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While mereotopology – the theory of boundaries, contact and separation built up on a
mereological foundation – has found fruitful applications in the realm of qualitative spatial
reasoning, it faces problems when its methods are extended to deal with those varieties of
spatial and non-spatial reasoning which involve a factor of granularity. This is because granu-
larity cannot easily be represented within a mereology-based framework. We sketch how this
problem can be solved by means of a theory of granular partitions, a theory general enough to
comprehend not only the familiar sorts of spatial partitions but also a range of coarse-grained
partitions of other, non-spatial sorts. We then show how these same methods can be extended
to apply to finite sequences of granular partitions evolving over time, or to what we shall call
coarse- and fine-grained histories.
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1. Introduction

As a result of a series of important contributions by Bittner, Cohn, Galton, Stell,
Worboys, Casati and Varzi, and others in recent years, it has become clear that many
features of common-sense reasoning can be fruitfully handled within a framework of
mereology conjoined with topological concepts such as boundary, contact, separation,
connection, interior and exterior. The fruitfulness of this approach rests not least on the
fact that mereological topology is region-based, and thus it yields a more realistic repre-
sentation of the qualitative space of common sense than does standard point-set topology.
Recent work (e.g., [8]) has concentrated on adding the factors of vagueness, imprecision
and uncertainty to standard mereotopological approaches, and on finding ways to bridge
the qualitative-quantitative divide, so that algorithms can be found for moving back and
forth between the qualitative spatial representations of common sense and the discrete,
digital representations used in applications [11,26,27]. Mereotopology resists a simi-
larly realistic extension to a theory of granularity however. This is because such a theory
would presuppose a means of talking about objects (at given resolutions) without at the
same time talking about all the parts of those objects (at all finer resolutions). In mereol-
ogy, however, if an object falls within the range over which you quantify, then so also do
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all the object’s parts. Set theory can block this automatic recognition of an object’s parts
(in effect by wrapping the object in a set-theoretic coating), but only, as we shall argue,
at too high a sacrifice in realism. Here we show how the problems caused for a theory of
granularity within the mereological framework can be solved by adding to mereology a
theory of what we shall call granular partitions.

The term ‘partition’ is here used in a way that is only distantly related to the more
familiar usage which defines a partition in terms of equivalence classes. The problem
with the latter notion is that it presupposes that the domain to which an equivalence
relation is applied has already been divided up into units (the elements of the set with
which we begin), and it is this very notion of division into units (portions, segments,
items) which our present theory is designed to illuminate.

The theory is based on the one hand on the theories of discrete multi-resolution
spatial knowledge advanced by Stell and Worboys in their papers listed below. It bears
comparison also with the work on manipulating spatial partitions of [9] and with the
conception of geographic information systems as mediators between users and the world
developed in [10]. On the other hand, however, it generalizes from these to comprehend
not only spatial but also certain types of non-spatial partitions. In this it exploits ideas
deriving from a somewhat unusual source, namely from the theory of multi-resolution
partitions put forward by [20,21], a theory which was developed as the basis of the
so-called ‘consistent histories’ interpretation of quantum mechanics. Our title alludes to
this quantum-mechanical background, and more specifically to the fact that the approach
here advanced seeks to do justice to the way in which cognition induces a certain sort of
quantization (or granularization) on objects in space and time.

2. Better than sets

Just as mereotopology can be seen as an extension of mereology through the addi-
tion of some topological primitive such as connection or interior part, so also set theory
can be seen as an extension of mereology through the addition of the primitive set-
theoretic notion of singleton. David Lewis [17] has shown how, with the help of this one
single notion, all the standard axioms of set theory can be derived within a mereological
framework. Lewis first of all defines the notion of what he calls a class, which is a set in
whose content the empty set plays no role. He then shows how the theory of classes so
conceived can be formally identified with the theory of mereological sums (or ‘fusions’)
of singletons.

At the same time, however, Lewis is forced to concede that the relation between an
element and its singleton is itself enveloped in mystery. As he himself puts it:

since all classes are fusions of singletons, and nothing over and above the singletons
they’re made of, our utter ignorance about the nature of the singletons amounts to
utter ignorance about the nature of classes generally. . . . What do we know about
singletons when we know only that they are atoms, and wholly distinct from the
familiar individuals? What do we know about other classes, when we know only that
they are composed of these atoms about which we know next to nothing [17, p. 31]?
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The mystery arises, we suggest, because the relation between element and single-
ton (or between element and set) involves a spurious running together (and concomitant
idealization) of a plurality of distinct relations each one of which is independently well
understood. The relation between an object and its location is one such, and so also are
the relations between an object and a concept under which it falls or between an object
and a kind or category to which it belongs. Others include the various relations which an
object may bear to intervals on quantitative and qualitative scales (for example relations
between an object and its tax bracket, temperature-band, spin, quantum number, exam-
ination grade, golf handicap, Erdös number, and so on). Yet others include the relation
between an object and its role or function or office or niche, or the relation between an
object and the corresponding entry in a list or record in a database. For Cantor him-
self [6] the pertinent relation is that between an object (or what he calls a ‘well-defined
object of our thought’) and the result of some ‘collecting together into a whole’.

Set theory idealizes some of the features manifested by each of these relations, but
it rides roughshod over the differences between them. Hence, if we are to do justice to the
relations in question, then a more subtle framework is needed. We offer the beginnings
of such a framework here: a general theory of relations of the mentioned type, each of
which we shall come to recognize as involving the imposition by some cognitive agent
of an appropriate sort of granular partition upon some associated portion of reality.

Because the framework we propose is so general, and is designed to comprehend
not only the (comparatively well-understood) partitions of the spatial realm but also a
wide range of granular partitions of a non-spatial sort, it can be developed only in outline
here. We believe, however, that we have shown how it might be possible to develop on
a mereotopological basis an instrument that is able to capture the relations listed, which
would be comparable with set theory in the range of types of real-world objects with
which it can deal.

3. What is a granular partition?

Just as sets are to all intents and purposes the mereological sums (or ‘fusions’) of
their singletons, so granular partitions as we here conceive them are the mereological
sums of their constituent cells. We shall accordingly develop our formal account of
granular partitions in two stages:

1. In terms of a theory of the relations between cells and partitions.

2. In terms of a theory of the relations between cells and objects in reality.

(The counterpart of stage 1 in a set-theoretical context would be the study of the relations
between sets and their subsets; the counterpart of stage 2 the study of relations between
sets and their elements.)

