ x)x. With z = 0, we have y = (y ∗ x)x. Put x = y in

the last equation to get 0 ∗ y = y as required.
43. Let X be an F53-algebra. Then yz ∗ xx = y(zx ∗ x) which becomes yz = y(zx ∗ x). Put z = x to

get yx = y ∗ 0x. Substituting y = x, we get x ∗ 0x = 0. So, 0x = 0 ⇒ x = 0, which means that X
is p-semisimple (Theorem 8(2)). Now, put y = 0 in yx = y ∗ 0x to get 0x = 0 ∗ 0x. Hence, X is
quasi-associative. Thus, X is associative.

44. Let X be an F57-algebra. Then (yz ∗ x)x = y(z ∗ xx). With z = 0, we have yx ∗ x = y. Put x = y in
the last equation to get 0 ∗ y = y as required.

45. Let X be an F58-algebra. Then (y ∗ zx)x = y(zx ∗ x). Put y = x = z to get x ∗ 0x = 0. So,
0x = 0 ⇒ x = 0, which means that X is p-semisimple (Theorem 8(2)). Now, put z = x, y = 0 to
get 0x = 0 ∗ 0x. Hence, X is quasi-associative. Thus, X is associative.

46. Let X be an F60-algebra. Then y(zx ∗ x) = y(z ∗ xx). Put y = x = z to get x ∗ 0x = 0. So,
0x = 0 ⇒ x = 0, which means that X is p-semisimple (Theorem 8(2)). Hence, X has the LCL by
Theorem 4. Thence, the F10 identity becomes zx ∗ x = z ∗ xx. Now, substitute z = x to get 0x = x.
Thus, X is associative.

Corollary 1. Let (X, ∗, 0) be a BCI-algebra. If X is any of the following Fenyves’ BCI-algebras, then (X, ∗) is
a Boolean group.

1. F1-algebra
2. F2-algebra
3. F4-algebra
4. F6-algebra
5. F7-algebra
6. F9-algebra
7. F10-algebra
8. F11-algebra
9. F12-algebra

10. F13-algebra

11. F14-algebra
12. F15-algebra
13. F16-algebra
14. F17-algebra
15. F18-algebra
16. F20-algebra
17. F22-algebra
18. F23-algebra
19. F24-algebra
20. F25-algebra

21. F26-algebra
22. F27-algebra
23. F28-algebra
24. F30-algebra
25. F31-algebra
26. F32-algebra
27. F33-algebra
28. F34-algebra
29. F35-algebra
30. F36-algebra

31. F37-algebra
32. F38-algebra
33. F40-algebra
34. F41-algebra
35. F43-algebra
36. F44-algebra
37. F45-algebra
38. F47-algebra
39. F48-algebra
40. F49-algebra

41. F50-algebra

42. F51-algebra

43. F53-algebra

44. F57-algebra

45. F58-algebra

46. F60-algebra

Proof. This follows from Theorems 12 and 13.

Theorem 14. Let (X, ∗, 0) be a BCI-algebra.

1. Let X be an F3-algebra. X is associative if and only if x(x ∗ zx) = xz if and only if X is p-semisimple.
2. Let X be an F5-algebra. X is associative if and only if (xy ∗ x)x = yx.
3. Let X be an F21-algebra. X is associative if and only if (yx ∗ x)x = x ∗ y.
4. Let X be an F42-algebra. X is associative if and only if X is p-semisimple.
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5. Let X be an F55-algebra. X is associative if and only if [(y ∗ x) ∗ x] ∗ x = x ∗ y.
6. (a) X is an F5-algebra and p-semisimple if and only if X is associative.

(b) Let X be an F8-algebra. X is associative if and only if x(y ∗ zx) = yz.
7. Let X be an F19-algebra. X is associative if and only if quasi-associative.
8. X is an F39-algebra and obeys y(x ∗ xz) = zy if and only if X is associative.
9. Let X be a F46-algebra. X is associative if and only if 0(0 ∗ 0x) = x.

10. (a) X is an F52-algebra and F55-algebra if and only if X is associative.
(b) X is an F52-algebra and obeys (y ∗ zx)x = zy if and only if X is associative.
(c) X is an F55-algebra and p-semisimple if and only if X is associative.
(d) Let X be an F52-algebra. X is associative if and only if X is quasi-associative.

11. (a) X is an F59-algebra and F55-algebra if and only if X is associative.
(b) X is an F52-algebra and obeys (y ∗ zx)x = zy if and only if X is associative.
(c) Let X be a F56-algebra. X is associative if and only if X is quasi-associative.
(d) Let X be an F59-algebra. X is associative if and only if X is quasi-associative.

Proof.

1. Suppose X is a F3-algebra. Then, xy ∗ zx = x(y ∗ zx). Put y = x to get 0 ∗ zx = x(x ∗ zx).
Substituting x = 0, we have 0z = 0 ∗ 0z which means X is quasi-associative. Going by Theorem 9,
X is associative if and only if X is p-semisimple. Furthermore, by Theorem 4(3) and 0 ∗ zx =

x(x ∗ zx), an F3-algebra X is associative if and only if xy = x(x ∗ zx).
2. Suppose X is associative. Then 0 ∗ x = x. X is F5 implies (xy ∗ z)x = (x ∗ yz)x. With z = x,

we have (xy ∗ x)x = (x ∗ yx)x ⇒ (xy ∗ x)x = (x ∗ x)yx ⇒ (xy ∗ x)x = 0 ∗ yx ⇒ (xy ∗ x)x = yx
as required. Conversely, suppose (xy ∗ x)x = yx. Put z = x in (xy ∗ z)x = (x ∗ yz)x to get
(xy ∗ x)x = (x ∗ yx)x ⇒ (xy ∗ x)x = (x ∗ x)yx ⇒ (xy ∗ x)x = 0 ∗ yx ⇒ yx = 0 ∗ yx (since
(xy ∗ x)x = yx). So, X is associative.

3. Suppose X is associative. Then x ∗ y = y ∗ x. X is F21 implies yx ∗ zx = (yx ∗ z)x. With z = x,
we have (yx ∗ x)x = y ∗ x = x ∗ y as required. Conversely, suppose (yx ∗ x)x = x ∗ y. Put z = x
in F21 to get (yx ∗ x)x = y ∗ x. So, x ∗ y = y ∗ x as required.

4. Suppose X is associative. Then 0 ∗ z = z. X is F42 implies xx ∗ yz = (xx ∗ y)z. With y = 0,
we have 0 ∗ 0z = 0 ∗ z = z as required. Conversely, suppose 0 ∗ 0z = z. Put y = 0 in F42 to get
0 ∗ 0z = 0 ∗ z. So, 0 ∗ z = z as required.

5. Suppose X is associative. Then x ∗ y = y ∗ x. X is F55 implies [(y ∗ z) ∗ x] ∗ x = [y ∗ (z ∗ x)] ∗ x.
With z = x, we have [(y ∗ x) ∗ x] ∗ x = y ∗ x = x ∗ y as required. Conversely, suppose [(y ∗ x) ∗
x] ∗ x = x ∗ y. Put z = x in F55 to get y ∗ x = [(y ∗ x) ∗ x] ∗ x = x ∗ y. So, y ∗ x = x ∗ y as required.

The proofs of 6 to 11 follow by using the concerned Fi and Fj identities (plus p-simplicity by Theorem 12
in some cases) to get an Fk which is equivalent to associativity by Theorem 13 or which is not equivalent
to associativity by 1 to 5 of Theorem 14.

3. Summary, Conclusions and Recommendations

In this work, we have been able to construct examples of Fenyves’ BCI-algebras. We have also
obtained the basic algebraic properties of Fenyves’ BCI-algebras. Furthermore, we have categorized
the Fenyves’ BCI-algebras into a 46 member associative class (as captured in Theorem 13). Members
of this class include F1, F2, F4, F6, F7, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F20, F22, F23, F24, F25, F26,
F27, F28, F30, F31, F32, F33, F34, F35, F36, F37, F38, F40, F41, F43, F44, F45, F47, F48, F49, F50, F51, F53, F57, F58,
F60-algebras; and a 14 member non-associative class. Those Fenyves identities that are equivalent to
associativity in BCI-algebras are denoted by � in the fifth column of Table 1. For those that belong
to the non-associative class, we have been able to obtain conditions under which they would be
associative (as reflected in Theorem 14). This class includes F3, F5, F8, F19, F21,F29, F39 , F42, F46, F52, F54,
F55, F56, F59-algebras. In Table 1 which summarizes the results, members of this class are identified by
the symbol ‘‡’.

Other researchers who have studied Fenyves’ identities on the platform of loops, namely Phillips
and Vojtechovsky [5], Jaiyeola [6], Kinyon and Kunen (2004) found Moufang (F2, F4, F17, F27), extra
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(F6, F13, F22), F9, F15, left Bol (F19), right Bol (F26), Moufang (F4, F27), F30, F35, F36, C (F37), F38, F39, F40,
LC(F39, F41, F46, F48), F42, F43, F45, F51, RC(F36, F53, F56, F57), F54, and F60 Fenyves’ identities not to be
equivalent to associativity in loops. Interestingly, in our study, some of these identities, particularly
the extra identity (F6, F13, F22), F7, F9, F15, F17, right Bol (F26), Moufang (F4, F27), F30, F35, F38, F40,
RC (F36, F53, F57), C (F37), LC (F41, F48), F43, F45, F51 and F60 have been found to be equivalent to
associativity in BCI-algebras. In addition, the aforementioned researchers found F1, F3, F5, F7, F8,
F10, F11, F12, F14, F16, F18, F20, F21, F23, F24, F25, F28, F29, F31, F32, F33, F34, F44, F47, F49, F50, F52, F55,
F58 and F59 identities to be equivalent to associativity in loops. We have also found some (F7, F10,
F11, F12, F14, F16, F18,F20, F23, F24, F25, F28, F31, F32, F33, F44, F47, F49, F50, F58) of these identities to
be equivalent to associativity in BCI-algebras while some others (F3, F5, F8, F20, F21, F29,F55, F59)
were not equivalent to associativity in BCI-algebras.

In loop theory, it is well known that:

• A loop is an extra loop if and only if the loop is both a Moufang loop and a C-loop.
• A loop is a Moufang loop if and only if the loop is both a right Bol loop and a left Bol-loop.
• A loop is a C-loop if and only if the loop is both a RC-loop and a LC-loop.

In this work, we have been able to establish (as stated below) somewhat similar results for a few
of the Fenyves’ identities in a BCI-algebra X:

• X is an Fi-algebra and Fj-algebra if and only if X is associative, for the pairs: i = 52, j = 55,
i = 59, j = 55.

Fenyves [31], and Phillips and Vojtěchovský [32,33] found some of the 60 Fi identities to be
equivalent to associativity in quasigroups and loops (i.e., groups), and others to describe weak
associative laws such as extra, Bol, Moufang, central, flexible laws in quasigroups and loops. Their
results are summarised in the second, third and fourth columns of Table 1 with the use of �. In this
paper, we went further to establish that 46 Fenyves’ identities are equivalent to associativity in
BCI-algebras while 14 Fenyves’ identities are not equivalent to associativity in BCI-algebras. These
two categories are denoted by � and ‡ in the fifth column of Table 1.

After the works of [31–33], the authors in [34–38] did an extension by investigating and classifying
various generalized forms of the identities of Bol-Moufang types in quasigroups and one sided/two
sided loops into associative and non-associative categories. This answered a question originally posed
in [39] and also led to the study of one of the newly discovered generalized Bol-Moufang types of loop
in Jaiyéo. lá et al. [40]. While all the earlier mentioned research works on Bol-Moufang type identities
focused on quasigroups and loop, this paper focused on the study of Bol-Moufang type identities
(Fenyves’ identities) in special types of groupoids (BCI-algebra and quasi neutrosophic triplet loops)
which are not necessarily quasigroups or loops (as proved in Theorem 12). Examples of such well
known varieties of groupoids were constructed by Ilojide et al. [41], e.g., Abel-Grassmann’s groupoid.

The results of this work are an initiation into the study of the classification of finite Fenyves’ quasi
neutrosophic triplet loops (FQNTLs) just like various types of finite loops have been classified (e.g.,
Bol loops, Moufang loops and FRUTE loops). In fact, a library of finite Moufang loops of small order is
available in the GAPS-LOOPS package [42]. It will be intriguing to have such a library of FQNTLs.

Overall, this research work (especially for the non-associative Fi’s) has opened a new area of
research findings in BCI-algebras and Bol-Moufang type quasi neutrosophic triplet loops as shown in
Figure 1.
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Table 1. Characterization of Fenyves Identities in Quasigroups, Loops and BCI-Algebras by Associativity.

Fenyves Fi ≡ ASS Fi �≡ ASS Quassigroup Fi + BCI
Identity Inaloop Inaloop ⇒ Loop ⇒ ASS

F1 � � �
F2 � � �
F3 � � ‡

F4 � �
F5 � ‡

F6 � � �
F7 � �
F8 � ‡

F9 � �
F10 � �
F11 � � �
F12 � � �
F13 � � �
F14 � �
F15 � �
F16 � �
F17 � � �
F18 � � �
F19 � ‡

F20 � �
F21 � � ‡

F22 � � �
F23 � �
F24 � �
F25 � �
F26 � �
F27 � � �
F28 � � �
F29 � ‡

F30 � �
F31 � � �
F32 � � �
F33 � �
F34 � �
F35 � �
F36 � �
F37 � �
F38 � � �
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Table 1. Cont.

Fenyves Fi ≡ ASS Fi �≡ ASS Quassigroup Fi + BCI
Identity Inaloop Inaloop ⇒ Loop ⇒ ASS

F39 � ‡

F40 � �
F41 � � �
F42 � ‡

F43 � �
F44 � �
F45 � �
F46 � ‡

F47 � � �
F48 � �
F49 � �
F50 � �
F51 � �
F52 � ‡

F53 � � �
F54 � ‡

F55 � ‡

F56 � ‡

F57 � �
F58 � � �
F59 � ‡

F60 � �

Figure 1. New Cycle of Algebraic Structures.
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Ferhat Taş 1 , Selçuk Topal 2,* and Florentin Smarandache 3

1 Department of Mathematics, Faculty of Science, İstanbul University, İstanbul 34134, Turkey;
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the first time. Besides, we newly determine a mathematical model for clustering the neutrosophic big
data sets using G-metric. Furthermore, relative weighted neutrosophic-valued distance and weighted
cohesion measure, is defined for neutrosophic big data set. We offer a very practical method for data
analysis of neutrosophic big data although neutrosophic data type (neutrosophic big data) are in
massive and detailed form when compared with other data types.
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1. Introduction and Preliminaries

Neutrosophic Logic is a neonate study area in which each proposition is estimated to have the
proportion (percentage) of truth in a subset T, the proportion of indeterminacy in a subset I, and the
proportion of falsity in a subset F. We utilize a subset of truth (or indeterminacy, or falsity), instead of a
number only, since in many situations we do not have ability to strictly specify the proportions of truth
and of falsity but only approximate them; for instance, a proposition is between 25% and 55% true and
between 65% and 78% false; even worse: between 33% and 48% or 42 and 53% true (pursuant to several
observer), and 58% or between 66% and 73% false. The subsets are not essential intervals, but any sets
(open or closed or half open/half-closed intervals, discrete, continuous, intersections or unions of the
previous sets, etc.) in keeping with the given proposition. Zadeh initiated the adventure of obtaining
meaning and mathematical results from uncertainty situations (fuzzy) [1]. Fuzzy sets brought a
new dimension to the concept of classical set theory. Atanassov introduced intuitionistic fuzzy sets
including membership and non-membership degrees [2]. Neutrosophy was proposed by Smarandache
as a computational approach to the concept of neutrality [3]. Neutrosophic sets consider membership,
non-membership and indeterminacy degrees. Intuitionistic fuzzy sets are defined by the degree
of membership and non-membership and, uncertainty degrees by the 1-(membership degree plus
non-membership degree), while the degree of uncertainty is evaluated independently of the degree of
membership and non-membership in neutrosophic sets. Here, membership, non-membership, and
degree of uncertainty (uncertainty), such as degrees of accuracy and falsity, can be evaluated according
to the interpretation of the places to be used. It depends entirely on the subject area (the universe of
discourse). This reveals a difference between neutrosophic set and intuitionistic fuzzy set. In this sense,
the concept of neutrosophic is a possible solution and representation of problems in various fields.
Two detailed and mathematical fundamental differences between relative truth (IFL) and absolute
truth (NL) are:
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(i) NL can discern absolute truth (truth in all possible worlds, according to Leibniz) from the relative
truth (truth in at least one world) because NL (absolute truth) = 1+ while IFL (relative truth) = 1.
This has practice in philosophy (see the Neutrosophy). The standard interval [0, 1] used in IFL
has been extended to the unitary non-standard interval ]− 0, 1+ [ in NL. Parallel earmarks for
absolute or relative falsehood and absolute or relative indeterminacy are permitted in NL.

(ii) There is no limit on T, I, F other than they are subsets of ]− 0, 1+ [, thus: −0 ≤ inf T + inf I + inf F
≤ sup T + sup I + sup F ≤ 3+ in NL. This permissiveness allows dialetheist, paraconsistent, and
incomplete information to be described in NL, while these situations cannot be described in IFL
since F (falsehood), T (truth), I (indeterminacy) are restricted either to t + i + f = 1 or to t2 + f2 ≤ 1,
if T, I, F are all reduced to the points t, i, f respectively, or to sup T + sup I + sup F = 1 if T, I, F are
subsets of [0, 1] in IFL.

Clustering data is one of the most significant problems in data analysis. Useful and efficient
algorithms are needed for big data. This is even more challenging for neutrosophic data
sets, particularly those involving uncertainty. These sets are elements of some decision-making
problems, [4–8]. Several distances and similarities are used for decision-making problems [9,10].
Algorithms for the clustering big data sets use the distances (metrics). There are some metrics used in
algorithms to analysis neutrosophic data sets: Hamming, Euclidean, etc. In this paper, we examine
clustering of neutrosophic data sets via neutrosophic valued distances.

The big data notion is a new label for the giant size of data–both structured and unstructured—that
overflows several sectors on a time-to-time basis. It does not mean overall data are significant and
the significant aspect is to obtain desired specific data interpretation. Big data can be analyzed for
pre-cognition that make possible more consistent decisions and strategic having positions. Doug
Laney [11] sort to make the definition of big data the three Vs and Veracity widespread: (1) Velocity:
This refers to dynamic data and captures data streams in near real-time. Data streams in at an
exceptional speed and must be dealt with in a well-timed mode. (2) Variety: Data comes in all types of
formats—from structured, numeric data in traditional databases to formless materials. On the one
hand, variety denotes to the various sources and types of organized and formless data. Storing data
is made from sources like worksheets and databases. (3) Volume: Organizations gather data from a
range of sources, including social media, business operations, and data from the sensor or machine to
machine. (4) Veracity: It mentions to the biases, noise, and anomaly in data. That corresponds with
the question “Is the data that is being put in storage and extracted meaningful to the problem being
examined?”.

In this paper, we also focus on K-sets cluster algorithm which is a process of analyzing data with
the aim of evaluating neutrosophic big data sets. The K-sets cluster is an unrestrained type of learning
that is used when one wants to utilize unlabeled data, [12]. The goal of the algorithm is to find groups
of data with the number of groups represented by variable K. The algorithm works iteratively to
set-aside each data point obtained to one of the K groups based on the properties obtained. The data
points are clustered according to feature similarity. Instead of identifying groups before examining
patterns, clustering helps to find and analyze naturally occurring groups. “Choosing K” has the goal
of “how the number of groups can be determined”. Each center of a congregation is a collection of
property values describe the groups that emerged. Analysis of centroid feature weights can be used
to qualitatively interpret what kind of group is represented by each cluster. The algorithm finds the
clusters and data set labels for a particular pre-chosen K. To have the number of clusters in the data,
the user must run the K-means clustering algorithm for a range of K values and compare the results.
In general, there is no technique to determine a specific K value, but a precise estimate can be obtained
using the following methods. In general, one of the metrics used to compare the results between the
different K values as the average distance between the data points and their cluster synthesis. As the
number of sets increases, it will always reduce the distance to the data points, while the K increment
will always lower this metric as other criteria, and when K is the same as the number of data points,
reaching zero will be excessive. Thus, this metric cannot be used as a single purpose. Rather, the
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average distance to the center as a function of K is plotted where the shear rate falls sharply, it can be
used to determine K approximately.

A number of other techniques are available for verification of K, including cross-validation,
information criteria, information theoretical jump method, and G-tools algorithm. In addition,
monitoring the distribution of data points between groups provides information about how the
algorithm splits data for each K. K-sets algorithms base on the measurement of distances of sets.
A distance is a measurement of how far apart each pair of elements of a given set is. Distance
functions in mathematics and many other computational sciences are important concepts. They have
wide usage areas, for example, the goal of quantifying a dissimilarity (or equivalently similarity)
between two objects, sets or set of sets in some sense. However, due to the massive, complicated and
different type data sets today, definitions of distance functions are required to be more generalized and
detailed. For this purpose, we define a novel metric for similarity and distance to give Neutrosophic
Valued-Metric Spaces (NVGMS). We present relative weighted measure definition and finally K-sets
algorithm after given the definition of NVGMS.

Some readers who are unfamiliar with the topic in this paper need to have a natural example to
understand the topic well. There is a need for earlier data in everyday life to give a natural example for
the subject first described in this paper. There is no this type of data (we mean neutrosophic big data)
in any source, but we will give an example of how to obtain and cluster such a data in Section 6 of the
paper. If we encounter a sample of neutrosophic big data in the future, we will present the results with
a visual sample as a technical report. In this paper, we have developed a mathematically powerful
method for the notion of concepts that are still in its infancy.

1.1. G-Metric Spaces

Metric space is a pair of (A, d), where A is a non-empty set and d is a metric which is defined by
a certain distance and the elements of the set A. Some metrics may have different values such as a
complex-valued metric [13,14]. Mustafa and Sims defined G-metric by generalizing this definition [15].
Specifically, fixed point theorems on analysis have been used in G-metric spaces [16,17].

Definition 1. Let A be a non-empty set and d be a metric on A, then if the following conditions hold, the pair
(A, d) is called a metric space. Let x, y, z ∈ A

(1) d(x, y) ≥ 0, (non-negativity)
(2) d(x, y) = 0 ⇔ x = y , (identity)
(3) d(x, y) = d(y, x), (symmetry)
(4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

where d : A × A → R+ ∪ {0} .

Definition 2. [15] Let A be a non-empty set. A function G : A × A × A → [0,+∞) is called G-distance if it
satisfies the following properties:

(1) G(x, y, z) = 0 if and only if x = y = z,
(2) G(x, x, y) �= 0 whenever x �= y,
(3) G(x, x, y) ≤ G(x, y, z) for any x, y, z ∈ A, with z �= y,
(4) G(x, y, z) = G(x, z, y) = . . . (symmetric for all elements),
(5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all a, x, y, z ∈ A (Rectangular inequality).

The pair (A, G) is called a G-metric space. Moreover, if G-metric has the following property then it
is called symmetric: G(x, x, y) = G(x, y, y), ∀x, y ∈ A.
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Example 1. In 3-dimensional Euclidean metric space, one can assume the G-metric space
(
E3, G

)
as the

following:
G(x, y, z) = 2(‖x × y‖+ ‖z × y‖+ ‖x × z‖)

where x, y, z ∈ E3 and ‖. × .‖ represent the norm of the vector product of two vectors in E3. It is obvious that it
satisfies all conditions in the Definition 2 because of the norm has the metric properties, and it is symmetric.

Example 2. Let (A, d) is a metric space. Then

G(x, y, z) = d(x, y) + d(y, z)− d(x, z)

is a G-metric, where x, y, z ∈ A. The fact that d is a metric indicates that it has triangle inequality. Thus, G is
always positive definite.

Proposition 1. [17] Let (A, G) be a G-metric space then a metric on A can be defined from a G-metric:

dG(x, y) = G(x, x, y) + G(x, y, y)

1.2. Neutrosophic Sets

Neutrosophy is a generalized form of the philosophy of intuitionistic fuzzy logic. In neutrosophic
logic, there is no restriction for truth, indeterminacy, and falsity and they have a unit real interval
value for each element neutrosophic set. These values are independent of each other. Sometimes,
intuitionistic fuzzy logic is not enough for solving some real-life problems, i.e., engineering problems.
So, mathematically, considering neutrosophic elements are becoming important for modelling these
problems. Studies have been conducted in many areas of mathematics and other related sciences
especially computer science since Smarandache made this philosophical definition, [18,19].

Definition 3. Let E be a universe of discourse and A ⊆ E. A = {(x, T(x), I(x), F(x)) : x ∈ E} is
a neutrosophic set or single valued neutrosophic set (SVNS), where TA, IA, FA : A → ]−0, 1+[ are the
truth-membership function, the indeterminacy-membership function and the falsity-membership function,
respectively. Here, −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 4. For the SVNS A in E, the triple 〈TA, IA, FA〉 is called the single valued neutrosophic number
(SVNN).

Definition 5. Let n = 〈Tn, In, Fn〉 be an SVNN, then the score function of n can be given as follow:

sn =
1 + Tn − 2In − Fn

2
(1)

where sn ∈ [−1, 1].

Definition 6. Let n = 〈Tn, In, Fn〉 be an SVNN, then the accuracy function of n can be given as follow:

hn =
2 + Tn − In − Fn

3
(2)

where hn ∈ [0, 1].

Definition 7. Let n1 and n2 be two SVNNs. Then, the ranking of two SVNNs can be defined as follows:

(I) If sn1 > sn2 , then n1 > n2;
(II) If sn1 = sn2 and hn1 ≥ hn2 , then n1 ≥ n2.
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2. Neutrosophic Valued Metric Spaces

The distance is measured via some operators which are defined in some non-empty sets. In
general, operators in metric spaces have zero values, depending on the set and value.

2.1. Operators

Definition 8. [20,21], Let A be non-empty SVNS and x = 〈Tx, Ix, Fx〉, y =
〈

Ty, Iy, Fy
〉

be two SVNNs.
The operations that addition, multiplication, multiplication with scalar α ∈ R+, and exponential of SVNNs are
defined as follows, respectively:

x ⊕ y =
〈

Tx + Ty − TxTy, Ix Iy, FxFy
〉

x ! y =
〈

TxTy, Ix + Iy − Ix Iy, Fx + Fy − FxFy
〉

αx =
〈
1 − (1 − Tx)

α, Iα
x , Fα

x
〉

xα =
〈

Tα
x , 1 − (1 − Ix)

α, 1 − (1 − Fx)
α〉

From this definition, we have the following theorems as a result:

Theorem 1. Let x = 〈Tx, Ix, Fx〉 be an SVNN. The neutral element of the additive operator of the set A is
0A = 〈0, 1, 1〉.

Proof. Let x = 〈Tx, Ix, Fx〉 and 0A = 〈T0, I0, F0〉 are two SVNN and using Definition 8 we have

x ⊕ 0A = 〈Tx + T0 − TxT0, Ix I0, FxF0〉 = 〈Tx, Ix, Fx〉
⇒ 〈T0, I0, F0〉 = 〈0, 1, 1〉 = 0A

(There is no need to show left-hand side because the operator is commutative in every component).
�

To compare the neutrosophic values based on a neutral element, we shall calculate the score and
accuracy functions of a neutral element 0A = 〈0, 1, 1〉, respectively:

s0 =
1 + T0 − 2I0 − F0

2
= −1 and h0 =

2 + T0 − I0 − F0

3
= 0

Theorem 2. Let x = 〈Tx, Ix, Fx〉 be an SVNN. The neutral element of the multiplication operator of the A is
1A = 〈1, 0, 0〉.

Proof. Let x = 〈Tx, Ix, Fx〉 and 1A = 〈T1, I1, F1〉 are two SVNN and using Definition 8 we have

x ! 1A = 〈TxT1, Ix + I1 − Ix I1, Fx + F1 − FxF1〉 = 〈Tx, Ix, Fx〉
⇒ 〈T1, I1, F1〉 = 〈1, 0, 0〉 = 1A

In addition, score and accuracy functions of the neutral element 1A = 〈1, 0, 0〉 are s1 =
1+T1−2I1−F1

2 = 1 and h1 = 2+T1−I1−F1
3 = 1, respectively. �

2.2. Neutrosophic Valued Metric Spaces

In this section, we consider the metric and generalized metric spaces in the neutrosophic meaning.

Definition 9. Ordering in the Definition 6 gives an order relation for elements of the conglomerate SVNN.
Suppose that the mapping d : X × X → A, where X and A are SVNS, satisfies:
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(I) 0A ≤ d(x, y) and d(x, y) = 0A ⇔ sx = sy and hx = hy for all x, y ∈ X.
(II) d(x, y) = d(y, x) for all x, y ∈ X.

Then d is called a neutrosophic valued metric on X, and the pair (X, d) is called neutrosophic
valued metric space. Here, the third condition (triangular inequality) of the metric spaces is not suitable
for SVNS because the addition is not ordinary addition.

Theorem 3. Let (X, d) be a neutrosophic valued metric space. Then, there are relationships among truth,
indeterminacy and falsity values:

(I) 0 < T(x, y)− 2I(x, y)− F(x, y) + 3 and if so = sd then 0 < T(x, y)− I(x, y)− F(x, y) + 2.
(II) If d(x, y) = 0A ⇔ T(x, y) = 0, I(x, y) = F(x, y) = 1.
(III) T(x, y) = T(y, x), I(x, y) = I(y, x), F(x, y) = F(y, x) so, each distance function must be symmetric.

where T(., .), I(., .) and F(., .) are distances within themselves of the truth, indeterminacy and falsity functions,
respectively.

Proof.

(I)
0A < d(x, y) ⇔ 〈0, 1, 1〉 < 〈T(x, y), I(x, y), F(x, y)〉

⇔ s0 < sd ⇔ −1 < 1 + T(x,y) − 2I(x,y) − F(x,y)
2

⇔ 0 < T(x, y)− 2I(x, y)− F(x, y) + 3

(II)
d(x, y) = d(y, x) ⇔ 〈T(x, y), I(x, y), F(x, y)〉 = 〈T(y, x), I(y, x), F(y, x)〉

⇔ T(x, y) = T(y, x), I(x, y) = I(y, x), F(x, y) = F(y, x)
�

Example 3. Let A be non-empty SVNS and x = 〈Tx, Ix, Fx〉, y =
〈

Ty, Iy, Fy
〉

be two SVNNs. If we define the
metric d : X × X → A, as:

d(x, y) = 〈T(x, y), I(x, y), F(x, y)〉 = 〈∣∣Tx − Ty
∣∣, 1 − ∣∣Ix − Iy

∣∣, 1 − ∣∣Fx − Fy
∣∣〉

then

(I)
0 <

∣∣Tx − Ty
∣∣− 2

(
1 − ∣∣Ix − Iy

∣∣)− (
1 − ∣∣Fx − Fy

∣∣)+ 3
⇒ 0 <

∣∣Tx − Ty
∣∣+ 2

∣∣Ix − Iy
∣∣+ ∣∣Fx − Fy

∣∣
Then it satisfies the first condition.

(II) Since the properties of the absolute value function, this condition is obvious.
So, (X, d) is a neutrosophic-valued metric space.

3. Neutrosophic Valued G-Metric Spaces

Definition 10. Let X and A be a non-empty SVNS. A function G : X × X × X → A is called neutrosophic
valued G-metric if it satisfies the following properties:

(1) G(x, y, z) = 0A if and only if x = y = z,
(2) G(x, x, y) �= 0A whenever x �= y,
(3) G(x, x, y) ≤ G(x, y, z) for any x, y, z ∈ X, with z �= y,
(4) G(x, y, z) = G(x, z, y) = . . . (symmetric for all elements).

The pair (X, G) is called a neutrosophic valued G-metric space.

Theorem 4. Let (X, G) be a neutrosophic valued G-metric space then, it satisfies followings:
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(1) T(x, x, x) = 0, I(x, x, x) = F(x, x, x) = 1.
(2) Assume x �= y , then T(x, y, z) �= 0, I(x, y, z) �= 1, F(x, y, z) �= 1.
(3) 0 < T(x, y, z)− T(x, x, y) + 2(I(x, x, y)− I(x, y, z)) + F(x, x, y)− F(x, y, z)
(4) T(x, y, z), I(x, y, z) and F(x, y, z) are symmetric for all elements.

where T(., ., .), I(., ., .) and F(., ., .) are G-distance functions of truth, indeterminacy and falsity values of the
element of the set, respectively.

Proofs are made in a similar way to neutrosophic valued metric spaces.

Example 4. Let X be non-empty SVNS and the G-distance function defined by:

G(x, y, z) =
1
3
(d(x, y)⊕ d(x, z)⊕ d(y, z))

where d(., .) is a neutrosophic valued metric. The pair (X, G) is obviously a neutrosophic valued G-metric space
because of d(., .). Further, it has commutative properties.

4. Relative Weighted Neutrosophic Valued Distances and Cohesion Measures

The relative distance measure is a method used for clustering of data sets, []. We define the
relative weighted distance, which is a more sensitive method for big data sets.

Let xi = 〈Txi , Fxi , Ixi 〉 ∈ A(non-empty SVNS), i = 0 . . . n be SVNNs. Then neutrosophic weighted
average operator of these SVNNs is defined as:

Ma(A) =
n

∑
i=1

χixi =

〈
1 −

n

∏
i=1

(1 − Txi )
χi ,

n

∏
i=1

(Ixi )
χi ,

n

∏
i=1

(Fxi )
χi

〉

where χi is weighted for the i th data. For a given a neutrosophic data set W = {w1, w2, w3, . . . , wn}
and a neutrosophic valued metric d, we define a relative neutrosophic valued distance for choosing
another reference neutrosophic data and compute the relative neutrosophic valued distance as the
average of the difference of distances for all the neutrosophic data wi ∈ W.

Definition 11. The relative neutrosophic valued distance from a neutrosophic data wi to another neutrosophic
data wj is defined as follows:

RD
(
wi‖wj

)
=

1
n ∑

wk∈W

(
d
(
wi, wj

)
d(wi, wk)

)

Here, since T, I, F values of SVNNs cannot be negative, we can define the expression d
(
wi, wj

)
d(wi, wk)

as the distance between these two neutrosophic-valued metrics. Furthermore, the distance of metrics is again
neutrosophic-valued here so, a related neutrosophic-valued distance can be defined as:

d
(
wi, wj

)
d(wi, wk) =

〈
T(wi, wj), I(wi, wj), F(wi, wj)

〉 〈T(wi, wk), I(wi, wk), F(wi, wk)〉
=
〈

1 −
∣∣∣T(wi, wj)− (T(wi, wk)− 1)2

∣∣∣, 1 −
∣∣∣I(wi, wj)− I(wi, wk)

2
∣∣∣, 1 −

∣∣∣F(wi, wj)− F(wi, wk)
2
∣∣∣〉 (3)
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The difference operator generally is not a neutrosophic-valued metric (or G-metric). We used some
abbreviations for saving space.

RD
(
wi‖wj

)
= 1

n ∑
wk∈W

(
d
(
wi, wj

)
d(wi, wk)

)
= d

(
wi, wj

) 1
n ∑

wk∈W
d(wi, wk)

=
〈

T(wi, wj), I(wi, wj), F(wi, wj)
〉 1

n (d(wi, w1)⊕ d(wi, w2)⊕ . . . ⊕ d(wi, wn))

=
〈

T(wi, wj), I(wi, wj), F(wi, wj)
〉

1
n [〈T(wi, w1), I(wi, w1), F(wi, w1)〉 ⊕ . . . ⊕ 〈T(wi, w1), I(wi, w1), F(wi, w1)〉]

=
〈

T(wi, wj), I(wi, wj), F(wi, wj)
〉

1
n

[〈
∑

k∈W
T(wi, wk)− ∏

k∈W
T(wi, wk), ∏

k∈W
I(wi, wk), ∏

k∈W
F(wi, wk)

〉]

=
〈

T(wi, wj), I(wi, wj), F(wi, wj)
〉〈

1 −
[

1 − ∑
k∈W

T(wi, wk) + ∏
k∈W

T(wi, wk)

]1/n
, ∏

k∈W
I(wi, wk)

1/n, ∏
k∈W

F(wi, wk)
1/n

〉
= 〈T1, I1, F1〉 〈T2, I2, F2〉
=
〈

1 −
∣∣∣T1 − (T2 − 1)2

∣∣∣, 1 − ∣∣I1 − I2
2
∣∣, 1 − ∣∣F1 − F2

2
∣∣〉

where T1, I1, F1 and T2, I2, F2 are the first, second, and third elements of SVNN in the previous equation,
respectively.

Definition 12. The relative weighted neutrosophic valued distance from a neutrosophic data wi to another
neutrosophic data wj is defined as follows:

RDχ

(
wi‖wj

)
= ∑

wk∈W
i �=j,j �=k,i �=k

χw
(
d
(
wi, wj

)
d(wi, wk)

)
= χijd

(
wi, wj

)
∑

wk∈W
i �=j,j �=k,i �=k

χikd(wi, wk)

= χij
〈

T(wi, wj), I(wi, wj), F(wi, wj)
〉

(χi1〈T(wi, w1), I(wi, w1), F(wi, w1)〉 ⊕ . . . ⊕ χin〈T(wi, wn), I(wi, wn), F(wi, wn)〉)
=
〈

1 − (
1 − T(wi, wj)

)χij , I(wi, wj)
χij , F(wi, wj)

χij
〉( 〈

1 − (1 − T(wi, w1))
χi1 , I(wi, w1)

χi1 , F(wi, w1)
χi1
〉⊕ . . .

⊕〈1 − (1 − T(wi, wn))
χin , I(wi, wn)

χin , F(wi, wn)
χin
〉 )

=
〈

1 − (
1 − T(wi, wj)

)χij , I(wi, wj)
χij , F(wi, wj)

χij
〉〈

n
∑

k=1
k �=i,j

∼
Tik −

n
∏

k=1
k �=i,j

∼
Tik,

n
∏

k=1
k �=i,j

∼
I ik,

n
∏

k=1
k �=i,j

∼
Fik

〉
= 〈T1, I1, F1〉 〈T2, I2, F2〉
=
〈

1 −
∣∣∣T1 − (T2 − 1)2

∣∣∣, 1 − ∣∣I1 − I2
2
∣∣, 1 − ∣∣F1 − F2

2
∣∣〉

where
∼
Tik = 1 − (1 − T(wi, wk))

χik ,
∼
I ik = I(wi, wk)

χik ,
∼
Fik = F(wi, wk)

χik .
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Definition 13. The relative weighted neutrosophic valued distance (from a random neutrosophic data wi) to a
neutrosophic data wj is defined as follows:

RDχ

(
wj
)

= ∑
wi∈W

χiRDχ

(
wi‖wj

)
= ∑

wi∈W
χi

[
∑

wk∈W
χw
(
d
(
wi, wj

)
d(wi, wk)

)]

= ∑
wi∈W

χi

[
∑

wk∈W
χw

(
δ
(
dij, dik

))]

Definition 14. The relative weighted neutrosophic valued distance from a neutrosophic data set W1 to another
neutrosophic data set W2 is defined as follows:

RDχ(W1‖W2) = ∑
x∈W1

χx ∑
y∈W2

χyRDχ(x‖y)

Definition 15. (Weighted cohesion measure between two neutrosophic data) The difference of the relative
weighted neutrosophic-valued distance to wj and the relative weighted neutrosophic-valued distance from wi to
wj, i.e.,

ρχ(wi, wj) = RDχ(wj) RDχ

(
wi‖wj

)
(4)

is called the weighted neutrosophic-valued cohesion measure between two neutrosophic data wi and wj. If
ρχ(wi, wj) ≥ 0W

(
resp. ρχ(wi, wj) ≤ 0W

)
then wi and wj are said to be cohesive (resp. incohesive). So, the

relative weighted neutrosophic distance from wi and wj is not larger than the relative weighted neutrosophic
distance (from a random neutrosophic data) to wj.

Definition 16. (Weighted cohesion measure between two neutrosophic data sets) Let wi and wj are elements of
the neutrosophic data sets U and V, respectively. Then the measure

ρχ(U, V) = ∑
wi∈U

χu ∑
wj∈V

χvρχ(wi, wj) (5)

is called weighted cohesion neutrosophic-valued measure of the neutrosophic data sets U and V.

Definition 17. (Cluster) The non-empty neutrosophic data set W is called a cluster if it is cohesive, i.e.,
ρ(W, W) ≥ 0W .

5. Clustering via Neutrosophic Valued G-Metric Spaces

In this section, we can cluster neutrosophic big data thank to defined weighted distance definitions
in Section 4 and G-metric definition.

Definition 18. The neutrosophic valued weighted G-distance from a neutrosophic data w to a neutrosophic big
data set U is defined as follows:

G(w, y, z) = ∑
y∈U

χu ∑
z∈U

χu(d(w, y)⊕ d(w, z) d(y, z)) (6)
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Algorithm (K-sets algorithm)

Input: A neutrosophic big data set W = {w1, w2, . . . , wn}, a neutrosophic distance measure d(.,.), and the
number of sets K.
Output: A partition of neutrosophic sets {U1, U2, . . . , UK}.

1. Initially, choose arbitrarily K disjoint nonempty sets U1, U2, . . . , UK as a partition of W.
2. for i from 1 to n do

begin
Compute G(xi, yk, zk) for each set Uk.
Find the set to which the point xi is closest in terms of G-distance.
Assign point xi to that set.
end

3. Repeat from 2 until there is no further change.

6. Application and Example

We will give an example of the definition of the data that could have this kind of data and fall into
the frame to fit this definition. We can call a data set a big data set if it is difficult and/or voluminous to
define, analyze and visualize a data set. We give a big neutrosophic data example in accordance with
this definition and possible use of G-metric, but it is fictional since there is no real neutrosophic big
data example yet. It is a candidate for a good example that one of the current topics, image processing
for big data analysis. Imagine a camera on a circuit board that is able to distinguish colors, cluster all
the tools it can capture in the image and record that data. The camera that can be used for any color
(for example white color vehicle) assigns the following degrees:

(I) The vehicle is at a certain distance at which the color can be detected, and the truth value of the
portion of the vehicle is determined.

(II) The rate at which the vehicle can be detected by the camera is assigned as the uncertainty value
(the mixed color is the external factors such as the effect of daylight and the color is determined
on a different scale).

(III) The rate of not seeing a large part of the vehicle or the rate of out of range of the color is assigned
as the value of falsity.

Thus, data of the camera is clustering via G-metric. This result gives that the numbers according to
the daily quantities and colors of vehicles passing by are determined. The data will change continuously
as long as the road is open, and the camera records the data. There will be a neutrosophic data for each
vehicle. So, a Big Neutrosophic Data Clustering will occur.

Here, the weight functions we have defined for the metric can be given 1 value for the main colors
(red-yellow-blue). For other secondary or mixed colors, the color may be given a proportional value
depending on which color is closer.

A Numerical Toy Example

Take 5 neutrosophic data with their weights are equal to 1 to make a numerical example:

W = {w1〈0.6, 0.6, 0.6〉, w2〈0.8, 0.4, 0.5〉, w3〈0.5, 0.8, 0.7〉, w4〈0.9, 0.5, 0.6〉, w5〈0.1, 0.2, 0.7〉}

K = 3 disjoint sets can be chosen U1 = {w1, w4, w5}, U2 = {w2, w3}.
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Then

d(wi, wj) =

⎡⎢⎢⎢⎢⎢⎣
〈0, 1, 1〉 〈0.2, 0.8, 0.9〉 〈0.1, 0.8, 0.9〉 〈0.3, 0.9, 1.0〉 〈0.5, 0.6, 0.9〉

〈0.2, 0.8, 0.9〉 〈0, 1, 1〉 〈0.3, 0.6, 0.8〉 〈0.1, 0.9, 0.9〉 〈0.7, 0.8, 0.8〉
〈0.1, 0.8, 0.9〉 〈0.3, 0.6, 0.8〉 〈0, 1, 1〉 〈0.4, 0.7, 0.9〉 〈0.4, 0.4, 1.0〉
〈0.3, 0.9, 1.0〉
〈0.5, 0.6, 0.9〉

〈0.1, 0.9, 0.9〉
〈0.7, 0.8, 0.8〉

〈0.4, 0.7, 0.9〉
〈0.4, 0.4, 1.0〉

〈0, 1, 1〉
〈0.2, 0.8, 0.9〉

〈0.2, 0.8, 0.9〉
〈0, 1, 1〉

⎤⎥⎥⎥⎥⎥⎦
where we assume the d(wi, wj) as in Example 3. So, we can compute the G-metrics of the data as in
Equation (3):

G(w1, U1) = G(w1, w4, w5) = 〈0.99, 0.90, 0.91〉
G(w1, U2) = G(w1, w2, w3) = 〈0.79, 0.72, 0.83〉
G(w2, U1) = G(w2, w1, w4)⊕ G(w2, w1, w5)⊕ G(w2, w4, w5) = 〈0.9874, 0.6027, 0.6707〉
G(w2, U2) = G(w2, w2, w3) = 〈0, 1, 1〉
G(w3, U1) = G(w3, w1, w4)⊕ G(w3, w1, w5)⊕ G(w3, w4, w5) = 〈1, 0.4608, 0.6707〉
G(w3, U2) = G(w3, w2, w3) = 〈0, 1, 1〉
G(w4, U1) = G(w4, w1, w5) = 〈0.81, 0.64, 0.91〉
G(w4, U2) = G(w4, w2, w3) = 〈0.97, 0.73, 0.83〉

So, according to the calculations above, w4 belongs to set U1 and the other data belong to U2.
Here, we have made the data belonging to the clusters according to the fact that the truth values of the
G-metrics are mainly low. If the truth value of G-distance is low, then the data is closer to the set.

7. Conclusions

This paper has introduced many new notions and definitions for clustering neutrosophic big
data and geometric similarity metric of the data. Neutrosophic data sets have density. For example,
sets having indeterminacy density or neutrosophic density and these are adding the more data and
complexity. So, neutrosophic data sets are complex big data sets. Separation and clustering of these
sets are evaluated according to weighted distances. Neutrosophic data sets in the last part of the paper,
K-sets algorithm has been given for neutrosophic big data sets. We hope that the results in this paper
can be applied to other data types like interval neutrosophic big data sets and can be analyzed in
other metric spaces such as neutrosophic complex valued G-metric spaces etc. and can help to solve
problems in other study areas.
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Vakkas Uluçay 1 , Memet Şahin 1 and Nasruddin Hassan 2,*

1 Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey; vulucay27@gmail.com (V.U.);
mesahin@gantep.edu.tr (M.Ş.)
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Abstract: Smarandache defined a neutrosophic set to handle problems involving incompleteness,
indeterminacy, and awareness of inconsistency knowledge, and have further developed it
neutrosophic soft expert sets. In this paper, this concept is further expanded to generalized
neutrosophic soft expert set (GNSES). We then define its basic operations of complement, union,
intersection, AND, OR, and study some related properties, with supporting proofs. Subsequently,
we define a GNSES-aggregation operator to construct an algorithm for a GNSES decision-making
method, which allows for a more efficient decision process. Finally, we apply the algorithm to a
decision-making problem, to illustrate the effectiveness and practicality of the proposed concept.
A comparative analysis with existing methods is done and the result affirms the flexibility and
precision of our proposed method.

Keywords: aggregation operator; complement; intersection; membership; neutrosophic soft set

1. Introduction

For a proper description of objects in an uncertain and ambiguous environment, indeterminate
and incomplete information has to be properly handled. Intuitionistic fuzzy sets were introduced by
Atanassov [1], followed by Molodtsov on soft sets [2] and neutrosophy logic [3] and neutrosophic
sets [4] were introduced by Smarandache. The term neutro-sophy means knowledge of neutral
thought and this neutral represents the main distinction between fuzzy and intuitionistic fuzzy logic
and a set. At present, work on the soft set theory is progressing rapidly. Various operations and
applications of soft sets have been developed rapidly, including the possibility of fuzzy soft set [5],
soft multiset theory [6], multiparameterized soft set [7], soft intuitionistic fuzzy sets [8], Q-fuzzy soft
sets [9–11], multi Q-fuzzy sets [12–14], N-soft set [15], Hesitant N-soft set [16], and Fuzzy N-soft set [17],
thereby, opening avenues to genetic applications [18,19]. Later, Maji [20] have introduced a more
generalized concept—which is a combination of neutrosophic sets and soft sets—and have studied its
properties. Alhazaymeh and Hassan [21,22] have studied the concept of vague soft set, which were
later extended to vague soft expert set theory [23,24], bipolar fuzzy soft expert set [25], and multi
Q-fuzzy soft expert set [26]. Şahin et al. [27] introduced neutrosophic soft expert sets, while Al-Quran
and Hassan [28,29] extended it further to neutrosophic vague soft expert set. Neutrosophic set theory
has also been applied to multiple attribute decision-making [30–32]. Fuzzy modelling has long
been widely applied to physical problems, which include intuitionistic hesitant fuzzy [33], t-concept
lattices [34], fuzzy operators [35], medical image retrieval [36], and artificial bee colony [37] and multi
criteria decision making [38,39]. Neutrosophic sets have also gained traction with recent publications
on neutrosophic triplets [40,41], Q-neutrosophic soft relations [42], Q-neutrosophic soft sets [43],
and Q-neutrosophic soft expert set [44].

Symmetry 2018, 10, 437; doi:10.3390/sym10100437 www.mdpi.com/journal/symmetry230
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This paper anticipates the neutrosophic set discussions to handle problems involving
incompleteness, indeterminacy, and awareness of inconsistency of knowledge, which is further
developed to neutrosophic soft expert sets. We intend to extend the discussion further, by proposing
the concept of generalized neutrosophic soft expert set (GNSES) and its basic operations of complement,
union, intersection, AND, and OR, along with a definition of GNSES-aggregation operator, to construct
an algorithm of a GNSES decision method. Finally we provide an application of the constructed
algorithm to solve a decision-making problem.

2. Preliminaries

In this section, we review the basic definitions of a neutrosophic set, neutrosophic soft set, soft
expert sets, neutrosophic soft expert sets, and neutrosophic parametrized (NP)-aggregation operator,
which are required as preliminaries.

Definition 1. [4] Let U be a universe of discourse, with a generic element in U denoted by u, then a neutrosophic
(NS) set A is an object having the form

A = { < u : TA(u), IA(u) , FA(u) >, u ∈ U}

where the functions T, I, F: U→ ]−0, 1+[ define, respectively, the degree of membership (or Truth), the degree
of indeterminacy, and the degree of non-membership (or Falsehood) of the element u ∈ U to the set A with
the condition.

−0 ≤ TA(u) + IA(u)+ FA(u) ≤ 3+

Definition 2. [20] Let U be an initial universe set and E be a set of parameters. Consider A ⊆ E. Let NS(U)

denote the set of all neutrosophic sets of U. The collection (F, A) is termed to be the neutrosophic soft set over U,
where F is a mapping given by F : A → NS(U) .

Definition 3. [23] U is an initial universe, E is a set of parameters, X is a set of experts (agents), and
O = {agree = 1, disagree = 0} a set of opinions. Let Z = E × X × O and A ⊆ Z. A pair (F, A) is called a
soft expert set over U, where F is a mapping given by F : A → P(U) where P(U) denoted the power set of U.

Definition 4. [27] A pair (F, A) is called a neutrosophic soft expert set over U, where F is a mapping given by
F : A → P(U) where P(U) denotes the power neutrosophic set of U.

Definition 5. [27] The complement of a neutrosophic soft expert set (F, A) is denoted by (F, A)c, and is
defined as (F, A)c = (Fc,¬A) where Fc = ¬A → P(U) is a mapping given by Fc(x) = neutrosophic soft
expert complement with TFc(x) = FF(x), IFc(x) = IF(x), FFc(x) = TF(x).

Definition 6. [27] The agree-neutrosophic soft expert set (F, A)1 over U is a neutrosophic soft expert subset of
(F, A) defined as

(F, A)1 = {F1(m) : m ∈ E × X × {1}}.

Definition 7. [27] The disagree-neutrosophic soft expert set (F, A)0 over U is a neutrosophic soft expert subset
of (F, A), defined as

(F, A)0 = {F0(m) : m ∈ E × X × {0}}.

Definition 8. [27] Let (H, A) and (G, B) be two neutrosophic soft expert sets (NSESs) over the common
universe U. Then the union of (H, A) and (G, B) is denoted by “(H, A)

∼∪ (G, B)”, and is defined by
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(H, A)
∼∪ (G, B) = (K, C), where C = A ∪ B and the truth-membership, indeterminacy-membership,

and falsity-membership of (K, C) are as follows:

TK(e)(m) =

⎧⎪⎨⎪⎩
TH(e)(m) , i f e ∈ A − B
TG(e)(m) , i f e ∈ B − A

max
(

TH(e)(m), TG(e)(m)
)

, i f e ∈ A ∩ B

IK(e)(m) =

⎧⎪⎨⎪⎩
IH(e)(m) , i f e ∈ A − B
IG(e)(m) , i f e ∈ B − A

IH(e)(m)+ IG(e)(m)

2 , i f e ∈ A ∩ B

FK(e)(m) =

⎧⎪⎨⎪⎩
FH(e)(m) , i f e ∈ A − B
FG(e)(m) , i f e ∈ B − A

min
(

FH(e)(m), FG(e)(m)
)

, i f e ∈ A ∩ B

Definition 9. [27] Let (H, A) and (G, B) be two NSESs over the common universe U. Then the intersection
of (H, A) and (G, B) is denoted by “(H, A)

∼∩ (G, B)” and is defined by (H, A)
∼∩ (G, B) = (K, C), where

C = A ∩ B and the truth-membership, indeterminacy-membership, and falsity-membership of (K, C) are
as follows:

TK(e)(m) = min
(

TH(e)(m), TG(e)(m)
)

IK(e)(m) =
IH(e)(m)+ IG(e)(m)

2

FK(e)(m) = max
(

FH(e)(m), FG(e)(m)
)

, i f e ∈ A ∩ B.

Definition 10. [45] Let ΨK ∈ NP-soft set. Then an NP-aggregation operator of ΨK, denoted by Ψagg
K , is

defined by
Ψagg

K =
{(

〈u, μ
agg
K , ϑ

agg
K , ω

agg
K 〉

)
: u ∈ U

}
, (1)

which is a neutrosophic set over U,

μ
agg
K (u) = 1

|U| ∑ e ∈ E
u ∈ U

μK(u).λ fK(x)(u), μ
agg
K : U → [0, 1] (2)

ϑ
agg
K (u) = 1

|U| ∑ e ∈ E
u ∈ U

ϑK(u).λ fK(x)(u), ϑ
agg
K : U → [0, 1] (3)

ω
agg
K = 1

|U| ∑ e ∈ E
u ∈ U

ωK(u). λ fK(x)(u) , ω
agg
K : U → [0, 1] (4)

and where,

λ fK(x)(u) =

{
1, x ∈ fK(x)(u),

0, otherwise,

such that |U| is the cardinality of U.

3. Generalized Neutrosophic Soft Expert Set

In this section, we introduce the concept of generalized neutrosophic soft expert set (GNSES) and
define some of its properties. Throughout this paper, U is an initial universe, E is a set of parameters,
X is a set of experts (agents), and O = {agree = 1, disagree = 0} a set of opinions. Let Z = E × X ×O
and A ⊆ Z and u is a fuzzy set of A; that is, u : A → I = [0, 1] .
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Definition 11. A pair (Fu, A) is called a generalized neutrosophic soft expert set (GNSES) over U, where Fu is
a mapping given by

Fu : A → N (U)× I,

with N (U) being the set of all neutrosophic soft expert subsets of U. For any parameter e ∈ A, F(e) is referred
as the neutrosophic value set of parameter e, i.e.,

F(e) =
{
〈u/TF(e)(u), IF(e)(u), FF(e)(u)〉

}
,

where T, I, F : U → ]−0, 1+[ are the membership function of truth, indeterminacy, and falsity, respectively,
of the element u ∈ U. For any u ∈ U and e ∈ A

−0 ≤ TF(e)(u) + IF(e)(u) + FF(e)(u) ≤ 3+

In fact, Fu is a parameterized family of neutrosophic soft expert sets on U, which has the degree of
possibility of the approximate value set which is prepresented by u(e) for each parameter e, which can
be written as follows:

Fu(e) =
{(

u1
F(e)(u1)

, u2
F(e)(u2)

, u3
F(e)(u3)

, · · · , un
F(e)(un)

)
, u(e)

}
.

Example 1. Suppose that U = {u1, u2, u3} is a set of computers and E = {e1, e2, e3} is a set of decision
parameters. Let X = {p, q, r} be set of experts. Suppose that

Fu(e1, p, 1) =
{(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2

)
, 0.3

}
Fu(e1, q, 1) =

{(
u1

0.3,0.2,0.5 , u2
0.5,0.6,0.2 , u3

0.8,0.1,0.4

)
, 0.4

}
Fu(e1, r, 1) =

{(
u1

0.8,0.4,0.3 , u2
0.7,0.3,0.5 , u3

0.2,0.6,0.5 ,
)

, 0.8
}

Fu(e2, p, 1) =
{(

u1
0.7,0.3,0.6 , u2

0.5,0.1,0.4 , u3
0.8,0.6,0.3

)
, 0.2

}
Fu(e2, q, 1) =

{(
u1

0.6,0.7,0.1 , u2
0.8,0.4,0.7 , u3

0.5,0.1,0.7

)
, 0.6

}
Fu(e2, r, 1) =

{(
u1

0.5,0.1,0.8 , u2
0.9,0.3,0.6 , u3

0.4,0.1,0.7

)
, 0.5

}
Fu(e3, p, 1) =

{(
u1

0.6,0.3,0.2 , u2
0.5,0.6,0.7 , u3

0.8,0.1,0.4

)
, 0.7

}
Fu(e3, q, 1) =

{(
u1

0.7,0.3,0.4 , u2
0.6,0.2,0.5 , u3

0.7,0.4,0.6

)
, 0.4

}
Fu(e3, r, 1) =

{(
u1

0.8,0.4,0.3 , u2
0.5,0.3,0.6 , u3

0.1,0.4,0.2

)
, 0.5

}
Fu(e1, p, 0) =

{(
u1

0.4,0.1,0.2 , u2
0.7,0.3,0.5 , u3

0.4,0.1,0.6

)
, 0.1

}
Fu(e1, q, 0) =

{(
u1

0.7,0.3,0.5 , u2
0.6,0.2,0.4 , u3

0.4,0.5,0.1

)
, 0.3

}
Fu(e1, r, 0) =

{(
u1

0.6,0.4,0.3 , u2
0.7,0.2,0.6 , u3

0.4,0.1,0.3

)
, 0.2

}
Fu(e2, p, 0) =

{(
u1

0.5,0.1,0.7 , u2
0.4,0.5,0.1 , u3

0.7,0.1,0.4

)
, 0.2

}
Fu(e2, q, 0) =

{(
u1

0.4,0.3,0.6 , u2
0.7,0.2,0.5 , u3

0.8,0.1,0.4

)
, 0.6

}
Fu(e2, r, 0) =

{(
u1

0.3,0.2,0.6 , u2
0.4,0.3,0.5 , u3

0.5,0.1,0.4

)
, 0.4

}
Fu(e3, p, 0) =

{(
u1

0.4,0.3,0.6 , u2
0.5,0.1,0.6 , u3

0.6,0.2,0.5

)
, 0.5

}
Fu(e3, q, 0) =

{(
u1

0.6,0.2,0.7 , u2
0.8,0.1,0.4 , u3

0.5,0.3,0.4

)
, 0.7

}
Fu(e3, r, 0) =

{(
u1

0.5,0.4,0.6 , u2
0.6,0.4,0.3 , u3

0.7,0.2,0.1

)
, 0.2

}
The generalized neutrosophic soft expert set (GNSES) is a parameterized family {F(ei), i = 1, 2, . . .} of

all neutrosophic sets of U and describes a collection of approximation of an object.

Definition 12. Let (Fu, A) and (Gη , B) be two generalized neutrosophic soft expert sets (GNSESs) over U.
Then (Fu, A) is said to be a generalized neutrosophic soft expert subset of (Gη , B) if
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i. B ⊆ A, and
ii. Gη(ε) is a generalized neutrosophic soft expert subset Fu(ε), for all ε ∈ B,

Example 2. Consider Example 1. Suppose that A and B are as follows.

A = {(e1, p, 1), (e2, p, 1), (e2, q, 0), (e3, r, 1)}B = {(e1, p, 1), (e2, p, 1), (e3, r, 1)}.

Since B is a neutrosophic soft expert subset of A, clearly B ⊂ A. Let (Gη , B) and (Fu, A) be defined
as follows:

(Fu, A) =
{ [

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2

)
, 0.3

][
(e2, p, 1),

(
u1

0.7,0.3,0.6 , u2
0.5,0.1,0.4 , u3

0.8,0.6,0.3

)
, 0.2

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4

)
, 0.6

]
,[

(e3, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.5,0.3,0.6 , u3
0.1,0.4,0.2

)
, 0.5

]}
.

(Gη , B) =
{[

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2

)
, 0.3

]
,[

(e2, p, 1),
(

u1
0.7,0.3,0.6 , u2

0.5,0.1,0.4 , u3
0.8,0.6,0.3

)
, 0.2

]
,[

(e3, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.5,0.3,0.6 , u3
0.1,0.4,0.2

)
, 0.5

]}
.

Therefore (Gη , B) ⊆ (Fu, A).

Definition 13. Two GNSESs (Fu, A) and (Gη , B) over U are said to be equal if (Fu, A) is a GNSES subset of
(Gη , B) and (Gη , B) is a GNSES subset of (Fu, A).

Definition 14. An agree-GNSESs (Fu, A)1 over U is a GNSES subset of (Fu, A) defined as follows.

(Fu, A)1 = {F1(∝) :∝∈ E × X × {1}}.

Example 3. Consider Example 1. The agree-GNSES (Fu, Z)1 over U is

(Fu, Z)1 =
{[

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2 ,

)
, 0.3

]
,[

(e1, q, 1),
(

u1
0.3,0.2,0.5 , u2

0.5,0.6,0.2 , u3
0.8,0.1,0.4 ,

)
, 0.4

]
,[

(e1, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.7,0.3,0.5 , u3
0.2,0.6,0.5 ,

)
, 0.8

]
,[

(e2, p, 1),
(

u1
0.7,0.3,0.6 , u2

0.5,0.1,0.4 , u3
0.8,0.6,0.3 ,

)
, 0.2

]
,[

(e2, q, 1),
(

u1
0.6,0.7,0.1 , u2

0.8,0.4,0.7 , u3
0.5,0.1,0.7 ,

)
, 0.6

]
,[

(e2, r, 1),
(

u1
0.5,0.1,0.8 , u2

0.9,0.3,0.6 , u3
0.4,0.1,0.7 ,

)
, 0.5

]
,[

(e3, p, 1),
(

u1
0.6,0.3,0.2 , u2

0.5,0.6,0.7 , u3
0.8,0.1,0.4 ,

)
, 0.7

]
,[

(e3, q, 1),
(

u1
0.7,0.3,0.4 , u2

0.6,0.2,0.5 , u3
0.7,0.4,0.6 ,

)
, 0.4

]
,[

(e3, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.5,0.3,0.6 , u3
0.1,0.4,0.2 ,

)
, 0.5

]}
.

Definition 15. A disagree-GNSESs (Fu, A)0 over U is a GNSES subset of (Fu, A) is defined as follows:

(Fu, A)0 = {F0(∝) :∝∈ E × X × {0}}.
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Example 4. Consider Example 1. The disagree-GNSES (Fu, Z)0 over U is

(Fu, Z)0 =
{[

(e1, p, 0),
(

u1
0.4,0.1,0.2 , u2

0.7,0.3,0.5 , u3
0.4,0.1,0.6 ,

)
, 0.1

]
,[

(e1, q, 0),
(

u1
0.7,0.3,0.5 , u2

0.6,0.2,0.4 , u3
0.4,0.5,0.1 ,

)
, 0.3

]
,[

(e1, r, 0),
(

u1
0.6,0.4,0.3 , u2

0.7,0.2,0.6 , u3
0.4,0.1,0.3 ,

)
, 0.2

]
,[

(e2, p, 0),
(

u1
0.5,0.1,0.7 , u2

0.4,0.5,0.1 , u3
0.7,0.1,0.4 ,

)
, 0.2

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4 ,

)
, 0.6

]
,[

(e2, r, 0),
(

u1
0.3,0.2,0.6 , u2

0.4,0.3,0.5 , u3
0.5,0.1,0.4 ,

)
, 0.4

]
,[

(e3, p, 0),
(

u1
0.4,0.3,0.6 , u2

0.5,0.1,0.6 , u3
0.6,0.2,0.5 ,

)
, 0.5

]
,[

(e3, q, 0),
(

u1
0.6,0.2,0.7 , u2

0.8,0.1,0.4 , u3
0.5,0.3,0.4 ,

)
, 0.7

]
,[

(e3, r, 0),
(

u1
0.5,0.4,0.6 , u2

0.6,0.4,0.3 , u3
0.7,0.2,0.1 ,

)
, 0.2

]}
.

Definition 16. The complement of a GNSES (Fu, A), denoted by (Fu, A)c, is defined as (Fu, A)c =

(Fu(c),¬A) where Fu(c) :¬A → N (U)× I is a mapping given by

Fu(c)(∝) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T

F(∝)(c)
= FF(∝),

I
F(∝)(c)

= 1 − IF(∝),

F
F(∝)(c)

= TF(∝),

uc(∝) = 1 − u(∝)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for each ∝∈ E.

Example 5. Consider Example 1. By using the definition of GNSES complement, the complement of Fu denoted
by Fu(c), is as follows:

(Fu(c), Z) =
{[

(¬e1, p, 1),
(

u1
0.2,0.7,0.4 , u2

0.8,0.9,0.6 , u3
0.2,0.3,0.5 ,

)
, 0.7

]
,[

(¬e1, q, 1),
(

u1
0.5,0.8,0.3 , u2

0.2,0.4,0.5 , u3
0.4,0.9,0.8 ,

)
, 0.6

]
,[

(¬e1, r, 1),
(

u1
0.3,0.6,0.8 , u2

0.5,0.7,0.7 , u3
0.5,0.4,0.2 ,

)
, 0.2

]
,[

(¬e2, p, 1),
(

u1
0.6,0.7,0.7 , u2

0.4,0.9,0.5 , u3
0.3,0.4,0.8 ,

)
, 0.8

]
,[

(¬e2, q, 1),
(

u1
0.1,0.3,0.6 , u2

0.7,0.6,0.8 , u3
0.7,0.9,0.5 ,

)
, 0.4

]
,[

(¬e2, r, 1),
(

u1
0.8,0.9,0.5 , u2

0.6,0.7,0.9 , u3
0.7,0.9,0.4 ,

)
, 0.5

]
,[

(¬e3, p, 1),
(

u1
0.2,0.7,0.6 , u2

0.7,0.4,0.5 , u3
0.4,0.9,0.8 ,

)
, 0.3

]
,[

(¬e3, q, 1),
(

u1
0.4,0.7,0.7 , u2

0.5,0.8,0.6 , u3
0.6,0.6,0.7 ,

)
, 0.6

]
,[

(¬e3, r, 1),
(

u1
0.3,0.6,0.8 , u2

0.6,0.7,0.5 , u3
0.2,0.6,0.1 ,

)
, 0.5

]
,[

(¬e1, p, 0),
(

u1
0.2,0.9,0.4 , u2

0.5,0.7,0.7 , u3
0.6,0.9,0.4 ,

)
, 0.9

]
,[

(¬e1, q, 0),
(

u1
0.5,0.7,0.7 , u2

0.4,0.8,0.6 , u3
0.1,0.5,0.4 ,

)
, 0.7

]
,[

(¬e1, r, 0),
(

u1
0.3,0.6,0.6 , u2

0.6,0.8,0.7 , u3
0.3,0.9,0.4 ,

)
, 0.8

]
,[

(¬e2, p, 0),
(

u1
0.7,0.9,0.5 , u2

0.1,0.5,0.4 , u3
0.4,0.9,0.7 ,

)
, 0.8

]
,[

(¬e2, q, 0),
(

u1
0.6,0.7,0.4 , u2

0.5,0.8,0.7 , u3
0.4,0.9,0.8 ,

)
, 0.4

]
,[

(¬e2, r, 0),
(

u1
0.6,0.8,0.3 , u2

0.5,0.7,0.4 , u3
0.4,0.9,0.5 ,

)
, 0.6

]
,[

(¬e3, p, 0),
(

u1
0.6,0.7,0.4 , u2

0.6,0.9,0.5 , u3
0.5,0.8,0.6 ,

)
, 0.5

]
,[

(¬e3, q, 0),
(

u1
0.7,0.8,0.6 , u2

0.4,0.9,0.8 , u3
0.4,0.7,0.5 ,

)
, 0.3

]
,[

(¬e3, r, 0),
(

u1
0.6,0.6,0.5 , u2

0.3,0.6,0.6 , u3
0.1,0.8,0.7 ,

)
, 0.8

]}
.
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Proposition 1. If (Fu, A) is a generalized neutrosophic soft expert set over U, then

1. ((Fu, A)c)
c
= (Fu, A)

2. ((Fu, A)1)
c = (Fu, A)0

3. ((Fu, A)0)
c = (Fu, A)1

Proof. (1) From Definition 16, we have (Fu, A)c = (Fu(c),¬A),
where Fu(c)(∝) = T

F(∝)(c)
= FF(∝), I

F(∝)(c)
= 1 − I F(∝), F

F(∝)(c)
= TF(∝) and uc(∝) = 1 − u(∝) for

each ∝∈ E.
Now ((Fu, A)c)

c
= ((Fu(c))

c
, A) where

(Fu(c))
c
(∝) =

[
T

F(∝)(c)
= FF(∝), I

F(∝)(c)
= 1 − I F(∝),

F
F(∝)(c)

= TF(∝), uc(∝) = 1 − u(∝)

]c

=

[
TF(∝) = F

F(∝)(c)
, I F(∝) = 1 − I

F(∝)(c)
,

FF(∝) = T
F(∝)(c)

, u(∝) = 1 − uc(∝)

]
= 1 −

(
1 − I F(∝)

)
= 1 − (

1 − u(∝)
)
= I F(∝)

= u(∝).

Thus ((Fu, A)c)
c
= ((Fu(c))

c
, A) = (Fu, A), for all ∝∈ E.

The proofs of assertions (2) and (3) are obvious.

Definition 17. The union of two GNSESs (Fu, A) and (Gη , B) over U, denoted by (Fu, A)
∼∪ (Gη , B),

is the GNSESs
(

HΩ, C
)
, where C = A ∪ B and the truth-membership, indeterminacy-membership,

and falsity-membership of
(

HΩ, C
)

are as follows:

THΩ(e) =

⎧⎪⎨⎪⎩
TFu(e)(m) i f e ∈ A − B

TGη(e) (m) i f e ∈ B − A

max
(

TFu(e)(m), TGη(e)(m)
)

i f e ∈ A ∩ B

IHΩ(e) =

⎧⎪⎨⎪⎩
IFu(e)(m) i f e ∈ A − B
IGη(e) (m) i f e ∈ B − A

min
(

IFu(e)(m),Gη(e) (m)
)

i f e ∈ A ∩ B

FHΩ(e) =

⎧⎪⎨⎪⎩
FFu(e)(m) i f e ∈ A − B
FGη(e) (m) i f e ∈ B − A

min
(

FFu(e)(m), FGη(e)(m)
)

i f e ∈ A ∩ B

where Ω(m) = max
(

u(e)(m), η(e)(m)
)

.

Example 6. Suppose that (Fu, A) and (Gη , B) are two GNSESs over U, such that

(Fu, A) =
{[

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2

)
, 0.3

][
(e2, q, 1),

(
u1

0.7,0.3,0.6 , u2
0.5,0.1,0.4 , u3

0.7,0.6,0.3

)
, 0.2

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4

)
, 0.6

]
,[

(e3, r, 1),
(

u1
0.8,0.4,0.3 , u2

0.5,0.3,0.6 , u3
0.1,0.4,0.2

)
, 0.5

]}
.

(Gη , B) =
{[

(e1, p, 1),
(

u1
0.6,0.5,0.1 , u2

0.8,0.2,0.3 , u3
0.9,0.2,0.3

)
, 0.1

]
,[

(e2, q, 1),
(

u1
0.6,0.7,0.1 , u2

0.8,0.4,0.7 , u3
0.5,0.1,0.7

)
, 0.4

]
,[

(e3, r, 1),
(

u1
0.4,0.1,0.2 , u2

0.5,0.4,0.2 , u3
0.3,0.6,0.4

)
, 0.8

]}
.
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Then (Fu, A)
∼∪ (Gη , B) =

(
HΩ, C

)
where

(
HΩ, C

)
=

{[
(e1, p, 1),

(
u1

0.6,0.3,0.1 , u2
0.8,0.1,0.3 , u3

0.9,0.2,0.2

)
, 0.3

]
,[

(e2, q, 1),
(

u1
0.6,0.3,0.1 , u2

0.8,0.2,0.5 , u3
0.7,0.1,0.4

)
, 0.4

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4

)
, 0.6

]
,[

(e3, r, 1),
(

u1
0.8,0.1,0.2 , u2

0.5,0.3,0.2 , u3
0.3,0.4,0.2

)
, 0.8

]}
.

Proposition 2. If (Fu, A), (Gη , B) and
(

HΩ, C
)

are three GNSESs over U, then

1.
(
(Fu, A)

∼∪ (Gη , B)
) ∼∪ (HΩ, C

)
= (Fu, A)

∼∪
(
(Gη , B)

∼∪ (HΩ, C
))

.

2. (Fu, A)
∼∪ (Fu, A) ⊆ (Fu, A).

Proof. (1) We want to prove that(
(Fu, A)

∼∪ (Gη , B)
) ∼∪

(
HΩ, C

)
= (Fu, A)

∼∪
(
(Gη , B)

∼∪
(

HΩ, C
))

By using Definition 17, we consider the case when e ∈ A∩ B, as other cases are trivial. We will have

(Fu, A)
∼∪ (Gη , B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u

/ max

(
TFu(e)(m),
TGη(e)(m)

)
,

min

(
IFu(e)(m),
IGη(e)(m)

)
,

min

(
FFu(e)(m),
FGη(e)(m)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

max

(
u(e)(m),
η(e)(m)

)
, u ∈ U

⎫⎪⎬⎪⎭.

Also consider the case when e ∈ H, as the other cases are trivial. We will have

(
(Fu, A)

∼∪ (Gη , B)
) ∼∪ (HΩ, C

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝u

/ max
(

TFu(e)(m), TGη(e)(m)
)

,

min
(

IFu(e)(m), IGη(e)(m)
)

,

min
(

FFu(e)(m), FGη(e)(m)
)

⎞⎟⎟⎟⎠ ,

(
u/THΩ(e)(m), IHΩ(e)(m), FHΩ(e)(m)

)
,

max
(

u(e)(m), η(e)(m), Ω(m)
)

, u ∈ U

⎫⎬⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
u/TFΩ(e)(m), IFΩ(e)(m), FFΩ(e)(m)

)
,⎛⎜⎜⎜⎝u

/ max
(

TGu(e)(m), THη(e)(m)
)

,

min
(

IGu(e)(m), IHη(e)(m)
)

,

min
(

FGu(e)(m), FHη(e)(m)
)

⎞⎟⎟⎟⎠ max
(

u(e)(m), η(e)(m), Ω(m)
)

, u ∈ U
}

= (Fu, A)
∼∪
(
(Gη , B)

∼∪ (HΩ, C
))

.

(2) The proof is straightforward.
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Definition 18. Let (Fu, A) and (Gη , B) be two GNSESs over a common universe U. Then the intersection of
(Fu, A) and (Gη , B) is denoted by (Fu, A)

∼∩ (Gη , B) =
(
Kδ, C

)
, where C = A ∩ B and the truth-membership,

indeterminacy-membership, and falsity-membership of
(
Kδ, C

)
are as follows:

TKδ(e) =

⎧⎪⎨⎪⎩
TFu(e)(m) i f e ∈ A − B

TGη(e) (m) i f e ∈ B − A

min
(

TFu(e)(m), TGη(e)(m)
)

i f e ∈ A ∩ B

IKδ(e) =

⎧⎪⎨⎪⎩
IFu(e)(m) i f e ∈ A − B
IGη(e) (m) i f e ∈ B − A

min
(

IFu(e)(m), IGη(e)(m)
)

i f e ∈ A ∩ B

FKδ(e) =

⎧⎪⎨⎪⎩
FFu(e)(m) i f e ∈ A − B
FGη(e) (m) i f e ∈ B − A

max
(

FFu(e)(m), FGη(e)(m)
)

i f e ∈ A ∩ B

where δ(m) = min
(

u(e)(m), η(e)(m)
)

.

Example 7. Suppose that (Fu, A) and (Gη , B) are two GNSESs over U, such that

(Fu, A) =
{[

(e1, p, 1),
(

u1
0.4,0.3,0.2 , u2

0.6,0.1,0.8 , u3
0.5,0.7,0.2 ,

)
, 0.3

]
,[

(e2, q, 1),
(

u1
0.7,0.3,0.6 , u2

0.5,0.1,0.4 , u3
0.7,0.6,0.3 ,

)
, 0.2

]
,[

(e2, q, 0),
(

u1
0.4,0.3,0.6 , u2

0.7,0.2,0.5 , u3
0.8,0.1,0.4 ,

)
, 0.6

]}
.

(Gη , B) =
{[

(e1, p, 1),
(

u1
0.6,0.5,0.1 , u2

0.8,0.2,0.3 , u3
0.9,0.2,0.3 ,

)
, 0.1

]
,[

(e3, r, 1),
(

u1
0.4,0.1,0.2 , u2

0.5,0.4,0.2 , u3
0.3,0.6,0.4 ,

)
, 0.8

]}
.

Then (Fu, A)
∼∩ (Gη , B) =

(
Kδ, C

)
where

(
Kδ, C

)
=

{[
(e1, p, 1),

(
u1

0.4, 0.3, 0.2
,

u2

0.6, 0.1, 0.8
,

u3

0.5, 0.2, 0.3
,
)

, 0.1
]}

.

Proposition 3. If (Fu, A), (Gη , B) and
(

HΩ, C
)

are three GNSESs over U, then

1.
(
(Fu, A)

∼∩ (Gη , B)
) ∼∩ (Kδ, C

)
= (Fu, A)

∼∩
(
(Gη , B)

∼∩ (Kδ, C
))

2. (Fu, A)
∼∩ (Fu, A) ⊆ (Fu, A).

Proof. (1) We want to prove that(
(Fu, A)

∼∩ (Gη , B)
) ∼∩

(
Kδ, C

)
= (Fu, A)

∼∩
(
(Gη , B)

∼∩
(

Kδ, C
))

By using Definition 18, consider the case when e ∈ A ∩ B, since other cases are trivial. We have

(Fu, A)
∼∩ (Gη , B) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝u

/ min
(

TFu(e)(m), TGη(e)(m)
)

,

min
(

IFu(e)(m), IGη(e)(m)
)

,

max
(

FFu(e)(m), FGη(e)(m)
)
⎞⎟⎟⎟⎠ , min

(
u(e)(m), η(e)(m)

)
, u ∈ U

}
.
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Also consider the case when e ∈ K, as the other cases are trivial. Then we have

(
(Fu, A)

∼∩ (Gη , B)
) ∼∩ (Kδ, C

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝u

/ min
(

TFu(e)(m), TGη(e)(m)
)

,

min
(

IFu(e)(m), IGη(e)(m)
)

,

max
(

FFu(e)(m), FGη(e)(m)
)
⎞⎟⎟⎟⎠ ,

(
u/TKδ(e)(m), IKδ(e)(m), FKδ(e)(m)

)
,

min
(

u(e)(m), η(e)(m), δ(m)
)

, u ∈ U

⎫⎬⎭.

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
u/TFΩ(e)(m), IFΩ(e)(m), FFΩ(e)(m)

)
,⎛⎜⎜⎜⎝u

/ min
(

TGu(e)(m), TKδ(e)(m)
)

,

min
(

IGu(e)(m), IKδ(e)(m)
)

,

max
(

FGu(e)(m), FKδ(e)(m)
)

⎞⎟⎟⎟⎠ min
(

u(e)(m), η(e)(m), δ(m)
)

, u ∈ U
}

= (Fu, A)
∼∩
(
(Gη , B)

∼∩ (Kδ, C
))

.

(2) The proof is straightforward.

Proposition 4. If (Fu, A), (Gη , B) and
(
Kδ, C

)
are three GNSESs over U. Then

1.
(
(Fu, A)

∼∪ (Gη , B)
) ∼∩ (Kδ, C

)
=
(
(Fu, A)

∼∩ (Kδ, C
)) ∼∪

(
(Gη , B)

∼∩ (Kδ, C
))

.

2.
(
(Fu, A)

∼∩ (Gη , B)
) ∼∪ (Kδ, C

)
=
(
(Fu, A)

∼∪ (Kδ, C
)) ∼∩

(
(Gη , B)

∼∪ (Kδ, C
))

.

Proof. The proofs can be easily obtained from Definitions 17 and 18.

Definition 19. If (Fu, A) and (Gη , B) are two GNSESs over U, then “(Fu, A) AND (Gη , B)” denoted by
(Fu, A) ∧ (Gη , B), is defined by

(Fu, A) ∧ (Gη , B) =
(

HΩ, A × B
)

such that, HΩ(α, β) = Fu(α) ∩ Gη(β) and the truth-membership, indeterminacy-membership,
and falsity-membership of

(
HΩ, A × B

)
are as follows.

THΩ(α,β)(m) = min
(

TFu(α)(m), TGη(β)(m)
)

,

IHΩ(α,β)(m) = min
(

IFu(α)(m), IGη(β)(m)
)

,

FHΩ(α,β)(m) = max
(

FFu(α)(m), FGη(β)(m)
)

and Ω(m) = min
(

u(e)(m), η(e)(m)
)

, ∀α ∈ A, ∀β ∈ B.

Example 8. Suppose that (Fu, A) and (Gη , B) are two GNSESs over U, such that

(Fu, A) =
{[

(e1, p, 1),
(

u1
0.2,0.3,0.5 , u2

0.4,0.1,0.2 , u3
0.6,0.3,0.7 ,

)
, 0.4

]
,[

(e3, r, 0),
(

u1
0.5,0.2,0.1 , u2

0.6,0.3,0.7 , u3
0.2,0.1,0.8 ,

)
, 0.3

]}
(Gη , B) =

{[
(e1, p, 1),

(
u1

0.3,0.2,0.6 , u2
0.6,0.3,0.2 , u3

0.8,0.1,0.2 ,
)

, 0.5
]

,[
(e2, q, 0),

(
u1

0.1,0.3,0.5 , u2
0.7,0.1,0.6 , u3

0.4,0.3,0.6 ,
)

, 0.6
]}

.
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Then (Fu, A) ∧ (Gη , B) =
(

HΩ, A × B
)

where

(
HΩ, A × B

)
=

{[
(e1, p, 1), (e1, p, 1)

(
u1

0.2,0.2,0.6 , u2
0.4,0.1,0.2 , u3

0.6,0.1,0.7 ,
)

, 0.4
]

,[
(e1, p, 1), (e2, q, 0),

(
u1

0.1,0.3,0.5 , u2
0.4,0.1,0.6 , u3

0.4,0.3,0.7 ,
)

, 0.4
]
,[

(e3, r, 0), (e1, p, 1),
(

u1
0.3,0.2,0.6 , u2

0.6,0.3,0.7 , u3
0.2,0.1,0.8 ,

)
, 0.3

]
,[

(e3, r, 0), (e2, q, 0),
(

u1
0.1,0.2,0.5 , u2

0.6,0.1,0.7 , u3
0.2,0.1,0.8 ,

)
, 0.3

]}
.

Definition 20. If (Fu, A) and (Gη , B) are two GNSESs over U, then “(Fu, A) OR (Gη , B)” denoted by
(Fu, A) ∨ (Gη , B), is defined by

(Fu, A) ∨ (Gη , B) =
(

Kδ, A × B
)

such that Kδ(α, β) = Fu(α) ∪ Gη(β) and the truth-membership, indeterminacy-membership,
and falsity-membership of

(
Kδ, A × B

)
are as follows.

