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1. INTRODUCTION 
Many philosophers argue that there are certain kinds of abstract mathematical 
explanations that are noncausal (Batterman 2000, 2010; Colyvan 2001; Felline 
2018; Jansson and Saatsi 2016; Lange 2013; Lipton 2004; Pincock 2015; 
Reutlinger 2014; Rice 2015). Their arguments have been quite persuasive and there 
is a growing number of philosophers of science who are either pluralists about 
explanation or seeking alternative theories of explanation that can unify both 
noncausal and causal explanations. Proponents of noncausal explanation utilize 
different approaches to make their case and each approach trades on different 
scientific examples.1  For instance, one such approach is to argue that there are 
scientific explanations that explain why something is necessary through 
mathematics or graph theory in a way that fails to be causal (Lange 2013, 2017). 
Another approach is to argue that abstracting away irrelevant causal details to find 
commonality between disparate systems can leave us with a noncausal explanation 
(Batterman 2000, 2010, Reutlinger 2014). Call this the irrelevancy approach.  

In this paper, I argue that the common example of Renormalization Group 
(RG) explanations of universality used to motivate the irrelevancy approach 
deserves more critical attention. I argue that the reasons given by those who hold 
up RG as noncausal do not stand up to critical scrutiny, suggesting that the 
consensus treating RG explanations as noncausal is premature. As a result, the 
irrelevancy approach and the line between causal explanation and noncausal 
explanation deserves more attention.   

In what follows, I first discuss the distinguishing features of noncausal 
explanation (§2). From there, I turn to the case at hand—RG explanations of 
universality (§3). In §4, I introduce the noncausal interpretation of RG. In §5, I 
argue that the reasons given to motivate a noncausal interpretation fall away under 
scrutiny, thus placing the burden of proof back on those who wish to argue that RG 
explanations of universality is indeed an instance of noncausal explanation. I 
conclude with a brief discussion of the broader implications for noncausal accounts 
of explanation. 

 
 

																																																								
1 For a recent overview of noncausal approaches to explanation see Reutlinger (2017).   
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2. CAUSES AND NONCAUSAL EXPLANATION 
Part of the complexity in the debate surrounding causal and noncausal explanation 
is that many are working under different theories of explanation, so in order to make 
headway a few clarifications are in order.  

First, it is important to take note of what is at stake in the debate surrounding 
noncausal and causal explanation. Ultimately, the issue is whether we have a 
pressing challenge to causal-only approaches to scientific explanation. The threat 
comes when the principal way of explaining an event involving physical 
phenomena relies on a relation other than a causal one. While there are fruitful 
discussions surrounding the nature of mathematical explanation and how this can 
be unified with explanations in the physical sciences, we should not expect a causal 
account of explanation to be able to cover cases in theoretical mathematics. As 
such, the types of cases introduced by noncausalists engaged in the critique of 
causal explanatory theories underscore not simply that there exists a mathematical 
dependency, but that this dependency helps to explain an event involving physical 
phenomena.  

Second, my aim is to stay fairly neutral on what a cause itself is, and what the 
correct approach to explanation is. Following Reutlinger (2014, 2016), I will adopt 
the following commonsense notion of a cause: a cause involves an asymmetrical 
dependence relation between events or types of events. A cause happens before its 
effect and the effect cannot explain the cause. Adopting this notion comes with a 
few advantages. First, it allows me to argue on Reutlinger’s (2014) own terms when 
it comes to the case of RG, while still leaving it fairly open for compatibility with 
other theories of causation. Second, it makes my job fairly demanding. For 
example, this notion of causation is more restrictive than Skow’s (2014, 2016) 
account of causal information. And it is at least as demanding as Woodward’s 
(2003) interventionist account, which some critics see as making room for more 
causes than Reutlinger’s “common sense” view (Saatsi and Pexton, 2013).  

I will draw on several insights from various accounts of causal explanation 
(e.g. Potochnik 2015; Strevens 2008; Woodward 2003). My aim is not to argue for 
a particular causal interpretation of RG explanations of universality. My aim is to 
shift the burden of proof back onto the noncausalists by showing that the reasons 
on offer do not prevent a causal interpretation.  

Lastly, since my interlocutors argue that RG is noncausal by employing 
working definitions of noncausal explanation, I frame the discussion in terms of 
what it would take for an explanation to count as noncausal as opposed to causal.2  

																																																								
2 My arguments are also not directed toward the monism project in general. Monists seek to 
develop a theory of explanation that can equally account for both causal and noncausal 
explanations (see e.g. Povich 2016). Since RG explanations are explanations, what I say here can 
largely be made compatible with compelling monist theories of explanation. The challenge I am 
raising is that it is not as obvious as it is now assumed that RG explanations of universality fall on 
the noncausal side. 
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As a starting point, Reutlinger (2014), in his paper on RG explanations of 
universality, defines a noncausal explanation (which I am calling NC) as follows:  

 
NC: An explanation is noncausal iff the explanans contains at least 

one noncausal element e, and e ensures the success of the 
explanation. (p. 1165) 

 
NC as it stands is vague and needs more clarification. If ‘ensures’ simply picks out 
a necessary condition for explanation, then NC is too exclusionary. It means that 
any set of explanantia which includes at least one noncausal piece of information 
thereby qualifies the explanation as noncausal. As a consequence, several 
explanations that many take to be causal are actually noncausal after all. For 
example, any explanation that has boundary conditions or basing generalizations 
would be considered noncausal. This is because boundary conditions are necessary 
for the entailment of the explanandum and yet may not provide any causal 
information. A familiar example here is that in order to explain why all ravens are 
black we not only need to provide a causal story that includes facts about genetics 
and biology, but also include a fact along the lines, “all ravens have some property 
p.” Yet simply having a property is not by itself causal information.3 

On a more charitable reading, we can discount such conditions as candidates 
for ruling out an explanation as causal by making the following modification to 
NC: 
 

NC*: An explanation is noncausal iff the explanans contains at least 
one noncausal element e, and e primarily ensures the success 
of the explanation. 