We are to think of a granular partition – sometimes referred to simply as a ‘parti-
tion’ in what follows – as a grid of cells laid between ourselves and reality (or between
ourselves and whatever is the relevant object domain) in such a way that its cells are
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. . . rook bishop pawn knight . . .

. . . up down charm strange . . .

John George Paul Ringo

Figure 1.

transparent. These cells allow the objects in the domain over which the partition is
laid to show through in undistorted fashion. Consider the way in which in construct-
ing weather maps we may project a grid of political divisions onto satellite images. Or
consider the examples of fragments of partitions provided in figure 1, above.

A partition can be compared to a map. Indeed our present project may itself be
conceived as an attempt to generalize set theory by conceiving sets as built up out of
the different sorts of labeled cell-like components which we find on maps (representing
counties, postal districts, census tracts) and which are themselves, in different ways,
directed outwards towards objects in reality.

Figure 2. Alberti’s grid.

A granular partition can be compared also to the drawing machines (for example
Alberti’s latticed grid: see figure 2) once sometimes supposed to have been used by
artists as an aid to painting. (Imagine the use of such a device for tracking birds, from
moment to moment, as they fly across the sky.)
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Something like a grid placed over reality is involved, too, in familiar maps of brain
regions or of the structure of chromosomes. Such maps are essentially spatial represen-
tations of the underlying reality. But granular partitions are involved also in represen-
tations of non-spatial knowledge – for example of the sort we find in component cata-
logues, or in the grid-like representations of the Periodic Table in chemical textbooks.
Each of the examples listed is in our terms transparent to an associated portion of reality.
Each picks out certain parts or features of this reality, while tracing over others.

A granular partition is a way of dividing up the world, or some portion of the
world, by means of cells. Thus the verb ‘to partition’ is understood here as being what
philosophers call a success verb. In this it is comparable with verbs like ‘to know’ or
‘to see’ or ‘to find’. (If A knows p, then p is true. If A sees or finds x, then x exists.)
This means that even though granular partitions are cognitive creations, and in this sense
subjective, their relation to a reality beyond is a fully objective matter. Thus when once a
given partition exists, then it is, for each cell in the partition and for each object in reality,
an objective matter whether or not that object is located in that cell. (In this sense, too,
granular partitions are analogous to sets.)

4. Set theory, mereology, and time

Both set theory and mereology have shared origins in explorations in the founda-
tions of mathematics in the decades before and after the turn of the last century. The two
theories were thus formulated in such a way as to relate to a static universe, a universe
conceived in abstraction from time and change. A set exists outside space and time: it is
determined exclusively by the (atemporally conceived) list of its elements. If the entities
stipulated as the elements of a set undergo change, even change of such a sort that one
or more of these entities themselves should cease to exist, then the set itself is unaffected
thereby. It is for this reason that ontological commitment to sets has been characterized
by philosophers as a form of Platonism.

The framework of mereology, in contrast, is non-Platonistic, which means that it is
closer to the changing world of flesh-and-blood reality (and the relation of part to whole
is correspondingly less mysterious). This is because, if the parts of a whole cease to exist,
then so also does the whole. If you burn down the parts of a forest, then you will have
burned down the whole forest, too. Yet still: mereology has resisted coherent extension
of a sort which would comprehend in realistic fashion not only spatial but also temporal
features of the objects in its domain. This is because mereology has been conceived in
such a way as to allow unrestricted summation even in relation to objects which exist at
different times. Thus it can give no satisfactory answer to the question when such objects
(for example the fusion of Napoleon and your left foot) should properly be said to exist.

Mereotopology increases the resources available to mereology in countering the
effects of unrestricted summation in regard to spatial wholes. For example it allows us
to formulate what it means for a whole to be connected. The theory of granular partitions
will enable us to push the mereotopological approach still further, by making it possible
for us to take account of time and change.
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5. Sets and granular partitions

Where the elements of a set exist within the set without order or location – they
can be permuted at will and the set remains identical – our granular partitions typically
come with a specific order and arrangement of their constituent cells. The latter are
determined in part by their position within the partition, which we can think of as being
fitted out with an address or coordinate system, and with a scaffolding which holds the
cells together in a certain arrangement. One consequence of this is that a partition may
include empty cells – indeed it may include a plurality of distinct empty cells. When
you use a transparent grid for tracking birds as they move across the sky, it may well be
the case that all the cells in your partition are, at any given moment, empty.

Objects as they exist in nature may stand to each other in various relations; they
may have hooks of various sorts which link them together. These include common
boundaries (for example as between France and Germany, or between Tibbles and her
tail), and they include also relations of dependence and of functional or causal associ-
ation. Mereological fusion preserves these inter-object relations, and it thus preserves
the order and location of objects which fall within its grasp: if two objects are linked
together in nature, then they are linked together also within their mereological fusion. In
this sense mereology leaves everything as it is. If the parts of a whole are permuted in
reality, then the whole, too, is thereby changed.

A set is a mereological fusion of singletons, and mereological fusion preserves or-
der and location. How can it be, then, that the elements within a set can be permuted at
will and the set be unaffected thereby? The answer is that the set is built up mereologi-
cally not out of its elements but out of its singletons, and the singleton operator has the
effect of stripping away the various sorts of linkages which obtain between the objects
to which it is applied as these exist in nature. It sets them apart from their surroundings
and seals them off from each other and from all effects of time and change.

6. From cells to objects

The version of the theory of granular partitions presented here will mimic set theory
in this respect, that if an object is located in the cell of a partition, then the whole object is
located entirely within the cell, and this in completely determinate fashion. The relation
between an object and its cell is modeled on the relation between an element and its
singleton.

Even in the simplest version of the theory, however, granular partitions are distin-
guished from sets in the following respect: that where an object can be an element of a
set (or singleton) in only one way, an object can be located in a cell within a partition
in any number of ways. Certainly some objects are exactly located in the corresponding
cells [7]. Exact location is illustrated for example by the relation between a concrete
parcel of land and the corresponding cell in a cadastre, or (again), in set theory, by the
relation of an element to its singleton. It is illustrated also by the relation between an
object and its place (if, with Aristotle, we conceive the latter as the innermost boundary
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of the body of air or water by which an object is surrounded). Customers are exactly
located in the cells which result when we conceive of a customer database as a partition
of the corresponding population.