TKδ(α,β)(m) = max
(

TFu(α)(m), TGη(β)(m)
)

,

IKδ(α,β)(m) = min
(

IFu(α)(m), IGη(β)(m)
)

,

FKδ(α,β)(m) = min
(

FFu(α)(m), FGη(β)(m)
)

and δ(m) = max
(

u(e)(m), η(e)(m)
)

, ∀α ∈ A, ∀β ∈ B.

Example 9. Suppose that (Fu, A) and (Gη , B) are two GNSESs over U, such that

(Fu, A) =
{[

(e1, p, 1),
(

u1
0.2,0.3,0.5 , u2

0.4,0.1,0.2 , u3
0.6,0.3,0.7 ,

)
, 0.4

]
,[

(e3, r, 0),
(

u1
0.5,0.2,0.1 , u2

0.6,0.3,0.7 , u3
0.2,0.1,0.8 ,

)
, 0.3

]}
(Gη , B) =

{[
(e1, p, 1),

(
u1

0.3,0.2,0.6 , u2
0.6,0.3,0.2 , u3

0.8,0.1,0.2 ,
)

, 0.5
]

,[
(e2, q, 0),

(
u1

0.1,0.3,0.5 , u2
0.7,0.1,0.6 , u3

0.4,0.3,0.6 ,
)

, 0.6
]}

.

Then (Fu, A) ∨ (Gη , B) =
(
Kδ, A × B

)
where

(
Kδ, A × B

)
=

{[
(e1, p, 1), (e1, p, 1)

(
u1

0.3,0.2,0.5 , u2
0.6,0.1,0.2 , u3

0.8,0.1,0.2 ,
)

, 0.5
]

,[
(e1, p, 1), (e2, q, 0),

(
u1

0.2,0.3,0.5 , u2
0.7,0.1,0.2 , u3

0.6,0.3,0.6 ,
)

, 0.6
]
,[

(e3, r, 0), (e1, p, 1),
(

u1
0.5,0.2,0.1 , u2

0.7,0.3,0.6 , u3
0.8,0.1,0.2 ,

)
, 0.5

]
,[

(e3, r, 0), (e2, q, 0),
(

u1
0.5,0.2,0.1 , u2

0.7,0.1,0.6 , u3
0.4,0.1,0.6 ,

)
, 0.6

]}
.

Proposition 5. Let (Fu, A) and (Gη , B) be GNSESs over U. Then

1. ((Fu, A) ∧ (Gη , B) )c = (Fu, A)c ∨ (Gη , B)c

2. ((Fu, A) ∨ (Gη , B))c = (Fu, A)c ∧ (Gη , B)c

Proof. The proofs can be easily obtained from Definitions 16, 19 and 20.
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4. GNSES-Aggregation Operator

In this section, we define a GNSES-aggregation operator of a GNSES to construct a decision
method by which approximate functions of a soft expert set are combined to produce a neutrosophic
set that can be used to evaluate each alternative.

Definition 21. Let ΥA ∈ GNSESs. Then a GNSES-aggregation operator of ΥA, denoted by Υagg
A , is defined by

Υagg
A =

{
〈
(

u, Tagg
A (u), Iagg

A (u), Fagg
A (u)

)
〉 : u ∈ U

}
, (5)

which is a GNSES over U,

Tagg
A : U → [0, 1], Tagg

A (u) =
1
|U| ∑ e ∈ E

u ∈ U

TA(u).μ, (6)

Fagg
A : U → [0, 1], Fagg

A (u) =
1
|U| ∑ e ∈ E

u ∈ U

FA(u).μ, (7)

Iagg
A : U → [0, 1], Iagg

A (u) =
1
|U| ∑ e ∈ E

u ∈ U

IA(u). μ, (8)

where |U| is the cardinality of U and μ is defined below

μ =
1
n

. ∑n
i=1 μ(ei). (ei, i = 1, 2, 3, . . . , n). (9)

Definition 22. Let ΥA ∈ GNSESs, Υagg
A be the corresponding GNSES aggregation operator. Then a reduced

fuzzy set of Υagg
A is a fuzzy set over U, denoted by

Υagg
A =

{
τΥagg

A (u)
u

: u ∈ U

}
, (10)

where τΥagg
A (u) : U → [0, 1] and ui =

∣∣∣Tagg
Ai

− Fagg
Ai

− Iagg
Ai

∣∣∣.
5. An Application of Generalized Neutrosophic Soft Expert Set

In this section, we present an application of generalized neutrosophic soft expert set theory in a
decision-making problem. Based on Definitions 21 and 22, we constructed an algorithm for the GNSES
decision-making method as follows.

Step 1—Choose a feasible subset of the set of parameters.
Step 2—Construct the GNSES tables for each opinion (agree, disagree) of experts.
Step 3—Compute the aggregation operator GNSES Υagg

A of ΥA and the reduced fuzzy set Tagg
Ai

, Fagg
Ai

, Iagg
Ai

of Υagg
A .

Step 4—Score(uI) = maxagree(ui)− mindisagree(ui).
Step 5—Choose the element of ui that has maximum score. This will be the optimal solution.

Example 10. Suppose a company needs to employ a worker, which is to be decided by a few experts. The employee
has to be chosen from five potential workers, U = {u1, u2, u3, u4, u5}. Suppose there are four parameters
E = {e1, e2, e3, e4} where the parameters ei (i = 1, 2, 3, 4) stand for “education,” “age,” “capability” and
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“experience”, respectively. Let X = {p, q, r} be a set of experts. After a serious discussion, the experts construct
the following generalized neutrosophic soft expert set.

Step 1—Choose a feasible subset of the set of parameters

(Fu, Z) =
{ [

(e1, p, 1),
(

u1
0.2,0.3,0.4 , u2

0.8,0.2,0.6 , u3
0.6,0.3,0.5 , u4

0.4,0.2,0.3 , u5
0.6,0.3,0.1 ,

)
, 0.7

]
,[

(e1, q, 1),
(

u1
0.3,0.1,0.4 , u2

0.2,0.1,0.5 , u3
0.4,0.2,0.3 , u4

0.4,0.2,0.3 , u5
0.7,0.2,0.5 ,

)
, 0.6

]
,[

(e1, r, 1),
(

u1
0.3,0.5,0.1 , u2

0.6,0.2,0.5 , u3
0.1,0.4,0.2 , u4

0.5,0.2,0.3 , u5
0.4,0.3,0.2 ,

)
, 0.2

]
,[

(e2, p, 1),
(

u1
0.6,0.2,0.3 , u2

0.4,0.2,0.5 , u3
0.3,0.4,0.1 , u4

0.7,0.3,0.6 , u5
0.5,0.2,0.4 ,

)
, 0.8

]
,[

(e2, q, 1),
(

u1
0.1,0.3,0.6 , u2

0.7,0.3,0.1 , u3
0.6,0.2,0.5 , u4

0.3,0.1,0.6 , u5
0.4,0.3,0.2 ,

)
, 0.4

]
,[

(e2, r, 1),
(

u1
0.6,0.3,0.5 , u2

0.7,0.3,0.6 , u3
0.5,0.3,0.4 , u4

0.2,0.1,0.3 , u5
0.6,0.2,0.5 ,

)
, 0.5

]
,[

(e3, p, 1),
(

u1
0.2,0.4,0.6 , u2

0.7,0.4,0.2 , u3
0.4,0.1,0.2 , u4

0.8,0.4,0.3 , u5
0.7,0.3,0.4 ,

)
, 0.3

]
,[

(e3, q, 1),
(

u1
0.4,0.2,0.6 , u2

0.5,0.3,0.6 , u3
0.6,0.2,0.7 , u4

0.8,0.2,0.4 , u5
0.6,0.2,0.3 ,

)
, 0.4

]
,[

(e3, r, 1),
(

u1
0.3,0.6,0.5 , u2

0.6,0.2,0.5 , u3
0.2,0.1,0.4 , u4

0.5,0.3,0.2 , u5
0.4,0.1,0.5 ,

)
, 0.5

]
,[

(e4, p, 1),
(

u1
0.2,0.3,0.6 , u2

0.7,0.1,0.5 , u3
0.4,0.2,0.8 , u4

0.9,0.2,0.4 , u5
0.3,0.4,0.6 ,

)
, 0.6

]
,[

(e4, q, 1),
(

u1
0.5,0.2,0.1 , u2

0.2,0.3,0.4 , u3
0.4,0.1,0.5 , u4

0.6,0.3,0.2 , u5
0.7,0.3,0.4 ,

)
, 0.6

]
,[

(e4, r, 1),
(

u1
0.5,0.2,0.1 , u2

0.6,0.3,0.5 , u3
0.2,0.5,0.3 , u4

0.5,0.1,0.4 , u5
0.3,0.2,0.5 ,

)
, 0.3

]
,[

(e1, p, 0),
(

u1
0.2,0.3,0.4 , u2

0.5,0.3,0.1 , u3
0.6,0.3,0.4 , u4

0.6,0.2,0.4 , u5
0.7,0.5,0.6 ,

)
, 0.9

]
,[

(e1, q, 0),
(

u1
0.5,0.1,0.7 , u2

0.4,0.2,0.3 , u3
0.8,0.5,0.4 , u4

0.7,0.3,0.6 , u5
0.5,0.3,0.4 ,

)
, 0.7

]
,[

(e1, r, 0),
(

u1
0.3,0.1,0.6 , u2

0.6,0.3,0.7 , u3
0.3,0.2,0.4 , u4

0.8,0.1,0.4 , u5
0.6,0.4,0.5 ,

)
, 0.6

]
,[

(e2, p, 0),
(

u1
0.7,0.3,0.5 , u2

0.6,0.2,0.4 , u3
0.4,0.3,0.5 , u4

0.3,0.2,0.5 , u5
0.4,0.3,0.5 ,

)
, 0.8

]
,[

(e2, q, 0),
(

u1
0.6,0.2,0.4 , u2

0.5,0.3,0.7 , u3
0.8,0.1,0.3 , u4

0.2,0.3,0.6 , u5
0.6,0.2,0.4 ,

)
, 0.4

]
,[

(e2, r, 0),
(

u1
0.6,0.3,0.4 , u2

0.5,0.2,0.4 , u3
0.7,0.4,0.5 , u4

0.5,0.2,0.4 , u5
0.4,0.3,0.5 ,

)
, 0.2

]
,[

(e3, p, 0),
(

u1
0.6,02,0.4 , u2

0.6,0.1,0.5 , u3
0.5,0.4,0.6 , u4

0.8,0.3,0.6 , u5
0.7,0.2,0.4 ,

)
, 0.5

]
,[

(e3, q, 0),
(

u1
0.7,0.1,0.6 , u2

0.4,0.5,0.8 , u3
0.4,0.3,0.5 , u4

0.6,0.2,0.5 , u5
0.4,0.3,0.5 ,

)
, 0.3

]
,[

(e3, r, 0),
(

u1
0.2,0.3,0.6 , u2

0.7,0.4,0.5 , u3
0.4,0.2,0.8 , u4

0.9,0.1,0.4 , u5
0.6,0.3,0.2 ,

)
, 0.3

]
,[

(e4, p, 0),
(

u1
0.4,0.2,0.6 , u2

0.5,0.2,0.6 , u3
0.9,0.5,0.1 , u4

0.3,0.2,0.6 , u5
0.4,0.3,0.5 ,

)
, 0.6

]
,[

(e4, q, 0),
(

u1
0.3,0.2,0.1 , u2

0.6,0.1,0.5 , u3
0.6,0.2,0.5 , u4

0.8,0.3,0.2 , u5
0.2,0.3,0.4 ,

)
, 0.5

]
,[

(e4, r, 0),
(

u1
0.6,0.2,0.5 , u2

0.7,0.1,0.6 , u3
0.5,0.3,0.1 , u4

0.3,0.2,0.6 , u5
0.4,0.2,0.5 ,

)
, 0.1

]}
.

Step 2—Construct the GNSES tables for each opinion (agree, disagree) of experts, as shown in
Tables 1 and 2.

Table 1. Agree-GNSES.

U u1 u2 u3 u4 u5 μ

(e1, p) 0.2, 0.3, 0.4 0.8, 0.2, 0.6 0.6, 0.3, 0.5 0.4, 0.2, 0.3 0.6, 0.3, 0.1 0.7
(e2, p) 0.6, 0.2, 0.3 0.4, 0.2, 0.5 0.3, 0.4, 0.1 0.7, 0.3, 0.6 0.5, 0.2, 0.4 0.8
(e3, p) 0.2, 0.4, 0.6 0.7, 0.4, 0.2 0.4, 0.1, 0.2 0.8, 0.4, 0.3 0.7, 0.3, 0.4 0.3
(e4, p) 0.2, 0.3, 0.6 0.7, 0.1, 0.5 0.4, 0.2, 0.8 0.9, 0.2, 0.4 0.3, 0.4, 0.6 0.6
(e1, q) 0.3, 0.1, 0.4 0.2, 0.1, 0.5 0.4, 0.2, 0.3 0.4, 0.2, 0.3 0.7, 0.2, 0.5 0.6
(e2, q) 0.1, 0.3, 0.6 0.7, 0.3, 0.1 0.6, 0.2, 0.5 0.3, 0.1, 0.6 0.4, 0.3, 0.2 0.4
(e3, q) 0.4, 0.2, 0.6 0.5, 0.3, 0.6 0.6, 0.2, 0.7 0.8, 0.2, 0.4 0.6, 0.2, 0.3 0.4
(e4, q) 0.5, 0.2, 0.1 0.2, 0.3, 0.4 0.4, 0.1, 0.5 0.6, 0.3, 0.2 0.7, 0.3, 0.4 0.6
(e1, r) 0.3, 0.5, 0.1 0.6, 0.2, 0.5 0.1, 0.4, 0.2 0.5, 0.2, 0.3 0.4, 0.3, 0.2 0.2
(e2, r) 0.6, 0.3, 0.5 0.7, 0.3, 0.6 0.5, 0.3, 0.4 0.2, 0.1, 0.3 0.6, 0.2, 0.5 0.5
(e3, r) 0.3, 0.6, 0.5 0.6, 0.2, 0.5 0.2, 0.1, 0.4 0.5, 0.3, 0.2 0.4, 0.1, 0.5 0.5
(e4, r) 0.5, 0.2, 0.1 0.6, 0.3, 0.5 0.2, 0.5, 0.3 0.5, 0.1, 0.4 0.3, 0.2, 0.5 0.3
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Table 2. Disagree-GNSES.

U u1 u2 u3 u4 u5 μ

(e1, p) 0.2, 0.3, 0.4 0.5, 0.3, 0.1 0.6, 0.3, 0.4 0.6, 0.2, 0.4 0.7, 0.5, 0.6 0.9
(e2, p) 0.7, 0.3, 0.5 0.6, 0.2, 0.4 0.4, 0.3, 0.5 0.3, 0.2, 0.5 0.4, 0.3, 0.5 0.8
(e3, p) 0.6, 02, 0.4 0.6, 0.1, 0.5 0.5, 0.4, 0.6 0.8, 0.3, 0.6 0.7, 0.2, 0.4 0.5
(e4, p) 0.4, 0.2, 0.6 0.5, 0.2, 0.6 0.9, 0.5, 0.1 0.3, 0.2, 0.6 0.4, 0.3, 0.5 0.6
(e1, q) 0.5, 0.1, 0.7 0.4, 0.2, 0.3 0.8, 0.5, 0.4 0.7, 0.3, 0.6 0.5, 0.3, 0.4 0.7
(e2, q) 0.6, 0.2, 0.4 0.5, 0.3, 0.7 0.8, 0.1, 0.3 0.2, 0.3, 0.6 0.6, 0.2, 0.4 0.4
(e3, q) 0.7, 0.1, 0.6 0.4, 0.5, 0.8 0.4, 0.3, 0.5 0.6, 0.2, 0.5 0.4, 0.3, 0.5 0.3
(e4, q) 0.3, 0.2, 0.1 0.6, 0.1, 0.5 0.6, 0.2, 0.5 0.8, 0.3, 0.2 0.2, 0.3, 0.4 0.5
(e1, r) 0.3, 0.1, 0.6 0.6, 0.3, 0.7 0.3, 0.2, 0.4 0.8, 0.1, 0.4 0.6, 0.4, 0.5 0.6
(e2, r) 0.6, 0.3, 0.4 0.5, 0.2, 0.4 0.7, 0.4, 0.5 0.5, 0.2, 0.4 0.4, 0.3, 0.5 0.2
(e3, r) 0.2, 0.3, 0.6 0.7, 0.4, 0.5 0.4, 0.2, 0.8 0.9, 0.1, 0.4 0.6, 0.3, 0.2 0.3
(e4, r) 0.6, 0.2, 0.5 0.7, 0.1, 0.6 0.5, 0.3, 0.1 0.3, 0.2, 0.6 0.4, 0.2, 0.5 0.1

Step 3—Now calculate the scores of agree (ui) by using the data in Table 1, to obtain values in
Table 3.

Tagg
A (p, u1) =

(
TA1+TA2+TA3+TA4

4

)
.
(

μ1+ μ2+ μ3+ μ4
4

)
.

=
( 0.2+0.6+0.2+0.2

4
)
.
( 0.7+0.8+0.3+0.6

4
)

= 0.18

Iagg
A (q, u1) =

(
IA1+IA2+IA3+IA4

4

)
.
(

μ1+ μ2+ μ3+ μ4
4

)
.

=
(

0.3+0.2+0.4+0.3
4

)
.
( 0.7+0.8+0.3+0.6

4
)

= 0.18

Fagg
A (r, u1) =

(
FA1+FA2+FA3+FA4

4

)
.
(

μ1+ μ2+ μ3+ μ4
4

)
.

=
(

0.4+0.3+0.6+0.6
4

)
.
( 0.7+0.8+0.3+0.6

4
)

= 0.285

u1 =
∣∣∣Tagg

Ai
− Fagg

Ai
− Iagg

Ai

∣∣∣ = |0.18 − 0.18 − 0.285| = 0.285.

Table 3. Degree table of agree-GNSES.

U u1 u2 u3 u4 u5

p 0.285 0.015 0.135 0.015 0.09
q 0.18 0.15 0.105 0.12 0.015
r 0.165 0.09 0.24 0.06 0.045

Now calculate the score of disagree (ui) by using the data in Table 2, to obtain values in Table 4.

Tagg
A (p, u1) =

(
TA1+TA2+TA3+TA4

4

)
.
(

μ1+ μ2+ μ3+ μ4
4

)
=
(

0.2+0.7+0.6+0.4
4

)
.
( 0.9+0.8+0.5+0.6

4
)

= 0.3325

Iagg
A (q, u1) =

(
IA1+IA2+IA3+IA4

4

)
.
(

μ1+ μ2+ μ3+ μ4
4

)
.

=
( 0.3+0.3+0.2+0.2

4
)
.
( 0.9+0.8+0.5+0.6

4
)

= 0.175

Fagg
A (r, u1) =

(
FA1+FA2+FA3+FA4

4

)
.
(

μ1+ μ2+ μ3+ μ4
4

)
.

=
(

0.4+0.5+0.4+0.6
4

)
.
( 0.9+0.8+0.5+0.6

4
)

= 0.3325

u1 =
∣∣∣Tagg

Ai
− Fagg

Ai
− Iagg

Ai

∣∣∣ = |0.3325 − 0.175 − 0.3325| = 0.175.
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Table 4. Degree table of disagree-GNSES.

U u1 u2 u3 u4 u5

p 0.175 0.035 0.1225 0.175 0.1925
q 0.0525 0.2625 0.035 0.1225 0.0875
r 0.2275 0.1225 0.175 0.0175 0.1575

Step 4—The final score of ui is computed as follows.

Score(u1) = 0.285 − 0.0525 = 0.2325,
Score(u2) = 0.15 − 0.035 = 0.115,
Score(u3) = 0.24 − 0.035 = 0.205,

Score(u4) = 0.12 − 0.0175 = 0.1025,
Score(u5) = 0.09 − 0.0875 = 0.0025.

Step 5—Score(u1) = 0.2325 is the maximum. Hence, the best decision for the experts is to select
worker u1 as the company’s employee.

6. Comparison Analysis

A generalized neutrosophic soft expert model gives more precision, flexibility, and compatibility
than the existing neutrosophic models. These are verified by a comparison analysis, using neutrosophic
soft expert decision method, with those methods used by Sahin et al. [27], Hassan [44], and Maji [20],
as given in Table 5. The comparison is done based on the same example as in Section 5. The ranking
order results obtained are consistent with those in [20,27,44].

Table 5. Comparison of neutrosophic soft set to other variants.

Methods
Neutrosophic Soft

Set
Neutrosophic Soft

Expert Set
Q-Neutrosophic
Soft Expert Set

Generalized
Neutrosophic Soft

Expert Set

Authors Maji [20] Sahin et al. [27] Hassan et al. [44] Proposed Method

Domain Universe of
discourse

Universe of
discourse

Universe of
discourse

Universe of
discourse

Co-domain [0,1]3 [0,1]3 [0,1]3 [0,1]3

True Yes Yes Yes Yes

Falsity Yes Yes Yes Yes

Indeterminacy Yes Yes Yes Yes

Expert No Yes Yes Yes

Q No No Yes No

Ranking u2 > u3 > u1 >
u4 > u5

u2 > u2 > u1 >
u4 > u5

u3 > u1 > u2 >
u4 > u5

u1 > u3 > u2 >
u4 > u5

7. Conclusions

We have established the concept of generalized neutrosophic soft expert set (GNSES) as a
generalization of NSES. The basic operations of GNSES of complement, union, intersection AND,
and OR were defined. Subsequently, a definition of GNSES-aggregation operator was proposed
to construct an algorithm of a GNSES decision method. Finally, an application of the constructed
algorithm, to solve a decision-making, was provided. This new extension provides a significant
contribution to current theories for handling indeterminacy, and it spurs the development of further
research and pertinent applications.
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Abstract: The neutrosophic cubic set (NCS) is a hybrid structure, which consists of interval
neutrosophic sets (INS) (associated with the undetermined part of information associated with
entropy) and single-valued neutrosophic set (SVNS) (associated with the determined part of
information). NCS is a better tool to handle complex decision-making (DM) problems with INS
and SVNS. The main purpose of this article is to develop some new aggregation operators for cubic
neutrosophic numbers (NCNs), which is a basic member of NCS. Taking the advantages of Muirhead
mean (MM) operator and power average (PA) operator, the power Muirhead mean (PMM) operator is
developed and is scrutinized under NC information. To manage the problems upstretched, some new
NC aggregation operators, such as the NC power Muirhead mean (NCPMM) operator, weighted NC
power Muirhead mean (WNCPMM) operator, NC power dual Muirhead mean (NCPMM) operator
and weighted NC power dual Muirhead mean (WNCPDMM) operator are proposed and related
properties of these proposed aggregation operators are conferred. The important advantage of the
developed aggregation operator is that it can remove the effect of awkward data and it considers the
interrelationship among aggregated values at the same time. Furthermore, a novel multi-attribute
decision-making (MADM) method is established over the proposed new aggregation operators
to confer the usefulness of these operators. Finally, a numerical example is given to show the
effectiveness of the developed approach.

Keywords: NC power dual MM operator (NCPDMM) operator; NCPMM operator; MADM; MM
operator; Neutrosophic cubic sets; PA operator

1. Introduction

One of the drawbacks of real MADM problems is expressing attribute values in fuzzy and
indeterminate DM environments. Fuzzy sets (FSs) developed by Zadeh [1] emerged as a tool for
describing and communicating uncertainties and vagueness. Since its beginning, FS has gained a
significant focus from researchers all over the world who studied its practical and theoretical aspects.
Several extensions of FSs have been developed, such as interval-valued FS (IVFS) [2], which explained
the truth membership degree (TMD) on a closed interval value in the interval [0, 1], and intuitionistic
FS (IFS) [3], which explained the TMD and falsity-membership degree (FMD). Therefore, IFS defines
fuzziness and uncertainty more comprehensively than FS. However, neither FS nor IFS are capable to
handle indeterminate and inconsistent information. For example, when we take a student opinion
about the teaching skills of a professor with about 0.6 being the possibility that the teaching skills
of the professor are good, 0.5 being the possibility that the teaching skills of the professor are bad
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and 0.3 is the possibility that he/she may not be sure about the teaching skills of the professor
whether bad or good. To handle such type of information, Smarandache [4] added a new component
“indeterminacy membership degree” (IMD) to the TMD and FMD, all being independent elements
lying in ]0−, 1+[. The resulting set is now familiarly known as neutrosophic set (NS). To use NS in
practical and engineering problems, some scholars developed simplified forms of NS, such as SVNS [5],
INS [6,7], simplified neutrosophic sets [8,9], multi-valued NS [10], Q-neutrosophic soft set [11], complex
neutrosophic soft expert set [12] and others.

In the real world, sometimes it is difficult to express the TMD in some fuzzy problems completely
by an exact value or interval value. Therefore, Jun et al. [13] developed the concept of cubic set
(CS) by combining FS and IVFS. CS defined uncertainty and vagueness by an interval value and
a fuzzy value concurrently. In recent years, some researchers established some extended forms of
CS. Garg et al. [14,15] combined IFS and interval-valued intuitionistic FS (IVIFS) to form cubic IFS
(CIFS), while Ali et al. [16] and Jun et al. [17] combined INS and SVNS to develop the cubic NS (CNS),
consisting of internal and external NCSs. Jun et al. [18] further investigated P-union and P-intersection
of NCS and discussed their related properties. Since then, various studies to solve MADM problems
based on NCSs are developed. Zhang et al. [19] and Ye [20] developed some aggregation operators
such as weighted averaging operators and weighted geometric operators on NCSs and applied these
to MADM. Shi et al. [21], developed some aggregation operator for NCNs based on Dombi T-norm
and T-conorm and applied these to MADM. To solve MADM problems under NC information, various
similarity measures are developed for NCSs [22,23]. Pramanik et al. [24] introduced the NC-TODIM
method to solve multiple-attribute group decision-making (MAGDM) problem.

Aggregation operator (AO) plays a dominant role in DM. Consequently, many scholars
proposed different aggregation operators and their generalizations, such as Bonferroni mean (BM)
operator [25,26], Heronian mean (HM) operator [27], Muirhead mean (MM) operator [28], Maclaurin
symmetric mean (MSM) operator [29,30] and others. Certainly, different AOs have different functions.
Some can remove the effect of awkward data given by prejudiced DMs, such as power average (PA)
operator [31,32] developed by Yager [31] which can aggregate the input information by giving the
weighted vector based on support degree among the input arguments. Some aggregation operators
are capable to consider the interrelationship among two or more input arguments such as BM operator,
HM operators, MSM operator and MM operator.

Due to the enhanced complexity in real decision-making problems, it is necessary to look over the
following questions when selecting the best alternative. Firstly, the values of the attributes provided
by the decision makers may be too low or too high, thus giving a negative impact on the final ranking
results. The PA operator, however, permits the evaluated values to be mutually supported and
enhanced. Therefore, we may use the PA operator to diminish such awful impact by designating
distinct weights produced by the support measure. Secondly, the values of attributes are required to
be dependent. Hence, the interrelationship among the values of the attributes should be examined.
Some advantages of MM operator over BM and HM are discussed by Liu et al. [33,34]. Some existing
aggregation operator such as the BM and MSM operators are special cases of the MM operator. The MM
operator consists of the parameter vector, which enlarges the flexibility in the aggregation process.
Recently, Li et al. [35] developed the concept of power Muirhead mean operator under Pythagorean
fuzzy environment. From the existing literature, the PA operator and MM operator have not been yet
combined to deal with NC information. To handle the issues raised, a few new aggregation operators
will be proposed by incorporating both the PA and MM operators. These new aggregation operators
are NC power MM operator (NCPMM), weighted NC power MM operator, NC power dual MM
operator (NCPDMM) and weighted NC power dual MM (WNCPDMM) operator. Discussions on
some basic properties and related cases with respect to the parameter vector will be dealt at length. The
advantages of these proposed aggregation operators are to capture the interrelationship among input
arguments by the MM operator, and simultaneously eliminate the effect of awkward data. Finally,
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a novel approach to solve MADM problems based on these proposed aggregation operators will
be developed.

The rest of the article is organized as follows. In Section 2, some basic definitions and properties of
NCSs, MM and PA operators are recalled. In Section 3, the PA and MM operators in the construction of
new operators, namely NCPMM, WNCPMM, NCPDMM and WNCPDMM operators are incorporated
followed by discussions on their related properties. In Section 4, a novel method to MADM is
established based on the developed aggregation operators. In Section 5, a numerical example is
illustrated to show the effectiveness of the proposed method to solve a MADM problem. In Section 6,
a comparison with the existing methods is given followed by the conclusion.

2. Preliminaries

In this part, some basic concepts about SVNSs, INSs, NCSs, PA and MM operators are
briefly overviewed.

2.1. The NCSs and Their Operations

Definition 1 ([4]). Let Γ be a space of points (objects), with a generic element in Γ denoted by n. A neutrosophic
set N in Γ is defined as N = {〈n; TN(n), IN(n), FN(n)〉n ∈ Γ} where TN(n), IN(n) and FN(n) are the truth
membership function, the indeterminacy membership function and the falsity-membership function respectively,
such that T; F; I : Γ → ]0−, 1+[ and 0− ≤ TN(n) + IN(n) + FN(n) ≤ 3+.

Smarandache [4] developed the concept of NS as a generalization of FS, IFS and IVIFS. To apply
NS to real and engineering problems easily, its parameters should be specified. Hence, Wang et al. [5]
provided the following definition.

Definition 2 ([5]). Let Γ be a space of points (objects), with a generic element in Γ denoted by n. A single-valued
neutrosophic set S in Γ is defined as:

S =
∫

Γ
〈TS(n), IS(n), FS(n)〉|n, n ∈ Γ (1)

when Γ is continuous, and

S =
m

∑
i=1

〈TS(ni), IS(ni), FS(ni)〉|ni, ni ∈ Γ (2)

when Γ is discrete, where TS(n), IS(n) and FS(n) are the truth membership function, the indeterminacy
membership function and the falsity-membership function respectively, such that T; F; I : Γ → [0, 1] and
0 ≤ TS(n) + IS(n) + FS(n) ≤ 3.

Definition 3 ([6]). Let Γ be a space of points (objects), with a generic element in Γ denoted by n. An interval
neutrosophic set A in Γ is defined as:

A =
∫

Γ
〈TA(n), IA(n), FA(n)〉|n, n ∈ Γ (3)

when Γ is continuous, and

A =
m

∑
i=1

〈TA(ni), IA(ni), FA(ni)〉|ni, ni ∈ Γ (4)

when Γ is discrete, where TA(n), IA(n) and FA(n) are the truth membership function, the indeterminacy
membership function and the falsity-membership function respectively. For each element n in Γ, we have

TA(n) =
[

TL
A(n), TU

A (n)
]
⊆ [0, 1], IA(n) =

[
IL
A(n), IU

A (n)
]
⊆ [0, 1], and FA(n) =

[
FL

A(n), FU
A (n)

]
⊆ [0, 1] such that
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0 ≤ supTU
A (n) + supIU

A (n) + supFU
A (n) ≤ 3.

Definition 4 ([16,17]). Let Γ be a non-empty set. A neutrosophic cubic set (NCS) in Γ is a pair
Z = 〈A, λ〉, where A = {〈n, TA(n), IA(n), FA(n)〉|n ∈ Γ} is an interval neutrosophic set in Γ and
λ = {〈n, λT(n), λI(n), λF(n)〉|n ∈ Γ} is a neutrosophic set in Γ.

For simplicity, a basic element {n, 〈T(n), I(n), F(n)〉, 〈λT(n), λI(n), λF(n)〉} in a NCS can be
expressed by z = (〈T, I, F〉, 〈λT , λI , λF〉), which is called neutrosophic cubic number (NCN), where
T, I, F ⊆ [0, 1] and λT , λI , λF ∈ [0, 1], satisfying 0 ≤ TU + IU + FU ≤ 3 and 0 ≤ λT + λI + λF ≤ 3.

Definition 5 ([20]). Let z1 =
(〈[

TL
1 , TU

1
]
,
[
IL
1 , IU

1
]
,
[
FL

1 , FU
1
]〉

,
〈
λT1 , λI1 , λF1

〉)
and z2 =(〈[

TL
2 , TU

2
]
,
[
IL
2 , IU

2
]
,
[
FL

2 , FU
2
]〉

,
〈
λT2 , λI2 , λF2

〉)
be any two NCNs and ξ > 0. Then the operational laws for

NCNs defined by Ye [20] are as follows:

(1) z1 ⊕ z2 =
(〈[

TL
1 + TL

2 − TL
1 TL

2 , TU
1 + TU

2 − TU
1 TU

2
]
,
[
IL
1 IL

2 , IU
1 IU

2
]
,
[
FL

1 FL
2 , FU

1 FU
2
]〉

,〈
λT1 + λT2 − λT1 λT2 , λI1 λI2 , λF2 λF2

〉)
;

(5)

(2) z1 ⊗ z2 =
(〈[

TL
1 TL

2 , TU
1 TU

2
]
,
[
IL
1 + IL

2 − IL
1 IL

2 , IU
1 + IU

2 − IU
1 IU

2
]
,
[
FL

1 + FL
2 − FL

1 FL
2 , FU

1 + FU
2 − FU

1 FU
2
]〉

,〈
λT1 λT2 , λI1 + λI2 − λI1 λI2 , λF2 + λF2 − λF2 λF2

〉)
;

(6)

(3) ξz1 =
(〈[

1 − (
1 − (

TL
1
))ξ

, 1 − (
1 − (

TU
1
))ξ

]
,
[(

IL
1
)ξ

,
(

IU
1
)ξ
]
,
[(

FL
1
)ξ

,
(

FU
1
)ξ
]〉

,
〈

1 − (
1 − λT1

)ξ ,
(
λI1

)ξ ,
(
λF1

)ξ
〉)

; (7)

(4) zξ
1 =

〈[(
TL

1
)ξ

, 1 − (
TU

1
)ξ
]
,
[
1 − (

1 − IL
1
)ξ

, 1 − (
1 − IU

1
)ξ
]
,
[
1 − (

1 − FL
1
)ξ

, 1 − (
1 − FU

1
)ξ
]〉

,
〈(

λT1

)ξ , 1 − (
1 − λI1

)ξ , 1 − (
1 − λF1

)ξ
〉

. (8)

Definition 6 ([21]). Let z1 =
(〈[

TL
1 , TU

1
]
,
[
IL
1 , IU

1
]
,
[
FL

1 , FU
1
]〉

,
〈
λT1 , λI1 , λF1

〉)
be an NCN. Then, the score,

accuracy, and certainty functions of NCN are defined as follows:

Ŝ(z1) =
4 + TL

1 − IL
1 − FL

1 + TU
1 − IU

1 − FU
1 + λT1 + 2 − λI1 − λF1

9
; (9)

Â(z1) =
TL

1 − IL
1 + TU

1 − IU
1 + λT1 − λF1

3
and Ĉ(z1) =

TL
1 + TU

1 + λT1

3
. (10)

Theorem 1 ([21]). Let z1 =
(〈[

TL
1 , TU

1
]
,
[
IL
1 , IU

1
]
,
[
FL

1 , FU
1
]〉

,
〈
λT1 , λI1 , λF1

〉)
and z2 =(〈[

TL
2 , TU

2
]
,
[
IL
2 , IU

2
]
,
[
FL

2 , FU
2
]〉

,
〈
λT2 , λI2 , λF2

〉)
. Then the comparison rules for NCNs can be defined

as follows:

(i) If Ŝ(z1) > Ŝ(z2), then z1 is greater than z2, and is denoted by z1 > z2;
(ii) If Ŝ(z1) = Ŝ(z2), and Â(z1) > Â(z2), then z1 is greater than z2, and is denoted by z1 > z2;
(iii) If Ŝ(z1) = Ŝ(z2), Â(z1) = Â(z2), and Ĉ(z1) > Ĉ(z2), then z1 is greater than z2, and is denoted by

z1 > z2;
(iv) If Ŝ(z1) = Ŝ(z2), Â(z1) = Â(z2), and Ĉ(z1) = Ĉ(z2), then z1 is equal to z2, and is denoted by z1 = z2.

2.2. Power Average (PA) Operator

The PA operator was first introduced by Yager [31] for classical number. The dominant edge of
PA operator is its capacity to diminish the inadequate effect of unreasonably too high and too low
arguments on the inconclusive results.
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Definition 7 ([31]). Let "g(g = 1, 2, . . . , a) be a group of classical numbers. The PA operator is then
represented as follows:

PA("1,"2, . . . ,"a) =
a

∑
g=1

⎛⎜⎜⎝
(
1 + T

("g
))

a
∑

x=1
(1 + T("x))

"g

⎞⎟⎟⎠ (11)

where, T("z) =
a
∑

x=1
g �=x

Supp
("g,"x

)
and Supp("z,"x) is the support degree for "g and "x. The support

degree must satisfy the following axioms:

(1) Supp
("g,"x

) ∈ [0, 1];
(2) Supp

("g,"x
)
= Supp

("x,"g
)
;

(3) If D
("g,"x

)
< D("l ,"m), then Supp

("g,"x
)
> Supp("l ,"m), where D

("g,"x
)

is the distance
measure among "g and "x.

2.3. Muirhead Mean (MM) Operator

The MM operator was first introduced by Muirhead [28] for classical numbers. MM operator has
the advantage of considering the interrelationship among all aggregated arguments.

Definition 8 ([28]). Let "g(g = 1, 2, . . . , a) be a group of classical numbers and Q = (q1, q2, . . . , qa) ∈ Ra be
a vector of parameters. Then, the MM operator is described as:

MMQ("1,"2, . . . ,"a) =

(
1
a! ∑

θ∈Sa

a

∏
g=1

"qg
θ(g)

) 1
a
∑

g=1
qg

(12)

where, Sa is the group of permutation of (1, 2, . . . , a) and θ(g) is any permutation of (1, 2, . . . , a).

Now we can give some special cases with respect to the parameter vector Q of the MM operator,
which are shown as follows:

(1) If Q = (1, 0, 0, . . . , 0), then the MM operator degenerates to the following form:

MM(1,0,...,0)("1,"2, . . . ,"a) =
1
a

a

∑
g=1

"g. (13)

That is, the MM operator degenerates into arithmetic averaging operator.

(2) If Q =
(

1
a , 1

a , . . . , 1
a

)
, then the MM operator degenerates to the following form:

MM( 1
a , 1

a ,..., 1
a )("1,"2, . . . ,"a) =

a

∏
g=1

"
1
a
g . (14)

That is, the MM operator degenerates into geometric averaging operator.
(3) If Q = (1, 1, 0, . . . , 0), then the MM operator degenerates to the following form:

MM(1,1,0,...,0)("1,"2, . . . ,"a) =

⎛⎜⎜⎜⎜⎝ 1
a(a + 1)

a

∑
g,x=1
g �=x

"g"x

⎞⎟⎟⎟⎟⎠
1
2

. (15)
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That is, the MM operator degenerates into BM operator.

(4) If Q =

⎛⎝ c︷ ︸︸ ︷
1, 1, . . . , 1,

a−c︷ ︸︸ ︷
0, . . . , 0

⎞⎠, then the MM operator degenerates to the following form:

MM(

d︷ ︸︸ ︷
1, 1, . . . , 1,

a−d︷ ︸︸ ︷
0, . . . , 0)("1,"2, . . . ,"a) =

⎛⎜⎜⎜⎝
∑

1≤x1<x2<...<xd≤a

d
∏

y=1
"gy

Cd
a

⎞⎟⎟⎟⎠
1
d

. (16)

That is, the MM operator degenerates into MSM operator.

3. Some Power Muirhead Mean Operator for NCNs

In this part, we first give the definitions of PMM operator and propose the concept of power
dual Muirhead mean (PDMM) operator. Then, we extended both the aggregation operator to
NCN environment.

Definition 9 ([35]). Let "g(g = 1, 2, . . . , a) be a group of classical numbers and Q = (q1, q2, . . . , qa) ∈ Ra be
a vector of parameters. Then, the PMM operator is explained as,

PMMQ("1,"2, . . . ,"a) =

⎛⎜⎜⎝ 1
a! ∑

θ∈Sa

a

∏
g=1

⎛⎜⎜⎝ a
(

1 + T
(
"θ(g)

))
a
∑

x=1
(1 + T("x))

"θ(g)

⎞⎟⎟⎠
qg⎞⎟⎟⎠

1
a
∑

g=1
qg

(17)

where, T
("g

)
=

a
∑

x=1,x �=g
Supp

("g,"x
)

and Supp
("g,"x

)
is the support degree for "g and "x, satisfying

the above conditions.

Definition 10. Let "g(g = 1, 2, . . . , a) be a group of classical numbers and Q = (q1, q2, . . . , qa) ∈ Ra be a
vector of parameters. Then, the PDMM operator is described as,

PDMMQ("1,"2, . . . ,"a) =
1

a
∑

g=1
qg

⎛⎜⎜⎜⎝ ∑
θ∈Sa

a

∏
g=1

qg"

a(1+T("θ(g)))
a
∑

x=1
(1+T("x))

θ(g)

⎞⎟⎟⎟⎠
1
a!

(18)

where, T("g) =
a
∑

x=1x �=1
Supp

("g,"x
)

and Supp
("g,"x

)
is the support degree for "g and "x, satisfying

the above conditions.

3.1. The Neutrosophic Cubic Power Muirhead Mean (NCPMM) Operator

In this subsection, we extend the PMM operator to neutrosophic cubic environment and discuss
some basic properties, and special cases of these developed aggregation operators with respect to the
parameter Q.
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Definition 11. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. If,

NCPMMQ(z1, z2, . . . ., za) =

⎛⎜⎜⎝ 1
a! ∑

θ∈Sa

a

∏
g=1

⎛⎜⎜⎝ a
(

1 + T
(

zθ(g)

))
a
∑

x=1
(1 + T(zx))

zθ(g)

⎞⎟⎟⎠
qg⎞⎟⎟⎠

1
a
∑

g=1
qg

(19)

then, we call NCPMMQ the neutrosophic cubic power Muirhead mean operator, where Sa is the group of all

permutation, θ(g) is any permutation of (1, 2, . . . , a) and T(zx) =
a
∑

x=1,x �=g
Supp

(
zg, zx

)
, Supp

(
zg, zx

)
is the

support degree for zg and zx, satisfying the following axioms:

(1) Supp
(
zg, zx

) ∈ [0, 1];
(2) Supp

(
zg, zx

)
= Supp(zx, zz);

(3) If D(zg, zx) < D(zu, zv), then Supp(zg, zx) > Supp(zu, zv), where D(zg, zx) is the distance among zg

and zx.

To write Equation (20) in a simple form, we can specify it as:

Θg =

(
1 + T

(
zg
))

a
∑

x=1
(1 + T(zx))

. (20)

For suitability, we can call (Θ1, Θ2, . . . , Θa)
T the power weight vector (PMV), such that Θg ∈ [0, 1]

and
a
∑

g=1
Θg = 1. From the use of Equation (20), Equation (19) can be expressed as:

NCPMMQ(z1, z2, . . . ., za) =

(
1
a! ∑

θ∈Sa

a

∏
g=1

(
aΘgzθ(g)

)qg

) 1
a
∑

g=1
qg

. (21)

Based on the operational rules given in Definition 3 for NCNs, and Definition 11, we can have the
following Theorem 2.

Theorem 2. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. Then, the aggregated value obtained by using Equation (21) is still an NCN and,

NCPMMQ (z1 , z2 , . . . , za ) =⎛⎜⎜⎝
〈⎡⎢⎢⎣

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TU )
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦
〉

〈⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (λT )

θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λI )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λF )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg
〉⎞⎟⎟⎠.

(22)

Proof. According to the operational laws for NCNs, we have

aΘg zθ(g) =

(〈[
1 −

(
1 −

(
TL

)
θ(g)

)aΘg
, 1 −

(
1 −

(
TU

)
θ(g)

)aΘg
]

,
[(

IL
)aΘg

θ(g)
,
(

IU
)aΘg

θ(g)

]
,
[(

FL
)aΘg

θ(g)
,
(

FU
)aΘg

θ(g)

]〉
,
〈

1 −
(

1 − (
λT

)
θ(g)

)aΘg
,
(
λI
)aΘg
θ(g) ,

(
λF

)aΘg
θ(g)

〉)
.

Therefore,

(
aΘgzθ(g)

)qg
=

(〈[(
1 −

(
1 −

(
TL

)
θ(g)

)aΘg
)qg

,

(
1 −

(
1 −

(
TU

)
θ(g)

)aΘg
)qg ]

,
[

, 1 −
(

1 −
(

IL
)aΘg

θ(g)

)qg
1 −

(
1 − (I)

aΘg
θ(g)

)qg ]
,
[

1 −
(

1 −
(

FL
)aΘg

θ(g)

)qg
, 1 −

(
1 −

(
FU

)aΘg
θ(g)

)qg ]〉
,〈 (

1 −
(

1 − (
λT

)
θ(g)

)aΘg
)qg

, 1 −
(

1 − (
λI
)aΘg
θ(g)

)qg
, 1 −

(
1 − (

λF
)aΘg
θ(g)

)qg 〉 )
.
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Therefore,

a
∏

g=1

(
aΘg zθ(g)

)qg
=

⎛⎝〈⎡⎣ a
∏

g=1

(
1 −

(
1 −

(
TL

)
θ(g)

)aΘg
)qg

,
a
∏

g=1

(
1 −

(
1 −

(
TU

)
θ(g)

)aΘg
)qg

⎤⎦,

⎡⎣1 − a
∏

g=1

(
1 −

(
IL
)aΘg

θ(g)

)qg
, 1 − a

∏
g=1

(
1 −

(
IU
)aΘg

θ(g)

)qg
⎤⎦,

⎡⎣1 − a
∏

g=1

(
1 −

(
FL
)aΘg

θ(g)

)qg
,

1 − a
∏

g=1

(
1 −

(
FU

)aΘg
θ(g)

)qg
⎤⎦〉,

〈
a
∏

g=1

(
1 −

(
1 − (

λT
)
θ(g)

)aΘg
)qg

, 1 − a
∏

g=1

(
1 − (

λI
)aΘg
θ(g)

)qg
, 1 − a

∏
g=1

(
1 − (

λF
)aΘg
θ(g)

)qg
〉⎞⎠,

and

∑
θ∈Sa

a
∏

g=1

(
aΘg zθ(g)

)qg
=

〈[
1 − ∏

θ∈Sa

(
a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)
, 1 − ∏

θ∈Sa

(
a

∏
g=1

(
1 −

(
1 − (

TU )
θ(g)

)aΘg
)qg

)]
,

[
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg

)
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

)] )
,[

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FL)aΘg
θ(g)

)qg

)
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

)]〉
,

〈
1 − ∏

θ∈Sa

(
a

∏
g=1

(
1 −

(
1 − (λT )θ(g)

)aΘg
)qg

)
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λI )

aΘg
θ(g)

)qg

)
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
λ f

)aΘg

θ(g)

)qg
)〉)

.

Furthermore,

1
a! ∑

θ∈Sa

a
∏

g=1

(
aΘg zθ(g)

)qg
=

⎛⎝〈⎡⎣1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)) 1
a!

, 1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TU )
θ(g)

)aΘg
)qg

)) 1
a!
⎤⎦ ,

⎡⎣( ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg

)) 1
a!

,

〈 (
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

)) 1
a!
⎤⎦,

⎡⎣( ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FL)aΘg
θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

)) 1
a!
⎤⎦〉 ,

〈
1 −

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (λT )θ(g)

)aΘg
)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λI )

aΘg
θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λF )

aΘg
θ(g)

)qg

)) 1
a!
〉⎞⎠.

Hence,

(
1
a! ∑

θ∈Sa

a
∏

g=1

(
aΘg Γθ(g)

)qg

) 1
a
∑

g=1
qg

=

⎛⎜⎜⎝
〈⎡⎢⎢⎣

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦
〉

,

〈⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (λT )θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λI )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λF )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg
〉⎞⎟⎟⎠,

NCPMMQ (z1 , z2 , . . . , za ) =⎛⎜⎜⎝
〈⎡⎢⎢⎣

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TU )
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦
〉

,

〈⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (λT )

θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λI )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λF )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg
〉⎞⎟⎟⎠.

This is the required proof of Theorem 2. �
In the above equations, we calculate the PWV Θ, after calculating the support degree Supp

(
zg, zx

)
.

First, we determined the Supp
(
zg, zx

)
using

Supp
(
zg, zx

)
= 1 − D

(
zg, zx

)
, (23)

where,

D
(
zg, zx

)
=

√√√√√√√
1
9

((
TL

g − TL
x

)2
+
(

TU
g − TU

x

)2
+
(

IL
g − IL

x

)2
+
(

IU
g − IU

x

)2
+
(

FL
g − FL

x

)2
+
(

FU
g − FU

x

)2

(
λTg − λTx

)2
+
(

λIg − λIx

)2
+
(

λFg − λFx

)2
) . (24)

Therefore, we use the equation

T
(
zg
)
=

a

∑
g=1,g �=x

Supp
(
zg, zx

)
(25)

to obtain the values of T
(
zg
)
(g = 1, 2, . . . , a). Then using Equation (20) we can get the PWV.
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Theorem 3. (Idempotency) Let zg(g = 1, 2, . . . , a) be a group of NCNs, and zg = z, for all g = 1, 2, . . . , a. Then,

NCPMMQ(z1, z2, . . . , za) = CN. (26)

Proof. As zg = z for all g = 1, 2, . . . , a, we have Supp
(
zg, zx

)
= 1 for all g, x = 1, 2, . . . , a. Therefore,

we can get Θg = 1
a for all g. Moreover,

CNPMMQ (z1 , z2 , . . . , za ) = CNPMMQ (z, z, . . . , z)

=

⎛⎜⎜⎝
〈⎡⎢⎢⎣

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (

1 − TL)a 1
a

)qg
)) 1

a!
⎞⎠

1
a
∑

g=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (

1 − TL)a 1
a

)qg
)) 1

a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − ILa 1

a

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − IUa 1

a

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − FLa 1

a

)qg

) 1
a!
⎞⎠

1
a
∑

z=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − FUa 1

a

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦
〉

,

〈⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (1 − λT )

a 1
a
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − λI

a 1
a

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − λF

a 1
a

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg
〉⎞⎟⎟⎠,

=

⎛⎜⎜⎜⎝
〈⎡⎢⎢⎢⎣

⎛⎜⎜⎝1 −

⎛⎜⎝
⎛⎝1 − (

1 − (
1 − TL)) a

∑
g=1

qg

⎞⎠a!
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎝1 −

⎛⎜⎝
⎛⎝1 − (

1 − (
1 − TU )) a

∑
g=1

qg

⎞⎠a!
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣1 −

⎛⎜⎝1 −
⎛⎝1 − (

1 − IL) a
∑

g=1
qg

⎞⎠a! 1
a!
⎞⎟⎠

1
a
∑

g=1
qg

,

1 −

⎛⎜⎝1 −
⎛⎝1 − (

1 − IU ) a
∑

g=1
qg

⎞⎠a! 1
a!
⎞⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣1 −

⎛⎜⎝1 −
⎛⎝1 − (

1 − FL) a
∑

g=1
qg

⎞⎠a! 1
a!
⎞⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎝1 −
⎛⎝1 − (

1 − FU ) a
∑

g=1
qg

⎞⎠a! 1
a!
⎞⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦
〉

,

〈⎛⎜⎜⎝1 −

⎛⎜⎝
⎛⎝1 − (1 − (1 − λT ))

a
∑

g=1
qg

⎞⎠a!
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎝1 −
⎛⎝1 − (1 − λI )

a
∑

g=1
qg

⎞⎠a! 1
a!
⎞⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎝1 −
⎛⎝1 − (1 − λF )

a
∑

g=1
qg

⎞⎠a! 1
a!
⎞⎟⎠

1
a
∑

g=1
qg 〉⎞⎟⎟⎟⎠,

=
(〈[

TL , TU ], [IL , IU ], [FL , FU ]〉, 〈λT , λI , λF 〉
)
= z.

This is the required proof of Theorem 3. �
Theorem 4. (Boundedness) Let zg(g = 1, 2, . . . , a) be a group of NCNs. Where

−
z = min(z1, z2, . . . , za) =

(〈[
T−L, T−U], [I+L, I+U], [F+L, F+U]〉, 〈λT

−, λI
+, λF

+〉), and
+
z = max(z1, z2, . . . , za) =

(〈[
T+L, T+U], [I−L, I−U], [F−L, F−U]〉, 〈λT

+, λI
−, λF

−〉).
Then,

m ≤ NCPMMQ(z1, z2, . . . , za) ≤ n (27)

where,

m =

⎛⎜⎜⎜⎝
〈⎡⎢⎢⎢⎣

⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 − −
T

L

θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 − −
T

U

θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦,

⎡⎢⎢⎣1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − +

I
LaΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

,

1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − +U

I
aΘz

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

⎤⎥⎥⎦,

⎡⎢⎢⎣1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − +

F
LaΘz

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − +

F
UaΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

⎤⎥⎥⎦
〉

,

〈⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 −
( −

λT

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

z=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
+
λI

)aΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
+

λF

)aΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg
〉⎞⎟⎟⎠.

and

n =

⎛⎜⎜⎜⎝
〈⎡⎢⎢⎢⎣

⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 − +
T

L

θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 − +
T

U

θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦,

⎡⎢⎢⎣1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − −

I
LaΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

,

1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − −U

I
aΘz

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

⎤⎥⎥⎦,

⎡⎢⎢⎣1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − −

F
LaΘz

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − −

F
UaΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

⎤⎥⎥⎦
〉

,

〈⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 −
(

+
λT

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

z=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

( −
λI

)aΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

( −
λF

)aΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg
〉⎞⎟⎟⎠.
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Proof.

aΘg zθ(g) =

(〈[
1 −

(
1 − (

TL)
θ(g)

)aΘg
, 1 −

(
1 − (

TU )
θ(g)

)aΘg
]

,
[(

IL)aΘg
θ(g) ,

(
IU )aΘg

θ(g)

]
,
[(

FL)aΘg
θ(g) ,

(
FU )aΘg

θ(g)

]〉
,
〈

1 −
(

1 − (λT )θ(g)

)aΘg
, (λI )

aΘg
θ(g) , (λF )

aΘg
θ(g)

〉)

≥

⎛⎜⎝〈
⎡⎢⎣1 −

⎛⎝1 −
(

−
T

L
)

θ(g)

⎞⎠aΘg

, 1 −
⎛⎝1 −

(
−
T

U
)

θ(g)

⎞⎠aΘg
⎤⎥⎦,

⎡⎣(+
I

L
)aΘg

θ(g)

,

(
+
I

U
)aΘg

θ(g)

⎤⎦,

⎡⎣(+
F

L
)aΘg

θ(g)

,

(
+
F

U
)aΘg

θ(g)

⎤⎦〉,

〈
1 −

(
1 −

( −
λT

)
θ(g)

)aΘg

,
(

+
λI

)aΘg

θ(g)
,
(

+
λF

)aΘg

θ(g)

〉⎞⎟⎠.

and (
aΘg zθ(g)

)qg
=

(〈[(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

,
(

1 −
(

1 − (
TU )

θ(g)

)aΘg
)qg ]

,
[
, 1 −

(
1 − (

IL)aΘg
θ(g)

)qg
1 −

(
1 − (

IU )aΘg
θ(g)

)qg ]
,[

1 −
(

1 − (
FL)aΘg

θ(g)

)qg
1 −

(
1 − (

FU )aΘg
θ(g)

)qg ]〉
,
〈(

1 −
(

1 − (λT )θ(g)

)aΘg
)qg

, 1 −
(

1 − (λI )
aΘg
θ(g)

)qg
, 1 −

(
1 − (λF )

aΘg
θ(g)

)qg
〉)

≥

⎛⎜⎝〈
⎡⎢⎣
⎛⎜⎝1 −

⎛⎝1 −
(

−
T

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg

,

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎤⎥⎦ ,

⎡⎣, 1 −
⎛⎝1 −

(
+
I

L
)aΘg

θ(g)

⎞⎠qg

1 −
⎛⎝1 −

(
+
I

U
)aΘg

θ(g)

⎞⎠qg ⎤⎦,

⎡⎣1 −
⎛⎝1 −

(
+
F

L
)aΘg

θ(g)

⎞⎠qg

1 −
⎛⎝1 −

(
+
F

U
)aΘg

θ(g)

⎞⎠qg ⎤⎦〉,

〈⎛⎝1 −
(

1 −
( −

λT

)
θ(g)

)aΘg
⎞⎠qg

, 1 −
(

1 −
(

+
λI

)aΘg

θ(g)

)qg

, 1 −
(

1 −
(

+
λF

)aΘg

θ(g)

)qg 〉⎞⎠.

Thus,

a
∏

g=1

(
aΘg zθ(g)

)qg
=

(〈[
a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

,
a

∏
g=1

(
1 −

(
1 − (

TU )
θ(g)

)aΘg
)qg

]
,

[
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg
, 1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

]
,[

1 − a
∏

g=1

(
1 − (

FL)aΘg
θ(g)

)qg
, 1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

]〉
,

〈
a

∏
g=1

(
1 −

(
1 − (λT )θ(g)

)aΘg
)qg

, 1 − a
∏

g=1

(
1 − (λI )

aΘg
θ(g)

)qg
, 1 − a

∏
g=1

(
1 − (λF )

aΘg
θ(g)

)qg

〉)
≥⎛⎜⎝〈

⎡⎢⎣ a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg

,
a

∏
g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎤⎥⎦,

⎡⎣1 − a
∏

g=1

⎛⎝1 −
(

+
I

L
)aΘg

θ(g)

⎞⎠qg

, 1 − a
∏

g=1

⎛⎝1 −
(

+
I

U
)aΘg

θ(g)

⎞⎠qg ⎤⎦,

⎡⎣1 − a
∏

g=1

⎛⎝1 −
(

+
F

L
)aΘg

θ(g)

⎞⎠qg

, 1 − a
∏

g=1

⎛⎝1 −
(

+
F

U
)aΘg

θ(g)

⎞⎠qg ⎤⎦〉,

〈
a

∏
g=1

⎛⎝1 −
(

1 −
( −

λT

)
θ(g)

)aΘg
⎞⎠qg

, 1 − a
∏

g=1

(
1 −

(
+
λI

)aΘg

θ(g)

)qg

, 1 − a
∏

g=1

(
1 −

(
+

λF

)aΘg

θ(g)

)qg 〉)
.

and

∑
θ∈Sa

a
∏

z=1

(
aΘg zθ(g)

)qg
=

(〈[
1 − ∏

θ∈Sa

(
a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)
, 1 − ∏

θ∈Sa

(
a

∏
g=1

(
1 −

(
1 − (

TU )
θ(g)

)aΘg
)qg

)]
,

[
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg

)
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

)]
,[

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FL)aΘg
θ(g)

)qg

)
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

)]〉
,

〈
1 − ∏

θ∈Sa

(
a

∏
g=1

(
1 −

(
1 − (λT )θ(g)

)aΘg
)qg

)
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λI )

aΘg
θ(g)

)qg

)
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λF )

aΘg
θ(g)

)qg

)〉)

≥

⎛⎜⎝〈
⎡⎢⎣1 − ∏

θ∈Sa

⎛⎜⎝ a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠, 1 − ∏
θ∈Sa

⎛⎜⎝ a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎤⎥⎦,

⎡⎣ ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
I

L
)aΘg

θ(g)

⎞⎠qg ⎞⎠, ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
I

U
)aΘg

θ(g)

⎞⎠qg ⎞⎠⎤⎦ ,

⎡⎣ ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
F

L
)aΘg

θ(g)

⎞⎠qg ⎞⎠, ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
F

U
)aΘg

θ(g)

⎞⎠qg ⎞⎠⎤⎦〉,

〈
1 − ∏

θ∈Sa

⎛⎝ a
∏

g=1

⎛⎝1 −
(

1 −
( −

λT

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠ , ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
+
λI

)aΘg

θ(g)

)qg )
, ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
+

λF

)aΘg

θ(g)

)qg )〉)
.

Furthermore,

1
a! ∑

θ∈Sa

a
∏

g=1

(
aΘg zθ(g)

)qg
=

⎛⎝〈⎡⎣1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)) 1
a!

, 1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TU )
θ(g)

)aΘg
)qg

)) 1
a!
⎤⎦,⎡⎣( ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

)) 1
a!
⎤⎦,

⎡⎣( ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FL)aΘg
θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

)) 1
a!
⎤⎦〉,

〈
1 −

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (λT )θ(g)

)aΘg
)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λI )

aΘg
θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
z=1

(
1 − (λF )

aΘz
θ(z)

)qz
)) 1

a!
〉⎞⎠

≥

⎛⎜⎜⎝
〈⎡⎢⎢⎣1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!

, 1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎤⎥⎥⎦,

⎡⎢⎣
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
I

L
)aΘg

θ(g)

⎞⎠qg ⎞⎠⎞⎠
1
a!

,

⎛⎝ ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
I

U
)aΘg

θ(g)

⎞⎠qg ⎞⎠⎞⎠
1
a!
⎤⎥⎦,

⎡⎢⎣
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
F

L
)aΘg

θ(g)

⎞⎠qg ⎞⎠⎞⎠
1
a!

,

⎛⎝ ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
F

U
)aΘg

θ(g)

⎞⎠qg ⎞⎠⎞⎠
1
a!
⎤⎥⎦〉,

〈
1 −

⎛⎝ ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 −
( −

λT

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
+
λI

)aΘg

θ(g)

)qg )) 1
a!

,

(
∏

θ∈Sa

(
1 − a

∏
z=1

(
1 −

(
+

λF

)aΘz

θ(z)

)qz )) 1
a!
〉⎞⎟⎠.

Hence,

(
1
a! ∑

θ∈Sa

a
∏

z=1

(
aΘz Γθ(z)

)qz

) 1
a
∑

z=1
qz

=

⎛⎜⎜⎝
〈⎡⎢⎢⎣

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TL)
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

TU )
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

IU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦,

⎡⎢⎢⎣1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

FU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦
〉

,

〈⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (λT )

θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λI )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λF )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg
〉⎞⎟⎟⎠

≥

⎛⎜⎜⎜⎜⎝
〈⎡⎢⎢⎢⎢⎣

⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
T

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣1 −

⎛⎜⎝1 − ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
I

L
)aΘg

θ(g)

⎞⎠qg ⎞⎠
1
a!
⎞⎟⎠

1
a
∑

g=1
qg

,

1 −

⎛⎜⎝1 − ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
I

U
)aΘg

θ(g)

⎞⎠qg ⎞⎠
1
a!
⎞⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣1 −

⎛⎜⎝1 − ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
F

L
)aΘg

θ(g)

⎞⎠qg ⎞⎠
1
a!
⎞⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
F

U
)aΘg

θ(g)

⎞⎠qg ⎞⎠
1
a!
⎞⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦
〉

,

〈⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 −
( −

λT

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
+
λI

)aΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
+

λF

)aΘg

θ(g)

)qg ) 1
a!

⎞⎟⎠
1

a
∑

g=1
qg
〉⎞⎟⎟⎠.
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This implies that m ≤ NCPMMQ(z1, z2, . . . , za). �
In a similar way we can show that NCPMMQ(z1, z2, . . . , za) ≤ n. Hence, m ≤

NCPMMQ(z1, z2, . . . , za) ≤ n.
The NCPMM operator does not have the property of monotonicity.
One of the leading advantages of NCPMM is its capacity to represent the interrelationship among

NCNs. Furthermore, the NCPMM operator is more flexible in aggregation process due to parameter
vector. Now, we discuss some special cases of NCPMM operators by assigning different values to the
parameter vector.

Case 1. If Q = (1, 0, . . . , 0), then the NCPMM operator degenerates into the following form:

NCPMM(1,0,...,0)(z1, z2, . . . ., za) =

⎛⎜⎜⎝ a

∑
g=1

(
1 + T

(
zg
))

a
∑

x=1
(1 + T(zx))

zg

⎞⎟⎟⎠. (28)

This is the NC power averaging operator.

Case 2. If Q =
(

1
a , 1

a , . . . ., 1
a

)
, then the NCPMM operator degenerates into the following form:

NCPMM( 1
a , 1

a ,..., 1
a )(z1, z2, . . . ., za) =

a

∏
g=1

z

(1+T(zθ(g)))
a
∑

x=1
(1+T(zx))

g . (29)

This is the NC power geometric operator.
Case 3. If Q = (1, 1, . . . , 0), then the NCPMM operator degenerates into the following form:

NCPMM(1,1,0,...,0) = (z1 , z2 , . . . , za ) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − TL

g

)Θg
)(

1 − (
1 − TL

x
)Θx

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − TU

g

)Θg
)(

1 − (
1 − TU

x
)Θx

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − I

LΘg
g

)(
1 − ILΘx

x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − I

UΘg
g

)(
1 − IUΘx

x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − F

LΘg
g

)(
1 − FLΘx

x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

, 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − F

UΘg
g

)(
1 − FUΘx

x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − (λT )g

)Θz
)(

1 − (1 − Tx )
Θx
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

, 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − (λI )

Θg
g

)(
1 − (λT )

Θx
x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

, 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − (λF )

Θz
z

)(
1 − (λF )

Θx
x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(30)

This is the NC power Bonferroni mean operator (p = q = 1).
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Case 4. If Q =

⎛⎜⎝ i︷ ︸︸ ︷
1, 1, . . . , 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0

⎞⎟⎠, then the NCPMM operator degenerates into the following

form:

NCPMM(

i︷ ︸︸ ︷
1, 1, , ., 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0) = (z1 , z2 , . . . , za ) =〈⎡⎢⎣

⎛⎝1 − ∏
1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 −

(
1 − TL

gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k

,

⎛⎝1 − ∏
1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 −

(
1 − TU

gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k
⎤⎥⎦ ,

⎡⎢⎣, 1 −
⎛⎝1 − ∏

1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 − I

LΘgx
gx

)) 1
Ci

a

⎞⎠ 1
k

,

1 −
⎛⎝1 − ∏

1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 − I

UΘgx
gx

)) 1
Ci

a

⎞⎠ 1
k
⎤⎥⎦,

⎡⎢⎣1 −
⎛⎝1 − ∏

1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 − F

LΘgx
gx

)) 1
Ci

a

⎞⎠ 1
k

, 1 −
⎛⎝1 − ∏

1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 − F

UΘgx
gx

)) 1
Ci

a

⎞⎠ 1
k
⎤⎥⎦〉,

〈⎛⎝1 − ∏
1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 −

(
1 − (λT )gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k

, 1 −
⎛⎝1 − ∏

1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 − (λI )

Θgx
gx

)) 1
Ci

a

⎞⎠ 1
k

, 1 −
⎛⎝1 − ∏

1≤y1<y2<....<yi≤a

(
1 − i

∏
x=1

(
1 − (λF )

Θgx
gx

)) 1
Ci

a

⎞⎠ 1
k 〉

.

(31)

This is the NC power Maclaurin symmetric mean operator.

3.2. Weighted Neutrosophic Cubic Power Muirhead Mean (WNCPMM) Operator

The NCPMM operator does not consider the weight of the aggregated NCNs. In this subsection,
we develop the WNCPMM operator, which has the capacity of taking the weights of NCNs.

Definition 12. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. If,

WNCPMMQ(z1, z2, . . . ., za) =

⎛⎜⎜⎝ 1
a! ∑

θ∈Sa

a

∏
g=1

⎛⎜⎜⎝ aΞϑ(g)Θθ(g)
a
∑

x=1
ΞxΘx

zθ(g)

⎞⎟⎟⎠
qg⎞⎟⎟⎠

1
a
∑

g=1
qg

(32)

then, we WNCPMMQ the weighted neutrosophic cubic power Muirhead mean operator, where Ξ =

(Ξ1, Ξ2, . . . , Ξa)
T is the weight vector of zg(g = 1, 2, . . . , a) such that Ξz ∈ [0, 1],

a
∑

z=1
Ξz = 1, Sa is the group

of all permutation, θ(z) is any permutation of (1, 2, . . . , a) and Θg is power weight vector (PWV) satisfying

Θg =
(1+T(zg))
a
∑

g=1
(1+T(zg))

,
a
∑

g=1
Θg = 1, T(zx) =

a
∑

x=1,x �=g
Supp

(
zg, zx

)
, Supp

(
zg, zx

)
is the support degree for zg

and zx, satisfying the following axioms:

(1) Supp
(
zg, zx

) ∈ [0, 1];
(2) Supp

(
zg, zx

)
= Supp

(
zx, zg

)
;

(3) If D(zg, zx) < D(zu, zv), then Supp(zg, zx) > Supp(zu, zv), where D(zg, zx) is distance among zg

and zx.
From Definition 12, we have the following Theorem 5.

Theorem 5. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. Then, the aggregated value obtained by using Equation (32) is still an NCN and

WNCPMMQ (z1 , z2 , . . . , za ) =⎛⎜⎜⎜⎜⎝
〈⎡⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 − (
TL )

θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 − (
TU )

θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣1 −

⎛⎜⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 − (
IL )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg
⎞⎟⎟⎟⎠

1
a!
⎞⎟⎟⎟⎟⎠

1
a
∑

g=1
qg

,

1 −

⎛⎜⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 − (
IU )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg
⎞⎟⎟⎟⎠

1
a!
⎞⎟⎟⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣1 −

⎛⎜⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 − (
FL )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg
⎞⎟⎟⎟⎠

1
a!
⎞⎟⎟⎟⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 − (
FU )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg
⎞⎟⎟⎟⎠

1
a!
⎞⎟⎟⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎥⎦
〉

,

〈⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 − (λT )θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 − (λI )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg
⎞⎟⎟⎟⎠

1
a!
⎞⎟⎟⎟⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 − (λF )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg
⎞⎟⎟⎟⎠

1
a!
⎞⎟⎟⎟⎟⎠

1
a
∑

g=1
qg 〉⎞⎟⎟⎟⎟⎟⎠.

(33)

Proof. Proof of Theorem 5 is same as Theorem 2. �
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3.3. The Neutrosophic Cubic Power Dual Muirhead Mean (NCPDMM) Operator

In this subsection, we develop the NCPDMM operator and discuss some related properties.

Definition 13. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. If,

NCPDMMQ(z1, z2, . . . ., za) =
1

a
∑

g=1
qg

⎛⎜⎜⎜⎝∏
θ∈Sa

a

∑
g=1

⎛⎜⎜⎜⎝qgz

a(1+T(zθ(g)))
a
∑

x=1
(1+T(zx))

θ(g)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

1
a!

(34)

then, we call NCPDMMQ the neutrosophic cubic power dual Muirhead mean operator, where Sa is the group

of all permutation, θ(g) is any permutation of (1, 2, . . . , a) and T(zx) =
a
∑

x=1,x �=g
Supp

(
zg, zx

)
, Supp

(
zg, zx

)
is the support degree for zg and zx, satisfying the following axioms:

(1) Supp
(
zg, zx

) ∈ [0, 1];
(2) Supp

(
zg, zx

)
= Supp

(
zx, zg

)
;

(3) If D(zg, zx) < D(zu, zv), then Supp(zg, zx) > Supp(zu, zv), where D(zg, zx) is distance among zg

and zx.

To write Equation (34) in a simple form, we can specify it as:

Θg =

(
1 + T

(
zg
))

a
∑

x=1
(1 + T(zx))

. (35)

For suitability, we can call (Θ1, Θ2, . . . , Θa)
T the power weight vector (PMV), such that Θg ∈ [0, 1]

and
a
∑

g=1
Θg = 1. From, the use of Equation (35), Equation (34) can be expressed as,

NCPDMMQ(z1, z2, . . . ., za) =
1

a
∑

g=1
qg

(
∏

θ∈Sa

a

∑
g=1

(
qgz

aΘθ(g)
θ(g)

)) 1
a!

. (36)

Theorem 6. Let zg(g = 1, 2, . . . , a) be a group of SVNNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. Then, the aggregated value obtained by using Equation (36) is still an NCN and,

NCPDMMQ (z1 , z2 , . . . , za ) =⎛⎜⎜⎝
〈⎡⎢⎢⎣1 −

⎛⎝1 − ∏
θ∈Sa

(
1 − a

∏
g=1

(
1 − (

TL)aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

, 1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (

TU )aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
⎛⎝1 −

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

IL)
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

IU )
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦,

⎡⎢⎢⎣
⎛⎝1 −

(
∏

θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

FL)
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (

FU )
θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

⎤⎥⎥⎦
〉

1 −
⎛⎝1 − ∏

θ∈Sa

(
1 − a

∏
g=1

(
1 − (λT )

aΘg
θ(g)

)qg

) 1
a!
⎞⎠

1
a
∑

z=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (λI )θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg

,

⎛⎝1 −
(

∏
θ∈Sa

(
1 − a

∏
g=1

(
1 −

(
1 − (λF )θ(g)

)aΘg
)qg

)) 1
a!
⎞⎠

1
a
∑

g=1
qg
〉⎞⎟⎟⎠.

(37)

Proof. Proof of Theorem 6 is similar to that of Theorem 2. �
Theorem 7 (Idempotency). Let zg(g = 1, 2, . . . , a) be a group of NCNs, and zg = z, for all g = 1, 2, . . . , a. Then,

NCPDMMQ(z1, z2, . . . , za) = z. (38)
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Theorem 8 (Boundedness). Let zg(g = 1, 2, . . . , a) be a group of NCNs,
−
z =

min(z1, z2, . . . , za) =

(〈[
−
T

L
,
−
T

U
]

,

[
+
I

L
,
+
I

U
]

,

[
+
F

L
,
+
F

U
]〉

,〈λT
− ,λI

+ ,λF
+〉
)

, and z+ = max(z1, z2, . . . , za) =(〈[
+
T

L
,
+
T

U
]

,

[
−
I

L
,
−
I

U
]

,

[
−
F

L
,
−
F

U
]〉

,〈λT
+ ,λI

− ,λF
−〉
)

.

Then,
m ≤ NCPDMMQ(z1, z2, . . . , za) ≤ n. (39)

where,

m =

⎛⎜⎜⎜⎜⎝
〈⎡⎢⎢⎢⎣1 −

⎛⎜⎝1 − ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

−
T

L
)aΘg

θ(g)

⎞⎠qg ⎞⎠
1
a!
⎞⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

−
T

U
)aΘg

θ(g)

⎞⎠qg ⎞⎠
1
a!
⎞⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
+
I

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
+
I

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
+
F

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
+
F

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦
〉

,

〈
1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
z=1

(
1 −

( −
λT

)aΘz

θ(z)

)qz ) 1
a!

⎞⎟⎠
1

a
∑

z=1
qz

,

⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 −
(

+
λI

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 −
(

+
λF

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg 〉⎞⎟⎟⎟⎠,

and

n =

⎛⎜⎜⎜⎜⎝
〈⎡⎢⎢⎢⎣1 −

⎛⎜⎝1 − ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
T

L
)aΘg

θ(g)

⎞⎠qg ⎞⎠
1
a!
⎞⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎝1 − ∏
θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

+
T

U
)aΘg

θ(g)

⎞⎠qg ⎞⎠
1
a!
⎞⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
I

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
I

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
F

L
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎝1 −

⎛⎜⎝ ∏
θ∈Sa

⎛⎜⎝1 − a
∏

g=1

⎛⎜⎝1 −
⎛⎝1 −

(
−
F

U
)

θ(g)

⎞⎠aΘg
⎞⎟⎠

qg ⎞⎟⎠
⎞⎟⎠

1
a!
⎞⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦
〉

,

〈
1 −

⎛⎜⎝1 − ∏
θ∈Sa

(
1 − a

∏
z=1

(
1 −

(
+

λT

)aΘz

θ(z)

)qz ) 1
a!

⎞⎟⎠
1

a
∑

z=1
qz

,

⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 −
( −

λI

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎝1 −
⎛⎝ ∏

θ∈Sa

⎛⎝1 − a
∏

g=1

⎛⎝1 −
(

1 −
( −

λF

)
θ(g)

)aΘg
⎞⎠qg ⎞⎠⎞⎠

1
a!
⎞⎟⎠

1
a
∑

g=1
qg 〉⎞⎟⎟⎟⎠.

Now we will discuss some special cases of NCPDMM operator with respect to the parameter vector Q.

Case 1. If Q = (1, 0, . . . , 0), then NCPDMM operators degenerate into the following form:

NCPDMM(1,0,...,0)(z1, z2, . . . ., za) =

⎛⎜⎜⎝ a

∏
g=1

z

(1+T(zg))
a
∑

x=1
(1+T(zx))

g

⎞⎟⎟⎠ (40)

This is the NC power geometric averaging operator.

Case 2. If Q =
(

1
a , 1

a , . . . ., 1
a

)
, then NCPMM operators degenerate into the following form:

NCPDMM( 1
a , 1

a ,..., 1
a )(z1, z2, . . . ., za) =

a

∑
g=1

(
1 + T

(
zg
))

a
∑

x=1
(1 + T(zx))

zg (41)

This is NC power arithmetic averaging operator.
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Case 3. If Q = (1, 1, 0, . . . , 0), then NCPDMM operators degenerate into the following form:

NCPDMM(1,1,0,...,0) (z1 , z2 , . . . , za ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − (

TL)Θg
g

)(
1 − (

TL)Θx
x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

, 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − (

TU )Θg
g

)(
1 − (

TU )Θx
x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − (

IL)
g

)Θg
)(

1 − (
1 − (

IL)
x

)Θx
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − (

IU )
g

)Θg
)(

1 − (
1 − (

IU )
x

)Θx
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − (

FL)
g

)Θg
)(

1 − (
1 − (

FL)
x

)Θx
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − (

FU )
g

)Θg
)(

1 − (
1 − (

FU )
x

)Θx
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

〉
,

〈
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 − (λT )

Θg
g

)(
1 − (λT )

Θx
x

))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − (λI )g

)Θg
)(

1 − (1 − (λI )x )
Θx
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
∏

g, x = 1

g �= x

(
1 −

(
1 −

(
1 − (λF )g

)Θg
)(

1 − (1 − (λF )x )
Θx
))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
a2 −a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(42)

This is the NC power geometric Bonferroni mean operator (p = q = 1).

Case 4. If Q =

⎛⎝ i︷ ︸︸ ︷
1, 1, . . . , 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0

⎞⎠, then the NCPDMM operator degenerates into the

following form:

NCPDMM(

i︷ ︸︸ ︷
1, 1, , ., 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0) (z1 , z2 , . . . , za ) =⎛⎜⎝〈

⎡⎢⎣1 −
⎛⎝1 − ∏

1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 − (

TL )Θzg
gx

)) 1
Ci

a

⎞⎠ 1
k

, 1 −
⎛⎝1 − ∏

1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 − (

TU )Θzg
gx

)) 1
Ci

a

⎞⎠ 1
k
⎤⎥⎦ ,

⎡⎢⎣
⎛⎝1 − ∏

1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 −

(
1 − (

IL )
gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k

,

⎛⎝1 − ∏
1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 −

(
1 − (

IU )
gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k
⎤⎥⎦,

⎡⎢⎣
⎛⎝1 − ∏

1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 −

(
1 − (

FL )
gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k

,

⎛⎝1 − ∏
1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 −

(
1 − (

FU )
gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k
⎤⎥⎦〉

〈
1 −

⎛⎝1 − ∏
1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 − (λT )

Θgx
gx

)) 1
Ci

a

⎞⎠ 1
k

,

⎛⎝1 − ∏
1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 −

(
1 − (λI )gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k

,

⎛⎝1 − ∏
1≤y1<y2<....<yi ≤a

(
1 − i

∏
x=1

(
1 −

(
1 − (λF )gx

)Θgx
)) 1

Ci
a

⎞⎠ 1
k 〉⎞⎟⎠.

(43)

This is the NC power dual Maclaurin symmetric mean operator.

3.4. Weighted Neutrosophic Cubic Power Dual Muirhead Mean (WNCPDMM) Operator

The NCPDMM operator does not consider the weight of the aggregated NCNs. In this subsection,
we develop the WNCPDMM operator, which has the capacity of taking the weights of NCNs.

Definition 14. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. If,

WNCPDMMQ(z1, z2, . . . ., za) =
1

a
∑

g=1
qg

⎛⎜⎜⎝∏
θ∈Sa

a

∑
g=1

⎛⎜⎜⎝qgz

aΞϑ(g)Θθ(g)
a
∑

x=1
ΞxΘx

θ(g)

⎞⎟⎟⎠
⎞⎟⎟⎠

1
a!

(44)
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then, we call WNCPDMMQ the weighted neutrosophic cubic power dual Muirhead mean operator, where

Ξ = (Ξ1, Ξ2, . . . , Ξa)
T is the weight vector of zg(g = 1, 2, . . . , a) such that Ξg ∈ [0, 1],

a
∑

g=1
Ξg = 1, Sa is

the group of all permutation, θ(g) is any permutation of (1, 2, . . . , a) and Θg is PVW satisfying Θg =
(1+T(zg))
a
∑

g=1
(1+T(zg))

,
a
∑

g=1
Θg = 1, T(zx) =

a
∑

x=1,x �=g
Supp

(
zg, zx

)
, and Supp

(
zg, zx

)
is the support degree for zg and

zx, satisfying the following axioms:

(1) Supp
(
zg, zx

) ∈ [0, 1];
(2) Supp

(
zg, zx

)
= Supp

(
zx, zg

)
;

(3) If D(zg, zx) < D(zu, zv), then Supp(zg, zx) > Supp(zu, zv), where D(zg, zx) is distance among zg

and zx.

From Definition 14, we have the following Theorem 9.

Theorem 9. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. Then, the aggregated value obtained by using Equation (44) is still an NCN and

WNCPDMMQ (z1 , z2 , . . . , za ) =

〈⎡⎢⎢⎢⎢⎣1 −

⎛⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

L
T
) aΘθ(g) Ξϑ(g)

a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

, 1 −

⎛⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

U
T
) aΘθ(g) Ξϑ(g)

a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 −
(

L
I
)

θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 −
(

U
I
)

θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 −
(

L
F
)

θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 −
(

U
F
)

θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

⎤⎥⎥⎥⎥⎦
〉

,

1 −

⎛⎜⎜⎜⎜⎝1 − ∏
θ∈Sa

⎛⎜⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 − (λT )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)

⎞⎟⎟⎠
qg
⎞⎟⎟⎟⎠

1
a!
⎞⎟⎟⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 − (λI )θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg

,

⎛⎜⎜⎜⎝1 −

⎛⎜⎜⎝ ∏
θ∈Sa

⎛⎜⎜⎝1 − a
∏

g=1

⎛⎜⎜⎝1 −
(

1 − (λF )θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

⎞⎟⎟⎠
qg ⎞⎟⎟⎠

⎞⎟⎟⎠
1
a!
⎞⎟⎟⎟⎠

1
a
∑

g=1
qg 〉⎞⎟⎟⎟⎟⎠.

(45)

Proof. Proof of Theorem 9 is similar to that of Theorem 2. �
4. The MADM Approach Based on WNCPMM Operator and WNCPDMM Operator

In this section, we give a novel method to MADM with NCNs, in which the attributes values
gain the form of NCNs. For a MADM problem, let the series of alternatives is represented by � =

{�1,�2, . . . ,�a}, and the series of attributes is represented by = { , , . . . , b}. The weight vector of

the attributes is denoted by � = (�1, �2, . . . , �b)
T such that �p ∈ [0, 1],

b
∑

p=1
�p = 1. Assume that zgh =(〈[

TL
gh, TU

gh

]
,
[

IL
gh, IU

gh

]
,
[

FL
gh, FU

gh

]〉
, 〈λT gh

, λI gh , λF gh

〉)
is the assessment values of the alternatives �g

on the attribute lh, which is expressed by the form of NCN. Then, the main aim is to rank the
alternatives. The following decision steps are to be followed.

Step 1. Standardize the decision matrix. Generally, there are two types of attributes, one is of cost type
and the other is of benefit type. We need to convert the cost type of attributes into benefit types of
attributes by using the following formula:

zgh =
(〈[

TL
gh, TU

gh

]
,
[

IL
gh, IU

gh

]
,
[

FL
gh, FU

gh

]〉
,
〈

λT gh , λI gh , λF gh

〉)
,

=

⎧⎨⎩
(〈[

TL
gh, TU

gh

]
,
[

IL
gh, IU

gh

]
,
[

FL
gh, FU

gh

]〉
, λT gh , λI gh , λF gh

〉
), for benefit attribute Γh,(〈[

FL
gh, FU

gh

]
,
[
1 − IU

gh, 1 − IL
gh

]
,
[

TL
gh, TU

gh

]〉
, λT gh , 1 − λI gh , λF gh

〉
), for cost attribute Γh.