 
With this change, in order for an explanation to be noncausal there must be a 
noncausal element in the explanation that is not only necessary for the success of 
the explanation, but which is also a primary reason why the explanation succeeds. 
Consider a paradigm example of noncausal explanation of an event through 
mathematical necessity. Why couldn’t Sally’s dad divvy up the 23 strawberries to 
her and her two brothers evenly without cutting them? The best explanation seems 
to be because 23 cannot be divided by 3 evenly.4 It is necessary for the success of 
this explanation that there are 23 strawberries; however, the salient explanatory 
feature here is not only the background condition of how many strawberries there 
are, but that 23 is not divided by 3 evenly.5 According to NC*, the reason that this 

																																																								
3 For a more detailed discussion of basing generalizations see Strevens (2008, 228-265).  
4 This example is from Lange (2013). 
5 I am leaving the notion of salience and a primary reason imprecise. So, while also a bit vague, it 
stresses the explanatory role more so than NC. Any conclusions that I draw based on this, I take it, 
will be uncontroversial. For an interesting discussion on incidental counterfactuals and explanatory 
power see Khalifa et al. (2018). 
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strawberry case is noncausal is not because it provides noncausal information 
regarding the number of strawberries; it is noncausal because a mathematical fact 
about division is the primary reason the explanation succeeds. 

However, NC* is still underspecified. Often causal generalizations and laws 
are expressed mathematically, such as probabilistic causal laws and Newtonian 
laws of motion. Further, in many explanations, mathematical manipulation of these 
laws figures in how the explanandum is explained. In view of NC*, any explanation 
of physical phenomena that uses mathematics as a representative tool is not a causal 
explanation because the mathematical facts and operations are playing a primary 
role in the success of the explanation. However, an explanation that includes a 
mathematical derivation should not automatically rule out the explanation as 
causal. Causal information can be expressed mathematically, and Reutlinger 
himself does not want to exclude such cases. He gives the example that one can 
explain the event of a billiard ball colliding with another with the use of a causal 
regularity expressed in mathematical language, such as Newton’s laws of motion, 
and computing the impact of the collision by citing the particular velocity of the 
billiard ball (2014, 1165). In this case, the mathematical representation expresses 
causal information that holds onto our commonsense notion of causation. There is 
an asymmetrical dependence relation between the force behind the ball that strikes 
the other, and the effect cannot explain the cause. It should not matter how the 
causal relation is expressed when determining whether the explanation is causal, 
but whether it represents causal information in the explanation.  

Furthermore, it might be that the laws themselves are noncausal. Russellians, 
for example, hold the view that many (if not all) fundamental physical laws are 
noncausal laws because they express a symmetrical dependence (cf. Russell 1913).6 
And since causes are fundamentally asymmetrical, the laws cannot be causal laws. 
However, this view is far from uncontroversial. And even if we endorse such a 
view, it does not thereby preclude that such a law can causally explain. For 
example, neo-Russellians seek to maintain causal dependence while holding on to 
Russellian intuitions regarding symmetry at the fundamental level (e.g. Albert 
2000; Loewer 2007). Indeed, examples of symmetrical laws include the law of 
gravity and Newton’s law of motion referred to in the billiard ball case (cf. Farr and 
Reutlinger 2013). Yet, again, many share the belief that it is possible to causally 
explain using the law of gravity and Newton’s laws of motion when discussing 
events such as apples falling from trees, or billiard balls colliding.  

For the purposes of this paper, it does not matter so much what the right story 
is for how symmetrical laws can maintain causal dependence in explanation; it only 
matters that such a story is available. Moreover, noncausalists should not find 
comfort in only relying on fundamental symmetrical laws to make their case for 
noncausal explanation. It is a large methodological burden to require a version of 

																																																								
6 For an overview on causal asymmetry in physics, including approaches to maintain time-
asymmetry at the fundamental level, see Blanchard (2016) and Farr and Reutlinger (2013). 



	
	

UNIVERSALITY	CAUSED	

	 5	

Russellian causal- eliminativism for the case for noncausal explanation to get off 
the ground. Just as noncausalists are wary of those claiming that all scientific 
explanations are causal, causalists should be wary of noncausal explanatory views 
that entail all explanations involving laws are noncausal. It’s clear that a third 
modification to our account of noncausal explanation is needed:  

 
NC**: An explanation is noncausal iff the explanans contains at  

least one noncausal element e, e primarily ensures the success 
of the explanation, and e does not have a causal-tether. 

 
According to NC**, mathematical representations and derivations do not 
automatically make an explanation noncausal. Insofar as the mathematical 
representations have a causal-tether to the phenomenon, they can still causally 
explain, as seen in the billiard ball case and the gravity case. 

So, are there explanations that satisfy NC**? This of course is a matter of 
dispute. Since it is not my aim in the paper to argue that all scientific explanations 
are causal, we can, for the sake of argument, grant that the strawberry example 
described above satisfies NC**. The intuition of pluralists and critics of causal 
theories of explanation is that the strawberry case is noncausal because the fact that 
3 does not divide evenly into 23 does not represent any causal information about 
divvying up strawberries. There is no time-asymmetry involved in the 
mathematical operation of division. Mathematical operations are not events. There 
is nothing about the physical structure of strawberries that prevents them from 
being divided in this way. Furthermore, the explanation is independent from the 
actual laws of nature (Jansson and Saatsi 2017). The physical laws in the world 
could be different, and the explanation would still hold.  

On the other hand, there is something about the constitution of billiard balls 
that determines how they will behave under specific conditions regarding force and 
momentum, thus ensuring that a causal-tether remains. There is a clear time-
asymmetry, and the explanation depends on the physical laws of nature. According 
to Reutlinger’s counterfactual theory of explanation, the billiard ball case is 
explanatory by virtue of exhibiting a causal counterfactual dependency along the 
lines of: “if ball A had been struck with less force, then ball A would not have 
collided with ball B.” The strawberry case is explanatory by virtue of exhibiting a 
noncausal counterfactual dependency along the lines of: “if the strawberries 
numbered 33, then they would have been able to have been split up evenly.” 

Whatever we should think of the strawberry case, what I argue here is that in 
the case of RG explanations of universality, where the noncausal interpretations are 
not chiefly rooted in mathematical necessity, but stem from the irrelevancy 
approach, the story for why RG representations do not have a causal-tether remains 
under-motivated.  

