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1 Introduction
Originally set theory was a theory of infinity, an attempt to understand infinity in ex-
act terms. Later it became a universal language for mathematics and an attempt to
give a foundation for all of mathematics, and thereby to all sciences that are based on
mathematics. So what is set theory?

Set theory is a very general but still entirely exact theory of objects called sets.
It is useful in a number of fields of philosophy, like logic, semantics, philosophy of
mathematics, philosophy of language and probably several others, but it is also useful
in mathematics, computer science, cognitive science, linguistics, and even in the theory
of music. It can be used anywhere where one needs an exact mathematical approach to
objects that can be thought of as collections of something.

Even high school mathematics includes simple operations on sets, like union and
intersection. College mathematics usually includes set theoretical concepts like or-
dered pair, cartesian product, relation, function, and so on. Elementary logic courses
include such set theoretical concepts as finite sequence and relation. All the concepts
mentioned so far are very useful for any philosophy student. Why? Because all these
basic mathematical concepts can be given a uniform exact account. In this account any
true properties of those concepts can be proved with a simple argument involving only
a few lines.

The remarkable thing about set theory is that not only basic mathematics but indeed
all mathematics can be represented as properties of sets. Thus we can define in set
theory the natural numbers, the real numbers, the complex numbers, the Euclidean
spaces Rn, the Hilbert space, all the familiar Banach spaces, etc. Moreover, everything
mathematicians prove about these objects can be proved from a few relatively simple
axioms concerning sets. Therefore it is said that set theory can serve as a universal
language of mathematics, indeed a foundation of mathematics. This gives set theory a
special place in the philosophy of mathematics.

Of course, a representation of all mathematics in set theory is meant to be taken
only as a representation. The fact that real numbers can be defined as sets does not
mean that real numbers are sets. The point is that it is in principle possible to think
of real numbers as sets. It is important to note that the goal of set theorists is not to
convince other mathematicians that what mathematicians are doing is really set theory.
The point of set theory as a universal language of mathematics is that set theory offers
a common ground where any unclear argument can be scrutinized. If some argument
in mathematics seems to use something that has not been stated, we can start the pro-
cess of reducing the argument to the first principles in set theory. If this process is
successful, then the argument can be considered valid without question. In this process
it becomes clear whether, for example, the Axiom of Choice, a very powerful construc-
tion principle for abstract objects, is used. Also, some mathematical results depend on
principles, such as the Continuum Hypothesis, that go beyond what is usually consid-
ered a priori true. Then the mathematical result can be stated as an implication: if the
Continuum Hypothesis is assumed then this or that holds.
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2 Elementary set theory
In this section sets are just collections of objects. We shall later define more exactly
what this means. We use lower case letters a, b, c, ... to denote sets. Since sets are
collections, they have elements i.e. members of the collection in question. If a is a set
and b is an element of a, then we write b ∈ a and read this “b is an element of a” or
“b is in a”. Two sets are equal if they have the same elements. A set a is a subset of
another set b, in symbols a ⊆ b if all elements of a are also in b. The simplest sets the
singleton set {a} which has a as its only element, the unordered pair {a, b} which has
a and b and nothing else as its elements, and the empty set ∅, which has no elements
whatsoever. Note that {a, b} = {b, a} and that there is only one empty set, because
any two sets without elements have the same elements and are therefore equal.

The most important non-trivial sets are: (1) The set {0, 1, 2, ...} of natural numbers,
denoted N, (2) the set of rational numbers, denoted Q, and (3) the set of real numbers,
denoted R. When we proceed deeper into set theory below we can actually define these
sets, but let us take them for the moment as given.

We can form new sets from the ones we already know by means of set theoretic
operations like the union a ∪ b, intersection a ∩ b, and power set P(a) = {b : b ⊆
a}. There are a couple of others, and when one learns to use ordinals, there are the
transfinite operations on sets.