(46)
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Hence, the decision matrix M =
[
zgh

]
a×b

can be transformed into normalized decision matrix

N =
[
δgh

]
a×b

.

Step 2. Determine the supports Supp
(

δgh, δgl

)
(g = 1, 2, . . . , a; h, l = 1, 2, . . . , b) by,

Supp
(

δgh, δgl

)
= 1 − D

(
δgh, δgh

)
(47)

where, D
(

δgh, δgh

)
is the distance measure among two NCNs δgh and δgl defined in Equation (25).

Step 3. Determine T
(

δgh

)
by,

T
(

δgh

)
=

b

∑
l=1
l �=h

Supp
(

δgh, δgl

)
(g = 1, 2, . . . , a; h, l = 1, 2, . . . , b) (48)

Step 4. Determine the weights related with the NCN δgh(g = 1, 2, . . . , a; h = 1, 2, . . . , b) with the formula

Ψgh =
b�h

(
1 + T

(
δgh

))
b
∑

d=1
�d

(
1 + T

(
δgh

)) (g = 1, 2, . . . , a; h, d = 1, 2, . . . , b), (49)

where, T
(

δgh

)
=

b
∑

l=1
l �=h

Supp
(

δgh, δgl

)
(g = 1, 2, . . . , a; h, l = 1, 2, . . . , b) is weighted support of NCN

δgh by the other NCN δgl(g = 1, 2, . . . , a; h, l = 1, 2, . . . , b).

Step 5. Use the WNCPMM or WNCPDMM operators

δg =
〈[

TL
g , TU

g

]
,
[

IL
g , IU

g

]
,
[

FL
g , FU

g

]
, λT g, λI g, λFg

〉
= WNCPMMQ

(
δg1, δg2, . . . , δgb

)
(50)

or
δg =

〈[
TL

g , TU
g

]
,
[

IL
g , IU

g

]
,
[

FL
g , FU

g

]
, λT g, λI g, λFg

〉
= WNCPDMMQ

(
δg1, δg2, . . . , δgb

)
(51)

to calculate the overall NCNs, δg(g = 1, 2, . . . , a).
Step 6. Determine the score values of the collective NCNs δg(g = 1, 2, . . . , a), using Definition 6.
Step 7. Rank all the alternatives according to their score values, and the select the best one using
Theorem 1.

5. An Illustrative Example

To show the application of the developed MADM method, an illustrative example is embraced
from [19,21] with NC information.

Example 1. A passenger wants to travel and select the best vans (alternatives) �g(g = 1, 2, 3, 4) among
the possible four vans. The customer takes the following four attributes into account to evaluate the possible

four alternatives: (1) the facility ; (2) saving rent ; (3) comfort ; (4) safety . The importance degree
of the attributes is expressed by � = (0.5, 0.25, 0.125, 0.125)T. Therefore, the following decision matrix
M =

[
zgh

]
4×4

can be obtained in the form of NCNs shown in Table 1.
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Table 1. The decision matrix M =
[
CNgh

]
4×4

.

�1
(〈[0.2, 0.5], [0.3, 0.7],

[0.1, 0.2]〉, 〈0.9, 0.7, 0.2〉)
(〈[0.2, 0.4], [0.4, 0.5],

[0.2, 0.5]〉, 〈0.7 , 0.4, 0.5〉)
(〈[0.2, 0.7], [0.4, 0.9],

[0.5, 0.7]〉, 〈0.7 , 0.7, 0.5〉)
(〈[0.1, 0.6], [0.3, 0.4] ,

[0.5, 0.8]〉, 〈0.5 , 0.5, 0.7〉)

�2
(〈[0.3, 0.9], [0.2, 0.7] ,

[0.3, 0.5]〉, 〈0.5 , 0.7, 0.5〉)
(〈[0.3, 0.7], [0.6, 0.8] ,

[0.2, 0.4]〉 , 〈0.7 , 0.6, 0.8〉)
(〈[0.3, 0.9], [0.4, 0.6] ,

[0.6, 0.8]〉, 〈0.9 , 0.4, 0.6〉)
(〈[0.2, 0.5], [0.4, 0.9],

[0.5, 0.8]〉, 〈0.5 , 0.2, 0.7〉)

�3
(〈[0.3, 0.4], [0.4, 0.8] ,

[0.2, 0.6]〉, 〈0.1 , 0.4, 0.2〉)
(〈[0.2, 0.4], [0.2, 0.3],

[0.2, 0.5]〉, 〈0.2 , 0.2, 0.2〉)
(〈[0.4, 0.7], [0.1, 0.2],

[0.4, 0.5]〉, 〈0.9 , 0.5, 0.5〉)
(〈[0.6, 0.7], [0.3, 0.6],

[0.3, 0.7]〉 , 〈0.7, 0.5, 0.3〉)

�4
(〈[0.5, 0.9], [0.1, 0.8],

[0.2, 0.6]〉, 〈0.4 , 0.6, 0.2〉)
(〈[0.4, 0.6], [0.5, 0.7],

[0.1, 0.2]〉, 〈0.5 , 0.3, 0.2〉)
(〈[0.5, 0.6], [0.2, 0.4],

[0.3, 0.5]〉, 〈0.5, 0.4 , 0.5〉)
(〈[0.3, 0.7] , [0.7, 0.8],
[0.6, 0.7]〉, 〈0.4, 0.2, 0.8〉)

Then, we apply the WNCPMM operator or WNCPDMM operator to solve the MADM problem.
Now, we use the WNCPMM operator for this decision-making problem as follows:

Step 1. Since all the attributes are the same, hence there is no need for conversion.

Step 2. Use Equation (47), to calculate the support degrees Supp
(

zgh, zgl

)
(1, 2, . . . , 4; h, l = 1, 2, . . . , 4).

We denote Supp
(

zgh, zgl

)
by Suppgh,gl .

Supp11,12 = Supp12,11 = 0.79452, Supp11,13 = Supp13,11 = 0.735425, Supp11,14 = Supp14,11 = 0.65359,

Supp12,13 = Supp13,12 = 0.771478, Supp12,14 = Supp14,12 = 0.805635, Supp13,14 = Supp14,13 = 0.786563;

Supp21,22 = Supp22,21 = 0.7972, Supp21,23 = Supp23,21 = 0.7667, Supp21,24 = Supp24,21 = 0.727155,

Supp22,23 = Supp23,22 = 0.750556, Supp22,24 = Supp24,22 = 0.750556, Supp23,24 = Supp23,24 = 0.76906,

Supp31,32 = Supp32,31 = 0.8, Supp31,33 = Supp33,31 = 0.614139, Supp31,34 = Supp34,31 = 0.735425,

Supp32,33 = Supp33,32 = 0.690879, Supp32,34 = Supp34,32 = 0.711325, Supp33,34 = Supp33,34 = 0.797241,

Supp41,42 = Supp42,41 = 0.7551, Supp41,43 = Supp43,41 = 0.783975, Supp41,44 = Supp44,41 = 0.645662,

Supp42,43 = Supp43,42 = 0.783975, Supp42,44 = Supp44,42 = 0.675107, Supp43,44 = Supp44,43 = 0.7152.

Step 3. Use Equation (48), to get T
(

δgh

)
(g, h = 1 to 4). We denote T

(
δgh

)
by Tgh.

T11 = 2.183534, T12 = 2.371633, T13 = 2.293466, T14 = 2.245787;
T21 = 2.291063, T22 = 2.298354, T23 = 2.286283, T24 = 2.246771
T31 = 2.149564, T32 = 2.202204, T33 = 2.102259, T34 = 2.243991,
T41 = 2.184688, T42 = 2.214133, T43 = 2.28315, T44 = 2.035969.

Step 4. Use Equation (49), to obtain Ψgh(g, h = 1, 2, 3, 4).

Ψ11 = 1.957844, Ψ12 = 1.036761, Ψ13 = 0.506363, Ψ14 = 0.499032,
Ψ21 = 2.002623, Ψ22 = 1.00353, Ψ23 = 0.499929, Ψ24 = 0.493918,

Ψ31 = 1.987975, Ψ32 = 1.010601, Ψ33 = 0.489529, Ψ34 = 0.511894,

Step 5. Use the WNCPMM given in Equation (50),

zg =
(〈 [

TL
g , TU

g

]
,
[

IL
g , IU

g

]
,
[

FL
g , FU

g

]〉
,
〈
λT g , λI g, λF g

〉)
= WCNPMMQ(zg1, zg2, . . . , zg4

)
(g = 1, 2, . . . , 4).

To get the overall NCNs zg(g = 1, 2, . . . , 4). Assume that Q = (1, 1, 1, 1).

z1 = (〈[0.1399, 0.4650], [0.4421, 0.7027], [0.4691, 0.6847]〉, 〈0.5483 , 0.6368, 0.6029〉);
z2 = (〈[0.2238, 0.6021], [0.5236, 0.8162], [0.5122, 0.715]〉, 〈0.5617 , 0.5505, 0.7294〉);

z3 = 〈[0.3002, 0.4736], [0.3232, 0.5782], [0.3881, 0.6445]〉, 〈0.3255 , 0.4952, 0.415668〉;
z4 = 〈[0.3413, 0.5540], [0.5437, 0.7485], [0.4487, 0.5965]〉, 〈0.3762 , 0.4451, 0.5976〉.
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Step 6. Using Definition 6, we calculate the score values of the collective NCNs zg(g = 1, 2, . . . , a).

S̃C(z1) = 0.4022, S̃C(z2) = 0.393352, S̃C(z3) = 0.472717, S̃C(z4) = 0.4324.

Step 7. According to the score values, ranking order of the alternative is �3 > �4 > �1 > �2.

Hence using Theorem 1, the best alternative is �3 and the worst is �2.
Similarly, by using WNCPDMM operator for this decision-making problem, we will have, the

Steps 1 to 4 are similar to that of weighted neutrosophic cubic power Muirhead mean operator.

Step 5. Use the WNCPDMM given in Equation (51),

zg =
〈[

TL
g , TU

g

]
,
[

IL
g , IU

g

]
,
[

FL
g , FU

g

]〉
,
〈
λT g , λI g, λF g

〉
= WNCPDMMQ(zg1, zg2, . . . , zg4

)
(g = 1, 2, . . . , 4).

To get the overall NCNs zg(g = 1, 2, . . . , 4). Assume that, Q = (1, 1, 1, 1).

z1 = 〈[0.2569, 0.6239], [0.2929, 0.5112], [0.2375, 0.4571]〉, 〈0.7682 , 0.4666, 0.3905〉;
z2 = 〈[0.3642, 0.8179], [0.3110, 0.6479], [0.3194, 0.5430]〉, 〈0.7416 , 0.3336, 0.5561〉;
z3 = 〈[0.4935, 0.6438], [0.1794, 0.3224], [0.2248, 0.4812]〉, 〈0.6502 , 0.3206, 0.2330〉;
z4 = 〈[0.4995, 0.7691], [0.2570, 0.5332], [0.2130, 0.3815]〉, 〈0.5355 , 0.2744, 0.3248〉.

Step 6. Using Definition 6, we calculate the score values of the collective NCNs zg(g = 1, 2, . . . , a).

S̃C(z1) = 0.5881, S̃C(z2) = 0.5782, S̃C(z3) = 0.6688, S̃C(z4) = 0.6467.

Step 7. According to the score values, ranking order of the alternative is �3 > �4 > �1 > �2.

Hence using Theorem 1, the best alternatives is �3, while the worst is �2.
From the above obtained results, we can see that by using WNCPMM operator or WNCPDMM

operator, the best alternative obtained is �3, while the worst is �2.

Effect of the Parameter Q on the Decision Result

In this subsection, different values to the parameter vector and the results obtained from these
values are shown in Tables 2 and 3. From Tables 2 and 3, it can be seen that, when the value
of the parameter vector Q is (1, 0, 0, 0), that is, when the interrelationship among the attributes is
not considered, then according to the score values the best alternative is �4 while the worst is �2.
Similarly, when the value of the parameter vector Q is (1, 1, 0, 0), that is, when WCNPMM operator
and WNCPDMM operator degenerate into neutrosophic cubic power Bonferroni mean operator and
neutrosophic cubic power geometric Bonferroni mean operator respectively, the best alternative is �3

and �4 while the worst for both cases is �2. When the value of the parameter vector Q is (1, 1, 1, 0), the
best alternative is �3 and the worst is �2. When the value of the parameter vector Q is (1, 1, 1, 1), the
best alternative is �3 and the worst is �2. Similarly, for other values of the parameter vector the score
values and ranking order vary. Thus, one can select the value of the parameter vector according to the
needs of the situations.
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Table 2. Score values and ranking orders for different parameter values in WCNPMM operator.

Parameter Vector Q Score Values Ranking Orders

Q(1, 0, 0, 0)
S̃C(CN1) = 0.5671, S̃C(CN2) = 0.5230,
S̃C(CN3) = 0.5593, S̃C(CN4) = 0.6031.

�4 > �1 > �3 > �2.

Q(1, 1, 0, 0)
S̃C(CN1) = 0.4579, S̃C(CN2) = 0.4468,
S̃C(CN3) = 0.5092, S̃C(CN4) = 0.5027.

�3 > �4 > �1 > �2.

Q(1, 1, 1, 0)
S̃C(CN1) = 0.4227, S̃C(CN2) = 0.4133,
S̃C(CN3) = 0.4866, S̃C(CN4) = 0.4607.

�3 > �4 > �1 > �2.

Q(1, 1, 1, 1)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

�3 > �4 > �1 > �2.

Q(0.5, 0.5, 0.5, 0.5)
S̃C(CN1) = 0.3988, S̃C(CN2) = 0.3910,
S̃C(CN3) = 0.4708, S̃C(CN4) = 0.4306.

�3 > �4 > �1 > �2.

Q(5, 0, 0, 0)
S̃C(CN1) = 0.6608, S̃C(CN2) = 0.6235,
S̃C(CN3) = 0.6313, S̃C(CN4) = 0.6854.

�4 > �1 > �3 > �2.

Table 3. Score values and ranking orders for different parameter values in weighted neutrosophic
cubic power dual Muirhead mean operator.

Parameter Vector Q Score Values Ranking Orders

Q(1, 0, 0, 0)
S̃C(CN1) = 0.5588, S̃C(CN2) = 0.5346,
S̃C(CN3) = 0.6040, S̃C(CN4) = 0.6081.

�4 > �1 > �3 > �2.

Q(1, 1, 0, 0)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

�4 > �3 > �1 > �2.

Q(1, 1, 1, 0)
S̃C(CN1) = 0.5760, S̃C(CN2) = 0.5582,
S̃C(CN3) = 0.6478, S̃C(CN4) = 0.6276.

�3 > �4 > �1 > �2.

Q(1, 1, 1, 1)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

�3 > �4 > �1 > �2.

Q(0.5, 0.5, 0.5, 0.5)
S̃C(CN1) = 0.5909, S̃C(CN2) = 0.5817,
S̃C(CN3) = 0.6741, S̃C(CN4) = 0.6488.

�3 > �4 > �1 > �2.

Q(5, 0, 0, 0)
S̃C(CN1) = 0.4671, S̃C(CN2) = 0.4073,
S̃C(CN3) = 0.4022, S̃C(CN4) = 0.4559.

�1 > �4 > �2 > �3.

6. Comparison with Existing Methods

To show the efficiency and advantages of the proposed method, we give a comparative analysis.
We exploit some existing methods to solve the same example and examine the final results. We compare
our method in this paper with the methods developed by Qin et al. [30] based on weighted IFMSM
operator, and the one developed by Liu et al. [32]-based generalized INPWA operator. We extend the
IFMSM operator method [30] for intuitionistic fuzzy information to neutrosophic cubic Maclaurin
symmetric mean operator. We also extend the GINPWA operator [32] for interval neutrosophic
information to generalized neutrosophic cubic power average operator.

The method developed by Qin et al. [30], is based on MSM operator, which can consider the
interrelationship among the attribute values, but unable to remove the effect of awkward data.
The MSM operator is a special case of the proposed aggregation operator. Also, the ranking
result obtained using the method of Qin et al. [30], is different from the one obtained using the
proposed method.

Similarly, the method developed by Liu et al. [32], is based on power weighted averaging operator,
which can remove the effect of awkward data but cannot consider the interrelationship among the
attributes values. From Table 4, it can be seen that the ranking result obtained using Liu et al. [32] is
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the same as the ranking order obtained from the proposed method, when Q(1, 0, 0, 0). That is, when
the interrelationship between NCNs are not considered. This shows the validity of the proposed
approach. The ranking order is different when Q(1, 1, 1, 1). That is, when the interrelationship among
four attributes are considered, then the ranking order is different. The main reason behind the different
ranking results is due to the existing aggregation operators, can only consider a single characteristic
at a time while aggregating the NCNs, meaning that they can only either consider interrelationship
among attributes or remove the effect of awkward data. Our proposed aggregation operator, however,
can consider two characteristics at a time. It can consider the interrelationship among the attributes
and remove the effect of awkward data. In fact, these existing aggregation operators can be regarded
as special cases to our proposed aggregation operator. Hence, our proposed aggregation operator is
more practical and flexible to be used in decision-making problems.

Table 4. Score values and ranking orders for different parameter values in WCNPDMM operator.

Aggregation Operator Score Values Ranking Orders

NCMSM operator [30] S̃C(CN1) = 0.6263, S̃C(CN2) = 0.6153,
S̃C(CN3) = 0.6355, S̃C(CN4) = 0.6373.

�4 > �3 > �1 > �2.

GNCPWA operator [32] S̃C(CN1) = 0.5694, S̃C(CN2) = 0.5266,
S̃C(CN3) = 0.5646, S̃C(CN4) = 0.6054.

�4 > �1 > �3 > �2.

Proposed WNCPMM operator Q(1, 0, 0, 0)
S̃C(CN1) = 0.5671, S̃C(CN2) = 0.5230,
S̃C(CN3) = 0.5593, S̃C(CN4) = 0.6031.

�4 > �1 > �3 > �2.

Proposed WNCPDMM operator Q(1, 0, 0, 0)
S̃C(CN1) = 0.5588, S̃C(CN2) = 0.5346,
S̃C(CN3) = 0.6040, S̃C(CN4) = 0.6081.

�4 > �1 > �3 > �2.

Proposed WNCPMM operator Q(1, 1, 1, 1)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

�3 > �4 > �1 > �2.

Proposed WNCPDMM operator Q(1, 1, 1, 1)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

�3 > �4 > �1 > �2.

7. Conclusions

In this article, we incorporate both the PA operator and MM operator to form a few new
aggregation operators to aggregate CNNs, such as the cubic neutrosophic power Muirhead
mean (CNPMM) operator, WCNPMM operator, CNPDMM operator and WCNPDMM operator.
We discussed several basic results and properties, along with a few special cases of the proposed
aggregation operators. In other words, the developed aggregation operators do not only consider the
interrelationship among the NCNs, but also remove the influence of too high or too low arguments
in the final results. Based on these aggregation operators, a novel approach to MADM problem is
developed. Finally, a numerical example is illustrated to show the effectiveness and practicality of the
proposed approach.

Our main contribution is enhancing the neutrosophic cubic aggregation operator and its
MADM method under neutrosophic cubic environment. In future, we will incorporate the PA
operator with the MM operator under the intuitionistic fuzzy environment [3], interval neutrosophic
environment [6] and multi-valued neutrosophic environment [10], to develop new operators such as
IFPMM, IFPDMM, INPMM, INPDMM, multi-valued neutrosophic power Muirhead mean (NPMM)
and multi-valued neutrosophic power dual Muirhead mean (NPDMM) operators along with their
weighted forms. We will apply these to MAGDM, data mining, decision support, recommender system
and pattern recognition.
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Abbreviations

FS Fuzzy set
IFS Intuitionistic fuzzy set
INS Interval neutrosophic set
INN Interval neutrosophic number
MADM Multiple-attribute decision-making
MAGDM Multiple-attribute group decision-making
MM Muirhead Mean
NS Neutrosophic set
NC Neutrosophic cubic
NCN Neutrosophic cubic number
NCPMM Neutrosophic cubic power Muirhead mean operator
NCPDMM Neutrosophic cubic power dual Muirhead mean operator
PA Power average operator
PWV Power weight vector
SVNS Single-valued neutrosophic set
SVNN Single-valued neutrosophic number
WNCPMM Weighted neutrosophic cubic power Muirhead mean
WNCPDMM Weighted neutrosophic cubic power dual Muirhead mean operator
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Abstract: The power Bonferroni mean (PBM) operator is a hybrid structure and can take the
advantage of a power average (PA) operator, which can reduce the impact of inappropriate data given
by the prejudiced decision makers (DMs) and Bonferroni mean (BM) operator, which can take into
account the correlation between two attributes. In recent years, many researchers have extended the
PBM operator to handle fuzzy information. The Dombi operations of T-conorm (TCN) and T-norm
(TN), proposed by Dombi, have the supremacy of outstanding flexibility with general parameters.
However, in the existing literature, PBM and the Dombi operations have not been combined for
the above advantages for interval-neutrosophic sets (INSs). In this article, we first define some
operational laws for interval neutrosophic numbers (INNs) based on Dombi TN and TCN and
discuss several desirable properties of these operational rules. Secondly, we extend the PBM operator
based on Dombi operations to develop an interval-neutrosophic Dombi PBM (INDPBM) operator, an
interval-neutrosophic weighted Dombi PBM (INWDPBM) operator, an interval-neutrosophic Dombi
power geometric Bonferroni mean (INDPGBM) operator and an interval-neutrosophic weighted
Dombi power geometric Bonferroni mean (INWDPGBM) operator, and discuss several properties of
these aggregation operators. Then we develop a multi-attribute decision-making (MADM) method,
based on these proposed aggregation operators, to deal with interval neutrosophic (IN) information.
Lastly, an illustrative example is provided to show the usefulness and realism of the proposed MADM
method. The developed aggregation operators are very practical for solving MADM problems, as it
considers the interaction among two input arguments and removes the influence of awkward data
in the decision-making process at the same time. The other advantage of the proposed aggregation
operators is that they are flexible due to general parameter.

Keywords: interval neutrosophic sets; Bonferroni mean; power operator; multi-attribute decision
making (MADM)

1. Introduction

While dealing with any real world problems, a decision maker (DM) often feels discomfort when
expressing his\her evaluation information by utilizing a single real number in multi-attribute decision
making (MADM) or multi-attribute group decision making (MAGDM) problems due to the intellectual
fuzziness of DMs. For this cause, Zadeh [1] developed fuzzy sets (FSs), which are assigned by a
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Symmetry 2018, 10, 459

truth-membership degree (TMD) in [0, 1] and are a better tool to present fuzzy information for handling
MADM or MAGDM problems. After the introduction of FSs, different fuzzy modelling approaches
were developed to deal with uncertainty in various fields [2–4]. However, in some situations, it
is difficult to express truth-membership degree with an exact number. In order to overcome this
defect and to express TMD in a more appropriate way, Turksen [5] developed interval valued FSs
(IVFSs), in which TMD is represented by interval numbers instead of exact numbers. Since only TMD
was considered in FSs or IVFSs and the falsity-membership degree (FMD) came automatically by
subtracting TMD from one, it is hard to explain some complicated fuzzy information, for example, for
the selection of Dean of a faculty, if the results received from five professors are in favor, two are against
and three are neither in favor nor against. Then, this type of information cannot be expressed by FSs. So,
in order to handle such types of information, Atanassov [6] developed intuitionistic fuzzy sets (IFSs),
which were assigned by TMD and FMD. Atanassov et al. [7] further enlarged IFSs and developed
the interval valued IFS (IVIFSs). However, the shortcoming of FSs, IVFSs, IFSs and IVIFSs are that
they cannot deal with unreliable or indefinite information. To solve such problems, Smarandache [8,9]
developed neutrosophic sets (NSs). In neutrosophic set, every member of the domain set has TMD,
an indeterminacy-membership degree (IMD) and FMD, which capture values in ]0−, 1+[. Due to the
containment of subsets of ]0−, 1+[ in NS, it is hard to utilize NS in real world and engineering problems.
To make NSs helpful in these cases, some authors developed subclasses of NSs, such as single valued
neutrosophic sets (SVNSs) [10], interval neutrosophic sets (INSs) [11,12], simplified neutrosophic sets
(SNSs) [13,14] and so forth. In recent years, INSs have gained much attention from the researchers
and a great number of achievement have been made, such as distance measures [15–17], entropies of
INS [18–20], correlation coefficient [21–23]. The theory of NSs has been extensively utilized to handle
MADM and MAGDM problems.

For the last many years, information aggregation operators [24–27] have stimulated much
awareness of authors and have become very dominant research topic of MADM and MAGDM
problems. The conventional aggregation operators (AGOs) proposed by Xu, Xu and Yager [28,29] can
only aggregate a group of real numbers into a single real number. Now these conventional AGOs were
further extended by many authors, for example, Sun et al. [30] proposed the interval neutrosophic
number Choquet integral operator for MADM and Liu et al. [31] developed prioritized ordered
weighted AGOs for INSs and applied them to MADM. In addition, some decision-making methods
were also developed for MADM problems, for example, Mukhametzyanov et al. [32] developed a
statistically based model for sensitivity analysis in MADM problems. Petrovic et al. [33] developed
a model for the selection of aircrafts based on decision making trial and evaluation laboratory and
analytic hierarchy process (DEMATEL-AHP). Roy et al. [34] proposed a rough relational DEMATEL
model to analyze the key success factor of hospital quality. Sarkar et al. [35] developed an optimization
technique for national income determination model with stability analysis of differential equation in
discrete and continuous process under uncertain environment. These methods can only give a ranking
result, however, AGOs can not only give the ranking result, but also give the comprehensive value of
each alternative by aggregating its attribute values.

It is obvious that, different aggregation operators have distinct functions, a few of them can reduce
the impact of some awkward data produced by predispose DMs, such as power average (PA) operator
proposed by Yager [36]. The PA operator can aggregate the input data by designating the weight
vector based on the support degree among the input arguments, and can attain this function. Now the
PA operator was further extended by many researchers into different environments. Liu et al. [37]
proposed some generalized PA operator for INNs, and applied them to MADM. Consequently, some
aggregation operators can include the interrelationship between the aggregating parameters, such as
the Bonferroni mean (BM) operators developed by Bonferroni [38], the Heronian mean (HM) operator
introduced by Sykora [39], Muirhead Mean (MM) operator [40], Maclaurin symmetric mean [41]
operators. In addition, these aggregation operators have also been extended by many authors to deal
with fuzzy information [42–46].
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For aggregating INNs, some AGOs are developed by utilizing different T-norms (TNs) and
T-conorms (TCNs), such as algebraic, Einstein and Hamacher. Usually, the Archimedean TN and TCN
are the generalizations of various TNs and TCNs such as algebraic, Einstein, Hamacher, Frank, and
Dombi [47] TNs and TCNs. Dombi TN and TCN have the characteristics of general TN and TCN by a
general parameter, and this can make the aggregation process more flexible. Recently, several authors
defined some operational laws for IFSs [48], SVNSs [49], hesitant fuzzy sets (HFSs) [50,51] based on
Dombi TN and TCN. In practical decision making, we generally need to consider interrelationship
among attributes and eliminated the influence of awkward data. For this purpose, some researchers
combined BM and PA operators to propose some PBM operators and extended them to various
fields [52–55]. The PBM operators have two characteristics. Firstly, it can consider the interaction
among two input arguments by BM operator, and secondly, it can remove the effect of awkward data
by PA operator. The Dombi TN and TCN have a general parameter, which makes the decision-making
process more flexible. From the existing literatures, we know that PBM operators are combined with
algebraic operations to aggregate IFNs, or IVIFNs, and there is no research on combining PBM operator
with Dombi operations to aggregate INNs.

In a word, by considering the following advantages. (1) Since INSs are the more précised class by
which one can handle the vague information in a more accurate way when compared with FSs and all
other extensions like IVFSs, IFSs, IVIFSs and so forth, they are more suitable to describe the attributes
of MADM problems, so in this study, we will select the INSs as information expression; (2) Dombi TN
and TCN are more flexible in the decision making process due to general parameter which is regarded
as decision makers’ risk attitude; (3) The PBM operators have the properties of considering interaction
between two input arguments and vanishes the effect of awkward data at the same time. Hence, the
purpose and motivation are that we try to combine these three concepts to take the above defined
advantages and proposed some new powerful tools to aggregate INNs. (1) we define some Dombi
operational laws for INNs; (2) we propose some new PBM aggregation operators based on these new
operational laws; (3) we develop a novel MADM based on these developed aggregation operators.

The following sections of this article are shown as follows. In Section 2, we review some basic
concepts of INSs, PA operators, BM operators, and GBM operators. In Section 3, we review basic
concept of Dombi TN and TCN. After that, we propose some Dombi operations for INNs, and discuss
some properties. In Section 4, we define INDPBM operator, INWDPBM operator, INDPGBM operator
and INWDPGBM operator and discuss their properties. In Section 5, we propose a MADM method
based on the proposed aggregation operators with INNs. In Section 6, we use an illustrative example
to show the effectiveness of the proposed MADM method. The conclusion is discussed in Section 7.

2. Preliminaries

In this part, some basic definitions, properties about INSs, BM operators and PA operators
are discussed.

2.1. The INSs and Their Operational Laws

Definition 1. Let Ω be the domain set [8,9], with a non-specific member in Ω expressed by v. A NS NS in Ω is
expressed by

NS =
{〈

v, t
NS

(
v
)
, i

NS

(
v
)
, f

NS

(
v
)〉∣∣∣v ∈ Ω

}
, (1)

where, t
NS

(
v
)
, i

NS

(
v
)

and f
NS

(
v
)

respectively express the TMD, IMD and FMD of the element v ∈ Ũ to

the set NS. For each point v ∈ Ũ, we have, t
NS

(
v
)
, i

NS

(
v
)

f
NS

(
v
) ∈ ]0−, 1+[ and 0− ≤ t

NS

(
v
)
+ i

NS

(
v
)
+

f
NS

(
v
) ≤ 3+.

The NS was predominantly developed from philosophical perspective, and it is hard to be applied
to engineering problems due to the containment of subsets of ]0−, 1+[. So, in order to use it more easily
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in real life or engineering problem, Wang et al. [8] presented a subclass of NS by changing ]0−, 1+[ to
[0, 1] and was named SVNS, and is defined as follow:

Definition 2. Let Ω be the domain set [10], with a non-specific member in Ω expressed by v. A SVNS SV in Ω
is expressed by

SV =
{〈

u, t
SV

(
v
)
, i

SV

(
v
)
, f

SV

(
v
)〉∣∣∣v ∈ Ω

}
, (2)

where t
SV

(
v
)
, i

SV

(
v
)

and f
SV

(
v
)

express the TMD, IMD and FMD of the element v ∈ Ω to the set SV
respectively. For each point v ∈ Ω, we have, t

SV

(
v
)
, i

SV

(
v
)
, f

SV

(
v
)
, ∈ [0, 1] and 0 ≤ t

SV

(
v
)
+ i

SV

(
v
)
+

f
SV

(
v
) ≤ 3.

In order to define more complex information, Wang et al. [9] further developed INS which is
define as follows:

Definition 3. Let Ω be the domain set and v ∈ Ω [11]. Then an INS IN in Ω is expressed by

IN =
{〈

v, TRÎN
(
v
)
, IDÎN

(
v
)
, FLÎN

(
v
)〉∣∣∣v ∈ Ω

}
, (3)

where, TRÎN
(
v
)
, IDÎN

(
v
)

and FLÎN
(
v
)

respectively, express the TMD, IMD and FMD of the element
v ∈ Ω to the set IN. For each point v ∈ Ũ, we have, TRIN

(
v
)
, IDIN

(
v
)
, FLIN

(
v
) ⊆ [0, 1] and

0 ≤ maxIDIN
(
v
)
+ maxIDIN

(
v
)
+ maxFLIN

(
v
) ≤ 3.

For computational simplicity, we can use in =

〈[
TR

L
, TR

U
]

,
[

ID
L
, ID

U
]

,
[

FL
L
, FL

U
]〉

to

express an element in in an INS, and the element in is called an interval neutrosophic number (INN).

Where
[

TR
L
, TR

U
]
⊆ [0, 1],

[
ID

L
, ID

U
]
⊆ [0, 1],

[
FL

L
, FL

U
]
⊆ [0, 1] and 0 ≤ TR

U
+ ID

U
+ FL

U ≤ 3.

Definition 4. Let in1 =

〈[
TR

L
1 , TR

U
1

]
,
[

ID
L
1 , ID

U
1

]
,
[

FL
L
1 , FL

U
1

]〉
and in2 =〈[

TR
L
2 , TR

U
2

]
,
[

ID
L
2 , ID

U
2

]
,
[

FL
L
2 , FL

U
2

]〉
be any two INNs [12], and ζ > 0. Then the operational

laws of INNs can be defined as follows:

(1) in1 ⊕ in2 =

〈[
TR

L
1 + TR

L
2 − TR

L
1 TR

L
2 , TR

U
1 + TR

U
2 − TR

U
1 TR

U
2

]
,
[
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L
1 ID

L
2 , ID

U
1 ID

U
2

]
,
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L
1 FL

L
2 , FL

U
1 FL

U
2

]〉
; (4)

(2) in1 ⊗ in2 =

〈[
TR

L
1 TR

L
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U
1 TR

U
2

]
,
[

ID
L
1 + ID

L
2 − ID

L
1 ID

L
2 , ID

U
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U
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U
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U
2

]
,
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L
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L
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L
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L
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U
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U
1 FL

U
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; (5)

(3) in
ζ

1 =
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TR

L
1

)ζ

,
(
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U
1

)ζ
]

,
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1 − ID

L
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, 1 −
(
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U
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)ζ
]

,

[
1 −

(
1 − FL

L
1

)ζ

, 1 −
(

1 − FL
U
1

)ζ
]〉

; (6)

(4) ζin1 =

〈[
1 −

(
1 − TR

L
1

)ζ

, 1 −
(

1 − TR
U
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)ζ
]

,
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ID

L
1

)ζ

,
(

ID
U
1

)ζ
]

,
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FL

L
1
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,
(

FL
U
1

)ζ
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. (7)

Definition 5. Let in =

〈[
TR

L
, TR

U
]

,
[

ID
L
, ID

U
]

,
[

FL
L
, FL

U
]〉

[42], be an INN. Then the score function

S
(

in
)

and accuracy function A
(

in
)

can be defined as follows:

(i) S
(

in
)
=

TR
L
+ TR

U

2
+ 1 − ID

L
+ ID

U

2
+ 1 − FL

L
+ FL

U

2
; (8)
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(ii) A
(

in
)
=

TR
L
+ TR

U

2
+ 1 − ID

L
+ ID

U

2
+

FL
L
+ FL

U

2
. (9)

In order to compare two INNs, the comparison rules were defined by Liu et al. [36], which can be
stated as follows.

Definition 6. Let in1 =

〈[
TR

L
1 , TR

U
1

]
,
[

ID
L
1 , ID

U
1

]
,
[

FL
L
1 , FL

U
1

]〉
and in2 =〈[

TR
L
2 , TR

U
2

]
,
[

ID
L
2 , ID

U
2

]
,
[

FL
L
2 , FL

U
2

]〉
be any two INNs [42]. Then we have:

(1) If S
(
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)
> S

(
in2

)
, then in1 is better than in2, and denoted by in1 > in2;

(2) If S
(
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)
= S

(
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)
, and A

(
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)
> A

(
in2

)
, then in1 is better than in2, and denoted by in1 > in2;

(3) If S
(
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)
= S

(
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)
, and A

(
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)
= A

(
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)
, then in1 is equal to in2, and denoted by in1 = in2.

Definition 7. Let in1 =
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]
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U
1

]
,
[

FL
L
1 , FL
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]〉
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U
2

]
,
[
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L
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U
2

]
,
[
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L
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U
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]〉
be any two INNs [15]. Then the normalized Hamming

distance between n1 and n2 is described as follows.

D
(

in1, in2

)
=

1
6

(∣∣∣∣TR
L
1 − TR
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∣∣∣∣+ ∣∣∣∣TR
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2
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L
2
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U
1 − FL

U
2

∣∣∣∣) (10)

2.2. The PA Operator

The PA operator was first presented by Yager [36] and it is described as follows.

Definition 8. For positive real numbers ℘h(h = 1, 2, . . . , l) [36], the PA operator is described as

PA(℘1,℘2, . . . ,℘l) =

l
∑

h=1
(1 + T(℘h))℘h

l
∑

h=1
(1 + T(℘h))

, (11)

where, T(℘h) =
l

∑
y=1,h �=y

sup
(
℘h,℘y

)
, and sup

(
℘h,℘y

)
is the degree to which ℘h supports ℘y. The support

degree (SPD) satisfies the following properties.

(1) sup
(
℘h,℘y

)
= sup

(
℘y,℘h

)
;

(2) sup
(
℘h,℘y

) ∈ [0, 1];
(3) sup

(
℘h,℘y

) ≥ sup(℘c,℘d), if
∣∣℘h − ℘y

∣∣ ≤ |℘c − ℘d|.

2.3. The BM Operator

The BM operator was initially presented by Bonferroni [38], and it was explained as follows:

Definition 9. For non-negative real numbers ℘h(h = 1, 2, . . . , l), and x, y ≥ 0 [38], the BM operator is
described as

BMx,y(℘1,℘2, . . . ,℘l) =

(
1

l2 − l

l

∑
h=1

l

∑
s=1,h �=s

℘x
h℘

y
s

) 1
x+y

. (12)
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The BM operator ignores the importance degree of each input argument, which can be given by
decision makers according to their interest. To overcome this shortcoming of BM operator, He et al. [52]
defined the weighted Bonferroni mean (WBM) operators which can be explained as follows:

Definition 10. For positive real numbers ℘h(h = 1, 2, . . . , l) and x, y ≥ 0 [52], then the weighted BM operator
(WBM) is described as

WBMx,y(℘1,℘2, . . . ,℘l) =

(
1

l2 − l

l

∑
h=1

l

∑
s=1,h �=s

κ̃hκ̃s

1 − κ̃h
℘x

h℘
y
s

) 1
x+y

, (13)

where κ̃ = (κ̃1, κ̃2, . . . , κ̃l)
T is the importance degree of every ℘h(h = 1, 2, . . . , l).

The WBM operator has the following characteristics:

Theorem 1. (Reducibility) If the weight vector is κ̃ =
(

1
l , 1

l , . . . , 1
l

)T
, then

WBMx,y(℘1,℘2, . . . ,℘l) =

(
1

l2−l

l
∑

h=1

l
∑

s=1,z �=s
℘x

h℘
y
s

) 1
x+y

= BMx,y(℘1,℘2, . . . ,℘m).

(14)

Theorem 2. (Idempotency) Let ℘h = ℘, (h = 1, 2, . . . , l). Then BMx,y(℘1,℘2, . . . ,℘l) = ℘.

Theorem 3. (Permutation) Let (℘1,℘2, . . . ,℘l) be any permutation of
(
Z1

′, Z2
′, . . . , Zl

′). Then

WMBx,y(Z1
′, Z2

′, . . . , Zl
′) = WBM(℘1,℘2, . . . ,℘l). (15)

Theorem 4. (Monotonicity) Let ℘h ≥ Kh
′(h = 1, 2, . . . , l). Then

WBMx,y(℘1,℘2, . . . ,℘l) ≥ WBMx,y(K1
′, K2

′, . . . , Kl
′). (16)

Theorem 5. (Boundedness) The WBMx,y lies in the min and max operators, that is,

min(℘1,℘2, . . . ,℘l) ≤ WBMx,y(℘1,℘2, . . . ,℘l) ≤ max(℘1,℘2, . . . ,℘l). (17)

Similar to BM operator, the geometric BM operator also considers the correlation among the input
arguments. It can be explained as follows:

Definition 11. For positive real numbers ℘h(h = 1, 2, . . . , l) and x, y ≥ 0 [53], the geometric BM operator
(GBM) is described as

GBMx,y(℘1,℘2, . . . ,℘l) =
1

x + y

l

∏
h=1

l

∏
s=1,h �=s

(x℘h + y℘s)
1

l2−l . (18)

The GBM operator ignores the importance degree of each input argument, which can be given
by decision makers according to their interest. In a similar way to WBM, the weighted geometric
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BM (WGBM) operator was also presented. The extension process is same as that of WBM, so it is
omitted here.

The definition of power Bonferroni mean (PBM) and power geometric Bonferroni mean (PGBM)
operators are given in Appendix A.

3. Some Operations of INSs Based on Dombi TN and TCN

Dombi TN and TCN

Dombi operations consist of the Dombi sum and Dombi product.

Definition 12. Let # and ℵ be any two real numbers [47]. Then the Dombi TN and TCN among # and ℵ are
explained as follows:

TD(#,ℵ) = 1

1 +
{(

1−#
#
)l

+
(

1−ℵ
ℵ
)l
} 1

l
; (19)

TD
∗(#,ℵ) = 1 − 1

1 +
{(

#
1−#

)l
+
(

ℵ
1−ℵ

)l
} 1

l
, (20)

where, l ≥ 1, and (#,ℵ) ∈ [0, 1]× [0, 1].

According to the Dombi TN and TCN, we develop a few operational rules for INNs.

Definition 13. Let in =
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FL
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,
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,
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]〉
and in2 =

〈[
TR

L
2 , TR

U
2

]
,
[

ID
L
2 , ID

U
2

]
,
[

FL
L
2 , FL

U
2

]〉
be any three INNs and Φ > 0. Then, based on Dombi TN and TCN, the following operational laws are developed
for INNs.

(1) 
(21)

(2)

in1 ⊗ in2 =

〈⎡⎢⎢⎢⎣ 1

1+

((
1−TR

L
1

TR
L
1

)γ

+

(
1−TR

L
2

TR
L
2

)γ) 1
γ

, 1

1+

((
1−TR

U
1

TR
U
1

)γ

+

(
1−TR

U
2

TR
U
2

)γ) 1
γ

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣1 − 1

1+

((
ID

L
1

1−ID
L
1

)γ

+

(
ID

L
2

1−ID
L
2

)γ) 1
γ

,

1 − 1

1+

((
ID

U
1

1−ID
U
1

)γ

+

(
ID

U
2

1−ID
U
2

)γ) 1
γ

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣1 − 1

1+

((
FL

L
1

1−FL
L
1

)γ

+

(
FL

L
2

1−FL
L
2

)γ) 1
γ

, 1

1+

((
FL

U
1

1−FL
U
1

)γ

+

(
FL

U
2

1−FL
U
2

)γ) 1
γ

⎤⎥⎥⎥⎦
〉

;

(22)
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(3)

Φin =

〈⎡⎢⎢⎣1 − 1

1+
(

Φ
(

TR
L

1−TR
L

)γ) 1
γ

, 1 − 1

1+
(

Φ
(

TR
U

1−TR
U

)γ) 1
γ

⎤⎥⎥⎦,

⎡⎢⎢⎣ 1

1+
(

Φ
(

1−ID
L

ID
L

)γ) 1
γ

, 1

1+
(

Φ
(

1−ID
U

ID
U

)γ) 1
γ

⎤⎥⎥⎦⎡⎢⎢⎣ 1

1+
(

Φ
(

1−FL
L

FL
L

)γ) 1
γ

, 1

1+
(

Φ
(

1−FL
U

FL
U

)γ) 1
γ

⎤⎥⎥⎦
〉

;

(23)

(4)

in
Φ
=

〈⎡⎢⎢⎣ 1

1+
(

Φ
(

1−TR
L

TR
L

)γ) 1
γ

, 1

1+
(

Φ
(

1−TR
U

TR
U

)γ) 1
γ

⎤⎥⎥⎦,

⎡⎢⎢⎣1 − 1

1+
(

Φ
(

ID
L

1−ID
L

)γ) 1
γ

, 1 − 1

1+
(

Φ
(

ID
U

1−ID
U

)γ) 1
γ

⎤⎥⎥⎦⎡⎢⎢⎣1 − 1

1+
(

Φ
(

FL
L

1−FL
L

)γ) 1
γ

, 1 − 1

1+
(

Φ
(

FL
U

1−FL
U

)γ) 1
γ

⎤⎥⎥⎦
〉 (24)

Now, based on these new operational laws for INNs, we develop some aggregation operators to
aggregate IN information in the preceding sections.

4. The INPBM Operator Based on Dombi TN and Dombi TCN

In this part, based on the Dombi operational laws for INNs, we combine PA operator and BM
to introduce interval neutrosophic Dombi power Bonferroni mean (INDPBM), interval neutrosophic
weighted Dombi power Bonferroni mean, interval neutrosophic Dombi power geometric Bonferroni
mean (INDPGBM) and interval neutrosophic weighted Dombi power Bonferroni mean (INWDPGBM)
operators and discuss some related properties.

4.1. The INDPBM Operator and INWDPBM Operator

Definition 14. Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l), be a group of INNs,

and x, y ≥ 0. If

INDPBMx,y
(

in1, in2, . . . , inl

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1

l2 − l

⎛⎜⎜⎜⎜⎜⎜⎜⎝
l⊕

i, j = 1

i �= j

⎛⎜⎜⎝
⎛⎜⎜⎝ l

(
1 + T(ini)

)
l⊕

u=1

(
1 + T(inu)

) ini

⎞⎟⎟⎟⎟⎟⎟⎟⎠

x

⊗D

⎛⎜⎜⎝ l
(

1 + T(inj)
)

l⊕
u=1

(
1 + T(inu)

) inj

⎞⎟⎟⎠
y⎞⎟⎟⎠

⎞⎟⎟⎠
⎞⎟⎟⎠

1
x+y

. (25)

then INDPBMx,y is said to be IN Dombi power Bonferroni mean (INDPBM) operator, where T
(

inz

)
=

l⊕
s=1,s �=z

Sup
(

inz, ins

)
. Sup

(
inz, ins

)
is the support degree for inz from ins, which satisfies the following

axioms: (1) Sup
(

inz, ins

)
∈ [0, 1]; (2) Sup

(
inz, ins

)
= Sup

(
ins, inz

)
; (3) Sup

(
inz, ins

)
≥ Sup

(
ina, inb

)
,

if D
(

inz, ins

)
< D

(
ina, inb

)
, in which D

(
ina, inb

)
is the distance measure between INNs ina and inb defined

in Definition 7.

In order to simplify Equation (25), we can give

Λz =

(
1 + T

(
inz

))
l⊕

z=1

(
1 + T

(
inz

)) (26)
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and call Λ = (Λ1, Λ2, . . . , Λl)
T is the power weight vector (PWV), such that Λz ≥ 0,

l⊕
z=1

Λz = 1. It

turns Equation (25) into the following form

INDPBMx,y
(

in1, in2, . . . , inl

)
=

⎛⎜⎜⎜⎜⎜⎝
1

l2 − l
l⊕

i, j = 1
i �= j

(
lΛiini

)x ⊗D

(
lΛjinj

)y

⎞⎟⎟⎟⎟⎟⎠

1
x+y

. (27)

Theorem 6. Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l) be a group of INNs.

Then the value obtained by utilizing Equation (25) is expressed as

,
1 2, , ....,x y

eINDPBM in in in

1

2 2

, 1

1 1 1 1 , 1 1 1 1

1 1 1 1

e

L L U Ui j
i j i ji j

i j i jL L U
i j i

l l x y l l x y
x y x y

TR TR TR TRl l l l
TR TR TR

1

, 1

2

,

1 1 1 1 1
1 1

l

i j
i j

U
j

L L
i j

i jL L
i j

TR

l l x y
x y

ID IDl l
ID ID

1 1

2

, 1 , 1

,1 1 1 1 1
1 1

l l

U Ui j i j
i ji j i j

i jU U
i j

l l x y
x y

ID IDl l
ID ID

,

1

2 2

, 1

1 1 1 1 1 ,1 1 1 1 1
1 1 1 1

l

L L Ui j
i j ii j

i j i iL L U
i j i

l l x y l l x y
x y x y

FL FL FLl l l l
FL FL FL

1

, 1

.
l

Ui j
ji j

U
j

FL

FL

(28)

Proof. Proof of Theorem 6 is given in Appendix B. �

In order to determine the PWV Λ, we firstly need to determine the support degree among INNs.
In general, the similarity measure among INNs can replace the support degree among INNs. That is,

Sup
(

ini, inm

)
= 1 − D

(
ini, inm

)
(i, m = 1, 2, . . . , l). (29)

Example 1. Let in1 = 〈[0.3, 0.7], [0.2, 0.4], [0.3, 0.5]〉, in2 = 〈[0.4, 0.6], [0.1, 0.3], [0.2, 0.4]〉 and in3 =

〈[0.1, 0.3], [0.4, 0.6], [0.2, 0.4]〉 be any three INNs, x = 1, y = 1, γ = 3. Then by Theorem 6
in Equation (28), we can aggregate these three INNs and generate the comprehensive value in =〈[

TR
L
, TR

U
]

,
[

ID
L
, ID

U
]

,
[

FL
L
, FL

U
]〉

which is calculated as follows:
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Step 1. Determine the supports Sup
(

ini, inj

)
, i, j = 1, 2, 3 by using Equation (29), and then

we get Sup
(

in1, in2

)
= Sup

(
in2, in1

)
= 0.9, Sup

(
in1, in3

)
= Sup

(
in3, in1

)
=

0.933, Sup
(

in2, in3

)
= Sup

(
in3, in2

)
= 1.

Step 2. Determine the PWV Because T
(

inz

)
=

3
∑

s=1,s �=z
Sup

(
inz, ins

)
, and

1 1 2 1 3 2 2 1 2 3 3 3 1 3 2, , 1.833, , , 1.9, , , 1.933,T in Sup in in Sup in in T in Sup in in Sup in in T in Sup in in Sup in in

then

Λ1 =

(
T
(

in1

)
+ 1

)
(

T
(

in1

)
+ 1

)
+
(

T
(

in2

)
+ 1

)
+
(

T
(

in3

)
+ 1

) = 0.3269,

Λ2 =

(
T
(

in2

)
+ 1

)
(

T
(

in1

)
+ 1

)
+
(

T
(

in2

)
+ 1

)
+
(

T
(

in3

)
+ 1

) = 0.3346,

Λ3 =

(
T
(

in3

)
+ 1

)
(

T
(

in1

)
+ 1

)
+
(

T
(

in2

)
+ 1

)
+
(

T
(

in3

)
+ 1

) = 0.3385.

Step 3. Determine the comprehensive value in =

〈[
TR

L
, TR

U
]

,
[

ID
L
, ID

U
]

,
[

FL
L
, FL

U
]〉

by using

Equation (28), we have

1/

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎜⎜⎝
32 − 3
1 + 1

× 1/

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3

∑
i, j = 1
i �= j

1/

⎛⎜⎜⎜⎜⎝ 1

3Λi

(
TR

L
i

1−TR
L
i

)γ +
1

3Λj

(
TR

L
j

1−TR
L
j

)γ

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
3
⎞⎟⎟⎟⎟⎟⎟⎟⎠

= 0.2590

Similarly, we can get n = 〈[0.2590, 0.5525], [0.2221, 0.4373], [0.2334, 0.4365]〉.

Theorem 7. (Idempotency) Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

][
FL

L
i , FL

L
i

]〉
, (i =

1, 2, . . . , l), be a group of INNs, if all ini(i = 1, 2, . . . , l) are equal, that is ini = in =〈[
TR

L
, TR

U
]

,
[

ID
L
, ID

U
]

,
[

FL
L
, FL

U
]〉

, (i = 1, 2, . . . , l),. Then

INDPBMx,y
(

in1, in2, . . . , inl

)
= in. (30)

279



Symmetry 2018, 10, 459

Proof. Proof of Theorem 7 is given in Appendix C. �

Theorem 8. (Commutativity) Assume that in′u is any permutation of inu(u = 1, 2, . . . , l), then

INDPBMx,y
(

in′
1, in′2, . . . , in′

l

)
= INDPBMx,y

(
in1, in2, . . . , inl

)
. (31)

Proof. From Definition 14, we have

INDPBMx,y
(

in′
1, in′2, . . . , in′e

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
1

l2 − l

l

∑
i, j = 1
i �= j

(
lΛ′

iin′
i

)x ⊗D

(
lΛ′

jin′
j

)y

⎞⎟⎟⎟⎟⎟⎟⎠

1
x+y

,

and

INDPBMx,y
(

in1, in2, . . . , inl

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
1

l2 − l

l

∑
i, j = 1
i �= j

(
lΛiini

)x ⊗D

(
lΛjinj

)y

⎞⎟⎟⎟⎟⎟⎟⎠

1
x+y

.

Because,

l

∑
i, j = 1
i �= j

(
lΛ′

iin′
i

)x ⊗D

(
lΛ′

jin′
j

)y
=

l

∑
i, j = 1
i �= j

(
lΛiini

)x ⊗D

(
lΛjinj

)y
,

Hence, INDPBMx,y
(

in′
1, in′2, . . . , in′

l

)
= INDPBMx,y

(
in1, in2, . . . , inl

)
. �

Theorem 9. (Boundedness) Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l)

be a group of INNs, and in
+

=

〈
l

max
i=1

[
TR

L
i , TR

U
i

]
,

l
min
i=1

[
ID

L
i , ID

U
i

]
,

l
min
i=1

[
FL

L
i , FL

U
i

]〉
, in

−
=〈

l
min
i=1

[
TR

L
i , TR

U
i

]
,

l
max
i=1

[
ID

L
i , ID

U
i

]
,

l
max
i=1

[
FL

L
i , FL

U
i

]〉
,. Then

in
− ≤ INDPBM

(
in1, in2, . . . , inl

)
≤ in

+
. (32)

Proof. Proof of Theorem 9 is given in Appendix D. �

Now, we shall study a few special cases of the INDPBMx,y with respect to x and y. (1) When
y → 0, γ > 0, then we can get
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(33)

(2) When x = 1, y → 0, γ > 0, then we can get

 

(34)

(3) When x = y = 1, γ > 0, then we can get
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(35)

In the INDPBM operator, we can only take the correlation among the input arguments and cannot
consider the importance degree of input arguments. In what follows, the INWPDBM operator shall be
proposed to overcome the shortcoming of the INDPBM operator.

Definition 15. Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l), be a group of INNs,

then the INWDPBM operator is defined as

(36)

where, T
(

ini

)
=

l
∑

j=1,i �=j
Sup

(
ini, inj

)
, x, y > 0, w = (w1, w2, . . . , wl)

T is the importance degree of the INNs,

such that 0 ≤ wz ≤ 1(z = 1, 2, . . . , l) and
l

∑
k=1

wk = 1.

Theorem 10. Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l) be a group of INNs.

Then the value obtained using Definition 15, is represented by
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(37)

Proof. Proof of Theorem 10 is similar to Theorem 6. �

Similar to the INDPBM operator, the INWDPBM operator has the properties of boundedness,
idempotency and commutativity.

4.2. The INDPGBM Operator and INWDPGBM Operator

In this subpart, we develop INDPGBM and INWDPGBM operators.

Definition 16. Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l) be a group of INNs.

Then the INDPGBM operator is defined as

INDPGBMx,y
(

in1, in2, . . . , inl

)
=

1
x + y

⎛⎜⎜⎜⎜⎜⎜⎝
l

∏
i, j = 1
i �= j

⎛⎜⎜⎜⎝xin

l(T(ini)+1)
l
∑

z=1
(T(inz)+1)

i + yin

l(T(ini)+1)
l
∑

z=1
(T(inz)+1)

j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

1
l2−l

. (38)

Then, INDPGBMx,y is said to be an interval neutrosophic Dombi power geometric Bonferroni mean

(INDPGBM) operator. Where T
(

inz

)
=

l
∑

s=1,s �=z
Sup

(
inz, ins

)
, Sup

(
inz, ins

)
is the support degree for nz

from ns, which satisfies the following axioms: (1) Sup
(

inz, ins

)
∈ [0, 1]; (2) Sup

(
inz, ins

)
= Sup

(
ins, inz

)
;

(3) Sup
(

inz, ins

)
≥ Sup

(
ina, inb

)
, if D

(
inz, ins

)
< D

(
ina, inb

)
, in which D(na, nb) is the distance

measure between INNs ina and inb defined in Definition 7.

In order to simplify Equation (38), we can describe

Λz =

(
1 + T

(
inz

))
l

∑
z=1

(
1 + T

(
inz

)) , (39)

and call Λ = (Λ1, Λ2, . . . , Λl)
T is the power weight vector (PWV), such that Λz ≥ 0,

l
∑

z=1
Λz = 1.

Then Equation (38) can be written as follows:

283



Symmetry 2018, 10, 459

INDPGBMx,y
(

in1, in2, . . . , inl

)
=

1
x + y

⎛⎜⎜⎜⎜⎜⎜⎝
l

∏
i, j = 1
i �= j

(
xin

lΛi
i + yin

lΛj
j

)
⎞⎟⎟⎟⎟⎟⎟⎠

1
l2−l

. (40)

Theorem 11. Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l) be a group of INNs.

Then the result obtained from Equation (38) is expressed as

 

(41) 

Theorem 12. (Idempotency) Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i =

1, 2, . . . , l) be a group of INNs, if all ini(i = 1, 2, . . . , l) are equal, that is ini = in =〈[
TR

L
, TR

U
]

,
[

ID
L
, ID

U
]

,
[

FL
L
, FL

U
]〉

, (i = 1, 2, . . . , l), then

INDPGBMx,y
(

in1, in2, . . . , inl

)
= in. (42)

Theorem 13. (Commutativity) Assume that in′u is any permutation of inu(u = 1, 2, . . . , l), then

INDPGBMx,y
(

in′
1, in′2, . . . , in′

l

)
= INDPGBMx,y

(
in1, in2, . . . , inl

)
. (43)
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Theorem 14. (Boundedness) Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l)

be a group of INNs, and in
+

=

〈
l

max
i=1

[
TR

L
i , TR

U
i

]
,

l
min
i=1

[
ID

L
i , ID

U
i

]
,

l
min
i=1

[
FL

L
i , FL

U
i

]〉
, in

−
=〈

l
min
i=1

[
TR

L
i , TR

U
i

]
,

l
max
i=1

[
ID

L
i , ID

U
i

]
,

l
max
i=1

[
FL

L
i , FL

U
i

]〉
, then

in
− ≤ INDPGBM

(
in1, in2, . . . , inl

)
≤ in

+
. (44)

Definition 17. Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l) be a group of INNs,

then the INWDPGBM operator is defined as

INWDPGBMx,y
(

in1, in2, . . . , inl

)
=

1
x + y

⎛⎜⎜⎜⎜⎜⎜⎝
l

∏
i, j = 1
i �= j

⎛⎜⎜⎜⎜⎝xin

lwi(T(ini)+1)
l
∑

z=1
wz(T(inz)+1)

i + yin

lwj(T(ini)+1)

l
∑

z=1
wz(T(inz)+1)

j

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1
l2−l

. (45)

Theorem 15. Let ini =

〈[
TR

L
i , TR

U
i

]
,
[

ID
L
i , ID

U
i

]
,
[

FL
L
i , FL

L
i

]〉
, (i = 1, 2, . . . , l) be a group of INNs.

Then the aggregated result from Equation (45) is expressed as

 

(46)

5. MADM Approach Based on the Developed Aggregation Operator

In this section, based upon the developed INWDPBM and INWDPGBM operators, we will
propose a novel MADM method, which is defined as follows.

Assume that in a MADM problem, we need to evaluate u alternatives M̃ =
{

M̃1, M̃2, . . . , M̃u

}
with respect to v attributes C̃ =

{
C̃1, C̃2, . . . , C̃v

}
, and the importance degree of the attributes
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is represented by � = (�1, �2, . . . , �v)
T , satisfying the condition �h ∈ [0, 1],

v
∑

h=1
�h = 1.

The decision matrix for this decision problem is denoted by D̃ =
[
d̃gh

]
m×n

, where d̃gh =〈[
TR

L
gh, TR

U
gh

]
,
[

ID
L
gh, ID

U
gh

]
,
[

FL
L
ghFL

U
gh

]〉
is an INN for the alternative M̃g with respect to the

attribute C̃h, (g = 1, 2, . . . , u; h = 1, 2, . . . , v). Then the main purpose is to rank the alternative and
select the best alternative.

In the following, we will use the proposed INWDPBM and INWDPGBM operators to solve this
MADM problem, and the detailed decision steps are shown as follows:

Step 1. Standardize the attribute values. Normally, in real problems, the attributes are of two types,
(1) cost type, (2) benefit type. To get right result, it is necessary to change cost type of attribute
values to benefit type using the following formula:

d̃gh =

〈[
FL

L
gh, FL

U
gh

]
,
[

1 − ID
U
gh, 1 − ID

L
gh

]
,
[

TR
L
gh, TR

U
gh

]〉
. (47)

Step 2. Calculate the supports

Supp
(

d̃gh, d̃gl

)
= 1 − D

(
d̃gh, d̃gl

)
, (g = 1, 2, . . . , u; h, l = 1, 2, . . . , v), (48)

where, D
(

d̃gh, d̃gl

)
is the distance measure defined in Equation (10).

Step 3. Calculate T
(

d̃gh

)
T
(

d̃gh

)
=

u

∑
l = 1
l �= h

Supp
(

d̃gh, d̃gl

)
, (g = 1, 2, . . . , u; h, l = 1, 2, . . . , v). (49)

Step 4. Aggregate all the attribute values d̃gh (h = 1, 2, . . . , v) to the comprehensive value Rg by
using INWDPBM or INWDPGBM operators shown as follows.

Rg = INWDPBM
(

d̃g1, d̃g2, . . . , d̃gv

)
; (50)

or
Rg = INWDPGBM

(
d̃g1, d̃g2, . . . , d̃gv

)
. (51)

Step 5. Determine the score values, accuracy values of Rg(g = 1, 2, . . . , u), using Definition 5.
Step 6. Rank all the alternatives according to their score and accuracy values, and select the best

alternative using Definition 6.
Step 7. End.

This decision steps are also described in Figure 1.
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Figure 1. Flow chart for developed approach.

6. Illustrative Example

In this part, an example adapted from [42] is used to illustrate the application and effectiveness of
the developed method in MADM problem.

An investment company wants to invest a sum of money in the best option. The company
must invest a sum of money in the following four possible companies (alternatives): (1) car company
M̃1; (2) food company M̃2; (3) Computer company M̃3; (4) An arm company M̃4, and the attributes
under consideration are (1) risk analysis C̃1; (2) growth analysis C̃2; (3) environmental impact analysis
C̃3. The importance degree of the attributes is � = (0.35, 0.4, 0.25)T . The four possible alternatives
M̃g(g = 1, 2, 3, 4) are evaluated with respect to the above attributes C̃h(h = 1, 2, 3) by the form of INN,
and the IN decision matrix D̃ is listed in Table 1. The purpose of this decision-making problem is to
rank the alternatives.

Table 1. The IN decision matrix D.

Alternatives/Attributes C̃1 C̃2 C̃3

M̃1 〈[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]〉 〈[0.4, 0.6], [0.1, 0.3], [0.2, 0.4]〉 〈[0.7, 0.9], [0.7, 0.8], [0.4, 0.5]〉
M̃2 〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.2]〉 〈[0.6, 0.7], [0.15, 0.25], [0.2, 0.3]〉 〈[0.3, 0.6], [0.2, 0.3], [0.8, 0.9]〉
M̃3 〈[0.3, 0.6], [0.2, 0.3], [0.3, 0.4]〉 〈[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]〉 〈[0.4, 0.5], [0.2, 0.4], [0.7, 0.9]〉
M̃4 〈[0.7, 0.8], [0.01, 0.1], [0.2, 0.3]〉 〈[0.6, 0.7], [0.1, 0.2], [0.3, 0.4]〉 〈[0.4, 0.6], [0.5, 0.6], [0.8, 0.9]〉

.6.1. The Decision-Making Steps

Step 1. Since C̃1, C̃2 are of benefit type, and C̃3 is of cost type. So, C̃3 will be changed into benefit

type using Equation (47). So, the normalize decision matrix D is given in Table 2.
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Table 2. The Normalize IN decision matrix D.

Alternatives/Attributes C̃1 C̃2 C̃3

M̃1 〈[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]〉 〈[0.4, 0.6], [0.1, 0.3], [0.2, 0.4]〉 〈[0.4, 0.5], [0.2, 0.3], [0.7, 0.9]〉
M̃2 〈[0.6, 0.8], [0.1, 0.2], [0.1, 0.2]〉 〈[0.6, 0.7], [0.15, 0.25], [0.2, 0.3]〉 〈[0.8, 0.9], [0.6, 0.7], [0.3, 0.6]〉
M̃3 〈[0.3, 0.6], [0.2, 0.3], [0.3, 0.4]〉 〈[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]〉 〈[0.7, 0.9], [0.6, 0.8], [0.4, 0.5]〉
M̃4 〈[0.7, 0.8], [0.01, 0.1], [0.2, 0.3]〉 〈[0.6, 0.7], [0.1, 0.2], [0.3, 0.4]〉 〈[0.8, 0.9], [0.4, 0.5], [0.4, 0.6]〉

Step 2. Determine the supports Supp
(

d̃gh, d̃gl

)
, (g = 1, 2, 3, 4; h, l = 1, 2, 3) by Equation (48) (for

simplicity we denote Supp
(

d̃gh, d̃gl

)
with Sg

gh,gl), we have

Step 3. Determine T
(

d̃gh

)
; (g = 1, 2, 3, 4; h = 1, 2, 3) by Equation (49), and we get

T1
11 = 1.800, T1

12 = 1.750, T1
13 = 1.650, T2

11 = 1.617, T2
12 = 1.650, T2

13 = 1.400,
T3

11 = 1.667, T3
12 = 1.700, T3

13 = 1.433, T4
11 = 1.653, T4

12 = 1.685, T4
13 = 1.535.

Step 4. (a) Determine the comprehensive value of every alternative using the INWDPBM
operator, that is, Equation (50) (Assume that x = y = 1; γ = 3), we have

R1 = 〈[0.3974, 0.5195], [0.1823, 0.3023], [0.3353, 0.4796]〉;

R2 = 〈[0.6457, 0.7954], [0.1700, 0.2885], [0.2044, 0.3265]〉;
R3 = 〈[0.4846, 0.6503], [0.2556, 0.3711], [0.3376, 0.4394]〉;
R4 = 〈[0.6938, 0.7953], [0.1062, 0.2154], [0.3069, 0.4278]〉.

(b) Determine the comprehensive value of every alternative using the INWDPGBM
operator, that is Equation (51), (Assume that x = y = 1; γ = 3), we have

R1 = 〈[0.4026, 0.5381], [0.1570, 0.2977], [0.2998, 0.4520]〉;

R2 = 〈[0.6654, 0.8193], [0.1558, 0.2686], [0.1836, 0.3035]〉;
R3 = 〈[0.5159, 0.6732], [0.2366, 0.3473], [0.3265, 0.4279]〉;
R4 = 〈[0.5159, 0.8193], [0.0938, 0.1952], [0.2862, 0.4037]〉.

Step 5. (a) Determine the score values of Rg(g = 1, 2, 3, 4) by Definition 5, we have

S(R1) = 1.8087, S(R2) = 2.2259, S(R3) = 1.8656, S(R4) = 2.2164;

(b) Determine the score values of Rg(g = 1, 2, 3, 4) by Definition 5, we have

S(R1) = 1.8671, S(R2) = 2.2866, S(R3) = 1.9254, S(R4) = 2.1781;

Step 6. (a) According to their score and accuracy values, by using Definition 6, the ranking order
is M̃2 > M̃4 > M̃3 > M̃1. So the best alternative is M̃2, while the worst alternative
is M̃1.

288



Symmetry 2018, 10, 459

(b) According to their score and accuracy values, by using Definition 6, the ranking order
is M̃2 > M̃4 > M̃3 > M̃1. So the best alternative is M̃2, while the worst alternative
is M̃1.

So, by using INWDPBM or INWDPGBM operators, the best alternative is M̃2, while the worst
alternative is M̃1.

6.2. Effect of Parameters γ, x and y on Ranking Result of this Example

In order to show the effect of the parameters x and y on the ranking result of this example, we set
different parameter values for x and y, and γ = 3 is fixed, to show the ranking results of this example.
The ranking results are given in Table 3.

As we know from Tables 3 and 4, the score values and ranking order are different for different
values of the parameters x and y, when we use INWDPBM operator and INWDPGBM operator.
We can see from Tables 3 and 4, when the parameter values x = 1 or 0 and y = 0 or 1, the best choice is
M̃4 and the worst one is M̃1. In simple words, when the interrelationship among attributes are not
considered, the best choice is M̃4 and the worst one is M̃1. On the other hand, when different values
for the parameters x and y are utilized, for INWPBM and INWDPGBM operators, the ranking result is
changed. That is, from Table 4, we can see that when the parameter values x = 1, y = 1, the ranking
results are changed as the one obtained for x = 1 or 0 and y = 0 or 1. In this case the best alternative is
M̃2 while the worst alternative remains the same.

Table 3. Ranking orders of decision result using different values for x and y for INWDPBM.

Parameter Values INWDPBM Operator Ranking Orders

x = 1, y = 0, γ = 3 S(R1) = 1.9319, S(R2) = 2.4172,
S(R3) = 2.0936, S(R4) = 2.4222; M̃4 > M̃2 > M̃3 > M̃1.

x = 1, y = 5, γ = 3 S(R1) = 1.8338, S(R2) = 2.2684,
S(R3) = 1.9049, S(R4) = 2.2666; M̃2 > M̃4 > M̃3 > M̃1.

x = 3, y = 7, γ = 3 S(R1) = 1.8169, S(R2) = 2.2398,
S(R3) = 1.8777, S(R4) = 2.2327; M̃2 > M̃4 > M̃3 > M̃1.

x = 5, y = 10, γ = 3 S(R1) = 1.8143, S(R2) = 2.2354,
S(R3) = 1.8738, S(R4) = 2.2275; M̃4 > M̃2 > M̃3 > M̃1.

x = 1, y = 10, γ = 3 S(R1) = 1.8501, S(R2) = 2.2966,
S(R3) = 1.9355, S(R4) = 2.3012; M̃4 > M̃2 > M̃3 > M̃1.

x = 10, y = 4, γ = 3 S(R1) = 1.8182, S(R2) = 2.2419,
S(R3) = 1.8796, S(R4) = 2.2352; M̃4 > M̃2 > M̃3 > M̃1.

x = 3, y = 12, γ = 3 S(R1) = 1.8285, S(R2) = 2.2592,
S(R3) = 1.8958, S(R4) = 2.2557; M̃2 > M̃4 > M̃3 > M̃1.

Table 4. Ranking orders of decision result using different values for x and y for INWDPGBM.

Parameter Values INWDPGBM Operator Ranking Orders

x = 1, y = 0, γ = 3 S(R1) = 1.5032, S(R2) = 1.7934,
S(R3) = 1.5136, S(R4) = 1.8037; M̃4 > M̃2 > M̃3 > M̃1.

x = 1, y = 5, γ = 3 S(R1) = 1.8220, S(R2) = 2.2256,
S(R3) = 1.8717, S(R4) = 2.1140; M̃2 > M̃4 > M̃3 > M̃1.

x = 3, y = 7, γ = 3 S(R1) = 1.8539, S(R2) = 2.2686,
S(R3) = 1.9094, S(R4) = 2.1584; M̃2 > M̃4 > M̃3 > M̃1.

x = 5, y = 10, γ = 3 S(R1) = 1.8583, S(R2) = 2.2745,
S(R3) = 1.9146, S(R4) = 2.1647; M̃2 > M̃4 > M̃3 > M̃1.

x = 1, y = 10, γ = 3 S(R1) = 1.7814, S(R2) = 2.1710,
S(R3) = 1.8248, S(R4) = 2.0632; M̃2 > M̃4 > M̃3 > M̃1.

x = 10, y = 4, γ = 3 S(R1) = 1.8087, S(R2) = 2.2259,
S(R3) = 1.8656, S(R4) = 2.2164; M̃2 > M̃4 > M̃3 > M̃1.

x = 3, y = 12, γ = 3 S(R1) = 1.8671, S(R2) = 2.2866,
S(R3) = 1.9254, S(R4) = 2.1781; M̃4 > M̃2 > M̃3 > M̃1.
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From Tables 3 and 4, we can observe that when the values of the parameter increase, the score
values obtained using INWDPBM decrease. While using the INWDPGBM operator, the score values
increase but the best choice is M2 for x = y ≥ 1.

From Table 5, we can see that different ranking orders are obtained for different values of γ. When
γ = 0.5 and γ = 2, the best choice is M4 by the INWPBM operator; when we use the INWPGBM
operator, it is M2. Similarly, for other values of γ > 2, the best choice is M2 while the worst is M1.

Table 5. Ranking orders of decision result using different values for γ.

Parameter Values INWDPBM Operator INWDPGBM Operator Ranking Orders

x = 1, y = 1, γ = 0.5 S(R1) = 1.6662, S(R2) = 2.1025,
S(R3) = 1.7606, S(R4) = 2.1972;

S(R1) = 1.7870, S(R2) = 2.2347,
S(R3) = 1.9103, S(R4) = 2.1812;

M̃4 > M̃2 > M̃3 > M̃1.
M̃2 > M̃4 > M̃3 > M̃1.

x = 1, y = 1, γ = 2 S(R1) = 1.7783, S(R2) = 2.2015,
S(R3) = 1.8408, S(R4) = 2.2091;

S(R1) = 1.8491, S(R2) = 2.2786,
S(R3) = 1.9213, S(R4) = 2.1799;

M̃4 > M̃2 > M̃3 > M̃1.
M̃2 > M̃4 > M̃3 > M̃1.

x = 1, y = 1, γ = 4 S(R1) = 1.8229, S(R2) = 2.2363,
S(R3) = 1.8803, S(R4) = 2.2219;

S(R1) = 1.8740, S(R2) = 2.2856,
S(R3) = 1.9275, S(R4) = 2.1751;

M̃2 > M̃4 > M̃3 > M̃1.
M̃2 > M̃4 > M̃3 > M̃1.

x = 1, y = 1, γ = 7 S(R1) = 1.8375, S(R2) = 2.2455,
S(R3) = 1.9037, S(R4) = 2.2315;

S(R1) = 1.8747, S(R2) = 2.2763,
S(R3) = 1.9331, S(R4) = 2.1669;

M̃2 > M̃4 > M̃3 > M̃1.
M̃2 > M̃4 > M̃3 > M̃1.

x = 1, y = 1, γ = 10 S(R1) = 1.8418, S(R2) = 2.2477,
S(R3) = 1.9160, S(R4) = 2.2365;

S(R1) = 1.8701, S(R2) = 2.2698,
S(R3) = 1.9373, S(R4) = 2.1622;

M̃2 > M̃4 > M̃3 > M̃1.
M̃2 > M̃4 > M̃3 > M̃1.

x = 1, y = 1, γ = 15 S(R1) = 1.8447, S(R2) = 2.2488,
S(R3) = 1.9270, S(R4) = 2.2409;

S(R1) = 1.8642, S(R2) = 2.2637,
S(R3) = 1.9414, S(R4) = 2.1582;

M̃2 > M̃4 > M̃3 > M̃1.
M̃2 > M̃4 > M̃3 > M̃1.

x = 1, y = 1, γ = 20 S(R1) = 1.8460, S(R2) = 2.2492,
S(R3) = 1.9328, S(R4) = 2.2432;

S(R1) = 1.8608, S(R2) = 2.2604,
S(R3) = 1.9435, S(R4) = 2.1562;

M̃2 > M̃4 > M̃3 > M̃1.
M̃2 > M̃4 > M̃3 > M̃1.

6.3. Comparing with the Other Methods

To illustrate the advantages and effectiveness of the developed method in this article, we solve
the above example by four existing MADM methods, including IN weighted averaging operator, IN
weighted geometric operator [12], the similarity measure defined by Ye [15], Muirhead mean operators
developed by Liu et al. [42], IN power aggregation operator developed by Liu et al. [37].

From Table 6, we can see that the ranking orders are the same as the ones produced by the existing
aggregation operators when the parameter values x = 1, y = 0, γ = 3, but the ranking orders are
different when the interrelationship among attributes are considered. That is why the developed
method based on the proposed aggregation operators is more flexible due the parameter and practical
as it can consider the interrelationship among input arguments.

Table 6. Ranking order of the alternatives using different aggregation operators.

Aggregation Operator Parameter Score Values Ranking Order

INWA operator [12] No S(R1) = 1.8430, S(R2) = 2.2497,
S(R3) = 1.9151, S(R4) = 2.2788; M̃4 > M̃2 > M̃3 > M̃1.

INWGA operator [12] No S(R1) = 1.7286, S(R2) = 2.0991,
S(R3) = 1.7751, S(R4) = 2.1608; M̃4 > M̃2 > M̃3 > M̃1.

Similarity measure
Hamming distance [15] No D1(R∗, R1) = 0.7948, D1(R∗, R2) = 0.9581,

D1(R∗, R3) = 0.8805, D1(R∗, R4) = 0.9725; M̃4 > M̃2 > M̃3 > M̃1.

Generalized power
Aggregation operator [37]

Yes
λ = 1

S(R1) = 1.8460, S(R2) = 2.2543,
S(R3) = 1.9163, S(R4) = 2.2799; M̃4 > M̃2 > M̃3 > M̃1.

INWMM operator [42] Yes
P(1, 1, 1)

S(R1) = 1.8054, S(R2) = 2.2321,
S(R3) = 1.9172, S(R4) = 2.2773; M̃4 > M̃2 > M̃3 > M̃1.

INWDMM operator [42] Yes
P(1, 1, 1)

S(R1) = 1.6260, S(R2) = 1.9202,
S(R3) = 1.7061, S(R4) = 2.0798; M̃4 > M̃2 > M̃3 > M̃1.

Proposed INWDPBM
x = 1, y = 0, γ = 3 Yes S(R1) = 1.9319, S(R2) = 2.4172,

S(R3) = 2.0936, S(R4) = 2.4222; M̃4 > M̃2 > M̃3 > M̃1.

Proposed INWDPGBM
x = 1, y = 0, γ = 3 Yes S(R1) = 1.5032, S(R2) = 1.7934,

S(R3) = 1.5136, S(R4) = 1.8037; M̃4 > M̃2 > M̃3 > M̃1.

INWDPBM operator in this
article

Yes
x = y = 1, γ = 3

S(R1) = 1.8087, S(R2) = 2.2259,
S(R3) = 1.8656, S(R4) = 2.2164; M̃2 > M̃4 > M̃3 > M̃1.

INWDPBM operator in this
article

Yes
x = y = 1, γ = 3

S(R1) = 1.8671, S(R2) = 2.2866,
S(R3) = 1.9254, S(R4) = 2.1781; M̃2 > M̃4 > M̃3 > M̃1.

290



Symmetry 2018, 10, 459

From the above comparative analysis, we can know the proposed method has the following
advantages, that is, it can consider the interrelationship among the input arguments and can relieve
the effect of the awkward data by PWV at the same time, and it can permit more precise ranking order
than the existing methods. The proposed method can take the advantages of PA operator and BM
operator concurrently, these factors makes it a little complex in calculations.

The score values and ranking orders by these methods are shown in Table 6.

7. Conclusions

The PBM operator can take the advantage of PA operator, which can eliminate the impact of
awkward data given by the predisposed DMs, and BM operator, which can consider the correlation
between two attributes. The Dombi operations of TN and TCN proposed by Dombi have the edge
of good flexibility with general parameter. In this article, we combined PBM with Dombi operation
and proposed some aggregation operators to aggregate INNs. Firstly, we defined some operational
laws for INSs based on Dombi TN and TCN and discussed some properties of these operations.
Secondly, we extended PBM operator based on Dombi operations to introduce INDPBM operator,
INWDPBM operator, INDPGBM operator, INWDPGBM operator and discussed some properties of
these aggregation operators. The developed aggregation operators have the edge that they can take
the correlation among the attributes by BM operator, and can also remove the effect of awkward data
by PA operator at the same and due to general parameter, so they are more flexible in the aggregation
process. Further, we developed a novel MADM method based on developed aggregation operators
to deal with interval neutrosophic information. Finally, an illustrative example is used to show the
effectiveness and practicality of the proposed MADM method and comparison were made with the
existing methods. The proposed aggregation operators are very useful to solve MADM problems.

In future research, we shall define some distinct aggregation operators for SVHFSs, INHFSs,
double valued neutrosophic sets and so on based on Dombi operations and apply them to MAGDM
and MADM.
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Appendix A. Basic Concept of PBM Operator

Definition A1. For positive real numbers ℘h(h = 1, 2, . . . , l) and x, y > 0 the aggregation mapping [54]

PBMx,y(℘1,℘2, . . . ,℘l) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1

l2 − l

l

∑
i = 1, j = 1

i �= j

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝ l(T(℘i) + 1)

l
∑

o=1
(T(℘o) + 1)

℘i

⎞⎟⎟⎟⎠
x

×

⎛⎜⎜⎜⎝ l(T(℘i) + 1)
l

∑
o=1

(T(℘o) + 1)
℘j

⎞⎟⎟⎟⎠
y⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
x+y

(A1)

is said to be power Bonferroni mean (PBM) mean operator.
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Definition A2. For positive real numbers ℘h(h = 1, 2, . . . , l) and x, y > 0 the aggregation mapping [54]

PBMx,y(℘1,℘2, . . . ,℘l) =
1

x + y

⎛⎜⎜⎜⎜⎜⎜⎝
l

∏
i = 1, j = 1

i �= j

⎛⎜⎜⎜⎝x℘

l(T(℘i)+1)
l
∑

o=1
(T(℘o)+1)

i + y℘

l(T(℘j)+1)

l
∑

o=1
(T(℘o)+1)

j

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

1
l2−l

(A2)

is said to be power geometric Bonferroni mean (PGBM) mean operator.

In Definitions A1 and A2, T(℘i) =
l

∑
j=1,j �=i

supp(℘i,℘j), and supp(℘i,℘j) is the SPD for ℘i from ℘j

satisfying the axioms as;

(1) sup(℘i,℘j) = 1 − D(℘i,℘j), so sup(℘i,℘j) ∈ [0, 1];

(2) sup(℘i,℘j) = sup(℘j,℘i);

(3) sup
(
℘i,℘j

) ≥ sup(℘c,℘d), if
∣∣℘i − ℘y

∣∣ ≤ |℘c − ℘d|.
where D(℘i,℘j) is the distance measure among ℘i and ℘j.

Appendix B. Proof of Theorem 6

Proof. Since

and

Let
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then, we have

 

 

and

 

Moreover, we have

and
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So, we can have

 

 

294



Symmetry 2018, 10, 459

 

Then,

 

 

(A3)

Now, put

ai =
TR

L
i

1−TR
L
i

, bi =
TR

U
i

1−TR
U
i

, ci =
1−ID

L
i

ID
L
i

, di =
1−ID

U
i

ID
U
i

, gi =
1−FL

L
i

FL
L
i

, hi =
1−FL

U
i

FL
U
i

, aj =
TR

L
j

1−TR
L
j

, bj =
TR

U
j

1−TR
U
j

,

cj =
1−ID

L
j

ID
L
j

, dj =
1−ID

U
j

ID
U
j

, gj =
1−FL

L
j

FL
L
j

, hj =
1−FL

U
j

FL
U
j

.

in Equation (A3), we can get
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This is the required proof of the Theorem 6. �

Appendix C. Proof of Theorem 7

Proof. Since all ini = in =

〈[
TR

L
, TR

U
]

,
[

ID
L
, ID

U
]

,
[

FL
L
, FL

U
]〉

, (i = 1, 2, . . . , l), so we have

Supp
(

inp, inq

)
= 1, for all p, q = 1, 2, . . . , l, so Λp = 1

l , for all p = 1, 2, . . . , l. Then
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Appendix D. Proof of Theorem 9

Proof. Since
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then, there are

for all i = 1, 2, . . . , l. We have
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Then there are the following scores

 

Therefore according to the Definition 6, we have

in
− ≤ INDPBM

(
in1, in2, . . . , inl

)
.