Here we are interested in a relation more general than that of exact location, how-
ever, a relation which holds whenever an object is entirely or completely located in a
given cell even if it falls short of being exactly located therein. This relation is instanti-
ated wherever objects are assigned (large enough) regions of space (compare an object in
a cell to a guest in a hotel room). Partitions in our sense arise also when we make certain
sorts of observations or experiments or whenever we sort things into categories (compare
an object in a cell to a bacterium in a petri dish or to an envelope in a pigeonhole).

The requirement that an object must fit entirely within its corresponding cell can
of course be generalized still further. Bittner and Stell [4] offer an approach to spatial
partitions otherwise similar to the one advanced here but within which the restriction on
cell-object fit is relaxed through the notion of ‘rough’ location. Smith and Brogaard [25]
argue that the theory of granular partitions can serve, alternatively, as a framework for
a new type of supervaluationist approach to the problem of vagueness. To see how this
works, we note first of all that human beings and similar objects always have question-
able parts (the bacteria in John’s ear, the half-digested food in his stomach, the loosened
molecules of skin on his back). There exists, then, a family of alternative ways of picking
out a precise portion of reality which we may then choose to identify as John in a given
context. Whichever such precisification we choose, however, it will still remain the case
on our present theory that John is located in the John cell in our partition of human be-
ings. This is because the John cell includes a certain amount of slack, which can be taken
up in different ways by different precisifications. But only one precisification fits into
a cell at any given time, just as the relation between the singleton and its element is of
necessity one-to-one. In a more general theory however the relation between a cell and
its occupant may be taken as one-to-many as a means of doing justice to the vagueness
that is involved wherever we have a family of such alternative precisifications.

A cell is an artifact of our theoretical activity: it reflects a possible way of divid-
ing up the world into parts and of grouping the parts together into unities of different 
sorts. A set is an abstract structure; its elements, in contrast (in the cases relevant to 
our deliberations here), are parts of concrete reality. Partitions, similarly, belong to the 
realm of abstracta (or better: they belong to the realm of our theoretical representations), 
over against the concrete realm of represented objects. Each partition brings about a 
demarcation of the domain upon which it is projected, a demarcation analogous to the 
results of drawing lines on a map. Some cells in the partition will then correspond to 
bona fide objects in the reality beyond, as for example in the case of the cells labeled 
Guadalupe and Corsica in a map of the Departments of France. Some cells will refer to 
fiat objects in reality, as for example in the case of cells projected onto postal districts or 
census tracts or other products of arbitrary legal-administrative demarcation in the 
spatial realm [24]. Concrete objects in the physical world are bona fide entities. A planet 
or tennis ball is what and where it is independently of any acts of human fiat and 
independently of our efforts to understand it theoretically. Granularity, we can now
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assert, and the associated ‘discrete spaces’ and ‘multi-resolution spaces’, are properly
at home only in the fiat realm: they pertain not to the objects themselves on the side
of reality, but rather to the ways we partition these objects in our activities of theoriz-
ing, classifying and mapping. If this is right, then the theory here presented can provide
the basis for a mereotopological account of granularity of a truly realistic sort – where
mereotopological theories of granularity have hitherto needed to rely on one or other
idealizing assumption (such as is employed by Galton [11]) of discreteness on the side
of the objects in the world. And if granular partitions are indeed inserted into reality by
our cognitive activities, then the resultant theory – as contrasted with a theory of gran-
ularity based on a hypothesis of ultimate object-discreteness – is a theory of granularity
at arbitrary resolutions.

7. Granular partitions as cognitive artifacts

Partitions as we are conceiving them here are distinct from both sets and mereolog-
ical fusions in that they are not constituted out of the objects that are located in their cells
at all. For partitions belong, not to the domain of objects, but rather to the domain of our
theorizing and classifying and mapping activity. Partitions are grid-like representations.
They project outwards towards those objects in reality which are located in their cells.
They are thus many-rayed counterparts of concepts as conceived by Millikan [19]:

The membership of the category “cat”, like that of “Mama”, is a natural unit in nature,
to which the concept cat does something like pointing, and continues to point despite
large changes in the properties the thinker represents the unit as having. For example,
large changes can occur in the way a child identifies cats and the things it is willing
to call “cat” without affecting the extension of its word “cat”. The difficulty is to cash
in the metaphor of “pointing” in this context.

Since some varieties of partition may exist as systems of labeled cells even inde-
pendently of any objects which may at any given time be located in those cells, such
partitions may remain the same – think of the transparent grid we are using to plot birds
moving across the sky – even where the corresponding population of objects changes
entirely. As we have stressed, however, it is at any given time a determinate matter for a
given partition which objects are located in its cells.

Moreover, the assignment of objects to the cells of a partition may remain the same
even though the objects towards which it is directed are subject to change. This will
hold provided only that the change in question occurs beneath the threshold of what
the partition recognizes. Thus the partition with just one cell labeled Bill Clinton picks
out the same object from one day to the next even while this object gains and loses
molecules. The object located in the cell labeled cat in your partition of biological reality
is at any given time the mereological fusion of all whole, live cats. As seen through
the lens of your partition, however, this total fusion is parceled out in coarse-grained
fashion into individual cats (and not for example into cat-molecules or cat-organs). This
parceling out is at the same time effected in such a way that the partition (or its user)
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does not know (or care) how many cats there are or where these cats are located. The
partition traces over all the individual differences between all the different cats which
fall within its scope. In this way it is able to capture all the cats in the world as forming
a whole (species) and this in such a way that the latter is grasped as identical from one
moment to the next even in spite of the fact that individual cats are born and die.