Already with the simple operations ∪ and ∩ we get the following important con-
cept: Let X be any set. Then obviously P(X) is closed under ∪ and ∩. Also, we can
form the complement −a = {x ∈ X : x /∈ a} of any subset a of X . Finally, let us
denote ∅ by 0 and X by 1. We have arrived at the structure

(P(X),∩,∪,−, 0, 1)

which is a familiar algebraic structure, namely a Boolean algebra, because it satisfies
the identities

a ∩ (b ∩ c) = (a ∩ b) ∩ c Associativity law
a ∪ (b ∪ c) = (a ∪ b) ∪ c
a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) Distributivity law
a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)
a ∩ b = b ∩ a Commutativity law
a ∪ b = b ∪ a
a ∪ −a = 1 Law of complements
a ∩ −a = 0
a ∪ (a ∩ b) = a Absorption law
a ∩ (a ∪ b) = a
−(a ∩ b) = −a ∪ −b De Morgan law
−(a ∪ b) = −a ∩ −b

These are all easy to prove, even by just looking at a picture, as in Figure 1.
An important role in applications of set theory is played by the concept of a an

ordered pair (a, b) of two sets a and b. The characteristic property of ordered pairs is:
(a0, a1) = (b0, b1) if and only if a0 = b0 and a1 = b1. The cartesian product of two
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Figure 1: a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c).

sets a and b is a×b = {(x, y) : x ∈ a, y ∈ b}. It is the idea of set theory that everything
is defined in terms of the sole primitive symbol ∈. This is by no means necessary but
since it is possible it is tempting and is usually done. The most common definition for
the ordered pair (x, y) in terms of ∈ is {{x}, {x, y}}.

A function from a set a to another set b is any subset f of a × b such that for each
x ∈ a there is exactly one y ∈ b such that (x, y) ∈ f . Then we write f : a → b and
y = f(x). In this definition of the concept of a function one notices a characteristic
feature of set theory: the concept of a function is extremely general. We do not require
that there is some “rule” which tells us how to compute f(x) for a given x. All we
require is that exactly one y such that (x, y) ∈ f exists. Set theory uses classical
logic so for a y such that (x, y) ∈ f to exist it suffices that non-existence leads to
a contradiction. There is also constructive set theory (see below) where intuitionistic
logic is used and existence means more than deriving contradiction from non-existence.

A set a is finite if it is of the form {a0, ..., an−1} for some natural number n. This
means that the set a has at most n elements. A set which is not finite is infinite. Finite
sets have the following properties: ∅ is finite. If a and b are finite, then so is a ∪ b. If
a is finite and b ⊆ a, then also b is finite. If a and b are finite, then so is a × b. If a is
finite, then so is P(a).

With the above concepts one can already develop a lot of mathematics. One can
define the integers as ordered pairs (n,m) of natural numbers with the intuitive mean-
ing that (n,m) denotes the integer n − m. One can define the rationals as ordered
pairs (r, q) of integers with the intuitive meaning that (r, q) denotes the rational r/q.
One can define the reals as sets a of rationals, bounded from above, with the intuitive
meaning that a ⊆ Q denotes the real sup(a).

3 Cardinal and ordinal numbers
A set is infinite if it is not of the form {a1, ..., an} for any natural number n. Set theory
was developed to deal with problems of infinite sets and indeed there are some para-
doxical phenomena related to infinite sets. A famous anecdotal example is Hilbert’s
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Hotel: Imagine a hotel the rooms of which are numbered by all natural numbers. Sup-
pose the hotel is full but a tourist comes in and asks for a free room. The reception can
ask the person in room 0 to move to room 1, the person in room 1 to move to room
2, ..., the person in room n to move to room n + 1, etc. This process leaves room 0
empty and the tourist can take it. There are many further variations of this anecdote.
For example, one can fit infinitely many new tourists into a hotel which is already
full. A vast extension of this idea, coupled with the so called Axiom of Choice, is the
Banach-Tarski Paradox: The unit sphere in three-dimensional space can be split into
five pieces so that if the pieces are rigidly moved and rotated they suddenly form two
spheres of the original size (see Picture 2). The trick is that the splitting exists only
in the abstract world of mathematics and can never actually materialize in the physical
world. Conclusion: infinite abstract objects do not obey the rules we are used to among
finite concrete objects. This is like the situation with sub-atomic elementary particles,
where counter-intuitive phenomena, such as entanglement, occur.