In a similar way, the other part can be proved. That is in
− ≤ INDPBM

(
in1, in2, . . . , inm

)
≤

in
+

. Hence
in

− ≤ INDPBM
(

in1, in2, . . . , inm

)
≤ in

+
.

�
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Abstract: In this article, we extend the original TODIM (Portuguese acronym for Interactive
Multi-Criteria Decision Making) method to the 2-tuple linguistic neutrosophic fuzzy environment to
propose the 2TLNNs TODIM method. In the extended method, we use 2-tuple linguistic neutrosophic
numbers (2TLNNs) to present the criteria values in multiple attribute group decision making
(MAGDM) problems. Firstly, we briefly introduce the definition, operational laws, some aggregation
operators and the distance calculating method of 2TLNNs. Then, the calculation steps of the original
TODIM model are presented in simplified form. Thereafter, we extend the original TODIM model to
the 2TLNNs environment to build the 2TLNNs TODIM model, our proposed method, which is more
reasonable and scientific in considering the subjectivity of DM’s behaviors and the dominance of
each alternative over others. Finally, a numerical example for the safety assessment of a construction
project is proposed to illustrate the new method, and some comparisons are also conducted to further
illustrate the advantages of the new method.

Keywords: multiple attribute group decision making (MAGDM); 2-tuple linguistic neutrosophic sets
(2TLNSs); TODIM model; 2TLNNs TODIM method; construction project

1. Introduction

The Interactive Multi-Criteria Decision Making (TODIM) model, first defined by Gomes and
Lima [1], is a useful tool to investigate multiple attribute group decision making (MAGDM) problems
and has been widely used in industrial, commercial economy, and management science areas. Some
traditional MAGDM models have been investigated in the previous literature, such as: the ELimination
Et Choix Traduisant la Realité (ELECTRE) model [2]; the Preference Ranking Organization Method
for Enrichment of Evaluations (PROMETHEE) model [3]; the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) model [4,5]; the grey relational analysis (GRA) model [6–8];
the multi-objective optimization by ratio analysis plus the full multiplicative form (MULTIMOORA)
model [9,10]; and, the VIseKriterijumska Optimizacija I KOmpromisno Resenje (VIKOR) model [11–13].
Compared with these existing methods, the TODIM model, which is based on prospect theory (PT), [14]
has the advantages of considering the subjectivity of decision maker’s (DM’s) behaviors and providing
the dominance of each alternative over others with particular operation formulas, and can be more
reasonable and scientific in the application of MAGDM problems.

In practical decision problems, it is difficult to present the criteria values with real values for
the complexity and fuzziness of the alternatives, and so it can be more useful and effective to
express the criteria values with fuzzy numbers. Fuzzy set theory, which was initially introduced
by Zadeh, [15] has been proved as a feasible means in the application of MAGDM [16,17].
Smarandache [18,19] provided the neutrosophic set (NS). Then, Wang et al. [20,21] investigated

Symmetry 2018, 10, 486; doi:10.3390/sym10100486 www.mdpi.com/journal/symmetry302
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theories about single-valued neutrosophic sets (SVNSs) and provided the definition of interval
neutrosophic sets (INSs). Ye [22] studied multiple attribute decision making (MADM) problems under
the hesitant linguistic neutrosophic (HLN) environment. Wang et al. [23] studied the dual generalized
Bonferroni mean (DGBM) aggregation operators under the SVNNs environment. Liu and You [24]
proposed some linguistic neutrosophic Hamy mean (LNHM) aggregation operators. Wu et al. [25]
gave the definition of SVN 2-tuple linguistic sets (SVN2TLSs) and proposed some new Hamacher
aggregation operators. Ju et al. [26] extended the SVN2TLSs to the interval-valued environment and
presented some single-valued neutrosophic interval 2-tuple linguistic Maclaurin symmetric mean
(SVN-ITLMSM) operators. Wu et al. [27] studied SVNNs with Hamy operators under the 2-tuple
linguistic variable environment. Wang et al. [28] provided the definition of the 2-tuple linguistic
neutrosophic number (2TLNN) in which the degree of truth-membership, indeterminacy-membership
and falsity-membership are depicted by 2TLNNs. Thereafter, the SVNS theory has been widely used
to study MAGDM problems.

Gomes and Lima [1] used the TODIM model to investigate MADM problems taking the DM’s
confidence level into account to obtain more rational selection under risk. Wei et al. [29] extended the
TODIM method to the hesitant fuzzy environment. Ren et al. [30] studied the TODIM model under the
Pythagorean fuzzy environment. Fan et al. [31] established an extended TODIM model to solve MADM
problems. Wang and Liu [32] developed an extended TODIM model based on intuitionistic linguistic
information. Krohling et al. [33] extended the original TODIM method to the intuitionistic fuzzy
numbers environment to propose the IF-TODIM method, and Lourenzutti and Krohling [34] built an
intuitionistic fuzzy TODIM model based on the random environment. Wang et al. [35] combined the
TODIM method with multi-hesitant fuzzy linguistic information to propose a likelihood-based TODIM
method. Liu and Teng [36] provided an extension of the TODIM method under the 2-dimension
uncertain linguistic variable. Sang and Liu [37] extended the TODIM method to interval type-2 fuzzy
environments. Pramanik et al. [38] provide the NC-TODIM method under the neutrosophic cubic sets.
Xu et al. [39] considered both the traditional TODIM model and SVNSs to build the SVN TODIM and
IN TODIM models. Hu et al. [40] proposed a three-way decision TODIM model. Huang & Wei [41]
proposed the TODIM method for Pythagorean 2-tuple linguistic multiple attribute decision making.
However, there has been no study about the TIDOM model for MAGDM problems with 2TLNNs and
there is a need to take the 2TLNNs TIDOM model into account. The goal of our article is to combine
the original TIDOM model with 2TLNNs to study MAGDM problems. The structure of our paper is
as follows. Section 2 introduces the concepts, operation formulas, distance calculating method, some
aggregation operators of 2TLNNs and the calculation steps of the original TODIM model. Section 3
extends the original TIDOM model to the 2TLNNs environment and introduces the calculation steps of
the 2TLNNs TIDOM method. Section 4 provides a numerical example and introduces the comparison
between our proposed methods and the existing method. Section 5 provides some conclusions from
our article.

2. Preliminaries

2.1. 2-Tuple Linguistic Neutrosophic Sets

Based on the concepts of 2-tuple linguistic fuzzy set (2TLS) and the fundamental theories of the
single valued neutrosophic set (SVNS), the 2-tuple linguistic neutrosophic sets (2TLNSs) first defined
by Wang et al. [28] can be depicted as follows.

Definition 1 ([28]). Let η1, η2, . . . , ηk be a linguistic term set. Any label ηi shows a possible linguistic
variable, and η = {η0 = extremely poor, η1 = very poor, η2 = poor, η3 = medium, η4 = good, η5 =

very good, η6 = extremely good.}, the 2TLNSs η can be depicted as:

η =
{
(sα, φ),

(
sβ, ϕ

)
, (sχ, γ)

}
(1)
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where sα, sβ, sχ ∈ η, φ, ϕ, γ ∈ [−0, 5, 0.5) , (sα, φ),
(
sβ, ϕ

)
and (sχ, γ) represent the degree of the truth

membership, the indeterminacy membership and the falsity membership which are expressed by 2TLNNs
and satisfies the condition Δ−1(sα, φ), Δ−1(sβ, ϕ

)
and Δ−1(sχ, γ) ∈ [0, k], 0 ≤ Δ−1(sα, φ) + Δ−1(sβ, ϕ

)
+

Δ−1(sχ, γ) ≤ 3k.

Definition 2 ([28]). Assume there are three 2TLNNs η1 =
{
(sα1 , φ1),

(
sβ1 , ϕ1

)
, (sχ1 , γ1)

}
, η2 ={

(sα2 , φ2),
(
sβ2 , ϕ2

)
, (sχ2 , γ2)

}
and η =

{
(sα, φ),

(
sβ, ϕ

)
, (sχ, γ)

}
, the operation laws of them can be defined:

η1 ⊕ η2 =

⎧⎪⎪⎨⎪⎪⎩
Δ
(

k
(

Δ−1(sα1 ,φ1)
k +

Δ−1(sα2 ,φ2)
k − Δ−1(sα1 ,φ1)

k · Δ−1(sα2 ,φ2)
k

))
,

Δ
(

k
(

Δ−1(sβ1
,ϕ1)

k · Δ−1(sβ2
,ϕ2)

k

))
, Δ
(

k
(

Δ−1(sχ1 ,γ1)
k · Δ−1(sγ2 ,γ2)

k

))
⎫⎪⎪⎬⎪⎪⎭;

η1 ⊗ η2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Δ
(

k
(

Δ−1(sα1 ,φ1)
k ·Δ−1(sα2 ,φ2)

k

)
) ,

Δ
(

k
(

Δ−1(sβ1
,ϕ1)

k +
Δ−1(sβ2

,ϕ2)
k − Δ−1(sβ1

,ϕ1)
k ·Δ−1(sβ2

,ϕ2)
k

)
),

Δ
(

k
(

Δ−1(sχ1 ,γ1)
k +

Δ−1(sχ2 ,γ2)
k − Δ−1(sχ1 ,γ1)

k ·Δ−1(sχ2 ,γ2)
k

)
)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
;

λη =

⎧⎨⎩Δ

(
k

(
1 −

(
1 − Δ−1(sα, φ)

k

)λ
))

, Δ

⎛⎝k

(
Δ−1(sβ, ϕ

)
k

)λ
⎞⎠, Δ

⎛⎝k

(
Δ−1(sχ, γ)

k

)λ
⎞⎠⎫⎬⎭, λ > 0;

ηλ =

⎧⎪⎨⎪⎩Δ

⎛⎝k

(
Δ−1(sα, φ)

k

)λ
⎞⎠, Δ

⎛⎜⎝k

⎛⎜⎝1 −
⎛⎝1 −

Δ−1
(

sβ, ϕ
)

k

⎞⎠λ
⎞⎟⎠
⎞⎟⎠, Δ

⎛⎝k

⎛⎝1 −
(

1 − Δ−1(sχ, γ)

k

)λ
⎞⎠⎞⎠

⎫⎪⎬⎪⎭, λ > 0.

According to Definition 2, it is clear that the operation laws have the following properties:

η1 ⊕ η2 = η2 ⊕ η1, η1 ⊗ η2 = η2 ⊗ η1,
(
(η1)

λ1
)λ2

= (η1)
λ1λ2 ; (2)

λ(η1 ⊕ η2) = λη1 ⊕ λη2, (η1 ⊗ η2)
λ = (η1)

λ ⊗ (η2)
λ; (3)

λ1η1 ⊕ λ2η1 = (λ1 + λ2)η1, (η1)
λ1 ⊗ (η1)

λ2 = (η1)
(λ1+λ2). (4)

Definition 3 ([28]). Let η =
{
(sα, φ),

(
sβ, ϕ

)
, (sχ, γ)

}
be a 2TLNN, the score and accuracy functions of η

can be expressed:

s(η) =

(
2k + Δ−1(sα, φ)− Δ−1(sβ, ϕ

)− Δ−1(sχ, γ)
)

3k
, s(η) ∈ [0, 1] (5)

h(η) = Δ−1(sα, φ)− Δ−1(sχ, γ), h(η) ∈ [−k, k] (6)

For two 2TLNNs η1 and η2, based on Definition 3, then

(1) i f s(η1) ≺ s(η2), then η1 ≺ η2;
(2) i f s(η1) � s(η2), then η1 � η2;
(3) i f s(η1) = s(η2), h(η1) ≺ h(η2), then η1 ≺ η2;
(4) i f s(η1) = s(η2), h(η1) � h(η2), then η1 � η2;
(5) i f s(η1) = s(η2), h(η1) = h(η2), then η1 = η2.
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2.2. The Normalized Hamming Distance

Definition 4. Let η1 =
{
(sα1 , φ1),

(
sβ1 , ϕ1

)
, (sχ1 , γ1)

}
and η2 =

{
(sα2 , φ2),

(
sβ2 , ϕ2

)
, (sχ2 , γ2)

}
be two

2TLNNs, then we can get the normalized Hamming distance:

d(η1, η2) =
1
3k

( ∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2)
∣∣+ ∣∣Δ−1(sβ1 , ϕ1

)− Δ−1(sβ2 , ϕ2
)∣∣

+
∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2)

∣∣
)

(7)

Theorem 1. Assume there are three 2TLNNs η1 =
{
(sα1 , φ1),

(
sβ1 , ϕ1

)
, (sχ1 , γ1)

}
, η2 ={

(sα2 , φ2),
(
sβ2 , ϕ2

)
, (sχ2 , γ2)

}
and η3 =

{
(sα3 , φ3),

(
sβ3 , ϕ3

)
, (sχ3 , γ3)

}
, the Hamming distance d has the

following properties:

(P1) 0 ≤ d(η1, η2) ≤ 1; (P2) i f d(η1, η2) = 0, then η1 = η2;
(P3) d(η1, η2) = d(η2, η1); (P4) d(η1, η2) + d(η2, η3) ≥ d(η1, η3).

Proof. (P1) 0 ≤ d(η1, η2) ≤ 1
Since Δ−1(sα1 , φ1), Δ−1(sα2 , φ2) ∈ [0, k], then 0 ≤ ∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2)

∣∣ ≤ k, similarly
we can get 0 ≤ ∣∣Δ−1(sβ1 , ϕ1

)− Δ−1(sβ2 , ϕ2
)∣∣ ≤ k, 0 ≤ ∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2)

∣∣ ≤ k, then
0 ≤ ∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2)

∣∣+ ∣∣Δ−1(sβ1 , ϕ1
)− Δ−1(sβ2 , ϕ2

)∣∣+ ∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2)
∣∣ ≤ 3k,

So 0 ≤
(∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2)

∣∣+ ∣∣∣Δ−1
(

sβ1 , ϕ1

)
− Δ−1

(
sβ2 , ϕ2

)∣∣∣+ ∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2)
∣∣) ≤

3k.
Therefore 0 ≤ d(η1, η2) ≤ 1, the proof is completed.
(P2) i f d(η1, η2) = 0, then η1 = η2

d(η1, η2) =
1
3k
(∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2)

∣∣+ ∣∣Δ−1(sβ1 , ϕ1
)− Δ−1(sβ2 , ϕ2

)∣∣+ ∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2)
∣∣) = 0

⇒ (∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2)
∣∣ = 0,

∣∣Δ−1(sβ1 , ϕ1
)− Δ−1(sβ2 , ϕ2

)∣∣ = 0,
∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2)

∣∣ = 0
)

⇒ (
Δ−1(sα1 , φ1) = Δ−1(sα2 , φ2), Δ−1(sβ1 , ϕ1

)
= Δ−1(sβ2 , ϕ2

)
, Δ−1(sχ1 , γ1) = Δ−1(sχ2 , γ2)

)
That means η1 = η2, so (P2) i f d(η1, η2) = 0, then η1 = η2 is right.
(P3) d(η1, η2) = d(η2, η1)

d(η1, η2) =
1
3k
(∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2)

∣∣+ ∣∣Δ−1(sβ1 , ϕ1
)− Δ−1(sβ2 , ϕ2

)∣∣+ ∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2)
∣∣)

= 1
3k
(∣∣Δ−1(sα2 , φ2)− Δ−1(sα1 , φ1)

∣∣+ ∣∣Δ−1(sβ2 , ϕ2
)− Δ−1(sβ1 , ϕ1

)∣∣+ ∣∣Δ−1(sχ2 , γ2)− Δ−1(sχ1 , γ1)
∣∣) = d(η2, η1)

So we complete the proof. (P3) d(η1, η2) = d(η2, η1) holds.
(P4) d(η1, η2) + d(η2, η3) ≥ d(η1, η3)

d(η1, η2) =
1
3k

( ∣∣Δ−1(sα1 , φ1)− Δ−1(sα3 , φ3)
∣∣+ ∣∣Δ−1(sβ1 , ϕ1

)− Δ−1(sβ3 , ϕ3
)∣∣

+
∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ3 , γ3)

∣∣
)

= 1
3k

⎛⎜⎝
∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2) + Δ−1(sα2 , φ2)− Δ−1(sα3 , φ3)

∣∣
+
∣∣Δ−1(sβ1 , ϕ1

)− Δ−1(sβ2 , ϕ2
)
+ Δ−1(sβ2 , ϕ2

)− Δ−1(sβ3 , ϕ3
)∣∣

+
∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2) + Δ−1(sχ2 , γ2)− Δ−1(sχ3 , γ3)

∣∣
⎞⎟⎠

≤ 1
3k

⎛⎜⎝
∣∣Δ−1(sα1 , φ1)− Δ−1(sα2 , φ2)

∣∣+ ∣∣Δ−1(sα2 , φ2)− Δ−1(sα3 , φ3)
∣∣

+
∣∣Δ−1(sβ1 , ϕ1

)− Δ−1(sβ2 , ϕ2
)∣∣+ ∣∣Δ−1(sβ2 , ϕ2

)− Δ−1(sβ3 , ϕ3
)∣∣

+
∣∣Δ−1(sχ1 , γ1)− Δ−1(sχ2 , γ2)

∣∣+ ∣∣Δ−1(sχ2 , γ2)− Δ−1(sχ3 , γ3)
∣∣

⎞⎟⎠
= d(η1, η2) + d(η2, η3)

�
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2.3. The Aggregation Operators of 2TLNNs

Definition 5 ([28]). Let ηj =
{(

sαj , φj

)
,
(

sβ j , ϕj

)
,
(

sχj , γj

)}
(j = 1, 2, . . . , n) be a group of 2TLNNs, then

the 2TLNNWA and 2TLNNWG operators proposed by Wang et al. [25] are defined as follows.

2TLNNWA(η1, η2, . . . , ηn) = ω1η1 ⊕ ω2η2 . . . ⊕ ωnηn =
n⊕

j=1
ωjηj (8)

and
2TLNNWG(η1, η2, . . . , ηn) = (η1)

ω1 ⊗ (η2)
ω2 . . . ⊗ (ηn)

ωn =
n⊗

j=1

(
ηj
)ωj (9)

where ωj is weighting vector of ηj, j = 1, 2, . . . , n. which satisfies 0 ≤ ωj ≤ 1, ∑n
j=1 ωj = 1.

Theorem 2 ([28]). Let ηj =
{(

sαj , φj

)
,
(

sβ j , ϕj

)
,
(

sχj , γj

)}
(j = 1, 2, . . . , n) be a group of 2TLNNs, then

the operation results by 2TLNNWA and 2TLNNWG operators are also a 2TLNN where

2TLNNWA(η1, η2, . . . , ηn) =
n⊕

j=1
ωjηj

=

〈 Δ

(
k

(
1 − n

∏
j=1

(
1 − Δ−1

(
sαj ,φj

)
k

)wj
))

, Δ

(
k

n
∏
j=1

(
Δ−1

(
sβj

,ϕj

)
k

)wj
)

,

Δ

(
k

n
∏
j=1

(
Δ−1

(
sχj ,γj

)
k

)wj
)

.

〉 (10)

and
2TLNNWG(η1, η2, . . . , ηn) =

n⊗
j=1

(
ηj
)ωj

=

〈 Δ

(
k

n
∏
j=1

(
Δ−1

(
sαj ,φj

)
k

)wj
)

, Δ

(
k

(
1 − n

∏
j=1

(
1 − Δ−1

(
sβj

,ϕj

)
k

)wj
))

,

Δ

(
k

(
1 − n

∏
j=1

(
1 − Δ−1

(
sχj ,γj

)
k

)wj
))

.

〉 (11)

2.4. The Original TODIM Method

The TODIM method, which is based on prospect theory (PT), considers the subjectivity of DM’s
behaviors and can provide the dominance of each alternative over others with particular operation
formulas, and is more reasonable and scientific in the application of MAGDM problems.

Assume that {η1, η2, . . . ηm} be a group of alternatives, {c1, c2, . . . cn} be a list of criteria with
weighting vector be {w1, w2, . . . wn}, thereby satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Construct a
decision matrix η =

[
dij
]

m×n where dij means the estimate results of the alternative ηi(i = 1, 2, . . . , m)

based on the criterion cj(j = 1, 2, . . . , n). Suppose that wjk = wj/wk be relative weight of cj to ct

where wk = max
(
wj
)

k, j = 1, 2, . . . , n. The traditional TODIM method decision making steps can be
summarized as follows:

Step 1. Normalize η =
[
dij
]

m×n into η′ =
[
d′ij
]

m×n
.

Step 2. Calculate the dominance degree of ηi over each alternative ηt based on cj. Let ρ be the
attenuation factor of the losses. Then

δ(ηi, ηt) =
n

∑
j=1

ϑj(ηi, ηt)(i, t = 1, 2, . . . , m) (12)
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ϑj(ηi, ηt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

wjk
(
dij − dtj

)
/∑n

j=1 wjk i f dij − dtj > 0

0 i f dij − dtj = 0

− 1
ρ

√(
∑n

j=1 wjk

)(
dij − dtj

)
/wjk i f dij − dtj < 0

(13)

where ϑj(ηi, ηt)
(
dij − dtj > 0

)
means gain and ϑj(ηi, ηt)

(
dij − dtj < 0

)
indicates loss.

Step 3. Compute the overall value of δ(ηi) with formula (14):

δ(ηi) =

m
∑

t=1
δ(ηi, ηt)− min

i

{
m
∑

t=1
δ(ηi, ηt)

}
max

i

{
m
∑

t=1
δ(ηi, ηt)

}
− min

i

{
m
∑

t=1
δ(ηi, ηt)

} (14)

Step 4. To choose the best alternative by rank the values of δ(ηi), the alternative with maximum
value is the best choice.

3. The TODIM Method with 2TLNNs

Assume that {η1, η2, . . . ηm} be a group of alternatives, {d1, d2, . . . dλ} be a list of experts with
weighting vector be {v1, v2, . . . vt}, and {c1, c2, . . . cn} be a list of criteria with weighting vector be
{w1, w2, . . . wn}, thereby satisfying wi ∈ [0, 1], vi ∈ [0, 1] and ∑n

i=1 wi = 1, ∑t
i=1 vi = 1. Construct

a decision matrix ηλ =
[
rλ

ij

]
m×n

where ηλ
ij =

{(
sαij , φij

)λ
,
(

sβij , ϕij

)λ
,
(

sχij , γij

)λ
}

means the

estimate results of the alternative ηi(i = 1, 2, . . . , m) based on the criterion cj(j = 1, 2, . . . , n) by expert

dλ.
(

sαij , φij

)λ
denotes the degree of truth-membership (TMD),

(
sβij , ϕij

)λ
denotes the degree

of indeterminacy-membership (IMD) and
(

sχij , γij

)λ
denotes the degree of falsity-membership

(FMD), 0 ≤ Δ−1
(

sαij , φij

)λ
+ Δ−1

(
sβij , ϕij

)λ
+ Δ−1

(
sχij , γij

)λ ≤ 3k (i = 1, 2, . . . , m, j = 1, 2, . . . , n).

let wjk = wj/wk

(
0 ≤ wjk ≤ 1

)
be relative weight of cj to ct where wk = max

(
wj
)
(k, j = 1, 2, . . . , n).

Consider both the 2TLNNs theories and traditional TODIM method which based on prospect
theory (PT), we try to propose a 2TLNNs TODIM method to solve MAGDM problems effectively. The
model can be depicted as follows:

Step 1. Calculate the value of wjk = wj/wk

(
0 ≤ wjk ≤ 1

)
, wk = max

(
wj
)
(k, j = 1, 2, . . . , n).

Step 2. According to the computing results of relative weight wjk, we can calculate the dominance
degree of ηλ

i over each alternative ηλ
t based on cj by expert dλ. let ρ be the attenuation factor of the

losses. Then

ϑλ
j (ηi, ηt) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
wjkd

(
rλ

ij − rλ
tj

)
/∑n

j=1 wjk i f rλ
ij − rλ

tj > 0

0 i f rλ
ij − rλ

tj = 0

− 1
ρ

√(
∑n

j=1 wjk

)
d
(

rλ
ij − rλ

tj

)
/wjk i f rλ

ij − rλ
tj < 0

(15)

d
(

rλ
ij − rλ

tj

)
=

1
3k

⎛⎜⎜⎝
∣∣∣∣Δ−1

(
sαij , φtj

)λ − Δ−1
(

sαij , φtj

)λ
∣∣∣∣+ ∣∣∣∣Δ−1

(
sβij , ϕij

)λ − Δ−1
(

sβtj , ϕtj

)λ
∣∣∣∣

+

∣∣∣∣Δ−1
(

sχij , γij

)λ − Δ−1
(

sχtj , γtj

)λ
∣∣∣∣

⎞⎟⎟⎠ (16)

where ϑλ
j (ηi, ηt)(rλ

ij − rλ
tj > 0) means gain and ϑλ

j (ηi, ηt)(rλ
ij − rλ

tj < 0 ) indicates loss, and based on

Definition 4, d(rλ
ij − rλ

tj) means the normalized Hamming distance between rλ
ij and rλ

tj.
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Next we construct a matrix model of dominance degree ϑλ
j =

[
ϑλ

j (ηi, ηt)
]

m×m
under criteria cj by

expert dλ to express Equation (15) more clearly.

η1 η2 . . . ηm

ϑλ
j (ηi, ηt) =

η1

η2
...

ηm

⎡⎢⎢⎢⎢⎣
0 ϑλ

j (η1, η2) . . . ϑλ
j (η1, ηm)

ϑλ
j (η2, η1) 0 . . . ϑλ

j (η2, ηm)
...

... . . .
...

ϑλ
j (ηm, η1) ϑλ

j (ηi, ηt) . . . 0

⎤⎥⎥⎥⎥⎦, j = 1, 2, . . . , n
(17)

Step 3. Compute overall dominance degree ϑλ
j =

[
ϑλ

j (ηi, ηt)
]

m×m
to get the matrix model

ϑλ =
[
ϑλ(ηi, ηt)

]
m×m.

ϑλ(ηi, ηt) =
n

∑
j=1

ϑλ
j (ηi, ηt)(i, t = 1, 2, . . . , m) (18)

η1 η2 . . . ηm

ϑλ(ηi, ηt) =

η1

η2
...
ηm

⎡⎢⎢⎢⎢⎣
0 ϑλ(η1, η2) . . . ϑλ(η1, ηm)

ϑλ(η2, η1) 0 . . . ϑλ(η2, ηm)
...

... . . .
...

ϑλ(ηm, η1) ϑλ(ηi, ηt) . . . 0

⎤⎥⎥⎥⎥⎦ (19)

Step 4. Calculate the overall dominance δ(ηi, ηt) based on the expert weighting vector
{v1, v2, . . . vt} and the results of Equation (19).

δ(ηi, ηt) =
λ

∑
j=1

vλϑλ(ηi, ηt)(i, t = 1, 2, . . . , m) (20)

The overall dominance δ(ηi, ηt) matrix can be constructed by Formula (21) as follows:

η1 η2 . . . ηm

δj(ηi, ηt) =

η1

η2
...

ηm

⎡⎢⎢⎢⎢⎣
0 δj(η1, η2) . . . δj(η1, ηm)

δj(η2, η1) 0 . . . δj(η2, ηm)
...

... . . .
...

δj(ηm, η1) δj(ηi, ηt) . . . 0

⎤⎥⎥⎥⎥⎦, j = 1, 2, . . . , n
(21)

Step 5. Compute the overall value of δ(ηi) with Formula (22):

δ(ηi) =

m
∑

t=1
δ(ηi, ηt)− min

i

{
m
∑

t=1
δ(ηi, ηt)

}
max

i

{
m
∑

t=1
δ(ηi, ηt)

}
− min

i

{
m
∑

t=1
δ(ηi, ηt)

} (22)

Step 6. To choose the best alternative by rank the values of δ(ηi), the alternative with maximum
value is the best choice.

4. The Numerical Example

4.1. Calculation Steps Based on MAGDM Problems

Construction engineering projects have the following characteristics: large investment, many
participants, complex project environment, and a wide range of risk factors on the basis of the
engineering procurement construction (EPC) mode. Therefore, it is necessary to analyze and assess
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risks during the life cycle of a construction engineering project, with a risk assessment being beneficial
for implementing projects and completing project goals. Construction engineering projects face a
range of political, economic, social natural and other types of risks during the implementation process.
These risks have a great influence on construction companies, and produce many high probability
factors which are difficult to estimate and quantify. Thus, we provide a numerical example for
construction engineering project risk assessment (adapted from Reference [27]), using the TODIM
method with 2TLNNs, in order to illustrate the method proposed in this paper. Assuming that there
are five possible construction projects ηi(i = 1, 2, 3, 4, 5) to select from and four criteria to assess these
construction projects: 1© G1 is the construction work environment; 2© G2 is the construction site safety
protection measures; 3© G3 is the safety management ability of the engineering project management;
and 4© G4 is the safety production responsibility system. The five possible construction projects
ηi(i = 1, 2, 3, 4, 5) are to be evaluated with 2TLNNs with the four criteria by three experts dk (criteria
weight w = (0.14, 0.33, 0.29, 0.24), experts weight v = (0.45, 0.15, 0.40)., listed in Tables 1–3.

Table 1. 2-tuple linguistic neutrosophic numbers (2TLNNs) evaluation matrix by d1.

G1 G2 G3 G4

η1 {(s4,0), (s2,0), (s1,0)} {(s5,0), (s3,0), (s2,0)} {(s4,0), (s1,0), (s1,0)} {(s3,0), (s2,0), (s2,0)}
η2 {(s5,0), (s4,0), (s4,0)} {(s3,0), (s4,0), (s2,0)} {(s2,0), (s1,0), (s3,0)} {(s4,0), (s1,0), (s2,0)}
η3 {(s5,0), (s4,0), (s2,0)} {(s2,0), (s4,0), (s5,0)} {(s3,0), (s2,0), (s4,0)} {(s2,0), (s1,0), (s4,0)}
η4 {(s3,0), (s2,0), (s3,0)} {(s4,0), (s3,0), (s2,0)} {(s3,0), (s3,0), (s4,0)} {(s2,0), (s1,0), (s1,0)}
η5 {(s1,0), (s4,0), (s5,0)} {(s2,0), (s3,0), (s1,0)} {(s3,0), (s4,0), (s5,0)} {(s2,0), (s4,0), (s3,0)}

Table 2. 2TLNNs evaluation matrix by d2.

G1 G2 G3 G4

η1 {(s5,0), (s1,0), (s2,0)} {(s4,0), (s3,0), (s1,0)} {(s4,0), (s2,0), (s1,0)} {(s5,0), (s1,0), (s2,0)}
η2 {(s4,0), (s3,0), (s3,0)} {(s3,0), (s1,0), (s4,0)} {(s2,0), (s1,0), (s3,0)} {(s5,0), (s4,0), (s1,0)}
η3 {(s3,0), (s4,0), (s3,0)} {(s2,0), (s4,0), (s5,0)} {(s5,0), (s1,0), (s2,0)} {(s2,0), (s1,0), (s2,0)}
η4 {(s4,0), (s5,0), (s4,0)} {(s2,0), (s3,0), (s4,0)} {(s3,0), (s3,0), (s4,0)} {(s4,0), (s4,0), (s5,0)}
η5 {(s2,0), (s4,0), (s5,0)} {(s3,0), (s1,0), (s5,0)} {(s2,0), (s3,0), (s4,0)} {(s2,0), (s1,0), (s3,0)}

Table 3. 2TLNNs evaluation matrix by d3.

G1 G2 G3 G4

η1 {(s5,0), (s1,0), (s1,0)} {(s5,0), (s1,0), (s2,0)} {(s3,0), (s3,0), (s1,0)} {(s4,0), (s2,0), (s1,0)}
η2 {(s5,0), (s4,0), (s5,0)} {(s3,0), (s2,0), (s1,0)} {(s2,0), (s1,0), (s4,0)} {(s4,0), (s5,0), (s3,0)}
η3 {(s2,0), (s1,0), (s4,0)} {(s5,0), (s4,0), (s3,0)} {(s4,0), (s3,0), (s3,0)} {(s5,0), (s2,0), (s3,0)}
η4 {(s2,0), (s1,0), (s3,0)} {(s4,0), (s1,0), (s2,0)} {(s5,0), (s3,0), (s2,0)} {(s1,0), (s4,0), (s5,0)}
η5 {(s1,0), (s4,0), (s5,0)} {(s2,0), (s4,0), (s4,0)} {(s3,0), (s4,0), (s3,0)} {(s2,0), (s4,0), (s4,0)}

Step 1. Calculate the value of wjk = wj/wk

(
0 ≤ wjk ≤ 1

)
, wk = max

(
wj
)
(k, j = 1, 2, . . . , n).

wk = max(0.14, 0.33, 0.29, 0.24) = 0.33
wjk = wj/wk = (0.4242, 1.0000, 0.8788, 0.7273)T

Step 2. According to the computing results of relative weight wjk, we can calculate the dominance
degree of ηλ

i over each alternative ηt based on cj by λth experts. The operation results are listed as
follows. (ρ = 2.4)
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For expert d1, the dominance degree η1
i can be calculated:

η1 η2 η3 η4 η5

ϑ1
1 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2160 0.1764 0.1528 0.2646

−0.6429 0.0000 −0.3712 −0.5869 0.1972

−0.5250 −0.3712 0.0000 −0.5869 0.2333

−0.4546 0.1972 −0.5869 0.0000 0.2160

−0.7874 −0.5869 −0.6944 −0.6429 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

η1 η2 η3 η4 η5

ϑ1
2 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2345 0.3582 0.1354 0.2708

−0.2961 0.0000 0.2708 −0.2418 −0.2961

−0.4523 −0.3419 0.0000 −0.4188 −0.3823

−0.1710 0.1915 0.3317 0.0000 0.2345

−0.3419 0.2345 0.3028 −0.2961 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
η1 η2 η3 η4 η5

ϑ1
3 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2539 0.2838 0.3109 0.3590

−0.3647 0.0000 0.2198 0.2539 0.3109

−0.4078 −0.3159 0.0000 0.1269 0.2198

−0.4467 −0.3647 −0.1824 0.0000 0.1795

−0.5158 −0.4467 −0.3159 −0.2579 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

η1 η2 η3 η4 η5

ϑ1
4 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 −0.2835 0.2309 −0.3472 0.2309

0.1633 0.0000 0.2309 0.2000 0.2828

−0.4009 −0.4009 0.0000 −0.3472 0.2309

0.2000 −0.3472 0.2000 0.0000 0.2582

−0.4009 −0.4910 −0.4009 −0.4483 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For expert d2, the dominance degree η2
i can be calculated:

η1 η2 η3 η4 η5

ϑ2
1 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.1764 0.2160 0.2333 0.2646

−0.5250 0.0000 0.1247 0.1528 0.1972

−0.6429 −0.3712 0.0000 0.1528 0.1528

−0.6944 −0.4546 −0.4546 0.0000 0.1764

−0.7874 −0.5869 −0.4546 −0.5250 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

η1 η2 η3 η4 η5

ϑ2
2 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.3317 0.3582 0.3028 0.3582

−0.4188 0.0000 0.3028 0.2345 0.1354

−0.4523 −0.3823 0.0000 −0.2418 −0.3419

−0.3823 −0.2961 0.1915 0.0000 0.2708

−0.4523 −0.1710 0.2708 0.2708 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
η1 η2 η3 η4 η5

ϑ2
3 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2838 −0.3159 0.2838 0.3109

−0.4078 0.0000 −0.3647 0.2539 0.2198

0.2198 0.2539 0.0000 0.3109 0.3358

−0.4078 −0.3647 −0.4467 0.0000 0.1269

−0.4467 −0.3159 −0.4825 −0.1824 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

η1 η2 η3 η4 η5

ϑ2
4 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2309 0.2000 0.3055 0.2309

−0.4009 0.0000 0.3055 0.2582 0.3266

−0.3472 −0.5304 0.0000 0.3266 0.1155

−0.5304 −0.4483 −0.5670 0.0000 −0.5304

−0.4009 −0.5670 −0.2005 0.3055 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For expert d3, the dominance degree η3
i can be calculated:

η1 η2 η3 η4 η5

ϑ3
1 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2333 0.2160 0.1972 0.2925

−0.6944 0.0000 −0.6944 −0.7424 0.1764

−0.6429 0.2333 0.0000 −0.2625 0.1972

−0.5869 0.2494 0.0882 0.0000 0.2160

−0.8705 −0.5250 −0.5869 −0.6429 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

η1 η2 η3 η4 η5

ϑ3
2 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2708 0.2708 0.1354 0.3830

−0.3419 0.0000 0.3317 −0.2961 0.3317

−0.3419 −0.4188 0.0000 −0.3823 0.2708

−0.1710 0.2345 0.3028 0.0000 0.3582

−0.4835 −0.4188 −0.3419 −0.4523 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
η1 η2 η3 η4 η5

ϑ3
3 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.3109 0.2198 −0.3159 0.2198

−0.4467 0.0000 −0.4078 −0.4825 0.2838

−0.3159 0.2838 0.0000 −0.2579 0.1795

0.2198 0.3358 0.1795 0.0000 0.2539

−0.3159 −0.4078 −0.2579 −0.3647 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

η1 η2 η3 η4 η5

ϑ3
4 =

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000 0.2582 0.2000 0.3464 0.3055

−0.4483 0.0000 −0.4009 0.2828 0.2309

−0.3472 0.2309 0.0000 0.3266 0.2828

−0.6014 −0.4910 −0.5670 0.0000 −0.2835

−0.5304 −0.4009 −0.4910 0.1633 0.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Step 3. Compute overall dominance degree ϑλ
j =

[
ϑλ

j (ηi, ηt)
]

m×m
to get the matrix φλ =[

φλ(ϕi, ϕt)
]

m×m.

ϑ1 =

η1 η2 η3 η4 η5

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎣
0.0000 0.4209 1.0494 0.2518 1.1253
−1.1405 0.0000 0.3504 −0.3748 0.4948
−1.7860 −1.4299 0.0000 −1.2260 0.3018
−0.8723 −0.3233 −0.2376 0.0000 0.8882
−2.0461 −1.2902 −1.1085 −1.6452 0.0000

⎤⎥⎥⎥⎥⎥⎦

ϑ2 =

η1 η2 η3 η4 η5

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎣
0.0000 1.0228 0.4584 1.1254 1.1647
−1.7524 0.0000 0.3683 0.8993 0.8791
−1.2226 −1.0300 0.0000 0.5485 0.2621
−2.0149 −1.5637 −1.2769 0.0000 0.0437
−2.0874 −1.6408 −0.8668 −0.1310 0.0000

⎤⎥⎥⎥⎥⎥⎦

ϑ3 =

η1 η2 η3 η4 η5

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎣
0.0000 1.0732 0.9067 0.3631 1.2008
−1.9313 0.0000 −1.1715 −1.2382 1.0228
−1.6479 0.3293 0.0000 −0.5761 0.9304
−1.1394 0.3287 0.0035 0.0000 0.5446
−2.2003 −1.7524 −1.6778 −1.2967 0.0000

⎤⎥⎥⎥⎥⎥⎦
Step 4. Calculate the overall dominance δ(ηi, ηt) based on the expert weighting vector

(0.45, 0.15, 0.40) and the results of ϑλ =
[
ϑλ(ηi, ηt)

]
m×m.

δ(ηi, ηt) =

η1 η2 η3 η4 η5

η1

η2

η3

η4

η5

⎡⎢⎢⎢⎢⎢⎣
0.0000 0.7721 0.9037 0.4274 1.1614
−1.5486 0.0000 −0.2557 −0.5290 0.7637
−1.6463 −0.6662 0.0000 −0.6998 0.5473
−1.1505 −0.2485 −0.2971 0.0000 0.6241
−2.1140 −1.5277 −1.3000 −1.2787 0.0000

⎤⎥⎥⎥⎥⎥⎦
Step 5. Compute the overall value of δ(ηi) with the Formula (22):

δ(η1) = 1.0000 , δ(η2) = 0.4903, δ(η3) = 0.3959, δ(η4) = 0.5428, δ(η5) = 0.0000.

Step 6. To choose the best alternative by rank the values of δ(ηi), the alternative with maximum
value is the best choice. According to step 5, the ranking of ηi is η1 > η4 > η2 > η3 > η5, and it is clear
that the best choice is η1.

4.2. The Affection Analysis of the Parameter ρ

By altering parameters ρ in the computing process of the 2TLNNs TODIM method, we can depict
the effects on ordering. The calculation results follow.

From the calculation results of Table 4, we can easily ascertain that the best alternative is η1 by
altering the values of ρ. Next we will compare our proposed 2TLNNs TODIM method with the existing
method using 2TLNNWA and 2TLNNWG operators.
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Table 4. Ordering of ηi by altering parameters ρ.

ρ δ(η1) δ(η2) δ(η3) δ(η4) δ(η5) Ordering

1.0 1.0000 0.4947 0.4182 0.5601 0.0000 η1 > η4 > η2 > η3 > η5
1.1 1.0000 0.4943 0.4162 0.5586 0.0000 η1 > η4 > η2 > η3 > η5
1.2 1.0000 0.4939 0.4143 0.5571 0.0000 η1 > η4 > η2 > η3 > η5
1.5 1.0000 0.4929 0.4090 0.5530 0.0000 η1 > η4 > η2 > η3 > η5
1.7 1.0000 0.4922 0.4058 0.5505 0.0000 η1 > η4 > η2 > η3 > η5
2.0 1.0000 0.4914 0.4013 0.5470 0.0000 η1 > η4 > η2 > η3 > η5
2.3 1.0000 0.4906 0.3972 0.5438 0.0000 η1 > η4 > η2 > η3 > η5
2.5 1.0000 0.4901 0.3947 0.5418 0.0000 η1 > η4 > η2 > η3 > η5
3.0 1.0000 0.4890 0.3889 0.5373 0.0000 η1 > η4 > η2 > η3 > η5
4.0 1.0000 0.4871 0.3794 0.5299 0.0000 η1 > η4 > η2 > η3 > η5

4.3. Comparative Analyses

In this section, we compare our proposed 2TLNNs TIDOM model with the 2TLNNWA and
2TLNNWG operators defined by Wang et al. [28]. Based on the values of Tables 1–3 and expert
weighting vector (0.45, 0.15, 0.40)T , we can utilize overall rλ

ij to rij by 2TLNNWA operator.

Based on the values of Tables 5 and 6 and attributes weighting vector w = (0.14, 0.33, 0.29, 0.24)T ,
we can utilize overall rij to ri by 2TLNNWA and 2TLNNWG operators.

Table 5. Utilizing results rij with 2TLNNWA operator.

G1 G2

η1 {(s5, −0.1892), (s1, 0.1892), (s1, 0.2746)} {(s4, 0.3182), (s2, −0.0668), (s2, −0.4308)}
η2 {(s5, −0.2746), (s4, −0.3831), (s4, −0.0455)} {(s3, 0.0000), (s2, 0.3784), (s2, −0.0681)}
η3 {(s3, 0.4425), (s2, 0.2974), (s3, 0.0414)} {(s4, −0.2974), (s2, 0.2974), (s4, 0.0760)}
η4 {(s3, 0.0794), (s3, −0.2438), (s3, 0.3178)} {(s3, 0.4509), (s2, −0.0668), (s2, 0.0000)}
η5 {(s1, 0.3756), (s4, 0.0000), (s5, 0.0000)} {(s2, 0.3831), (s2, 0.2914), (s3, 0.0582)}

G3 G4

η1 {(s4, −0.3522), (s2, −0.0221), (s1, 0.0000)} {(s4, 0.2634), (s2, −0.4308), (s2, 0.0000)}
η2 {(s2, 0.0000), (s1, 0.0000), (s3, 0.3659)} {(s4, 0.4308), (s3, 0.0925), (s2, 0.3522)}
η3 {(s4, 0.2634), (s2, −0.1545), (s3, 0.1383)} {(s4, −0.2974), (s1, 0.3195), (s3, −0.2028)}
η4 {(s4, 0.0668), (s3, 0.0000), (s3, 0.0314)} {(s3, −0.4313), (s3, −0.1716), (s3, 0.3437)}
η5 {(s3, −0.3178), (s4, −0.3831), (s4, −0.2303)} {(s2, 0.0000), (s2, 0.4623), (s3, 0.3659)}

Table 6. Utilizing results ri with 2TLNNWA and 2TLNNWG operators.

2TLNNWA Operator 2TLNNWG Operator

η1 {(s4, 0.2205), (s2, −0.2707), (s1, 0.4176)} {(s4, 0.1619), (s2, −0.2365), (s1, 0.4819)}
η2 {(s4, −0.4760), (s2, 0.0894), (s3, −0.3699)} {(s3, 0.1212), (s2, 0.4422), (s3, −0.1731)}
η3 {(s4, −0.1504), (s2, −0.1127), (s3, 0.3133)} {(s4, −0.1820), (s2, −0.0499), (s3, 0.4089)}
η4 {(s3, 0.4248), (s3, −0.4716), (s3, −0.2600)} {(s3, 0.3183), (s3, −0.3984), (s3, −0.1444)}
η5 {(s2, 0.2598), (s3, −0.1229), (s4, −0.4380)} {(s2, 0.1896), (s3, 0.0416), (s4, −0.2731)}

Calculating the alternative scores s(ri) by score functions of 2TLNNs as listed in Table 7.

Table 7. Alternative scores s(ri) with 2TLNNWA and 2TLNNWG operators.

2TLNNWA Operator 2TLNNWG Operator

s(ϕ1) = 0.7263, s(ϕ2) = 0.6002,
s(ϕ3) = 0.5916, s(ϕ4) = 0.5642,

s(ϕ5) = 0.4345.

s(ϕ1) = 0.7176, s(ϕ2) = 0.5473,
s(ϕ3) = 0.5811, s(ϕ4) = 0.5478,

s(ϕ5) = 0.4123.

Then we can obtain the ranking of alternatives with 2TLNNWA and 2TLNNWG operators. The
calculating result is listed in Table 8.
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Table 8. Ranking of alternatives with 2TLNNWA and 2TLNNWG operators.

Order

2TLNNWA η1 > η2 > η3 > η4 > η5
2TLNNWG η1 > η3 > η4 > η2 > η5

2TLNNs TODIM η1 > η4 > η2 > η3 > η5

Comparing the results between our proposed 2TLNNs TODIM method and 2TLNNWA and
2TLNNWG operators, they have the same best choice η1 and differ slightly in the ranking of alternatives.
However, the 2TLNNs TODIM method considers the subjectivity of DM’s behaviors and provides
the dominance of each alternative over others with particular operation formulas, and can be more
reasonable and scientific in the application of MAGDM problems.

5. Conclusions

In our article, we proposed the 2TLNNs TODIM method based on the fundamental theories of
2TLNNs and the original TODIM model. Firstly, we briefly introduced the definition, operation laws,
aggregation operators and the distance calculating method of 2TLNNs. Then, the calculation steps of
the original TODIM model were presented in simplified form. Thereafter, we extended the original
TODIM model to the 2TLNNs environment to build the 2TLNNs TIDOM model, our proposed method
which is more reasonable and scientific in considering the subjectivity of DM’s behaviors and the
dominance of each alternative over others. Finally, a numerical example for the safety assessment of
construction projects was proposed to illustrate the new method and some comparisons were also
conducted to further illustrate the advantages of the new method. In the future, the application of the
proposed models and methods of 2TLNNs can be investigated in MAGDM problems [42–53], risk
analysis and many other uncertain and fuzzy environments [54–65].
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Abstract: In this article, we combine the original VIKOR model with a triangular fuzzy neutrosophic
set to propose the triangular fuzzy neutrosophic VIKOR method. In the extended method, we use
the triangular fuzzy neutrosophic numbers (TFNNs) to present the criteria values in multiple criteria
group decision making (MCGDM) problems. Firstly, we summarily introduce the fundamental
concepts, operation formulas and distance calculating method of TFNNs. Then we review some
aggregation operators of TFNNs. Thereafter, we extend the original VIKOR model to the triangular
fuzzy neutrosophic environment and introduce the calculating steps of the TFNNs VIKOR method,
our proposed method which is more reasonable and scientific for considering the conflicting criteria.
Furthermore, a numerical example for potential evaluation of emerging technology commercialization
is presented to illustrate the new method, and some comparisons are also conducted to further
illustrate advantages of the new method.

Keywords: MCGDM problems; triangular fuzzy neutrosophic sets (TFNSs); VIKOR model; TFNNs
VIKOR method; potential evaluation; emerging technology commercialization

1. Introduction

The VIKOR (VIseKriterijumska Optimizacija I KOmpromisno Resenje) method [1] has been used
to investigate multiple criteria group decision making (MCGDM) problems and has been widely
used in many domains. In the existing literature, more and more traditional MCGDM models have
been studied, such as: the grey relational analysis model [2–4]; the multi-objective optimization by
ratio analysis plus the full multiplicative form (MULTIMOORA) model [5,6]; the Preference Ranking
Organization Method for Enrichment of Evaluations (PROMETHEE) model [7]; the ELimination Et
Choix Traduisant la REalité (ELECTRE) model [8]; and the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) model [9,10].

In many real MCGDM problems, it is not easy to describe the criteria values with accurate
values due to the fuzziness and complexity of the alternatives, and so it can be more effective and
useful to describe the criteria values with fuzzy information. Fuzzy set theory [11] has been used
as a feasible tool for MCGDM [12,13] problems. Smarandache [14,15] proposed the neutrosophic
set (NS). Then, Wang et al. [16,17] defined the single-valued neutrosophic sets (SVNSs) and interval
neutrosophic sets (INSs). Wang et al. [18,19] explored some aggregation operators of SVNNs and
extended the SVNS to a 2-tuple linguistic neutrosophic number environment. Wu et al. [20] studied
SVNNs with Hamy operators under 2-tuple linguistic neutrosophic numbers. Biswas et al. [21]
provided the definition of a triangular fuzzy neutrosophic number (TFNN) in which the degree
of truth-membership (MD), indeterminacy-membership (IMD) and falsity-membership (FMD) are
depicted by TFNNs. Sahin et al. [22] studied multiple attribute decision making (MADM) problems
with centroid single valued triangular neutrosophic numbers. Samah et al. [23] studied two ranking
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means based on information systems quality (ISQ) theory and the TFNNs environment. Ye [24]
provided the definition of trapezoidal neutrosophic sets. Biswas et al. [25] studied some applications
under the trapezoidal fuzzy neutrosophic environment. Tan and Zhang [26] defined some trapezoidal
fuzzy neutrosophic aggregation operators.

Opricovic [1] used the VIKOR model to investigate some MCGDM problems with conflicting
criteria [27,28]. Bausys and Zavadskas [29] established the INS VIKOR model. Liu and
Park et al. [30] studied the VIKOR model under interval-valued intuitionistic fuzzy sets (IVIFSs).
Selvakumari et al. [31] proposed the extended VIKOR model by constructing an octagonal
neutrosophic soft matrix. Wan et al. [32] proposed the VIKOR model with triangular intuitionistic
fuzzy numbers (TIFN), Liu et al. [33] provided the linguistic VIKOR model, and Qin et al. [34]
developed the interval type-2 fuzzy VIKOR model. Chen [35] proposed the remoteness index-based
Pythagorean fuzzy VIKOR methods with a generalized distance measure for multiple criteria decision
analysis. Liao et al. [36] explored the VIKOR method with the hesitant fuzzy linguistic information.
Ren et al. [37] provided the dual hesitant fuzzy VIKOR model. Li et al. [38] provided the VIKOR
model with linguistic intuitionistic fuzzy numbers. Pouresmaeil et al. [39] established the SVNNs
VIKOR model. Huang et al. [40] extended the VIKOR method to INSs. Zhang and Wei [41] extended
the VIKOR method to a hesitant fuzzy environment.

However, there has been no study about the VIKOR model for MCGDM problems with TFNNs,
so taking the TFNNs VIKOR model into account is of necessity. The goal of our article is to combine
the original VIKOR model with TFNNs to study MCGDM problems. The structure of our paper is as
follows. Section 1 introduces the concepts, operation formulas and the distance calculating method
of TFNNs. Section 2 reviews some aggregation operators of TFNNs. Section 3 extends the original
VIKOR model to a TFN environment and introduces the required calculating steps of TFNNs VIKOR
method. Section 4 provides a numerical example for potential evaluation of emerging technology
commercialization and introduces a comparison between our proposed methods and the existing
method. Section 5 summarises our conclusions.

2. Preliminaries

2.1. Triangular Fuzzy Neutrosophic Sets

Based on the concepts of a traditional triangular fuzzy set and the fundamental theory of a single
valued neutrosophic set (SVNS), the triangular fuzzy neutrosophic sets (TFNSs), which were first
defined by Biswas et al., [21] can be depicted as follows:

Definition 1 [21]. Let X be a fixed set. The TFNSs η can be depicted as:

η =
{(

x, φη(x), ϕη(x), γη(x)
)∣∣x ∈ X

}
(1)

where φη(x), ϕη(x) and γη(x) ∈ [0, 1] represent the degree of the truth membership, the indeterminacy
membership and the falsity membership, respectively, which can be expressed by triangular fuzzy numbers
as follows.

φη(x) =
(

φL
η (x), φM

η (x), φU
η (x)

)
, 0 ≤ φL

η (x) ≤ φM
η (x) ≤ φU

η (x) ≤ 1 (2)

ϕη(x) =
(

ϕL
η (x), ϕM

η (x), ϕU
η (x)

)
, 0 ≤ ϕL

η (x) ≤ ϕM
η (x) ≤ ϕU

η (x) ≤ 1 (3)

γη(x) =
(

γL
η (x), γM

η (x), γU
η (x)

)
, 0 ≤ γL

η (x) ≤ γM
η (x) ≤ γU

η (x) ≤ 1 (4)
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and the truth membership function can be defined:

φη(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−φL

η (x)
φM

η (x)−φL
η (x)

, φL
η (x) ≤ x ≤ φM

η (x),

x−φU
η (x)

φM
η (x)−φU

η (x)
, φM

η (x) ≤ x ≤ φU
η (x),

0, otherwise.

(5)

For convenience, we let η =
{(

φL, φM, φU), (ϕL, ϕM, ϕU), (γL, γM, γU)} be a TFNN which satisfies
the condition 0 ≤ φU + ϕU + γU ≤ 3.

Definition 2 [21]. Assume there are three TFNNs η1 =
{(

φL
1 , φM

1 , φU
1
)
,
(

ϕL
1 , ϕM

1 , ϕU
1
)
,
(
γL

1 , γM
1 , γU

1
)}

,
η2 =

{(
φL

2 , φM
2 , φU

2
)
,
(

ϕL
2 , ϕM

2 , ϕU
2
)
,
(
γL

2 , γM
2 , γU

2
)}

and η =
{(

φL, φM, φU), (ϕL, ϕM, ϕU), (γL, γM, γU)},
the operation laws of them can be defined:

(1) η1 ⊕ η2 =

⎧⎨⎩
(
φL

1 + φL
2 − φL

1 φL
2 , φM

1 + φM
2 − φM

1 φM
2 , φU

1 + φU
2 − φU

1 φU
2
)
,
(

ϕL
1 ϕL

2 , ϕM
1 ϕM

2 , ϕU
1 ϕU

2
)
,(

γL
1 γL

2 , γM
1 γM

2 , γU
1 γU

2
)

⎫⎬⎭;

(2) η1 ⊗ η2 =

{ (
φL

1 φL
2 , φM

1 φM
2 , φU

1 φU
2
)
,
(

ϕL
1 + ϕL

2 − ϕL
1 ϕL

2 , ϕM
1 + ϕM

2 − ϕM
1 ϕM

2 , ϕU
1 + ϕU

2 − ϕU
1 ϕU

2
)
,(

γL
1 + γL

2 − γL
1 γL

2 , γM
1 + γM

2 − γM
1 γM

2 , γU
1 + γU

2 − γU
1 γU

2
) }

;

(3) λη =

⎧⎨⎩
(

1 − (
1 − φL)λ, 1 − (

1 − φM)λ, 1 − (
1 − φU)λ

)
,
((

ϕL)λ,
(

ϕM)λ,
(

ϕU)λ
)

,((
γL)λ,

(
γM)λ,

(
γU)λ

)
⎫⎬⎭, λ > 0;

(4) ηλ =

⎧⎨⎩
((

φL)λ,
(
φM)λ,

(
φU)λ

)
,
(

1 − (
1 − ϕL)λ, 1 − (

1 − ϕM)λ, 1 − (
1 − ϕU)λ

)
,(

1 − (
1 − γL)λ, 1 − (

1 − γM)λ, 1 − (
1 − γU)λ

)
⎫⎬⎭, λ > 0.

According to Definition 2, it is clear that the operation laws have the following properties:

η1 ⊕ η2 = η2 ⊕ η1, η1 ⊗ η2 = η2 ⊗ η1,
(
(η1)

λ1
)λ2

= (η1)
λ1λ2 ; (6)

λ(η1 ⊕ η2) = λη1 ⊕ λη2, (η1 ⊗ η2)
λ = (η1)

λ ⊗ (η2)
λ; (7)

λ1η1 ⊕ λ2η1 = (λ1 + λ2)η1, (η1)
λ1 ⊗ (η1)

λ2 = (η1)
(λ1+λ2). (8)

Definition 3 [21]. Let η =
{(

φL, φM, φU), (ϕL, ϕM, ϕU), (γL, γM, γU)} be a TFNN, the score and accuracy
functions of η can be expressed:

s(η) =
1
12

[
8 +

(
φL + 2φM + φU)− (

ϕL + 2ϕM + ϕU)
−(γL + 2γM + γU)

]
, s(η) ∈ [0, 1] (9)

h(η) =
1
4

[(
φL + 2φM + φU

)
−
(

γL + 2γM + γU
)]

, h(η) ∈ [−1, 1] (10)

Let η1 and η2 be two TFNNs. Then, based on Definition 3, the following assertion holds true.
(1) i f s(η1) < s(η2), then η1 < η2;
(2) i f s(η1) > s(η2), then η1 > η2;
(3) i f s(η1) = s(η2), h(η1) < h(η2), then η1 < η2;
(4) i f s(η1) = s(η2), h(η1) > h(η2), then η1 > η2;
(5) i f s(η1) = s(η2), h(η1) = h(η2), then η1 = η2.
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2.2. The Normalized Hamming Distance between TFNNs

Definition 4 [32]. Let η1 =
{(

φL
1 , φM

1 , φU
1
)
,
(

ϕL
1 , ϕM

1 , ϕU
1
)
,
(
γL

1 , γM
1 , γU

1
)}

and
η2 =

{(
φL

2 , φM
2 , φU

2
)
,
(

ϕL
2 , ϕM

2 , ϕU
2
)
,
(
γL

2 , γM
2 , γU

2
)}

be two TFNNs. Then the normalized Hamming distance
is defined by:

d(η1, η2) =
1
9

⎛⎜⎜⎝
∣∣φL

1 − φL
2

∣∣+ ∣∣φM
1 − φM

2

∣∣+ ∣∣φU
1 − φU

2

∣∣
+
∣∣ϕL

1 − ϕL
2

∣∣+ ∣∣ϕM
1 − ϕM

2

∣∣+ ∣∣ϕU
1 − ϕU

2

∣∣
+
∣∣γL

1 − γL
2

∣∣+ ∣∣γM
1 − γM

2

∣∣+ ∣∣γU
1 − γU

2

∣∣
⎞⎟⎟⎠ (11)

Theorem 1. Assume that there are three TFNNs η1 =
{(

φL
1 , φM

1 , φU
1
)
,
(

ϕL
1 , ϕM

1 , ϕU
1
)
,
(
γL

1 , γM
1 , γU

1
)}

,
η2 =

{(
φL

2 , φM
2 , φU

2
)
,
(

ϕL
2 , ϕM

2 , ϕU
2
)
,
(
γL

2 , γM
2 , γU

2
)}

and η =
{(

φL, φM, φU), (ϕL, ϕM, ϕU), (γL, γM, γU)},
the Hamming distance d(η1, η2) has the following properties:
(P1) 0 ≤ d(η1, η2) ≤ 1; (P2) i f d(η1, η2) = 0, then η1 = η2;
(P3) d(η1, η2) = d(η2, η1); (P4) d(η1, η2) + d(η2, η3) ≥ d(η1, η3).

Proof. (P1) 0 ≤ d(η1, η2) ≤ 1
Since 0 ≤ φL ≤ 1, then 0 ≤ ∣∣φL

1 − φL
2

∣∣ ≤ 1, similarly we see 0 ≤ ∣∣φM
1 − φM

2

∣∣ ≤ 1, 0 ≤∣∣φU
1 − φU

2

∣∣ ≤ 1, 0 ≤ ∣∣ϕL
1 − ϕL

2

∣∣ ≤ 1, 0 ≤ ∣∣ϕM
1 − ϕM

2

∣∣ ≤ 1, 0 ≤ ∣∣ϕU
1 − ϕU

2

∣∣ ≤ 1, 0 ≤ ∣∣γL
1 − γL

2

∣∣ ≤
1, 0 ≤ ∣∣γM

1 − γM
2

∣∣ ≤ 1, 0 ≤ ∣∣γU
1 − γU

2

∣∣ ≤ 1. So 0 ≤ ∣∣φL
1 − φL

2

∣∣+ ∣∣φM
1 − φM

2

∣∣+ ∣∣φU
1 − φU

2

∣∣+ ∣∣ϕL
1 − ϕL

2

∣∣+∣∣ϕM
1 − ϕM

2

∣∣+ ∣∣ϕU
1 − ϕU

2

∣∣+ ∣∣γL
1 − γL

2

∣∣+ ∣∣γM
2 − γM

1

∣∣+ ∣∣γU
1 − γU

2

∣∣ ≤ 9.
Therefore 0 ≤ d(η1, η2) ≤ 1, which completes the proof.
(P2) i f d(η1, η2) = 0, then η1 = η2

d(η1, η2) =
1
9

( ∣∣φL
1 − φL

2
∣∣+ ∣∣φM

1 − φM
2

∣∣+ ∣∣φU
1 − φU

2

∣∣+ ∣∣ϕL
1 − ϕL

2
∣∣+ ∣∣ϕM

1 − ϕM
2

∣∣+ ∣∣ϕU
1 − ϕU

2

∣∣+∣∣γL
1 − γL

2
∣∣+ ∣∣γM

1 − γM
2

∣∣+ ∣∣γU
1 − γU

2

∣∣
)

= 0

⇒
( ∣∣φL

1 − φL
2
∣∣ = 0,

∣∣φM
1 − φM

2

∣∣ = 0,
∣∣φU

1 − φU
2

∣∣ = 0,
∣∣ϕL

1 − ϕL
2
∣∣ = 0,

∣∣ϕM
1 − ϕM

2

∣∣ = 0,
∣∣ϕU

1 − ϕU
2

∣∣ = 0,∣∣γL
1 − γL

2
∣∣ = 0,

∣∣γM
1 − γM

2

∣∣ = 0,
∣∣γU

1 − γU
2

∣∣ = 0

)
⇒ (

φL
1 = φL

2 , φM
1 = φM

2 , φU
1 = φU

2 , ϕL
1 = ϕL

2 , ϕM
1 = ϕM

2 , ϕU
1 = ϕU

2 , γL
1 = γL

2 , γM
1 = γM

2 , γU
1 = γU

2
)

That means η1 = η2, and so (P2) i f d(η1, η2) = 0, then η1 = η2 is correct.
(P3) d(η1, η2) = d(η2, η1)

d(η1, η2) =
1
9

( ∣∣φL
1 − φL

2

∣∣+ ∣∣φM
1 − φM

2

∣∣+ ∣∣φU
1 − φU

2

∣∣+ ∣∣ϕL
1 − ϕL

2

∣∣+ ∣∣ϕM
1 − ϕM

2

∣∣+ ∣∣ϕU
1 − ϕU

2

∣∣
+
∣∣γL

1 − γL
2

∣∣+ ∣∣γM
1 − γM

2

∣∣+ ∣∣γU
1 − γU

2

∣∣
)

= 1
9

( ∣∣φL
2 − φL

1

∣∣+ ∣∣φM
2 − φM

1

∣∣+ ∣∣φU
2 − φU

1

∣∣+ ∣∣ϕL
2 − ϕL

1

∣∣+ ∣∣ϕM
2 − ϕM

1

∣∣+ ∣∣ϕU
2 − ϕU

1

∣∣
+
∣∣γL

2 − γL
1

∣∣+ ∣∣γM
2 − γM

1

∣∣+ ∣∣γU
2 − γU

1

∣∣
)

= d(η2, η1)

So we complete the proof of (P3), which asserts that equality d(η1, η2) = d(η2, η1) holds.
(P4) d(η1, η2) + d(η2, η3) ≥ d(η1, η3)

d(η1, η3) =
1
9

( ∣∣φL
1 − φL

3

∣∣+ ∣∣φM
1 − φM

3

∣∣+ ∣∣φU
1 − φU

3

∣∣+ ∣∣ϕL
1 − ϕL

3

∣∣+ ∣∣ϕM
1 − ϕM

3

∣∣
+
∣∣ϕU

1 − ϕU
3

∣∣+ ∣∣γL
1 − γL

3

∣∣+ ∣∣γM
1 − γM

3

∣∣+ ∣∣γU
1 − γU

3

∣∣
)

= 1
9

⎛⎜⎝
∣∣φL

1 − φL
2 + φL

2 − φL
3

∣∣+ ∣∣φM
1 − φM

2 + φM
2 − φM

3

∣∣+ ∣∣φU
1 − φU

2 + φU
2 − φU

3

∣∣
+
∣∣ϕL

1 − ϕL
2 + ϕL

2 − ϕL
3

∣∣+ ∣∣ϕM
1 − ϕM

2 + ϕM
2 − ϕM

3

∣∣+ ∣∣ϕU
1 − ϕU

2 + ϕU
2 − ϕU

3

∣∣
+
∣∣γL

1 − γL
2 + γL

2 − γL
3

∣∣+ ∣∣γM
1 − γM

2 + γM
2 − γM

3

∣∣+ ∣∣γU
1 − γU

2 + γU
2 − γU

3

∣∣
⎞⎟⎠

≤ 1
9

⎛⎜⎝
∣∣φL

1 − φL
2

∣∣+ ∣∣φL
2 − φL

3

∣∣+ ∣∣φM
1 − φM

2

∣∣+ ∣∣φM
2 − φM

3

∣∣+ ∣∣φU
1 − φU

2

∣∣+ ∣∣φU
2 − φU

3

∣∣+∣∣ϕL
1 − ϕL

2

∣∣+ ∣∣ϕL
2 − ϕL

3

∣∣+ ∣∣ϕM
1 − ϕM

2

∣∣+ ∣∣ϕM
2 − ϕM

3

∣∣+ ∣∣ϕU
1 − ϕU

2

∣∣+ ∣∣ϕU
2 − ϕU

3

∣∣
+
∣∣γL

1 − γL
2

∣∣+ ∣∣γL
2 − γL

3

∣∣+ ∣∣γM
1 − γM

2

∣∣+ ∣∣γM
2 − γM

3

∣∣+ ∣∣γU
1 − γU

2

∣∣+ ∣∣γU
2 − ϕU

3

∣∣
⎞⎟⎠

= d(η1, η2) + d(η2, η3)
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Then, triangular fuzzy neutrosophic number weighted averaging (TFNNWA) and triangular
fuzzy neutrosophic number weighted geometric (TFNNWG) operators are introduced as follows:

Definition 5 [21]. Let ηj =
{(

φL
j , φM

j , φU
j

)
,
(

ϕL
j , ϕM

j , ϕU
j

)
,
(

γL
j , γM

j , γU
j

)}
(j = 1, 2, . . . , n) be a group of

TFNNs, then the TFNNWA and TFNNWG operators proposed by Biswas et al. [21] are defined as follows.

TFNNWA(η1, η2, . . . , ηn) = ω1η1 ⊕ ω2η2 . . . ⊕ ωnηn =
n⊕

j=1
ωjηj (12)

and
TFNNWG(η1, η2, . . . , ηn) = (η1)

ω1 ⊗ (η2)
ω2 . . . ⊗ (ηn)

ωn =
n⊗

j=1

(
ηj
)ωj (13)

where ωj is weight vector of ηj, j = 1, 2, . . . , n, which satisfies 0 ≤ ωj ≤ 1, ∑n
j=1 ωj = 1.

Theorem 2 [21]. Let ηj =
{(

φL
j , φM

j , φU
j

)
,
(

ϕL
j , ϕM

j , ϕU
j

)
,
(

γL
j , γM

j , γU
j

)}
(j = 1, 2, . . . , n) be a group of

TFNNs, then the operation results by TFNNWA and TFNNWG operators are also a TFNN where

TFNNWA(η1, η2, . . . , ηn) =
n⊕

j=1
ωjηj

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 − n

∏
j=1

(
1 − φL

j

)ωj
, 1 − n

∏
j=1

(
1 − φM

j

)ωj
,1 − n

∏
j=1

(
1 − φU

j

)ωj

)
,(

n
∏
j=1

(
ϕL

j

)ωj
,

n
∏
j=1

(
ϕM

j

)ωj
,

n
∏
j=1

(
ϕU

j

)ωj

)
,

(
n
∏
j=1

(
γL

j

)ωj
,

n
∏
j=1

(
γM

j

)ωj
,

n
∏
j=1

(
γU

j

)ωj

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(14)

and
TFNNWG(η1, η2, . . . , ηn) =

n⊗
j=1

(
ηj
)ωj

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − n

∏
j=1

(
1 − ϕL

j

)ωj
, 1 − n

∏
j=1

(
1 − ϕM

j

)ωj
,1 − n

∏
j=1

(
1 − ϕU

j

)ωj

)
,(

1 − n
∏
j=1

(
1 − γL

j

)ωj
, 1 − n

∏
j=1

(
1 − γM

j

)ωj
,1 − n

∏
j=1

(
1 − γU

j

)ωj

)
,(

n
∏
j=1

(
φL

j

)ωj
,

n
∏
j=1

(
φM

j

)ωj
,

n
∏
j=1

(
φU

j

)ωj

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15)

2.3. VIKOR Method

Denote n alternatives under consideration as O1, O2, · · · , On, the evaluation attribute as
C1, C2, · · · , Cn, and the rating of each alternative Oj(j = 1, · · · , n) with respect to attribute
Cj(j = 1, · · · , m) as fij. Then the compromise ranking algorithm of the VIKOR method [42–45] has the
following steps:

Step 1. Determine the best rating f+i and the worst rating f−i for all the attributes. For example,
it the attribute i represents a benefit, then

f+i = min
j

fij, f−i = min
j

fij (16)

Naturally, a candidate having scores ( f+1 , f+2 , · · · , f+m ) would be positive ideal whereas a
candidate having scores ( f−1 , f−2 , · · · , f−m ) would be a negative ideal candidate. It is assumed that such
a positive ideal candidate does not exist; otherwise, the decision would be trivial.
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Step 2. Compute the values and Sj and Rj(j = 1, · · · , n) which represent the average and the
worst group scores of the alternatives Oj, respectively, with the relations

Sj =
n

∑
i=1

wi
( f+i − fij)

( f+i − f−i )
, Sj ∈ [0, 1] (17)

Rj = max
i

[
wi

( f+i − fij)

( f+i − f−i )

]
, Rj = [0, 1] (18)

Here, wj (
m
∑

i=1
wi = 1, wi ∈ [0, 1], i = 1, 2, · · · , m) is the relative importance weights of the criteria

set by the decision maker. The smaller values of Sj and Rj correspond to the better, average and worse
group scores of alternatives Oj, respectively.

Step 3. Compute the Qj values for j = 1, 2, · · · , m with the relation

Qj =
α(Sj − S+)

(S− − S+)
+

(1 − α)(Rj − R+)

(R− − R+)
, (19)

where
S+ = min

j
Sj, S− = max

j
Sj (20)

R+ = min
j

Rj, R− = max
j

Rj (21)

and α is the weight of decision making strategy “the majority of attribute” (or “the maximum
group utility”). The compromise can be selected with “voting by majority” (α > 0.5), with “consensus”
(α = 0.5), with “veto” (α < 0.5).

Step 4. Rank the alternatives by sorting each S, R and Q values in a decreasing order. The result
is a set of three ranking lists denoted as S[.], R[.] and Q[.].

Step 5. Propose the alternative Oj1 corresponding to O[1] (the smallest among Qj values) as
compromise solution if

C1. The alternative Oj1 has an acceptable advantage; in other words, Q[2] − Q[1] ≥ DQ where
DQ = 1

(m−1) , and m is the number of alternatives.
C2. The alternative Oj1 is stable within the decision making process; in other words, it is also the

best ranked in S[.] or R[.].
If one of the above conditions is not satisfied, then a set of compromise solutions is proposed,

which consists of:

• Alternatives Oj1 and Oj2 where Qj2 = Q[2] if only the condition is not satisfied, or

• Alternatives Oj1, Oj2, · · · , Ojk if the condition C1 is not satisfied; and Ojk is determined by the
relation Qk − Q[1] < DQ for the maximum k where Qjk = Q[k] (the positions of these alternatives
are in closeness).

3. VIKOR Model for MCGDM Problems with TFNNs

Let {ϕ1, ϕ2, . . . ϕm} be a group of alternatives, {d1, d2, . . . dt} be a list of experts
with weighting vector being {v1, v2, . . . vt}, and {c1, c2, . . . cn} be a list of criteria with
weighting vector being {ω1, ω2, . . . ωn}, which thereby satisfies ωi ∈ [0, 1], vλ ∈ [0, 1] and

∑n
i=1 ωi = 1, ∑t

λ=1 vλ = 1. Construct the evaluation matrixes ηλ =
[
ηλ

ij

]
m×n

where

ηλ
ij =

{((
φL

ij

)λ
,
(

φM
ij

)λ
,
(

φU
ij

)λ
)

,
((

ϕL
ij

)λ
,
(

ϕM
ij

)λ
,
(

ϕU
ij

)λ
)

,
((

γL
ij

)λ
,
(

γM
ij

)λ
,
(

γU
ij

)λ
)}

means the

estimate results of the alternative ϕi(i = 1, 2, . . . , m) based on the criterion cj(j = 1, 2, . . . , n) by

expert dλ. Let
((

φL
ij

)λ
,
(

φM
ij

)λ
,
(

φU
ij

)λ
)

∈ [0, 1] denote the degree of truth-membership (TMD),
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((
ϕL

ij

)λ
,
(

ϕM
ij

)λ
,
(

ϕU
ij

)λ
)

∈ [0, 1] denote the degree of indeterminacy-membership (IMD) and((
γL

ij

)λ
,
(

γM
ij

)λ
,
(

γU
ij

)λ
)

∈ [0, 1] denote the degree of falsity-membership (FMD) 0 ≤
(

φU
ij

)λ
+(

ϕU
ij

)λ
+
(

γU
ij

)λ ≤ 3 i = 1, 2, . . . , m, j = 1, 2, . . . , n, λ = 1, 2, · · · , t.
Considering both the TFNNs theories and the traditional VIKOR model, we try to propose a

TFNNs VIKOR model to study MCGDM problems effectively. The model can be depicted as follows:
Step 1. Construct the decision matrixes ηλ =

[
ηλ

ij

]
m×n

, and utilize overall values of ηλ =
[
ηλ

ij

]
m×n

to η =
[
ηij
]

m×n by using equal (14) or (15);
Step 2. Compute the positive ideal solution (PIS) ϕ+ and the negative ideal solution (NIS) ϕ−;

ϕ+ =

{((
φL

j

)+
,
(

φM
j

)+
,
(

φU
j

)+)
,
((

ϕL
j

)+
,
(

ϕM
j

)+
,
(

ϕU
j

)+)
,
((

γL
j

)+
,
(

γM
j

)+
,
(

γU
j

)+)}
(22)

ϕ− =
{((

φL
j

)_
,
(

φM
j

)_
,
(

φU
j

)_)
,
((

ϕL
j

)_
,
(

ϕM
j

)_
,
(

ϕU
j

)_)
,
((

γL
j

)_
,
(

γM
j

)_
,
(

γU
j

)_)}
(23)

For benefit attribute⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)+
,
(

φM
j

)+
,
(

φU
j

)+)
,((

ϕL
j

)+
,
(

ϕM
j

)+
,
(

ϕU
j

)+)
,((

γL
j

)+
,
(

γM
j

)+
,
(

γU
j

)+)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
max

i

(
φL

ij

)
, max

i

(
φM

ij

)
, max

i

(
φU

ij

))
,(

min
i

(
ϕL

ij

)
, min

i

(
ϕM

ij

)
, min

i

(
ϕU

ij

))
,(

min
i

(
γL

ij

)
, min

i

(
γM

ij

)
, min

i

(
γU

ij

))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(24)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)−
,
(

φM
j

)−
,
(

φU
j

)−)
,((

ϕL
j

)−
,
(

ϕM
j

)−
,
(

ϕU
j

)−)
,((

γL
j

)−
,
(

γM
j

)−
,
(

γU
j

)−)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
min

i

(
φL

ij

)
, min

i

(
φM

ij

)
, min

i

(
φU

ij

))
,(

max
i

(
ϕL

ij

)
, max

i

(
ϕM

ij

)
, max

i

(
ϕU

ij

))
,(

max
i

(
γL

ij

)
, max

i

(
γM

ij

)
, max

i

(
γU

ij

))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(25)

For cost attribute⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)+
,
(

φM
j

)+
,
(

φU
j

)+)
,((

ϕL
j

)+
,
(

ϕM
j

)+
,
(

ϕU
j

)+)
,((

γL
j

)+
,
(

γM
j

)+
,
(

γU
j

)+)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
min

i

(
φL

ij

)
, min

i

(
φM

ij

)
, min

i

(
φU

ij

))
,(

max
i

(
ϕL

ij

)
, max

i

(
ϕM

ij

)
, max

i

(
ϕU

ij

))
,(

max
i

(
γL

ij

)
, max

i

(
γM

ij

)
, max

i

(
γU

ij

))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(26)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)−
,
(

φM
j

)−
,
(

φU
j

)−)
,((

ϕL
j

)−
,
(

ϕM
j

)−
,
(

ϕU
j

)−)
,((

γL
j

)−
,
(

γM
j

)−
,
(

γU
j

)−)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
max

i

(
φL

ij

)
, max

i

(
φM

ij

)
, max

i

(
φU

ij

))
,(

min
i

(
ϕL

ij

)
, min

i

(
ϕM

ij

)
, min

i

(
ϕU

ij

))
,(

min
i

(
γL

ij

)
, min

i

(
γM

ij

)
, min

i

(
γU

ij

))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(27)
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Step 3. Based on Equation (11) and the attribute weighting vector ωj, we can calculate the values
of χi and ψi which express the average and the worst group scores of ϕi.

χi =
n

∑
j=1

ωj

d

⎛⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)+
,
(

φM
j

)+
,
(

φU
j

)+)
,((

ϕL
j

)+
,
(

ϕM
j

)+
,
(

ϕU
j

)+)
,((

γL
j

)+
,
(

γM
j

)+
,
(

γU
j

)+)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

φL
ij, φM

ij , φU
ij

)
,(

ϕL
ij, ϕM

ij , ϕU
ij

)
,(

γL
ij, γM

ij , γU
ij

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠

d

⎛⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)+
,
(

φM
j

)+
,
(

φU
j

)+)
,((

ϕL
j

)+
,
(

ϕM
j

)+
,
(

ϕU
j

)+)
,((

γL
j

)+
,
(

γM
j

)+
,
(

γU
j

)+)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)−
,
(

φM
j

)−
,
(

φU
j

)−)
,((

ϕL
j

)−
,
(

ϕM
j

)−
,
(

ϕU
j

)−)
,((

γL
j

)−
,
(

γM
j

)−
,
(

γU
j

)−)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠

(28)

ψi = max
j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωj

d

⎛⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)+
,
(

φM
j

)+
,
(

φU
j

)+)
,((

ϕL
j

)+
,
(

ϕM
j

)+
,
(

ϕU
j

)+)
,((

γL
j

)+
,
(

γM
j

)+
,
(

γU
j

)+)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

φL
ij, φM

ij , φU
ij

)
,(

ϕL
ij, ϕM

ij , ϕU
ij

)
,(

γL
ij, γM

ij , γU
ij

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠

d

⎛⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)+
,
(

φM
j

)+
,
(

φU
j

)+)
,((

ϕL
j

)+
,
(

ϕM
j

)+
,
(

ϕU
j

)+)
,((

γL
j

)+
,
(

γM
j

)+
,
(

γU
j

)+)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((
φL

j

)−
,
(

φM
j

)−
,
(

φU
j

)−)
,((

ϕL
j

)−
,
(

ϕM
j

)−
,
(

ϕU
j

)−)
,((

γL
j

)−
,
(

γM
j

)−
,
(

γU
j

)−)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

where d is the normalized Hamming distance and 0 ≤ ωj ≤ 1 means the weight of attributes which
satisfies ∑n

i=1 ωi = 1.
Step 4. Compute the values of Ωi based on the results of χi and ψi, the calculating formula is

characterized as follows:

Ωi = α
(χi − χ+)

(χ− − χ+)
+ (1 − α)

(ψi − ψ+)

(ψ− − ψ+)
(30)

where
χ+ = min

i
χi, χ− = max

i
χi (31)

ψ+ = min
i

ψi, ψ− = max
i

ψi (32)

where α means the coefficient of decision making strategic. α > 0.5 depicts “the maximum
group utility”, α = 0.5 depicts equality and α < 0.5 depicts the minimum regret.

Step 5. To choose the best alternative in accordance with the values of Ωi, the alternative with
minimum value is the best choice.

4. Numerical Example

4.1. Calculating Steps Based on MCGDM Problems

In this section we present a numerical example to show potential evaluation of emerging
technology commercialization with TFNNs in order to illustrate the method proposed in this paper.
There is a panel with five possible emerging technology enterprises ϕi(i = 1, 2, 3, 4, 5) to select from.
The experts select four criteria to evaluate the five possible emerging technology enterprises: 1© c1

stands for the technical advancement; 2© c2 stands for the potential market and market risk; 3© c3

stands for the industrialization infrastructure, human resources and financial conditions; 4© c4 stands
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for the employment creation and the development of science and technology. The five possible
emerging technology enterprises ϕi(i = 1, 2, 3, 4, 5) are to be evaluated using the TFNNs with the
four criteria by three experts dλ(λ = 1, 2, 3) (criteria weight ω = (0.42, 0.13, 0.25, 0.30), experts weight
v = (0.35, 0.45, 0.20).), which are given in Tables 1–3.