Let us now move to the case at issue: renormalization group explanations of 
universality and continuous phase transitions.  
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3. THE CASE: UNIVERSAL MACROBEHAVIOR OF PHASE TRANSITIONS 
Consider a kettle of water heating up. At a certain point the water will undergo a 
transition from a liquid to a gas. At a basic level, one can get a grip on this 
phenomenon by understanding the amount of heat needed for a transition to occur. 
Specifically, as one learns in an introductory physics class, one can calculate the 
heat absorbed by multiplying the mass by the heat of vaporization for the substance 
in question. This is a generalization about how much heat is absorbed when a 
substance undergoes a first-order phase transition. It is also an abstraction. It 
ignores the details. It does not mention microscopic particularities of the substance 
in question and can be applied to systems other than water.  
 We also find strikingly similar macrobehavior among very diverse systems 
undergoing a continuous phase transition (also called a second-order phase 
transition), such as magnetic systems and other various fluids. In the previous 
example of boiling water, we have a first-order phase transition because it involves 
non-zero latent heat and a discontinuity in density at the critical temperature. 
However, in a continuous phase transition, properties like density or magnetic 
moment change continuously. It is the second derivative, such as compressibility 
or magnetic susceptibility, that becomes discontinuous.7  

A paradigm case of a continuous phase transition is the transition in magnetic 
systems between paramagnetic and ferromagnetic states. In these systems, the net 
magnetization changes when they are cooled or heated. In instances of high heat, 
the system’s spins are disordered and point in random directions, leaving no net 
magnetization. As the system is cooled and reaches its critical temperature, the 
spins align and become ordered, making the system regain magnetization. 8  As 
such, magnetization is the system’s order parameter. An order parameter is a 
physical quantity (often the thermal average) that is zero on one side of the 
transition and moves away from zero on the other side. Generally speaking, as the 
temperature increases, the order parameter approaches zero and the system 
becomes more disordered.  

Different systems have different order parameters. 9 For example, in the case 
of water and other liquid-gas transitions, the order parameter is density, with 
density change approaching zero during a continuous phase transition. There is no 
general approach to defining a system’s order parameter(s). As Binney et al. 
explain:  

 

																																																								
7 There are special cases where water can undergo a continuous phase transition, such as steadily 
increasing pressure and temperature inside a stout vessel (Binney et al. 1992, 3). 

8 In this example, particles are ordered in respect to their spatial position. In other cases, this is 
done with respect to their momentum (e.g. superfluidity of liquid helium and superconductivity). 
9 Note that some complex systems can have more than one order parameter.  
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[O]ne has to consider each new physical system afresh. We can best indicate 
what sort of thing an order parameter is by giving a number of examples, 
starting with the phase transitions with which we are already familiar. (1992, 
13) 
 

The interesting thing is that despite the different order parameters of systems and 
other microphysical details of each, disparate systems display similar 
macrobehavior at the critical point, and thus share the same universality class. The 
universality class is used to characterize the system such that we can predict how it 
will behave, determine which other systems have similar macrobehavior, and group 
these systems together in a meaningful way. We observe that several diverse 
systems that have different microscopic properties share the same long-range 
behavior, have a similar underlying order, share the same critical exponents, and 
collapse onto a common coexistence curve. The difficult question, however, is 
why? Renormalization group (RG) methods provide us with an answer.10  

We start by observing that when a system is far away from its critical point, 
the interactions of the particles in the system are confined to those nearby, 
exhibiting small scale fluctuations. The correlation length, 𝜉, is a spatial correlation 
of the system that characterizes the range of fluctuations of a variable (or “degree 
of freedom”) within the system. The correlation length is a function of temperature, 
𝜉	(𝑇). In the case of a fluid, the larger the 𝜉	(𝑇), the more fluctuations of density 
that occur in one area of the fluid will be correlated with fluctuations in another 
area at a large distance. “[A]t a critical point the short-range inter-molecular forces 
contrive to generate large dynamical structures,” uncovering interesting macro-
level behavior (Binney et al. 1992, 20). Importantly, a system undergoing a 
continuous phase transition has a correlation length of infinity at the critical 
temperature, 𝑇&. This relationship can be expressed as follows:  

 
𝜉	(𝑇) → ∞		as		𝑇 → 𝑇& 

 
Due to the divergence of the correlation length at the critical point, the behavior of 
a system at its critical point becomes intractable. Batterman (2000, 12) sums up the 
point nicely:  
 

[C]orrelations at every length scale (between near as well as extremely distant 
components) contribute to the physics of the system as it undergoes a phase 

																																																								
10 Since my ultimate goal in this paper is to make a philosophical point about the causal nature of 
RG explanations, I will present a mostly non-technical treatment of RG and point to resources 
along the way that an interested reader can look to in order to delve into the nitty-gritty of RG 
methods. As a start see Batterman (2000) and Morrison’s (2014) treatment of RG, which remains 
on the less technical side. For the more ambitious reader, see Butterfield (2011, 2014), Butterfield 
and Bouatta (2012), and Kadanoff (2013) for a detailed description of the math behind RG as 
applied to continuous phase transitions and quantum field theory more generally. 



 
UNIVERSALITY CAUSED 

 

	 8	

transition. This is a highly singular mathematical problem and is, in effect, 
completely intractable. It is relatively easy to deal with correlations that obtain 
between pairs of particles, but when one must consider correlations between 
three or more – even more than 1023 – particles, the situation is hopeless.  

 
As a solution, RG methods were developed to restrict the degrees of freedom and 
in the process highlight relevant couplings and dispense with irrelevant couplings 
so that one can understand the system’s behavior at the critical point and the 
universality of critical phenomena. This is done through a coarse-graining 
procedure that ‘zooms out’ from the short-range interactions in the system to reveal 
longer and longer-distance interactions. The relevant couplings are those that grow 
larger as the length scale increases, and the irrelevant couplings, (ultimately the 
microphysical couplings) decrease and wash out under renormalization group 
transformations. There are many sophisticated ways of modeling and executing this 
coarse-graining procedure. In what follows, I describe a relatively simple method 
developed by Leo P. Kadanoff (1966).11 
 The RG transformations are done on the system’s Hamiltonian. A Hamiltonian 
is a function that tracks the energy of the system. Generally speaking, a Hamiltonian 
function represents the kinetic and potential energy of a system. More particularly, 
it focuses on the phase space of a system and maps the interactions between the 
degrees of freedom, spins, the effects of external fields, and so on. Using the Ising 
Model, the Hamiltonian for a ferromagnet is written as follows: 

ℋ = −	𝐽/𝜎1𝜎2
1,2

− 𝜇𝐻/𝜎1
1

 

                 
where 𝐻 is the external field, 𝐽 is the coupling constant, and 𝜎1𝜎2 are spin 
operators. 