Figure 2: The Banach-Tarski Paradox.

3.1 Equipollence
Equipollence of two sets means the existence of a bijection between the sets. A bi-
jection is a mapping which is both one-to-one and onto. In other words, a bijection
between two sets a and b is a function f : a → b so that for every y ∈ b there is a
unique x ∈ a such that f(a) = b. Still in other words the equipollence of a and b
means the existence of functions f : a → b and g : b → a such that for all x ∈ a we
have g(f(x)) = x and for all y ∈ b we have f(g(y)) = y. In set theory it is thought
that if two sets are equipollent, then they have the same number of elements. Because
the sets may be infinite, it is not a priori clear what it means to say that the sets have the
same number of elements. However, if there is a bijection between the sets, it is quite
credible to argue that whatever we mean by the number of elements of an infinite set,
equipollent sets should get the same number.

For finite sets equipollence means indeed that the sets have the same number of
elements. For infinite sets we have to give up the idea that the part is smaller than the
whole, since for example the set of natural numbers {0, 1, 2, ...} is equipollent with its

4



proper part {1, 2, 3, ...}, as the bijection n 7→ n + 1 demonstrates. The part may not
be smaller than the whole but at least it cannot be greater than the whole. And in some
cases the part is smaller than the whole. Cantor proved that the set N of natural numbers
is not equipollent with the set R of real numbers. This can be seen as follows: Suppose
there were a bijection f : N → R. Then there is an onto function g : N → [0, 1].
Let us construct a real number on [0, 1] as follows. The number is 0.d1d2d3... where
di = 1 if the real number g(i) has the decimal expansion 0.e1e2e3..., where ei 6= 1.
Otherwise di = 0. In this way we obtain a real number r ∈ [0, 1]. Since g is onto,
there is n ∈ N such that g(n) = r. Let us look at dn. We have dn = 1 if and only
if dn 6= 1, a contradiction. Hence no such f can exist. So N is less than the whole R
in harmony with our intuition. This result is due to Cantor. He went on to prove that
the set Q of all rational numbers is equipollent with N and hence not equipollent with
R. Moreover, he showed that the set A of all algebraic numbers is also equipollent
with N and hence not equipollent with R. We get the surprising conclusion that there
are fewer algebraic numbers than real numbers, hence many (if not most) of the real
numbers must be transcendental. This was a remarkable conclusion by Cantor because
at the time when the observation was made, very few transcendental numbers were
known. Thus by purely abstract set theoretic methods Cantor had proved the existence
of many many transcendental numbers.

Technically speaking, a bijection between two sets a and b is a function f : a→ b
which is one-one i.e. ∀x ∈ a∀y ∈ a(f(x) = f(y) → x = y) and onto i.e. ∀y ∈
b∃x ∈ a(f(a) = b). With this definition, sets a and b are equipollent, a ∼ b, if there
is a bijection f : a → b. Then f−1 : b → a is a bijection and b ∼ a follows. The
composition of two bijections is a bijection, whence

a ∼ b ∼ c =⇒ a ∼ v.

Thus ∼ divides sets into equivalence classes. Each equivalence class has a canonical
representative (a cardinal number, see Subsection “Cardinals” below) which is called
the cardinality of (each of) the sets in the class. The cardinality of a is denoted by
|a| and accordingly a ∼ b is often written |a| = |b|. One of the basic properties of
equipollence is that if

a ∼ c, b ∼ d and a ∩ b = c ∩ d = ∅,

then
a ∪ b ∼ c ∪ d.