Table 1. Triangular fuzzy neutrosophic numbers (TFNNs) evaluation matrix by d1.

c1 c2 c3 c4

ϕ1

⎧⎨⎩
(0.6, 0.8, 0.9),
(0.2, 0.3, 0.5),
(0.1, 0.3, 0.4)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.5, 0.7),
(0.4, 0.5, 0.6),
(0.2, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.6, 0.7),
(0.1, 0.2, 0.3),
(0.2, 0.3, 0.4)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.7, 0.9),
(0.5, 0.6, 0.8),
(0.2, 0.4, 0.6)

⎫⎬⎭
ϕ2

⎧⎨⎩
(0.5, 0.6, 0.7),
(0.4, 0.5, 0.6),
(0.3, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.2, 0.4, 0.6),
(0.3, 0.5, 0.7),
(0.2, 0.3, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.6, 0.9),
(0.6, 0.7, 0.8),
(0.5, 0.6, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.5, 0.7),
(0.3, 0.4, 0.6),
(0.5, 0.6, 0.8)

⎫⎬⎭
ϕ3

⎧⎨⎩
(0.3, 0.5, 0.6),
(0.2, 0.4, 0.5),
(0.5, 0.6, 0.8)

⎫⎬⎭
⎧⎨⎩

(0.2, 0.3, 0.4),
(0.4, 0.5, 0.6),
(0.6, 0.7, 0.8)

⎫⎬⎭
⎧⎨⎩

(0.7, 0.8, 0.9),
(0.3, 0.5, 0.6),
(0.2, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.5, 0.8),
(0.5, 0.7, 0.9),
(0.2, 0.3, 0.4)

⎫⎬⎭
ϕ4

⎧⎨⎩
(0.2, 0.5, 0.7),
(0.3, 0.6, 0.8),
(0.1, 0.2, 0.3)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.7, 0.8),
(0.3, 0.4, 0.5),
(0.2, 0.5, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.6, 0.8),
(0.3, 0.4, 0.5),
(0.2, 0.3, 0.6)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.7, 0.9),
(0.4, 0.6, 0.8),
(0.2, 0.3, 0.5)

⎫⎬⎭
ϕ5

⎧⎨⎩
(0.7, 0.8, 0.9),
(0.2, 0.3, 0.4),
(0.2, 0.3, 0.4)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.7, 0.8),
(0.4, 0.5, 0.8),
(0.2, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.6, 0.7),
(0.2, 0.4, 0.5),
(0.1, 0.4, 0.6)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.4, 0.9),
(0.2, 0.4, 0.5),
(0.1, 0.5, 0.6)

⎫⎬⎭
Table 2. TFNNs evaluation matrix by d2.

c1 c2 c3 c4

ϕ1

⎧⎨⎩
(0.5, 0.7, 0.8),
(0.1, 0.2, 0.4),
(0.1, 0.2, 0.3)

⎫⎬⎭
⎧⎨⎩

(0.2, 0.4, 0.6),
(0.3, 0.4, 0.5),
(0.1, 0.3, 0.4)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.5, 0.6),
(0.2, 0.4, 0.5),
(0.3, 0.5, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.5, 0.8),
(0.4, 0.5, 0.7),
(0.3, 0.4, 0.5)

⎫⎬⎭
ϕ2

⎧⎨⎩
(0.4, 0.5, 0.7),
(0.3, 0.6, 0.8),
(0.4, 0.6, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.4, 0.5),
(0.2, 0.4, 0.6),
(0.3, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.5, 0.7),
(0.5, 0.6, 0.9),
(0.3, 0.4, 0.6)

⎫⎬⎭
⎧⎨⎩

(0.2, 0.4, 0.6),
(0.2, 0.3, 0.4),
(0.1, 0.3, 0.5)

⎫⎬⎭
ϕ3

⎧⎨⎩
(0.4, 0.7, 0.9),
(0.3, 0.5, 0.8),
(0.6, 0.8, 0.9)

⎫⎬⎭
⎧⎨⎩

(0.1, 0.3, 0.5),
(0.2, 0.4, 0.7),
(0.5, 0.8, 0.9)

⎫⎬⎭
⎧⎨⎩

(0.2, 0.4, 0.5),
(0.3, 0.5, 0.7),
(0.2, 0.4, 0.6)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.5, 0.7),
(0.5, 0.8, 0.9),
(0.2, 0.3, 0.6)

⎫⎬⎭
ϕ4

⎧⎨⎩
(0.3, 0.4, 0.7),
(0.3, 0.7, 0.9),
(0.2, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.2, 0.8, 0.9),
(0.4, 0.5, 0.6),
(0.4, 0.5, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.7, 0.9),
(0.3, 0.4, 0.5),
(0.2, 0.3, 0.4)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.5, 0.6),
(0.2, 0.3, 0.4),
(0.1, 0.2, 0.3)

⎫⎬⎭
ϕ5

⎧⎨⎩
(0.5, 0.6, 0.7),
(0.1, 0.4, 0.5),
(0.2, 0.3, 0.6)

⎫⎬⎭
⎧⎨⎩

(0.6, 0.7, 0.9),
(0.4, 0.5, 0.7),
(0.3, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.6, 0.8),
(0.3, 0.4, 0.5),
(0.4, 0.5, 0.6)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.4, 0.7),
(0.1, 0.4, 0.5),
(0.1, 0.3, 0.6)

⎫⎬⎭
Table 3. TFNNs evaluation matrix by d3.

c1 c2 c3 c4

ϕ1

⎧⎨⎩
(0.5, 0.6, 0.8),
(0.1, 0.2, 0.6),
(0.1, 0.2, 0.4)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.4, 0.6),
(0.4, 0.5, 0.7),
(0.2, 0.3, 0.4)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.5, 0.8),
(0.3, 0.4, 0.5),
(0.3, 0.6, 0.8)

⎫⎬⎭
⎧⎨⎩

(0.4, 0.6, 0.8),
(0.4, 0.6, 0.7),
(0.3, 0.4, 0.5)

⎫⎬⎭
ϕ2

⎧⎨⎩
(0.4, 0.5, 0.6),
(0.5, 0.6, 0.7),
(0.5, 0.6, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.4, 0.6),
(0.2, 0.4, 0.5),
(0.3, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.5, 0.7),
(0.2, 0.6, 0.9),
(0.3, 0.4, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.4, 0.6),
(0.2, 0.3, 0.5),
(0.2, 0.3, 0.5)

⎫⎬⎭
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Table 3. Cont.

c1 c2 c3 c4

ϕ3

⎧⎨⎩
(0.5, 0.7, 0.8),
(0.4, 0.5, 0.7),
(0.7, 0.8, 0.9)

⎫⎬⎭
⎧⎨⎩

(0.2, 0.3, 0.5),
(0.2, 0.4, 0.5),
(0.5, 0.7, 0.9)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.4, 0.5),
(0.3, 0.4, 0.6),
(0.2, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.5, 0.7),
(0.5, 0.7, 0.9),
(0.2, 0.3, 0.4)

⎫⎬⎭
ϕ4

⎧⎨⎩
(0.3, 0.4, 0.5),
(0.3, 0.8, 0.9),
(0.1, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.2, 0.5, 0.8),
(0.4, 0.5, 0.9),
(0.4, 0.6, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.6, 0.9),
(0.3, 0.4, 0.6),
(0.2, 0.3, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.5, 0.7),
(0.2, 0.3, 0.5),
(0.1, 0.2, 0.4)

⎫⎬⎭
ϕ5

⎧⎨⎩
(0.5, 0.6, 0.8),
(0.1, 0.4, 0.6),
(0.2, 0.3, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.6, 0.7, 0.8),
(0.4, 0.5, 0.6),
(0.3, 0.4, 0.5)

⎫⎬⎭
⎧⎨⎩

(0.5, 0.6, 0.7),
(0.3, 0.4, 0.6),
(0.4, 0.5, 0.7)

⎫⎬⎭
⎧⎨⎩

(0.3, 0.4, 0.5),
(0.2, 0.4, 0.5),
(0.1, 0.3, 0.4)

⎫⎬⎭
Step 1. Utilize overall values of ηλ =

[
ηλ

ij

]
m×n

to η =
[
ηij
]

m×n using the TFNNWA operator; the

aggregation results are listed in Table 4 as follows.

Table 4. The aggregation values by TFNNWA operator.

c1 c2

ϕ1

⎧⎨⎩
(0.5376, 0.7243, 0.8431),
(0.1275, 0.2305, 0.4690),
(0.1000, 0.2305, 0.3514)

⎫⎬⎭
⎧⎨⎩

(0.2566, 0.4371, 0.6383),
(0.3514, 0.4522, 0.5700),
(0.1464, 0.3318, 0.4325)

⎫⎬⎭
ϕ2

⎧⎨⎩
(0.4371, 0.5376, 0.6822),
(0.3675, 0.5629, 0.7043),
(0.3782, 0.5206, 0.6222)

⎫⎬⎭
⎧⎨⎩

(0.2665, 0.4000, 0.5577),
(0.2305, 0.4325, 0.6106),
(0.2603, 0.3617, 0.5000)

⎫⎬⎭
ϕ3

⎧⎨⎩
(0.3894, 0.6413, 0.8134),
(0.2757, 0.4624, 0.6608),
(0.5805, 0.7234, 0.8637)

⎫⎬⎭
⎧⎨⎩

(0.1565, 0.3000, 0.4671),
(0.2549, 0.4325, 0.6201),
(0.5329, 0.7434, 0.8637)

⎫⎬⎭
ϕ4

⎧⎨⎩
(0.2665, 0.4371, 0.6677),
(0.3000, 0.6812, 0.8637),
(0.1366, 0.3138, 0.4181)

⎫⎬⎭
⎧⎨⎩

(0.3213, 0.7231, 0.8536),
(0.3617, 0.4624, 0.6105),
(0.3138, 0.5186, 0.7000)

⎫⎬⎭
ϕ5

⎧⎨⎩
(0.5819, 0.6862, 0.8117),
(0.1275, 0.3617, 0.4796),
(0.2000, 0.3000, 0.5020)

⎫⎬⎭
⎧⎨⎩

(0.5675, 0.7000, 0.8536),
(0.4000, 0.5000, 0.7112),
(0.2603, 0.4000, 0.5000)

⎫⎬⎭
c3 c4

ϕ1

⎧⎨⎩
(0.4371, 0.5376, 0.6851),
(0.1702, 0.3138, 0.4181),
(0.2603, 0.4337, 0.5911)

⎫⎬⎭
⎧⎨⎩

(0.3569, 0.6001, 0.8431),
(0.4325, 0.5527, 0.7335),
(0.2603, 0.4000, 0.5329)

⎫⎬⎭
ϕ2

⎧⎨⎩
(0.4195, 0.5376, 0.7958),
(0.4437, 0.6333, 0.8637),
(0.3587, 0.4610, 0.6531)

⎫⎬⎭
⎧⎨⎩

(0.2957, 0.4371, 0.6383),
(0.2305, 0.3318, 0.4820),
(0.2018, 0.3824, 0.5894)

⎫⎬⎭
ϕ3

⎧⎨⎩
(0.4474, 0.5915, 0.7153),
(0.3000, 0.4782, 0.6431),
(0.2000, 0.4000, 0.5428)

⎫⎬⎭
⎧⎨⎩

(0.3812, 0.5000, 0.7397),
(0.5000, 0.7434, 0.9000),
(0.2000, 0.3000, 0.4801)

⎫⎬⎭
ϕ4

⎧⎨⎩
(0.4671, 0.6486, 0.8725),
(0.3000, 0.4000, 0.5186),
(0.2000, 0.3000, 0.4820)

⎫⎬⎭
⎧⎨⎩

(0.4195, 0.5819, 0.7675),
(0.2549, 0.3824, 0.5331),
(0.1275, 0.2305, 0.3800)

⎫⎬⎭
ϕ5

⎧⎨⎩
(0.5000, 0.6000, 0.7500),
(0.2603, 0.4000, 0.5186),
(0.2462, 0.4624, 0.6188)

⎫⎬⎭
⎧⎨⎩

(0.3000, 0.4000, 0.7738),
(0.1464, 0.4000, 0.5000),
(0.1000, 0.3587, 0.5533)

⎫⎬⎭
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Step 2. Compute the values of ϕ+ (PIS) and ϕ− (NIS), for all benefit attributes and based on the
Formulas (24) and (25), we can obtain the (PIS) ϕ+ and (NIS) ϕ− as follows.

ϕ+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(0.5819, 0.7243, 0.8431), (0.1275, 0.2305, 0.4690), (0.1000, 0.2305, 0.3514)},
{(0.5675, 0.7231, 0.8536), (0.2305, 0.4325, 0.5700), (0.1464, 0.3318, 0.4325)},
{(0.5000, 0.6486, 0.8725), (0.1702, 0.3138, 0.4181), (0.2000, 0.3000, 0.4820)},
{(0.4195, 0.6001, 0.8431), (0.1464, 0.3318, 0.4820), (0.1000, 0.2305, 0.3800)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭

ϕ− =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(0.2665, 0.4371, 0.6677), (0.3675, 0.6812, 0.8637), (0.5805, 0.7234, 0.8637)},
{(0.1565, 0.3000, 0.4671), (0.4000, 0.5000, 0.7112), (0.5329, 0.7434, 0.8637)},
{(0.4195, 0.5376, 0.6851), (0.4437, 0.6333, 0.8637), (0.3587, 0.4624, 0.6531)},
{(0.2957, 0.4000, 0.6383), (0.5000, 0.7434, 0.9000), (0.2603, 0.4000, 0.5894)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Step 3. Based on Equation (11) and the attribute weighting vector ωj, calculate the values of χi

and ψi.
χ1 = 0.3101, χ2 = 0.6959, χ3 = 0.7621, χ4 = 0.3877, χ5 = 0.3039,

ψ1 = 0.1738, ψ2 = 0.2683, ψ3 = 0.2963, ψ4 = 0.2486, ψ5 = 0.1038.

Step 4. Compute the values of Ωi based on the results of χi and ψi; the calculating values are
listed as follows. (Let α = 0.6)

Ω1 = 0.1534, Ω2 = 0.8550, Ω3 = 1.0000, Ω4 = 0.4106, Ω5 = 0.0000.

Step 5. To choose the best alternative by rank the values of Ωi, the ranking of Ωi is Ω5 > Ω1 >

Ω4 > Ω2 > Ω3, and the best alternative is ϕ5.

4.2. Comparative Analyses

In this section, we compare our proposed extended TFNNs VIKOR model with the TFNNWA
and TFNNWG operators defined by Biswas [21].

Based on the values of Table 4 and attributes weighting vector ω = (0.42, 0.13, 0.25, 0.30)T , we can
utilize overall ηij to ηi by TFNNWA and TFNNWG operators.

Calculate results ηi by TFNNWA operator:

η1 = {(0.4720, 0.6616, 0.8270), (0.1835, 0.3051, 0.4956), (0.1413, 0.2884, 0.4196)}
η2 = {(0.4071, 0.5302, 0.7247), (0.2852, 0.4513, 0.6269), (0.2672, 0.4113, 0.5744)}
η3 = {(0.4064, 0.5970, 0.7779), (0.2930, 0.4935, 0.6851), (0.3026, 0.4654, 0.6354)}
η4 = {(0.3941, 0.6060, 0.8109), (0.2595, 0.4589, 0.6196), (0.1344, 0.2689, 0.4126)}
η5 = {(0.5302, 0.6414, 0.8251), (0.1500, 0.3602, 0.4843), (0.1508, 0.3246, 0.5081)}

Calculate results ηi by TFNNWG operator:

η1 = {(0.3854, 0.5761, 0.7590), (0.2812, 0.4078, 0.5965), (0.2060, 0.3674, 0.5071)}
η2 = {(0.3321, 0.4569, 0.6516), (0.3634, 0.5475, 0.7355), (0.2672, 0.4113, 0.5744)}
η3 = {(0.3238, 0.5054, 0.6977), (0.3755, 0.5954, 0.7831), (0.4438, 0.6137, 0.7741)}
η4 = {(0.3154, 0.5166, 0.7381), (0.3200, 0.5653, 0.7461), (0.1873, 0.3436, 0.4993)}
η5 = {(0.4336, 0.5449, 0.7733), (0.2185, 0.4286, 0.5624), (0.2096, 0.3963, 0.5793)}

Calculating the alternative scores s(ηi) by score functions of TFNNs as listed in Table 5.
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Table 5. Alternative scores s(ηi) by TFNNWA and TFNNWG operators.

TFNNWA Operator TFNNWG Operator

s(η1) = 0.6277, s(η2) = 0.5431,
s(η3) = 0.5299, s(η4) = 0.5961,

s(η5) = 0.6078.

s(η1) = 0.5692, s(η2) = 0.4928,
s(η3) = 0.4507, s(η4) = 0.5444,

s(η5) = 0.5546.

The ranking of alternatives by TFNNWA and TFNNWG operators are listed in Table 6.

Table 6. Rank of alternatives by TFNNWA and TFNNWG operators.

Order

TFNNWA ϕ1 > ϕ5 > ϕ4 > ϕ2 > ϕ3
TFNNWG ϕ1 > ϕ5 > ϕ4 > ϕ2 > ϕ3

TFNNs VIKOR ϕ5 > ϕ1 > ϕ4 > ϕ2 > ϕ3

Comparing the values of our proposed TFNNs VIKOR method with those of TFNNWA and
TFNNWG operators, the results are slightly different in their ranking of the alternatives and the best
alternatives are not same. The TFNNs VIKOR method can consider the conflicting attributes and can
be more reasonable and scientific in the application of MCGDM problems.

5. Conclusions

In our article, we proposed the TFNNs VIKOR method based on the fundamental theories of
TFNNs and the original VIKOR model. Firstly, we introduced the concepts, operation formulas
and the distance calculating method of TFNNs. Then we reviewed some aggregation operators of
TFNNs. Thereafter, the calculating steps of the VIKOR model for TFNNs MCGDM problems were
simply presented using our proposed method, which is more scientific and reasonable for considering
the conflicting attributes. Furthermore, a numerical example for potential evaluation of emerging
technology commercialization has been proposed to illustrate the new method and some comparisons
were also conducted to further illustrate the advantages of the new method.

In the future, our proposed TFNN VIKOR model can be applied to risk analysis,
MCGDM problems [46–57] and many other uncertain and fuzzy environments [58–74].
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Abstract: Since language is used for thinking and expressing habits of humans in real life,
the linguistic evaluation for an objective thing is expressed easily in linguistic terms/values. However,
existing linguistic concepts cannot describe linguistic arguments regarding an evaluated object in
two-dimensional universal sets (TDUSs). To describe linguistic neutrosophic arguments in decision
making problems regarding TDUSs, this study proposes a Q-linguistic neutrosophic variable set
(Q-LNVS) for the first time, which depicts its truth, indeterminacy, and falsity linguistic values
independently corresponding to TDUSs, and vector similarity measures of Q-LNVSs. Thereafter,
a linguistic neutrosophic multi-attribute decision-making (MADM) approach by using the presented
similarity measures, including the cosine, Dice, and Jaccard measures, is developed under Q-linguistic
neutrosophic setting. Lastly, the applicability and effectiveness of the presented MADM approach is
presented by an illustrative example under Q-linguistic neutrosophic setting.

Keywords: Q-linguistic neutrosophic variable set; vector similarity measure; cosine measure;
Dice measure; Jaccard measure; decision making

1. Introduction

Since language is used for thinking and expressing habits of humans in real life, the linguistic
evaluation for an objective thing is expressed easily in linguistic terms/values [1]. Hence, they were
applied to linguistic fuzzy reason [1] and linguistic decision-making (DM) problems [2–9]. Because of
linguistic uncertainty and hesitancy in the linguistic evaluation for an objective thing, there exist the
representations of interval/uncertain linguistic numbers or hesitant linguistic numbers. Hence, on the
one hand, interval/uncertain linguistic numbers were proposed and applied to (group) DM problems
in uncertain linguistic setting [10–14]. On the other hand, hesitant linguistic variables (LVs) and hesitant
uncertain LVs were presented and applied in (group) DM problems in hesitant (uncertain) linguistic
setting [15–19]. In addition, a linguistic cubic variable was put forward based on combining an interval
LV with a unique LV and used for DM problems in linguistic cubic setting [20,21]. Further, a linguistic
cubic hesitant fuzzy number/variable was presented to depict the hybrid information of its uncertain
linguistic argument and its hesitant linguistic argument and utilized for DM problems in linguistic
cubic hesitant fuzzy setting [22]. By combining a neutrosophic number with language, a neutrosophic
linguistic number and some weighted aggregation operators of neutrosophic linguistic numbers [23]
were introduced for neutrosophic linguistic number DM problems, and then the similarity measure
and expected value of hesitant neutrosophic linguistic numbers [24] were further presented for DM
problems with hesitant neutrosophic linguistic numbers.
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In real life environments, the truth, indeterminacy, and falsity linguistic arguments regarding an
objective thing are presented in a human’s thinking and expressing process and linguistic neutrosophic
variables/numbers (LNVs) were presented to depict truth, falsity, and indeterminacy linguistic degrees
independently [25]. Then, some aggregation operators of LNVs [25,26], cosine measures of LNVs [27],
and correlation coefficients of LNVs [28] were proposed, respectively, for DM problems in LNV setting.
Regarding the combination of a neutrosophic linguistic number and an LNV, linguistic neutrosophic
uncertain numbers and their weighted aggregation operators were presented for DM in uncertain
linguistic setting [29]. By the hybrid form of an interval LV (an uncertain linguistic argument) and a
single-valued LNV (an argument of confident degree), single-valued linguistic neutrosophic interval
LVs, and their weighted aggregation operators were proposed for DM along with uncertain/interval
linguistic arguments and their linguistic neutrosophic confident degrees [30]. Regarding hesitant
LNV environment, similarity measures between hesitant LNVs were presented by the least common
multiple cardinality and applied to hesitant linguistic neutrosophic DM problems [31]. By the hybrid
form of LNV [25] and linguistic cubic numbers [20], linguistic neutrosophic cubic numbers and their
aggregation operators were introduced for linguistic neutrosophic cubic DM problems [32,33].

However, the various linguistic concepts are all described in a unique universal set, and then in
some decision situations there exist the assessment problems of alternatives over two-dimensional
universal sets (TDUSs). For example, suppose a person would like to purchase a house in a group
of four houses (a set of four alternatives H = {H1, H2, H3, H4}). In his/her attractive evaluation
of houses, the price (x1), environment (x2), and traffic (x3) of the four houses are considered as a
universal set X = {x1, x2, x3}, and selecting two cities c1 and c2 are considered as another universal set
C = {c1, c2}. Obviously, the above various linguistic arguments cannot represent such an assessment
problem for each alternative Hj (j = 1, 2, 3, 4) over the TDUSs X = {x1, x2, x3} and C = {c1, c2} in
linguistic DM setting. Then, a Q-neutrosophic set and a Q-neutrosophic soft set were put forward
regarding TDUSs and applied to Q-neutrosophic soft DM problems [34]. Although they can express
and handle the assessment problems with TDUSs in neutrosophic DM environments, they cannot
carry out linguistic neutrosophic DM problems over TDUSs. To solve this problem, this study presents
a Q-linguistic neutrosophic variable set (Q-LNVS) for the first time to express the linguistic evaluation
problems of the truth, falsity, and indeterminacy over TDUSs from the predefined linguistic term set
(LTS). It then puts forward the vector similarity measures of Q-LNVSs, including the cosine, Dice,
and Jaccard measures of Q-LNVSs, and then establishes a multi-attribute DM approach of Q-LNVSs
by the vector similarity measures of Q-LNVs to solve linguistic neutrosophic DM problems along
with TDUSs. It is obvious that the proposed DM approach shows the advantage of carrying out the
linguistic neutrosophic DM problems regarding TDUSs, which existing linguistic neutrosophic DM
approaches [25–28] and Q-linguistic neutrosophic soft DM approaches [34] cannot solve.

The framework of this study is organized below. The second section proposes Q-LNVSs and
vector similarity measures between Q-LNVSs, including the cosine, Dice, and Jaccard measures of
Q-LNVSs. The third section develops a multi-attribute DM approach of Q-LNVSs by using the vector
similarity measures in Q-linguistic neutrosophic setting. An illustrative example and its sensitivity
analysis to weights are presented in the fourth section. The last section contains conclusions and
future study.

2. Vector Similarity Measures of Q-LNVSs

First, we present the concept of Q-LNVS to depict a linguistic neutrosophic evaluation problem
by the truth, falsity, and indeterminacy linguistic arguments over TDUSs in linguistic setting.
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Definition 1. Set X = {x1, x2, . . . , xn} and Q = {q1, q2, . . . , qm} as TDUSs and let LTS be S = {sl|l ∈ [0, g]},
where g + 1 is an odd cardinality. Then a Q-LNVS L in X and Q is defined by the following form:

L =

{ 〈
(xi, qj), st(xi, qj), su(xi, qj), sv(xi, qj)

〉∣∣xi ∈ X, qj ∈ Q,
st(xi, qj), si(xi, qj), s f (xi, qj) ∈ S, j = 1, 2, . . . , m; i = 1, 2, . . . , n

}

where st(xi, qj), su(xi, qj), sv(xi, qj) are the truth, indeterminacy, and falsity LVs, respectively, in TDUSs for t,
u, v ∈ [0, g].

Then, the basic linguistic element
〈
(xi, qj), st(xi, qj), su(xi, qj), sv(xi, qj)

〉
in L is simply denoted by

lij =
〈
(xi, qj), stij , suij , svij

〉
, which is called a Q-linguistic neutrosophic element (Q-LNE).

Example 1. Suppose a person would like to buy a house from a city. There is a set of two potential houses
H = {L1, L2} in two cities. Then, set their price (x1), environment (x2), and traffic (x3) as a universal set
X = {x1, x2, x3} and set the two cities as another universal set Q = {q1, q2}. Based on the predefined LTS
S = {s0 = extremely low, s1 = very low, s2 = low, s3 = slightly low, s4 = medium, s5 = slightly high, s6 = high,
s7 = very high, s8 = extremely high}, the two Q-LNE sets obtained from S are given as follows:

L1 = {<(x1, q1), s6, s1, s2>, <(x1, q2), s5, s2, s3>, <(x2, q1), s4, s3, s2>, <(x2, q2), s7, s1, s3>,
<(x3, q1), s6, s2, s1>, <(x3, q2), s6, s1, s1>},

L2 = {<(x1, q1), s3, s4, s5>, <(x1, q2), s4, s2, s1>, <(x2, q1), s4, s2, s2>, <(x2, q2), s5, s1, s2>,
<(x3, q1), s5, s2, s1>, <(x3, q2), s6, s3, s2>}.

In the following, we give the vector similarity measures between Q-LNVSs, including the cosine,
Dice, and Jaccard measures of Q-LNVSs.

Definition 2. Let TDUSs be X = {x1, x2, . . . , xn} and Q = {q1, q2, . . . , qp} and let l1
ij =

〈
(xi, qj), st1

ij
, su1

ij
, sv1

ij

〉
and l2

ij =

〈
(xi, qj), st2

ij
, su2

ij
, sv2

ij

〉
(j = 1, 2, . . . , p; i =1, 2, . . . , n) be two groups of Q-LNEs in two Q-LNVSs

L1 and L2 regarding the LTS S = {sl|l ∈ [0, g]}. Then, the cosine, Dice, and Jaccard measures of the Q-LNVSs
L1 and L2 are defined, respectively, as follows:

C(L1, L2) = s g∑
p
j=1 ∑n

i=1 (t1ij t2ij+u1
ijv2

ij+v1
ijv2

ij)√
∑

p
j=1 ∑n

i=1 [(t1ij)
2
+(u1

ij)
2
+(v1

ij)
2
]×
√

∑
p
j=1 ∑n

i=1 [(t2ij)
2
+(u2

ij)
2
+(v2

ij)
2
]

, (1)

D(L1, L2) = s 2g∑
p
j=1 ∑n

i=1 (t1ij t2ij+u1
ijv2

ij+v1
ijv2

ij)

∑
p
j=1 ∑n

i=1 [(t1ij)
2
+(u1

ij)
2
+(v1

ij)
2
]+∑

p
j=1 ∑n

i=1 [(t2ij)
2
+(u2

ij)
2
+(v2

ij)
2
]

, (2)

J(L1, L2) = s g∑
p
j=1 ∑n

i=1 (t1ij t2ij+u1
ijv2

ij+v1
ijv2

ij)

∑
p
j=1 ∑n

i=1 [(t1ij)
2
+(u1

ij)
2
+(v1

ij)
2
]+∑

p
j=1 ∑n

i=1 [(t2ij)
2
+(u2

ij)
2
+(v2

ij)
2
]−∑

p
j=1 ∑n

i=1 (t1ij t2ij+u1
ijv2

ij+v1
ijv2

ij)

. (3)

Obviously, the above cosine, Dice, and Jaccard measures satisfy the following properties:

(1) s0 ≤ C(L1, L2), D(L1, L2), J(L1, L2) ≤ sg;
(2) C(L1, L2) = C(L2, L1), D(L1, L2) = D(L2, L1), J(L1, L2) = J(L2, L1);
(3) C(L1, L2) = D(L1, L2) = J(L1, L2) = sg if and only if L1 = L2.

When the importance of elements xi (i = 1, 2, . . . , n) and qj (j = 1, 2, . . . , p) is taken into
account, the weight vectors corresponding to X = {x1, x2, . . . , xn} and Q = {q1, q2, . . . , qp} are given
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as w = {w1, w2, . . . , wn} and w = {w1, w2, . . . , wp}, respectively. Thus, the weighted cosine, Dice, and
Jaccard measures of L1 and L2 can be presented, respectively, as follows:

Cw(L1, L2) = s g∑
p
j=1 ωj∑n

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)√

∑
p
j=1 ωj∑n

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]×
√

∑
p
j=1 ωj∑n

i=1 wi [(t
2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]

, (4)

Dw(L1, L2) = s 2g∑
p
j=1 ωj∑n

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

∑
p
j=1 ωj∑n

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]+∑

p
j=1 ωj∑n

i=1 wi [(t
2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]

, (5)

Jw(L1, L2) = s g∑
p
j=1 ωj∑n

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

∑
p
j=1 ωj∑n

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]+∑

p
j=1 ωj∑n

i=1 wi [(t
2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]−∑

p
j=1 ωj∑n

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

. (6)

Example 2. Let us consider two Q-LNE sets L1 = {<(x1, q1), s6, s1, s2>, <(x1, q2), s5, s2, s3>, <(x2, q1), s4, s3,
s2>, <(x2, q2), s7, s1, s3>, <(x3, q1), s6, s2, s1>, <(x3, q2), s6, s1, s1>} and L2 = {<(x1, q1), s3, s4, s5>, <(x1, q2),
s4, s2, s1>, <(x2, q1), s4, s2, s2>, <(x2, q2), s5, s1, s2>, <(x3, q1), s5, s2, s1>, <(x3, q2), s6, s3, s2>} in the LTS
S = {s0, s1, s2, . . . , s8} with g = 8 and the TDUSs X = {x1, x2, x3} and Q = {q1, q2}. Suppose the weight vectors
for X = {x1, x2, x3} and Q = {q1, q2} are given as w = (0.4, 0.25, 0.35) and ω = (0.4, 0.6), respectively. Then,
we compute the measure values of Cw(L1, L2), Dw(L1, L2), Jw(L1, L2).

By using Equations (4)–(6), their calculational processes are shown as follows:

Cw(L1, L2) = s g∑2
j=1 ωj∑3

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)√

∑2
j=1 ωj∑3

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]×
√

∑2
j=1 ωj∑3

i=1 wi [(t
2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]

= s
8

⎧⎪⎨⎪⎩
0.4[0.4(6 × 3 + 1 × 4 + 2 × 5) + 0.25(4 × 4 + 3 × 2 + 2 × 2) + 0.35(6 × 5 + 2 × 2 + 1 × 1)]+
0.6[0.4(5 × 4 + 2 × 2 + 3 × 1) + 0.25(7 × 5 + 1 × 1 + 3 × 2) + 0.35(6 × 6 + 1 × 3 + 1 × 2)]

⎫⎪⎬⎪⎭√√√√√√
⎧⎪⎨⎪⎩

0.4[0.4(62 + 12 + 22) + 0.25(42 + 32 + 22) + 0.35(62 + 22 + 12)]+

0.6[0.4(52 + 22 + 32) + 0.25(72 + 12 + 32) + 0.35(62 + 12 + 12)]

⎫⎪⎬⎪⎭×

√√√√√√
⎧⎪⎨⎪⎩

0.4[0.42(32 + 42 + 52) + 0.25(42 + 22 + 22) + 0.35(52 + 22 + 12)]+

0.6[0.42(42 + 22 + 12) + 0.25(52 + 12 + 22) + 0.35(62 + 32 + 22)]

⎫⎪⎬⎪⎭
= s7.0913,

Dw(L1, L2) = s 2g∑2
j=1 ωj∑3

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

∑2
j=1 ωj∑3

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]+∑2

j=1 ωj∑3
i=1 wi [(t

2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]

= s
2×8

⎧⎪⎨⎪⎩
0.4[0.4(6 × 3 + 1 × 4 + 2 × 5) + 0.25(4 × 4 + 3 × 2 + 2 × 2) + 0.35(6 × 5 + 2 × 2 + 1 × 1)]+
0.6[0.4(5 × 4 + 2 × 2 + 3 × 1) + 0.25(7 × 5 + 1 × 1 + 3 × 2) + 0.35(6 × 6 + 1 × 3 + 1 × 2)]

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
0.4[0.4(62 + 12 + 22) + 0.25(42 + 32 + 22) + 0.35(62 + 22 + 12)]+

0.6[0.4(52 + 22 + 32) + 0.25(72 + 12 + 32) + 0.35(62 + 12 + 12)]

⎫⎪⎬⎪⎭+

⎧⎪⎨⎪⎩
0.4[0.42(32 + 42 + 52) + 0.25(42 + 22 + 22) + 0.35(52 + 22 + 12)]+

0.6[0.42(42 + 22 + 12) + 0.25(52 + 12 + 22) + 0.35(62 + 32 + 22)]

⎫⎪⎬⎪⎭
= s7.0777,

Jw(L1, L2) = s g∑2
j=1 ωj∑3

i=1 wi(t
1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

∑2
j=1 ωj∑3

i=1 wi [(t
1
ij)

2
+(u1

ij)
2
+(v1

ij)
2
]+∑2

j=1 ωj∑3
i=1 wi [(t

2
ij)

2
+(u2

ij)
2
+(v2

ij)
2
]−∑2

j=1 ωj∑3
i=1 wi(t

1
ij t2ij+u1

ijv2
ij+v1

ijv2
ij)

= s
8

⎧⎪⎨⎪⎩
0.4[0.4(6 × 3 + 1 × 4 + 2 × 5) + 0.25(4 × 4 + 3 × 2 + 2 × 2) + 0.35(6 × 5 + 2 × 2 + 1 × 1)]+
0.6[0.4(5 × 4 + 2 × 2 + 3 × 1) + 0.25(7 × 5 + 1 × 1 + 3 × 2) + 0.35(6 × 6 + 1 × 3 + 1 × 2)]

⎫⎪⎬⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
0.4[0.4(62 + 12 + 22) + 0.25(42 + 32 + 22) + 0.35(62 + 22 + 12)]+

0.6[0.4(52 + 22 + 32) + 0.25(72 + 12 + 32) + 0.35(62 + 12 + 12)]

}
{

0.4[0.42(32 + 42 + 52) + 0.25(42 + 22 + 22) + 0.35(52 + 22 + 12)]+

0.6[0.42(42 + 22 + 12) + 0.25(52 + 12 + 22) + 0.35(62 + 32 + 22)]

}

−
{

0.4[0.4(6 × 3 + 1 × 4 + 2 × 5) + 0.25(4 × 4 + 3 × 2 + 2 × 2) + 0.35(6 × 5 + 2 × 2 + 1 × 1)]+
0.6[0.4(5 × 4 + 2 × 2 + 3 × 1) + 0.25(7 × 5 + 1 × 1 + 3 × 2) + 0.35(6 × 6 + 1 × 3 + 1 × 2)]

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= s6.3460,

Obviously, the above vector measure values still belong to the LTS S.

3. DM Approach Based on the Vector Similarity Measures

This section proposes a Q-linguistic neutrosophic multi-attribute DM approach based on the Dice,
cosine, and Jaccard measures (the three vector measures) of Q-LNVSs in Q-LNVS setting.
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Suppose there is a multi-attribute DM problem, in which L = {L1, L2, . . . , Lm} is denoted by a set
of m alternatives. Then, TDUSs (two kinds of attribute sets) are specified as X = {x1, x2, . . . , xn}
and Q = {q1, q2, . . . , qp}, respectively, and then their corresponding weigh vectors are given as
w = (w1, w2, ..., wn) and w = (w1, w2, ..., wp). Whereas, a decision maker is required to assess the
alternatives Lk (k = 1, 2, . . . , m) on the attributes xi (i = 1, 2, . . . , n) and qj (j = 1, 2, . . . , p) by
Q-LNEs regarding the given LTS S = {sl|l ∈ [0, g]} with the odd cardinality g + 1. In the assessment
process, the decision maker gives the truth, falsity, and indeterminacy linguistic values for xi and
qj on an alternative Lk by corresponding linguistic terms in S, which are constructed as a Q-LNE

lk
ij =

〈
(xi, qj), s

tk
ij
, s

uk
ij
, s

vk
ij

〉
(j = 1, 2, . . . , p; i = 1,2, . . . , n; k = 1, 2, . . . , m). Hence, all the Q-LNEs

provided by the decision maker can be composed of a decision matrix of Q-LNEs L =
(

lk
ij

)
m×nq

.

Thus, the proposed DM method using the vector similarity measures of Q-LNVSs is applied to
the multi-attribute DM problem with Q-LNVS information. Whereas, the DM steps are depicted in
detail below:

Step 1: Since l∗ij =

〈
(xi, qj), st∗ij

, su∗
ij
, sv∗ij

〉
=

〈〈
(xi, qj), max

k

(
s

tk
ij

)
, min

k

(
s

uk
ij

)
, min

k

(
s

vk
ij

)〉〉
is an

ideal Q-LNE as the best Q-LNE, we can establish the following ideal Q-LNVS:

L∗ =
{〈

(xi, qj), st∗ij
, su∗

ij
, sv∗ij

〉∣∣∣∣xi ∈ X, qj ∈ Q, k = 1, 2, . . . , m, j = 1, 2, . . . , p, i = 1, 2, . . . , n
}

. (7)

Step 2: By applying Equations (4)–(6), the cosine/Dice/Jaccard measure between Lk (k = 1, 2, . . . , m)
and L* is given by using the following formula:

Cw(Lk, L∗) = s g∑
p
j=1 ωj∑n

i=1 wi(t
k
ij t∗ij+uk

ijv∗ij+vk
ijv∗ij)√

∑
p
j=1 ωj∑n

i=1 wi [(t
k
ij)

2
+(uk

ij)
2
+(vk

ij)
2
]×
√

∑
p
j=1 ωj∑n

i=1 wi [(t
∗
ij)

2+(u∗ij)
2+(v∗ij)

2 ]

, (8)

or
Dw(Lk, L∗) = s 2×g∑

p
j=1 ω2

j ∑n
i=1 w2

i (t
k
ij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

∑
p
j=1 ω2

j ∑n
i=1 w2

i [(t
k
ij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑

p
j=1 ω2

j ∑n
i=1 w2

i [(t
∗
ij)

2+(u∗ij)
2+(v∗ij)

2 ]

, (9)

or

Jw(Lk, L∗) = s g∑
p
j=1 ωj∑n

i=1 wi(t
k
ij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

∑
p
j=1 ωj∑n

i=1 wi [(t
k
ij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑

p
j=1 ωj∑n

i=1 wi [(t
∗
ij)

2+(u∗ij)
2+(v∗ij)

2 ]−∑
p
j=1 ωj∑n

i=1 wi(t
k
ij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

(10)

Step 3: According to the linguistic values of the vector similarity measures, the alternatives are ranked
and the best alternative Lk∗ is chosen regarding the biggest linguistic value for X and Q.

Step 4: Based on xj ∈ X (j =1, 2, . . . , p) or qi ∈ Q (i =1, 2, . . . , n), we need to calculate the measure
values between Lk∗

(
xi, qj

)
and L∗(xi, qj

)
:

C
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s g∑n

i=1 (tkij t∗ij+uk
ijv∗ij+vk

ijv∗ij)√
∑n

i=1 [(tkij)
2
+(uk

ij)
2
+(vk

ij)
2
]×
√

∑n
i=1 [(t∗ij)

2+(u∗ij)
2+(v∗ij)

2 ]

for j = 1, 2, . . . , p, (11)

or

C
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s g∑

p
j=1 (tkij t∗ij+uk

ijv∗ij+vk
ijv∗ij)√

∑
p
j=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]×
√

∑
p
j=1 [(t∗ij)

2+(u∗ij)
2+(v∗ij)

2 ]

for i = 1, 2, . . . , n; (12)

D
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s 2g∑n

i=1 (tkij t∗ij+uk
ijv∗ij+vk

ijv∗ij)

∑n
i=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑n

i=1 [(t∗ij)
2+(u∗ij)

2+(v∗ij)
2 ]

for j = 1, 2, . . . , p, (13)
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or

D
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s 2g∑

p
j=1 (tkij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

∑
p
j=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑

p
j=1 [(t∗ij)

2+(u∗ij)
2+(v∗ij)

2 ]

for i = 1, 2, . . . , n; (14)

J
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s g∑n

i=1 (tkij t∗ij+uk
ijv∗ij+vk

ijv∗ij)

∑n
i=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑n

i=1 [(t∗ij)
2+(u∗ij)

2+(v∗ij)
2 ]−∑n

i=1 (tkij t∗ij+uk
ijv∗ij+vk

ijv∗ij)

for j = 1, 2, . . . , p, (15)

or

J
(

Lk∗(xi, qj), L∗(xi, qj)
)
= s g∑

p
j=1 (tkij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

∑
p
j=1 [(tkij)

2
+(uk

ij)
2
+(vk

ij)
2
]+∑

p
j=1 [(t∗ij)

2+(u∗ij)
2+(v∗ij)

2 ]−∑
p
j=1 (tkij t∗ij+uk

ijv∗ij+vk
ijv∗ij)

for i = 1, 2, . . . , n. (16)

Step 5: According to the linguistic values of C
(

Lk∗(xi, qj), L∗(xi, qj)
)

or D
(

Lk∗(xi, qj), L∗(xi, qj)
)

or
J
(

Lk∗(xi, qj), L∗(xi, qj)
)

for X or Q (depending on some actual situation), we can determine the
best one xi* or qj* corresponding to the biggest linguistic value.

Step 6: End.

4. Illustrative Example and Sensitivity Analysis to Weights

4.1. Illustrative Example

Suppose a person would like to buy a house in one of two cities. There are four potential houses
(alternatives) of Lk (k = 1, 2, 3, 4) in two cities. Then, set their price (x1), environment (x2), and traffic
(x3) as a universal set X = {x1, x2, x3} and set the two cities as another universal set Q = {q1, q2}. Thus,
the Q-LNEs can indicate the influence of both the three attributes of houses and the two cities on
his/her buying attractive degree of a house. Herewith, the two weigh vectors of X and Q are given
as w = (0.4, 0.25, 0.35) and w = (0.4, 0.6), respectively. Whereas, the alternative Lk (k = 1, 2, 3, 4) are
assessed over the TDUSs X = {x1, x2, x3} and Q = {q1, q2} from the given LTS S = {s0 = extremely low,
s1 = very low, s2 = low, s3 = slightly low, s4 = medium, s5 = slightly high, s6 = high, s7 = very high,
s8 = extremely high} with g = 8. In the assessment process, the decision maker/buyer can give the
truth, indeterminacy, and falsity values for xi and qj on an alternative Lk by corresponding linguistic

terms in S, and then establish Q-LNEs lk
ij =

〈
(xi, qj), s

tk
ij
, s

uk
ij
, s

vk
ij

〉
(j =1, 2; i = 1,2, 3; k = 1, 2, 3, 4), which

are constructed as the DM matrix of Q-LNEs:

L =

L1

L2

L3

L4

⎡⎢⎢⎢⎣
〈(x1, q1), s6, s2, s1〉 〈(x1, q2), s7, s2, s3〉 〈(x2, q1), s5, s2, s1〉 〈(x2, q2), s4, s1, s1〉 〈(x3, q1), s5, s2, s2〉 〈(x3, q2), s7, s2, s2〉
〈(x1, q1), s6, s1, s2〉 〈(x1, q2), s7, s1, s1〉 〈(x2, q1), s6, s1, s1〉 〈(x2, q2), s5, s1, s2〉 〈(x3, q1), s6, s1, s3〉 〈(x3, q2), s7, s2, s1〉
〈(x1, q1), s5, s2, s3〉 〈(x1, q2), s6, s2, s4〉 〈(x2, q1), s4, s1, s1〉 〈(x2, q2), s5, s2, s2〉 〈(x3, q1), s4, s2, s2〉 〈(x3, q2), s5, s2, s3〉
〈(x1, q1), s5, s1, s1〉 〈(x1, q2), s6, s3, s5〉 〈(x2, q1), s5, s3, s3〉 〈(x2, q2), s6, s2, s4〉 〈(x3, q1), s5, s1, s1〉 〈(x3, q2), s6, s2, s3〉

⎤⎥⎥⎥⎦.

Thus, the proposed multi-attribute DM approach can be used for this Q-linguistic neutrosophic
DM problem. The DM steps are depicted below:

Firstly, we establish the ideal alternative from the DM matrix L by the ideal Q-LNE set:

L∗ =
{〈

(x1, q1), s6, s1, s1
〉
,
〈
(x1, q2), s7, s1, s1

〉
,
〈
(x2, q1), s6, s1, s1

〉
,
〈
(x2, q2), s6, s1, s1

〉
,
〈
(x3, q1), s6, s1, s1

〉
,
〈
(x3, q2), s7, s2, s1

〉}
.

Then, by Equations (8)–(10), the measure results and ranking of the four alternatives are given in
Table 1.
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Table 1. Measure results and ranking of the four alternatives.

Measure Method Measure Value between Lk (k = 1, 2, 3, 4) and L* Ranking

Cw(Lk, L∗) s7.7472, s7.9088, s7.3465, s7.2437 L2 > L1 > L3 > L4
Dw(Lk, L∗) s7.7470, s7.9087, s7.3207, s7.2387 L2 > L1 > L3 > L4
Jw(Lk, L∗) s7.5095, s7.8194, s6.7478, s6.6097 L2 > L1 > L3 > L4

Based on Table 1, all the ranking orders are identical regarding the cosine, Dice, and Jaccard
measures. Then, the best alternative is L2.

Next, the measure values of Equations (11), (13), and (15) regarding Q, and the best city regarding
L2 are given in Table 2.

Table 2. Measure results regarding Q and the best city.

Measure Method Measure Result The Best City

C(L2(xi, q1), L∗(xi, q1)), C(L2(xi, q2), L∗(xi, q2)) s7.8409, s7.9457 q2
D(L2(xi, q1), L∗(xi, q1)), D(L2(xi, q2), L∗(xi, q2)) s7.8326, s7.9424 q2
J(L2(xi, q1), L∗(xi, q1)), J(L2(xi, q2), L∗(xi, q2)) s7.6721, s7.8857 q2

Lastly, the results based on Table 2 indicate that the buyer should buy the house L2 in the best city q2.

4.2. Sensitivity Analysis to Weights

To indicate the influence of the weights on ranking orders in the illustrative example, we consider
that the two weigh vectors of X and Q are given as w = (1/3, 1/3, 1/3) and w = (1/2, 1/2), respectively,
to analyze the sensitivity of the weights with respect to the ranking orders of the four alternatives.
In this case, by Equations (8)–(10) the measure results and ranking of the four alternatives are indicated
in Table 3.

Table 3. Measure results and ranking of the four alternatives with w = (1/3, 1/3, 1/3) and w = (1/2, 1/2).

Measure Method Measure Value between Lk (k = 1, 2, 3, 4) and L* Ranking

Cw(Lk, L∗) s7.7470, s7.8918, s7.3878, s7.2922 L2 > L1 > L3 > L4
Dw(Lk, L∗) s7.7430, s7.8917, s7.3448, s7.2892 L2 > L1 > L3 > L4
Jw(Lk, L∗) s7.5019, s7.7863, s6.7888, s6.6944 L2 > L1 > L3 > L4

In this case, there exists the same ranking order in Tables 1 and 3 regarding the cosine, Dice,
and Jaccard measures. Then, the best alternative is sill L2, which means the buyer should also buy
house L2 in the best city q2 based on Table 2. It is obvious that all the ranking orders imply the decision
robustness based on the cosine, Dice, and Jaccard measures regarding the change of weights in this
illustrative example, which also show no sensitivity of all the ranking orders with respect to the change
of the weights. In the actual DM applications, however, one of three vector measures can be selected
by decision makers’ preference or actual requirements.

However, existing various linguistic neutrosophic DM approaches [25–28] cannot handle the
DM problems in Q-LNVS setting; while our proposed DM method can carry out both the existing
DM problems with LNV information [25–28] and the DM problems with Q-LNVS information, which
shows its advantage in Q-LNVS setting because the LNV set is a special case of Q-LNVS under a
universal set. Furthermore, the existing Q-neutrosophic soft DM approach [34] cannot deal with the
DM problems with Q-LNVS information because the Q-neutrosophic soft set [34] cannot express
Q-linguistic neutrosophic information. Hence, our proposed Q-linguistic neutrosophic DM method
provides a new way for linguistic neutrosophic DM with TDUSs.
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5. Conclusions

This study presented the concept of Q-LNVS for the first time to describe the truth, falsity,
and indeterminacy linguistic arguments in TDUSs, and then the cosine, Dice, and Jaccard measures of
Q-LNVSs in vector space. Next, a Q-linguistic neutrosophic multi-attribute DM approach in Q-LNVS
setting was established by using the cosine, Dice, and Jaccard measures of Q-LNVSs to solve linguistic
neutrosophic DM problems regarding TDUSs. Lastly, the application of the developed DM approach
was given by an illustrative example in Q-LNVS setting. The decision results show that the established
multi-attribute DM approach of Q-LNVSs can solve linguistic neutrosophic DM problems regarding
TDUSs (two-dimensional attribute sets) in Q-LNVS setting, which indicates its main advantage and
contribution. Based on the first study, the three vector measures of Q-LNVSs will be further used for
medical diagnosis, data mining, and clustering analysis for future research in Q-LNVS setting.

Author Contributions: J.Y. proposed the Q-LNVS concept and the vector similarity measures; Z.F. and W.C.
gave the DM approach and the calculation and analysis; all the authors wrote the manuscript and revised the
final version.

Funding: This paper was supported by the National Natural Science Foundation of China (Nos. 61703280,
51872186).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning Part I. Inf. Sci.
1975, 8, 199–249. [CrossRef]

2. Herrera, F.; Herrera-Viedma, E.; Verdegay, L. A model of consensus in group decision making under linguistic
assessments. Fuzzy Sets Syst. 1996, 79, 73–87. [CrossRef]

3. Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under
linguistic information. Fuzzy Sets Syst. 2000, 115, 67–82. [CrossRef]

4. Xu, Z.S. A method based on linguistic aggregation operators for group decision making with linguistic
preference relations. Inf. Sci. 2004, 166, 19–30. [CrossRef]

5. Xu, Z.S. A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision
making with linguistic information. Group Decis. Negot. 2006, 15, 593–604. [CrossRef]

6. Merigó, J.M.; Casanovas, M.; Martínez, L. Linguistic aggregation operators for linguistic decision making
based on the Dempster-Shafer theory of evidence. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2010, 18, 287–304.
[CrossRef]

7. Xu, Y.J.; Merigó, J.M.; Wang, H.M. Linguistic power aggregation operators and their application to multiple
attribute group decision making. Appl. Math. Model. 2012, 36, 5427–5444. [CrossRef]

8. Merigó, J.M.; Casanovas, M.; Palacios-Marqués, D. Linguistic group decision making with induced
aggregation operators and probabilistic information. Appl. Soft Comput. 2014, 24, 669–678. [CrossRef]

9. Merigó, J.M.; Palacios-Marqués, D.; Zeng, S.Z. Subjective and objective information in linguistic multi-criteria
group decision making. Eur. J. Oper. Res. 2016, 248, 522–531. [CrossRef]

10. Xu, Z.S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision
making under uncertain linguistic environment. Inf. Sci. 2004, 168, 171–184. [CrossRef]

11. Xu, Z.S. Induced uncertain linguistic OWA operators applied to group decision making. Inf. Fusion 2006, 7,
231–238. [CrossRef]

12. Wei, G.W. Uncertain linguistic hybrid geometric mean operator and its application to group decision making
under uncertain linguistic environment. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 2009, 17, 251–267.
[CrossRef]

13. Park, J.H.; Gwak, M.G.; Kwun, Y.C. Uncertain linguistic harmonic mean operators and their applications to
multiple attribute group decision making. Computing 2011, 93, 47. [CrossRef]

14. Wei, G.W.; Zhao, X.F.; Lin, R.; Wang, H.J. Uncertain linguistic Bonferroni mean operators and their application
to multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [CrossRef]

15. Rodríguez, R.M.; Martínez, L.; Herrera, F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans.
Fuzzy Syst. 2012, 20, 109–119. [CrossRef]

339



Symmetry 2018, 10, 531

16. Rodríguez, R.M.; MartíNez, L.; Herrera, F. A group decision making model dealing with comparative
linguistic expressions based on hesitant fuzzy linguistic term sets. Inf. Sci. 2013, 241, 28–42. [CrossRef]

17. Lin, R.; Zhao, X.F.; Wei, G.W. Models for selecting an ERP system with hesitant fuzzy linguistic information.
J. Intell. Fuzzy Syst. 2014, 26, 2155–2165.

18. Zhu, B.; Xu, Z. Consistency measures for hesitant fuzzy linguistic preference relations. IEEE Trans. Fuzzy Syst.
2014, 22, 35–45. [CrossRef]

19. Wang, J.Q.; Wu, J.T.; Wang, J.; Zhang, H.; Chen, X. Interval-valued hesitant fuzzy linguistic sets and their
applications in multi-criteria decision-making problems. Inf. Sci. 2014, 288, 55–72. [CrossRef]

20. Ye, J. Multiple attribute decision-making method based on linguistic cubic variables. J. Intell. Fuzzy Syst.
2018, 34, 2351–2361. [CrossRef]

21. Lu, X.P.; Ye, J. Dombi aggregation operators of linguistic cubic variables for multiple attribute decision
making. Information 2018, 9, 188. [CrossRef]

22. Ye, J.; Cui, W.H. Multiple attribute decision-making method using linguistic cubic hesitant variables.
Algorithms 2018, 11, 135. [CrossRef]

23. Ye, J. Aggregation operators of neutrosophic linguistic numbers for multiple attribute group decision making.
SpringerPlus 2016, 5, 1691. [CrossRef] [PubMed]

24. Ye, J. Multiple attribute decision-making methods based on expected value and similarity measure of hesitant
neutrosophic linguistic numbers. Cogn. Comput. 2018, 10, 454–463. [CrossRef]

25. Fang, Z.B.; Ye, J. Multiple attribute group decision-making method based on linguistic neutrosophic numbers.
Symmetry 2017, 9, 111. [CrossRef]

26. Fan, C.X.; Ye, J.; Hu, K.L.; Fan, E. Bonferroni mean operators of linguistic neutrosophic numbers and their
multiple attribute group decision-making methods. Information 2017, 8, 107. [CrossRef]

27. Shi, L.L.; Ye, J. Cosine measures of linguistic neutrosophic numbers and their application in multiple attribute
group decision-making. Information 2017, 8, 117. [CrossRef]

28. Shi, L.L.; Ye, J. Multiple attribute group decision-making method using correlation coefficients between
linguistic neutrosophic numbers. J. Intell. Fuzzy Syst. 2018, 35, 917–925. [CrossRef]

29. Cui, W.H.; Ye, J.; Shi, L.L. Linguistic neutrosophic uncertain numbers and their multiple attribute group
decision-making method. J. Intell. Fuzzy Syst. 2018. [CrossRef]

30. Ye, J.; Cui, W.H. Operations and aggregation methods of single-valued linguistic neutrosophic interval
linguistic numbers and their decision making method. Information 2018, 9, 196. [CrossRef]

31. Cui, W.H.; Ye, J. Multiple-attribute decision-making method using similarity measures of hesitant linguistic
neutrosophic numbers regarding least common multiple cardinality. Symmetry 2018, 10, 330. [CrossRef]

32. Ye, J. Linguistic neutrosophic cubic numbers and their multiple attribute decision-making method.
Information 2017, 8, 110. [CrossRef]

33. Fan, C.X.; Ye, J. Heronian mean operator of linguistic neutrosophic cubic numbers and their multiple attribute
decision-making methods. Math. Probl. Eng. 2018, 2018, 4158264. [CrossRef]

34. Qamar, M.A.; Hassan, N. Q-Neutrosophic soft relation and its application in decision making. Entropy 2018,
20, 172. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

340



symmetryS S

Article

New Multigranulation Neutrosophic Rough Set
with Applications

Chunxin Bo 1, Xiaohong Zhang 2,* , Songtao Shao 1 and Florentin Smarandache 3

1 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
201640311001@stu.shmtu.edu.cn (C.B.); 201740310005@stu.shmtu.edu.cn (S.S.)

2 Department of Mathematics, Shaanxi University of Science & Technology, Xi’an 710021, China
3 Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA; smarand@unm.edu
* Correspondence: zhangxiaohong@sust.edu.cn or zhangxh@shmtu.edu.cn

Received: 3 September 2018; Accepted: 6 October 2018; Published: 2 November 2018

Abstract: After the neutrosophic set (NS) was proposed, NS was used in many uncertainty problems.
The single-valued neutrosophic set (SVNS) is a special case of NS that can be used to solve real-word
problems. This paper mainly studies multigranulation neutrosophic rough sets (MNRSs) and their
applications in multi-attribute group decision-making. Firstly, the existing definition of neutrosophic
rough set (we call it type-I neutrosophic rough set (NRSI) in this paper) is analyzed, and then
the definition of type-II neutrosophic rough set (NRSII), which is similar to NRSI, is given and
its properties are studied. Secondly, a type-III neutrosophic rough set (NRSIII) is proposed and
its differences from NRSI and NRSII are provided. Thirdly, single granulation NRSs are extended
to multigranulation NRSs, and the type-I multigranulation neutrosophic rough set (MNRSI) is
studied. The type-II multigranulation neutrosophic rough set (MNRSII) and type-III multigranulation
neutrosophic rough set (MNRSIII) are proposed and their different properties are outlined. We found
that the three kinds of MNRSs generate tcorresponding NRSs when all the NRs are the same. Finally,
MNRSIII in two universes is proposed and an algorithm for decision-making based on MNRSIII is
provided. A car ranking example is studied to explain the application of the proposed model.

Keywords: inclusion relation; neutrosophic rough set; multi-attribute group decision-making
(MAGDM); multigranulation neutrosophic rough set (MNRS); two universes

1. Introduction

Many theories have been applied to solve problems with imprecision and uncertainty. Fuzzy set
(FS) theories [1–3] use the degree of membership to solve the fuzziness. Rough set (RS) theories [4–7]
deal with uncertainty by lower and upper approximation (LUA). Soft set theories [8–10] deal with
uncertainty by using a parametrized set. However, all these theories have their own restrictions.
Smarandache proposed the concept of the neutrosophic set (NS) [11], which was a generalization of
the intuitionistic fuzzy set (IFS). To address real-world uncertainty problems, Wang et al. proposed the
single-valued neutrosophic set (SVNS) [12]. Many theories about neutrosophic sets were studied and
extended single-valued neutrosophic set [13–15]. Zhang et al. [16] analyzed two kinds of inclusion
relations of the NS and then proposed the type-3 inclusion relation of NS. The combinations of the
FS and RS are popular and produce many interesting results [17]. Broumi and Smarandache [18]
combined the RS and NS, then produced a rough NS and studied its qualities. Yang et al. [19] combined
the SVNS and RS, then produced the SVNRS (single-valued neutrosophic rough set) and studied
its qualities.

From the view point of granular computing, the RS uses upper and lower approximations
to solve uncertainty problems, shown by single granularity. However, with the complexity of
real-word problems, we often encounter multiple relationship concepts. Qian and Liang [20] proposed
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a multigranularity rough set (MGRS). Many scholars have generalized MGRS and acquired some
interesting consequences [21–26]. Zhang et al. [27] proposed non-dual MGRSs and investigated
their qualities.

Few articles have been published about the combination of NSs and multigranulation rough
sets. In this paper, we study three kinds of neutrosophic rough sets (NRSs) and multigranulation
neutrosophic rough sets (MNRSs) that are based on three kinds of inclusion relationships of NS
and corresponding union and intersection relationships [11,12,16]. Their different properties are
discussed. We found that MNRSs degenerate to corresponding NRSs when the NRs are the same.
Yang et al. [19] defined the NRSI and considered its properties. Bo et al. [28] proposed MNRSI and
discussed its properties. In this paper, we study NRSII and MNRSII. We also study NRSIII and
MNRSIII, which are based on a type-3 inclusion relationship and corresponding union and intersection
relationships. Finally, we use MNRSIII on two universes to solve multi-attribute group decision-making
(MAGDM) problems.

The structure of this article is as follows: In Section 2, some basic notions and operations of
NRSI and NRSII are introduced. In Section 3, the definition of NRSIII is proposed and its qualities are
investigated, and the differences between NRSI, NRSII, and NRSIII are illustrated using an example.
In Section 4, MNRSI and MNRSII are discussed. In Section 5, MNRSIII is proposed and its differences
from MNRSI and MNRSII are studied. In Section 6, MNRSIII on two universes is proposed and
an application to solve the MAGDM problem is outlined. Finally, Section 7 provides our conclusions
and outlook.

2. Preliminary

In this chapter, we look back at several basic concepts of type-I NRS, then propose the definition
and properties of type-II NRS.

Definition 1. [12] A single valued neutrosophic set A in X is denoted by:

A = {(x, TA(x), IA(x), FA(x))|x ∈ X }, (1)

where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X and satisfies the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
For convenience, “SVNS” is abbreviated to “NS” later. Here, NS(X) denotes the set of all SVNS in X.

Definition 2. [29] A neutrosophic relation (NR) is a neutrosophic fuzzy subset of X × Y, that is, ∀x ∈ X,
y ∈ Y,

R(x, y) = (TR, IR, FR), (2)

where TR: X × Y → [0, 1], IR: X × Y → [0, 1], and FR: X × Y → [0, 1] and satisfies 0 ≤ TR + IR + FR ≤ 3.
NR(X × Y) denotes all the NRs in X × Y.

Definition 3. [19] Suppose (U, R) is a neutrosophic approximation space (NAS). ∀A ∈ NS(U), the LUA of A,
denoted by R(A) and R(A), is defined as: ∀x ∈ U,

R(A) = ∩
y∈U

(Rc(x, y) ∪ A(y)), R(A) = ∪
y∈U

(R(x, y) ∩ A(y)). (3)

The pair
(

R(A), R(A)
)

is called the SVNRS of A. In this paper, we called it type-I neutrosophic rough set
(NRSI). Because the definition of NRSI is based on the type-1 operator of NS, the definition can be written as:

NRSI(A) = ∩1
y∈U

(Rc(x, y) ∪1 A(y)), NRSI(A) = ∪1
y∈U

(R(x, y) ∩1 A(y)). (4)

Proposition 1. [19] Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:
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(1) If A ⊆1 B, then NRSI(A) ⊆1 NRSI(B) and NRSI(A) ⊆1 NRSI(B).
(2) NRSI(A ∩1 B) = NRSI(A) ∩1 NRSI(B), NRSI(A ∪1 B) = NRSI(A) ∪1 NRSI(B).
(3) NRSI(A) ∪1 NRSI(B) ⊆1 NRSI(A ∪1 B), NRSI(A ∩1 B) ⊆1 NRSI(A) ∩1 NRSI(B).

According to the NRSI, we can get the definition and properties of NRSII, which is based on the
type-2 operator of NS.

Definition 4. Suppose (U, R) is an NAS. ∀A ∈ NS(U), the type-II LUA of A, is defined as:

NRSII(A) = ∩2
y∈U

(Rc(x, y) ∪2 A(y)), NRSII(A) = ∪2
y∈U

(R(x, y) ∩2 A(y)) (5)

The pair
(

NRSII(A), NRSII(A)
)

is called NRSII of A.

Proposition 2. Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:

(1) If A ⊆2 B, then NRSII(A) ⊆2 NRSII(B), NRSII(A) ⊆2 NRSII(B).
(2) NRSII(A ∩2 B) = NRSII(A) ∩2 NRSII(B), NRSII(A ∪2 B) = NRSII(A) ∪2 NRSII(B).
(3) NRSII(A) ∪2 NRSII(B) ⊆2 NRSII(A ∪2 B), NRSII(A ∩2 B) ⊆2 NRSII(A) ∩2 NRSII(B).

Definition 5. [22] Suppose A, B are two NSs, then the Hamming distance between A and B is defined as:

dN(A, B) =
n

∑
i=1

{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|}. (6)

3. Type-III NRS

In this chapter, we introduce a new NRS, type-III NRS (NRSIII). We provide the differences
between the three kinds of NRSs. The properties of NRSIII are also given.

Definition 6. Suppose (U, R) is an NAS. ∀A ∈ NS(U), the type-III LUA of A, is defined as:

NRSIII(A) = ∩3
y∈U

(Rc(x, y) ∪3 A(y)), NRSIII(A) = ∪3
y∈U

(R(x, y) ∩3 A(y)).

The pair
(

NRSIII(A), NRSIII(A)
)

is called NRSIII of A.

Proposition 3. Suppose (U, R) is an NAS. ∀A, B ∈ NS(U), we have:

(1) If A ⊆3 B, then NRSIII(A) ⊆3 NRSIII(B), NRSII I(A) ⊆3 NRSIII(B).
(2) NRSIII(A ∩3 B) ⊆3 NRSIII(A) ∩3 NRSIII(B), NRSII I(A) ∪3 NRSIII(B) ⊆3 NRSIII(A ∪3 B).
(3) NRSIII(A ∩3 B) ⊆3 NRSIII(A) ∩3 NRSIII(B), NRSII I(A) ∪3 NRSIII(B) ⊆3 NRSIII(A ∪3 B).

Proof. (1) Assume A ⊆3 B,
Case 1: If TA(x) < TB(x), FA(x) ≥ FB(x), then:

TNRSIII(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] ≤ ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSIII(B)(x)

FNRSIII(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] ≥ ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSIII(B)(x).
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Hence,
NRSIII(A) ⊆3 NRSIII(B).

Case 2: If TA(x) = TB(x), FA(x) > FB(x), then:

TNRSIII(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] = ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSIII(B)(x)

FNRSIII(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] ≥ ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSIII(B)(x).

Hence,
NRSIII(A) ⊆3 NRSIII(B).

Case 3: suppose TA(x) = TB(x), FA(x) = FB(x) and IA(x) ≤ IB(x), then:

TNRSIII(A)(x) = ∧
y∈U

[FR(x, y) ∨ TA(y)] = ∧
y∈U

[FR(x, y) ∨ TB(y)] = TNRSIII(B)(x)

FNRSIII(A)(x) = ∨
y∈U

[TR(x, y) ∧ FA(y)] = ∨
y∈U

[TR(x, y) ∧ FB(y)] = FNRSIII(B)(x)

INRSII I(A)(x) =

⎧⎪⎨⎪⎩
IA
(
yj
)
, Rc(x, yj

) ⊆3 A
(
yj
) ⊆3 A(yk), yk, yj ∈ U

IRc
(
x, yj

)
, A

(
yj
) ⊆3 Rc(x, yj

)
1, else

IMNRSIII
o(B)(x) =

⎧⎪⎨⎪⎩
IB
(
yj
)
, Ri

c(x, yj
) ⊆3 B

(
yj
) ⊆3 B(yk), yk, yj ∈ U

IRi
c
(
x, yj

)
, B

(
yj
) ⊆3 Ri

c(x, yj
)

1, else
.

Hence, INRSII I(A)(x) ≤ INRSII I(B)(x). So NRSIII(A) ⊆3 NRSIII(B).
Summing up the above, if A ⊆3 B, then NRSIII(A) ⊆3 NRSIII(B).
Similarly, we can get NRSIII(A) ⊆3 NRSIII(B).
(2) According the Definition 6, we have:

NRSIII(A ∩3 B) = ∩3
y∈U

[Rc(x, y) ∪3 (A ∩3 B)(y)]

⊆3

[
∩3

y∈U
(Rc(x, y) ∪3 A(y))

]
∩3

[
∩3

y∈U
(Rc(x, y) ∪3 B(y))

]
= NRSIII(A) ∩3 NRSIII(B).

Similarly,

NRSIII(A) ∪3 NRSIII(B) =

[
∩3

y∈U
(Rc(x, y) ∪3 A(y))

]
∪3

[
∩3

y∈U
(Rc(x, y) ∪3 B(y))

]
⊆3 ∩3

y∈U
[Rc(x, y) ∪3 (A ∪3 B)(y)]

= NRSIII(A ∪3 B).

(3) The proof is similar to that of Case 2. �

Example 1. Define NAS (U, R), where U = {x1, x2} and R is given in Table 1.

Table 1. A neutrosophic relation R.

R x1 x2

x1 (0.4, 0.6, 0.7) (0.2, 0.2, 0.9)
x2 (0.7, 0.1, 0.4) (0.8, 0.8, 0.6)
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Suppose A is an NS and A = {(x1, 0.8, 0.2, 0.1), (x2, 0.4, 0.9, 0.5). Then, by Definitions 3, 4 and 6,
we can get:

NRSI(A)(x1) = (0.8, 0.8, 0.2), NRSI(A)(x2) = (0.6, 0.2, 0.5),
NRSI(A)(x1) = (0.4, 0.6, 0.7), NRSI(A)(x2) = (0.7, 0.2, 0.4),

NRSII(A)(x1) = (0.8, 0.4, 0.2), NRSII(A)(x2) = (0.6, 0.9, 0.5),
NRSII(A)(x1) = (0.4, 0.2, 0.7), NRSII(A)(x2) = (0.7, 0.8, 0.4),
NRSIII(A)(x1) = (0.8, 1, 0.2), NRSIII(A)(x2) = (0.6, 0, 0.5),

NRSIII(A)(x1) = (0.4, 0.6, 0.7), NRSIII(A)(x2) = (0.7, 0.1, 0.4).

4. Type-I and Type-II MNRS

We have proposed a kind of multigranulation neutrosophic rough set [30] (we called it type-I
multigranulation neutrosophic rough set in this paper). MNRSI is based on a type-1 operator of NRs.
In this chapter, we define the type-II multigranulation neutrosophic rough set (MNRSII), which is
based on a type-2 operator of NRs.

Definition 7. [28] Suppose U is a non-empty finite universe, and Ri (1 ≤ i ≤ m) is a binary NR on U. We call
the tuple ordered set (U, Ri) the multigranulation neutrosophic approximation space (MNAS).

Definition 8. [28] Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-I optimistic LUA of A, represented by
MNRSI

o(A) and MNRSI
o
(A), is defined as:

MNRSI
o(A)(x) =

m∪1
i=1

(
∩1

y∈U
(Ri

c(x, y) ∪1 A(y))

)

MNRSI
o
(A)(x) =

m∩1
i=1

(
∪1

y∈U
(Ri(x, y) ∩1 A(y))

)
.

Then, A is named a definable NS when MNRSI
o(A) = MNRSI

o
(A). Alternatively, we name the pair(

MNRSI
o(A), MNRSI

o
(A)

)
an optimistic MNRSI.

Definition 9. [30] Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-I pessimistic LUA of A, represented
by MNRSI

p(A) and MNRSI
p
(A), is defined as:

MNRSI
p(A)(x) =

m∩1
i=1

(
∩1

y∈U
(Ri

c(x, y) ∪1 A(y))

)

MNRSI
p
(A)(x) =

m∪1
i=1

(
∪1

y∈U
(Ri(x, y) ∩1 A(y))

)
.

Similarly, A is named a definable NS when MNRSI
p(A) = MNRSI

p
(A). Alternatively, we name the

pair
(

MNRSI
p(A), MNRSI

p
(A)

)
a pessimistic MNRSI.

Definition 10. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-II optimistic LUA of A, represented by
MNRSII

o(A) and MNRSII
o
(A), is defined as:

MNRSII
o(A)(x) =

m∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

)

MNRSII
o
(A)(x) =

m∩2
i=1

(
∪2

y∈U
(Ri(x, y) ∩2 A(y))

)
.
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Then, A is named a definable NS when MNRSII
o(A) = MNRSII

o
(A). Alternatively, we name the pair(

MNRSII
o(A), MNRSII

o
(A)

)
an optimistic MNRSII.

Definition 11. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-II pessimistic LUA of A, represented by
MNRSII

p(A) and MNRSII
p
(A), is defined as:

MNRSII
p(A)(x) =

m∩2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

)

MNRSII
p
(A)(x) =

m∪2
i=1

(
∪2

y∈U
(Ri(x, y) ∩2 A(y))

)
.

Similarly, A is named a definable NS when MNRSII
p(A) = MNRSII

p
(A). Alternatively, we name the

pair
(

MNRSII
p(A), MNRSII

p
(A)

)
a pessimistic MNRSII.

Proposition 4. Suppose (U, Ri) is an MNAS. ∀A, B ∈ NS(U), then:

(1) MNRSII
o(A) = ∼ MNRSII

o
(∼ A), MNRSII

p(A) = ∼ MNRSII
p
(∼ A).

(2) MNRSII
o
(A) = ∼ MNRSII

o(∼ A), MNRSII
p
(A) = ∼ MNRSII

p(∼ A).
(3) MNRSII

o(A ∩2 B) = MNRSII
o(A) ∩2 MNRSII

o(B), MNRSII
p(A ∩2 B) = MNRSII

p(A) ∩2

MNRSII
p(B).

(4) MNRSII
o
(A ∪2 B) = MNRSII

o
(A) ∪2 MNRSII

o
(B), MNRSII

p
(A ∪2 B) = MNRSII

p
(A) ∪2

MNRSII
p
(B).

(5) A ⊆2 B ⇒ MNRSII
o(A) ⊆2 MNRSII

o(B), MNRSII
p(A) ⊆2 MNRSII

p(B) .

(6) A ⊆2 B ⇒ MNRSII
o
(A) ⊆2 MNRSII

o
(B), MNRSII

p
(A) ⊆2 MNRSII

p
(B) .

(7) MNRSII
o(A) ∪2 MNRSII

o(B) ⊆2 MNRSII
o(A ∪2 B), MNRSII

p(A) ∪2 MNRSII
p(B) ⊆2

MNRSII
p(A ∪2 B).

(8) MNRSII
o
(A ∩2 B) ⊆2 MNRSII

o
(A) ∩2 MNRSII

o
(B), MNRSII

p
(A ∩2 B) ⊆2 MNRSII

p
(A) ∩2

MNRSII
p
(B).

Proof. Equations (1), (2), (5), and (6) are obviously according to Definitions 10 and 11. Next, we will
prove Equations (3), (4), (7), and (8).

(3) By Definition 10,

MNRSII
o(A ∩2 B)(x) =

m∪2
i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 (A ∩2 B)(y))

)

=
n∪2

i=1

(
∩2

y∈U
((Ri

c(x, y) ∪2 A(y)) ∩ (Ri
c(x, y) ∪2 B(y)))

)

=

(
n∪2

i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 A(y))

))
∩2

(
n∪2

i=1

(
∩2

y∈U
(Ri

c(x, y) ∪2 B(y))

))
= MNRSII

o A(x) ∩2 MNRSII
oB(y).

Similarly, from Definition 11, we can get the following:

MNRSII
p(A ∩2 B) = MNRSII

p(A) ∩2 MNRSII
p(B).

(4) The proof is similar to that of Equation (3).
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(7) By Definition 10, we can get:

TMNRSII
o(A∪2B)(x) =

m
max
i=1

min
y∈U

{
max[FRi (x, y), (max(TA(y), TB(y)))]

}
=

m
max
i=1

min
y∈U

{
max[(max(FRi (x, y), TA(y))), (max(FRi (x, y), TB(y)))]

}
≥ max

{[
m

max
i=1

min
y∈U

(max(FRi (x, y), TA(y)))
]

,
[

m
max
i=1

min
y∈U

(max(FRi (x, y), TB(y)))
]}

= max
(

TMNRSII
o(A)(x), TMNRSII

o(B)(x)
)

.

IMNRSII
o(A∪2 B)(x) =

m
max
i=1

min
y∈U

{
max

[(
1 − IRi (x, y)

)
, (max(IA(y), IB(y)))

]}
=

m
max
i=1

min
y∈U

{
max

[(
max

((
1 − IRi (x, y)

)
, IA(y)

))
,
(
max

((
1 − IRi (x, y)

)
, IB(y)

))]}
≥ max

{[
m

max
i=1

min
y∈U

(
max

((
1 − IRi (x, y)

)
, IA(y)

))]
,
[

m
max
i=1

min
y∈U

(
max

((
1 − IRi (x, y)

)
, IB(y)

))]}
= max

(
IMNRSII

o(A)(x), IMNRSII
o(B)(x)

)
.

FMNRSII
o(A∪2B)(x) =

m
min
i=1

max
y∈U

{
min[TRi (x, y), (min(FA(y), FB(y)))]

}
=

m
min
i=1

max
y∈U

{
min[min(TRi (x, y), FA(y))], [min(TRi (x, y), FB(y))]

}
≤ min

{[
m

min
i=1

max
y∈U

(min(TRi (x, y), FA(y)))
]

,
[

m
min
i=1

max
y∈U

(min(TRi (x, y), FB(y)))
]}

= min
(

FMNRSII
o(A)(x), FMNRSII

o(B)(x)
)

.

Hence, MNRSII
o(A) ∪2 MNRSII

o(B) ⊆2 MNRSII
o(A ∪2 B).

Additionally, according to Definition 11, we can get MNRSII
p(A) ∪2 MNRSII

p(B) ⊆2

MNRSII
p(A ∪2 B).

(8) The proof is similar to that of Equation (7). �

Remark 1. Note that if the NRs are the same one, then the optimistic (pessimistic) MNRSII degenerates into
NRSII in Section 2.

5. Type-III MNRS

In this chapter, MNRSIII, which is based on a type-3 inclusion relation and corresponding union
and intersection relations, is proposed and their characterizations are provided.

Definition 12. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-III optimistic LUA of A, represented by
MNRSIII

o(A) and MNRSIII
o
(A), is defined as:

MNRSIII
o(A)(x) =

m∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

)

MNRSIII
o
(A)(x) =

m∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

)
.

Then, A is named a definable NS when MNRSIII
o(A) = MNRSIII

o
(A). Alternatively, we name the

pair
(

MNRSIII
o(A), MNRSIII

o
(A)

)
an optimistic MNRSIII.

Definition 13. Suppose (U, Ri) is an MNAS. ∀A ∈ NS(U), the type-III pessimistic LUA of A, represented by
MNRSIII

p(A) and MNRSIII
p
(A), is defined as:

MNRSIII
p(A)(x) =

m∩3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

)
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MNRSIII
p
(A)(x) =

m∪3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

)
.

Similarly, A is named a definable NS when MNRSIII
p(A) = MNRSIII

p
(A). Alternatively, we name

the pair
(

MNRSIII
p(A), MNRSIII

p
(A)

)
a pessimistic MNRSIII.

Proposition 5. Suppose (U, Ri) is an MNAS. ∀A, B ∈ NS(U), then:

(1) MNRSIII
o(A) =∼ MNRSIII

o
(∼ A), MNRSIII

p(A) =∼ MNRSIII
p
(∼ A).

(2) MNRSIII
o
(A) =∼ MNRSIII

o(∼ A), MNRSIII
p
(A) =∼ MNRSIII

p(∼ A).
(3) A ⊆3 B ⇒ MNRSIII

o(A) ⊆3 MNRSIII
o(B), MNRSIII

p(A) ⊆3 MNRSIII
p(B) .

(4) A ⊆3 B ⇒ MNRSIII
o
(A) ⊆3 MNRSIII

o
(B), MNRSIII

p
(A) ⊆3 MNRSIII

p
(B) .

(5) MNRSIII
o(A ∩3 B) ⊆3 MNRSIII

o(A) ∩3 MNRSIII
o(B), MNRSIII

p(A ∩3 B) ⊆3

MNRSIII
p(A) ∩3 MNRSIII

p(B).

(6) MNRSIII
o
(A) ∪3 MNRSIII

o
(B) ⊆3 MNRSIII

o
(A ∪3 B), MNRSIII

p
(A) ∪3 MNRSIII

p
(B) ⊆3

MNRSIII
p
(A ∪3 B).

(7) MNRSIII
o(A) ∪3 MNRSIII

o(B) ⊆3 MNRSIII
o(A ∪3 B), MNRSIII

p(A) ∪3 MNRSIII
p(B) ⊆3

MNRSIII
p(A ∪3 B).

(8) MNRSIII
o
(A ∩3 B) ⊆3 MNRSIII

o
(A) ∩3 MNRSIII

o
(B), MNRSIII

p
(A ∩3 B) ⊆3

MNRSIII
p
(A) ∩3 MNRSIII

p
(B).

Proof. Equations (1) and (2) can be directly derived from Definitions 12 and 13. We only provide the
proof of Equations (3)–(8).

(3) Suppose A ⊆3 B, then:
Case 1: If TA(x) < TB(x), FA(x) ≥ FB(x), then:

TMNRSIII
o(A)(x) =

m∨
i=1

∧
y∈U

[
FRi (x, y) ∨ TA(y)

] ≤ m∨
i=1

∧
y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSIII

o(B)(x)

FMNRSIII
o(A)(x) =

m∧
i=1

∨
y∈U

[
TRi (x, y) ∧ FA(y)

] ≥ m∧
i=1

∨
y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSIII

o(B)(x).

Hence, MNRSIII
o(A) ⊆3 MNRSIII

o(B).
Case 2: If TA(x) = TB(x), FA(x) > FB(x), then:

TMNRSIII
o(A)(x) =

m∨
i=1

∧
y∈U

[
FRi (x, y) ∨ TA(y)

]
=

m∨
i=1

∧
y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSIII

o(B)(x)

FMNRSIII
o(A)(x) =

m∧
i=1

∨
y∈U

[
TRi (x, y) ∧ FA(y)

] ≥ m∧
i=1

∨
y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSIII

o(B)(x).

Hence, MNRSIII
o(A) ⊆3 MNRSIII

o(B).
Case 3: suppose TA(x) = TB(x), FA(x) = FB(x) and IA(x) ≤ IB(x), then:

TMNRSIII
o(A)(x) =

m∨
i=1

∧
y∈U

[
FRi (x, y) ∨ TA(y)

]
=

m∨
i=1

∧
y∈U

[
FRi (x, y) ∨ TB(y)

]
= TMNRSIII

o(B)(x)

FMNRSIII
o(A)(x) =

m∧
i=1

∨
y∈U

[
TRi (x, y) ∧ FA(y)

] ≥ m∧
i=1

∨
y∈U

[
TRi (x, y) ∧ FB(y)

]
= FMNRSIII

o(B)(x)

IMNRSIII
o(A)(x) =

⎧⎪⎨⎪⎩
IA
(
yj
)
, Ri

c(x, yj
) ⊆3 A

(
yj
) ⊆3 A(yk), yk, yj ∈ U

IRi
c
(

x, yj
)
, A
(
yj
) ⊆3 Ri

c(x, yj
)

0, else
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IMNRSIII
o(B)(x) =

⎧⎪⎨⎪⎩
IB
(
yj
)
, Ri

c(x, yj
) ⊆3 B

(
yj
) ⊆3 B(yk), yk, yj ∈ U

IRi
c
(
x, yj

)
, B
(
yj
) ⊆3 Ri

c(x, yj
)

0, else
.

Hence, IMNRSIII
o(A)(x) ≤ IMNRSIII

o(B)(x). So, MNRSIII
o(A) ⊆3 MNRSIII

o(B).
Summing up the above, if A ⊆3 B, then MNRSIII

o(A) ⊆3 MNRSIII
o(B).

Similarly, we can get MNRSIII
p(A) ⊆3 MNRSIII

p(B).
(4) The proof is similar to that of Equation (3).
(5) From Definition 12, we have:

MNRSIII
o(A ∩3 B) =

m∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A(y) ∩3 B(y)))

)

⊆3
m∪3

i=1

(
∩3

y∈U
((Ri

c(x, y) ∪3 A(y)) ∩3 (Ri
c(x, y) ∪3 B(y)))

)

⊆3

(
m∪3

i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

))
∩3

(
m∪3

i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

))
= MNRSIII

o(A) ∩3 MNRSIII
o(B).

Similarly, from Definition 13, we can get MNRSIII
p(A ∩3 B) ⊆3 MNRSIII

p(A) ∩3 MNRSIII
p(B).

(6) From Definition 12, we have:

MNRSIII
o
(A) ∪3 MNRSIII

o
(B) =

(
m∩3

i=1

(
∪3

y∈U
(Ri(x, y) ∩3 A(y))

))
∪3

(
m∩3

i=1

(
∪3

y∈U
(Ri(x, y) ∩3 B(y))

))

⊆3
m∩3

i=1

(
∪3

y∈U
((Ri(x, y) ∩3 A(y)) ∪3 (Ri(x, y) ∩3 B(y)))

)

⊆3
m∩3

i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A(y) ∪3 B(y)))

)
= MNRSIII

o
(A ∪3 B).

Similarly, from Definition 13, we can get MNRSIII
p
(A ∪3 B) = MNRSIII

p
(A) ∪3 MNRSIII

p
(B).

(7) From Definition 12, we have:

MNRSIII
o(A ∪3 B) =

m∪3
i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A ∪3 B)(y))

)

=
m∪3

i=1

(
∩3

y∈U
(Ri

c(x, y) ∪3 (A(y) ∪3 B(y)))

)

⊇3
m∪3

i=1

(([
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

]
∪3

[
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

]))

=

(
m∪3

i=1

[
∩3

y∈U
(Ri

c(x, y) ∪3 A(y))

])
∪3

(
m∪3

i=1

[
∩3

y∈U
(Ri

c(x, y) ∪3 B(y))

])
= MNRSIII

o(A) ∪3 MNRSIII
o(B).