8. Granular partitions and relations

Some partitions are like sets in that they will apprehend the objects which are
located in their respective cells independently of order or arrangement or linkage or time.
Others, however, will inherit from mereology the ability to comprehend their objects in
ways which map different kinds of relations that obtain among them. The cells in such
partitions project their objects not in isolation, but rather in tandem with other objects
located in related cells within the same partition. We can imagine, for example, two-
celled partitions which capture the relations between a part and its whole or between
a substance and its accident. Such partitions apply to pairs of entities in reflection of
specific relations in which the latter stand to each other. John and Mary, before they
wed are not, but after marriage they are, recognized by a two-celled partition of the type:
married pair. Yet other two-celled partitions, for example the partition captured by our
use of paired demonstratives such as this and that, here and there, left and right, or first
and second, apply to pairs of objects only in reflection of our ways of relating to them
intentionally. These are two-celled counterparts of the one-celled partitions involved in
our uses of proper names or in our acts of attending cognitively to single objects. We can
imagine also three-celled partitions, which might be employed for example to capture
the way in which, in an action of kissing or shaking hands or congratulating, two objects
become bound together by a third object – a relational event – in which the one occurs
as agent, the other as patient. Partitions can manifest the feature of multi-dimensionality
also in other sorts of ways. A map of the zoo, for example, might indicate not only the
places where animals are located but also the sorts and sizes and proper names of the
animals which are located in those places.

9. Granularity

When you think of John cooking his dinner in the kitchen, then you do not think
of all the parts of John or of his surroundings. You do not think of the follicles in his
arm or the freckles on his cheek. You do not think of the fly next to his ear or the
neutrinos that pass through his body. Rather, you set John into relief in a highly specific
way in relation to the rest of the world. You impose, in this case, a one-celled partition
upon reality which induces a fiat separation between what is focused upon and what is
ignored.

You effect a more complex many-celled partition when you focus on a map of
France depicting its 91 départements or its 311 arrondissements. And as this last ex-
ample makes clear, partitions may have different resolutions. But they must have cells
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of finite size. The division of the line into real or rational numbers does not define a
partition, and neither does the (whole) system of lines of latitude and longitude on the
surface of the globe. A partition is, intuitively, the result of applying some sort of grid to
a certain portion of reality. For such a partition to do its work, its cells need to be large
enough to contain the objects that are of interest in the portion of reality which concerns
the user. At the same time these cells must be not too large, in the sense that they must
allow the user to factor out those details which are not of concern. A granular partition
is thus an instrument for focusing upon and also for ignoring things – for placing certain
parts and moments of reality into the foreground of our attentions in such a way that
other parts and moments are traced over in the background. (Compare Bittner [2].)

A granular partition is, we said, a labeled system of cells. The latter are then
projected by the user of the partition onto the corresponding domain of reality. The
cell-boundaries thereby serve to parcel out in more or less fine-grained fashion this con-
crete portion of the world. The cells of a partition may be purely spatial, as in a map
which effects a two-dimensional partition of a certain portion of the surface of the globe.
But partitions may be constructed also in such a way as to involve demarcations of a
non-spatial sort. Examples are: taxonomical partitions in biology, component catalogs,
customer databases. Some partitions are very simple: for example the Spinoza partition,
which comprehends the whole universe in a single cell. We can analogously define for
each given object x what we might call the object partition for x, consisting of one single
cell in which x and x alone is located. A closely related partition has two cells, called
foreground and background, one containing, precisely, x; the other containing x’s com-
plement (the mereological sum of all the objects disjoint from x). There is in addition a
large family of simple partitions of reality corresponding to sequences of objects labeled
by natural numbers – artifacts of that sort of cognitive act we call counting. There are
partitions including empty cells (for example, the guest-list of a hotel with rooms some
of which, on any given night, are unoccupied; a chessboard, some of whose squares are
at any given stage in the game empty of pieces). And there are hierarchical partitions
which involve cells comprehending successively more comprehensive groups of objects
(species, genera, orders, classes, phyla, kingdoms, and so on) on successfully higher
levels. Dodo is an empty cell in one standard partition of the animal kingdom.

10. Cells in granular partitions

Let variables z, z′, z1, . . . range over cells (Zellen, in German), and A, A′, A1, . . .
over granular partitions (German: Aufteilungen). The cells in a granular partition may
have subcells. Thus for example the cell Florida is a subcell of the cell United States
in the standard geopolitical partition G of the surface of the globe. The cell rabbit is
a subcell of the cell vertebrate in a partition of the animal kingdom, and the latter is
in turn a subcell within the larger subcells mammal, chordata, and so forth. There will
in general be far fewer subcells in a typical partition than there are subsets in a typical
set (since the subcells are restricted, in a typical partition, to those groups of smaller
cells which manifest a certain sort of naturalness or rounded-offness). This is not least
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because natural partitions will exclude double counting on any given level of a hierarchy
of cells and subcells.

We write:

z ⊆A z′

as an abbreviation for: z is a subcell of the cell z′ in the partition A. ⊆A is reflexive,
transitive and antisymmetric. It defines a partial order on the totality of cells in the
partition A, by analogy with the usual set-theoretic subset relation. We stipulate further
that it satisfies a finite chain condition to the effect that if · · · ⊆A zi ⊆A zi−1 ⊆A · · · , then
there is some n such that zn = zn+1 = · · · and some m such that zm = zm−1 = · · · (so
that there are minimal and maximal cells at the end of each chain). An example of such
a finite chain is your address (The Oval Office, The White House, 1600 Pennsylvania
Avenue NW, Washington, DC 20500, USA).

We can define the property of being a minimal cell within a partition in the obvious
way as follows.

MinA(z) := A(z) ∧ ¬∃z′(z′ ⊆A z ∧ z′ �= z
)
, (1)

where ‘A(z)’ signifies: z is a cell in the partition A. (The property of being a maximal
cell can be defined similarly. In many partitions the maximal cell will coincide, in its
domain of objects, with the partition considered as a whole.)

The finite chain condition tells us that every partition is in a certain sense built out
of minimal cells. But consider the partition defined as follows: Germans, Kant, Wagner.
The latter has minimal cells, but the partition as a whole can nonetheless not be identified
with the mereological fusion of its minimal cells. Indeed the closest counterparts of sets
within our present framework will turn out to be just those special sorts of partitions
which can be identified as the sums of their minimal cells in this way. The latter then
play the role played by singletons in Lewis’ Parts of Classes. The minimal cells of the
corresponding partitions represent a jointly exhaustive and pairwise disjoint tiling of the
pertinent domain of objects, and every cell z in such a partition A satisfies the following:

∃z1 . . . ∃zn

(
MinA(z1) ∧ · · · ∧ MinA(zn) ∧ z = z1 ∪A · · · ∪A zn

)
, (2)

where ‘∪A’ symbolizes the mereological fusion of cells within a partition A. We might
say that the minimal cells then form a basis for the partition as a whole.