Indeed, if f : a→ c is a bijection and g : b→ d is a bijection, then f ∪ g : a∪ b→
c∪d is a bijection. If the assumption a∩b = c∩d = ∅ is dropped, the conclusion fails,
of course, as we can have a∩ b = ∅ and c = d. It is also interesting to note that even if
a ∩ b = c ∩ d = ∅, the assumption a ∪ b ∼ c ∪ d does not imply b ∼ d even if a ∼ c is
assumed: Let a = N, b = ∅, c = {2n : n ∈ N} and d = {2n+ 1 : n ∈ N}. However,
for finite sets this holds: if a ∪ b is finite, a ∪ b ∼ c ∪ d, a ∼ c, a ∩ b = a ∩ d = ∅ then
b ∼ d. We can interpret this as follows: the cancellation law holds for finite numbers
but does not hold for cardinal numbers of infinite sets.

A basic fact about equipollence, and indeed the starting point of all of set theory, is
the result of Cantor that no set is equipollent with its power set. Let us see why this is
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so. Suppose a set a is equipollent with P(a). Thus there is a bijection f : a → P(a).
Let b = {x ∈ a : x /∈ f(x)}. Then b ∈ P(a) so there is some x ∈ a such that
b = f(x). Is x in b or not? If x ∈ b, then x /∈ f(x), a contradiction, since f(x) = b.
Therefore we must conclude x /∈ b. But then x /∈ f(x), whence x ∈ b, a contradiction
again. So no such f can exist. It is remarkable that with this simple short argument one
can make the far-reaching conclusion that there are an unending sequence of greater
and greater cardinalities, namely one needs only follow the sets N, P(N), P(P(N)),
P(P(P(N))),...

There are many more interesting and non-trivial properties of equipollence that we
cannot enter into here. For example the Schröder-Bernstein Theorem1: If a ∼ b and
b ⊆ c ⊆ a, then a ∼ c.

3.2 Countable sets
Countable sets are the most accessible infinite sets. They are the infinite sets that we
can actually list, or rather, we can start listing a countable set and if we lived forever,
we would list the entire set. So this is in sharp contrast to sets like R, the set of all
reals. Even if one lived forever, one could not list all real numbers. The quintessential
example of a countable set is the set N of all natural numbers. Any set that is indexed
by the natural numbers as {an : n ∈ N} is likewise called countable. And now we
have already exhausted the class of countable sets! There are no others.

Countable sets already manifest the paradoxical feature of infinity that the part need
not be less than the whole, for even the simplest countable set {0, 1, 2, ...} is equipol-
lent with its proper subset {1, 2, 3, ...} via the bijection n 7→ n + 1. By considering
the bijection n 7→ 2n we can see that {0, 1, 2, ...} is equipollent with the set of even
numbers {0, 2, 4, 6, ...}. In fact, all infinite countable sets are equipollent: Suppose
A = {an : n ∈ N} and B = {bn : n ∈ N} are two infinite sets. Let f(a0) = b0.
If f(an) ∈ B has been defined, let f(an+1) be bm with the smallest m such that
bm /∈ {f(a0), ..., f(an)}. Since B is infinite, such an m must always exist. Moreover,
every bm gets chosen at some point, for obviously bm ∈ {f(a0), ..., f(am)}.

Intuitively there are much more rational numbers than integers. Therefore it is a
bit surprising that the set of all rational numbers is actually countable. Let us see how
we can arrive at this conclusion. We can identify the rational number n/m (in lowest
terms) with the ordered pair (n,m) of natural numbers. So let us first show that if a
and b are countable, then so is a × b. If either set is empty, the cartesian product is
empty. So let us assume the sets are both non-empty. Suppose a = {a0, a1, ...} and
b = {b0, b1, ...}. Let

cn =

{
(ai, bj), if n = 2i3j

(a0, b0), otherwise.

Now a × b = {cn : n ∈ N}, whence a × b is countable. So if we identify a rational
number n/m (in lowest terms) with the pair (n,m), then there is some k such that
(n,m) = ck, and we have identified the set of all (non-negative) rational numbers with
an infinite subset of N, so in particular it is countable.