RG transformations iterate over the system’s Hamiltonian resulting in a 
reduction in resolution. The original spin variables, which are defined with respect 
to some spatial direction, are replaced with new variables with each new 
transformation. The method known as the block spin method, shown in figure 1, 
depicts the iterative process. The average spin is taken between nearby neighbors 
to provide new spin variables representing a larger block. The new spin variables 

																																																								
11 Kadanoff’s block spin method is associated with real-space RG methods, where the techniques 
involve quantities dependent on position. Other methods, such as k-space (or momentum-space) 
involve Fourier-transformed quantities and are thought to be more generally applicable compared 
to real-space methods. See Binney et al. (1992) for more about the physics behind each, and Franklin 
(2018) for a discussion on the explanatory potential of each method. I take it that the exact coarse-
graining implementation does not change the causal nature of critical phenomena explanations, so 
long as the original Hamiltonian represents the system(s) in question.  
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take the place of the old variables. This process is repeated again and again resulting 
in the distance between the sites becoming larger.12  

Crucially, each new Hamiltonian function still tracks a system that displays 
similar behavior. With each new iteration, the Hamiltonian represents the same 
behavior of the system, but on a larger and larger scale. If the new Hamiltonian 
cannot account for the behavior we are trying to understand, then we begin to depart 
from the relevant phenomena. RG methods abstract away irrelevant microlevel 
interactions and short-range behavior, representing long-range interactions and 
behavior on the macrolevel.13  
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 1.  
Block Spin Illustration.  

Spins are broken up into blocks and averaged, leaving behind new spin variables.  
 
The renormalization process is repeated until a fixed point is found, that is, a point 
at which no further iterations on the Hamiltonian show a change in correlation 
length or in the value of parameters.14 At the fixed point, the system’s behavior is 
invariant to scale changes, giving rise to a renormalizable Hamiltonian. The only 
features that are relevant for the behavior of the system at the fixed point are those 
represented in the Hamiltonian. The system’s Hamiltonian, or more precisely the 
coupling constants, are said to flow toward its fixed point. Kadanoff explains that 

																																																								
12 Look to Kadanoff (2013, §4) for a detailed discussion of the math behind RG.  
13 This type of renormalization is a flow toward the infrared. There are other RG set-ups where there 
is not a coarse-graining, but a fine-graining procedure where the length-scale decreases. In this latter 
case it is a flow toward ultra-violet. For the sake of simplicity, I will continue to develop the case 
study for a flow toward the infrared. I take it that my main point of the causal nature of RG applies 
equally to both kinds of flow.   
14 Strictly speaking, this process would need to repeat infinitely to arrive at the fixed point.  
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“the act of renormalization is a sort of focusing in which many different irrelevant 
couplings fade away and we end up with a single fixed point representing a whole 
multi-dimensional continuum of different possible Hamiltonians” (2013, 34). He 
says further that “the fixed point concept describes a connection between the 
microscopic properties of the material, i.e. the interactions among its constituent 
particles and felids, and the behavior of the material on a conceptually infinite 
length scale. This connection is surprising and quite beautiful” (2013, 35). 

The last step in the RG process is to utilize the fixed points to determine the 
value of the system’s critical exponents, which are used to determine the 
universality class the system is in. Critical exponents describe behavior of various 
thermodynamic quantities near the critical point. For example, following 
Butterfield and Boutta (2012, 393-4), if we express the reduced temperature as 	𝜏 =
(𝑇 − 𝑇&)/	𝑇&  then we write the functions of correlation	𝜉  , heat capacity 𝒞, and 
isothermal susceptibility 𝒳 as: 

 
 𝜉	~	|𝜏|<=       𝒞	~	|𝜏|<>    𝒳	~	|𝜏|<? 

 
where, 𝜈, 𝛼, and 𝛾 are the critical exponents. The value of the critical exponents is 
not a function of the detailed microstructure of the system, but is determined by 
long-range fluctuations. Moreover, the critical exponents of each system within the 
same universality class share the same numerical value. In particular, using a 
model, like the above Ising model, standing in for different members within a 
universality class, we can see that disparate systems would flow to the very same 
fixed point, and thus share the same critical exponents. 

Figure 2 shows the flow of Hamiltonians of disparate systems to the same fixed 
point. This means that disparate systems within a single universality class (e.g. 
fluids and ferromagnets) have the same relationship between their order 
parameters, degrees of freedom, and so on. In particular, it is found that each 
universality class depends on the spatial dimension, spin dimensionality, and on the 
symmetry properties of the system’s order parameter (Batterman 2000, 127). 
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Figure 2.  

Flow of Hamiltonians. 
(a), (b), and (c) represent different physical manifolds.  

Each manifold has a critical trajectory toward the same fixed point *. 
 

To sum up, the explanation of universal macrobehavior of continuous phase 
transitions through RG is crudely something like the following: the flow of 
Hamiltonians of each system within a universality class terminates at the same fixed 
point. At this point the irrelevant couplings of the system have been iterated out—
leaving behind the largest length scale. At this point an infinite number of particles 
and infinite correlation length is presumed.15 Once the fixed point is found, the 
system can be characterized by critical exponents and its universality class. 
Importantly, the fixed points are a product of the transformations, and with each 
transformation, the behavior of the system is still represented, albeit at a larger 
length scale.   

Now to the main question of this paper: Are RG explanations of universality 
causal or noncausal? In what follows I first consider what reasons are given for a 
noncausal interpretation, closely considering Batterman (2000, 2017) and 
Reutlinger’s (2014) interpretation, before arguing that these reasons are under-
supported. As will be made clear, part of the problem rests on the inherent 
ambiguity in the explanandum and what it is we lose and don’t lose when we 
abstract away the microphysical details of the system and its short-range 
interactions.  

 
 

																																																								
15 The reliance on an infinite correlation length at the critical point may have interesting 
philosophical implications concerning idealization (Rice 2018) and whether RG explanations are 
reductive (Saatsi and Reutlinger 2018).  
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4:  NONCAUSAL INTERPRETATION 
Batterman (2000) originally argued that RG explanations of a single system’s 
behavior provide us with a noncausal explanation simply because they abstract 
away low-level causal details. However, this general challenge to causal accounts 
of explanation has since been called into question. Nearly all accounts of causal 
explanation make room for causal abstraction. For example, Strevens (2008) and 
Woodward’s (2010) approaches to explanation make room for causal abstraction 
by utilizing concepts such as difference-making and causal specificity, 
respectively. When one abstracts away causal particularities that are not necessary 
for the entailment of the explanandum, one is still left with a causal explanation. It 
is an explanation that focuses on the causal influences—using Strevens’ 
language—that made a difference. For example, leaving out particle interactions 
when explaining gaseous behavior with the ideal gas law can still leave us with a 
causal explanation, despite leaving out such detail.  