The possibility of decomposition into minimal cells does not hold of partitions in
general. This is because partitions are artifacts of our cognition, and our cognition may
be incomplete. Decomposable partitions represent a certain kind of cognitive complete-
ness on the side of the responsible cognitive agent. Suppose you are in a crowded room
and you know (who) all the people in the room (are). The maximal cell of your partition
people in this room is then decomposable into a basis of minimal cells labeled Jack, Jim,
John, Joe, and so on. Suppose, on the other hand, that your partition contains on the
level of single persons only two cells, labeled Jim and John, since these are the only two
people you recognize. Then such decomposition will not be possible. We can imagine
similarly a partition of the animal kingdom containing one large cell labeled mammal
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comprehending other smaller cells labeled rabbit, dog, and so on, but where the latter
are not such as to represent a complete accounting of all the species of mammal which
exist. Partitions of this non-decomposable sort will be needed to capture our hierar-
chically organized knowledge in regard to almost all complex domains of real-world
objects.

11. Union, intersection and complement of cells

We can define partition-theoretic union z ∪A z′ of two cells in a partition A as a
⊆A-minimal cell satisfying the condition that it contains both z and z′. Such a union is
not in general defined. (Consider our geopolitical partition G of the land surface of the
globe, and take z = Florida, z′ = Zambia.) And even where it is defined it is not in
general unique. (As applied to Cyprus and Malta, for example, it currently yields the
unique output: British Commonwealth; both Cyprus and Malta are however candidates
for membership of the European Union.)

Partition-theoretic union is commutative, but it is not associative. That is to say
(z ∪A z′)∪A z′′, even where it is uniquely defined, is not in every case identical to
z ∪A(z′ ∪A z′′). To see why not, consider a partition P with cells exactly as follows:
{a}, {b}, {c}, {d}, {e}, {a, b, d}, {b, c, e}, {a, b, c, d}, {a, b, c, d, e} (presented also in
figure 3).

If we now set z = a, z′ = b, z′′ = c, then we have (z ∪A z′)∪A z′′ =
(a ∪A b)∪A c = {a, b, d} ∪A c = {a, b, c, d}. On the other hand, however, z ∪A(z′ ∪A

z′′) = a ∪A(b ∪A c) = a ∪A{b, c, e} = {a, b, c, d, e}. We do however have the familiar
equivalence of z ⊆A z′ and z ∪A z′ = z′. (See [23] for a detailed theory of such restricted
union operators.)

Regarding partition-theoretic intersection, we first of all define what it is for two
cells of a partition A to overlap in A, as follows:

z1 oA z2 := ∃z(z ⊆A z1 ∧ z ⊆A z2). (3)

The partition-theoretic intersection of two overlapping cells in A is then defined as any
⊆A-maximal cell which is included as subcell within them both. Partition-theoretic in-

Figure 3.
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tersection as thus defined is commutative, but it is not in general unique or associative.
Thus for example there are two intersections of {b, c, e} and {a, b, c, d} in P , namely
{b} and {c}, respectively.

Regarding partition-theoretic complement, we set –Az to be a ⊆A-maximal cell
which does not overlap with z. The partition-theoretic complement of a cell, too, is not
in general defined, and even where it is defined it is not in general unique. To see this,
it is sufficient to consider once again our partition P , where the complements of {c}
are {a, b, d} and {e}, respectively. Similarly many political entities recognized by the
partition G do not have unique complements. What, for example, would be the unique
⊆G-maximal political entity which does not contain Florida as part?

That the partition-theoretic complement of a cell is not in general defined goes
hand in hand with the fact that there is no analogue of the empty set in the theory of
partitions. That is to say, there is no cell which is empty per se. This holds even for
what we might call the Spinoza partition, which has a unique and maximal cell. There
is no complement of this maximal cell within that partition. As we have noted, how-
ever, many partitions will contain empty cells, but these are cells which are empty per
accidens.

Granular partitions of many specific types will of course be rather well-behaved
when it comes to the taking of unions, intersections and complements. This is true of
the closest approximation, within partition theory, of sets, which turn out to be those
special types of partitions which have a basis in minimal cells, at most one empty cell,
and which are such that every non-empty minimal cell is occupied by exactly one object.

Another important family of granular partitions is made up of those partitions
which capture the sort of hierarchical knowledge of reality which is illustrated by tax-
onomies, partonomies, contour maps, and a range of associated systems for encod-
ing knowledge which have in common that they can be represented in the form of
trees [3,16]. In partitions of this sort there is in every case a maximal cell, which coin-
cides with the partition as a whole and which corresponds to the root of the associated
tree. This ensures that the partition-theoretic union of two cells is always defined and it is
always unique. (It is the cell associated with the vertex at which the branches emanating
upwards from the vertices associated with the two cells join.) If two cells intersect, then
only because one is a subcell of the other. Cells on the same level within the hierarchy do
not intersect at all. Here, too, partition-theoretic complements are not in general defined.
A unique complement of a cell associated with a given level in the tree will exist only
where the tree has exactly two vertices on that level.

We can go back and forth between trees and partitions of the given sort in virtue
of a standard graph-theoretical result [18] to the effect that there is a one-to-one cor-
respondence between families of non-intersecting, possibly nested regions in the plain
and trees in which each vertex represents a region in the array and each link in the tree
represents a relation of immediate containment between two nested regions.
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12. The location of objects in cells

Let variables x, x′, x1, y, . . . range over objects. We write:

LA(x, z)

for ‘object x is located in cell z in partition A’. Exact location can then be defined as
follows:

L∗
A(x, z) := LA(x, z) ∧ ∀x′(LA

(
x′, z

) ⇒ x′ ≤ x
)
, (4)

which means that an object x is exactly located in a cell z if and only if x is a maximal
occupant of z. (Here and in what follows ‘≤’ abbreviates: ‘is a proper or improper part
of’ understood according to the usual axioms of classical extensional mereology [22].)