Hence, MNRSIII
o(A) ∪3 MNRSIII

o(B) ⊆3 MNRSIII
o(A ∪3 B).

Additionally, from Definition 13, we can get MNRSIII
p(A) ∪3 MNRSIII

p(B) ⊆3

MNRSIII
p(A ∪3 B).
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(8) From Definition 12, we have:

MNRSIII
o
(A ∩3 B) =

m∩3
i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A ∩3 B)(y))

)

=
m∩3

i=1

(
∪3

y∈U
(Ri(x, y) ∩3 (A(y) ∩3 B(y)))

)

⊆3
m∩3

i=1

([
∪2

y∈U
(Ri(x, y) ∩3 A(y))

]
∩3

[
∪3

y∈U
(Ri(x, y) ∩3 B(y))

])

=

(
m∩3

i=1

[
∪3

y∈U
(Ri(x, y) ∩3 A(y))

])
∩3

(
m∩3

i=1

[
∪3

y∈U
(Ri(x, y) ∩3 B(y))

])
= MNRSIII

o
(A) ∩3 MNRSIII

o
(B).

Hence, MNRSIII
o
(A ∩3 B) ⊆3 MNRSIII

o
(A) ∩3 MNRSIII

o
(B).

Similarly, from Definition 13, we can get MNRSIII
p
(A ∩3 B) ⊆3 MNRSIII

p
(A) ∩3 MNRSIII

p
(B).

�

Remark 2. Note that if the NRs are the same one, then the optimistic (pessimistic) MNRSIII degenerates into
NRSIII in Section 3.

6. Type-III MNRS in Two Universes with Its Applications

In this chapter, we propose the concept of MNRSIII in two universes and use it to deal with the
MAGDM problem.

Definition 14. [28] Suppose U, V are two non-empty finite universes, and Ri ∈ NS(U × V) (1 ≤ i ≤ m) is a
binary NR. We call (U, V, Ri) the MNAS in two universes.

Definition 15. Suppose (U, V, Ri) is an MNAS in two universes. ∀A ∈ NS(V) and x ∈ U, the type-III
optimistic LUA of A in (U, V, Ri), represented by MNRSIII

o(A) and MNRSIII
o
(A), is defined as:

MNRSIII
o(A)(x) =

m∪3
i=1

(
∩3

y∈V
(Ri

c(x, y) ∪3 A(y))

)

MNRSIII
o
(A)(x) =

m∩3
i=1

(
∪3

y∈V
(Ri(x, y) ∩3 A(y))

)
.

Then, A is named a definable NS in two universes when MNRSIII
o(A) = MNRSIII

o
(A). Alternatively,

we name the pair
(

MNRSIII
o(A), MNRSIII

o
(A)

)
an optimistic MNRSIII in two universes.

Definition 16. Suppose (U, V, Ri) is an MNAS in two universes. ∀A ∈ NS(V) and x ∈ U, the type-III
pessimistic LUA of A in (U, V, Ri), denoted by MNRSIII

p(A) and MNRSIII
p
(A), is defined as follows:

MNRSIII
p(A)(x) =

m∩3
i=1

(
∩3

y∈V
(Ri

c(x, y) ∪3 A(y))

)

MNRSIII
p
(A)(x) =

m∪3
i=1

(
∪3

y∈V
(Ri(x, y) ∩3 A(y))

)
.

Similarly, A is named a definable NS when MNRSIII
p(A) = MNRSIII

p
(A). Alternatively, we name

the pair
(

MNRSIII
p(A), MNRSIII

p
(A)

)
a pessimistic MNRSIII in two universes.
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Remark 3. Note that if the two domains are the same, then the optimistic (pessimistic) MNRSIII in two
universes degenerates into the optimistic (pessimistic) MNRSIII in a single universe in Section 5.

The MAGDM problem is becoming more and more generally present in our daily life. MAGDM
means to select or rank all the feasible alternatives in various criterions. There are many ways to solve
the MAGDM problem, but we use MNRS to solve it in this paper. Next, we give the basic description
of the considered MAGDM problem.

For the car-ranking question, suppose U = {x1, x2, . . . , xn} is the decision set and V = {y1, y2, . . . ,
ym} is the criteria set in which x1 represents “very popular”, x2 represents “popular”, x3 represents
“less popular”, . . . , xn represents “not popular”, y1 represents the vehicle type”, y2 represents the
size of the space, y3 represents the ride height, y4 represents quality, and . . . , ym represents length of
durability. Then, l selection experts make evaluations about the criteria sets according to their own
experiences. Here, the evaluations were shown by NRs. Next, we calculate the degree of popularity
for a given car. Therefore, we need to use MGNRS to solve the above problem. For the MAGDM
problem under a multigranulation neutrosophic environment, the optimistic lower approximation can
be regarded as an optimistic risk decision, and the optimistic upper approximation can be regarded
as an optimistic conservative decision. Additionally, the pessimistic lower approximation can be
regarded as a pessimistic risk decision and the pessimistic upper approximation can be regarded as
a pessimistic conservative decision. According to the distance of neutrosophic sets, we define the
difference function dN(A, B)(xi) = (1/3)(|TA(xi) − TB(xi)| + |IA(xi) − IB(xi)| + |FA(xi) − FB(xi)|). We
used the difference function to represent the distance of optimistic (pessimistic) upper and lower
approximation. The smaller the value of the distance is, the better the alternative xi is, because the
risk decision and the conservative decision are close. By comparing the distance value, all alternatives
can be ranked and we can choose the optimal alternative. In this paper, we only used three kinds of
optimistic upper and lower approximation to decision-making.

Next, we show the process of the above car-ranking question based on MGNRSs over two
universes. Let Rl ∈ NR(U × V) be NRs from U to V, where ∀(xi, yj) ∈ U × V, Rl(xi, yj) denotes the
degree of popularity for criteria set yj (yj ∈ V). Rl can be obtained according to experts’ experience.
Given a car A, according to the unconventional questionnaire (suppose there are three options—“like”,
“not like”, and “neutral” to choose for each of the criteria sets, and everyone can choose one or more
options), then we can get the popularity of every criterion as described by an NS A in the universe V
according to the questionnaire. By use of the following Algorithm 1, we can determine the degree of
popularity of the given car A.

Algorithm 1 Decision algorithm

Input Multigranulation neutrosophic decision information systems (U, V, R).
Output The degree of popularity of the given car.
Step 1 Computing three kinds of optimistic multigranulation LUA MNRSI

o(A), MNRSI
o
(A),

MNRSII
o(A), MNRSII

o
(A), MNRSIII

o(A), MNRSIII
o
(A).

Step 2 Calculate d(MNRSI
o(xi), MNRSI

o
(xi)), d(MNRSII

o(xi), MNRSII
o
(xi)) and

d(MNRSIII
o(xi), MNRSIII

o
(xi)).

Step 3 The best choice is to select xh (which means that the most welcome degree is xh) if
d(MNRSo(xh), MNRSo

(xh)) = mini∈{1,2,··· ,n}d(MNRSo(xi), MNRSo
(xi)).

Step 4 If h has two or more values, then each xh will be the best choice. In this case, the car may have two or
more popularities and each xk will be regarded as the most possible popularity; otherwise, we use other
methods to make a decision.

Next, we use an example to explain the algorithm.
Let U = {x1, x2, x3, x4} be the decision set, in which x1 denotes “very popular”, x2 denotes

“popular”, x3 denotes “less popular”, and x4 denotes “not popular”. Let V = {y1, y2, y3, y4, y5} be
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criteria sets, in which y1 denotes the vehicle type, y2 denotes the size of the space, y3 denotes the ride
height, y4 denotes quality, and y5 denotes length of durability.

Suppose that R1, R2, and R3 are given by three invited experts. They provide their evaluations for
all criteria yj with respect to decision set elements xi. The evaluation R1, R2, and R3 are NRs between
attribute set V and decision evaluation set U., that is., there are R1, R2, R3 ∈ NR(U × V).

Suppose three experts present their judgment (the neutrosophic relation R1, R2, and R3) for the
attribute and decision sets in Tables 2–4:

Table 2. Neutrosophic relation R1.

R1 y1 y2 y3 y4 y5

x1 (0.8, 0.6, 0.5) (0.2, 0.3, 0.9) (0, 0, 1) (0.7, 0.5, 0.6) (0, 0, 1)
x2 (0.6, 0.4, 0.6) (0.9, 0.3, 0.4) (1, 0, 0) (0, 0, 1) (0.3, 0.6, 0.7)
x3 (0.2, 0.5, 0.9) (0.6, 0.7, 0.5) (0.8, 0.7, 0.8) (0, 0, 1) (1, 0, 0)
x4 (0.6, 0.4, 0.7) (0, 0, 1) (0, 0, 1) (0.9, 0.8, 0.1) (0, 0, 1)

Table 3. Neutrosophic relation R2.

R2 y1 y2 y3 y4 y5

x1 (0.9, 0.3, 0.6) (0, 0, 1) (0, 0, 1) (0.5, 0.6, 0.5) (0.2, 0.3, 0.9)
x2 (0.3, 0.7, 0.8) (0.7, 0.5, 0.6) (0.9, 0.1, 0.1) (0, 0, 1) (0.4, 0.5, 0.8)
x3 (0.1, 0.6, 0.8) (0.3, 0.6, 0.5) (0.7, 0.3, 0.6) (0, 0, 1) (1, 0, 0)
x4 (0.7, 0.5, 0.6) (0, 0, 1) (0, 0, 1) (1, 0, 0) (0, 0, 1)

Table 4. Neutrosophic relation R3.

R3 y1 y2 y3 y4 y5

x1 (0.6, 0.9, 0.4) (0.1, 0.1, 0.8) (0.1, 0, 0.9) (0.8, 0.4, 0.8) (0, 0, 1)
x2 (0.5, 0.6, 0.6) (0.6, 0.2, 0.7) (1, 0, 0) (0, 0, 1) (0, 0, 1)
x3 (0.1, 0.4, 0.7) (0.2, 0.2, 0.7) (0.5, 0.7, 0.6) (0, 0, 1) (0.9, 0.1, 0.2)
x4 (0.6, 0.3, 0.4) (0, 0, 1) (0, 0, 1) (0.7, 0.5, 0.4) (0, 0, 1)

Suppose A is a car and each criterion in V is as follows:

A = {(y1, 0.9, 0.2, 0.2), (y2, 0.2, 0.7, 0.8), (y3, 0, 1, 0.3), (y4, 0.7, 0.6, 0.3), (y5, 0.1, 0.8, 0.9)}.

Then, we can calculate the three kinds of optimistic LUAs of A as follow:

MNRSI
o(A)(x1) = (0.8, 1, 0.3), MNRSI

o(A)(x2) = (0.1, 0.9, 0.6),
MNRSI

o(A)(x3) = (0.2, 0.8, 0.9), MNRSI
o(A)(x4) = (0.7, 1, 0.3),

MNRSI
o
(A)(x1) = (0.7, 0.6, 0.5), MNRSI

o
(A)(x2) = (0.3, 0.6, 0.3),

MNRSI
o
(A)(x3) = (0.2, 0.6, 0.8), MNRSI

o
(A)(x4) = (0.7, 0.5, 0.4),

MNRSII
o(A)(x1) = (0.8, 0.6, 0.3), MNRSII

o(A)(x2) = (0.1, 0.6, 0.6),
MNRSII

o(A)(x3) = (0.2, 0.6, 0.9), MNRSII
o(A)(x4) = (0.7, 0.6, 0.3),

MNRSII
o
(A)(x1) = (0.7, 0.4, 0.5), MNRSII

o
(A)(x2) = (0.3, 0.2, 0.3),

MNRSII
o
(A)(x3) = (0.2, 0.6, 0.8), MNRSII

o
(A)(x4) = (0.7, 0.2, 0.4),

MNRSIII
o(A)(x1) = (0.8, 0, 0.3), MNRSIII

o(A)(x2) = (0.1, 0, 0.6),
MNRSIII

o(A)(x3) = (0.2, 0.9, 0.9), MNRSIII
o(A)(x4) = (0.7, 0.6, 0.3),

MNRSIII
o
(A)(x1) = (0.7, 1, 0.5), MNRSIII

o
(A)(x2) = (0.3, 0, 0.3),

MNRSIII
o
(A)(x3) = (0.2, 0.7, 0.8) MNRSIII

o
(A)(x4) = (0.7, 0.5, 0.4).
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Therefore, we can get:

d(MNRSI
o(x1), MNRSI

o
(x1)) = 0.7/3, d(MNRSI

o(x2), MNRSI
o
(x2)) = 0.8/3,

d(MNRSI
o(x3), MNRSI

o
(x3)) = 0.1, d(MNRSI

o(x4), MNRSI
o
(x4)) = 0.2,

d(MNRSII
o(x1), MNRSII

o
(x1)) = 0.5/3, d(MNRSII

o(x2), MNRSII
o
(x2)) = 0.3,

d(MNRSII
o(x3), MNRSII

o
(x3)) = 0.1/3, d(MNRSII

o(x4), MNRSII
o
(x4)) = 0.5/3,

d(MNRSIII
o(x1), MNRSIII

o
(x1)) = 1.3/3, d(MNRSIII

o(x2), MNRSIII
o
(x2)) = 0.5/3,

d(MNRSIII
o(x3), MNRSIII

o
(x3)) = 0.1, d(MNRSIII

o(x4), MNRSIII
o
(x4)) = 0.2/3.

Thus, for the type-I and type-II MNRS, the optimistic best choice is to select x3, that is, this car
is less popular; for the type-III MNRS, the optimistic best choice is to select x4, that is, this car is
not popular.

7. Conclusions

NRS and MNRS are extensions of the Pawlak rough set theory. In this paper, we analysed the
NRSI and NRSII, we proposed model NRSIII, and used an example to outline the differences between
the three kinds of NRS. We gave the definition of MNRSIII, which is based on the type-3 operator
relation of NS, and considered their properties. Furthermore, we proposed MNRSIII in two universes
and we presented an algorithm of the MAGDM problem based on it.

In the future, we will be researching other types of fusions of MGRSs and NSs. We will also study
the applications of concepts in this paper to some algebraic systems (for example, pseudo-BCI algebras,
neutrosophic triplet groups, see [30,31]).
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Abstract: Single valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for
describing complex information, because of their advantage in describing the information completely,
accurately and comprehensively for decision-making problems. In the paper, a method based on
SVTNNs is proposed for dealing with multi-criteria group decision-making (MCGDM) problems.
Firstly, the new operations SVTNNs are developed for avoiding evaluation information aggregation
loss and distortion. Then the possibility degrees and comparison of SVTNNs are proposed from
the probability viewpoint for ranking and comparing the single valued trapezoidal neutrosophic
information reasonably and accurately. Based on the new operations and possibility degrees
of SVTNNs, the single valued trapezoidal neutrosophic power average (SVTNPA) and single
valued trapezoidal neutrosophic power geometric (SVTNPG) operators are proposed to aggregate
the single valued trapezoidal neutrosophic information. Furthermore, based on the developed
aggregation operators, a single valued trapezoidal neutrosophic MCGDM method is developed.
Finally, the proposed method is applied to solve the practical problem of the most appropriate
green supplier selection and the rank results compared with the previous approach demonstrate the
proposed method’s effectiveness.

Keywords: single valued trapezoidal neutrosophic number; multi-criteria group decision making;
possibility degree; power aggregation operators

1. Introduction

Multi-criteria decision-making (MCDM) problems are important issues in practice and many
MCDM methods have been proposed to deal with such issues. Due to the vagueness of human being
thinking and the increased complexity of the objects, there are always much uncertainty, incomplete,
indeterminate and inconsistent information in evaluating objects. Traditionally, vagueness information
is always described by fuzzy sets (FSs) [1] using the membership function, intuitionistic fuzzy sets
(IFSs) [2] using membership and non-membership functions and hesitant fuzzy sets (HFSs) [3] using
one/several possible membership degrees. Many fuzzy methods are proposed, for example, Medina [4]
extends the fuzzy soft set by Multi-adjoint concept lattices, Pozna & Precup [5] proposed the operator
and application to a fuzzy model, Jane et al. [6] proposed fuzzy S-tree for medical image retrieval
and Kumar & Jarial [7] proposed a hybrid clustering method based on an improved artificial bee
colony and fuzzy c-means algorithm. However, fuzzy sets cannot deal with the indeterminate

Symmetry 2018, 10, 590; doi:10.3390/sym10110590 www.mdpi.com/journal/symmetry355
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information and inconsistent information which exists commonly in complex MCDM problems.
As a generalization of the IFSs [2], neutrosophic sets (NSs) [8–10] are proposed to deal with the
uncertainty, incomplete, indeterminate and inconsistent information by using the truth-membership,
indeterminacy-membership and falsity-membership functions.

Due to the advantages of handling uncertainty, imprecise, incomplete, indeterminate and
inconsistent information existing in real world, NSs have attracted many researchers’ attentions
However NSs are proposed from the philosophical point of view, it is difficult to be directly applied in
real scientific and engineering areas without specific descriptions. Therefore, in accordance with the real
demand difference, three main subsets of NSs were proposed, namely single valued neutrosophic sets
(SVNSs) [11], interval neutrosophic sets (INSs) [12] and multi-valued neutrosophic set (MVNSs) [13].
Based on the aforementioned sets by specifying the NSs, many MCDM methods were developed,
which can be classified as three main aspects: aggregation operators, measures and the extension of
classic decision-making methods. These methods have been successfully applied in many areas, such as
medical diagnosis [14,15], medical treatment [16], neural networks [17], supplier selection [18,19] and
green product development [20].

With regard to aggregation operators of SVNSs, Liu and Wang [21] proposed a single-valued
neutrosophic normalized weighted Bonferroni mean operator, Liu et al. [22] proposed the generalized
neutrosophic operators, Sahin [23] developed the neutrosophic weighted operators. Considering real
situations, INSs is more suitable and flexible for describing incomplete information than SVNs.
Sun et al. [24] introduced the interval neutrosophic number Choquet integral operator, Ye [25]
proposed the interval neutrosophic number ordered weighted operators, Zhang et al. [26] proposed the
interval neutrosophic number weighted operators. All of these methods demonstrate the effectiveness.

In respect of measures, Sahin and Kucuk [27] proposed the subset-hood measure for SVNSs,
Ye [28–30] and Wu et al. [31] developed some measures of SVNSs including the weighted correlation
coefficient [28], cross-entropy [29,31], similarity measure [30]. Broumi and Smarandache proposed the
correlation coefficient [32] and cosine similarity measure [33] distance [34] of INSs, Ye [35] proposed
the similarity measures between INSs, Sahin and Karabacak [36] developed the inclusion measure for
INSs. All of these measures are verified by real cases and demonstrate the effectiveness as well.

In respect of the extension of classic decision-making methods, Zhang and Wu [19] developed an
extended TOPSIS method for the MCDM with incomplete weight information under a single valued
neutrosophic environment; Biswas et al. [37] developed the entropy based grey relational analysis
method to deal with MCDM problems in which all the criteria weight information described by
SVNSs is unknown; Peng et al. [38] developed the outranking approach for MCDM problems based
on ELECTRE method; and Sahin and Yigider [39] developed a MCGDM method based on the TOPSIS
method for dealing with supplier selection problems. Chi and Liu [40] developed the extended TOPSIS
method for deal MCDM problems based on INSs.

Peng et al. [13] firstly defined MVN and developed the approach for solving MCGDM problems
based on the multi-valued neutrosophic power weighted operators. Wang and Li [41] proposed the
Hamming distance between multi-valued neutrosophic numbers (MVNN) and the extended TODIM
method for dealing with MCDM problems. Wu et al. [42] proposed the novel MCDM methods based
on several cross-entropy measures of MVNSs.

However, these subsets of NSs cannot describe the assessment information with different
dimensions. For overcoming the shortcomings and improving the flexibility and practicality of these
sets, by extending the concept of trapezoidal intuitionistic fuzzy numbers (TrIFNs) [43], single valued
trapezoidal neutrosophic numbers (SVTNNs) [44] are proposed for improving the ability to describe
complex indeterminate and inconsistent information. Then, SVTNNs attract the attention of some
researchers on them as very useful tools on describing evaluation information. Based on SVTNNs,
Ye [44] developed the MCDM method on the basis of trapezoidal neutrosophic weighted arithmetic
averaging (TNWAA) operator or trapezoidal neutrosophic weighted geometric averaging (TNWGA)
operator. However, the correlation of trapezoidal numbers and three membership degrees has been
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ignored and the indeterminate-membership degree is regarded to be equal to falsity-membership
degree in these operators, which will lead to information distortion and loss. Meanwhile, it does
not take into account the information about the relationships among the assessment information
being aggregated, which always exists in the process of solving MCDM problems. To overcome
this shortcoming, motivated by the ideal of power aggregation operators [45,46], considering the
relationship among the information being aggregated and the possibility degree widely used as
a very useful tool to aggregate and rank uncertain data from the probability viewpoint, in this
paper we propose the possibility degrees of SVTNNs, single trapezoidal neutrosophic power average
(SVTNPA) and single valued trapezoidal neutrosophic power geometric (SVTNPG) operators to deal
with MCGDM problems. The prominent characteristics of these proposed operators are taking into
account relationship among the aggregation information and overcome the drawbacks of the existing
operator of SVTNNs. Then, we utilize these operators and possibility degrees to develop a novel single
valued trapezoidal neutrosophic MCGDM method.

The motivation and main attribution of the paper are presented as below:

(1) The novel operation laws of SVTNNs are conducted to overcome the lack of operation laws of
SVTNNs appeared in previous paper.

(2) Based on the novel operations of SVTNNs, the SVTNPA and SVTNPG operators are developed.
(3) Based on the concept of the possibility degree, the possibility degree of SVTNNs is defined

and presented.
(4) Based on possibility degree of SVTNNs, SVTNPA and SVTNPG operators, a novel method for

solving MCGDM problems under single trapezoidal neutrosophic environment is developed.

The rest of the paper is organized as follows. In Section 2, we introduce some basic concepts and
operators related to subsets of NS. In Section 3, we propose new operations, possibility degrees and
comparison of SVTNNs. SVTNPA and SVTNPG operators are developed in Section 4. The method
for solving MCGDM problems under single trapezoidal neutrosophic environment is developed in
Section 5. An illustrative example for selecting the most appropriate green supplier for Shanghai
General Motors Company is provided in Section 6. Meanwhile a comparison with other method
is presented to show the effectiveness of the proposed approach. Finally, conclusions are drawn
in Section 7.

2. Preliminaries

In this section, some basic concepts, definitions of SVTNNs and two aggregation operators are
introduced, which are laying groundwork of latter analysis.

2.1. NS and SVNS

Definition 1 ([14]). Let X be a space of points (objects), with a generic element in X denoted by x.
A NS A in X is characterized by three membership functions, namely truth-membership function TA(x),
indeterminacy-membership function IA(x) and falsity-membership function FA(x), where TA(x), IA(x) and
FA(x) are real standard or nonstandard subsets of ]−0, 1+[, i.e., TA(x) : X →]−0, 1+[ , IA(x) : X →]−0, 1+[
and FA(x) : X →]−0, 1+[ . Therefore, it is no restriction on the sum of TA(x), IA(x) and FA(x) and
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

The neutrosophic set needs to be specified from a technical point of view, otherwise it is difficult to
apply in the real scientific and engineering areas. Therefore, Wang et al. [13] proposed the concept SVNS
as an instance of neutrosophic set for easily operating and conveniently applying in practical issues.

Definition 2 ([13]). Let X be a space of points (objects). A SVNS A in X can be expressed as follows:

A = {x, 〈TA(x), IA(x), FA(x)〉|x ∈ X},
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where TA(x) ∈ [0, 1], IA(x) ∈ [0, 1] and FA(x) ∈ [0, 1].

Obviously, the sum of TA(x), IA(x) and FA(x) satisfies the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

2.2. The Trapezoidal Fuzzy Number and SVTNNs

Definition 3 ([43,47]). Let ã be a trapezoidal fuzzy number ã = (a1, a2, a3, a4) and a1 ≤ a2 ≤ a3 ≤ a4.
Then its membership function μã(x) : R → [0, 1] can be defined as follows:

μã(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x − a1)μã/(a2 − a1), a1 ≤ x < a2;
μã, a2 ≤ x ≤ a3;
(a4 − x)μã/(a4 − a3), a3 < x ≤ a4;
0, otherwise.

Because of the great validity and feasibility of trapezoidal fuzzy numbers and SVNSs in
decision-making problems, Ye [44] developed the SVTNNs by combining the two concepts.

Definition 4 ([44]). Let U be a space of points (objects). Then a SVTNN α can be represented as

α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉

whose truth-membership T(α), indeterminacy-membership I(α) and falsity-membership F(α) can be described
as follows:

T(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x − a1)T(α)/(a2 − a1), a1 ≤ x < a2;
T(α), a2 ≤ x ≤ a3;
(a4 − x)T(α)/(a4 − a3), a3 < x ≤ a4;
0, otherwise.

I(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x − a1)I(α)/(a2 − a1), a1 ≤ x < a2;
I(α), a2 ≤ x ≤ a3;
(a4 − x)I(α)/(a4 − a3), a3 < x ≤ a4;
0, otherwise.

F(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x − a1)F(α)/(a2 − a1), a1 ≤ x < a2;
F(α), a2 ≤ x ≤ a3;
(a4 − x)F(α)/(a4 − a3), a3 < x ≤ a4;
0, otherwise.

Especially, if a1 ≥ 0 and a4 > 0, then α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 becomes a positive
SVTNN. If I(α) = 1 − T(α)− F(α), then the SVTNN is a TrIFN. And if I(α) = 0, F(α) = 0, then the
SVTNN becomes a trapezoidal fuzzy number, that is α = 〈[a1, a2, a3, a4], T(α)〉.

Example 1. Let α1 = 〈[0.3, 0.4, 0.7, 0.8], (0.8, 0.2, 0.4)〉 be a SVTNN. Then its truth-membership T(α1),
indeterminacy-membership I(α1) and falsity-membership F(α1) can be obtained, respectively, as follows:

T(α1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8(x − 0.3), 0.3 ≤ x < 0.4;
0.8, 0.4 ≤ x ≤ 0.7;
8(0.8 − x), 0.7 < x ≤ 0.8;
0, otherwise.
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I(α1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(x − 0.3), 0.3 ≤ x < 0.4;
0.2, 0.4 ≤ x ≤ 0.7;
2(0.8 − x), 0.7 < x ≤ 0.8;
0, otherwise.

F(α1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4(x − 0.3), 0.3 ≤ x < 0.4;
0.4, 0.4 ≤ x ≤ 0.7;
4(0.8 − x), 0.7 < x ≤ 0.8;
0, otherwise.

2.3. PA and PG Operators

The power average (PA) operator was firstly proposed by Yager [45]; then, based on PA operator,
Xu and Yager [46] developed the power geometric (PG) operator.

Definition 5 ([45,46]). Let h̃ = {h1, h2, · · ·, hn} a collection of positive real numbers, then PA operator and
PG operator can be defined, respectively, as follows:

PA(h1, h2, · · ·, hn) =
n

∑
i=1

(1 + G(hi))hi

∑n
i=1(1 + G(hi))

PG(h1, h2, · · ·, hn) =
n

∏
i=1

(
hi

((1+G(hi))/∑n
i=1 (1+G(hi)))

)
where G(hi) = ∑n

j=1,j �=i Sup(hi, hj), i = 1, 2, · · ·, n. Sup(hi, hj) is the support for hi from hj, satisfying the
following properties:

(1) Sup(hi, hj) ∈ [0, 1].

(2) Sup(hi, hj) = Sup(hj, hi).

(3) If
∣∣hi − hj

∣∣ ≤ |a − b|, then Sup(hi, hj) ≥ Sup(a, b), where a and b are two positive real numbers.

3. New Operations and Comparison of SVTNNs

In this section, new operations and comparison method of SVTNNs are proposed for overcoming
the limitations in Reference [44] which can avoid information loss and distortion effectively.

3.1. The New Operations of SVTNNs

In order to aggregate different SVTNNs in decision-making process, Ye [44] defined the operations
of SVTNNs.

Definition 6 ([44]). Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β =

〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be two positive SVTNNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1,
0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1, ζ ≥ 0. Then the operations of SVTNNs can be defined as follows:

(1) α + β = 〈[a1 + b1, a2 + b2, a3 + b3, a4 + b4], (T(α) + T(β)− T(α)T(β), I(α)I(β), F(α)F(β))〉;
(2) αβ = 〈[a1b1, a2b2, a3b3, a4b4], (T(α)T(β), I(α) + I(β)− I(α)I(β), F(α) + F(β)− F(α)F(β))〉;
(3) ζα =

〈
[ζa1, ζa2, ζa3, ζa4],

(
1 − (1 − T(α))ζ , (I(α))ζ , (F(α))ζ

)〉
;

(4) αζ =
〈[

a1
ζ , a2

ζ , a3
ζ , a4

ζ
]
,
(
(T(α))ζ , 1 − (1 − I(α))ζ , 1 − (1 − F(α))ζ

)〉
;

However, there are some shortcomings in Definition 7.
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(1) The trapezoidal fuzzy numbers and three membership degrees of SVTNNs are considered as two
separate parts and operated individually in the operation α + β, which ignore the correlation
among them and cannot reflect the actual results.

Example 2. Let α1 = 〈[0.5, 0.6, 0.7, 0.8], (0, 0, 1)〉 and α2 = 〈[0.2, 0.3, 0.4, 0.5], (1, 0, 0)〉 be two SVTNNs.

α1 + α2 = 〈[0.5, 0.6, 0.7, 0.8], (0, 0, 1)〉+ 〈[0.2, 0.3, 0.4, 0.5], (1, 0, 0)〉 = 〈[0.7, 0.9, 1.1, 1.3], (1, 0, 0)〉;

This result is inaccurate since the falsity-membership of α1, the correlations among trapezoidal
fuzzy numbers and the membership degrees of α1 and α2 are not considered. Thus, the operations
would be unreasonable.

(2) The three membership degrees of SVTNNs are also operated as the trapezoidal fuzzy numbers in
the operation ζα, which can produce the repeat operation and make the result bias.

Example 3. Let α1 = 〈[0.03, 0.05, 0.07, 0.09], (0.3, 0.5, 0.5)〉 be a SVTNN, ζ = 10. Then the result ζα1 can
be obtained by using Definition 6.

10α1 = 〈[0.3, 0.5, 0.7, 0.9], (0.9718, 0.001, 0.001)〉

The three membership degrees of these SVTNNs are operated repeatedly which make the result
distort significantly and conflict with common sense.

For overcoming the limitations existing in the operations proposed by Ye [44], motivated by the
operations on triangular intuitionistic fuzzy numbers proposed by Wang et al. [48], new operations of
SVTNNs are defined as below.

Definition 7. Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β = 〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be
two positive SVTNNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1, ζ ≥ 0. Then the new
operations of SVTNNs can be defined as follows:

(1) neg(α) = 〈[1 − a4, 1 − a3, 1 − a2, 1 − a1], (T(α), I(α), F(α))〉;
(2) α ⊕ β =

〈
[a1 + b1, a2 + b2, a3 + b3, a4 + b4],

(
ϕ(α)T(α)+ϕ(β)T(β)

ϕ(α)+ϕ(β)
, ϕ(α)I(α)+ϕ(β)I(β)

ϕ(α)+ϕ(β)
,

ϕ(α)F(α)+ϕ(β)F(β)
ϕ(α)+ϕ(β)

)〉
, where ϕ(α) = a1+2a2+2a3+a4

6 , ϕ(β) = b1+2b2+2b3+b4
6 ;

(3) α ⊗ β = 〈[a1b1, a2b2, a3b3, a4b4], (T(α)T(β), I(α) + I(β)− I(α)I(β), F(α) + F(β)− F(α)F(β))〉;
(4) ζα = 〈[ζa1, ζa2, ζa3, ζa4], (T(α), I(α), F(α))〉;
(5) αζ =

〈[
a1

ζ , a2
ζ , a3

ζ , a4
ζ
]
,
(
(T(α))ζ , 1 − (1 − I(α))ζ , 1 − (1 − F(α))ζ

)〉
;

ζα, α ⊕ β, α ⊗ β and αζ do not appear alone in application due to the meaninglessness of their
results. Only in the aggregation process do α ⊕ β and/or α ⊗ β being combined with ζα and/or αζ

make sense.

Example 4. Let α1 = 〈[0.5, 0.6, 0.7, 0.8], (0, 0, 1)〉 and α2 = 〈[0.2, 0.3, 0.4, 0.5], (1, 0, 0)〉 be two SVTNNs,
ζ = 2, the following results can be obtained based on Definition 7.

(1) neg(α1) = 〈[0.5, 0.6, 0.8, 0.9], (0.4, 0.1, 0.5)〉;
(2) α1 ⊕ α2 = 〈[0.3, 0.5, 1.0, 1.2], (0.64, 0.22, 0.26)〉;
(3) α1 ⊗ α2 = 〈[0.02, 0.06, 0.24, 0.35], (0.32, 0.37, 0.55)〉;
(4) 2α1 = 〈[0.2, 0.4, 0.8, 1.0], (0.4, 0.1, 0.5)〉;
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(5) α1
2 = 〈[0.04, 0.09, 0.25, 0.36], (0.16, 0.19, 0.75)〉.

Compared with the operations proposed by Ye [44], the new operations of SVTNNs have some
excellent advantages on reflecting the effect of all truth, indeterminacy and falsity membership
degrees of SVTNNs on aggregation results and taking into account the correlation of the trapezoidal
fuzzy numbers and three membership degrees of SVTNNs, which can avoid information loss and
distortion effectively.

In terms of the corresponding operations of SVTNNs, the following theorem can be easily proved.

Theorem 1. Let α1 , α2, α3 be three SVTNNs and ζ ≥ 0. Then the following equations must be true and easy
to proof.

(1) α1 ⊕ α2 = α2 ⊕ α1;
(2) (α1 ⊕ α2)⊕ α3 = α1 ⊕ (α2 ⊕ α3);
(3) α1 ⊗ α2 = α2 ⊗ α1;
(4) (α1 ⊗ α2)⊗ α3 = α1 ⊗ (α2 ⊗ α3);
(5) ζα1 ⊕ ζα2 = ζ(α2 ⊕ α1) ;
(6) (α2 ⊗ α1)

τ = α1
τ ⊗ α2

τ .

3.2. The Possibility Degree

The possibility degree, which is proposed from the probability viewpoint, is a very useful tool to
rank uncertain data reasonably and accurately.

Definition 8 ([49,50]). Let y = [y1, y2] ⊆ [0, 1] and z = [z1, z2] ⊆ [0, 1] be two real number intervals
with uniform probability distribution, the probability y ≥ z can be represented as p(y ≥ z), which exists the
following properties:

(1) 0 ≤ p(y ≥ z) ≤ 1.
(2) p(y ≥ z) + p(z ≥ y) = 1.
(3) If y = z, then p(y ≥ z) = p(z ≥ y) = 0.5.
(4) If ξ is an arbitrary interval or number, p(y ≥ z) ≥ 0.5, p(z ≥ ξ) ≥ 0.5, then p(y ≥ ξ) ≥ 0.5.
(5) If min(y) > max(z), then p(y ≥ z) = 1.

Based on the concept of the possibility degree, the possibility degree of two arbitrary positive
SVTNNs is presented.

Definition 9. Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β = 〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be
two positive SVTNNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1. Then the possibility degree
of α � β p(α � β) can be defined as follows:

p(α � β) = 1
2+γ

(
max

{
1 − max

[
∑4

i=1 max(bi−ai ,0)+(b4−a1)+2max(T(β)−T(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|T(β)−T(α)| , 0
]

, 0
}

+γmax
{

1 − max
[

∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(I(β)−I(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|I(β)−I(α)| , 0
]

, 0
}

+1 − max
{

1 − max
[

∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(F(β)−F(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|F(β)−F(α)| , 0
]

, 0
})

,

where the value of γ ∈ [0, 1] is the coefficient that can reflect the attitudes of decision-makers. γ > 0.5, γ = 0.5
and γ < 0.5 denotes, respectively, the decision-makers’ attitude of optimism, compromise and pessimism.
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Example 5. Let α1 = 〈[0.3, 0.4, 0.7, 0.8], (0.8, 0.2, 0.4)〉 and α2 = 〈[0.2, 0.5, 0.6, 0.7], (0.6, 0.1, 0.3)〉 be two
SVTNNs, γ = 0.5. The result of p(α1 � α2) can be obtained as follows.

Because

∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(T(α2)−T(α1),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|T(α2)−T(α1)|
= max(0.2−0.3,0)+max(0.5−0.4,0)+max(0.6−0.7,0)+max(0.7−0.8,0)+(0.7−0.4)+2max(0.6−0.8,0)

|0.2−0.3|+|0.5−0.4|+|0.6−0.7|+|0.7−0.8|+(0.7−0.2)+(0.8−0.3)+2|0.6−0.8|
= 0.4

1.8 = 0.222;

∑4
i=1 max(bi − ai, 0) + (b4 − a1) + 2max(I(α2)− I(α1), 0)

∑4
i=1|bi − ai|+ (b4 − b1) + (a4 − a1) + 2|I(α2)− I(α1)|

=
0.4
1.6

= 0.25;

∑4
i=1 max(bi − ai, 0) + (b4 − a1) + 2max(F(α2)− F(α1), 0)

∑4
i=1|bi − ai|+ (b4 − b1) + (a4 − a1) + 2|F(α2)− F(α1)|

=
0.4
1.6

= 0.25

Therefore, we can obtain

p(α1 � α2) = 1
2.5 (max{1 − max[0.222, 0], 0} + 0.5 × max{1 − max[0.25, 0], 0}+1 − max{1 − max[0.25, 0], 0})

= 1
2.5 (0.778 + 0.5 × 0.75 + 0.25)

= 0.561.

Theorem 2. Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β = 〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be two
positive SVTNNs, 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1. Then the following properties
must be true.

(1) 0 ≤ p(α � β) ≤ 1.
(2) p(α � β) + p(β � α) = 1.
(3) If ai = bi, i = 1, 2, 3, 4, T(α) = T(β), I(α) = I(β) and F(α) = F(β), then p(α � β) = p(β � α) = 0.5.
(4) If ξ is an arbitrary positive SVTNN, p(α � β) ≥ 0.5, p(β � ξ) ≥ 0.5, then p(α ≥ ξ) ≥ 0.5.
(5) If a1 ≥ b4, T(α) ≥ T(β), I(α) ≥ I(β) and F(α) ≤ F(β), then p(α � β) = 1.

Now we prove the property (2), the proofs of other properties are similar to the proof the
property (2), thus, they are omitted.

Proof. Let x(α, β) = ∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(T(β)−T(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|T(β)−T(α)| , y(α, β) =

∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(I(β)−I(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|I(β)−I(α)| , z(α, β) = ∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(F(β)−F(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|F(β)−F(α)| .

Then

p(α � β) = 1
3 (max{1 − max[x(α, β), 0], 0}+ γmax{1 − max[y(α, β), 0], 0}+ 1 − max{1 − max[z(α, β), 0], 0}).

Because

x(α, β) + x(β, α)

= ∑4
i=1 max(bi−ai ,0)+(b4−a1)+2max(T(β)−T(α),0)
∑4

i=1|bi−ai |+(b4−b1)+(a4−a1)+2|T(β)−T(α)| + ∑4
i=1 max(ai−bi ,0)+(a4−b1)+2max(T(α)−T(β),0)
∑4

i=1|ai−bi |+(a4−a1)+(b4−b1)+2|T(α)−T(β)|
= ∑4

i=1|ai−bi |+(a4−b1)+(b4−a1)+2|T(α)−T(β)|
∑4

i=1|ai−bi |+(a4−a1)+(b4−b1)+2|T(α)−T(β)| = 1;

y(α, β) + y(β, α) = 1; z(α, β) + z(β, α) = 1.

We can obtain max{1 − max[x(α, β), 0], 0} + max{1 − max[x(β, α), 0], 0} = 1;
max{1 − max[y(α, β), 0], 0}+max{1 − max[y(β, α), 0], 0} = 1; 1 − max{1 − max[z(α, β), 0], 0} +

1 − max{1 − max[z(β, α), 0], 0} = 1.
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Therefore,

p(α � β) + P(β � α)

= 1
2+λ (max{1 − max[x(α, β), 0], 0}+ λmax{1 − max[y(α, β), 0], 0}+1 − max{1 − max[z(α, β), 0], 0})
+ 1

2+λ (max{1 − max[x(β, α), 0], 0}+ λmax{1 − max[y(β, α), 0], 0} +1 − max{1 − max[z(β, α), 0], 0})
= 1

2+λ (1 + λ + 1) = 1.

�

The proof of the property (2) is completed now.

3.3. The Comparison Method of SVTNNs

In this subsection, based on the concept of the possibility degree of two arbitrary positive SVTNNs
defined in Definition 9, the new comparison method for two SVTNNs is presented.

For comparing different SVTNNs in decision-making process, Ye [44] defined the score function
and comparison of SVTNNs.

Definition 10 [44]. Let α = 〈[a1, a2, a3, a4], (T(α), I(α), F(α))〉 and β =

〈[b1, b2, b3, b4], (T(β), I(β), F(β))〉 be two SVTNNs. Then the score degree of α S(α) can be defined
as follows:

S(α) =
1
12

(a1 + a2 + a3 + a4)× (2 + T(α)− I(α)− F(α)).

If S(α) > S(β), then α � β; if S(α) < S(β), then α ≺ β; if S(α) = S(β), then α ∼ β.
However, the score function is operated by assuming that the parameters of trapezoidal fuzzy

numbers own same weight, which cannot reflect the different importance for the four parameters of a
trapezoidal fuzzy number and make aggregating result bias.

Example 6. Let α1 = 〈[0.1, 0.3, 0.5, 0.6], (0.6, 0, 0.4)〉 and α2 = 〈[0, 0.4, 0.5, 0.6], (0.6, 0, 0.4)〉 be two
SVTNNs.

S(α1) =
1
12

(0.1 + 0.3 + 0.5 + 0.6)× (2 + 0.6 − 0 − 0.4) = 0.275; S(α2) = 0.275.

We cannot compare these two SVTNNs using the above function but it is easy to know that α1 is
superior to α2.

Meanwhile, the function operates the indeterminacy-membership degree as like the
false-membership degree, which does not take the preference of decision-makers into consideration.

Example 7. Let α1 = 〈[0.2, 0.3, 0.4, 0.5], (0.6, 0, 0.4)〉 and α2 = 〈[0.2, 0.3, 0.4, 0.5], (0.6, 0.4, 0)〉 be two
SVTNNs.

S(α1) =
1
12

(0.2 + 0.3 + 0.4 + 0.5)× (2 + 0.6 − 0 − 0.4) = 0.257; S(α2) = 0.257.

S(α1) = S(α2) indicates that α1 is equal to α2. However, it is obvious that α2 is superior to α1.
These shortcomings existing in the score function given in Definition 10 may make the comparison

results of SVTNNs unacceptable. For overcoming the limitations of Definition 10, based on the concept
of the possibility degree of two arbitrary positive SVTNNs defined in Definition 9, we propose a new
comparison method.

Definition 11. Let α and β be two positive SVTNNs, γ be an arbitrary positive SVTNN and then the
comparison method can be defined as follows.
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(1) If p(α � γ) > p(β � γ), then α � β, i.e., α is superior to β.
(2) If p(α � γ) = p(β � γ), then α ∼ β, i.e., α is equal to β.
(3) If p(α � γ) < p(β � γ), then α ≺ β, i.e., β is superior to α.

Example 8. Let λ = 0.5. When using the data of Example 4 and the following can be obtained.

p(α1 � α2) = 0.508; p(α2 � α1) = 0.492, so α1 � α2.

When using the data of Example 5 and the following can be obtained.

p(α1 � α2) = 0.329; p(α2 � α1) = 0.671, so α2 � α1.

Thus, the results of the above two examples are consistent with our common sense. Because the
score function can overcome the shortcoming existing in Reference [44] by calculating the
indeterminacy-membership degree by taking into account the preference of decision-makers, the results
are more grounded in reality than the results obtained by using the score degree proposed by Ye [44].

4. Single Valued Trapezoidal Neutrosophic Power Aggregation Operators

In this section, the SVTNPA and SVTNPG operators based on the new operations of SVTNNs
are developed.

Definition 12. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉 be a collection of positive SVTNNs. Then the
single valued trapezoidal neutrosophic power average (SVTNPA) operator can be defined as follows:

SVTNPA(α1, α2, · · ·, αn) = 1+G(α1)
∑n

i=1(1+G(αi))
α1 ⊕ 1+G(α2)

∑n
i=1(1+G(αi))

α2 ⊕ · · · ⊕ 1+G(αn)
∑n

i=1(1+G(αi))
αn

= ⊕n
i=1

(
1+G(αi)

∑n
i=1(1+G(αi))

αi

)
,

where G(αi) = ∑n
j=1,j �=i Sup(αi, αj), Sup(αi, αj) is the support for αi from αj, satisfying the

following properties.

(1) Sup(αi, αj) ∈ [0, 1].

(2) Sup(αi, αj) = Sup(αj, αi).

(3) If
∣∣p(αi � αj)− p(αj � αi)

∣∣ < |p(π � ν)− p(ν � π)|, then Sup(αi, αj) > Sup(π, ν), where π and
ν are two positive SVTNNs, p(αi � αj), p(αj � αi), p(π � ν) and p(ν � π) are the possibility degree
of αi � αj, αj � αi, π � ν and ν � π.

The support for αi from αj can be obtained using the function Sup(αi, αj) = 1 −∣∣p(αi � αj)− p(αj � αi)
∣∣. Obviously, the closer the values of the score of αi and αj, the more they

support each other.

Theorem 3. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. The aggregated result, obtained by using the SVTNPA operator, is also a positive SVTNN, and

SVTNPA(α1, α2, · · ·, αn) = ⊕n
i=1

(
1+G(αi)

∑n
i=1(1+G(αi))

αi

)
= 〈([∑n

i=1(τ(αi)ai1), ∑n
i=1(τ(αi)ai2), ∑n

i=1(τ(αi)ai3), ∑n
i=1(τ(αi)ai4)] ,(

∑n
i=1(ϕ(αi)T(αi))

∑n
i=1 ϕ(αi)

, ∑n
i=1(ϕ(αi)I(αi))

∑n
i=1 ϕ(αi)

, ∑n
i=1(ϕ(αi)F(αi))

∑n
i=1 ϕ(αi)

)〉
,

364



Symmetry 2018, 10, 590

where G(αi) = ∑n
j=1,j �=i Sup(αi, αj), Sup(αi, αj) = 1 − ∣∣p(αi � αj)− p(αj � αi)

∣∣ is the support for αi

from αj, τ(αi) = 1+G(αi)
∑n

i=1(1+G(αi))
, ϕ(αi) = 1

6 (τ(αi)ai1 + 2τ(αi)ai2 + 2τ(αi)ai3 + τ(αi)ai4), p(αi � αj) and
p(αj � αi) are the score functions of αi � αj, αj � αi.

Proof. According to Definition 8, the aggregated result is also a positive SVTNN. Therefore, Theorem
3 can be easily proven by using a mathematical induction on n.

(1) For n = 2, since

1 + G(α1)1

∑2
i=1(1 + G(αi))

α1 = 〈[τ(α1)a11, τ(α1)a12, τ(α1)a13, τ(α1)a14], (T(α1), I(α1), F(α1))〉;

1 + G(α2)

∑2
i=1(1 + G(αi))

α2 = 〈[τ(α2)a21, τ(α2)a22, τ(α2)a23, τ(α2)a24], (T(α2), I(α2), F(α2))〉.

Then

SVTNPA(α1, α2) =
1+G(α1)

∑2
i=1(1+G(αi))

α1 ⊕ 1+G(α2)

∑2
i=1(1+G(αi))

α2

= 〈([τ(α1)a11 + τ(α2)a21, τ(α1)a12 + τ(α2)a22, τ(α1)a13 + τ(α2)a23, τ(α1)a14 + τ(α2)a24] ,(
ϕ(α1)T(α1)+ϕ(α2)T(α2)

ϕ(α1)+ϕ(α2)
, ϕ(α1)I(α1)+ϕ(α2)I(α2)

ϕ(α1)+ϕ(α2)
, ϕ(α1)I(α1)+ϕ(α2)I(α2)

ϕ(α1)+ϕ(α2)

)〉
.

�

(2) If we hold n = k, then

SVTNPA(α1, α2, · · ·, αn) = ⊕k
i=1

(
1+G(αi)

∑k
i=1(1+G(αi))

αi

)
=

〈([
∑k

i=1(τ(αi)ai1), ∑k
i=1(τ(αi)ai2), ∑k

i=1(τ(αi)ai3), ∑k
i=1(τ(αi)ai4)

]
,(

∑k
i=1(ϕ(αi)T(αi))

∑k
i=1 ϕ(αi)

, ∑k
i=1(ϕ(αi)I(αi))

∑k
i=1 ϕ(αi)

, ∑k
i=1(ϕ(αi)F(αi))

∑k
i=1 ϕ(αi)

)〉
.

When n = k + 1, by the operations described in Definition 10, we have

SVTNPA(α1, α2, · · ·, αn) = ⊕k
i=1

(
1+G(αi)

∑n
i=1(1+G(αi))

αi

)
⊕ 1+G(αk+1)

∑n
i=1(1+G(αi))

αk+1

=
〈([

∑k+1
i=1 (τ(αi)ai1), ∑k+1

i=1 (τ(αi)ai2), ∑k+1
i=1 (τ(αi)ai3), ∑k+1

i=1 (τ(αi)ai4)
]

,(
∑k+1

i=1 (ϕ(αi)T(αi))

∑k+1
i=1 ϕ(αi)

, ∑k+1
i=1 (ϕ(αi)I(αi))

∑k+1
i=1 ϕ(αi)

, ∑k+1
i=1 (ϕ(αi)F(αi))

∑k+1
i=1 ϕ(αi)

)〉
.

�

So, n = k + 1, Theorem 2 is also right.
According to (1) and (2), we can get Theorem 3 hold for any n.

Example 9. Let α1 = 〈[0.3, 0.4, 0.7, 0.8], (0.8, 0.2, 0.4)〉, α2 = 〈[0.2, 0.5, 0.6, 0.7], (0.6, 0.1, 0.3)〉,
α3 = 〈[0.3, 0.4, 0.5, 0.6], (0.7, 0.3, 0.3)〉 and α4 = 〈[0.3, 0.5, 0.5, 0.7], (0.6, 0.2, 0.3)〉 be four positive
SVTNNs, λ = 0.8. Then SVTNPA(α1, α2, α3, α4) can be calculated as follows.
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Because p(α1 � α2) = 0.566, p(α1 � α3) = 0.541, p(α1 � α4) = 0.547, p(α2 � α3) = 0.452,
p(α2 � α4) = 0.467, p(α3 � α4) = 0.530, we can obtain the following results.

G(α1) = ∑3
j=1,j �=i Sup(α1, αj)

= ∑4
j=2
(
1 − ∣∣p(α1 � αj)− p(αj � α1)

∣∣)
= (1 − |0.566 − 0.434|) + (1 − |0.541 − 0.459|) + (1 − |0.547 − 0.453|)
= 2.692,

G(α2) = 2.707, G(α3) = 2.762, G(α4) = 2.779.

τ(α1) =
1+G(α1)

∑4
i=1(1+G(αi))

= 1+2.692
(1+2.692)+(1+2.707)+(1+2.762)+(1+2.779) = 0.247,

τ(α2) = 0.248, τ(α3) = 0.252, τ(α4) = 0.253.

ϕ(α1) =
1
6 (τ(α1)a11 + 2τ(α1)a12 + 2τ(α1)a13 + τ(α1)a14) =

1
6 × 0.247 × (0.3 + 2 × 0.4 + 2 × 0.7 + 0.8) = 0.136,

ϕ(α2) = 0.128, ϕ(α3) = 0.113, ϕ(α4) = 0.127.

Therefore, SVTNPA(α1, α2, α3, α4) = 〈[0.275, 0.450, 0.574, 0.699], (0.676, 0.197, 0.327)〉.

Theorem 4. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. If Sup(αi, αj) = c (c ∈ [0, 1], i �= j, j = 1, 2, · · ·, n), then SVTNPA operator reduces to single
valued trapezoidal neutrosophic average (SVTNA) operator as follows:

SVTNPA(α1, α2, · · ·, αn) = SVTNA(α1, α2, · · ·, αn) = ⊕n
i=1

(
1
n

αi

)

Proof. Because Sup(αi, αj) = c (c ∈ [0, 1], i �= j, j = 1, 2, · · ·, n), we have G(αi) = ∑n
j=1,j �=i Sup(αi, αj) =

(n − 1)c.
Therefore,

SVTNPA(α1, α2, · · ·, αn) = ⊕n
i=1

(
1+G(αi)i

∑n
i=1(1+G(αi))

αi

)
= ⊕n

i=1

(
1+(n−1)c

∑n
i=1(1+(n−1)c)αi

)
= ⊕n

i=1

(
1
n αi

)
.

�

Finally, we can get SVTNPA(α1, α2, · · ·, αn) = SVTNA(α1, α2, · · ·, αn) = ⊕n
i=1(αi) and the proof

of Theorem 4 is completed now.

Definition 13. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. Then the single valued trapezoidal neutrosophic power geometric (SVTNPG) operator can be defined
as follows:

SVTNPG(α1, α2, · · ·, αn) = α1

1+G(α1)
∑n

i=1 (1+G(αi)) ⊗ α2

1+G(α2)
∑n

i=1 (1+G(αi)) ⊗· · ·⊗ αn

1+G(αn)
∑n

i=1 (1+G(αi)) = ⊗n
i=1

(
αi

1+G(αi)
∑n

i=1 (1+G(αi))

)
,

where G(αi) = ∑n
j=1,j �=i Sup(αi, αj), Sup(αi, αj) is the support for αi from αj.

Theorem 5. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. The aggregated result, obtained by using the SVTNPG operator, is also a positive SVTNN, and

SVTNPG(α1, α2, · · ·, αn) = ⊗n
i=1

(
αi

τ(αi)
)

=
〈[

∏n
i=1 ai1

τ(αi),∏n
i=1 ai2

τ(αi), ∏n
i=1 ai3

τ(αi), ∏n
i=1 ai4

τ(αi)
]

,
(

∏n
i=1 (T(αi))

τ(αi), 1 − ∏n
i=1

(
(1 − I(αi))

τ(αi)
)

,

1 − ∏n
i=1

(
(1 − F(αi))

τ(αi)
))〉

,
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where τ(αi) = 1+G(αi)
∑n

i=1(1+G(αi))
, G(αi) = ∑n

j=1,j �=i Sup(αi, αj), Sup(αi, αj) = 1 − ∣∣p(αi � αj)− p(αj � αi)
∣∣

is the support for αi from αj, p(αi � αj) and p(αj � αi) are the score functions of αi � αj, αj � αi.

The proof of Theorem 5 can refer to Theorem 3.

Example 10. Use the data of Example 9. Then SVTNPG(α1, α2, α3) can be calculated as follows.
According to Example 9, we can get τ(α1) = 0.247, τ(α2) = 0.248, τ(α3) = 0.252, τ(α4) = 0.253;

So SVTNPG(α1, α2, α3, α4) = 〈[0.271, 0.447, 0.569, 0.696], (0.669, 0.204, 0.326)〉.

Theorem 6. Let αi = 〈[ai1, ai2, ai3, ai4], (T(αi), I(αi), F(αi))〉(i = 1, 2, · · ·, n) be a collection of positive
SVTNNs. If Sup(αi, αj) = c (c ∈ [0, 1], i �= j, j = 1, 2, · · ·, n) , then SVTNPG operator reduces to single
valued trapezoidal neutrosophic geometric (SVTNG) operator as follows:

SVTNPG(α1, α2, · · ·, αn) = SVTNG(α1, α2, · · ·, αn) = ⊕n
i=1

(
αi

1/n
)

.

The proof of Theorem 6 can refer to Theorem 4.

5. A MCGDM Method Based on Possibility Degree and Power Aggregation Operators under
Single Valued Trapezoidal Neutrosophic Environment

In this section, the possibility degrees of SVTNNs, single trapezoidal neutrosophic power
weighted aggregation operators are applied to MCGDM problems single valued trapezoidal
neutrosophic information.

For a MCGDM problems with single valued trapezoidal neutrosophic information, assume that
the set of alternatives is B = {B1, B2, · · ·, Bm}, D = {D1, D2, · · ·, Dt} is the set of decision-makers who
evaluate the alternatives according to the criteria C = {C1, C2, · · ·, Cn}. The evaluation information
α

y
ij(i = 1, 2, · · ·, m; j = 1, 2, · · ·, n; y = 1, 2, · · ·, t) which is described by positive SVTNNs, can be given

by decision-makers Dy(y = 1, 2, · · ·, t) when they assess the alternatives Bi(i = 1, 2, · · ·, m) with respect
to the criteria Cj(j = 1, 2, · · ·, n) and then the decision matrices Ry = (α

y
ij)m×n

are obtained. A method
of determining the ranking of the alternatives is introduced here and the decision-making procedures
are shown as follows.

Step 1. Normalize the decision matrices.

Normalize the decision-making information α
y
ij in the matrices Ry = (α

y
ij)m×n

. The criteria can
be classified into the benefit type and the cost type. For the benefit-type criterion, the form of the
evaluation information needs no change; but for the cost-type criterion, the negation operator is used.

The normalization of the decision matrices can be represented as follows:{
α̃

y
ij = α

y
ij , Cj ∈ BT

α̃
y
ij = neg(αy

ij) , Cj ∈ CT
,

where BT is the set of benefit-type criteria and CT is the set of cost-type criteria.
The normalized decision matrices are denoted as Ry = (α̃

y
ij)m×n

.

Step 2. Aggregate the values of alternatives on each criterion to get the collective SVTNNs.

Based on the Definitions 12 or 13, the collective SVTNNs αij or α̃ij can be gotten by SVTNPA or
SVTNPG operator, the aggregation values of decision-makers on each alternative are as follows:

αiy = SVTNPA(α̃
y
i1, α̃

y
i2, · · ·, α̃

y
in) or α̃iy = SVTNPG(α̃

y
i1, α̃

y
i2, · · ·, α̃

y
in).
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Then the collective preference matrix P = (αiy)m×y or P̃ = (α̃iy)m×y can be obtained.

Step 3. Aggregate the values of alternative on each decision-maker to get the overall SVTNNs.

Based on the Definitions 12 or 13, the overall SVTNNs αij or α̃ij can be gotten by SVTNPA or
SVTNPG operator, the aggregation values of alternative on each decision-maker are as follows:

βi = SVTNPA(αi1, αi2, · · ·, αit) or β̃i = SVTNPA(α̃i1, α̃i2, · · ·, α̃it).

Then the coverall preference matrix K = (βi) or K̃ = (β̃i) can be obtained.

Step 4. Calculate the possibility degrees of the assessment values of each alternative superior than
other alternatives’ values.

Based on Definition 9, the possibility degrees of βi � βi′(i �= i′) or β̃i � β̃i′(i �= i′) can be
obtained. The matrix of p(βi � βi′) or p(β̃i � β̃i′) can be represented as U = (p(βi � βi′))m×m or

Ũ =
(

p(β̃i � β̃i′)
)

m×m
.

Step 5. Calculate the collective possibility degree index of each alternative to derive the overall values
of the alternatives.

Aggregate U or Ũ to get the overall possibility degree index p(Bi) of the alternative Bi by using
the following functions:

p(Bi) =
1

m − 1∑ m
i′=1,i′ �=i p(βi � βi′) or p̃(Bi) =

1
m − 1∑ m

i′=1,i′ �=i p(β̃i � β̃i′).

Then the overall possibility degree index matrix Q = (p(Bi))
T or Q̃ = ( p̃(Bi))

T can be obtained.

Step 6. Rank the alternatives and select the best one.

According to the results obtained in Step 5, rank the alternatives by the overall values in
descending order and the first order alternative is the best.

6. Illustrative Example

In this section, a green supplier selection problem is used to illustrate the validity and effectiveness
of the developed method.

6.1. Background

The following case background is adapted from [51].
In recent years, more and more people pay attention the serious environmental problems caused

badly by the rapid economic development of all over the world. The green supply chain management
becomes imperative under this situation because of its advantages on the sustainable development of
economics and protection of environment. Meanwhile, it can bring tremendous economic benefit and
competitive strengthen for the enterprises.

Motivated by the advantages of green supply chain management, Shanghai General
Motors (SGM) Company wants to select the most appropriate green supplier as its cooperative
alliance. After pre-evaluation, four suppliers become the final alternatives for further evaluation,
including Howden Hua Engineering Company (B1), Sino Trunk (B2), Taikai Electric Group Company
(B3) and Shantui construction machinery Company (B4). SGM employs four experts (Dy(y = 1, 2, 3, 4))
coming from the departments of production, purchasing, quality inspection, engineering to form a
group of decision-makers for evaluating the four suppliers Bi(i = 1, 2, 3, 4) according the product
quality (C1), technology capability (C2), pollution control (C3) and environment management (C4).
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The four experts Dy(y = 1, 2, 3, 4) give their assessment information about the four green suppliers
Bi(i = 1, 2, 3, 4) according to the four criteria (Cj(j = 1, 2, 3, 4)). Assume that the four experts’ attitudes
on evaluating the four green suppliers are neutral, that is λ = 0.5. The assessment information
α

y
ij(i = 1, 2, 3, 4; j = 1, 2, 3, 4; y = 1, 2, 3, 4) is described by SVTNNs and the decision matrices are shown

in R1, R2, R3 and R4.

R1 =

C1 C2 C3 C4

B1

B2

B3

B4

⎛⎜⎜⎜⎝
〈[0.6, 0.7, 0.8, 0.9], (0.6, 0.3, 0.2)〉 〈[0.3, 0.4, 0.5, 0.6], (0.6, 0.2, 0.4)〉 〈[0.5, 0.6, 0.7, 0.9], (0.3, 0.3, 0.4)〉 〈[0.6, 0.7, 0.8, 0.9], (0.5, 0.3, 0.3)〉
〈[0.3, 0.4, 0.5, 0.6], (0.7, 0.2, 0.3)〉 〈[0.4, 0.5, 0.6, 0.7], (0.5, 0.2, 0.3)〉 〈[0.4, 0.5, 0.6, 0.8], (0.7, 0.2, 0.3)〉 〈[0.5, 0.7, 0.8, 0.9], (0.4, 0.1, 0.6)〉
〈[0.3, 0.4, 0.5, 0.6], (0.4, 0.3, 0.2)〉 〈[0.3, 0.4, 0.5, 0.7], (0.6, 0.1, 0.3)〉 〈[0.2, 0.4, 0.5, 0.6], (0.5, 0.3, 0.3)〉 〈[0.6, 0.7, 0.8, 0.9], (0.5, 0.4, 0.2)〉
〈[0.1, 0.2, 0.4, 0.5], (0.8, 0.2, 0.1)〉 〈[0.3, 0.4, 0.6, 0.7], (0.2, 0.5, 0.4)〉 〈[0.5, 0.6, 0.7, 0.8], (0.6, 0.3, 0.1)〉 〈[0.4, 0.5, 0.6, 0.7], (0.7, 0.1, 0.2)〉

⎞⎟⎟⎟⎠

R2 =

C1 C2 C3 C4

B1

B2

B3

B4

⎛⎜⎜⎜⎝
〈[0.1, 0.3, 0.4, 0.5], (0.5, 0.2, 0.4)〉 〈[0.2, 0.4, 0.6, 0.8], (0.8, 0.1, 0.2)〉 〈[0.2, 0.5, 0.6, 0.8], (0.7, 0.3, 0.1)〉 〈[0.1, 0.4, 0.5, 0.6], (0.6, 0.2, 0.3)〉
〈[0.2, 0.4, 0.6, 0.8], (0.6, 0.1, 0.3)〉 〈[0.4, 0.6, 0.8, 1.0], (0.7, 0.2, 0.2)〉 〈[0.4, 0.6, 0.8, 1.0], (0.5, 0.2, 0.3)〉 〈[0.3, 0.5, 0.6, 0.7], (0.8, 0.1, 0.1)〉
〈[0.2, 0.4, 0.6, 1.0], (0.6, 0.3, 0.2)〉 〈[0.2, 0.4, 0.6, 0.8], (0.8, 0.1, 0.2)〉 〈[0.1, 0.2, 0.6, 0.8], (0.6, 0.2, 0.2)〉 〈[0.1, 0.2, 0.3, 0.5], (0.6, 0.2, 0.4)〉
〈[0.2, 0.3, 0.4, 0.7], (0.5, 0.2, 0.3)〉 〈[0.1, 0.2, 0.3, 0.5], (0.6, 0.4, 0.2)〉 〈[0.1, 0.3, 0.5, 0.7], (0.7, 0.2, 0.2)〉 〈[0.1, 0.2, 0.4, 0.5], (0.5, 0.1, 0.3)〉

⎞⎟⎟⎟⎠

R3 =

C1 C2 C3 C4

B1

B2

B3

B4

⎛⎜⎜⎜⎝
〈[0.5, 0.7, 0.8, 0.9], (0.6, 0.1, 0.3)〉 〈[0.4, 0.5, 0.6, 0.8], (0.7, 0.2, 0.3)〉 〈[0.4, 0.6, 0.7, 0.8], (0.3, 0.7, 0.1)〉 〈[0.3, 0.5, 0.6, 0.8], (0.5, 0.3, 0.3)〉
〈[0.6, 0.7, 0.8, 0.9], (0.7, 0.2, 0.2)〉 〈[0.1, 0.3, 0.5, 0.6], (0.4, 0.5, 0.2)〉 〈[0.3, 0.5, 0.6, 0.7], (0.4, 0.3, 0.3)〉 〈[0.1, 0.2, 0.4, 0.5], (0.7, 0.2, 0.1)〉
〈[0.7, 0.8, 0.9, 1.0], (0.6, 0.2, 0.2)〉 〈[0.3, 0.4, 0.6, 0.7], (0.5, 0.4, 0.2)〉 〈[0.1, 0.2, 0.6, 0.8], (0.5, 0.2, 0.3)〉 〈[0.1, 0.2, 0.4, 0.5], (0.6, 0.2, 0.3)〉
〈[0.4, 0.5, 0.7, 0.9], (0.5, 0.2, 0.3)〉 〈[0.1, 0.2, 0.3, 0.4], (0.4, 0.5, 0.1)〉 〈[0.1, 0.3, 0.5, 0.6], (0.6, 0.2, 0.2)〉 〈[0.1, 0.2, 0.3, 0.5], (0.5, 0.4, 0.2)〉

⎞⎟⎟⎟⎠

R4 =

C1 C2 C3 C4

B1

B2

B3

B4

⎛⎜⎜⎜⎝
〈[0.4, 0.5, 0.7, 0.8], (0.4, 0.2, 0.5)〉 〈[0.4, 0.5, 0.6, 0.7], (0.6, 0.1, 0.4)〉 〈[0.5, 0.6, 0.7, 0.9], (0.3, 0.4, 0.4)〉 〈[0.4, 0.7, 0.8, 1.0], (0.3, 0.1, 0.6)〉
〈[0.5, 0.6, 0.7, 0.9], (0.3, 0.3, 0.5)〉 〈[0.5, 0.6, 0.7, 0.8], (0.4, 0.3, 0.3)〉 〈[0.4, 0.6, 0.7, 0.8], (0.7, 0.1, 0.3)〉 〈[0.5, 0.6, 0.8, 0.9], (0.5, 0.3, 0.4)〉
〈[0.3, 0.5, 0.6, 0.8], (0.4, 0.2, 0.2)〉 〈[0.2, 0.4, 0.5, 0.8], (0.6, 0.3, 0.2)〉 〈[0.2, 0.4, 0.5, 0.6], (0.5, 0.2, 0.3)〉 〈[0.3, 0.5, 0.6, 0.8], (0.4, 0.3, 0.2)〉
〈[0.1, 0.2, 0.4, 0.6], (0.6, 0.2, 0.3)〉 〈[0.3, 0.5, 0.6, 0.7], (0.5, 0.5, 0.1)〉 〈[0.5, 0.6, 0.7, 0.8], (0.4, 0.2, 0.3)〉 〈[0.2, 0.4, 0.6, 0.7], (0.5, 0.4, 0.1)〉

⎞⎟⎟⎟⎠

6.2. The Procedures of Single Valued Trapezoidal Neutrosophic MCGDM Method

The proposed MCGDM method is used for determining the ranking of the green suppliers.

Step 1. Normalize the decision matrices.

The four criteria Cj(j = 1, 2, 3, 4) are regarded as the benefit-type criterion, so the decision matrices
change nothing.

Step 2. Aggregate the values of the four alternatives on each criterion to get the collective SVTNNs.

Use the SVTNPA or SVTNPG operator to aggregate the values of four alternatives on each
criterion, the collective SVTNNs are obtained shown in P and P̃.

P =

B1

B2

B3

B4

D1 D2 D3 D4⎛⎜⎜⎜⎝
〈[0.50, 0.60, 0.70, 0.82], (0.49, 0.28, 0.32)〉 〈[0.15, 0.40, 0.53, 0.68], (0.67, 0.20, 0.23)〉 〈[0.40, 0.58, 0.68, 0.83], (0.53, 0.32, 0.25)〉 〈[0.42, 0.58, 0.70, 0.85], (0.39, 0.20, 0.48)〉
〈[0.40, 0.53, 0.63, 0.75], (0.55, 0.17, 0.40)〉 〈[0.33, 0.53, 0.70, 0.88], (0.64, 0.16, 0.23)〉 〈[0.27, 0.42, 0.57, 0.67], (0.56, 0.29, 0.21)〉 〈[0.47, 0.60, 0.73, 0.85], (0.47, 0.25, 0.38)〉
〈[0.34, 0.47, 0.57, 0.70], (0.50, 0.29, 0.24)〉 〈[0.15, 0.30, 0.53, 0.78], (0.66, 0.20, 0.23)〉 〈[0.30, 0.40, 0.62, 0.75], (0.55, 0.25, 0.24)〉 〈[0.25, 0.45, 0.55, 0.75], (0.47, 0.25, 0.22)〉
〈[0.32, 0.42, 0.57, 0.67], (0.57, 0.27, 0.20)〉 〈[0.13, 0.25, 0.40, 0.60], (0.58, 0.22, 0.25)〉 〈[0.17, 0.30, 0.45, 0.60], (0.51, 0.29, 0.22)〉 〈[0.28, 0.43, 0.58, 0.70], (0.48, 0.33, 0.20)〉

⎞⎟⎟⎟⎠

P̃ =

B1

B2

B3

B4

D1 D2 D3 D4⎛⎜⎜⎜⎝
〈[0.48, 0.58, 0.69, 0.81], (0.48, 0.28, 0.33)〉 〈[0.14, 0.39, 0.52, 0.67], (0.64, 0.20, 0.26)〉 〈[0.39, 0.57, 0.67, 0.82], (0.50, 0.38, 0.25)〉 〈[0.42, 0.57, 0.70, 0.84], (0.38, 0.21, 0.48)〉
〈[0.39, 0.51, 0.62, 0.74], (0.56, 0.18, 0.39)〉 〈[0.31, 0.52, 0.69, 0.87], (0.64, 0.15, 0.23)〉 〈[0.20, 0.38, 0.55, 0.66], (0.53, 0.31, 0.20)〉 〈[0.47, 0.60, 0.72, 0.85], (0.45, 0.25, 0.38)〉
〈[0.32, 0.46, 0.56, 0.69], (0.49, 0.28, 0.25)〉 〈[0.14, 0.29, 0.51, 0.76], (0.65, 0.20, 0.25)〉 〈[0.21, 0.33, 0.60, 0.72], (0.55, 0.26, 0.25)〉 〈[0.25, 0.45, 0.55, 0.75], (0.47, 0.25, 0.23)〉
〈[0.27, 0.39, 0.56, 0.66], (0.52, 0.29, 0.21)〉 〈[0.12, 0.25, 0.39, 0.59], (0.57, 0.24, 0.25)〉 〈[0.14, 0.28, 0.42, 0.57], (0.49, 0.34, 0.20)〉 〈[0.24, 0.40, 0.57, 0.70], (0.49, 0.34, 0.21)〉

⎞⎟⎟⎟⎠

Step 3. Aggregate the values of the four alternatives on each green supplier to get the overall SVTNNs
by using the SVTNPA or SVTNPG operator.

The coverall preference matrix shown in K or K̃.

K =

B1

B2

B3

B4

⎛⎜⎜⎜⎝
[0.36, 0.54, 0.65, 0.79], (0.51, 0.25, 0.32)
[0.37, 0.52, 0.66, 0.79], (0.55, 0.22, 0.31)
[0.26, 0.40, 0.57, 0.74], (0.54, 0.25, 0.23)
[0.22, 0.35, 0.50, 0.64], (0.53, 0.28, 0.21)

⎞⎟⎟⎟⎠
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K̃ =

B1

B2

B3

B4

⎛⎜⎜⎜⎝
[0.32, 0.52, 0.64, 0.78], (0.50, 0.27, 0.34)
[0.33, 0.50, 0.64, 0.77], (0.54, 0.23, 0.31)
[0.22, 0.37, 0.55, 0.73], (0.54, 0.25, 0.25)
[0.18, 0.32, 0.48, 0.63], (0.52, 0.30, 0.22)

⎞⎟⎟⎟⎠
Step 4. Calculate the possibility degrees of the assessment values of each alternative superior than

other alternatives’ values to get the possibility degrees matrix U or Ũ.

U =

B1

B2

B3

B4

B1 B2 B3 B4⎛⎜⎜⎜⎝
− 0.48 0.51 0.54

0.52 − 0.52 0.54
0.48 0.48 − 0.53
0.47 0.46 0.47 −

⎞⎟⎟⎟⎠

Ũ =

B1

B2

B3

B4

⎛⎜⎜⎜⎝
− 0.48 0.51 0.53

0.52 − 0.53 0.54
0.49 0.47 − 0.52
0.47 0.46 0.48 −

⎞⎟⎟⎟⎠
Step 5. Calculate the collective possibility degree index of each alternative to derive the overall values

of the alternatives.

Aggregate U or Ũ to get the overall possibility degree index and the overall possibility degree
index matrix Q or Q̃.

B1 B2 B3 B4

Q =
(

0.512 0.526 0.497 0.465
) B1 B2 B3 B4

Q =
(

0.510 0.528 0.494 0.468
)

Step 6. Rank the green suppliers and select the best one.

The ranking of the four green suppliers is B2 � B1 � B3 � B4. Therefore, SGM Company will
choose Sino Trunk as its cooperative alliance.

The rankings of green suppliers using the SVTNPA operators for different values of λ are shown
in Figure 1. In general, larger values of λ are associated with relatively pessimistic decision-makers;
thus, the alternatives were associated with relatively overall possibility degree index. In contrast,
lower values of λ are associated with relatively optimistic decision-makers. When the decision-makers
do not indicate any preferences, the most commonly-used value (λ = 0.5) is used.

Figure 1. Rankings of various green suppliers for different values of λ.
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6.3. Comparison Analysis and Discussion

In order to validate the accuracy of the proposed single valued trapezoidal neutrosophic MCGDM
method, a comparative study is conducted based on the illustrative example in this paper and the
method used for comparison was proposed by Ye [44].

When resolving the above example using the approach described in Reference [44], which involves
the use of t trapezoidal neutrosophic weighted arithmetic averaging (TNWAA) operator or
trapezoidal neutrosophic weighted geometric averaging (TNWGA) operator with known weights
to comprehensively analyze green suppliers, the weights of the decision-makers and criteria can be

generated using the PA operator (wij =
1+G(αij)

∑n
j=1(1+G(αij))

, G(αij) = ∑n
j=1,j �=j′

(
1 −

∣∣∣S(αij)− S(αij′)
∣∣∣)) and

S(αij) [44] is the score function value of the SVTNN aij. The overall values of four alternatives on each
criterion obtained by using TNWAA operator are shown as the matrix M, the matrix M̃ got by using
TNWGA operator.

M =

B1

B2

B3

B4

D1 D2 D3 D4⎛⎜⎜⎜⎝
〈[0.52, 0.62, 0.72, 0.85], (0.51, 0.27, 0.32)〉 〈[0.15, 0.40, 0.53, 0.68], (0.68, 0.18, 0.22)〉 〈[0.40, 0.57, 0.67, 0.82], (0.50, 0.26, 0.22)〉 〈[0.43, 0.58, 0.70, 0.85], (0.42, 0.17, 0.47)〉
〈[0.40, 0.53, 0.63, 0.75], (0.54, 0.17, 0.36)〉 〈[0.32, 0.52, 0.70, 0.87], (0.67, 0.14, 0.21)〉 〈[0.27, 0.42, 0.57, 0.67], (0.57, 0.28, 0.19)〉 〈[0.47, 0.60, 0.73, 0.85], (0.50, 0.23, 0.37)〉
〈[0.34, 0.46, 0.57, 0.69], (0.51, 0.24, 0.25)〉 〈[0.15, 0.30, 0.53, 0.78], (0.66, 0.19, 0.24)〉 〈[0.28, 0.38, 0.62, 0.74], (0.55, 0.24, 0.25)〉 〈[0.25, 0.45, 0.55, 0.75], (0.48, 0.24, 0.22)〉
〈[0.32, 0.42, 0.57, 0.67], (0.63, 0.24, 0.17)〉 〈[0.13, 0.25, 0.40, 0.60], (0.58, 0.20, 0.24)〉 〈[0.17, 0.30, 0.45, 0.60], (0.50, 0.30, 0.18)〉 〈[0.27, 0.42, 0.57, 0.70], (0.51, 0.30, 0.17)〉

⎞⎟⎟⎟⎠

M̃ =

B1

B2

B3

B4

D1 D2 D3 D4⎛⎜⎜⎜⎝
〈[0.51, 0.62, 0.72, 0.84], (0.48, 0.28, 0.33)〉 〈[0.14, 0.40, 0.52, 0.67], (0.65, 0.20, 0.25)〉 〈[0.39, 0.57, 0.67, 0.82], (0.50, 0.38, 0.25)〉 〈[0.42, 0.57, 0.70, 0.84], (0.38, 0.21, 0.48)〉
〈[0.39, 0.52, 0.62, 0.74], (0.47, 0.18, 0.39)〉 〈[0.31, 0.52, 0.69, 0.86], (0.64, 0.15, 0.23)〉 〈[0.21, 0.38, 0.56, 0.66], (0.53, 0.31, 0.20)〉 〈[0.47, 0.60, 0.72, 0.85], (0.45, 0.25, 0.38)〉
〈[0.31, 0.45, 0.56, 0.69], (0.50, 0.28, 0.26)〉 〈[0.14, 0.28, 0.51, 0.76], (0.65, 0.20, 0.25)〉 〈[0.20, 0.32, 0.59, 0.72], (0.54, 0.26, 0.25)〉 〈[0.24, 0.45, 0.55, 0.74], (0.47, 0.25, 0.23)〉
〈[0.27, 0.39, 0.56, 0.66], (0.50, 0.30, 0.21)〉 〈[0.12, 0.25, 0.39, 0.59], (0.57, 0.23, 0.25)〉 〈[0.14, 0.28, 0.42, 0.57], (0.49, 0.34, 0.20)〉 〈[0.23, 0.39, 0.56, 0.70], (0.50, 0.34, 0.21)〉

⎞⎟⎟⎟⎠
The collective values of the four green suppliers can also be obtained by using the TNWAA

operator as the matrix U or the matrix Ũ by using the TNWGA operator.

U =

B1

B2

B3

B4

⎛⎜⎜⎜⎝
[0.37, 0.52, 0.66, 0.78], (0.57, 0.20, 0.27)
〈[0.38, 0.54, 0.66, 0.80], (0.55, 0.22, 0.29)〉
〈[0.26, 0.40, 0.57, 0.74], (0.56, 0.23, 0.24)〉
〈[0.23, 0.35, 0.50, 0.64], (0.56, 0.26, 0.19)〉

⎞⎟⎟⎟⎠

Ũ =

B1

B2

B3

B4

⎛⎜⎜⎜⎝
〈[0.33, 0.50, 0.64, 0.77], (0.51, 0.23, 0.31)〉
〈[0.33, 0.53, 0.65, 0.79], (0.49, 0.27, 0.34)〉
〈[0.22, 0.37, 0.55, 0.73], (0.54, 0.25, 0.25)〉
〈[0.18, 0.32, 0.48, 0.63], (0.51, 0.30, 0.22)〉

⎞⎟⎟⎟⎠
Finally, the score values si(i = 1, 2, 3, 4) of each green supplier can be obtained by using the score

degree function show in the matrix H or H̃.

B1 B2 B3 B4

H =
(

0.410 0.404 0.342 0.301
) B1 B2 B3 B4

H̃ =
(

0.371 0.362 0.317 0.267
)

So, the ranking is B1 � B2 � B3 � B4 and the best green supplier obtained by using the approach
in Reference [44] is B1. The ranking results of different methods can be shown in Table 1.

Table 1. The ranking results of different methods.

Methods Operators Ranking of Alternatives

The method in Reference [44]
NNTWA operator B1 � B2 � B4 � B3
NNTWG operator B4 � B2 � B1 � B3

The proposed method

SVTNPA operator and the
possibility degrees SVTNNs B2 � B1 � B3 � B4

SVTNPG operator and the
possibility degrees SVTNNs B2 � B1 � B4 � B3

371



Symmetry 2018, 10, 590

From Table 1, it can be seen results of the ranking on the four green suppliers obtained by the
proposed single trapezoidal neutrosophic MCGDM method in this paper is quite different from that
the ranking obtained by the method introduced in Reference [44]. The main reasons are summarized
as follows.

(a) The new operations of SVTNNs defined in this paper, which take the conservative and reliable
principle, can take account of the correlation between trapezoidal fuzzy numbers and three
membership degrees of SVTNNs. However, the operations in Reference [44] divide the
trapezoidal fuzzy numbers and three membership degrees of SVTNNs into two parts and
calculate them separately, which make aggregating results deviate from the reality.

(b) The new comparison of SVTNNs proposed in this paper has some crucial advantages over
comparison of SVTNNs based on the score degree function in Reference [44], which can take the
preference of decision-makers into consideration.

(c) The relationship among the aggregation information, which exists in the aggregation process of
in practical MCDM problems, is ignored [44]. Whereas, the SVTNPA and SVTNPG operators,
which can effectively take the relationship among the assessment information being aggregated
into consideration and in this paper, the advantages of the possibility degree of SVTNNs are
combined to rank the uncertain information reasonably and accurately from the probability
viewpoint. Hence, the ranking result of this paper is more objective and reasonable than that
obtained by using the operators in Reference [44].

7. Conclusions

In order to improve the reasonability and effectiveness of the methods on dealing with single
valued trapezoidal neutrosophic MCGDM problems, also overcome the limitations of the existing
approaches. In this paper, a single valued trapezoidal neutrosophic MCGDM method is proposed form
the possibility degree of SVTNNs and the single valued trapezoidal neutrosophic power aggregation
operators. Firstly, the new operations of SVTNNs are proposed for avoiding information loss
and distortion, the possibility degrees of SVTNNs are proposed from the probability viewpoint.
Based on the proposed operations and possibility degrees, SVTNPA and SVTNPG operators are
proposed. Furthermore, a single valued trapezoidal neutrosophic MCGDM method based on SVTNPA,
SVTNPG operator and the possibility degrees of SVTNNs is developed. The prominent advantages
of the proposed method are not only its ability to effectively deal with the preference information
expressed by SVTNNs but also the consideration of the relationship among the information being
aggregated in the process on dealing with the practical MCGDM problems and the advantage of the
possibility degrees of SVTNNs, which can avoid information loss and distortion, is combined. Thus,
the final results are more scientific and reasonable. Finally, the method is applied to a practical problem
on selecting the most appropriate green supplier for SGM Company, meanwhile, the comparison
with other method is carried on and demonstrates its feasibility and effectiveness in dealing with
MCGDM problems.