Reutlinger (2014, 2016) takes a different approach. He readily admits that a 
system’s Hamiltonian gives us causal information. It is an energy function that 
maps the interactions between the degrees of freedom, spins, the effects of external 
fields, and so on. He argues that when we move to the transformations of 
Hamiltonians that exploit mathematical operations, one cannot appeal to accounts 
of causal explanation that make room for causal abstraction. He says the following: 

 
Suppose Hamiltonians H and H* represent the interactions of the 
microcomponents of some fluid F, and H* is the product of an RG 
transformation on the “real physical” H. If this is the situation, then 
it is not the case that Hamiltonian H occurs before (or after) 
Hamiltonian H*, because Hamiltonians simply do not stand in 
temporal relations. It also seems to be inaccurate to say that H and 
H* stand in any significantly asymmetric dependence relation 
because H and H* are equivalent representations of the same fluid 
F (when undergoing phase transition). Therefore, neither of the two 
mathematical operations involved in RG explanations is best 
understood as directly revealing information about cause-effect 
relations. (2014, 1168-9) 

 
The argument here first suggests that the explanatory power comes in part from the 
coarse graining process. And since different energy functions (Hamiltonians) are 
not themselves standing in a temporal relationship to each other, nor are they 
themselves events, we have a candidate for noncausal explanation, since two of the 
main common sense notions of causation (time-asymmetry and event tokens) are 
not present. The case becomes stronger when we compare disparate systems, 
moving to an inter-system explanation of universality. Unlike the single system RG 
explanation, an inter-system RG explanation explains why there are macrolevel 
similarities between disparate systems. It is even less clear if abstracting away 
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irrelevant causal details in this manner still leaves us with a causal explanation. It 
seems that when we explain similarities between systems we are not only 
abstracting away from irrelevant causal details of the specific systems, but we are 
ignoring causal details altogether.  

Thus, Reutlinger concludes that, on his counterfactual theory of explanation, 
the following counterfactual, underlying RG explanations of universality (which I 
am calling RGC), is noncausal: 
 

RGC:  There is a physical possible Hamiltonian H* such that if (1) a physical 
system had the original Hamiltonian H* (instead of its actual original 
Hamiltonian H), (2) H* were subject to repeated RG transformations, 
and (3) we determined the resulting flow of the Hamiltonians to a 
fixed point, then a system with original H* would be in a different 
universality class than a system with original Hamiltonian H. (2016, 
743) 

 
The claim is that the causal-tether that the original Hamiltonian had is no longer 
relevant; the causal background of each system’s respective Hamiltonian is 
presupposed. The underlying causes of each system are abstracted away 
completely, leaving us to only compare the products of mathematical derivation or 
the abstract space of models. 16  The mathematical procedures paramount to RG 
relate entire energy functions (Hamiltonians) to the space of possible energy 
functions, which are not the kind of thing that provides causal information. The RG 
transformations on the Hamiltonians in question do not have a time-asymmetric 
relationship. The mapping of two respective systems’ transformed Hamiltonians is 
not an event or event-type. And yet, it is argued, it is precisely both these operations 
that primarily explain why disparate systems display similar macrobehavior at the 
critical point.  
 If this description is correct, then it is seems as though RG satisfies NC**. 
When explaining why disparate systems display similar macrobehavior when 
undergoing a continuous phase transition, and thus share a universality class, we 
have a noncausal element that primarily explains the explanandum in question 
without a causal-tether. However, upon closer look at the role and levels of 
abstraction, I argue that this noncausal interpretation is under-motivated and does 
not preclude a causal interpretation.  
 

																																																								
16 The main point here is not that RG methods of explaining the universality of critical phenomena 
are not applicable to event explanation, but that the principle way of explaining the event does not 
represent causal information. The argument is that the primary reason that a RG explanation 
succeeds is because of the mathematical operations employed on what does not represent a causal 
relation. Indeed, in order for RG explanations to be an objection to causal accounts of explanation, 
there needs to be the implicit assumption that an event is being explained. In this case, it is an event 
of a continuous phase transition of several diverse systems sharing a universality class. 
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5:  NONCAUSAL INTERPRETATION CHALLENGED 
There are three central motivating reasons that noncausalists employ to suggest that 
there is no causal-tether in RG transformations and explanations of universality: 1) 
that we are abstracting away irrelevant causal details, 2) that there is no time-
asymmetry or event types in RG transformations (i.e. our common sense notion of 
causation is not upheld), 3) that the explanatory power of universality is rooted in 
the abstract space of models, not in a causal mapping. It is my contention that none 
of these reasons actually support a noncausal interpretation. Thus, in order for 
noncausalists to continue to hold up RG as a classic example of noncausal 
explanation, more argumentation is needed. Let’s take a closer look at each in turn. 
 

5.1. Ignoring causal details 
As mentioned above, Batterman (2000) originally argued that RG explanations of 
universality are noncausal simply because they abstract away lower-level causal 
details. It is worth considering this line of thought in more detail. Consider a more 
commonplace example: explaining why the glass broke with the ideal gas law. The 
ideal gas law can be part of a causal explanation of the glass breaking even if it 
ignores low-level particle interactions, and even though it is expressed 
mathematically. Moreover, one can also describe the same event using what 
Strevens (2008) calls the canonical explanation: the explanation that involves all 
the microlevel causal details. The important difference for our purposes is that a 
causal abstraction has taken place, where one explanation focuses on the low-level 
causal influences, while the other focuses just on the causal-difference makers. 
Many believe that both of these explanations are causal explanations despite the 
differing level of explanation. Moreover, both are causal even though one ignores 
low-level causal details. In order to show that an explanation is noncausal, 
noncausalists need to go beyond pointing out that low-level causal details were 
abstracted away; they need to show that a standard account of causal abstraction is 
not available for the case at hand.  