Given the presence of empty cells, it is necessary to distinguish in our theory be-
tween partition-theoretic intersection in the general sense discussed above and that spe-
cific sort of intersection of cells which turns upon a sharing of objects. The following
then appears to be an attractive axiom governing overlap for L:

LA(x, z) ∧ LA

(
x, z′) ⇒ z oA z′. (5)

It tells us that, if an object is located in two cells (which means: fully located, located
in its entirety, in both of these cells), then the latter overlap. (Here ‘p ⇒ q’ is strict
implication. It abbreviates: it is not possible for p to be true and q false.) Familiar
object-based mereological intersection entails partition-theoretic intersection (but not,
in general, vice versa).

It follows from the Overlap Axiom that if an object is in two distinct cells within a
partition, then these cells are not both minimal, and they possess an intersection-cell.

13. Granular partitions and mereology

We can address the relation between granular partitions and the underlying mereol-
ogy on the side of objects by isolating the special class of what we shall call distributive
partitions. A partition is distributive if it satisfies a condition to the effect that if object x

is part of object y, and if y is located in a cell z, then x is also located in the cell z:

dist(A) := ∀x∀y∀z
(
x ≤ y ∧ LA(y, z) ⇒ LA(x, z)

)
. (6)

For distributive partitions, the Overlap Axiom can be proved. Spatial partitions are al-
ways distributive in the sense specified. If John is in Salzburg, then so are all his bodily
parts.

Closely related to distributivity is the property of some partitions expressed by:

LA(x, z) ∧ LA(y, z) ⇒ LA(x +A y, z) (7)

(we might call it Weak Antidistributivity) to the effect that if two objects are located in
a given cell of a partition, then their sum, too, is located in that cell. Again, spatial par-
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titions trivially satisfy this requirement: if John is in Salzburg and Mary is in Salzburg,
then their sum is in Salzburg, too.

A set is a simple example of a non-distributive partition, and the same applies also
to a partition generated by kinds or concepts. A partition recognizing cats does not ipso
facto recognize parts of cats. We note also that if Bruno is a cat and Tibbles is a cat,
and Tibbles and Bruno are not identical and do not overlap, then the sum of Bruno and
Tibbles is not itself a cat (and nor need this sum be included in any cell of a taxonomical
partition of which cat is a subcell).

It seems reasonable to insist, however, that all partitions satisfy a restricted version
of the principle of distributivity which can be specified as follows. We first of all intro-
duce formally the notion of recognition (a notion which has been used informally already
above). To say that an object x is recognized by a partition A (symbolized: x ∈ A), is to
say that x is located in some cell z in A, or in other words:

x ∈ A := ∃z
(
LA(x, z)

)
. (8)

The restricted axiom of weak distributivity can now be formulated for all partitions A as
follows:

LA(x, z) ∧ y ≤ x ∧ y ∈ A ⇒ LA(y, z). (9)

We can also define ‘minimal object’ relative to a partition A in the obvious way:

MA(x) := x ∈ A ∧ ¬∃y(y < x ∧ y ∈ A). (10)

When you see John cooking his dinner in the kitchen, then the partition effected by your
act of visual perception recognizes John, but it does not recognize all the parts of John
or of his surroundings. Thus it does not recognize the cells in his lungs or the bacteria
crawling in his ear or the half-digested food passing through his alimentary tract. Again,
your partition induces a fiat separation of the relevant portion of reality, drawing a line
between what is focused upon and what is ignored. Note, though, that this partition
cannot be understood in any simple topological or geometrical terms (by analogy with
the relation between Beverly Hills and the surrounding territory of Los Angeles). For
while John himself is recognized by your partition, there are many interior parts of John
which your partition does not recognize.

14. Relations between granular partitions

We shall say that one partition is extended by another partition if all of the cells in
the former are also cells in the latter. We write ‘A ≤ A′’ to signify: A is extended by A′,
which we define, simply enough, as follows:

A ≤ A′ := ∀z
(
A(z) ⇒ A′(z)

)
. (11)

A partition may be extended either by enlargement or by refinement. If a partition is
enlarged, then more cells are added at its outer border. If a partition is refined, then
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more cells are included in its interior. This can occur either via imposition of a finer
grain in the existing dimensions of the partition, or through combination of partitions.
The latter can itself occur either through amalgamation along the lines set out in [28], or
through a partition-theoretic analogue of Cartesian products. Consider what happens, for
example, when a map of the spatial layout of the cages in your local zoo is supplemented
by information as to the sorts and sizes and proper names of the animals located in those
cages.

We can now assert as axiom governing extensions:

A ≤ A′ ⇒ ∀x∀z
(
LA(x, z) ⇒ LA′(x, z)

)
. (12)

If A is extended by A′, then all object-cell relations true in A are also true in A′.
To see why the converse does not hold, we need only consider the special role of

empty cells within the theory of partitions. These ensure that the otherwise intuitively
attractive definition of z ⊆A z′ in terms of ∀x(LA(x, z) ⇒ LA(x, z′)) here fails. Two
otherwise identical partitions of the mammals, one with and one without a cell labeled
Dodo, will at all future times have exactly the same population of objects located in
exactly the same way within their respective systems of cells. The two partitions are
nonetheless distinct.

We can define ‘consistency’ of partitions as follows:

A�A′ := ∃A′′(A ≤ A′′ ∧ A′ ≤ A′′). (13)

Two partitions are called mutually consistent when there is some third partition which
extends them both.

All the partitions with which we have had to deal here are consistent in a trivial
sense. This holds even of those partitions which cut through reality in ways that are
skew to each other. One partition may, for example, divide the territory of a state into
its separate counties, and a second partition may divide this same territory according to
varieties of land use or soil type. We can still create a single partition which extends
them both, however, again by a process of amalgamation [28]. Other partitions may
relate to portions of reality which are entirely disjoint: for example the partition of the
United States into states and of Canada into provinces. Here again we can create a single
partition which extends them both, in this case via a process of topological gluing.