1The original formulation says: If there is a one-one function a → b and another b → a there is a
bijection a→ b, see e.g. [12, p. 27].
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We showed above that the cartesian product of two countable sets if countable. A
similar, and very useful fact is the following: a countable union of countable sets is
countable. The empty sets do not contribute anything to the union, so let us assume
all the sets in our countable family are non-empty. Suppose An is countable for each
n ∈ N, say, An = {anm : m ∈ N} (we use here the Axiom of Choice to choose
an enumeration for each An). Let B =

⋃
n an. We want to represent B in the form

{bn : n ∈ N}. If n is given, we consider two cases: If n is 2i3j for some i and j, we
let bn = aij . Otherwise we let bn = a00. Now indeed B = {bn : n ∈ N}.

One of the reasons why countable sets are so important is that sets defined by induc-
tion are usually countable. Examples of such sets are abundant in logic, most notably
the set of terms and and the set of formulas in a countable vocabulary. Any formal lan-
guage based on a countable vocabulary generates a countable set of expressions. More
generally, in a countable vocabulary the set of all strings of symbols of a fixed finite
length is countable, and hence so is the set of all finite strings of symbols, as it is the
union of a countable family of countable sets.

A powerful application of the above idea is the Löwenheim-Skolem Theorem of
first order logic: Every countable first order theory has a countable model. There are
reasons to believe—although this view is also contested2—that first order theories rep-
resent the best axiomatizations that we can ever get. Thus we are stuck with countable
models whether we want it or not. For set theory this is called Skolem’s Paradox. The
paradox is that we can prove in set theory that the set of all reals is uncountable, but still
set theory itself has countable models. That is the paradox. The solution of the paradox
is that what seems countable from outside may not seem countable inside. More ex-
actly, if we have a countable model of set theory, we can be sure that the mapping from
the natural numbers onto the model is not an element of the model. This is a rough
awakening to the reality that everything in set theory is relative. There are no signs that
this would be the fault of set theory. It is even true of number theory vis a vis Gödel’s
Incompleteness Theorem.

3.3 Ordinals
The ordinal numbers introduced by Cantor are a marvelous general theory of measuring
the potentially infinite on the one hand, and the actually infinity on the other hand. They
are intimately related to inductive definitions and occur therefore widely in logic. It is
easiest to understand ordinals in the context of games, although this was not Cantor’s
way. Suppose we have a game with two players I and II. It does not matter what the
game is, but it could be something like chess. If II can force a win in n moves we
say that the game has rank n. Suppose then II cannot force a win in n moves for any
n, but after she has seen the first move of I, she can fix a number n and say that she
can force a win in n moves. This situation is clearly different from being able to say
in advance what n is. So we invent a symbol ω for the rank of this game. In a clear
sense ω is greater than each n but there does not seem to be any possible rank between
all the finite numbers n and ω. We can think of ω as an infinite number. However,
there is nothing metaphysical about the infiniteness of ω. It just has infinitely many

2See e.g. [19].
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predecessors. We can think of ω as a tree Tω with a root and a separate branch of
length n for each n above the root as in the tree on the left in Figure 3.

Figure 3: Tω and Tω+1.

Suppose then II is not able to declare after the first move how many moves she
needs to beat I, but she knows how to play her first move in such a way that after I has
played his second move, she can declare that she can win in n moves. We say that the
game has rank ω + 1 and agree that this is greater than ω but there is no rank between
them. We can think of ω + 1 as the tree which has a root and then above the root the
tree Tω , as in the tree on the right in Figure 3. We can go on like this and define the
ranks ω + n for all n.

Suppose now the rank of the game is not any of the above ranks ω + n, but still
II can make an interesting declaration: she says that after the first move of I she can
declare a number m so that after m moves she declares another number n and then in
n moves she can force a win. We would say that the rank of the game is ω + ω. We
can continue in this way defining ranks of games that are always finite but potentially
infinite. These ranks are what set theorists call ordinals.