In future research, the developed method will be extended to other domains, such as personnel
selection and medical diagnosis.
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Abstract: In this paper, we extended the idea of a neutrosophic triplet set to non-associative
semihypergroups and define neutrosophic triplet LA-semihypergroup. We discuss some basic results
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1. Introduction

The study of origin and features of neutralities lies in the scope of a new branch of philosophy
known as Neutrosophy. In 1995, Smarandache (for the first time) used the idea of Neutrosophy
and developed neutrosophic logic which is a more practical and realistic approach, to handle
imprecise and vague information. He introduced the concept of (T-truth, I-indeterminacy, F-falsity)
memberships. According to Smarandache Neutrosophic, logics generalizes the all previous logics such
as fuzzy logic [1], intuitionistic fuzzy logic [2] and interval valued fuzzy logic [3]. Kandasamy
and Smarandache [4] developed many neutrosophic algebraic structures, neutrosophic bigroup,
neutrosophic vector space, neutrosophic groups and so on, based on neutrosophic logic. For practical
applications, we refer the readers to [5–9]. For neutrosophic triplet sets, we refer the readers [10–13].
In 2016, Smarandache and Ali [14] gave the concept of Neutrosophic triplet groups which is a very
useful addition in the theory of groups.

Hyperstucture theory was brought-out by Marty [15] in 1934, when he defined hypergroup,
set about analyzing their properties and exerted them to a group. Several papers and books have
been compiled in this direction, see references [16–18]. In 1990, in Greece, a congress was organized
by Thomas Vougiouklis on hyperstructure, which was first named algebraic hyper structures and its
applications algebraic hyper structures(AHA); however actually was the fourth, because there had been
three more congresses in Italy by Corsini, on the same topic but random names. During this congress,
Vougiouklis [19] presented the concept of weak structure, presently known as Hv-structure. A number
of writers have gone through various aspects of Hv-structure. For instance, references [20–27]. Another
book by Davvaz and Fotea in 2007 has been devoted especially to the study of hyperring theory [28].

Kazim and Naseeruddin [29] in 1970, presented the concept of left almost semigroups
(LA-semigroups) and shifted the discussion toward non-associative structures. According to them,
a groupoid S is called LA-semigroups, if it is satisfies the left invertive law: (w1w2)w3 = (w3w2)w1 for
all w1, w2, w3 ∈ S. After that, researchers started working in this direction such as, references [30–32]
and Yusuf gave the idea of left almost rings [33]. Hila and Dine [34] in 2011, shifted the non-associative
structures to non-associative hyperstructures and furnished the idea of LA-semihypergroup, which
is generalization of semigroup, semihypergroup, LA-semigroup by using left invertive law with the
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help of Marty’s hyperoperation.Yaqoob et al. [35] expanded the work of Hila and Dine. Yousafzai et al.
in [36] and Amjad et al. [37] tried to generalize different aspects of left almost semihypergroups.
The concept of Hv-LA-semigroup was laid by Gulistan et al. [38] in 2015. The idea of partially ordered
left almost semihypergroups was developed by Naveed et al. [39] in 2015. Rehman et al. [40], initiated
the study of LA-hyperrings and discussed its hyperideals and hypersystems in 2017. Nawaz et al.
introduced the concept of left almost semihyperrings [41]. Yaqoob et al. [42] gave the idea of left
almost polygroups in 2018.

In this paper, we extended the idea of neutrosophic triplet set to non-associative semihypergroups.
We define neutrosophic triplet LA-semihypergroup. In neutrosophic triplet LA-semihypergroup every
element “w” has left neut(w) and left anti(w). In neutrosophic triplet LA-semihypergroup left neut(w)
of an element “w” may or may not be equal to left identity. We also defined the neutro-homomorphism
on LA-semihypergroups. At the end, we present an application of the proposed structure in football.

2. Preliminaries

This section of paper consists of some basic definitions, which are directly used in our work.

Definition 1 ([34]). Let H be a non void set and ◦ : H ∗H −→ P• (H) be a hyperoperation, where P• (H)

is the family non-void subset of H. The pair (H, ∗) is called hypergroupoid.
For any two non-void subsets W1 and W2 of H, then

W1 ∗ W2 =
⋃

w1∈W1,w2∈W2

w1 ∗ w2.

Definition 2 ([34]). An LA-semihypergroup is the hypergroupoid (H, ∗) with

(w1 ∗ w2) ∗ w3 = (w3 ∗ w2) ∗ w1 (1)

for all, w1, w2, w3 ∈ H. The equation (1) is called left invertive law.

Definition 3 ([35]). An element e of an LA-semihypergroup H is called left identity (resp., pure left identity)
if for all w1 ∈ H, w1 ∈ e ∗ w1 (resp., w1 = e ∗ w1). An element e of an LA-semihypergroup H is called right
identity (resp., pure right identity) if for all w1 ∈ H, w1 ∈ w1 ∗ e (resp., w1 = e ∗ w1). An element e of an
LA-semihypergroup H is called identity (resp., pure right identity) if for all w1 ∈ H, w1 ∈ w1 ∗ e ∩ e ∗ w1

(resp., w1 = w1 ∗ e ∩ e ∗ w1).

Definition 4 ([35]). An LA-smihypergroup with pure left identity satisfies the following property

w1 ∗ (w2 ∗ w3) = w2 ∗ (w1 ∗ w3).

Definition 5 ([14]). Let N be a non-void set with a binary operation ∗ and w1 ∈ N. Then w1 is said to be
neutrosophic triplet if there exist an element neut (w1) ∈ N such that

w1 ∗ neut (w1) = neut (w1) ∗ w1 = w1,

where neut (w1) is different from unity element. Also there exist anti (w1) ∈ N such that

w1 ∗ anti (w1) = anti (w1) ∗ w1 = neut (w1) .

If there are more anti (w1)
′ s for a given w1, one takes that anti(w1) = w2 that anti (w1) in its turn

forms a neutrosophic triplet, i.e., there exists neut (w2) and anti (w2). We denote the neutrosophic triplet w1 by
(w1, neut (w1) , anti (w1)). By neut (w1), we means neutral of w1.
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Example 1 ([14]). Consider Z6 under multiplication modulo 6. Then 2 is a neutrosophic triplet, because
neut (2) = 4, as 2 × 4 = 8. Similarly anti (2) = 2 because 2 × 2 = 4. Thus 2 is a neutrosophic triplet,
which is denoted by (2, 4, 2). Similarly 4 is a neutrosophic triplet because neut (a) = anti (4) = 4. So 4 is
represented by as (4, 4, 4). 3 is not a neutrosophic triplet as neut(3) = 5 but anti(3) does not exist in Z6 and 0
is a trivial neutrosophic triplet as neut (0) = anti (0) = 0. This is denoted by (0, 0, 0).

3. Neutrosophic Triplet LA-Semihypergroups

In this section, we defined the neutrosophic triplet LA-semihypergroup and some results on
neutrosophic triplet LA-semihypergroup are provided.

Definition 6. Let H be a non void set with a binary hyperoperation ∗ and w1 ∈ H. Then H is called

1. left neutrosophic triplet set if for every w1 ∈ H, there exist neut (w1) and anti(w1) such that

w1 ∈ neut (w1) ∗ w1,

neut(w1) ∈ anti (w1) ∗ w1.

2. right neutrosophic triplet set if for every w1 ∈ H, there exist neut (w1) and anti(w1) such that

w1 ∈ w1 ∗ neut (w1) ,

neut(w1) ∈ w1 ∗ anti (w1) .

3. neutrosophic triplet set if for every w1 ∈ H, there exist neut (w1) and anti(w1) such that

w1 ∈ (neut (w1) ∗ w1) ∩ (w1 ∗ neut (w1)),

neut(w1) ∈ (anti (w1) ∗ w1) ∩ (w1 ∗ anti (w1)).

Definition 7. Let H be a set with a binary hyperoperation ∗ and w1 ∈ H. Then H is called

1. pure left neutrosophic triplet set if for every w1 ∈ H, there exist neut (w1) and anti (w1) such that

w1 = neut (w1) ∗ w1,

neut(w1) = anti (w1) ∗ w1.

2. pure right neutrosophic triplet set if for every w1 ∈ H, there exist neut (w1) and anti(w1) such that

w1 = w1 ∗ neut (w1) ,

neut(w1) = w1 ∗ anti (w1) .

3. pure neutrosophic triplet set if for every w1 ∈ H, there exist neut (w1) and anti(w1) such that

w1 = (neut (w1) ∗ w1) ∩ (w1 ∗ neut (w1)),

neut (w1) = (anti (w1) ∗ w1) ∩ (w1 ∗ anti (w1)) .
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Example 2. Let H = {w1, w2, w3} be a se with hyperoperation defined as follows:

∗ w1 w2 w3

w1 w3 {w1, w2} w1

w2 {w1, w2} {w1, w2} {w1, w3}
w3 w2 {w1, w3} w2

A Cayley table 1

Here (w1, w2, w2) , (w2, w2, w2) and (w3, w2, w3) are neutrosophic triplets.

Definition 8. Let (H, ∗) be a left (resp., right, left pure, right pure) neutrosophic triplet set. Then H is called
left (resp., right, left pure, right pure) neutrosophic triplet LA-semihypergroup, if the following conditions
are satisfied:

1. (H, ∗) is well defined.
2. (H, ∗) satisfies the left invertive law.

Example 3. Let H = {w1, w2, w3, w4, w5} be a set with the hyperoperation defined as follows:

∗ w1 w2 w3 w4 w5

w1 w1 w1 w1 w1 w1

w2 w1 {w3, w5} w3 {w1, w4} {w3, w5}
w3 w1 w3 w3 {w1, w4} w3

w4 w1 {w1, w4} {w1, w4} w4 {w1, w4}
w5 w1 {w2, w5} w3 {w1, w4} {w2, w5}

A Cayley table 2

Here (H, ∗) is an LA-semihypergroup, as the element of H satisfies the left invertive law.
Here(w1, w1, w1) , (w2, w5, w5) , (w3, w3, w3) , (w4, w4, w4) and (w5, w2, w5) are left neutrosophic triplets.
Hence (H, ∗) is a left neutrosophic triplet LA-semihypergroup.

Definition 9. Let (H, ∗) be neutrosophic (resp., pure neutrosophic) triplet set. Then H is said to be neutrosophic
(resp., pure neutrosophic) triplet LA-semihypergroup, if the following condition are satisfied:

1. (H, ∗) is a well defined.
2. (H, ∗) satisfies the left invertive law.

Example 4. Let H = {w1, w2, w3} and the hyperoperation defined in the table as follows:

∗ w1 w2 w3

w1 {w1, w2} {w1, w2} w3

w2 H H w3

w3 w3 w3 w3

A Cayley table 3
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Here (H, ∗) is an LA-semihypergroup, as the element of H satisfies the left invertive law.
Here (w1, w2, w1), (w2, w1, w2) and (w3, w3, w3) are neutrosophic triplets. Hence (H, ∗) is a neutrosophic
triplet LA-semihypergroup.

Remark 1. Neut(w2) of an element "w2" is not unique under the hyperoperation ∗ in H and depend on
elements and hyperoperation. By the Example 4 neut(w2) = w1, w2. Similarly anti(w2) = w1, w2 of an
element "w2" is not unique and depends on the element and the hyperoperation ∗.

Remark 2. Left neut of an element is could be different from left identity.

Definition 10. Let (H, ∗) be a neutrosophic LA-semihypergroup. An element w1 ∈ H, then there exist pure
left neut(w1) such that w1 = neut (w1) ∗ w1 and pure left anti(w1) such that neut(w1) = anti (w1) ∗ w1.

Proposition 1. Let (H, ∗) be a pure left neutrosophic triplet LA-semihypergroup with pure left identity.
Then w2 ∗ w1 = w3 ∗ w1 if and only if

neut (w1) ∗ w2 = neut (w1) ∗ w3.

Proof. Suppose that w2 ∗ w3 = w3 ∗ w1 for w1, w2, w3 ∈ H. Since (H, ∗) is a pure left neutrosophic LA
semihypergroup, so anti (w1) ∈ H. Multiply anti (w1) to the right side of w2 ∗ w1 = w3 ∗ w1

(w2 ∗ w1) ∗ anti (w1) = (w3 ∗ w1) ∗ anti (w1)

(anti (a) ∗ w1) ∗ w2 = (anti (w1) ∗ w1) ∗ w3

neut (w1) ∗ w2 = neut (w1) ∗ w3.

Conversely, let neut (w1) ∗ w2 = neut (w1) ∗ w3. Multiply to both right sides by w1

neut (w1) ∗ (w2 ∗ w1) = neut (w1) ∗ (w3 ∗ w1)

w2 ∗ (neut (w1) ∗ w1) = w3 ∗ (neut (w1) ∗ w1)

w2 ∗ w1 = w3 ∗ w1.

This completes the proof.

Proposition 2. Let (H, ∗) be a pure right neutrosophic triplet LA-semihypergroup with pure left identity.
Then w2 ∗ neut (w1) = w3 ∗ neut (w1) if w2 ∗ anti (w1) = w3 ∗ anti(w1) for all w1, w2, w3 ∈ H.

Proof. Suppose (H, ∗) is a pure right neutrosophic triplet LA-semihypergroup with pure left identity
and w2 ∗ anti (w1) = w3 ∗ anti(w1) for w1, w2, w3 ∈ H. Multiply w1 to the left side of w2 ∗ anti (w1) =

w3 ∗ anti(w1),

w1 ∗ (w2 ∗ anti (w1)) = w1 ∗ (w3 ∗ anti(w1))

w2 ∗ (w1 ∗ anti (w1)) = w3 ∗ (w1 ∗ anti(w1))

w2 ∗ neut(w1) = w3 ∗ neut (w1) (because neut(w1) = w1 ∗ anti (w1) ).

Therefore,
w2 ∗ neut (w1) = w3 ∗ neut(w1).

Proposition 3. Let (H, ∗) be a pure right neutrosophic triplet LA-semihypergroup. Then neut(w1) ∗ w2 =

neut (w1) ∗ w3 if w2 ∗ anti (w1) = w3 ∗ anti(w1) for all w1, w2, w3 ∈ H.
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Proof. Suppose (H, ∗) is a pure right neutrosophic triplet LA-semihypergroup and w2 ∗ anti (w1) =

w3 ∗ anti(w1) for w1, w2, w3 ∈ H. Multiply w1 to the right side of w2 ∗ anti (w1) = w3 ∗ anti(w1),

(w2 ∗ anti (w1)) ∗ w1 = (w3 ∗ anti(w1)) ∗ w1

(w1 ∗ anti (w1)) ∗ w2 = (w1 ∗ anti(w1)) ∗ w3

neut(w1) ∗ w2 = neut (w1) ∗ w3 (because neut(w1) = w1 ∗ anti (w1) ).

Therefore,
neut(w1) ∗ w2 = neut (w1) ∗ w3.

Theorem 1. Let (H, ∗) be a pure right neutrosophic triplet idempotent LA-semihypergroup. Then neut(w1) ∗
neut (w1) = neut (w1).

Proof. Consider neut(w1) ∗ neut (w1) = neut (w1) . Multiply first with w1 to the right and then again
multiply with w1 to the right, i.e.,

((neut(w1) ∗ neut (w1)) ∗ w1) ∗ w1 = (neut (w1) ∗ w1) ∗ w1

((w1 ∗ neut (w1)) ∗ neut(w1)) ∗ w1 = (w1 ∗ w1) ∗ neut (w1)

(w1 ∗ neut(w1)) ∗ (w1 ∗ neut (w1)) = w1 ∗ neut (w1)

w1 ∗ w1 = w1

w1 = w1.

This shows that
neut(w1) ∗ neut (w1) = neut (w1) .

Theorem 2. Let (H, ∗) be a pure right neutrosophic triplet idempotent LA-semihypergroup with pure left
identity. Then neut(w1) ∗ anti (w1) = anti (w1) .

Proof. Let (H, ∗) be a pure right neutrosophic triplet LA-semihypergroup with pure left identity.
Multiply w1 to the left of both side neut(w1) ∗ anti (w1) = anti (w1) , i.e.,

w1 ∗ ((neut(w1) ∗ anti (w1)) = w1 ∗ anti (w1)

neut(w1) ∗ (w1 ∗ anti (w1)) = neut(w1)

neut(w1) ∗ neut(w1) = neut (w1)

neut (w1) = neut (w1) (By Theorem 1)

This shows that
neut(w1) ∗ anti (w1) = anti (w1) .

Theorem 3. Let (H, ∗) be a pure right neutrosophic triplet LA-semihypergroup. Then

1. neut(w1) ∗ neut (w2) = neut(w1 ∗ w2) for all w1, w2 ∈ H.
2. ant (w1) ∗ anti (w2) = anti (w1 ∗ w2) for all w1, w2 ∈ H.
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Proof. 1. Consider the left hand side neut(w1) ∗ neut (w2). Multiply first with w2 to the right and then
again multiply with w1 to the right, i.e.,

((neut(w1) ∗ neut (w2)) ∗ w2) ∗ w1 = ((w2 ∗ neut (w2)) ∗ neut(w1)) ∗ w1

= (w2 ∗ neut(w1)) ∗ w1

= (w1 ∗ neut(w1)) ∗ w2

= w1 ∗ w2.

So
((neut(w1) ∗ neut (w2)) ∗ w2) ∗ w1 = w1 ∗ w2 (2)

Now consider the right side neut(w1 ∗ w2). Multiply first with w2 to the right and then again
multiply with w1 to the right, i.e.,

(neut(w1 ∗ w2) ∗ w2) ∗ w1 = (w1 ∗ w2) ∗ neut(w1 ∗ w2)

= w1 ∗ w2.

So
(neut(w1 ∗ w2) ∗ w2) ∗ w1 = w1 ∗ w2 (3)

From the Equations (2) and (3) it is clear that neut(w1) ∗ neut (w2) = neut(w1 ∗ w2).
2. Consider the left hand side anti(w1) ∗ anti (w2). Multiply first with w2 to the right and then

again multiply with w1 to the right, i.e.,

((anti(w1) ∗ anti (w2)) ∗ w2) ∗ w1 = ((w2 ∗ anti (w2)) ∗ anti(w1)) ∗ w1

= (neut(w2) ∗ anti(w1)) ∗ w1

= (w1 ∗ anti(w1)) ∗ neut(w2)

= neut(w1) ∗ neut(w2)

= neut(w1 ∗ w2).

So
((anti(w1) ∗ anti (w2)) ∗ w2) ∗ w1 = neut(w1 ∗ w2) (4)

Now consider the right side anti(w1 ∗ w2). Multiply first with w2 to the right and then again
multiply with w1 to the right, i.e.,

(anti(w1 ∗ w2) ∗ w2) ∗ w1 = (w1 ∗ w2) ∗ anti(w1 ∗ w2)

= neut(w1 ∗ w2)

So
(anti(w1 ∗ w2) ∗ w2) ∗ w1 = neut(w1 ∗ w2) (5)

From the Equations (4) and (5) it is clear that

anti(w1) ∗ anti (w2) = anti(w1 ∗ w2).

In the following example, we show that in a left neutrosophic triplet LA-semihypergroup

neut(w1) ∗ neut (w2) �= neut(w1 ∗ w2) (6)

and anti(w1) ∗ anti (w2) �= anti(w1 ∗ w2). (7)
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Example 5. Let H = {w1, w2, w3, w4} be a set with the hyperoperation defined as follow

∗ w1 w2 w3 w4

w1 {w1, w3, w4} {w2, w4} H H
w2 {w1, w2, w4} {w1, w2} {w2, w4} {w2, w3, w4}
w3 {w1, w2, w3} {w1, w3, w4} {w2, w4} {w2, w3, w4}
w4 H {w2, w3, w4} H {w1, w3}

A Cayley table 4

All the elements of H satisfies the left invertive law. Here (w1, w3, w4), (w2, w4, w1), (w3, w1, w4) and
(w4, w2, w3) are left neutrosophic triplets. Hence (H, ∗) is a left neutrosophic triplet LA-semihypergroup. Now

neut(w1) ∗ neut (w2) �= neut(w1 ∗ w2)

w3 ∗ w4 �= neut({w2, w4})
{w2, w3, w4} �= neut(w2) ∪ neut(w4)

{w2, w3, w4} �= {w2, w4}.

Also

anti(w1) ∗ anti (w2) �= anti(w1 ∗ w2)

w4 ∗ w1 �= anti({w2, w4})
H �= anti(w2) ∪ anti(w4)

H �= {w1, w3}.

Hence this shows that neut(w1) ∗ neut (w2) �= neut(w1 ∗ w2) and anti(w1) ∗ anti (w2) �=
anti(w1 ∗ w2).

Theorem 4. Let (H, ∗) be a pure left neutrosophic LA-semihypergroup. Then neut (anti (w1)) = neut (w1) .

Proof. Let neut (anti (w1)) = neut (w1) . If we put anti (w1) = w2, then

neut (w2) = neut (w1) . Post multiply by w2

neut (w2) ∗ w2 = neut (w1) ∗ w2

w2 = neut (w1) ∗ w2

anti(w1) = neut (w1) ∗ anti(w1), as w2 = anti (w1)

anti (w1) = anti (w1) . By Theorem 1 neut (w1) ∗ anti(w1) = anti(w1)

Hence neut (anti (w1)) = neut (w1) .

Theorem 5. Let (H, ∗) be a pure left neutrosophic LA-semihypergroup. Then anti (anti (w1)) = w1.
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Proof. Consider anti (anti (w1)) = w1. Post multiplying both sides anti (w1)

anti (anti (w1)) ∗ anti (w1) = w1 ∗ anti (w1)

neut (anti (w1)) = (neut (w1) ∗ w1) ∗ anti (w1)

neut (anti (w1)) = (anti (w1) ∗ w1) ∗ neut (w1) by left invertive law

neut (anti (w1)) = neut (w1) ∗ neut (w1)

neut (anti (w1)) = neut (w1) by Theorem 1 neut (w1) ∗ neut (w1) = neut (w1)

neut (w1) = neut (w1) by Theorem 4

Hence anti (anti (w1)) = w1.

Definition 11. Let (H, ∗) be a neutrosophic LA-semihypergroup and let K be a subset of H. Then, K is called
neutrosophic triplet LA-subsemihypergroup, if K itself is a neutrosophic triplet LA-semihypergroup.

Example 6. Let H = {w1, w2, w3, w4, w5} be a set with the hyperoperation defined in the table as follow

∗ w1 w2 w3 w4 w5

w1 {w1, w3} w2 {w2, w3} {w4, w5} w5

w2 {w2, w3} {w2, w3} {w2, w3} {w4, w5} w5

w3 {w2, w3} {w2, w3} {w2, w3} {w4, w5} w5

w4 {w4, w5} {w4, w5} {w4, w5} w4 w5

w5 w5 w5 w5 w5 w5

A Cayley table 5

Here (H, ∗) is an LA-semihypergroup, because the element of H satisfies the left invertive law.
Here (w1, w1, w1), (w2, w3, w3), (w3, w2, w3), (w4, w4, w4) and (w5, w4, w4) are neutrosophic triplet. Hence
(H, ∗) is a neutrosophic triplet LA-semihypergroup. Let K = {w1, w2, w3} be subset of H. As K is a
neutrosophic LA-semihypergroup under the ∗. Then K is called neutrosophic triplet LA-subsemihypergroup
of H.

Lemma 1. Let K be a non-empty subset of a neutrosophic triplet LA-semihypergroup H. The following
are equivalent.

1. K is a neutrosophic triplet LA-semihypergroup.
2. For all w1, w2 ∈ K, w1 ∗ w2 ∈ K.

Proof. The proof is straightforward.

Definition 12. Let (H1, ∗1) and (H2, ∗2) are two neutrosophic triplet LA-semihypergroups. Let f : H1 −→ H2

be a mapping. Then f is called neutro-homomorphism if for all w1, w2 ∈ H1, we have

1. f (w1 ∗1 w2) = f (w2) ∗2 f (w2) ,
2. f (net (w1)) = neut ( f (w1)) ,
3. f (anti (w1)) = anti ( f (w1)) .

Theorem 6. Let f : H1 −→ H2 be a neutro-homomorphism. Where H1and H2 are two neutrosophic triplet
LA-semihypergroup. Let

1. The image of f is a neutrosophic triplet LA-subsemihypergroup of H2.

384



Symmetry 2018, 10, 613

2. The inverse image of f is a neutrosophic LA-subsemihypergroup of H1.

Proof. The proof is straightforward.

Remark 3. We have the following key points;

1. Every neutrosophic triplet LA-semihypergroup is an LA-semihypergroup, but the reverse may
or may not true.

2. In neutrosophic triplet LA-semihypergroup, every element must have a left neut (.) , but in an
LA-semihypergroup the left neut (.) of an element may or may not exist.

3. In neutrosophic LA-semihypergroup, every element must have left anti (.) , but in an
LA-semihypergroup the element may or may not have semihypergroup.

4. In neutrosophic LA-semihypergroup pure left neut (.) is not equal to pure left Identity.

4. Application

Neutrosophic triplet LA-semihypergroups has many applications in different areas. Here, we
present an application of neutrosophic triplet LA-semihypergroup in football. We can use different
versions of neut and anti elements like left, right, pure left and pure right that we may see in different
situations. The interesting prospect of this newly defined structure is that it is not comutative, so any
change from the left and same types of change from the rigth of a certain element may affect the final
results with respect to neut and anti.

Consider a Football team; the centre midfield player “Cm” having a degree of performance d1.
The players “Cml2” and “Cmr1” are the midfield player having degree of performance d1. Thus using
Definition 6, the neut (Cm) ∈ {Cml2, Cmr1} . The players “Cml1” and “Cmr2” are having better degree
of performance d2, thus using Definition 6, the neut (Cm) ∈ anti (Cm) ∗ Cm ∩ Cm ∗ anti (Cm) = Cml1 ∗
Cm ∩ Cm ∗ Cmr2 = {d1, d2} Neutrosophic triplet LA-semihypergroup can help the coach to select the
players for filling the position in the playground, when a player gets injured. The major advantage of
neutrosophic triplet LA-semihypergroup is that if we have a centre mid player and this player has the
other players having the same performance on the right side as neut of it and it has one player on the
left having better performance than it as shown in the following Figure 1.

If the performance of a player playing on the left side and right side of a centre mid player is
equal to performance of a centre mid player then the structure reduces to a duplet structure. Similarly,
we can find many applications in different directions.

Figure 1. A view of football match.

385



Symmetry 2018, 10, 613

5. Conclusions

In this paper, we apply the idea of neutrosophic triplet sets at the very useful non-associative
hyperstructures, namely LA-semihypergroups. We define neutrosophic triplet set (left, right, pure
left, pure right). We discuss some basic results and an application of the proposed structure at the end.
In future, we are aiming to extend this idea and give more interesting results.
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Abstract: Neutrosophic triplet structure yields a symmetric property of truth membership on the
left, indeterminacy membership in the centre and false membership on the right, as do points of
object, centre and image of reflection. As an extension of a neutrosophic set, the Q-neutrosophic set
was introduced to handle two-dimensional uncertain and inconsistent situations. We extend the
soft expert set to generalized Q-neutrosophic soft expert set by incorporating the idea of soft expert
set to the concept of Q-neutrosophic set and attaching the parameter of fuzzy set while defining
a Q-neutrosophic soft expert set. This pattern carries the benefits of Q-neutrosophic sets and soft
sets, enabling decision makers to recognize the views of specialists with no requirement for extra
lumbering tasks, thus making it exceedingly reasonable for use in decision-making issues that include
imprecise, indeterminate and inconsistent two-dimensional data. Some essential operations namely
subset, equal, complement, union, intersection, AND and OR operations and additionally several
properties relating to the notion of generalized Q-neutrosophic soft expert set are characterized.
Finally, an algorithm on generalized Q-neutrosophic soft expert set is proposed and applied to a
real-life example to show the efficiency of this notion in handling such problems.

Keywords: algorithm; decision making; expert set; generalized neutrosophic set; neutrosophic sets;
Q-neutrosophic; soft sets.

1. Introduction

Zadeh established the concept of fuzzy set [1] as a way to handle uncertain information,
by assigning a number to each element that shows the degree of membership of the element.
Intuitionistic fuzzy set [2] is another way to handle uncertainty that assigns two numbers to each
element. These numbers show the the degree of membership and the degree of nonmembership of the
element. However, these theories fail to handle an indeterminate environment, hence Smarandache
established the idea of neutrosophy [3] as an extension of fuzzy set and intuitionistic fuzzy set to
mitigate such situations. Neutrosophic set (NS) [4] is recognized via three independent membership
functions that depict the degrees of truth (T), indeterminacy (I), and falsity (F). Soft set [5] is
another commonly used method in handling uncertainties. It has been extended extensively to
fuzzy soft set [6], vague soft set [7–9] and neutrosophic soft set [10]. Although these concepts
are widely applicable to different life branches, they lack the ability to handle two-dimensional
problems. This motivates the definition of Q-fuzzy soft set [11,12] that served the uncertainty and
two-dimensionality simultaneously. Recently, this was extended to the theory of Q-neutrosophic
soft set (Q-NSS) [13] by extending the theory of Q-fuzzy soft set to a neutrosophic set. Q-NSS is a
tri-component two-dimensional set, enabling it to address inconsistent, indeterminate and imprecise
data in which the indeterminacy is measured unequivocally and truth, indeterminacy and falsity
memberships are independent. Relations between Q-NSSs were studied in [13] while their measures
of distance, similarity and entropy were discussed in [14].
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Decision-making is an exploration point of research especially in uncertain environments.
Recently, many researchers applied neutrosophic sets to real-life decision making problems containing
uncertain, indeterminate and incompatible information [15–25].

Recently, the need for models incorporating opinions of experts and validating information
supplied by observers has been recognized. In such cases, it is pertinent to have the conclusions of
a specialist to approve the information obtained from observers before these data can be utilized to
make a decision. The lack of this feature was one of the major problems that was inherent in fuzzy
and soft sets, and their hybrid models, including Q-NSSs. The concept of soft expert sets (SESs) [26] is
the first model in literature to deal with this issue, by presenting the opinions of the experts, with no
extra task. Although SES was considered a novel idea at the time of its initiation, it does not have the
capacity to represent the uncertainty that appears in most real issues. Many generalizations of the SES
model were introduced to overcome this issue such as fuzzy soft expert sets [27], neutrosophic soft
expert sets [28], neutrosophic vague soft expert set [17], complex neutrosophic soft expert set [18],
vague soft expert sets [29–31], generalized neutrosophic soft expert set [32] and Q-neutrosophic soft
expert set (Q-NSES) [33]. Q-NSES has the capacity to handle indeterminacy and two-dimensionality
simultaneously, since it incorporates the elements of both soft expert set and Q-neutrosophic set.
The structure of this concept enables it to provide the opinions of experts to activate the data obtained
from individuals and able to present the ideas within a two-dimensional indeterminate environment
which makes it suitable to describe many real problems.

In this study, we redefine the operations of Q-NSES [33] and introduce the conception of
generalized Q-neutrosophic soft expert set (GQ-NSES) as an extension of Q-NSES by attaching the
parameterization of fuzzy sets while defining a Q-NSES. The proposed concept is more practical as it
includes uncertainty in the selection of a fuzzy set corresponding to each value of the parameter. We will
introduce some concepts related to this model along with basic operations relevant to GQ-NSESs,
namely the union, intersection and complement operations. The commutative and associative
laws of these operations will be proposed and an application of GQ-NSES in decision-making will
be illustrated.

2. Preliminaries

We review some basic ideas of soft set, neutrosophic set and Q-neutrosophic soft expert set that
are related to the study in this work.

2.1. Neutrosophic Set

In the following, we recall the notion of neutrosophic set [4] with the operations of subset,
complement, intersection and union [3].

Definition 1 (see [4]). A neutrosophic set Γ on the universe X is defined as

Γ = {〈x, (TΓ(x), IΓ(x), FΓ(x))〉 : x ∈ X}, where T, I, F : X →]−0, 1+[

and
−0 ≤ TΓ(x) + IΓ(x) + FΓ(x) ≤ 3+.

Definition 2 (see [3]). Let Γ and Ψ be two neutrosophic sets. Then, we say that Γ is a subset of Ψ denoted by
Γ ⊆ Ψ if and only if TΓ(x) ≤ TΨ(x), IΓ(x) ≥ IΨ(x) and FΓ(x) ≥ FΨ(x) for all x ∈ X.

Definition 3 (see [3]). The union of two neutrosophic sets Γ and Ψ in the universe X is denoted by Γ ∪ Ψ = Λ,
where

Λ = {〈x, (max{TΓ(x), TΨ(x)}, min{IΓ(x), IΨ(x)}, min{FΓ(x), FΨ(x)})〉 : x ∈ X}.
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Definition 4 (see [3]). The intersection of two neutrosophic sets Γ and Ψ in the universe X is denoted by
Γ ∩ Ψ = Λ, where

Λ = {〈x, (min{TΓ(x), TΨ(x)}, max{IΓ(x), IΨ(x)}, max{FΓ(x), FΨ(x)})〉 : x ∈ X}.

Definition 5 (see [3]). The complement of a neutrosophic set Γ in the universe X is denoted by Γc, where

Γc = {〈x, (1 − TΓ(x), 1 − IΓ(x), 1 − FΓ(x))〉 : x ∈ X}.

The neutrosophic empty set Γ0 in the universe X is Γ0 = {〈x, (0, 1, 1)〉 : x ∈ X}.

2.2. Q-Neutrosophic Soft Expert Set

Abu Qamar and Hassan [13] proposed Q-neutrosophic set (Q-NS) for dealing with
two-dimensional inconsistent, indeterminate and uncertain information.

Definition 6 (see [13]). Let X be a universal set and Q be a nonempty set. A Q-neutrosophic set ΓQ in X and
Q is an object of the form

ΓQ = {
〈
(x, q), TΓQ(x, q), IΓQ(x, q), FΓQ(x, q)

〉
: x ∈ X, q ∈ Q},

where TΓQ , IΓQ , FΓQ : X × Q →]−0, 1+[ are the true membership function, indeterminacy membership function
and false membership function, respectively, with −0 ≤ TΓQ + IΓQ + FΓQ ≤ 3+.

Hassan et al. raised the notion of Q-neutrosophic soft expert [33].
Let X be a universe, Q be a nonempty set, E a set of parameters, U a set of experts (agents), and

O = {1 = agree, 0 = disagree} a set of opinions. Let Z = E × U × O and A ⊆ Z.

Definition 7 (see [33]). A pair (Γ̂Q, A) is called a Q-NSES over X, where Γ̂Q is a mapping given by Γ̂Q :
A → QNSES such that QNSES is the set of all QNSES over U.

In the following, we refined the basic operations of Q-NSES introduced in [33].

Definition 8. Let (Γ̂Q, A) and (Ψ̂Q, B) be two Q-NSESs over X. Then, (Γ̂Q, A) is said to be Q-NSE
subset of (Ψ̂Q, B), denoted by (Γ̂Q, A)⊆̂(Ψ̂Q, B) if A ⊆ B and TΓ̂Q(a)(x, q) ≤ TΨ̂Q(a)(x, q), IΓ̂Q(a)(x, q) ≥
IΨ̂Q(a)(x, q), FΓ̂Q(a)(x, q) ≥ FΨ̂Q(a)(x, q) ∀a ∈ A, (x, q) ∈ X × Q.

Definition 9. The complement of (Γ̂Q, A) is defined as (Γ̂Q, A)c = (Γ̂c
Q, A), where Γ̂c

Q = A → P(X × Q) and

Γ̂c
Q =

{〈
a, TΓ̂c

Q(a)(x, q), IΓ̂c
Q(a)(x, q), FΓ̂c

Q(a)(x, q)
〉

: a ∈ A, (x, q) ∈ X × Q
}

,

such that ∀a ∈ A, (x, q) ∈ X × Q

TΓ̂c
Q(a)(x, q) = 1 − TΓ̂Q

(x, q),

IΓ̂c
Q(a)(x, q) = 1 − IΓ̂Q

(x, q),

FΓ̂c
Q(a)(x, q) = 1 − FΓ̂Q

(x, q).

Now, we propose the union and intersection of two Q-NSESs.
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Definition 10. The union of (Γ̂Q, A) and (Ψ̂Q, B) is a Q-NSES (Υ̂Q, C), defined as (Γ̂Q, A)∪̂ (Ψ̂Q, B) =

(Υ̂Q, C), where C = A ∪ B and for all c ∈ C and (x, q) ∈ X × Q the truth, indeterminacy and falsity
memberships of (Υ̂Q, C) are as follows:

TΥ̂Q(c)(x, q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
TΓ̂Q(c)(x, q) if c ∈ A − B,

TΨ̂Q(c)(x, q) if c ∈ B − A,

max{TΓ̂Q(c)(x, q), TΨ̂Q(c)(x, q)} if c ∈ A ∩ B,

IΥ̂Q(c)(x, q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
IΓ̂Q(c)(x, q) if c ∈ A − B,

IΨ̂Q(c)(x, q) if c ∈ B − A,

min{IΓ̂Q(c)(x, q), IΨ̂Q(c)(x, q)} if c ∈ A ∩ B,

and

FΥ̂Q(c)(x, q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
FΓ̂Q(c)(x, q) if c ∈ A − B,

FΨ̂Q(c)(x, q) if c ∈ B − A,

min{FΓ̂Q(c)(x, q), FΨ̂Q(c)(x, q)} if c ∈ A ∩ B.

Definition 11. The intersection of (Γ̂Q, A) and (Ψ̂Q, B) is a Q-NSES (Υ̂Q, C), defined as (Γ̂Q, A)∩̂(Ψ̂Q, B) =
(Υ̂Q, C), where C = A ∩ B and for all c ∈ C and (x, q) ∈ X × Q the truth, indeterminacy and falsity
memberships of (Υ̂Q, C) are as follows:

TΥ̂Q(c)(x, q) =min{TΓ̂Q(c)(x, q), TΨ̂Q(c)(x, q)},

IΥ̂Q(c)(x, q) =max{IΓ̂Q(c)(x, q), IΨ̂Q(c)(x, q)},

FΥ̂Q(c)(x, q) =max{FΓ̂Q(c)(x, q), FΨ̂Q(c)(x, q)}.

Definition 12. If (Γ̂Q, A) and (Ψ̂Q, B) are two Q-neutrosophic soft expert sets on X, then (Γ̂Q, A) AND
(Ψ̂Q, B) is the Q-neutrosophic soft expert set denoted by (Γ̂Q, A)∧̂(Ψ̂Q, B) and defined by (Γ̂Q, A)∧̂(Ψ̂Q, B) =
(Λ̂Q, A × B), where Λ̂Q(a, b) = Γ̂Q(a)∩̂Ψ̂Q(b) for all (a, b) ∈ A × B is the operation of intersection of two
Q-neutrosophic sets on X.

Definition 13. If (Γ̂Q, A) and (Ψ̂Q, B) are two Q-neutrosophic soft expert sets on X, then (Γ̂Q, A) OR (Ψ̂Q, B)
is the Q-neutrosophic soft expert set denoted by (Γ̂Q, A)∨̂(Ψ̂Q, B) and defined by (Γ̂Q, A)∨̂ (Ψ̂Q, B) =

(Λ̂Q, A × B), where Λ̂Q(a, b) = Γ̂Q(a)∪̂Ψ̂Q(b) for all (a, b) ∈ A × B is the operation of union of two
Q-neutrosophic sets on X.

3. Generalized Q-Neutrosophic Soft Expert Set

In this section, we propose the generalized Q-neutrosophic soft expert set (GQ-NSES) and proceed
to introduce several concepts related to this model. We will put forward the operations of union,
intersection and complement of GQ-NSESs, and proceed with the properties of the commutative and
associative laws of these operations.

We begin by proposing the definition of GQ-NSES, followed by an illustrative example.
Let X be a universe, Q be a nonempty set, E a set of parameters, U a set of experts (agents),

and O = {1 = agree, 0 = disagree} a set of opinions. Let Z = E × U × O, A ⊆ Z and f be a fuzzy set;
that is, f : A → [0, 1].

391



Symmetry 2018, 10, 621

Definition 14. A pair (Γ̂ f
Q, A) is called a GQ-NSES over X, where Γ̂ f

Q is a mapping given by

Γ̂ f
Q : A → P(X × Q)× I,

where P(X × Q) denotes the power Q-neutrosophic soft expert set. For all a ∈ A, Γ̂Q is referred to as the
Q-neutrosophic expert value set of the parameter a, i.e,

Γ̂Q(a) =
{〈

(x, q), TΓ̂Q
(x, q), IΓ̂Q

(x, q), FΓ̂Q
(x, q)

〉}
presents the degree of belongingness, indeterminacy belongingness and non-belongingness of elements of X in Γ̂Q,
where ∀(x, q) ∈ X × Q, ∀a ∈ A, TΓ̂Q

, IΓ̂Q
, FΓ̂Q

representing the membership functions of truth, indeterminacy
and falsity, respectively. The values TΓ̂Q

, IΓ̂Q
, FΓ̂Q

∈ [0, 1] and

0 ≤ TΓ̂Q
(x, q) + IΓ̂Q

(x, q) + FΓ̂Q
(x, q) ≤ 3.

The GQ-NSES (Γ̂ f
Q, A) is a parametrized family of Q-neutrosophic soft expert sets on X, which has the

degree of preference of the approximate value set which represented by f (a) for each paremeter a. The GQ-NSES
can be written as:

(Γ̂ f
Q, A) =

{〈
a, (Γ̂Q(a), f (a))

〉
: a ∈ A, Γ̂Q(a) ∈ P(X × Q), f (a) ∈ [0, 1]

}
.

In short, for each parameter a, Γ̂ f
Q(a) gives not only the extent to which each element in X belongs,

indeterminacy belong or not belong to Γ̂Q but also indicates how much such belonging is preferred.

Example 1. Suppose a company wants to fill a position to be chosen by an expert committee. There are three
candidates X = {x1, x2, x3} with two types of qualifications Q = {q1 = master, q2 = doctorate} and
the hiring committee takes into consideration a set of parameters E = {e1 = computer knowledge, e2 =

experience}. Let U = {u1, u2} be the set of two committee members. Then, we can view the GQ-NSES (Γ̂ f
Q, A)

as consisting of the following collection of approximation:

(Γ̂ f
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.1, 0.2, 0.6], [(x1, q2), 0.4, 0.3, 0.7], [(x2, q1), 0.5, 0.2, 0.1],

[(x2, q2), 0.7, 0.2, 0.3], [(x3, q1), 0.8, 0.3, 0.1], [(x3, q2), 0.2, 0.3, 0.6], 0.7
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.6, 0.4, 0.2], [(x1, q2), 0.5, 0.3, 0.2], [(x2, q1), 0.5, 0.4, 0.3],

[(x2, q2), 0.9, 0.4, 0.2], [(x3, q1), 0.6, 0.8, 0.4], [(x3, q2), 0.4, 0.1, 0.5], 0.5
)〉

,〈
(e2, u1, 1),

(
[(x1, q1), 0.7, 0.2, 0.3], [(x1, q2), 0.8, 0.4, 0.6], [(x2, q1), 0.3, 0.6, 0.9],

[(x2, q2), 0.1, 0.3, 0.3], [(x3, q1), 0.4, 0.7, 0.5], [(x3, q2), 0.8, 0.7, 0.4], 0.4
)〉

〈
(e2, u2, 1),

(
[(x1, q1), 0.7, 0.6, 0.5], [(x1, q2), 0.7, 0.4, 0.1], [(x2, q1), 0.8, 0.6, 0.3],

[(x2, q2), 0.7, 0.6, 0.2], [(x3, q1), 0.3, 0.4, 0.2], [(x3, q2), 0.5, 0.3, 0.7], 0.6
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.5, 0.3], [(x1, q2), 0.8, 0.8, 0.4], [(x2, q1), 0.7, 0.1, 0.3],

[(x2, q2), 0.9, 0.7, 0.5], [(x3, q1), 0.9, 0.6, 0.5], [(x3, q2), 0.6, 0.3, 0.3], 0.8
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.2, 0.2, 0.5], [(x1, q2), 0.7, 0.4, 0.9], [(x2, q1), 0.8, 0.7, 0.5],

[(x2, q2), 0.8, 0.3, 0.3], [(x3, q1), 0.3, 0.2, 0.8], [(x3, q2), 0.5, 0.5, 0.5], 0.2
)〉

,
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〈
(e2, u1, 0),

(
[(x1, q1), 0.4, 0.8, 0.8], [(x1, q2), 0.9, 0.6, 0.6], [(x2, q1), 0.9, 0.7, 0.5],

[(x2, q2), 0.2, 0.1, 0.6], [(x3, q1), 0.4, 0.7, 0.9], [(x3, q2), 0.8, 0.2, 0.1], 0.3
)〉

,〈
(e2, u2, 0),

(
[(x1, q1), 0.9, 0.4, 0.5], [(x1, q2), 0.7, 0.1, 0.6], [(x2, q1), 0.1, 0.8, 0.4],

[(x2, q2), 0.5, 0.7, 0.8], [(x3, q1), 0.4, 0.4, 0.4], [(x3, q2), 0, 6, 0.8, 0.2], 0.3
)〉}

.

Each element of the GQ-NSES implies the opinion of each expert based on each parameter about the
candidates with their qualifications and the degree of preference of the approximate value set. For example,
[(x1, q1), 0.1, 0.2, 0.6] under the parameter (e1, u1, 1) shows the degree to which expert u1 agree that the
candidate x1 with a master qualification q1 has a computer knowledge, whereas [(x1, q1), 0.5, 0.5, 0.3] under
the parameter (e1, u1, 0) shows the degree to which expert u1 disagree that the candidate x1 with a master
qualification q1 has a computer knowledge.

Now, we present the ideas of the subset of two GQ-NSESs and the equality of two GQ-NSESs.

Definition 15. Let (Γ̂ f
Q, A) and (Ψ̂g

Q, B) be two GQ-NSESs over X. Then, (Γ̂ f
Q, A) is said to be GQ-NSE subset

of (Ψ̂g
Q, B), denoted by (Γ̂ f

Q, A) & (Ψ̂g
Q, B) if A ⊆ B and for a ∈ A, the following conditions are satisfied:

1. f (a) is a fuzzy subset of g(a), that is f (a) ≤ g(a),
2. Γ̂Q(a) is a Q-neutrosophic soft expert subset of Ψ̂Q(a), that is TΓ̂Q(a)(x, q) ≤ TΨ̂Q(a)(x, q), IΓ̂Q(a)(x, q) ≥

IΨ̂Q(a)(x, q), FΓ̂Q(a)(x, q) ≥ FΨ̂Q(a)(x, q)∀(x, q) ∈ X × Q.

Definition 16. Let (Γ̂ f
Q, A) and (Ψ̂g

Q, B) be two GQ-NSESs over X. Then, (Γ̂ f
Q, A) is said to be equal to

(Ψ̂g
Q, B), denoted by (Γ̂ f

Q, A)=̂(Ψ̂g
Q, B) if (Γ̂ f

Q, A) is a GQ-NSE subset of (Ψ̂g
Q, B) and (Ψ̂g

Q, B) is a GQ-NSE
subset of (Γ̂Q, A).

Next, we give the definitions of an agree- GQ-NSES and a disagree- GQ-NSES.

Definition 17. An agree- GQ-NSES (Γ̂ f
Q, A)1 over X is a GQ-NSES subset of (Γ̂Q, A) defined as

(Γ̂ f
Q, A)1 =

{
Γ̂ f

Q1
(a) : a ∈ E × U × {1}

}
.

Definition 18. A disagree- GQ-NSES (Γ̂ f
Q, A)0 over X is a GQ-NSES subset of (Γ̂ f

Q, A) defined as

(Γ̂ f
Q, A)0 =

{
Γ̂ f

Q0
(a) : a ∈ E × U × {1}

}
.

In the following, we discuss the operations of complement, union and intersection of GQ-NSESs.

Definition 19. The complement of (Γ̂ f
Q, A) is defined as

(Γ̂ f
Q, A)

c
= ((Γ̂ f

Q)
c
, A)

=
{〈

a, (Γ̂Q
c
(a), f c(a))

〉
: a ∈ A, Γ̂Q(a) ∈ P(X × Q), f (a) ∈ [0, 1]

}
,

where, f c(a) = 1 − f (a) and Γ̂c
Q =

{〈
a, TΓ̂c

Q(a)(x, q), IΓ̂c
Q(a)(x, q), FΓ̂c

Q(a)(x, q)
〉

: a ∈ A, (x, q) ∈ X × Q
}

,

such that ∀a ∈ A, (x, q) ∈ X × Q
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TΓ̂c
Q(a)(x, q) = 1 − TΓ̂Q

(x, q),

IΓ̂c
Q(a)(x, q) = 1 − IΓ̂Q

(x, q),

FΓ̂c
Q(a)(x, q) = 1 − FΓ̂Q

(x, q).

Example 2. Consider the approximation given in Example 1, where

Γ̂ f
Q(e1, u1, 1) =

{(
[(x1, p), 0.1, 0.2, 0.6], [(x1, q), 0.4, 0.3, 0.7], [(x2, p), 0.5, 0.2, 0.1],

[(x2, q), 0.7, 0.2, 0.3], [(x3, p), 0.8, 0.3, 0.1], [(x3, q), 0.2, 0.3, 0.6], 0.7
)}

.

By using the GQ-NSES complement, we obtain the complement of the approximation given by

(Γ̂ f
Q)

c
(e1, u1, 1) =

{(
[(x1, p), 0.9, 0.8, 0.4], [(x1, q), 0.6, 0.7, 0.3], [(x2, p), 0.5, 0.8, 0.9],

[(x2, q), 0.3, 0.8, 0.7], [(x3, p), 0.2, 0.7, 0.9], [(x3, q), 0.8, 0.7, 0.4], 0.3
)}

.

Proposition 1. If (Γ̂ f
Q, A) is a GQ-NSES over X, then ((Γ̂ f

Q, A)c)c = (Γ̂ f
Q, A).

Proof. Suppose that (Γ̂ f
Q, A) is a GQ-NSES over X defined as (Γ̂ f

Q, A) =
{〈

a,
((

T
Γ̂ f

Q(a)
(x, q),

I
Γ̂ f

Q(a)
(x, q), F

Γ̂ f
Q(a)

(x, q)
)
, f (a)

)〉
: a ∈ A, (x, q) ∈ X × Q

}
. The complement of (Γ̂ f

Q, A) denoted by

(Γ̂ f
Q, A)c = ((Γ̂ f

Q)
c
, A) is as defined below:

(Γ̂ f
Q)

c =
{〈

a,
((

T
(Γ̂ f

Q)c(a)
(x, q), I

(Γ̂ f
Q)c(a)

(x, q), F
(Γ̂ f

Q)c(a)
(x, q)

)
, f c(a)

)〉
: a ∈ A, (x, q) ∈ X × Q

}
=
{〈

a,
((

1 − T
Γ̂ f

Q(a)
(x, q), 1 − I

Γ̂ f
Q(a)

(x, q), 1 − F
Γ̂ f

Q(a)
(x, q)

)
, 1 − f (a)

)〉
: a ∈ A, (x, q) ∈ X × Q

}
.

Thus,

((Γ̂ f
Q, A)c)c =

{〈
a,
((

(1 − T
Γ̂ f

Q(a)
(x, q))c, (1 − I

Γ̂ f
Q(a)

(x, q))c, (1 − F
Γ̂ f

Q(a)
(x, q))c), (1 − f (a)))c

)〉
: a ∈ A, (x, q) ∈ X × Q

}
=
{〈

a,
((

1 − (1 − T
Γ̂ f

Q(a)
(x, q)), 1 − (1 − I

Γ̂ f
Q(a)

(x, q)), 1 − (1 − F
Γ̂ f

Q(a)
(x, q))

)
, 1 − (1 − f (a))

)〉
: a ∈ A, (x, q) ∈ X × Q

}
=
{〈

a,
((

T
Γ̂ f

Q(a)
(x, q), I

Γ̂ f
Q(a)

(x, q), F
Γ̂ f

Q(a)
(x, q)

)
, f (a)

)〉
: a ∈ A, (x, q) ∈ X × Q

}
= (Γ̂ f

Q, A).

This completes the proof.

Now, we define the union and intersection of two GQ-NSESs.
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Definition 20. The union of (Γ̂ f
Q, A) and (Ψ̂g

Q, B) is a GQ-NSES (Υ̂h
Q, C), defined as (Γ̂ f

Q, A)
⋃̂
(Ψ̂g

Q, B) =

(Υ̂h
Q, C), where C = A ∪ B and for all c ∈ C and (x, q) ∈ X × Q the truth, indeterminacy and falsity

memberships of (Υ̂h
Q, C) are as follows:

TΥ̂h
Q(c)(x, q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T

Γ̂ f
Q(c)

(x, q) if c ∈ A − B,

TΨ̂g
Q(c)(x, q) if c ∈ B − A,

max{T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)(x, q)} if c ∈ A ∩ B,

IΥ̂h
Q(c)(x, q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I
Γ̂ f

Q(c)
(x, q) if c ∈ A − B,

IΨ̂g
Q(c)(x, q) if c ∈ B − A,

min{I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)(x, q)} if c ∈ A ∩ B,

FΥ̂h
Q(c)(x, q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F

Γ̂ f
Q(c)

(x, q) if c ∈ A − B,

FΨ̂g
Q(c)(x, q) if c ∈ B − A,

min{F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)(x, q)} if c ∈ A ∩ B,

and h(c) = max{ f (c), g(c) : ∀c ∈ C}.

Definition 21. The intersection of (Γ̂ f
Q, A) and (Ψ̂g

Q, B) is a GQ-NSES (Υ̂h
Q, C), defined as

(Γ̂ f
Q, A)

⋂̂
(Ψ̂g

Q, B) = (Υ̂h
Q, C), where C = A∩ B and for all c ∈ C and (x, q) ∈ X ×Q the truth, indeterminacy

and falsity memberships of (Υ̂h
Q, C) are as follows:

TΥ̂h
Q(c)(x, q) =min{T

Γ̂ f
Q(c)

(x, q), TΨ̂g
Q(c)(x, q)},

IΥ̂h
Q(c)(x, q) =max{I

Γ̂ f
Q(c)

(x, q), IΨ̂g
Q(c)(x, q)},

FΥ̂h
Q(c)(x, q) =max{F

Γ̂ f
Q(c)

(x, q), FΨ̂g
Q(c)(x, q)},

and h(c) = min{ f (c), g(c) : ∀c ∈ C}.

Example 3. Assume that two GQ-NSESs (Γ̂ f
Q, A) and (Ψ̂g

Q, B) are defined as follows:

(Γ̂ f
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.2, 0.5, 0.4], [(x1, q2), 0.1, 0.3, 0.3], [(x2, q1), 0.8, 0.5, 0.5],

[(x2, q2), 0.8, 0.8, 0.2], [(x3, q1), 0.6, 0.3, 0.5], [(x3, q2), 0.4, 0.3, 0.1], 0.4
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.2, 0.4, 0.7], [(x1, q2), 0.5, 0.1, 0.2], [(x2, q1), 0.1, 0.2, 0.6],

[(x2, q2), 0.6, 0.5, 0.2], [(x3, q1), 0.6, 0.4, 0.1], [(x3, q2), 0.7, 0.2, 0.4], 0.2
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.3, 0.3, 0.3], [(x1, q2), 0.7, 0.3, 0.5], [(x2, q1), 0.5, 0.6, 0.2],

[(x2, q2), 0.7, 0.3, 0.1], [(x3, q1), 0.3, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.6], 0.5
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.4, 0.4, 0.3], [(x1, q2), 0.2, 0.3, 0.6], [(x2, q1), 0.1, 0.4, 0.5],

[(x2, q2), 0.6, 0.4, 0.2], [(x3, q1), 0.2, 0.3, 0.6], [(x3, q2), 0.2, 0.1, 0.1], 0.4
)〉}

,
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(Ψ̂g
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.4, 0.4, 0.5],

[(x2, q2), 0.6, 0.5, 0.5], [(x3, q1), 0.6, 0.6, 0.2], [(x3, q2), 0.3, 0.5, 0.5], 0.4
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.7, 0.6, 0.3], [(x1, q2), 0.6, 0.7, 0.2], [(x2, q1), 0.1, 0.5, 0.7],

[(x2, q2), 0.7, 0.5, 0.1], [(x3, q1), 0.3, 0.2, 0.3], [(x3, q2), 0.1, 0.1, 0.4], 0.3
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.7, 0.4], [(x1, q2), 0.3, 0.4, 0.1], [(x2, q1), 0.5, 0.1, 0.6],

[(x2, q2), 0.8, 0.6, 0.2], [(x3, q1), 0.7, 0.8, 0.6], [(x3, q2), 0.5, 0.8, 0.6], 0.6
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.3, 0.2, 0.7], [(x1, q2), 0.4, 0.8, 0.1], [(x2, q1), 0.1, 0.1, 0.4],

[(x2, q2), 0.8, 0.3, 0.2], [(x3, q1), 0.4, 0.1, 0.2], [(x3, q2), 0.2, 0.5, 0.3], 0.6
)〉}

.

Then,

(Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, A) =
{〈

(e1, u1, 1),
(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.8, 0.4, 0.5],

[(x2, q2), 0.8, 0.5, 0.2], [(x3, q1), 0.6, 0.3, 0.2], [(x3, q2), 0.4, 0.3, 0.1], 0.4
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.7, 0.4, 0.3], [(x1, q2), 0.6, 0.1, 0.2], [(x2, q1), 0.1, 0.2, 0.6],

[(x2, q2), 0.7, 0.5, 0.1], [(x3, q1), 0.6, 0.2, 0.1], [(x3, q2), 0.7, 0.1, 0.4], 0.3
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.3, 0.3], [(x1, q2), 0.7, 0.3, 0.1], [(x2, q1), 0.5, 0.1, 0.2],

[(x2, q2), 0.8, 0.3, 0.1], [(x3, q1), 0.7, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.6], 0.6
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.4, 0.2, 0.3], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.1, 0.1, 0.4],

[(x2, q2), 0.8, 0.3, 0.2], [(x3, q1), 0.4, 0.1, 0.2], [(x3, q2), 0.2, 0.1, 0.1], 0.6
)〉}

.

The standard commutative and associative laws relevant to the operations of union and
intersection are satisfied and stated below.

Proposition 2. Let (Γ̂ f
Q, A), (Ψ̂g

Q, B) and (Υ̂h
Q, C) be GQ-NSESs over a universe X. Then, the following

properties hold true:

(1) (Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B) = (Ψ̂g
Q, B)

⋃̂
(Γ̂ f

Q, A),

(2) (Γ̂ f
Q, A)

⋂̂
(Ψ̂g

Q, B) = (Ψ̂g
Q, B)

⋂̂
(Γ̂ f

Q, A),

(3) ((Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B))
⋃̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

⋃̂
((Ψ̂g

Q, B)
⋃̂
(Υ̂h

Q, C)),

(4) ((Γ̂ f
Q, A)

⋂̂
(Ψ̂g

Q, B))
⋂̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

⋂̂
((Ψ̂g

Q, B)
⋂̂
(Υ̂h

Q, C)).

Proof. (1) We will prove that (Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B) = (Ψ̂g
Q, B)

⋃̂
(Γ̂Q, A) by using Definition 20 and we

consider the case when c ∈ A ∩ B as the other cases are trivial:

(Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B) =
{〈

c,
((

max{T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)(x, q)}, min{I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)(x, q)},

min{F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)(x, q)}), max{ f (c), g(c)}
)〉

: (x, q) ∈ X × Q
}

=
{〈

c,
((

max{TΨ̂g
Q(c)(x, q), T

Γ̂ f
Q(c)

(x, q)}, min{IΨ̂g
Q(c)(x, q), I

Γ̂ f
Q(c)

(x, q)},

min{FΨ̂g
Q(c)(x, q), F

Γ̂ f
Q(c)

(x, q)}), max{g(c), f (c)}
)〉

: (x, q) ∈ X × Q
}

= (Ψ̂g
Q,B)

⋃̂
(Γ̂ f

Q, A).
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(2) The proof is similar to that of part (1).

(3) We want to prove that ((Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B))
⋃̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

⋃̂
((Ψ̂g

Q, B)
⋃̂
(Υ̂h

Q, C)) by using
Definition 20 and we consider the case when c ∈ A ∩ B as the other cases are trivial

(Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B) =
{〈

c,
((

max{T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)(x, q)}, min{I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)(x, q)},

min{F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)(x, q)}), max{ f (c), g(c)}
)〉

: (x, q) ∈ X × Q
}

.

Considering the case when c ∈ C, then we have

((Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B))
⋃̂
(Υ̂h

Q, C)

=
{〈

c,
((

max
{

max{T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)
(x, q)}, TΥ̂h

Q(c)
(x, q)

}
,

min
{

min{I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)
(x, q)}, IΥ̂h

Q(c)
(x, q)

}
,

min
{

min{F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)
(x, q)}, FΥ̂h

Q(c)
(x, q)

})
, max

{
max{ f (c), g(c)}, h(c)

}
)
〉

:

(x, q) ∈ X × Q
}

=
{〈

c,
((

max
{

T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)
(x, q), TΥ̂h

Q(c)
(x, q)

}
,

min
{

I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)
(x, q), IΥ̂h

Q(c)
(x, q)

}
,

min
{

F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)
(x, q), FΥ̂h

Q(c)
(x, q)

})
, max

{
f (c), g(c), h(c)

})〉
:

(x, q) ∈ X × Q
}

=
{〈

c,
((

max
{

T
Γ̂ f

Q(c)
(x, q), max{TΨ̂g

Q(c)
(x, q), TΥ̂h

Q(c)
(x, q)}},

min
{

I
Γ̂ f

Q(c)
(x, q), min{IΨ̂g

Q(c)
(x, q), IΥ̂h

Q(c)
(x, q)}},

min
{

F
Γ̂ f

Q(c)
(x, q), min{FΨ̂g

Q(c)
(x, q), FΥ̂h

Q(c)
(x, q)}}), max

{
f (c), max{g(c), h(c)}})〉 :

(x, q) ∈ X × Q
}

= (Γ̂ f
Q,A)

⋃̂
((Ψ̂g

Q, B)
⋃̂
(Υ̂h

Q, C)).

(4) The proof is similar to that of part (3).

Next, we define AND and OR operations of GQ-NSESs.

Definition 22. If (Γ̂ f
Q, A) and (Ψ̂g

Q, B) are two generalized Q-neutrosophic soft expert sets on X, then (Γ̂ f
Q, A)

AND (Ψ̂g
Q, B) is the generalized Q-neutrosophic soft expert set denoted by (Γ̂ f

Q, A)
∧̂
(Ψ̂g

Q, B) and defined by

(Γ̂ f
Q, A)

∧̂
(Ψ̂g

Q, B) = (Λ̂h
Q, A × B), where Λ̂h

Q(a, b) = Γ̂ f
Q(a)

⋂̂
Ψ̂ f

Q(b) and the truth, indeterminacy and falsity

memberships of (Λ̂h
Q, A × B) are as follows:

TΥ̂h
Q(a,b)(x, q) =min{T

Γ̂ f
Q(a)

(x, q), TΨ̂g
Q(b)(x, q)},

IΥ̂h
Q(a,b)(x, q) =max{I

Γ̂ f
Q(a)

(x, q), IΨ̂g
Q(b)(x, q)},

FΥ̂h
Q(a,b)(x, q) =max{F

Γ̂ f
Q(a)

(x, q), FΨ̂g
Q(b)(x, q)},

and h(a, b) = min{ f (a), g(b) : ∀a ∈ A and b ∈ B}.
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Definition 23. If (Γ̂ f
Q, A) and (Ψ̂g

Q, B) are two generalized Q-neutrosophic soft expert sets on X, then (Γ̂ f
Q, A)

OR (Ψ̂g
Q, B) is the generalized Q-neutrosophic soft expert set denoted by (Γ̂ f

Q, A)
∨̂
(Ψ̂g

Q, B) and defined by

(Γ̂ f
Q, A)

∨̂
(Ψ̂g

Q, B) = (Λ̂h
Q, A × B), where Λ̂h

Q(a, b) = Γ̂ f
Q(a)

⋃̂
Ψ̂g

Q(b) and the truth, indeterminacy and

falsity memberships of (Λ̂h
Q, A × B) are as follows

TΥ̂h
Q(a,b)(x, q) =max{T

Γ̂ f
Q(a)

(x, q), TΨ̂g
Q(b)(x, q)},

IΥ̂h
Q(a,b)(x, q) =min{I

Γ̂ f
Q(a)

(x, q), IΨ̂g
Q(b)(x, q)},

FΥ̂h
Q(a,b)(x, q) =min{F

Γ̂ f
Q(a)

(x, q), FΨ̂g
Q(b)(x, q)},

and h(a, b) = max{ f (a), g(b) : ∀a ∈ A and b ∈ B}.

Example 4. Assume that two GQ-NSESs (Γ̂ f
Q, A) and (Ψ̂g

Q, B) are defined as follows:

(Γ̂ f
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.2, 0.5, 0.4], [(x1, q2), 0.1, 0.3, 0.3], [(x2, q1), 0.8, 0.5, 0.5],

[(x2, q2), 0.8, 0.8, 0.2], [(x3, q1), 0.6, 0.3, 0.5], [(x3, q2), 0.4, 0.3, 0.1], 0.4
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.3, 0.3, 0.3], [(x1, q2), 0.7, 0.3, 0.5], [(x2, q1), 0.5, 0.6, 0.2],

[(x2, q2), 0.7, 0.3, 0.1], [(x3, q1), 0.3, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.6], 0.5
)〉

,

(Ψ̂g
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.4, 0.4, 0.5],

[(x2, q2), 0.6, 0.5, 0.5], [(x3, q1), 0.6, 0.6, 0.2], [(x3, q2), 0.3, 0.5, 0.5], 0.4
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.7, 0.4], [(x1, q2), 0.3, 0.4, 0.1], [(x2, q1), 0.5, 0.1, 0.6],

[(x2, q2), 0.8, 0.6, 0.2], [(x3, q1), 0.7, 0.8, 0.6], [(x3, q2), 0.5, 0.8, 0.6], 0.6
)〉

.

Then,

(Γ̂ f
Q, A)

∨̂
(Ψ̂g

Q, A) =
{〈(

(e1, u1, 1), (e1, u1, 1)
)
,
(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.8, 0.4, 0.5],

[(x2, q2), 0.8, 0.5, 0.2], [(x3, q1), 0.6, 0.3, 0.2], [(x3, q2), 0.4, 0.3, 0.1], 0.4
)〉

,〈(
(e1, u1, 1), (e1, u1, 0)

)
,
(
[(x1, q1), 0.5, 0.5, 0.4], [(x1, q2), 0.3, 0.3, 0.1], [(x2, q1), 0.8, 0.1, 0.5],

[(x2, q2), 0.8, 0.6, 0.2], [(x3, q1), 0.7, 0.3, 0.5], [(x3, q2), 0.5, 0.3, 0.1], 0.4
)〉

,〈(
(e1, u1, 0), (e1, u1, 1)

)
,
(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.7, 0.3, 0.1], [(x2, q1), 0.5, 0.4, 0.2],

[(x2, q2), 0.7, 0.3, 0.1], [(x3, q1), 0.6, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.5], 0.5
)〉

,〈(
(e1, u1, 0), (e1, u1, 0)

)
,
(
[(x1, q1), 0.5, 0.3, 0.3], [(x1, q2), 0.7, 0.3, 0.1], [(x2, q1), 0.5, 0.1, 0.2],

[(x2, q2), 0.8, 0.3, 0.1], [(x3, q1), 0.7, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.6], 0.6
)〉}

.

Proposition 3. Let (Γ̂ f
Q, A), (Ψ̂g

Q, B) and (Υ̂h
Q, C) be GQ-NSESs over a universe X. Then, the following

properties hold true:

(1) ((Γ̂ f
Q, A)

∧̂
(Ψ̂g

Q, B))
∧̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

∧̂
((Ψ̂g

Q, B)
∧̂
(Υ̂h

Q, C)),

(2) ((Γ̂ f
Q, A)

∨̂
(Ψ̂g

Q, B))
∨̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

∨̂
((Ψ̂g

Q, B)
∨̂
(Υ̂h

Q, C)).

Proof. The proof is similar to the proof of part 3 of Proposition 2.
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4. Application of Generalized Q-Neutrosophic Soft Expert Set

In this section, an application of GQ-NSES in decision making is discussed. The problem we
consider is as follows:

An investment company considers several business options to increase its portfolio. The set
of possible alternatives is X = {x1 = car company, x2 = food company, x3 = computer company},
Q = {q1 = local, q2 = international}. The company will choose the best option according to the
following three criteria E = {e1 = risk, e2 = growth, e3 = environmental impact}. Let U = {u1, u2}
be a set of experts. After deliberation, the experts construct the following GQ-NSES:

(Γ̂Q, A) =
{〈

(e1, u1, 1),
(
[(x1, q1), 0.4, 0.3, 0.7], [(x1, q2), 0.2, 0.1, 0.4], [(x2, q1), 0.3, 0.3, 0.2],

[(x2, q2), 0.5, 0.1, 0.5], [(x3, q1), 0.5, 0.6, 0.3], [(x3, q2), 0.8, 0.4, 0.2], 0.2
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.4, 0.6, 0.3], [(x1, q2), 0.6, 0.1, 0.1], [(x2, q1), 0.5, 0.6, 0.6],

[(x2, q2), 0.7, 0.5, 0.6], [(x3, q1), 0.6, 0.7, 0.8], [(x3, q2), 0.2, 0.7, 0.5], 0.6
)〉

,〈
(e2, u1, 1),

(
[(x1, q1), 0.3, 0.3, 0.3], [(x1, q2), 0.4, 0.9, 0.2], [(x2, q1), 0.8, 0.2, 0.1],

[(x2, q2), 0.4, 0.5, 0.5], [(x3, q1), 0.6, 0.7, 0.7], [(x3, q2), 0.5, 0.5, 0.5], 0.9
)〉

,〈
(e2, u2, 1),

(
[(x1, q1), 0.9, 0.6, 0.2], [(x1, q2), 0.2, 0.1, 0.8], [(x2, q1), 0.1, 0.8, 0.6],

[(x2, q2), 0.6, 0.4, 0.8], [(x3, q1), 0.2, 0.2, 0.2], [(x3, q2), 0.9, 0.6, 0.4], 0.7
)〉

,〈
(e3, u1, 1),

(
[(x1, q1), 0.5, 0.4, 0.3], [(x1, q2), 0.3, 0.8, 0.9], [(x2, q1), 0.3, 0.9, 0.1],

[(x2, q2), 0.1, 0.1, 0.4], [(x3, q1), 0.7, 0.1, 0.3], [(x3, q2), 0.4, 0.5, 0.7], 0.5
)〉

,〈
(e3, u2, 1),

(
[(x1, q1), 0.6, 0.6, 0.2], [(x1, q2), 0.1, 0.2, 0.2], [(x2, q1), 0.9, 0.4, 0.2],

[(x2, q2), 0.6, 0.7, 0.4], [(x3, q1), 0.5, 0.5, 0.3], [(x3, q2), 0.4, 0.5, 0.1], 0, 3
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.7, 0.3], [(x1, q2), 0.4, 0.7, 0.9], [(x2, q1), 0.2, 0.8, 0.9],

[(x2, q2), 0.3, 0.2, 0.8], [(x3, q1), 0.8, 0.1, 0.4], [(x3, q2), 0.7, 0.9, 0.6], 0.8
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.7, 0.4, 0.2], [(x1, q2), 0.6, 0.5, 0.8], [(x2, q1), 0.3, 0.4, 0.8],

[(x2, q2), 0.6, 0.7, 0.9], [(x3, q1), 0.4, 0.3, 0.2], [(x3, q2), 0.6, 0.5, 0.9], 0.6
)〉

,〈
(e2, u1, 0),

(
[(x1, q1), 0.2, 0.1, 0.2], [(x1, q2), 0.4, 0.5, 0.8], [(x2, q1), 0.6, 0.6, 0.6],

[(x2, q2), 0.4, 0.4, 0.4], [(x3, q1), 0.8, 0.2, 0.5], [(x3, q2), 0.3, 0.7, 0.8], 0.5
)〉

,〈
(e2, u2, 0),

(
[(x1, q1), 0.1, 0.5, 0.6], [(x1, q2), 0.9, 0.4, 0.4], [(x2, q1), 0.7, 0.6, 0.5],

[(x2, q2), 0.5, 0.1, 0.2], [(x3, q1), 0.3, 0.2, 0.2], [(x3, q2), 0.7, 0.3, 0.8], 0.7
)〉

,〈
(e3, u1, 0),

(
[(x1, q1), 0.1, 0.7, 0.9], [(x1, q2), 0.4, 0.3, 0.8], [(x2, q1), 0.9, 0.9, 0.3],

[(x2, q2), 0.8, 0.8, 0.1], [(x3, q1), 0.7, 0.4, 0.6], [(x3, q2), 0.4, 0.8, 0.2], 0.8
)〉

,〈
(e3, u2, 0),

(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.5, 0.3, 0.3], [(x2, q1), 0.7, 0.4, 0.1],

[(x2, q2), 0.3, 0.1, 0.9], [(x3, q1), 0.4, 0.6, 0.5], [(x3, q2), 0.6, 0.1, 0.1], 0.4
)〉}

.
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The experts may use the following algorithm to choose the best option for the investment:

1. Input the GQ-NSES (Γ̂ f
Q, A).

2. Find the values of |T
Γ̂ f

Q
+ I

Γ̂ f
Q
− F

Γ̂ f
Q
| for each element (x, q) ∈ X × Q, where T

Γ̂ f
Q

, I
Γ̂ f

Q
, F

Γ̂ f
Q

representing the truth, indeterminacy and falsity membership functions.
3. Compute the score of each element (x, q) ∈ X × Q by taking the sum of the products of the

numerical grade of each element with the corresponding values of f (a) (the degree of preference)
for the agree-GQ-NSES and disagree-GQ-NSES, denoted by νi and ηi, respectively.

4. Find the values of the score δj = νi − ηi.
5. Find m for which δm = max δi.

Table 1 presents the values of |TΓ̂Q
+ IΓ̂Q

− FΓ̂Q
| for each element (x, q) ∈ X × Q.

Table 1. Values of |T
Γ̂ f

Q
+ I

Γ̂ f
Q
− F

Γ̂ f
Q
| for each element (x, q) ∈ X × Q.

E × U × O (x1, q1) (x1, q2) (x2, q1) (x2, q2) (x3, q1) (x3, q2) f(a)

(e1, u1, 1) 0 −0.1 0.4 0.1 0.8 1 0.2

(e1, u2, 1) 0.7 0.6 0.5 0.6 0.5 0.4 0.6

(e2, u1, 1) 0.3 1.1 0.9 0.4 0.6 0.5 0.9

(e2, u2, 1) 1.3 −0.5 0.3 0.2 0.2 1.1 0.7

(e3, u1, 1) 0.6 0.2 1.1 −0.2 0.5 0.2 0.5

(e3, u2, 1) 1 0.1 1.1 0.9 0.7 0.1 0.3

(e1, u1, 0) 0.9 0.2 0.1 −0.3 0.5 1 0.8

(e1, u2, 0) 0.9 0.3 −0.1 0.4 0.5 0.2 0.6

(e2, u1, 0) 0.1 0.1 0.6 0.4 0.5 0.2 0.5

(e2, u2, 0) 0 0.9 0.8 0.4 0.3 0.2 0.7

(e3, u1, 0) −0.1 −0.1 1.5 1.5 0.5 1 0.8

(e3, u2, 0) 0.8 0.5 1 −0.5 0.5 0.6 0.4

Tables 2 and 3 present the grades for the agree-GQ-NSES and disagree-GQ-NSES, taken from the
first six rows and the last six rows of Table 1, respectively.

Table 2. Numerical grades for agree-GQ-NSES.

E × U ×{1} (x1, q1) (x1, q2) (x2, q1) (x2, q2) (x3, q1) (x3, q2) f(a)

(e1, u1, 1) 0 −0.1 0.4 0.1 0.8 1 0.2

(e1, u2, 1) 0.7 0.6 0.5 0.6 0.5 0.4 0.6

(e2, u1, 1) 0.3 1.1 0.9 0.4 0.6 0.5 0.9

(e2, u2, 1) 1.3 −0.5 0.3 0.2 0.2 1.1 0.7

(e3, u1, 1) 0.6 0.2 1.1 −0.2 0.5 0.2 0.5

(e3, u2, 1) 1 0.1 1.1 0.9 0.7 0.1 0.3
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Table 3. Numerical grades for disagree-GQ-NSES.

E × U ×{0} (x1, q1) (x1, q2) (x2, q1) (x2, q2) (x3, q1) (x3, q2) f(a)

(e1, u1, 0) 0.9 0.2 0.1 −0.3 0.5 1 0.8

(e1, u2, 0) 0.9 0.3 −0.1 0.4 0.5 0.2 0.6

(e2, u1, 0) 0.1 0.1 0.6 0.4 0.5 0.2 0.5

(e2, u2, 0) 0 0.9 0.8 0.4 0.3 0.2 0.7

(e3, u1, 0) −0.1 −0.1 1.5 1.5 0.5 1 0.8

(e3, u2, 0) 0.8 0.5 1 −0.5 0.5 0.6 0.4

Let νi and ηi represent the score of each numerical grade for the agree-GQ-NSES and
disagree-GQ-NSES, respectively. These values are given in Table 4.

Table 4. The score δj = νi − ηi.

νi ηi δj

ν(x1, q1) = 2.2 η(x1, q1) = 1.55 δ(x1, q1) = 0.65

ν(x1, q2) = 2.01 η(x1, q2) = 1.14 δ(x1, q2) = 0.87

ν(x2, q1) = 2.28 η(x2, q1) = 2.48 δ(x2, q1) = −0.2

ν(x2, q2) = 1.05 η(x2, q2) = 1.48 δ(x2, q2) = −0.43

ν(x3, q1) = 1.6 η(x3, q1) = 1.76 δ(x3, q1) = −0.16

ν(x3, q2) = 1.79 η(x3, q2) = 2.2 δ(x3, q2) = −0.41

As can be seen in Table 4, max δi = δ(x1, q2). Therefore, the best option is to invest in an
international car company.

5. Comparative Analysis

A generalized Q-neutrosophic soft expert model offers better compatibility, accuracy and flexibility
than existing models. This can be confirmed by a comparison utilizing generalized Q-neutrosophic
soft expert with the strategy utilized in [33] as seen in Table 5. We can note that the proposed method
include a degree of preference in the decision process, thus make it highly effective in decision-making.
The comparison is similarly conducted as the illustration in Section 4, whereby the ranking order is
found to be consistent.

Table 5. Comparison of GQ-NSES to Q-NSES.

Method GQ-NSES Q-NSES

True Yes Yes

Falsity Yes Yes

Indeterminacy Yes Yes

Expert Yes Yes

Q Yes Yes

Degree of preference Yes No

Ranking
(x1, q2) > (x1, q1) > (x3, q1) > (x3, q1) > (x1, q2) > (x2, q1) >

(x2, q1) > (x3, q2) > (x2, q2) (x2, q2) > (x3, q2) > (x1, q1)
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From Table 5, it can be seen that the results of the ranking on the six companies obtained by
the proposed GQ-NSES method in this paper is different from the ranking obtained by the method
introduced in [33]. The main reason is that the proposed method has some crucial advantages over
Q-NSES, which can take the preference of decision-makers into consideration.

6. Conclusions

The concept of GQ-NSES was initiated by incorporating the idea of SESs to Q-NSs and attaching a
degree of preference corresponding to each parameter. The proposed concept is significantly superior
and improved generalization of Q-NSES, which delivers better results, particularly for decision-making
problems. The basic operations on GQ-NSES were defined and subsequently the basic properties
were proven. An algorithm incorporating GQ-NSES is introduced and applied to a real-life example.
The notion of GQ-NSES extended current neutrosophic theories for dealing with indeterminacy
and will stimulate further studies on extensions and applied usage. In the future, one could study
the measures of distance, similarity and entropy of GQ-NSES by generalizing the results in [14].
Furthermore, the algebraic structures such as group, ring and field of the Q-NSS and Q-NSES and their
generalizations may be studied.
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Abstract: In this paper, a new approach and framework based on the interval dependent degree
for multi-criteria group decision-making (MCGDM) problems with simplified neutrosophic sets
(SNSs) is proposed. Firstly, the simplified dependent function and distribution function are defined.
Then, they are integrated into the interval dependent function which contains interval computing
and distribution information of the intervals. Subsequently, the interval transformation operator
is defined to convert simplified neutrosophic numbers (SNNs) into intervals, and then the interval
dependent function for SNNs is deduced. Finally, an example is provided to verify the feasibility and
effectiveness of the proposed method, together with its comparative analysis. In addition, uncertainty
analysis, which can reflect the dynamic change of the final result caused by changes in the decision
makers’ preferences, is performed in different distribution function situations. That increases the
reliability and accuracy of the result.

Keywords: simplified neutrosophic sets (SNSs); interval number; dependent degree; multi-criteria
group decision-making (MCGDM)

1. Introduction

In multi-criteria decision making (MCDM) problems, because of the increasing complexity of
the socioeconomic situation and the inherent knowledge restrictions of people, the characteristics of
many things in the world exhibit fuzzy and uncertain features which are difficult to describe by exact
numerical values [1]. Fuzzy sets (FSs) [2–4], which were proposed by Zadeh in 1965, are regarded
as an effective way to describe fuzzy information and are widely applied to many decision making
problems [5]. However, it is hard to describe the degree of non-membership and this is insufficient
in some cases. For this reason, Atanassov introduced intuitionistic fuzzy sets (IFSs) [6–8] which are
an extension of FSs. Vague sets are also defined in Reference [9], which are pointed out as being
mathematically equivalent to Atanassov’s IFSs by Bustince [10]. In recent years, IFSs have been widely
used in solving MCDM problems [11–15]. IFSs have also been extended to some other forms and
expressions such as interval intuitionistic fuzzy sets [16–19] and interval intuitionistic hesitant fuzzy
sets [20,21], etc.

However, for its fixed scope definition, FSs or IFSs theory has been restricted to some
uncertainty cases in real problems, especially when the information is incomplete and inconsistent [22].
For example [23], when an expert is asked to evaluate a certain statement, he or she may say that the
possibility of true is 0.5, that of false is 0.6, and the degree of not sure is 0.2. The sum of possibility
exceeds the scope of FSs and IFSs, and cannot be solved by them.

Symmetry 2018, 10, 640; doi:10.3390/sym10110640 www.mdpi.com/journal/symmetry404
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For this reason, Smarandache initially developed neutrosophic logic and neutrosophic sets (NSs)
theory [24–26], which provides a tool to define the possibility and neutrality degree between the
affirmative and the negative in most practical situations [27]. An NS is a set in which each element
has degrees of truth membership, indeterminacy membership, and falsity membership and it lies in
]0−, 1+[, the nonstandard unit interval [28]. It may be seen as an extension of the standard interval of
IFSs and has many practical applications such as medical diagnosis, e-learning, image processing and
data mining, etc. [29–35]. For convenience in practical situations, Smarandache [24] and Wang [23]
introduced single-valued neutrosophic sets (SVNSs). Then, using similarity and entropy measures,
the correlation coefficient of SVNSs were put forward by Majumdar [36] and Ye [37], respectively.
Huang [38] developed several new formulas of the distance measures for SVNSs. Thanh [39] built
a new recommender system based on a clustering algorithm for SVNSs. Karaaslan [40] defined the
correlation coefficient for single valued neutrosophic refined soft sets. Ye [41] found several new
similarity measure formulas for SVNSs by building the cotangent function. Recently, the concept of
simplified neutrosophic sets (SNSs) and aggregation operators were introduced by Ye [42], which can
be characterized by three real numbers in the interval [0, 1]. Because its definition is more in line with
the needs of many engineering situations, SNSs have quickly been applied to MCDM and MCGDM
problems. Ye [43] proposed the similarity measures between SNSs and INSs in MCDM problems.
Peng [44] defined the outranking relations with SNSs. Based on the work of Ye [42], Peng [45]
redefined some aggregation operators of SNSs by utilizing the t-norm and t-conorm. Ye [46] proposed
exponential entropy measures for SNSs and studied their properties.