15. Histories as sequences of granular partitions

Consider a chess game. This can be conceived in terms of the theory of partitions
as follows. The game determines a partition having 768 minimal cells (for the 64 squares
× 6 different types of pieces × 2 different colors). At most 32 of these cells have objects
located within them at any given time. The minimal objects relative to this partition
are then the 32 separate pieces (and not, for example, the molecules of wood and paint
from out of which these pieces are formed). Clearly, however, we need here to take into
account not just one partition but rather an entire sequence of partitions, corresponding
to the successive positions in the game.
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We shall call such a sequence of partitions a history. A single partition stands to a
history as an instantaneous snapshot stands to the sequence of successive frames within
a film. A history may correspond, for example, to a sequence of successive observations
made in the course of a physical experiment, or to a sequence of states in the execution
of a computer program.

A history can be described by means of a conjunction of sentences of the form:

LAi
(x, z)

to be read as: the individual x is located at time i in the cell z of partition A. Here i is
an index for the successive reference times on the basis of which a given history is
constructed. We have great flexibility in the choice of reference times. Thus there is no
requirement that the times referred to by i be absolute smallest time-units or time-points.
Reference intervals (of phoneme- or word-length) would be required, for example, in
order to exploit the machinery of partitions and histories for purposes of linguistics.
Indeed we can utilize in this respect the full generality of the approach to time granularity
proposed in [1], where all that is required is (a) that the set of index times be a discrete
linearly ordered set isomorphic to a subset of the integers with the usual order relation,
and (b) that there be some order-preserving mapping µ from this set to the set of absolute
times which is such that, if two indices are assigned a value under µ, then so also is every
index which falls between them.

A partition is more or less coarse-grained according to the number of cells we use in
its construction. A history may be more or less coarse-grained according to the granular-
ity of its associated partitions but also according to the number of index-times employed
in its construction (and in principle also according to the type of the mapping µ and of
the choice of absolute time set).

Suppose John’s travel agent issues him with a flight itinerary indicating his location
at three successive (clock-) times. The rest of the world at the three times is ignored, as
are all matters pertaining to the world at all other times. Suppose John’s locations (cells)
at these three times are successively: Kennedy, De Gaulle, and Abu Dhabi airports. The
itinerary then describes John’s movements in terms of a three-cell partition and three
reference-times. It is not concerned with how he gets to the airport from his home, or
with the other people at the airport, or with the locations during flight of the successive
planes John takes, or with the food he eats on the journey. These things, whatever they
are, could have varied without affecting any detail of the given history.

We can, however, create a finer-grained history by constructing partitions that con-
tain either more details about John and the places at which he is located, or by taking
more and finer-grained reference times. We use ‘H ’ as a variable ranging over histories
(finite sequences of partitions) and we write Aεi H for: A is a partition in history H

at index-time i. A history H is extended by another history H ′ if and only if, at each
index-time, all partitions in H are extended by partitions in H ′:

H ≤ H ′ := ∀A∀i
(
Aεi H ⇒ ∃A′(A′ εi H

′ ∧ A ≤ A′)). (14)

Whatever holds (eventuates) in a history H holds (eventuates) in all extensions of H .
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16. Libraries as complete families of histories

There are alternatives to any given coarse-grained history H . John might fly to
Abu Dhabi via London instead of via Paris. The coin, which landed on its head, might
have landed on its tail. A coarse-grained history H ′ that is an alternative to H employs
the same reference-times, but the objects are distributed differently across the cells of
the underlying partitions. When we move, in this fashion, to consider not only what is
but also what might have been, then the predicate L is not a location (or instantiation or
occupation) predicate simpliciter. Rather it is a predicate affirming location with respect
to a given history H .

Suppose your entire knowledge of John’s trip to Abu Dhabi is encapsulated by the
given coarse-grained history. There are then many finer-grained histories all of which
are consistent with your knowledge (though of course not all of these need correspond
to what in fact eventuates). Each coarse-grained history can be identified with a certain
class of fine-grained histories, namely the class of fine-grained histories that vary in
respect of the details ignored in the given coarse-grained history.

We shall say that two fine-grained histories H ′ and H ′′ are equivalent with respect
to a coarse-grained history H if they satisfy:

H ′ ≈H H ′′ := H ≤ H ′ ∧ H ≤ H ′′. (15)

In this way we can extend to histories the tools for refinement and coarsening
of graphs developed in [26]. Each relatively coarse-grained history can be associated
with an equivalence class of alternative fine-grained histories, all of which agree re-
garding some features while other features are allowed to vary. It is such equivalence
classes, which trace over insignificant details, which serve as the basis for all planning
and decision-making.

The class of alternative histories, for each given level of granularity, can now be
conceived as a more homely analogue of the set of possible worlds of the modal realists.
To see how this works, consider a sequence of three successive tosses of a single coin.
Here it is very easy to construct a complete family of alternative histories modulo a
certain granularity determined, in this case, by a certain two-celled partition (with cells
labeled heads and tails), and an index set consisting of three reference times. When
all other features of the system in hand are traced over, then the complete family of
alternative histories can be represented as in figure 4.

We could similarly, though with more difficulty, construct a complete family of
alternative histories over John’s behavior from the beginning to the end of his journey to

histories: 1 2 3 4 5 6 7 8
H T H T H T H T H T H T H T H T

time 1 x x x x x x x x
time 2 x x x x x x x x
time 3 x x x x x x x x

Figure 4. Histories (H = heads, T = tails).



B. Smith, B. Brogaard / Quantum mereotopology 171

Abu Dhabi, where the pertinent granular partition might be determined, for example, by
the network of intervening airports. (There are only finitely many ways to fly from New
York to Abu Dhabi.)

We shall call such a maximal family of consistent coarse-grained histories a li-
brary. A library specifies all possible ways in which, considered at a given level of
granularity and in relation to a given set of reference times, a given system of objects
may behave. The concept hereby defined is highly general. A library is determined
by how the objects are distributed over given granular partitions associated with given
reference-times, but there is no requirement that the same partitions should be employed
at each of the successive times involved.