However, noncausalists have not sufficiently ruled out this type of causal 
abstraction in the case of RG. As already stipulated by noncausalists, a system’s 
Hamiltonian expresses causal information in mathematical language. It is an energy 
function that maps the interactions between the degrees of freedom, spins, the 
effects of external fields, and so on. Even though it is a mathematical 
representation, it falls within our commonsense notion of causation described at the 
outset. It represents interactions between the degrees of freedom, spins, the effects 
of external fields and other aspects of the system. When a system is undergoing a 
continuous phase transition, an event is occurring: the temperature gradually 
increases (or decreases), and there is a time-asymmetric relation between 
temperature increases and other components of the system. If we combine this 
observation with an approach that maintains time-asymmetry at the fundamental 
level (e.g. Ladyman and Ross’s (2007) arrow of entropy), it makes the case that 
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Hamiltonians convey time-asymmetric causal information even stronger. 
Moreover, just as with the ideal gas law, the same causal information can be 
represented at varying levels in the RG case. The transformed Hamiltonian at each 
step in the RG transformations still tracks the same various interactions among 
constituent particles in a system. The difference is that at each transformation, the 
Hamiltonian takes on a coarser-grained look at the system.  

So, while the representation of the system changes through each 
transformation of the Hamiltonian, it does not thereby mean that the representation 
changes regarding its causal-tether. The transformation of the Hamiltonian does not 
express a change in the physical system, it expresses an alternative representation 
of the same process at the critical point. Once it is clear that a starting Hamiltonian, 
which Reutlinger (2014) admits, has a causal-tether, it is perfectly consistent to say 
that the transformed representations retain a causal-tether mapping of the 
interactions between the degrees of freedom, spins, the effects of external fields, 
and so on. One can simply apply whatever pet theory of causal abstraction she 
wishes to maintain that the transformed Hamiltonian has the same causal-tether. As 
an illustration, utilizing Strevens’ (2008) account of causal abstraction, the 
abstraction process shows that short-range particle interactions are irrelevant to the 
macrobehavior of the system, so each transformation of the Hamiltonian isolates 
higher-level causal difference makers. On this view, we have an abstract yet still 
causal explanation of the critical phenomena of a single system.  

Instead of RG explanations providing information regarding causal 
alternatives or a range of alternatives to a phase transition event—a common feature 
of causal explanation—they provide an alternative causal representation of the 
same event with the same causal history. It is a representation that ignores details 
in such a way that it preserves the phenomenon while leading to tractability. As 
Saatsi and Reutlinger say, the RG “flows do not correspond to any physical change 
of the system, but rather capture equivalence classes of models that share the same 
long-distance physics” (2018, 470). The focus is on a representation that ignores 
the short-range fluctuations and exhibits long-range fluctuations instead. Simply 
focusing on the long-distance physics does not preclude a causal interpretation. 
Thus, just as in the case of explaining with the ideal gas law, in order to show that 
an RG explanation of a single system is not compatible with a causal interpretation, 
one needs to go beyond saying that some causal details are abstracted away. 

That said, even if the explanation of a single system’s critical behavior is 
compatible with a causal interpretation, it does not mean that explanations of inter-
systems, or universality, is also causal. The steps taken to find the universality class 
represent another level of abstracting away causal irrelevancies. Through RG, we 
see which system-specific differences do not make a difference to certain kinds of 
macrobehavior and which ones do. RG methods allow us to see that diverse systems 
flow to the same fixed point, which enable the characterization of a shared 
universality class. The numerical value of critical exponents, a function of long-
range fluctuations, is the same between disparate systems. The inter-system 
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explanation highlights which features across distinct systems make a difference to 
the long-range behavior during continuous phase transition. We find that features 
of each system’s spatial dimension and spin dimensionality contribute to that 
system belonging to one universality class or another. RG transformations of the 
Hamiltonians of two systems which belong to different universality classes would 
not reach the same fixed point or have the same critical exponents.  

The difference between the single system explanation and the inter-system 
explanation is that in the inter-system explanation we abstract away the causal 
details specific to each system to reveal that the most general dependencies are 
spatial dimension, spin dimensionality, etc. which in part determines the 
universality class. The novel aspect of inter-system RG explanations is the 
macrolevel abstraction that explains and describes shared behavior and 
universality.  

The question is whether just in virtue of abstracting away from some system-
specific causal details is enough to conclude that the resulting explanation is 
noncausal. However, this doesn’t seem to be the case. As with the case of the single-
system explanation, there is nothing in principle that is special about an abstraction 
that crosses over several systems that precludes a causal interpretation. In the 
biological sciences, explanations in convergent evolution explain why disparate 
populations develop similar traits. For example, golden moles have several of the 
same phenotypes as marsupial moles despite not being evolutionarily related. They 
have similar fur and claws, lack sight, and overall look quite similar.17 Explaining 
why convergent evolution occurs such that diverse populations share the same 
phenotypes also abstracts away the particular causal history of a particular 
population. Yet the inter-system explanation highlights causal features that both 
populations share in common that led to each belonging to a phenotypic 
universality class, such as having a similar habitat.  

There are also examples in the physical sciences. Consider an adaption of 
Salmon’s (1989) example of explaining why the helium filled balloon goes toward 
the front of the plane during acceleration and takeoff instead of toward the rear. If 
we want to explain not just that a helium filled balloon exhibits this behavior, but 
also explain why a hydrogen balloon (and any balloon filled with a gas lighter than 
air) would exhibit the same behavior, we have an inter-system explanation. The 
explanation would highlight how the features that these gasses have in common 
give rise to the same behavior in response to the pressure gradient present during 
takeoff. Importantly, abstracting away the specific causal details unique to each 
balloon does not thereby undermine the causal nature of the inter-system 
explanation. The inter-system explanation will still depend on the causal features 
that are present in the single-system causal explanation of Salmon’s original case.  

Once it is open for causalists to interpret a single-system RG explanation as a 
causal explanation, the move claiming that inter-system explanation is just another 

																																																								
17 This example is from Strevens (2017).  
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level of abstraction, not fundamentally different in kind, is readily available. 
Similarly to the convergent evolution case and the balloon case, the inter-system 
explanation exploits features shared among disparate systems that give rise to the 
same long-distance physics. One can again apply whatever pet theory of causal 
explanation one chooses to tell a story about why abstracting these low-level 
system-specific details retains a causal-tether. For example, RG fits into what 
Potochnik (2015) calls a causal pattern, because RG highlights the properties of a 
system that the system depends on and the scope of that dependence. Abstracting 
away particular causal details between systems, and providing an inter-system 
explanation, does not by itself preclude a causal interpretation.  

A noncausalist could object that the examples I gave of causal inter-system 
explanation are not actually cases of causal explanation. However, in that case, the 
noncausalist is arguing for a much stronger claim. It is not simply that RG is 
noncausal, but that other seemingly canonical cases of causal abstraction are 
themselves noncausal. Instead, a more promising route is for noncausalists to 
provide a further reason besides abstracting away low-level causal details to make 
their case.   