3.4 Cardinals
Historically cardinals (or more exactly cardinal numbers) are just representatives of
equivalence classes of equipollence. Thus there is a cardinal number for countable
sets, denoted ℵ0, a cardinal number for the set of all reals, denoted c, and so on. There
is some question as to what exactly are these cardinal numbers. The Axiom of Choice
offers an easy answer, which is the prevailing one, as it says that every set can be
well-ordered. Then we can let the cardinal number of a set be the order type of the
smallest well-order equipollent with the set. Equivalently, the cardinal number of a set
is the smallest ordinal equipollent with the set. If we leave aside the Axiom of Choice,
some sets need not have have a cardinal number. However, as is customary in current
set theory, let us indeed assume the Axiom of Choice. Then every set has a cardinal
number and the cardinal numbers are ordinals, hence well-ordered. The αth infinite
cardinal number is denoted ℵα. Thus ℵ1 is the next in order of magnitude from ℵ0. The
famous Continuum Hypothesis is the statement that ℵ1 = c. Equivalently, for every set
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A of reals, either A is countable of the cardinal number of A is c. For Borel3 sets of
real numbers it is true that there is no cardinality between ℵ1 and c. If we assume large
cardinals4, it is even true that for sets of reals definable with real parameters there is no
cardinality between ℵ1 and c. So it is not so far-fetched to suggest that maybe the same
holds for all sets of reals. On the other hand, the tenet of set theory is that properties of
definable sets are different from the properties of arbitrary sets. So maybe indeed the
“regular” sets of reals—for some sense of “regular”—obey the Continuum Hypothesis
but when we enter the absurd and unintuitive world of totally undefinable—arbitrary—
sets of reals, the Continuum Hypothesis fails.

4 Axiomatic set theory
After the above tour of basic concepts of set theory we can return to the beginning and
ask what is it that we are doing. This is all the more important because, as we have
indicated, a lot of mathematics can be developed in set theory, if not all of mathematics.
So the philosophical question arises, what is set theory based on? The most commonly
held view is that set theory is the most fundamental theory in mathematics and it is not
possible to base set theory on anything even more primitive.

So how do we really know what is true of sets and what is not? This question
is crucially important also because most of the sets we encounter in set theory are
infinite and unquestionably abstract. They seem to exist only in their own abstract
world which cannot be seen by eyes, binoculars or microscopes, cannot be touched by
hand, and cannot be observed by listening, tasting or smelling. It is often said that we
can observe sets only by thinking of them, but this seems an inadequate answer. The
most commonly held view is that we simply accept certain simple facts about sets as
axioms and then use rules of logic to derive more complicated facts. The axioms are
accepted because of their intuitive appeal and because of their usefulness. From the
axioms that we present below one can derive virtually all of mathematics, and that is
ultimately the most important reason for accepting them. They simply seem to give a
“house” for mathematics to live in.

Technically speaking, the axioms are first order sentences in a vocabulary which
has just one binary predicate symbol ∈ in addition to identity.

The simple idea of sets as collections of objects is too loose in a closer analysis.
This can be seen from the many paradoxes it has led to. The most important is Russell’s
Paradox: Consider the set R of sets that are not elements of themselves. If R ∈ R,
then R /∈ R, and if R /∈ R, then R ∈ R. This paradox shows that we cannot allow just
any collection to be a set. Current thinking is that sets are in a sense “small” enough
collections to be considered as sets. According to this thinking, arbitrary collections
are called classes. A class that is not a set is called a proper class.

In the axiomatic approach paradoxes like Russell’s Paradox are avoided because

3The class of Borel sets is the smallest class of sets containing the open sets and closed under comple-
ments and countable unions, see [12, p. 132].

4Large cardinals are “large” cardinals that have special properties that are used in proofs. Their existence
cannot be proved, so they have to be just assumed. However, they seem quite necessary in modern set theory,
see e.g. [12, p. 275]
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sets and proper classes are kept away from each other. Technically speaking, objects in
the axiomatic approach, that is, the range of all quantifiers, is sets. Classes are treated
via formulas. A formula ϕ(x), with perhaps parameters, is identified with the class
{a : ϕ(a)} of sets that satisfy ϕ(x). So even if we think of our formulas as talking only
about sets, we can talk about classes by talking about formulas defining the classes.