The reader will have recognized already from inspection of figure 4 above that
a library is analogous to a truth-table. Omnès [20] calls a library a ‘logic’, and his
work shows how the concept of truth-table and the framework of classical logic which it
represents can be generalized in such a way that it can be applied to all coarse-grained
histories of the sort described above. The resultant truth-tables are, as we might say,
n-valued, where n is the number of cells in the partition associated with a given time-
index. But they are nonetheless fully comparable to the truth-tables of classical logic
(thus they have nothing in common with the many-valued truth-tables developed for
the purposes of representing for example non-classical logics of vagueness). Partition-
theoretic truth-tables allow us to define analogues of all the classical logical constants
(conjunction, disjunction, inference, negation, etc.), which behave exactly as within the
two-valued framework. (Omnès, op. cit.) And just as only one assignment of truth-
values to a proposition will correspond to reality in the framework of classical logic, so
only one of the alternative histories within any given library will, in fact, be actualized.
The coarse-grained history in which John goes via Orly, and the alternative history in
which he goes via Heathrow, are mutually exclusive. That is, there is no larger history
that contains them both.

We write ‘HξL’ for: H is a history in library L. We can then define an equivalence
relation on fine-grained histories, relative to a given library of coarse-grained histories,
as follows:

H ′ ≈L H ′′ := ∃HξL
(
H ≤ H ′ ∧ H ≤ H ′′). (16)

Two histories are equivalent relative to a library L if and only if there is some history
in L which both extend.

Each library is maximal relative to some given granularity of cells and reference-
times and relative to a given domain of constituent partitions. However, a library can
itself be extended by increasing the number of reference times or by imposing an ex-
tended partition for cells. We write L ≤ L′ as an abbreviation for: library L′ is an
extension of library L. Two libraries L and L′ are then called mutually consistent when
there is a larger library of histories extending them both:

L�L′ := ∃L′′(L ≤ L′′ ∧ L′ ≤ L′′). (17)

Otherwise the libraries L and L′ are called complementary.
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17. Coda on quantum mechanics

If granular partitions and histories are employed for purposes of representing clas-
sical physical phenomena, then the corresponding libraries are in every case consistent.
The same applies in relation to all transparent partitions and histories constructed in re-
lation to that medium-sized world of what happens and is the case in relation to which
we humans act. When we use partitions and histories to represent quantum physical
systems, however, then complementarity arises. The distinction between the quantum
and the classical world (and it is a deep distinction) lies precisely in the fact that, to do
justice to the evolution of even a single physical system within the quantum world, we
typically need to employ not one but a plurality of libraries which are complementary in
the sense defined. There can, accordingly, be no single aggregate library which would
represent all phenomena in the quantum world.

The theory of consistent histories and of probability assignments to histories within
libraries was originally developed by Griffiths in [14,15] and also by Gell-Mann, Hartle,
and Omnès as the basis for a new interpretation of quantum mechanics which has since
established itself under the label ‘consistent histories’. It now forms part of the New De-
coherentist Orthodoxy in interpretation theory [5]. Experiments, from this perspective,
are courses of events like any other. Thus they, too, are apprehended within consistent
histories (and thus within encompassing libraries) of appropriate type. There is there-
fore no analogue within the consistent histories approach of any ‘collapse of the wave
function’ arising as a result of some special role of observers or of consciousness. Ob-
servations may, certainly, disturb the systems towards which they are directed; but then
the total physical system compounded out of the observation event and of the system
observed is itself susceptible to treatment within the consistent histories approach just
like any other physical system.

Complementarity arises in virtue of the fact that in the quantum world there are
sets of properties which conflict with each other in the sense that they cannot be used
simultaneously without limitations. The characteristics of a particle may for example be
described by giving either the position or the momentum of the particle as a function
of time; a photon may be regarded either as a particle or as a wave. To represent such
a state of affairs in coherent fashion, the consistent historians hold, it is necessary for
physicists to embrace different and mutually incompatible libraries in relation to one
and the same physical system. All reasoning about that system must then take place
exclusively within some one of these selected libraries. If reasoning takes place across
libraries, then inconsistency will result.

Suppose physicists A and B have each made calculations with respect to the behav-
ior of photons within some given apparatus involving, say, a photon source, a screen with
right and left slits, and a detector. They each are allowed to set up experiments to mea-
sure the location of photons in order to test the accuracy of their calculations. A, working
within one library and its associated repertoire of experiments, conceives the photon as a
particle and constructs appropriate types of experiments designed to detect whether the
photon goes through either the right or the left slit in the apparatus. B, working within
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a complementary library and repertoire of experiments, conceives the photon as a wave
and constructs experiments designed to measure interference effects as the wave passes
through both slits. Both libraries give rise to predictions of astonishing accuracy, which
are repeatedly confirmed in successive experiments. A’s and B’s predictions are, to be
sure, inconsistent with each other. But such inconsistency can never be detected in rela-
tion to any given system of photons, since it is impossible for A and B to carry out the
necessary experiments simultaneously, since each would need a quite different sort of
apparatus.

Each experiment carried out by A corresponds to one library (to one family of
coarse-grained histories in our terminology above), each experiment carried out by B
corresponds to another library. The two libraries are inconsistent with each other, but
they each give rise to equally good predictions.

Provided that a history is a member of a consistent family of histories, it can be
assigned a probability [14,15], and within a given consistent family the probabilities
function in the same way as do those of a classical stochastic theory: one and only one
history occurs, just as, when we are tossing coins, one and only one succession of heads
and tails in fact corresponds to reality. But histories can be assigned probabilities only if
they are of sufficiently coarse grain [12,13].

The importance of the work of Omnès and of the other consistent historians turns
on the fact that it shows how the theory of consistent histories can be used to de-
rive in rigorous fashion a theory of the ‘quasi-classical’ physics governing the macro-
scopic phenomena of our everyday reality. This is done effectively by showing how, as
more coarse-grained partitions are substituted for the finer-grained partitions employed
at quantum levels, superposition phenomena ‘decohere’ (which means: they become
negligible). This implies that we can understand why from a physical point of view
macroscopic objects are so astonishingly well-behaved even in spite of the fact that the
quantum phenomena from out of which they are constructed involve logically and onto-
logically monstrous superpositions.

Niels Bohr believed that complementarity is a concept of wide application. He
held, for example, that when we describe living things as biological and as physical
systems, then we are employing complementary descriptions which cannot be used si-
multaneously without limitations. Our remarks on the quantum-mechanical background
of the theory of granular partitions suggest that it may be time to look again at such
ideas. The hitherto unnoticed commonality between the approach to partitions at multi-
ple resolutions developed in the study of macro-level spatial reasoning and the theory of
granular partitions as a means of representing physical phenomena in the quantum realm
may then prove to be of quite general ontological significance.
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