 
 
5.2. RG transformations do not represent causal relations 

One reason to think that RG transformations are fundamentally different from 
standard causal abstractions touted by causalists is the fact that the transformation 
and mapping of Hamiltonians are central to explaining universality. Unlike 
explanations that use an abstract causal representation at the start to explain a 
phenomenon of interest (e.g. an explanation utilizing the ideal gas law), a central 
component of RG explanations of universality is tracking the abstraction process 
itself. Reutlinger (2014, 1168-9) stresses that the RG transformations on the 
Hamiltonians in question primarily explain universality, yet these transformations 
are not the sort of thing that could be an event and “simply do not stand in temporal 
relations,” let alone display temporal-asymmetry. Thus, it seems that NC** is 
satisfied: there is a noncausal element—the transformations of Hamiltonians—that 
primarily explains universality while lacking a causal-tether.  

However, even though there is no temporality or time-asymmetry in the 
transformations of Hamiltonians, it still does not undermine a possible causal 
interpretation. Such a response fails to appreciate the role that abstraction plays. 
Any process of abstraction is not an event, if we disregard the model or the scientist 
performing the abstraction in sequential steps, nor is it the kind of thing that stands 
in a temporal relation displaying temporal-asymmetry between a higher or lower 
level. It is just what it is: an abstraction. Yet after the process of abstraction is 
complete, the more abstract representation can still hold on to the causal mapping 
of the less abstract version. When we are concerned about whether an explanation 
is causal, as discussed in section 2, we are diagnosing whether or not the abstraction 
continues to have a causal-tether; we are not merely explaining the mathematical 
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relationship between two possible representations. Thus, pointing out that the 
relationship between two representations is not an event or does not connote time-
asymmetry, as Reutlinger (2014) does, is a noncausalist’s red-herring. It does not 
speak to the causal nature of the explanation. 

Part of the problem here is that there is ambiguity in the explanandum, and 
several theorists are interested in slightly different explananda.18 When we ask the 
question, “why do diverse systems display the same macrobehavior during a 
continuous phase transition?” we could be interested in a number of different 
things. For instance, we might just be interested in the definition of a universality 
class or interested in the mathematics behind Hamiltonian flow and calculating 
critical exponents, that is, how the mathematical derivation behind the process of 
abstraction itself works. The relevant explananda for our purposes are ones that 
present a pressing challenge to causal-only approaches to scientific explanation.  

A question that just seeks a definition as its answer is not a threat to a causal 
account (if it can even constitute an explanation at all). Furthermore, a question that 
simply seeks the mathematical derivation as an answer is not by itself a threat. The 
threat comes when the principal way of explaining an event relies on a relation 
other than a causal one. An explanation that is simply comparative or points only 
to a mathematical derivation leaves out a crucial explanatory step. How is it that 
the derivation speaks to the behavior of systems at the critical point? The 
explanatory power does not simply come from the fact that the original Hamiltonian 
equation can be manipulated mathematically, but that after going through an RG 
transformation it still tracks the behavior of systems at the critical point.  

However, Reutlinger (2014) draws our attention just to the process of 
abstraction (i.e. the RG transformations) to make his noncausal argument, 
neglecting its connection to real physical systems. Furthermore, building off of 
Reutlinger (2014), Saatsi and Reutlinger (2018, 464) explicitly discuss the 
explanandum of interest as explaining how it follows “from the laws of statistical 
mechanics, including the dynamical laws and the partition function connecting the 
micro- and macrolevels, that the properties exhibiting universality” depend on the 
system’s spatial dimensions and other features that determine universality. This 
explanandum more explicitly asks us for a mathematical derivation as a central part 
of the explanation, which again unduly puts the finger on the scale toward a 
noncausal interpretation. While Saatsi and Reutlinger are correct that the 
transformations of the Hamiltonians play a primary role in the explanation of 
universality, if the focus is only on the mathematical process behind these 
transformations, we lose the connection to the physical phenomenon. Franklin 
(2018) also argues, in a context other than the causal / noncausal debate, that any 
abstract explanation of universality that does not maintain the connection to the 
physical phenomenon by also explaining why systems A-E have certain behavior 
																																																								
18 See Franklin (2018) for a compatible discussion on ambiguities present in the literature 
concerning RG explananda, and specifically on the difference between simply comparing two RG 
explanations and giving a more unified explanation of universality. 
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in common or why the differences between A-E are irrelevant to their behavior, 
falls short of providing the explanatory scope and answers to what-if-things-had-
been-different questions that we are essentially interested in when explaining the 
universality of continuous phase transitions.19  

The important question in the causal debate for explaining why diverse systems 
display the same macrobehavior during a continuous phase transition is whether the 
transformed Hamiltonian still retains its causal tether to the real physical 
phenomenon. As I have argued above, the transformed Hamiltonian indeed still has 
this causal-tether. Specifically, unlike the strawberry case, RG methods in the case 
of critical phenomena are not divorced from the physics. If the laws of physics were 
different, the same explanation would not hold. There is something about how 
certain fluids are constituted that determines the system’s universality class. For 
instance, there are special cases where substances undergo a continuous phase 
transition that otherwise wouldn’t, 20  and cases where substances engage in 
crossover phenomena where the system essentially changes its universality class in 
the process.21  Moreover, as discussed in the previous section, there is a time-
asymmetric relation between temperature increases and other components of a 
system undergoing a continuous phase transition that the Hamiltonian represents. 
All this suggests that the temporal-asymmetry requirements to uphold our common 
sense intuitions about causes can be satisfied.22 Thus, simply pointing to the fact 
that the explanation heavily relies on abstraction procedures, such as RG 
transformations and Hamiltonian flow, does not preclude a causal interpretation.  
 