The methods for solving MCDM or MCGDM problems using SNNs outlined above are proved to
be effective and feasible. There are some aspects which need to be promoted or further studied. (1) Most
of the operators for SNSs are derived from the operators of fuzzy sets arithmetic such as probability
degree, score function, correlation coefficient, and similarity measures, etc. Is there any other method
or framework to perform computing on SNSs? (2) In the calculation process, most existing methods
need several steps including defining operation laws, choosing aggregation operators, and performing
ranking functions. It often becomes complex and difficult to understand. In fact, there is usually
no direct correlation between previous steps and latter steps. Therefore, some methods become a
combination of various steps and lack algorithm integrality and consistency. (3) Most existing methods
directly utilize the three values of an SNN as parameters without adequately considering the implied
distribution information. This leads to some operational deficiencies and information loss. (4) Many
traditional models are too deterministic and lose their uncertainty information in the calculating
process. Hence, stability checking and uncertainty analysis cannot be relied upon for the decision
results in the later stages. So we cannot know whether the decision results will change when decision
makers’ preferences change slightly, and that means we do not know whether the final result is stable
and insensitive enough.

To solve these problems, a novel approach and framework for the MCGDM problem with SNNs is
proposed. The main advantages and outstanding contributions are shown below. (1) Unlike most of the
existing methods, the proposed model represents a novel framework which does not require deriving
from fuzzy sets operations. It builds on interval number and interval dependent degree operators.
(2) The proposed method does not need those complex definitions and operator steps, and is more
concise and intuitive. It has higher computation integration for directly combining two main steps
into unified dependent degree formula. (3) The proposed method, which can describe the implied
distribution information of an SNN through defining the distribution function in dependent degree
formula, shows stronger capabilities of description for SNNs and avoids information loss. (4) As a
result of maintaining information flexibility and dynamics by distribution function, the proposed model
can analyze the uncertainty and stability of decision results through choosing different distribution
function expressions. The method takes into account information integrity, computation simplicity,
and dynamic analysis capability.
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The rest of the paper is organized as follows. In Section 2, some important concepts including
interval number, simplified dependent function, distribution function, and interval dependent function
are defined. Subsequently, the specific expressions of the dependent degree function are deduced
under the different distribution function. In Section 3, NSs and SNSs are briefly reviewed. Then,
an interval transformation operator is defined to transform SNN into interval number. On the basis of
the transformation, the interval dependent function of SNNs is deduced. In Section 4, a computing
procedure based on the interval dependent degrees of SNNs for MCGDM problems is developed.
In Section 5, an illustrative instance and a comparative analysis are adopted to validate the proposed
method. Finally, in Section 6, conclusions are given.

2. Interval Number and Interval Dependent Function

In the section, some basic concepts and definitions about simplified dependent function, including
interval numbers, interval dependent function, and distribution function are introduced.

2.1. Interval Number

Definition 1. Interval number. Let X = [a, b] = {x|a ≤ x ≤ b; a, b ∈ R}, and then X is called an interval
number. In particular, X will be degenerated into a real number if a = b. Here, X = [0, 1] is called a
standard interval.

Subsequently, the operators of two non-negative interval numbers X = [a, b] and Y = [c, d] are
defined as follows:

X + Y = [a + c, b + d] (1)

X − Y = [a − d, b − c] (2)

λX = [λa, λb](λ > 0) (3)

1
X

=

[
1
b

,
1
a

]
(4)

2.2. Simplified Dependent Function and Interval Dependent Function

Definition 2. Simplified dependent function. Suppose a finite interval X = [a, b] and its optimal value is
b, if ∀x ∈ X and there is a function k(x, X) that satisfies the following properties: (1) k(x, X) reaches the
maximum value 1 when x = b, and reaches the minimum value 0 when x = a. (2) When x ∈ X and x �= a, b,
then 0 < k(x, X) < 1 holds. (3) ∀x1, x2 ∈ X and x1 < x2, then k(x1, X) < k(x2, X) holds. Then, k(x, X) is
called the simplified dependent function of x on the interval X.
Here, we give some examples of simplified dependent function expressions.

k(x, X) =
x − a
b − a

, (X = [a, b]) (5)

k(x, X) =
αx

α − 1 + x
, (X = [0, 1]) (6)

k(x, X) =
eαx − 1
eα − 1

, (X = [0, 1]) (7)

Figures 1 and 2 show the shapes of Equations (6) and (7), respectively. In Figure 1, the larger the
parameter α applied, the steeper the front of the function is and the flatter the back of the function is.
That is always used to describe the different psychology status of decision makers to the values near
the interval endpoints. Figure 2 shows the contrary situation.
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Figure 1. Dependent function of Equation (6).

Figure 2. dependent function of Equation (7).

Definition 3. Interval dependent function. Suppose a finite interval X = [a, b] and its optimal value is b, for a
subinterval X0 = [a0, b0] and X0 ⊆ X, then,

k(X0, X) =
∫

x∈X0

k(x, X)h(x, X0)dx, (a0 �= b0) (8)

Here, k(x, X) is the simplified dependent function, h(x, X0) is the probability density function on
subinterval X0. k(X0, X) is called the interval dependent function of subinterval X0 on interval X.

k(X0, X) has the following properties: (1) X0 will be degenerated into a real number if a0 = b0,
and k(X0, X) will be degenerated into the simplified dependent function k(a0, X). Especially, k(X0, X) reaches
the maximum value 1 when a0 = b0 = b, and reaches the minimum value 0 when a0 = b0 = a. (2) when
a0 �= b0, 0 < k(X0, X) < 1.

Definition 4. Distribution function. Distribution function h(x) describes the distribution of x in interval
[a0, b0]. h(x) is in the form of probability density function. Therefore,∫

x∈[a0,b0]
h(x)dx = 1 (9)
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Figure 3 gives some commonly used probability density function expressions, such as uniform
distribution, triangular distribution, trapezoid distribution, and normal distribution. Among these,
Figure 3a indicates that every value in the interval occurred at an equal probability. Figure 3b–d indicate
that the probability of occurrence of the middle value in the interval is the maximum. Figure 3e,f,
respectively, indicate that the probabilities of all values in the interval are linearly increasing or
decreasing. The forms of the distribution functions are various and can be fixed according to different
actual application situations. It cannot only be used to describe the distribution of the values in the
interval, but also to examine the stability of the interval dependent degree.

(a) uniform (b) triangular (c) approximately triangular

(d) normal (e) trapezoid1 (f) trapezoid2

Figure 3. Distribution function.

Property 1. When the probability density function h(x, X0) follows uniform distribution as Figure 3a, then,

k(X0, X) =
∫ b0

a0

k(x, X)h(x, X0)dx

=
∫ b0

a0

k(x, X)
1

b0 − a0
dx (10)

=
1

b0 − a0

∫ b0

a0

k(x, X)dx

Property 2. When the probability density function h(x, X0) follows triangular distribution as Figure 3b, then,

k(X0, X) =
∫ a0 + b0

2
a0

k(x, X)h(x, X0)dx +
∫ b0

a0 + b0

2
k(x, X)h(x, X0)dx

=
2

b0 − a0

⎡⎢⎣∫ a0 + b0

2
a0

k(x, X)
x − a0

a0 + b0

2
− a0

dx +
∫ b0

a0 + b0

2
k(x, X)

x − b0
a0 + b0

2
− b0

dx

⎤⎥⎦ (11)

=
4

(b0 − a0)2

⎡⎢⎣∫ a0 + b0

2
a0

k(x, X)(x − a0)dx +
∫ b0

a0 + b0

2
k(x, X)(b0 − x)dx

⎤⎥⎦
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Property 3. When the probability density function h(x, X0) follows approximately triangular distribution as
Figure 3c, then,

k(X0, X) =
∫ a0+b0

2

a0

k(x, X)h(x, X0)dx +
∫ b0

a0+b02
k(x, X)h(x, X0)dx

=
∫ a0+b0

2

a0

k(x, X)
2b0 + 4x − 6a0

3(b0 − a0)2 dx +
∫ b0

a0+b0
2

k(x, X)
6b0 − 4x − 2a0

3(b0 − a0)2 dx (12)

=
2

3(b0 − a0)2

[∫ a0+b0
2

a0

k(x, X)(b0 + 2x − 3a0)dx +
∫ b0

a0+b0
2

k(x, X)(3b0 − 2x − a0)dx

]

Property 4. When the probability density function h(x, X0) follows normal distribution as Figure 3d, then,

k(X0, X) =
∫ b0

a0
k(x, X)h(x, X0)dx

=
1√
2πσ

∫ b0
a0

k(x, X)e
− (x − μ)2

2σ2 dx (μ =
a0 + b0

2
, σ =

|a0 − b0|
6

)
(13)

Property 5. When the probability density function h(x, X0) follows normal distribution as Figure 3e, then,

k(X0, X) =
∫ b0

a0

k(x, X)h(x, X0)dx

=
∫ b0

a0

k(x, X)

(
x − a0

b0 − a0

2
3(b0 − a0)

+
2

3(b0 − a0)

)
dx (14)

=
2

3(b0 − a0)2

∫ b0

a0

k(x, X)(x + b0 − 2a0)dx

3. Interval Transformation Operator and Interval Dependent Function of SNS

3.1. NSs and SNSs

Definition 5 ([25]). Let X be a space of points (objects), with a generic element in X, denoted by x. An NS A in
X is characterized by a truth-membership function TA(x), an indeterminacy membership function IA(x) and a
falsity-membership function FA(x). TA(x), IA(x), and FA(x) are standard or non-standard subsets of ]0−, 1+[,
that is, TA(x) : X →]0−, 1+[, IA(x) : X →]0−, 1+[ and FA(x) : X →]0−, 1+[. There is no restriction on the
sum of TA(x), IA(x), and FA(x), therefore 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

Definition 6 ([25]). An NS A is contained in another NS B, denoted by A ⊆ B, if and only if in f TA(x) ≤
in f TB(x), supTA(x) ≤ supTB(x), in f IA(x) ≥ in f IB(x), supIA(x) ≥ supIB(x), in f FA(x) ≥ in f FB(x),
and supFA(x) ≥ supFB(x) for x ∈ X. Since it is difficult to apply NSs to practical problems, Ye (2014a)
reduced NSs of non-standard intervals into SNSs of standard intervals that would preserve the operations
of NSs.

Definition 7 ([42]). Let X be a space of points (objects), with a generic element in X, denoted by x. An NS
A in X is characterised by TA(x), IA(x), and FA(x), which are subintervals/subsets in the standard interval
[0, 1], that is, TA(x) : X → [0, 1], IA(x) : X → [0, 1] and FA(x) : X → [0, 1]. Then, a simplification of A
is denoted by A = {< x, TA(x), IA(x), FA(x) > |x ∈ X}, which is called an SNS. In particular, if X has
only one element, A = < TA(x), IA(x), FA(x) > is called an SNN. For convenience, a SNN is denoted by
A = < TA, IA, FA >. Clearly, SNSs are a subclass of NSs.

Definition 8 ([42]). An SNS A is contained in another SNS B, denoted by A ⊆ B, if and only if TA(x) ≤
TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x) for any x ∈ X.
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Definition 9 ([42]). The complement of an SNS A is denoted by AC and is defined as

AC = {< x, FA(x), 1 − IA(x), TA(x) > |x ∈ X} (15)

3.2. Interval Transformation Operator of SNNs

Definition 10. Interval transformation operator Z. For an SNN A = < TA, IA, FA >, there is an operator

that makes Z(A) = {X0, X}, here X0 =

[
TA

TA + IA + FA
,

TA + IA
TA + IA + FA

]
, X = [0, 1] is the standard interval.

Then Z is called interval transformation operator of SNN A.

The meaning of the operator Z is briefly explained here. From definition 6, there is TA, IA, FA ∈
[0, 1] holds. So divided by TA + IA + FA, SNN A will be mapped into the standard interval [0, 1]. X0 is

the range of truth-membership values of A actually.
TA

TA + IA + FA
and

TA + IA
TA + IA + FA

are lower bound

and upper bound of truth-membership values of A, respectively. X = [0, 1] is the maximum range of
truth-membership values and its optimal value is 1 obviously. Although X0 only represents the range
of truth-membership values, it must be decided by TA, IA and FA together.

Example 1. Assume three SNNs A = < 0.5, 0.2, 0.2 >, B = < 0.5, 0.3, 0.2 >, and C = < 0.5, 0.3, 0.3 >.
The following transformation results can be obtained utilizing the operator Z:

Z(A) = {X0 = [0.556, 0.778], X = [0, 1]}
Z(B) = {X0 = [0.5, 0.8], X = [0, 1]}
Z(C) = {X0 = [0.455, 0.727], X = [0, 1]}

3.3. Interval Dependent Function of SNNs

For a SNN A = < TA, IA, FA >, by transformation operator Z, the subinterval X0 =[
TA

TA + IA + FA
,

TA + IA
TA + IA + FA

]
and the standard interval X = [0, 1] are obtained. Then, according to

Equation (8), the interval dependent degree of SNN A is:

k(A) = k(X0, X) =
∫

x∈X0

k(x, X)h(x, X0)dx, (IA �= 0) (16)

Here, k(x, X) is the simplified dependent function, h(x, X0) is the distribution function on
subinterval X0. k(A) is called the interval dependent function of SNN A on the standard interval X.

k(A) has the following properties: (1) X0 will be degenerated into a real number if IA = 0,

and k(A) will be degenerated into the simplified dependent function k(
TA

TA + IA + FA
, X). Especially,

k(X0, X) reaches the maximum value 1 when IA = FA = 0, and reaches the minimum value 0 when
IA = TA = 0. (2) When IA �= 0, 0 < k(A) < 1.

The proposed interval dependent function of SNN has the following meanings: Firstly,
the proposed function represents a new way of thinking and framework without the need of deriving
from fuzzy sets operations. Secondly, the proposed function integrates the distribution function and
simplified dependent function into a formula, and so is more concise and intuitive and has higher
computation integration. Thirdly, the proposed function can describe the distribution information by
defining the inherent distribution function and describe the SNN better. Fourthly, by defining various
distribution functions which reflect decision makers’ preferences, the proposed model can analyze the
uncertainty and sensibility of decision results.
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4. The MCGDM Method Based on the Interval Dependent Degrees of SNNs

Suppose that there are m alternatives A = {a1, a2, ..., am} and n criteria C = {c1, c2, ..., cn},
and the weight vector of criteria is w = (w1, w2, ..., wn), where wj ≥ 0 (j = 1, 2, ..., n), ∑n

j=1 wj = 1.
there are l decision-makers D = {d1, d2, ..., dl} with its weight vector λ = (λ1, λ2, ..., λl). Let R =

(rk
ij)m×n be the decision matrix, where the value of a criterion denoted by SNNs rk

ij = < Trk
ij
, Irk

ij
, Frk

ij
>,

where Trk
ij

indicates the truth-membership function that the alternative ai satisfies the criterion cj for

the kth decision-maker, Irk
ij

represents the determinacy membership function that the alternative ai

satisfies the criterion cj for the kth decision-maker, and Frk
ij

is the falsity-membership function that

the alternative ai satisfies the criterion cj for the kth decision-maker. The proposed method uses
the interval transformation operator and interval dependent degree of SNNs to solve the MCGDM
problem mentioned above. A procedure for sorting and choosing the most desirable alternative(s) is
provided in the following steps.

Step 1. Normalize the decision matrix. Generally, there are two kinds criteria including
maximizing criteria and minimizing criteria in MCDM problems. For the maximizing criteria,
it remains unchanged. For the minimizing criteria, it can be transformed into maximizing criteria by
taking its complement as rk

ij = (rk
ij)

C = < Frk
ij
, 1 − Irk

ij
, Trk

ij
> in Definition 9.

Step 2. Interval transformation. Performing interval transformation operator Z(rk
ij) to SNN rk

ij
according Definition 10. Then, the corresponding subinterval is obtained as

X
rk

ij
0 =

⎡⎣ Trk
ij

Trk
ij
+ Irk

ij
+ Frk

ij

,
Trk

ij
+ Irk

ij

Trk
ij
+ Irk

ij
+ Frk

ij

⎤⎦ (17)

Step 3. Select the simplified dependent function and distribution function. According to the
preference of decision makers and the actual requirements, the forms of dependent function Definition 2
and distribution function as in Definition 4 should be decided.

Step 4. Calculate the interval dependent degree of each SNN of the decision matrix. According to
Equation (16), the dependent degree of SNN rk

ij as

k(rk
ij) = k(X

rk
ij

0 , X) =
∫

x∈X
rk
ij

0

k(x, X)h(x, X
rk

ij
0 )dx (18)

Here, X
rk

ij
0 is obtained in step 2, X is the standard interval [0, 1], k(∗) function and h(∗) function

are decided in step 3.
Step 5. Calculate the comprehensive dependent degree of each alternative. The comprehensive

dependent degree of each alternative ai is obtained as

K(ai) =
l

∑
k=1

(
λk

n

∑
j=1

ωjk(rk
ij)

)
(19)

Then, the sorting result is achieved by comparing those comprehensive dependent degrees of all
the alternatives.

Step 6. Stability analysis. By selecting different distribution functions in Definition 4, the stability
analysis is performed to the decision results. It can be seen whether the sorting result will change
under different distributions of truth-membership values.

5. An Illustrative Example

In this section, an example of MCGDM problems is provided to illustrate the feasibility, reliability,
and effectiveness of the proposed method.
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Consider a MCGDM problem adapted from Reference [47]. There is a company which wants
to choose a suitable supplier as its long-term partner. The expert set D = {d1, d2, d3} is composed of
three experts with their weight vector being λ = (0.4, 0.3, 0.3). There are four suppliers comprising
set S = {s1, s2, s3, s4}. Each supplier has been evaluated on four criteria denoted by supplier set
C = {c1, c2, c3, c4} that includes product quality c1, production capacity c2, after-sales service c3,
and management ability c4. The weight vector of the criteria is given as w = (0.27, 0.27, 0.27, 0.19).
For each expert, the four possible alternatives are evaluated under all the criteria. The evaluation
values are in the form of SNNs rk

ij(i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2, 3), as shown in the following
Tables 1–3:

Table 1. Evaluation data of expert d1.

c1 c2 c3 c4

s1 < 0.65, 0.10, 0.25 > < 0.50, 0.18, 0.32 > < 0.68, 0.12, 0.20 > < 0.50, 0.10, 0.25 >
s2 < 0.83, 0.12, 0.05 > < 0.65, 0.15, 0.20 > < 0.50, 0.10, 0.40 > < 0.67, 0.18, 0.15 >
s3 < 0.67, 0.13, 0.20 > < 0.50, 0.15, 0.35 > < 0.68, 0.12, 0.20 > < 0.50, 0.20, 0.30 >
s4 < 0.66, 0.14, 0.20 > < 0.50, 0.16, 0.34 > < 0.70, 0.10, 0.20 > < 0.50, 0.15, 0.35 >

Table 2. Evaluation data of expert d2.

c1 c2 c3 c4

s1 < 0.90, 0.02, 0.08 > < 0.10, 0.10, 0.80 > < 0.15, 0.15, 0.70 > < 0.10, 0.05, 0.85 >
s2 < 0.75, 0.15, 0.10 > < 0.85, 0.05, 0.10 > < 0.50, 0.10, 0.40 > < 0.68, 0.10, 0.22 >
s3 < 0.50, 0.05, 0.45 > < 0.40, 0.15, 0.45 > < 0.68, 0.12, 0.20 > < 0.15, 0.05, 0.80 >
s4 < 0.50, 0.10, 0.40 > < 0.50, 0.10, 0.40 > < 0.60, 0.10, 0.30 > < 0.50, 0.05, 0.45 >

Table 3. Evaluation data of expert d3.

c1 c2 c3 c4

s1 < 0.65, 0.15, 0.20 > < 0.30, 0.10, 0.60 > < 0.65, 0.20, 0.15 > < 0.50, 0.10, 0.40 >
s2 < 0.85, 0.05, 0.10 > < 0.85, 0.05, 0.10 > < 0.34, 0.16, 0.50 > < 0.60, 0.10, 0.30 >
s3 < 0.61, 0.18, 0.21 > < 0.67, 0.13, 0.20 > < 0.68, 0.22, 0.10 > < 0.30, 0.10, 0.60 >
s4 < 0.62, 0.28, 0.10 > < 0.68, 0.22, 0.10 > < 0.68, 0.12, 0.20 > < 0.50, 0.10, 0.40 >

5.1. The Decision Making Procedure

In this case, some main parameter values of the proposed method are explained here.
For comparison, two simplified dependent functions, which include linear function Equation (5)
and nonlinear function Equation (6) with parameter α initialized to 2.0, are adopted. At this point,
the function Equation (6) shows a moderate curve. At the beginning, the distribution function uses
triangular distribution as in Figure 3b. For the final stability test and uncertainty test, the parameter α

and distribution function will change.
Step 1. Normalize the decision matrix. Because all the criteria are maximizing criteria, all the

SNNs should remain unchanged.
Step 2. Interval transformation. By interval transformation operator Z, the corresponding

subinterval is obtained as X
r1

ij
0 , X

r2
ij

0 , and X
r3

ij
0 in Tables 4–6.
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Table 4. The corresponding subintervals of simplified neutrosophic numbers (SNNs) of d1.

c1 c2 c3 c4

X
r1

1j
0 [0.650, 0.750] [0.500, 0.680] [0.680, 0.800] [0.588, 0.706]

X
r1

2j
0 [0.830, 0.950] [0.650, 0.800] [0.500, 0.600] [0.670, 0.850]

X
r1

3j
0 [0.670, 0.800] [0.500, 0.650] [0.680, 0.800] [0.500, 0.700]

X
r1

4j
0 [0.660, 0.800] [0.500, 0.660] [0.700, 0.800] [0.500, 0.650]

Table 5. The corresponding subintervals of SNNs of d2.

c1 c2 c3 c4

X
r2

1j
0 [0.900, 0.920] [0.100, 0.200] [0.150, 0.300] [0.100, 0.150]

X
r2

2j
0 [0.750, 0.900] [0.850, 0.900] [0.500, 0.600] [0.680, 0.780]

X
r2

3j
0 [0.500, 0.550] [0.400, 0.550] [0.680, 0.800] [0.150, 0.200]

X
r2

4j
0 [0.500, 0.600] [0.500, 0.600] [0.600, 0.700] [0.500, 0.550]

Table 6. The corresponding subintervals of SNNs of d3.

c1 c2 c3 c4

X
r3

1j
0 [0.650, 0.800] [0.300, 0.400] [0.650, 0.850] [0.500, 0.600]

X
r3

2j
0 [0.850, 0.900] [0.850, 0.900] [0.340, 0.500] [0.600, 0.700]

X
r3

3j
0 [0.610, 0.790] [0.670, 0.800] [0.680, 0.900] [0.300, 0.400]

X
r3

4j
0 [0.620, 0.900] [0.680, 0.900] [0.680, 0.800] [0.500, 0.600]

Step 3. Select the simplified dependent function and distribution function. To facilitate a clearer
comparison, a linear simplified dependent function as in Equation (5) and a nonlinear simplified
dependent function as in Equation (6) (α = 2.0) are selected. In addition, triangular distribution as in
Figure 3b is used as the distribution function.

Step 4. Calculate interval dependent degree of each SNN of the decision matrix. According to
Equation (18), the dependent degrees k(rk

ij) of SNNs are obtained as in Tables 7 and 8, in which Table 7
shows the dependent degrees with linear simplified dependent function as in Equation (5), and Table 8
shows those with nonlinear simplified dependent function as in Equation (6).

Table 7. Dependent degree with linear function of SNNs.

Expert

d1 d2 d3

k(rk
1j) 0.7000, 0.5900, 0.7400, 0.6471 0.9100, 0.1500, 0.2250, 0.1250 0.7250, 0.3500, 0.7500, 0.5500

k(rk
2j) 0.8900, 0.7250, 0.5500, 0.7600 0.8250, 0.8750, 0.5500, 0.7300 0.8750, 0.8750, 0.4200, 0.6500

k(rk
3j) 0.7350, 0.5750, 0.7400, 0.6000 0.5250, 0.4750, 0.7400, 0.1750 0.7000, 0.7350, 0.7900, 0.3500

k(rk
4j) 0.7300, 0.5800, 0.7500, 0.5750 0.5500, 0.5500, 0.6500, 0.5250 0.7600, 0.7900, 0.7400, 0.5500
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Table 8. Dependent degree with nonlinear function of SNNs.

Expert

d1 d2 d3

k(rk
1j) 0.8234, 0.7415, 0.8503, 0.7855 0.9529, 0.2603, 0.3663, 0.2221 0.8402, 0.5182, 0.8565, 0.7095

k(rk
2j) 0.9416, 0.8402, 0.7095, 0.8631 0.9038, 0.9333, 0.7095, 0.8438 0.9333, 0.9333, 0.5908, 0.7877

k(rk
3j) 0.8470, 0.7297, 0.8503, 0.7492 0.6885, 0.6435, 0.8503, 0.2977 0.8230, 0.8470, 0.8820, 0.5182

k(rk
4j) 0.8436, 0.7336, 0.8570, 0.7297 0.7095, 0.7095, 0.7877, 0.6885 0.8624, 0.8820, 0.8503, 0.7095

Step 5. Calculate the comprehensive dependent degree of each alternative. According to
Equation (19), experts weight vector λ and criteria weight vector w, there are comprehensive dependent
degree K(ai) of each alternative ai as in Table 9. Table 9 shows the values of K(ai) under different
simplified dependent functions which include linear function and nonlinear functions with α = 3.0,
α = 2.0, α = 1.5, and α = 1.2. As we can see, although the dependent degrees under different
dependent functions are different from each other, the sorting result remains unchanged. In fact,
the simplified dependent function can reflect the psychology status of decision makers. For example,
Equation (6) describes risk aversion psychology, which means the curve slope will change with
different evaluation values. The smaller the parameter α, the greater the extent of regret evasion
from decision makers. Nevertheless, the result shows that it is not influenced by the risk aversion
psychology changing in the decision makers. So it exhibits high stability.

Table 9. The comprehensive dependent degree of alternative set S.

s1 s2 s3 s4 Sorting Result

K(ai) (linear) 0.5591 0.7276 0.6193 0.6549 s2 � s4 � s3 � s1
K(ai) (nonlinear α = 3.0) 0.6325 0.7928 0.6995 0.7367 s2 � s4 � s3 � s1
K(ai) (nonlinear α = 2.0) 0.6811 0.8322 0.7500 0.7868 s2 � s4 � s3 � s1
K(ai) (nonlinear α = 1.5) 0.7434 0.8778 0.8111 0.8453 s2 � s4 � s3 � s1
K(ai) (nonlinear α = 1.2) 0.8323 0.9321 0.8886 0.9148 s2 � s4 � s3 � s1

Step 6. Uncertainty analysis. Tables 10 and 11 show the sorting result under different distribution
functions as in Figure 3. Although the dependent degree values are slightly different as the distribution
function changes, the result remain unchanged, which illustrates the lower uncertainty and sensibility
of the ranking result. Therefore, for decision makers in this case, the sorting result is sufficiently certain
and stable.

Table 10. The sorting result with different distribution functions.

α = 2.0 s1 s2 s3 s4 Sorting Result

K(ai) (uniform) 0.6806 0.8318 0.7496 0.7864 s2 � s4 � s3 � s1
K(ai) (normal) 0.6793 0.8300 0.7481 0.7848 s2 � s4 � s3 � s1

K(ai) (triangular) 0.6811 0.8322 0.7500 0.7868 s2 � s4 � s3 � s1
K(ai) (appro-triangular) 0.6808 0.8320 0.7498 0.7866 s2 � s4 � s3 � s1

K(ai) (trapezoid 1) 0.6864 0.8362 0.7553 0.7919 s2 � s4 � s3 � s1
K(ai) (trapezoid 2) 0.6748 0.8276 0.7439 0.7809 s2 � s4 � s3 � s1
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Table 11. The sorting result with different distribution functions.

α = 1.2 s1 s2 s3 s4 Sorting Result

K(ai) (uniform) 0.8316 0.9319 0.8882 0.9144 s2 � s4 � s3 � s1
K(ai) (normal) 0.8303 0.9297 0.8864 0.9124 s2 � s4 � s3 � s1

K(ai) (triangular) 0.8323 0.9321 0.8886 0.9148 s2 � s4 � s3 � s1
K(ai) (appro-triangular) 0.8318 0.9319 0.8884 0.9145 s2 � s4 � s3 � s1

K(ai) (trapezoid 1) 0.8356 0.9339 0.8911 0.9169 s2 � s4 � s3 � s1
K(ai) (trapezoid 2) 0.8234 0.9283 0.8844 0.9136 s2 � s4 � s3 � s1

5.2. A Comparison Analysis

In order to verify the effectiveness of the proposed method based on the interval dependent
degrees of SNNs, a comparison analysis was conducted. Several methods in Reference [42,45–48]
were used on the above example and the same sorting results as in Table 12 were obtained, which is
consistent with that derived from the proposed method. It indicates the effectiveness and feasibility
of the proposed measure. However, this study presents a new method with maintaining uncertain
and fuzzy information of SNNs in the algorithm process, while previous methods only consider three
values of an SNN while ignoring its latent uncertain information. That makes the proposed method
capable of uncertainty and stability analysis. From computational complexity, most previous methods
need to take aggregation operations for three values of a SNN, respectively, in entire algorithm
steps, while the proposed model only takes interval number operations throughout the process.
Interestingly, although this study will transform SNN to an interval number, it avoids information loss
and incompleteness by defining distribution functions. In summary, the advantages over the other
methods are summarized below.

(1) In the proposed approach, the interval transformation operator is developed to convert
SNNs into interval numbers, which avoids various complex aggregation operator processes for SNNs.
The transformation operator is simple and convenient to perform. Then, the following process is built
on the interval number which is relatively straightforward and understandable.

(2) As a result of the various kinds of aggregation operators, most previous methods considered
will produce many intermediate results in neutrosophic MCGDM problems. However, in the proposed
approach, the key parameters and main steps are directly integrated into the dependent function
expression. Therefore, the proposed method takes less intermediate results and is more concise.

(3) In the proposed approach, the distribution function is conducted to describe latent uncertain
information for SNNs. In this way, the fuzziness of the original information can be conserved and
fully utilized which can be used to take some uncertainty analysis for the decision result. For decision
makers, not only the sorting result is obtained, but the dynamic influences on the sorting result caused
by any uncertainty in the decision environment will also be observed, which cannot be provided by the
others methods. Therefore, the final ranking of the proposed approach is more conclusive and accurate.

Table 12. A comparison of different methods.

Sorting Result Best One Worst One

SNNWA [42] s2 � s4 � s3 � s1 s2 s1
Entropy of Euclidean [48] s2 � s4 � s3 � s1 s2 s1

SNEE [46] s2 � s4 � s3 � s1 s2 s1
SNNCI [47] s2 � s4 � s3 � s1 s2 s1

GSNNWA [45] s2 � s4 � s3 � s1 s2 s1
the proposed method s2 � s4 � s3 � s1 s2 s1

6. Conclusions

In this paper, a novel method and framework based on the interval dependent degree of SNNs
for MCGDM problems is proposed. Firstly, the interval dependent function is defined, in which the
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distribution function is used to describe inherent distribution information of a SNN. Subsequently, a
transformation operator is constructed to convert SNNs into interval numbers, and then the interval
dependent function for SNNs is build. Afterwards, the sorting result is obtained by computing and
comparing the comprehensive dependent degree of each alternative. Finally, the uncertainty and
stability analysis method for the result is given.

The proposed approach is convenient to perform, and is effective at decreasing original
information loss. Its validity and feasibility also have been verified by an illustrative example and
comparative analysis. The advantages over the other methods are demonstrated in the comparative
analysis section. Through its uncertainty and stability analysis, the method can provide more reliable,
persuasive, and accurate results. The proposed method not only provides a novel way of solving
MCDM problems with simplified neutrosophic sets, but also enriches the theory of neutrosophic sets.

MCDM problems exist widely in many industrial and social application situations, such as
medical diagnosis, investment decision, supplier selection, etc. To choose the appropriate solution,
people often have to evaluate the effects of multiple criteria. Usually, the evaluation values are given
not as a certain value but some degrees of truth, falsity, and indeterminacy which can be adequately
described by SNNs. Moreover, the truth degree of a decision maker often covers a range and does not
obey uniform distribution in the range. The proposed method, which can provide a more concise and
comprehensive way of solving these problems, shows broad application prospects.

In the future, the proposed method will be extended to the other neutrosophic sets such as
interval neutrosophic sets (INSs) [49], multi-valued neutrosophic sets (MVNSs) [50,51], and complex
neutrosophic sets (CNSs) [52], etc. Further study as regards some complete uncertainty situations in
which both the criteria and the weights are denoted as SNNs is also necessary. In addition, we consider
exploring its possible applications in some non-traditional areas such as the game theory [53], which has
become a new effective method for solving MCDM problems in recent years because of its non-linear
dynamics description capability [54].
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1. Introduction

In classical computability theory, algorithmic computation is modeled by Turing machines, which
were introduced by Alan M. Turing [1]. A Turing machine is an abstract model of computation defined
by a 7-tuple (Q, Σ, Γ, δ, q0, F, {L, R}), where Q is a finite set of states, Σ is the alphabet, Γ is the tape
alphabet, q0 ∈ Q is the starting state, F ⊂ Q is a set of halting states, the set {L, R} denotes the possible
left (L) and right (R) move of the tape head, and δ is the transition function, defined as:

δ : Q × Γ → Q × Σ × {L, R}.

Each transition is a step of the computation. Let w be a string over the alphabet Σ. We say
that a Turing machine on input w halts if the computation ends with some state q ∈ F. The output
of the machine, in this case, is whatever was written on the tape at the end of the computation.
If a Turing machine M on input w halts, then we say that M is defined on w. Since there is a
one-to-one correspondence between the set of all finite strings over Σ and the set of natural numbers
N = {0, 1, 2, . . .}, without loss of generality we may assume that Turing machines are defined from N
to N.

Standard Turing machines admit partial functions, i.e., functions that may not be defined on every
input. The class of functions computable by Turing machines are called partial recursive (computable)
functions. We shall not delve into the details about what is meant by a function or set that is computable
by a Turing machine. We assume that the reader is familiar with the basic terminology. However, for a
detailed account, the reader may refer to Reference [2–4]. Using a well known method called Gödel
numbering, originated from Gödel’s celebrated 1931 paper [5], it is possible to have an algorithmic
enumeration of all partial recursive functions. We let Ψi denote the ith partial recursive function, i.e.,
the ith Turing machine.

If a partial recursive function is defined on every argument we say that it is total. Total recursive
functions are simply called recursive or computable. Since there are countable infinitely many Turing
machines, there are countable infinitely many computable functions. Computable sets and functions are
widely used in mathematics and computer science. However, nearly all functions are non-computable.
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Since there are 2ℵ0 functions from N to N and only ℵ0 many computable functions, there are
uncountably many non-computable functions.

Oracle Turing machines, introduced by Alan Turing [6], are used for relativizing the computation
with respect to a given set of natural numbers. An oracle Turing machine is a Turing machine with an
extra oracle tape containing the characteristic function of a given set of natural numbers. The characteristic
function of a set S ⊂ N is defined as:

χS(x) =

{
1 if x ∈ S
0 if x �∈ S.

We may also think of χS as an infinite binary sequence and call it the characteristic sequence of S.
For a set S ⊂ N, we let S(i) denote χS(i). So the characteristic sequence of a set S simply gives the
membership information about natural numbers regarding S. For a given an oracle Turing machine
with the characteristic sequence of a set S provided in the oracle tape, functions are denoted as
computable by the machine relative to the oracle S. If the oracle Turing machine with an oracle S
computes a function f , then we say that f is computable in S or we say S computes f . We denote the
ith oracle Turing machine with an oracle A by Ψi(A). Then, it makes sense to write Ψi(A) = B if A
computes B.

Now we shall look at a non-standard Turing machine model based on neutrosophic sets.
Neutrosophic logic, first introduced by Smarandache [7,8], is a generalization of classical, fuzzy and
intuitionistic fuzzy logic. The key assumption of neutrosophy is that every idea not only has a certain
degree of truth, as is generally taken in many-valued logic contexts, but also has degrees of falsity
and indeterminacy, which need to be considered independently from each other. A neutrosophic set
relies on the idea that there is a degree of probability that an element is a member of the given set,
a degree that the very same element is not a member of the set, and a degree that the membership
of the element is indeterminate for the set. For our purpose we take subsets of natural numbers.
Roughly speaking, if n were a natural number and if A were a neutrosophic set, then there would be a
probability distribution p∈(n) + p �∈(n) + pI(n) = 1, where p∈(n) denotes the probability of n being
a member of A, p �∈(n) denotes the probability of n not being a member of A, and pI(n) denotes the
degree of probability that the membership of n is indeterminate in A. Since the probability distribution
is expected to be normalized, the summation of all probabilities must be equal to unity. We should
note however that the latter requirement can be modified depending on the application.

The above interpretation of a neutrosophic set can be in fact generalized to any multi-dimensional
collection of attributes. That is, our attributes did not need to be merely about membership,
non-membership, and indeterminacy, but it could range over any finite set of attributes a0, a1, . . . , ak
and b0, b1, . . . bk so that the value of an element would range over (x, y, I) such that x ∈ am and
y ∈ bm for 0 ≤ m ≤ k. The set of attributes can also be countably infinite or even uncountable.
However, we are not concerned with these cases. We shall only consider the membership attribute
discussed above.

We are particularly interested in subsets of natural numbers A ⊂ N, in our study. Any neutrosophic
subset A of natural numbers (we shall occasionally denote such a set by AN) is defined in the form of
ordered triplets:

{〈p∈(0), p �∈(0), pI(0)〉, 〈p∈(1), p �∈(1), pI(1)〉, 〈p∈(2), p �∈(2), pI(2)〉, . . .},

where, for each i ∈ N, p∈(i) denotes the degree of probability of i being an element of A, p �∈(i) denotes
the probability of i being not an element of A, and pI(i) denotes the probability of i being indetermined.
Since we assume a normalized probability distribution, we have that for every i ∈ N:

p∈(i) + p �∈(i) + pI(i) = 1.
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2. Oracle Turing Machines with Neutrosophic Values

Now we can extend the notion of relativized computation based on neutrosophic sets and
neutrosophic logic. For this we introduce oracle Turing machines with neutrosophic oracle tape.
The general idea is as follows. Standard oracle tape contains the information of the characteristic
sequence of a given set A ⊂ N. We extend the definition of the characteristic function to neutrosophic
sets as follows.

Definition 1. Let A ⊂ N be a set. A neutrosophic oracle tape is a countably infinite sequence t0, t1, . . . where
ti = 〈a, b, c〉 is an ordered triplet and a, b, c ∈ Q, so that a is the probability value of i such that i ∈ A, b is the
probability value of i such that i �∈ A, and c is the probability of i being indeterminate for A.

The overall picture of a neutrosophic oracle tape can be seen in Figure 1. Now we need to modify
the notion of the characteristic sequence accordingly.

Figure 1. Neutrosophic oracle tape.

Definition 2. Let S ⊂ N be a set and let B denote the blank symbol in the alphabet of the oracle tape.
The neutrosophic characteristic function of S is defined by

χN
S (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈1, 0, I〉 if p∈(x) > 0 and p �∈(x) > 0 and pI(x) > 0
〈B, 0, I〉 if p∈(x) = 0 and p �∈(x) > 0 and pI(x) > 0
〈B, B, I〉 if p∈(x) = 0 and p �∈(x) = 0 and pI(x) > 0
〈B, B, B〉 if p∈(x) = 0 and p �∈(x) = 0 and pI(x) = 0
〈1, B, I〉 if p∈(x) > 0 and p �∈(x) = 0 and pI(x) > 0
〈1, B, B〉 if p∈(x) > 0 and p �∈(x) = 0 and pI(x) = 0
〈1, 0, B〉 if p∈(x) > 0 and p �∈(x) > 0 and pI(x) = 0
〈B, 0, B〉 if p∈(x) = 0 and p �∈(x) > 0 and pI(x) = 0

The idea behind this definition is to label the distributions which have significant probability
value with respect to a pre-determined probability threshold value, in this case we assume this value
to be 0 by default. Note that this threshold value could be defined for any r ∈ Q so that instead of
being greater than 0, we would require the probability for that attribute to be greater than r in order to
be labelled. We will talk about the properties of defining an arbitrary threshold value and its relation
to neutrosophic computations in the next section.

Definition 3. A neutrosophic oracle Turing machine is a Turing machine with an additional neutrosophic
oracle tape (Q, Σ, Γ, Γ′, δ, q0, F, {L, R}), where Q is a finite set of states, Σ is the alphabet, Γ is the tape alphabet,
Γ′ is the neutrosophic oracle tape alphabet containing the blank symbol B, q0 ∈ Q is the starting state, F ⊂ Q is
a set of halting states, the set {L, R} denotes the possible left (L) and right (R) move of the tape head, and δ is the
transition function defined as:

δ : Q × Γ × Γ′ → Q × Σ × {L, R}2.

Theorem 1. Any neutrosophic oracle Turing machine can be simulated by a standard Turing machine.
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Proof. Assuming the Church–Turing thesis in the proof, we only need to argue that standard oracle
tapes can in theory represent neutrosophic oracle tapes. In fact any neutrosophic oracle tapes can be
represented by three standard oracle tapes each of which contains one and only one attribute. The ith
cell of the first oracle tape contains the probability value p∈(i). The ith cell of the second oracle tape
contains the value p �∈(i). Similarly, the ith cell of the third oracle tape contains pI(i).

We also need to argue that a three-tape oracle standard Turing machine can be simulated by a
single tape oracle Turing machine. Let Γ be the oracle alphabet. We define an extension Γ′ of Γ by
introducing a delimeter symbol # to separate each attribute for a given number i. We define another
delimiter symbol ⊥ to separate each i ∈ N. Let Γ′ = Γ ∪ {#,⊥}. Then, a neutrosophic oracle tape can
be represented by a single oracle tape with the tape alphabet Γ′. The oracle tape will be in the form:

p∈(0)#p �∈(0)#pI(0)⊥p∈(1)#p �∈(1)#pI(1)⊥ . . .

The symbol ⊥ determines a counter for i, whereas for each i, the symbol # determines a counter
for the attribute. �

A neutrosophic set A computes another neutrosophic set B if using finitely many pieces of
information of the characteristic sequence of A determines the ith entry of the characteristic sequence
of B given any index i ∈ N. Then, based on this definition, a set B ⊂ N is neutrosophically computable
in A if B = ΨN

e (A) for some e ∈ N, where ΨN
e denotes the e-th neutrosophic oracle Turing machine.

If B = ΨN
e (A) for some e ∈ N, we denote this by B ≤N A. If B ≤N A and A ≤N B, then we say that

A and B are neutrosophically equivalent and denote this by A ≡N B. Intuitively, A ≡N B means that
A and B are neutrosophic subsets of natural numbers, and they have the same level of neutrosophic
information complexity. We leave the discussion on the properties of the equivalence classes induced
by ≡N for another study as it is beyond the scope of this paper.

3. Neutrosophic Enumeration and Criterion Functions

We now introduce the concept of neutrosophic enumeration of the members of neutrosophic
subsets of natural numbers. Since we talk about enumeration, we must only take countable sets
into consideration. It is known from classical computability that, given a set A ⊂ N, A is called
recursively enumerable if there exists some e ∈ N such that A is the domain of Ψe. We want to define
the neutrosophic counterpart of this notion, but we need to be careful about the indeterminate cases,
an intrinsic property in neutrosophic logic.

Definition 4. A set A is called neutrosophic Turing enumerable if there exists some e ∈ N such that A is the
domain of ΨN

e restricted to elements whose probability degree of membership is greater than a given probability
threshold. More precisely, if r ∈ Q is a given probability threshold, then A is neutrosophic Turing enumerable if
A is the domain of ΨN

e (∅) restricted to those elements i such that pA∈ (i) ≥ r, where pA∈ (i) denotes the degree of
probability of membership of i in A.

If the eth Turing machine is defined on the argument i, we denote this by Ψe(i) ↓. The halting set
in classical computability theory is defined as:

K = {e : Ψe(e) ↓}.

It is known that K is recursively enumerable but not recursive. Unlike in classical Turing
computability, we show that neutrosophically computable sets allow us to neutrosophically compute
the halting set. The way to do this goes as follows. A single neutrosophic subset of natural numbers is
not enough to compute the halting set. Instead, we take the union of all neutrosophically computable
subsets of natural numbers by taking an infinite join which will code the information of the halting set.
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Let {Ai}i∈N be a countable sequence of subsets of N. The infinite join is defined by⊕{Ai} = {〈i, x〉 : x ∈ Ai},

where 〈i, j〉 is mapped to a natural number using a uniform pairing function N×N → N.

Theorem 2. Let AN be a neutrosophic subset of N. Then,
⊕{AN

i } ≡N K

Proof. We first show that
⊕{AN

i } ≥N K. The infinite join of all neutrosophically computable sets
computes the halting set. Let {ΨN

i }i∈N be an effective enumeration of neutrosophic Turing functionals.
Let {AN

i } be the corresponding neutrosophic sets, each of which is computable by ΨN
i . To compute

K, we let
⊕{AN

i } be the infinite join of all AN
i . To know whether Ψi(i) is defined or not, we see

if p∈(i) + p �∈(i) > 0.5. If so, then Ψi(i) ↓. Otherwise it must be that pI(i) > 0.5. In this case,
Ψi(i) is undefined.

Next, we show
⊕{AN

i } ≤N K. To prove this, we assume that there exists an oracle for K. If i ∈ K,
then there exist indices x, y ∈ N such that 〈x, y〉 = i and it must be that p∈(i) + p �∈(i) > 0.5 since Ψi(i)
is defined, but we may not know whether i ∈ Ai or i �∈ Ai. If i �∈ K, then the same argument holds to
prove this case as well. �

The use of the probability ratio 0.5 is for convenience. This notion will be generalized later on.
Classically speaking, given a subset of natural numbers, we can easily convert it to a neutrosophic
set preserving the membership information of the given classical set. Suppose that we are given a
set A ⊂ N and we want to convert it to a neutrosophic set with the same characteristic sequence.
The neutrosophic counterpart AN is defined, for each i ∈ N, as:

AN(i) =

{
〈i, 1 − i, 0〉 if A(i) = 1
〈1 − i, i, 0〉 otherwise.

We now introduce the tree representation of neutrosophic sets and give a method, using trees,
to approximate its classical counterpart. Suppose that we are given a neutrosophic subset of natural
numbers in the form:

AN = {〈p∈(i), p �∈(i), pI(i)〉}i∈N.

We use the probability distribution to decide which element will be included in the classical
counterpart. If AN is a neutrosophic subset of natural numbers, the classical counterpart of AN is
defined as:

A(i) =

{
1 if p∈(i) > p �∈(i)
0 if p∈(i) < p �∈(i).

Now we introduce a simple conversion using trees. The aim is to approximate to the classical
counterpart of a given neutrosophic set AN in a computable fashion. For this we start with a full
ternary tree, as given in Figure 2, coding all possible combinations.

Figure 2. Approximating a neutrosophic set with a classical set through a ternary tree.
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The correct interpretation of this tree is as follows. Each branch represent a possible element of the
set we want to construct. For instance, if p∈(0) has the largest probability value among p∈(0), p �∈(0),
pI(0), then we choose p∈(0) and define 0 to be an element of the classical set we construct. If either
p �∈(0) or pI(0) is greater than p∈(0), then we know 0 is not an element of the constructed set. Since we
are defining a classical set, the only time when some i ∈ N is in the constructed set is if p∈(i) > p �∈(i)
and p∈(i) > pI(i). Continuing along this line, if p �∈(1), say, has the greatest probability value among
p∈(1), p �∈(1), pI(1), then 1 will not be an element. So far, 0 is an element and 1 is not an element. So in
the tree we choose the leftmost branch and then next we choose the middle branch. Repeating this
procedure for every i ∈ N, we end up defining a computable infinite path on this ternary tree which
defines elements of the set being constructed. At each step, we simply take the maximum probability
value and select that attribute. The infinite path defines a computable approximation to the classical
counterpart of AN using the tree method.

Earlier we defined Turing machines with a neutrosophic oracle tape. Suppose that the characteristic
sequence of a neutrosophic set A can be considered as an oracle. Then, the e-th neutrosophic oracle
Turing machine can compute a function of the same characteristic. That is, not only can Turing machines
with neutrosophic oracles compute classical sets, but they can also compute neutrosophic sets. It is
important to note that we need to modify the definition of standard oracle Turing machines in order to
use neutrosophic sets. We add the symbol I to the alphabet of the oracle tape. The transition function δN

is then defined as:
δN : Q × Σ × Γ → Q × Σ ∪ {I} × {L, R}2.

We say that the neutrosophic oracle Turing machine, say ΨN
e , computes a neutrosophic set B

if ΨN
e = B.
We now turn to the problem of enumerating members of a neutrosophic subset A of natural

numbers. Normally, general intuition suggests that we pick elements i ∈ N such that p∈(i) > 0.5. It is
important to note that, given A = {〈p∈(i), p �∈(i), pI(i)〉}i∈N, not every i will be enumerated if we use
this probability criterion. However, changing the criterion depending on what aspect of the set we
want to look at and depending on the application, would also change the enumerated set. Therefore,
we would need a kind of criterion function to set a probability threshold regarding which elements of
the neutrosophic set are to be enumerated.

In practice, one often encounters a situation where the given information is not directly used
but rather analyzed under the criterion determined by a function. We examine how the computation
behaves when we impose a function on the neutrosophic oracle tape. That is, suppose that f : N →
{a, b, c} is a function, where a, b, c ∈ Q, which maps each cell of the neutrosophic oracle tape to a
probability value. For example, f could be defined as a constant non-membership function which
assigns every triplet in the cells to the non-membership �∈ attribute. In this case, the probability of
any natural number not being an element of the considered oracle A is just 1. When these kinds of
functions are used in the oracle information of A, we may be able to compute some useful information.

The intuition in using criterion functions is to select, under a previously determined probability
threshold, a natural number from the probability distribution which is available in a given neutrosophic
subset of natural numbers. As an example, let us imagine a neutrosophic subset A of natural numbers.
Suppose for simplicity that A is finite and is defined as:

A = {〈0.1, 0.4, 0.5〉, 〈0.6, 0.3, 0.1〉, 〈0, 0.9, 0.1〉}.

First of all, we should read this as follows: A has neutrosophic information about the first three
natural numbers 0, 1, 2. In this example, p∈(0) = 0.1, p �∈(0) = 0.4, pI(0) = 0.5. For the natural number
1, we have that p∈(1) = 0.6, p �∈(1) = 0.3, pI(1) = 0.1. Finally, for the natural number 2, we have
p∈(2) = 0, p �∈(2) = 0.9, pI(2) = 0.1. Now if we want to know which natural numbers are in A,
normally we would only pick the number 2 since p∈(2) > 0.5. Our criterion of enumeration in this
case is 0.5. In general, this probability value may not be always applicable. Moreover, this probability
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threshold value may not be constant. That is, we may want to have a different probability threshold
for every natural number i. If our criterion were to select the ith element whose probability exceeds pi,
we would enumerate those numbers. For example, if the criterion is defined as

f (0) = 0, f (1) = 0.8, f (2) = 0.2,

then for the first triple, the probability threshold is 0, meaning that we enumerate the natural number
0 if p∈(0) > 0. Obviously 0 will be enumerated in this case since p∈(0) = 0.1 > 0. The probability
threshold for enumerating the number 1 is 0.8, so it will not be enumerated since p∈(1) = 0.6 < 0.8.
Finally, the probability threshold for enumerating the number 2 is 0.2. In this case, 2 will not be
enumerated since p∈(2) = 0 < 0.2. So the enumeration set for A under the criterion f will be {0}.

We are now ready to give the formal definition of a criterion function.

Definition 5. A criteria function is a mapping f : N → Q which, given a neutrosophic subset A of natural
numbers, determines a probability threshold for each triple 〈p∈(i), p �∈(i), pI(i)〉 in A.

We first note a simple observation that if the criterion function is the constant function f (n) = 0
for any n ∈ N, the enumeration set will be equal to N itself. However, this does not mean that the
enumeration set will be empty if f (n) = 1. Given a neutrosophic set A, if p∈(i) = 1 for all i, then the
enumeration set for A will also be equal to N.

We shall next give the following theorem. First we remind the reader that we call a function f
strictly decreasing if f (i + 1) < f (i).

Theorem 3. Let f be a strictly decreasing criterion function for a neutrosophic set A such that p∈(i) < p∈(i + 1)
for every i ∈ N, and let EA be the enumeration set for A under the criterion f . Then, there exists some k ∈ N such
that |EA| < k.

Proof. Clearly, given A and that for each i, p∈(i) < p∈(i + 1), only those numbers i which satisfy
p∈(i) > f (i) will be enumerated. Since the probability distribution of membership degrees of elements
of A strictly increases and f is strictly decreasing, there will be some number j ∈ N such that
p∈(i) ≤ f (j). Moreover, for the same reason p∈(m) ≤ f (m) for every m > j. Therefore, the number of
elements enumerated is less than j. That is, |EA| < j. �

We denote the complement of a neutrosophic subset of natural numbers A by Ac and we define
it as follows. Let pA∈ (i) denote the probability of i being an element of A and let pA

�∈(i) denote the
probability of i being not an element of A. In addition, pA

I (i) denotes the probability of the membership
of i being indeterminate. Then:

Ac(i) = 〈pA
�∈(i), pA∈ (i), pA

I (i)〉.
So the complement of a neutrosophic set in consideration is formed by simply interchanging

the probabilities of membership and non-membership for all i ∈ N. Notice that the probability of
indeterminacy remains the same. Our next observation is as follows. Suppose that A and Ac are
neutrosophic subsets of natural numbers and f is a criterion function. If EA ⊂ EAc , then clearly
p �∈(i) ≥ p∈(i) for all i ∈ N.

The probability distribution of members of a neutrosophic set can be also be given by a function
g(i, j) such that i ∈ N and j ∈ {1, 2, 3} where j is the index for denoting the membership probability
by 1, non-membership probability by 2, and indeterminacy probability by 3, respectively. For instance,
for i ∈ N, g(i, 2) denotes the probability of the non-membership of i generated by the function g.
Now g being a computable function means, for any i, j, there is an algorithm to find the value of g(i, j).
We give the following theorem.
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Theorem 4. Let A be a neutrosophic set. If g is a computable function, then there exists a computable criterion
function f such that EA is the enumeration set of A under the criterion function f and, moreover, EA = N.

Proof. Suppose that we are given A. If g is a computable function that generates the probability
distribution of members of A, then we can computably find g(i, 1) = k. We then simply let f (i) be
some m ≤ k. Since p∈(i) = k ≥ f (i), every i will be a member of EA. Since i is arbitrary, EA = N. �

We say that a function f majorizes a function g if f (x) > g(x) for all x. Suppose now that g is a
quickly growing function in the sense that it majorizes every computable function. That is, assume
that g(i, j) ≥ f (i) for every i, j ∈ N and every computable function f . Now in this case g is necessarily
non-computable. Otherwise we would be able to construct a function h where h(i) is chosen to be
some s > t such that g(i, j) is defined at step t. So if g is not computable, we cannot apply the previous
theorem on g. The only way to enumerate A is by using relative computability rather than giving a
plain computable procedure. Suppose that we are given such a function g. Let Ψi(A; i) denote the
ith Turing machine with oracle A and input i. We define g′ = {x : Ψx(g; x) ↓} to be the jump of g,
where x = 〈i, j〉 for a uniform pairing function N×N → N. The jump of g is basically the halting
set relativized to g. If we want to enumerate members of A, we can then use g′ as an oracle. Since,
by definition, g′ computes g, we enumerate members of A computably in g′.

We shall also note an observation regarding the relationship between A and Ac. Given a function
f , unless f (i) is strictly between pA∈ (i) and pA

�∈(i), we have that EA = EAc . That is, the only case when
EA �= EAc is if pA∈ (i) < f (i) < pA

�∈(i) or pA
�∈(i) < f (i) < pA∈ (i). Let us examine each case. In the first case,

since f (i) > pA∈ (i), i will not be enumerated into EA, but since pAc
∈ (i) > f (i), it will be enumerated

into EAc . The second case is just the opposite. That is, i will be enumerated into EA but not into EAc .
What about the cases where i is enumerated into both enumeration sets? It depends on how we

allow our criteria function to operate over probability distributions. If we only want to enumerate
those elements i such that p∈(i) ≥ f (i), then we may have equal probability distribution among
membership and non-membership attributes. We may have that p∈(i) = p �∈(i) = 0.5 and pI(i) = 0.
In this case, we get to enumerate i both into EA and EAc . However, if we allow the criterion function
to operate in a way that i is enumerated if and only if p∈(i) > f (i), then it must be the case that
p �∈(i) < f (i) so i will only be enumerated into EA.

The use of the criterion function may vary depending on the application and which aspect of the
given neutrosophic set we want to analyze.

4. Conclusions

We introduced the neutrosophic counterpart of oracle Turing machines with neutrosophic values
allowed in the oracle tape. For this we presented a new type of oracle tape where each cell contains a
triplet of three probability values, namely for the membership, non-membership, and indeterminacy.
The notion of neutrosophic oracle Turing machine is interesting in its own right since oracle information
is used in relative computability of sets and enables us to investigate the computability theoretic
properties of sets relative to one another. In this paper, we also introduced a method to enumerate
the elements of a neutrosophic subset of natural numbers. For this we defined a criterion function to
choose elements which satisfy a certain probability degree. This defines a method that can be used
in many applications of neutrosophic sets, particularly in decision making problems, solution space
searching, and many more. We proved some results about the relationship between the enumeration
sets of a given neutrosophic subset of natural numbers and the criterion function. A future work of
this study is to investigate the properties of equivalence classes induced by the operator ≡N . We may
call this equivalence class, neutrosophic degree of computability. It would be interesting to study
the relationship between neutrosophic degrees of computability and classical Turing degrees. The
results also arise further developments in achieving of new generation of computing machines such as
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fuzzy cellular nonlinear networks paradigm or the memristor-based cellular nonlinear networks [9].
The latter of course has practical benefits.
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Abstract: We introduce refined concepts for neutrosophic quantum computing such as neutrosophic
quantum states and transformation gates, neutrosophic Hadamard matrix, coherent and decoherent
superposition states, entanglement and measurement notions based on neutrosophic quantum
states. We also give some observations using these principles. We present a number of quantum
computational matrix transformations based on neutrosophic logic and clarify quantum mechanical
notions relying on neutrosophic states. The paper is intended to extend the work of Smarandache
by introducing a mathematical framework for neutrosophic quantum computing and presenting
some results.

Keywords: neutrosophic computation; neutrosophic logic; quantum computation; computation;
logic

1. Introduction

1.1. Neutrosophy Theory

Neutrosophic set concept, introduced by Smarandache [1,2], is a more universal structure that
extends the concepts of the classic set, fuzzy set [3] and intuitionistic fuzzy set [4]. Unlike intuitionistic
fuzzy sets, the indeterminacy is explicitly defined in neutrosophic sets. A neutrosophic set has three
basic components defined separately: Truth T, indeterminacy I and falsity F, regarding membership.
Neutrosophy was proposed as an ambitious project by Smarandache as a new branch of philosophy
as well, concerning “the origin, nature, and scope of neutralities, as well as their mutual effects with
different intellectual spectra”. The key assumption of neutrosophy is that every idea has not only
a certain degree of truth, as is generally taken in many-valued logic contexts, but also degrees of
falsity and indeterminacy need to be considered independently from each other. Neutrosophy has
settled the baseline for a number of new mathematical theories generalizing both their classical and
fuzzy counterparts, such as neutrosophic set theory, geometry, statistics, topology, analysis, probability,
and logic. The neutrosophic framework has already been applied to practical applications in many
different fields, such as decision-making, semantic web, and data analysis in medicine.

Now, let us look at the concepts of some subfields of neutrosophy. Neutrosophic set has a
formal definition as follows: Let U be a universe of discourse or space, and M be a set in U.
An element x from U is stated related to the set M as x(T, I, F) and belongs to M in the following
way: it is t % true in the set, i % indeterminate in the set, and f % false, where t varies in T, i
varies in I, f varies in F. Statically T, I, F are subsets, but dynamically T, I, F are functions/operators
depending on many known or unknown parameters. Neutrosophic logic is a general framework
for the unification of many existing logics. The main idea of neutrosophic logic is to characterize
each logical statement in a 3-dimensional neutrosophic space, where each dimension of the space
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represents respectively the truth (T), the falsehood (F), and the indeterminacy (I) of the statement
under consideration, where T, I, F are standard or non-standard real subsets of [0−, 1+]. For instance,
a statement can be between [0.21, 0.55] true, 0.23 or between (0.35, 0.45) indeterminate, and either
0.32 or 0.75 false. Neutrosophic statistics is the analysis of events characterized by the neutrosophic
probability. The function that models the neutrosophic probability of a random variable x is called
neutrosophic distribution: NP(x) = (T(x), I(x), F(x)), where T(x) represents the probability that
value x occurs, F(x) represents the probability that value x does not occur, and I(x) represents
the indeterminate/unknown probability of value x. Neutrosophic probability is an extension of the
classical probability and imprecise probability where a case, event or fact A occurs is t % true—where
t varies in the subset T, i % indeterminate—where i varies in the subset I, and f % false—where f
varies in the subset F. In classical probability nsup ≤ 1, while in neutrosophic probability nsup ≤ 3+.
In imprecise probability, the probability of an event is a subset T in [0, 1], not a number p in [0, 1],
the rest was supposed to be the opposite, subset F (also from the unit interval [0, 1]); there is no
indeterminate subset I in imprecise probability.

1.2. Quantum Mechanics and Computing

Quantum mechanics was started with Planck [5] and interpreted as real life problem by Einstein [6].
The mechanics was developed by Bohr, Heisenberg, Broglie, Schrödinger, Born, Dirac, Hilbert,
Sommerfeld, Dyson, Wien, Pauli, Von Neumann and others [7–12] in the first 30 years of the 20th
century. Computers are mechanisms that support transaction information by executing algorithms.
An algorithm is a well-defined process to perform an information processing task. The task can always
be translated into a realization. When creating complicated algorithms for a variety of tasks, working
with some improved computational models is very useful, probably very important. However, when
examining the actual limitations of a computation mechanism, it is key to remember the connection
between computation and realization. Quantum computation explores how efficiently nature allows us
to compute. The standard computational model is based on classical mechanics; the mechanics of the
Turing machine relies on classical mechanics. Quantum information processing changes not only the
physical paradigm used for computing and communication but also the concepts of knowledge and
computation. Quantum computation is not synonymous with quantum effects to make calculations.
Actual computing mechanisms of the quantum are based on a larger physical reality than is represented
by the idealized computational model. Quantum information processing is the result of the use of
the physical reality that quantum theory states to perform tasks that were previously thought to
be infeasible or impossible. The mechanisms that perform quantum information processing are
known as quantum computers. In the last few decades of the twentieth century, researchers tried
to follow two of the most influential and revolutionary theories: information science and quantum
mechanics. Their success provided an unfamiliar computation and information range of vision. This
new insight has significantly changed how the relationship between quantum information theory,
computation, knowledge, and physics is considered and has given rise to new applications and
epoch-making algorithms. The theory of information, which contains the foundations of computer
science and communication, made possible to address the important issues in computer science and
communication. The Turing machine is a classical model that behaves entirely according to classical
mechanical principles. Quantum mechanics has become an increasingly significant line in the progress
of developing more efficient computing mechanisms. Until recently, the effect of quantum mechanics
had been limited to low-level applications and it had no effect on how computation or communication
was carried or worked. At the beginning of the 1980s, a number of scientists found that quantum
mechanics had eye-opening effects that could be used in information processing. Richard Feynman [13],
Yuri Manin [14], and other influential scientists realized that some quantum mechanical phenomena
could not be efficiently simulated by a standard Turing machine. This observation has led to speculation
that perhaps these quantum phenomena could be used to make computations more efficient in general.
Such programme required re-thinking the underlying theoretical model of informatics and completely
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removed it from the classical circle. Quantum computing, a field that includes quantum information,
quantum algorithms, quantum cryptography, quantum communication, and quantum games, explores
the effects of using quantum mechanical phenomena for information modeling and processing instead
of using the rules of classical mechanics in computations.

In the following sections, we will introduce a mathematical framework of the unification of
neutrosophic theory and quantum theory, in a fully computational approach. In this context, we will
reveal how one can have a computational approach to the solution of mathematical and algorithmic
problems of a model that can be encountered in both the neutrosophic and quantum universes.
In this sense, this paper presents a more computational approach to the neutrosophic quantum
concept, i.e., neutrosophic quantum computation, whose groundwork was laid by the work of
Smarandache [15].

2. Neutrosophic Quantum Computing

In this part, we define some fundamental notions of neutrosophic quantum computing.
Some concepts will involve new interpretations and others will be straightforward generalizations.
As also mentioned in Smarandache [15], we should note in the beginning of our paper that the
reversibility condition of quantum computing has some challenging issues in the neutrosophic
counterpart of this ambitious field. It is mainly due to the fact that neutrosophic states involve
indeterminacy, so the inverse function of such states might not always be definable, hence the domain
may not be uniquely recovered from the image. We propose an interesting open problem regarding a
special case of this issue at the end of the paper.

We assume some basic familiarity with linear algebra and complex numbers including their basic
properties like the norm of a complex vector, complex conjugation, complex number multiplication,
etc. The reader may refer to Yanofsky and Mannucci’s [16] or Nielsen and Chuang’s [17] book for a
detailed account on quantum computing and quantum information.

Definition 1. A neutrosophic quantum bit (neutrobit) is a three-dimensional complex vector

|ψ〉 =

⎡⎢⎢⎣
α

β

γ

⎤⎥⎥⎦ = α|0〉+ β|1〉+ γ|I〉

such that α, β, γ ∈ C are called coefficients (or amplitudes) and |α|2 + |β|2 + |γ|2 = 1, where we define the
basis vectors |0〉, |1〉, |I〉 in the canonical basis as

|0〉 =

⎡⎢⎢⎣
1

0

0

⎤⎥⎥⎦ , |1〉 =

⎡⎢⎢⎣
0

1

0

⎤⎥⎥⎦ , |I〉 =

⎡⎢⎢⎣
0

0

1

⎤⎥⎥⎦ .

In comparison to classical quantum computation, the reader may have noticed a new basis vector
|I〉 introduced above. We call this vector the indeterminacy basis.

A coherent neutrosophic quantum state |ψ〉 is a linear combination (superposition) of the basis vectors
|0〉, |1〉 and |I〉 which is in the form

|ψ〉 = α|0〉+ β|1〉+ γ|I〉

such that α, β, γ ∈ C and that |α|2 + |β|2 + |γ|2 = 1.
Thus, a coherent neutrosophic quantum state is three-dimensional complex vector, which is of

unit length.
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Quantum systems evolve via special kind of matrix transformations. We define neutrosophic Pauli
gates as given below:

X =

⎡⎢⎢⎢⎣
0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎦ , Y =

⎡⎢⎢⎢⎣
1 0 0

0 i 0

0 0 1

⎤⎥⎥⎥⎦ , Z =

⎡⎢⎢⎢⎣
1 0 0

0 −1 0

0 0 −1

⎤⎥⎥⎥⎦ , W =

⎡⎢⎢⎢⎣
1√
2

0 0

0 1√
2

0
1√
2

1√
2

1

⎤⎥⎥⎥⎦ .

The matrix X is actually the NOT gate which the reader might be familiar from classical quantum
computation. That is, if k ∈ {0, 1}, then X|k〉 = |1 − k〉. Notice that X|I〉 = |I〉. Thus, we define
the negation of the indeterminacy basis as itself. The next two gates are Y-rotation and Z-rotation
(phase change). The new gate here is the W-transformation which can be simply thought of as a
rotation around the |I〉 basis with an equal coefficient distribution of the bases between |I〉 and the
basis on which the rotation is applied. The intuition behind these rotation gates will be understood
better once we give the unit ball representation of neutrobits later on.

An important quantum gate in classical quantum computing is the Hadamard transform, which is
defined as the matrix

H =
1√
2

[
1 1

1 −1

]
=

⎡⎣ 1√
2

1√
2

1√
2

− 1√
2

⎤⎦ .

Standard Hadamard transform is defined on a single qubit since it is a 2 × 2 matrix. Hadamard
matrix used in classical quantum computing is a unitary matrix. Thus, it is reversible, and is actually its
own inverse. To introduce the neutrosophic counterpart of this transformation, we first need to define
the notion of indeterminate (decoherent) superpositions to make sense of the use of the Hadamard
transform in neutrosophic quantum computing. The terms coherent and decoherent superpositions
of neutrobits were first introduced by Smarandache [15] for denoting quantum states with some
indeterminacy. We modify these notions to make the Hadamard transform work on neutrobits.

Definition 2. The reserved three-dimensional vector

|0I〉 =

⎡⎢⎢⎣
1

0

0

⎤⎥⎥⎦
I

is called the decoherent state of the |0〉 basis vector. We define |1I〉 similarly. That is,

|1I〉 =

⎡⎢⎢⎣
0

1

0

⎤⎥⎥⎦
I

is defined to be the decoherent state of |1〉. Any linear combination that includes either of these vectors is called a
decoherent superposition.

The motivation behind this definition is to mix the coherent (stable) basis state |0〉 with the intrinsic
property of neutrosophic logic, which is indeterminacy. A quantum system may still have a degree
of indeterminancy even if the system appears to be in a pure basis state. A scalar α for any of these
decoherent vectors is denoted by αI . Thus, when we write αI , for some number α, the reader should
understand that we are refering to the coefficient of a decoherent state. For example, the vector
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|ψ〉 =

⎡⎢⎢⎢⎣
(

1√
2

)
I(

1√
2

)
I

0

⎤⎥⎥⎥⎦
denotes the decoherent superposition state

1√
2
|0I〉+ 1√

2
|1I〉.

We could also define a decoherent state for |I〉, but, since the state |I〉 naturally involves
an indeterminacy regarding which classical bit the state refers to, there is no need to repeat this
decoherence. Thus, we adopt |0I〉 and |1I〉 as reserved basis vectors that will be used in decoherent
superposition states. We should once again emphasize that |0I〉 is different than the coherent basis
state |0〉. It is also different than the coherent superposition state |ψ〉 = 1√

2
|0〉+ 1√

2
|I〉. The latter

says that the system is in a superposition of basis states |0〉 and |I〉, the former says that the system
is in a possibly indetermined state |0〉. If |ψ〉 = |0〉, this tells us that |ψ〉 is for certain in the basis state
|0〉. The state |0I〉+ |I〉 says that the system is in a decoherent superposition of |I〉 and a possibly
indetermined state |0〉. The distinction between coherent and decoherent states should now be clear.
However, another way to imagine |0I〉 as the state |0〉 with a bounded error ε > 0.

Given the information above, we define the neutrosophic Hadamard transform as

HN =

⎡⎢⎢⎢⎣
1√
3

1√
3

(
1√
2

)
I

1√
3

− 1√
3

(
1√
2

)
I

1√
3

− 1√
3

0

⎤⎥⎥⎥⎦ .

Then, it is easy to verify that

HN |0〉 = 1√
3
|0〉+ 1√

3
|1〉+ 1√

3
|I〉,

HN |1〉 = 1√
3
|0〉 − 1√

3
|1〉 − 1√

3
|I〉,

HN |I〉 = 1√
2
|0I〉+ 1√

2
|1I〉.

3. Observables and Measurement

In classical mechanics, it is intuitively understood what is meant by an observable. An observable
in classical mechanics is a quantity like velocity, momentum, position, temperature, etc. It is intuitively
clear what these quantities are. In quantum mechanics, one needs to be more specific when talking
about observables.

Definition 3. Let A be an n × n matrix. We say that A is Hermitian if A† A = AA†, where A† is called the
Hermitian conjugate of A and is defined as the transpose of the complex conjugate matrix of A. An n × n matrix
A is called unitary if A† A = AA† = Id, where Id is the identity matrix.

We note that, in classical quantum computing, state evolution is obtained by applying unitary
operators. There are two reasons for this. The first reason is that classical quantum computations
are reversible. The second reason is that unitary transformations preserve inner products, hence
they preserve the norm of the vectors. As we shall discuss later, this requirement is questionable in
neutrosophic quantum computing.
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In classical quantum computing, it is assumed that, for every observable, there corresponds a
Hermitian operator. We use the same postulate for the neutrosophic case.

Measurement postulate. Observables in neutrosophic quantum computing are Hermitian operators.

Measurements are the outcomes of observables applied on the physical system in consideration.
Classical quantum computing usually takes projective measurements in the sense that when we measure
a state, the new state of the system becomes one of the basis states of the system. Thus, after the
measurement, a general superposition state gets projected onto one of the basis vectors. We shall not
adopt this requirement in neutrosophic quantum computing. The reason is the following. If the
outcome were to be projected onto one of the basis states, the logic used here would be no different
than the classical interpretation. Even if the state of the quantum system is projected onto a single
basis state, we would still require a degree of probability of the same basis state being on other basis
states. This is one reason why we should decoherent superposition states into account in neutrosophic
quantum computing. It relies on the very nature of neutrosophic logic. For that matter, observables we
take into consideration are non-projective.

Measuring an observable on a neutrosophic quantum bit yields not a single classical state, but
a probability distribution of the basis states |0〉, |1〉, |I〉. This is perhaps one of the most important
difference between classical quantum computation and neutrosophic quantum computation. Given a
neutrobit |ψ〉 = α|0〉+ β|1〉+ γ|I〉, making a measurement on state |ψ〉 yields a triplet

〈p|0〉, p|1〉, p|I〉〉,

where p|0〉 denoting the probability of |ψ〉 being in state |0〉, p|1〉 denoting the probability of |ψ〉 being
in state |1〉, and p|I〉 denoting the probability of |ψ〉 being in the indetermined basis state |I〉. Thus,
the outcome of observing a neutrobit gives a probability distribution of basis states. In classical
quantum computing, the outcome of measurement on a qubit is a classical bit information.

Let us illustrate this idea. For example, given the neutrobit

|ψ〉 = 1√
3
|0〉+ 1√

3
|1〉+ 1√

3
|I〉,

in a coherent superposition, measuring some observable Ω on the state |ψ〉 should yield a neutrosophic
quantum state |ψ′〉 = α|0〉+ β|1〉+ γ|I〉, of decoherent superposition.

It should be noted that the neutrosophic quantum state should not be confused with an ordinary
superposition state of a classical quantum system. Thus, a pure state in a neutrosophic quantum system
always looks like a superposition. A neutrosophic quantum state is in a coherent superposition of three
basis states |0〉, |1〉, |I〉. However, as soon as we make a measurement on state |ψ〉, it yields a decoherent
superposition, which is merely a triplet containing the information of probability distributions for each
basis states. We state this as a theorem.

Theorem 1. Let |ψ〉 = α|0〉 + β|1〉 + γ|I〉 be a coherent neutrosophic quantum state. The outcome
of a measurement on |ψ〉 is a three-dimensional real vector, particularly a decoherent neutrosophc
quantum superposition.

Proof. Suppose that we are given a coherent state |ψ〉 = α|0〉+ β|1〉+ γ|I〉. Without loss of generality,
we may assume that the state is in a superposition rather than in a single coherent basis. Assume that
we are given a Hermitian operator Ω which is not necessarily unitary and projective. Applying Ω
on |ψ〉, since we assumed that Ω is non-projective, will still yield a linear combination of vectors,
particularly a three-dimensional vector. Since the probability of seeing a single coherent basis state is a
magnitude square of the coefficient corresponding to that basis vector, the probability of observing
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|0〉 is some p|0〉. Similarly, the probability of observing |1〉 is p|1〉 and the probability of seeing |I〉 is
some p|I〉. Since Ω is non-projective, we observe a vector containing these probabilites as elements.
However, since the outcome is decoherent, it should be that each probability value can be taken to be
indetermined. That is, the outcome of the observation will be a vector⎡⎢⎢⎣

(p|0〉)I

(p|1〉)I

(p|I〉)I

⎤⎥⎥⎦ .

Since |I〉I = |I〉, we have ⎡⎢⎢⎣
(p|0〉)I

(p|1〉)I

(p|I〉)

⎤⎥⎥⎦ .

The vector above is a decoherent superposition state with numbers p|0〉, p|1〉, and p|I〉. Since each
number is the magnitude square of the coefficients of the state vector being measured, they cannot be
complex valued. Thus, each of these numbers are real valued.

4. Tensor Products and Entanglement

The usual tensor product of classical qubits generalizes to the neutrosophic case. Given two neutrobits

|ψ〉 =

⎡⎢⎢⎣
α1

β1

γ1

⎤⎥⎥⎦ , |φ〉 =

⎡⎢⎢⎣
α2

β2

γ2

⎤⎥⎥⎦ ,

the tensor product is defined as

|ψ〉 ⊗ |φ〉 =

⎡⎢⎢⎣
α1

β1

γ1

⎤⎥⎥⎦⊗

⎡⎢⎢⎣
α2

β2

γ2

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2

α1β2

α1γ2

β1α2

β1β2

β1γ2

γ1α2

γ1β2

γ1γ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The tensor product of measurement outcomes can also be defined. Assume that |ψ′〉 = 〈p1
|0〉,

p1
|1〉, p1

|I〉〉 and |φ′〉 = 〈p2
|0〉, p2

|1〉,p
2
|I〉〉 are two probability distributions of two decoherent quantum states.

Then, we define

p1⊗2
|0〉 = p1

|0〉 · p2
|0〉,

p1⊗2
|1〉 = p1

|1〉 · p2
|1〉,

p1⊗2
|I〉 = p1

|I〉 · p2
|I〉.
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Then, we write the tensor product as |ψ′〉 ⊗ |φ′〉 = 〈p1⊗2
|0〉 , p1⊗2

|1〉 , p1⊗2
|I〉 〉.

The tensor product of measurement outcomes provides us with the ability to use compound
outcome information of multiple neutrobit systems. We shall now look at the neutrosophic
entanglement property. In classical quantum computation, a two qubit system is entangled if it
is not the tensor product of two single-qubit systems. We adopt the same definition for neutrosophic
coherent superposition states. However, entanglement is not defined on decoherent states. Suppose
that we are given two neutrobits |ψ〉 = α1|0〉+ β1|1〉+γ1|I〉 and |φ〉 = α2|0〉+ β2|1〉+γ2|I〉, the tensor
product is defined exactly the same as in the classical case. That is,

|ψ〉 ⊗ |φ〉 = α1α2|00〉+ α1β2|01〉+ α1γ2|0I〉+ · · ·+ γ2γ2|I I〉.

This is completely a coherent superposition. If we measure this two-neutrobit system, though,
we get a 9-tuple containing probability distributions where each element of the 9-tuple denotes the
probability of the compound system |ψ〉 ⊗ |φ〉 being in the ith basis state for a two-neutrobit system.
The reader should easily be able to verify that, for an n-neutrobit system, there are 3n basis states.

5. More on Quantum Operators

As noted earlier, most quantum transformations are defined similarly as in the classical case.
For a better understanding though, we shall discuss more about the action of the neutrosophic
Hadamard transform. The neutrosophic Hadamard transform is defined as

HN =

⎡⎢⎢⎢⎣
1√
3

1√
3

(
1√
2

)
I

1√
3

− 1√
3

(
1√
2

)
I

1√
3

− 1√
3

0

⎤⎥⎥⎥⎦ .

The indeterminate values 1√
2

in the neutrosophic Hadamard transform denote the indeterminate
decoherent counterpart of the basis states |0〉 and |1〉. Any state which involves any of these decoherent
vectors is also decoherent. Despite that we leave HN |0I〉 and HN |1I〉 undefined, we define the logical
NOT operator over the decoherent states as

NOT|0I〉 = |1I〉,

NOT|1I〉 = |0I〉.
We leave the action of HN on two reserved decoherent vectors |0I〉 and |1I〉 undefined for the

reason that creating a superposition from an already decoherent neutrosophic quantum state might
prevent us to obtain the original input decoherence from the output decoherence. Thus, due to this
reversibility problem, it is better if we leave the mentioned transformations undefined. Since |I〉 is a
legitimate coherent state in neutrosophic quantum computation, we defined

HN |I〉 = 1√
2
|0I〉+ 1√

2
|1I〉.

We may imagine a coherent neutrobit as a vector on a three-dimensional unit ball as given in
Figure 1.
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Figure 1. Representation of a neutrobit vector on a unit ball with real coefficients.

Of course, we assume in this image, for simplicity, that the amplitudes are real values. Allowing
complex coefficients would require us to represent a neturobit on a four-dimensional geometry since
an additional imaginary axis would need to be introduced. The basis vectors here are all mutually
orthogonal. That is, the inner product of any of the two basis vectors is 0.

When we make a measurement on the state |ψ〉, we get a triplet 〈p|0〉, p|1〉, p|I〉〉 which was
defined earlier, where p|0〉 = |α|2, p|1〉 = |β|2, p|I〉 = |γ|2. The new state of the system in this case is a
decoherent superposition of |0〉, |1〉 and |I〉 each with a degree of probability p|0〉, p|1〉, p|I〉, respectively.

6. Results

We introduced a refined mathematical framework for neturosophic quantum computing based on
the original work of Smarandache [15] and we gave a few standard transformations and notions that
are to be used in neutrosophic quantum computations. Perhaps the most important difference from
the classical quantum computation is the involvement of the indeterminacy basis and the separation
between coherent and decoherent states. Treating the Hadamard transform as a function creating a
superposition from a coherent state, we introduced the reserved decoherent vectors for this purpose.
The measurement process is also slightly different in this case. The outcome of any measurement on a
neutrobit gives a probability distribution, a decoherent state, of all possible basis states each with a
certain degree of probability determined by the corresponding coefficients.

The computational complexity of the neutrosophic quantum gates, when applied to a quantum
state, would be the same as their classical counterparts since the size of the transformation matrices in
the neutrosophic counterpart does not change asymtotically. That is, for the neutrosophic Hadamard
transform for instance, multiplying a 3 × 3 matrix with a three-dimensional vector does not give any
difference in terms of computational complexity compared to its classical counterpart. The same
observation can be easily seen with the other gates. The only complexity difference is with the tensor
product that, since we are not working on a three-dimensional vector space, the size of the vector space
grows by factors of 3 instead of 2 when taking tensor products of n many neutrobits. It should be
noted that this is still a constant difference.

A practical application of neutrosophic quantum computing in the future would be used to
solve hard problems involving indeterminate cases of multiple states when taken as a whole system.
For example, it may not be known which one of the many possible channels that a quantum information
is transferred through quantum communication channels. If we were to study the behavior of the
transferred superposition quantum state, we would have to use neutrosophic quantum computing
notions to describe the state of the transfer process that will involve the probability of the information
being transferred on one particular channel, probability of the information not being transferred on
the same channel, and a degree of indeterminacy of the information being transferred on that channel.
This is required for a single channel. Thus, we would have a superposition of all possible probability
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distributions if we consider every channel taken together. The entire distribution will naturally define
a decoherent quantum superposition state.

As stated in Smarandache [15], satisfying the reversibility condition of quantum computing is
more problematic in the neutrosophic case due to the inclusion of indeterminate states. The first attempt
to settle this problem is to try to make the neutrosophic Hadamard transform unitary, and hence
reversible. We shall give the following open problem, for which we hope to encourage researchers in
neutrosophic computation or quantum computing for finding a possible solution.

Open problem. Define a “reasonable” neutrosophic Hadamard transformation matrix, which
is unitary.

By “reasonable”, we mean preserving the original properties of the standard Hadamard transform
such as creating a superposition of basis states, etc.

Another future work is to find a legitimate protocol for the teleportation of the state of a neutrobit
from one location to another. This particularly has many applications in networks and communication.
A typical quantum teleportation of a standard qubit is performed through classical bit channels.
In order to send the state of a qubit, the first party sends two classical bits and the second part recovers
the state of a qubit from the received classical bits. What kind of channels do we need to transport the
state of a neutrobit? A classical channel may be a solution. A quantum channel, on the other hand,
may not be sufficient to teleport a neutrobit due to the fact that the preservation of indeterminate states
through the teleportation process becomes questionable. One idea is to separate the indeterminate
state from the superposition and treat it as a classical quantum superposition state of all coherent basis
states and then use the classical quantum teleportation protocol on this system.

Neutrosophic quantum computing is at its very early stage of development. We believe that
this new field will attract many researchers in computer science, physics and mathematics for further
advancement along with discovering many useful future applications.
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