5.3. The abstract model space  
This brings us to the third and arguably the central reason noncausalists argue that 
RG explanations do not retain any causal-tether: the explanatory power in 
explaining universality is rooted in the abstract space of models (Hamiltonian 
flow), not in counterfactual causal reasoning or reasoning about causal difference-
makers. According to Saatsi and Reutlinger (2018), considering the abstract space 
of Hamiltonian flow is what makes the explanation go beyond simple derivation. 
																																																								
19 Saatsi and Reutlinger (2018) do seek to go beyond derivation for explaining universality. They 
do so by appealing to the topology of the abstract model space, which I discuss in section 5.3.  
20 See footnote 7. 
21 See Franklin (2018, 241) for a discussion of crossover in the context of explanation and 
universality. 
22 One could argue that the temporal asymmetry that matters here is not that the Hamiltonian 
representation conveys time-asymmetry, but that the relationship between the explanans and the 
explanandum itself stands in a time-asymmetric relation. However, this response is 
underdeveloped. Which aspects of the explanantia must be temporally prior? As discussed in 
section 2, causally explaining why all ravens are black includes facts along the lines, “all ravens 
have some property p.” Yet, having a particular property could be temporally continuous with 
blackness. Instead, if we adopt the counterfactual account of explanation, what matters is that the 
explanation is explanatory by virtue of exhibiting an asymmetrical counterfactual dependency. 
This counterfactual could be causal or noncausal. Thus, the question here is whether RGC is a 
causal counterfactual. I consider this question specifically in section 5.3. 
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Batterman (2017), adapting his earlier views on abstracting away low-level causal 
details, argues that the topology of the space of RG flows—the combination of 
different possible models—is what explains the irrelevance of the short-range 
particle interactions, rather than causal features of individual systems. Unlike the 
reasoning discussed in the previous section, that mathematical abstraction 
procedures (i.e. the transformations of the Hamiltonians) undermine a causal 
interpretation, the concern here is that the topology of the space of RG flows 
noncausally explains universality. Questions of time-asymmetry again emerge. The 
topology of an abstract space of models is not something that has a temporal 
character, and thus does not represent a time-asymmetric dependence relation.   

Here’s the problem: the fact that RG explanations exploit and consider the 
space of abstract models—all the varying causal representations (Hamiltonians) 
that flow toward a fixed point—does not alone speak for or against the causal nature 
of the explanation. Consider a different example where an explanation relies on 
comparisons between models. The United States National Weather service and 
climate scientists utilize several different models in order to get better predictions, 
explore tradeoffs, and explore causal influences (Weisberg 2007). Instead of one 
model, there is a set of models that each highlight different factors that together 
account for all the core causal factors. Importantly, the practice of considering these 
multiple models is still chiefly concerned with the causal-tether the set of models 
has to the phenomenon, not simply the formal relationship between the models. 
Thus, it is not simply because an explanation is rooted in the space of abstract 
models that the explanation lacks causal-tether.  

The unmotivated assumption here is that in the case of RG transformations on 
Hamiltonians, considering the set of models (the set of all the transformed 
Hamiltonians) lacks a causal-tether. However, since noncausalists have not ruled 
out that each particular transformed Hamiltonian has a causal-tether, and they have 
not ruled out that the abstract space of models gives us a series of alternative causal 
representations of the same event, then considering the abstract space of these 
models can plausibly be taken to be similar to considering causal tradeoffs and 
influences in the multiple model case. And again, the claim that key causal, such as 
time-asymmetry, are lacking in considering the abstract model space is a red-
herring.  The burden of proof is on showing why comparing a set of models of the 
same event, where each model has a causal-tether, cannot causally explain. 
Unfortunately, no such argument is given.  

Putting all this together, consider again RGC: 
 

RGC:  There is a physical possible Hamiltonian H* such that if (1) a physical 
system had the original Hamiltonian H* (instead of its actual original 
Hamiltonian H), (2) H* were subject to repeated RG transformations, 
and (3) we determined the resulting flow of the Hamiltonians to a 
fixed point, then a system with original H* would be in a different 
universality class than a system with original Hamiltonian H.  
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Recall that Reutlinger (2016) argues that RGC is noncausal, thereby making the 
primary locus of explanatory power a noncausal dependency relation, thereby 
satisfying NC**. However, it should be clear at this point that this claim is not 
supported. First, a system’s physical Hamiltonian is grounded in causal features. 
Like in the billiard ball case—there is something about the constitution of the 
billiard balls that determines that they will behave a certain way under certain 
conditions—there is something about the constitution of substances that determines 
how they behave during a continuous phase transition and determines their 
universality class. As discussed in section 3, a system’s order parameter, which is 
fundamental to determining universality class, is only known through empirically 
observing the system and how it behaves under various conditions. This is 
altogether different from the strawberry case where there is nothing about the 
strawberries in particular that prevents them from being divided in the way 
described. Second, the causalist can maintain through any standard conception of 
causal abstraction that the RG transformations of the physical Hamiltonian are 
simply alternative representations of the same information, albeit pointing out more 
macrolevel causal details. So, while the process of transformation is not a causal 
process, the representation that remains after this process still holds on to our 
common sense notions of causation. The new Hamiltonian tracks the long-distance 
physics of an event that conveys temporal-asymmetry and metaphysical 
contingency. While tracing the system to a fixed point again is not a causal 
process—it is a method used to uncover and categorize commonalities—it is still 
consistent with a causal interpretation that explaining can involve diverse methods 
and still retain a causal-tether to the phenomenon.  

In the end, the now widely held assumption that RG explanations of 
universality are noncausal has not been well supported. The reasons given for why 
the mathematical representations and operations behind RG explanations lack a 
causal-tether are under-motivated. The main stumbling block seems to be that a 
system’s original Hamiltonian provides us with causal information in mathematical 
language, in a similar way as the collision of two billiard balls can be encapsulated 
in mathematical language. This initial causal-tether enables causal accounts of 
explanation to supply causal interpretations even as layers of abstraction are added, 
and even when the abstraction is across systems. 
 
 
6.  CONCLUSION 
Renormalization group explanations of the universality of critical phenomena are 
held up as a canonical case of noncausal explanation. However, the arguments 
given for why it is an instance of noncausal explanation are not very compelling.  
In this paper, I argued that for all that noncausalists have said about why RG 
explanations are noncausal, a causal interpretation is still available. Moreover, I 
have done this using a fairly demanding view of causation that noncausalists 
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themselves endorse, where the nature of causes is bound to common sense notions 
concerning time-asymmetry, event-types, and metaphysical contingency. 
 While there may be other reasons why RG explanations are noncausal, these 
reasons have not been explicitly explored thus far in the literature. As a result, 
proponents of noncausal accounts need to expand their toolbox. Moreover, if the 
primary case held up by pluralists employing the inter-system irrelevancy approach 
to noncausal explanation fails to withstand this kind of scrutiny, then the lines 
between causal explanation and noncausal explanation demands closer attention, as 
does the question whether cases stemming from mathematical necessity, like the 
strawberry case, are also affected.  
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