There is an intuitive model of set theory which goes beyond the simple idea that
sets are “collections” of objects. According to this intuition sets have been created in
stages. Elements of a set are, or have been, created before the set itself. This intuition
does not mean that sets have really been created by someone, it is just a metaphor. The
concept of an ordinal can be used to make the intuitive idea of stages more exact. The
more exact version is called the cumulative hierarchy of sets. For this end, let V0 = ∅,
Vα+1 = P(Vα) and Vν =

⋃
α<ν Vα if ν is a limit ordinal. Finally, let V =

⋃
α Vα.

This is the intuitive model of set theory. Strictly speaking, it is not model in the sense
of model theory because its domain is a proper class.

Now we present the axioms of set theory. They are called the Zermelo-Fraenkel
axioms, denoted ZFC. When we discuss the axioms it is good to keep in mind the
intuitive model offered by the cumulative hierarchy.

1. Axiom of Extensionality: Sets which have the same elements are equal i.e.

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y).

This axiom seems obvious but it is actually a deep axiom. It demonstrates that
we do not want there to be anything else about sets than their elements. The
elements form an aggregate we call a “set” but we do not care what it is that
pulls these elements together. The opposite attitude would be to think that there
is much more to a set than its elements, e.g. the way, whatever it means, how the
elements are connected together into a set.

2. Axiom of Pair: From any two sets a and b we can form a new set {a, b} which
has exactly a and b as elements i.e.

∀x∀y∃z∀u(u ∈ z ↔ (u = x ∨ u = y)).

Note that {a, b} is not the union of a and b - however big sets a and b are the set
{a, b} has at most two elements, so in particular it is always finite. It is perfectly
possible that a = b and then {a, b} = {a}. We can form sets like {N,Q},
{Q} and {N,Q,R}. Such sets are not particularly common or useful, but their
existence in set theory is a manifestation of the basic tenet: whenever we have a
set, we consider it as a “completed” totality, something we can use to build new
sets.

3. Axiom of Union: For any set a we can form the union
⋃
a of a, which consists

of all sets which are elements of elements of a i.e

∀x∃y∀z(z ∈ y ↔ ∃u(u ∈ x ∧ z ∈ u)).

Often sets are given in the form a = {ai : i ∈ I}, that is, a is the range of
the function i 7→ ai. Then

⋃
a is the set

⋃
i∈I ai. This is a basic operation in

mathematics and many applications of set theory.
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4. Axiom of Power set: For any set a we can form the power set P(a) of a which
consists of all sets which are subsets of a i.e

∀x∃y∀z(z ∈ y ↔ ∀u(u ∈ z → u ∈ x)).

One often hears criticism of this axiom but often also for a wrong reason. The
problem with this axiom is not that it says that “all” subsets of a, whatever that
means, exist. It says that those subsets which do exist can be collected together.
The opposite of this axiom would be to think that some power sets are so large
that they are proper classes. For example, we could think that, opposite to what
the power set axioms says, the set of all reals, which is essentially the power set
of N, is a proper class. This is a coherent idea, but it does not mean that we have
missed some subsets. We have all the subsets that we have, but we just cannot
pull all of them together into a set. A smooth theory of the reals seems to require
the power set axiom, but there are also alternative approaches.

5. Axiom Schema of Subsets: For any set a we can form a new set by taking the
intersection of a and any class. In particular we can form new sets of the form
{x ∈ a : ϕ(x)} where ϕ(x) is any formula. More exactly, for any formula
ϕ(x, ~y) we have the following axiom:

∀x∀x1...∀xn∃y∀z(z ∈ y ↔ (z ∈ x ∧ ϕ(z, ~x))).

Sets of the form {x ∈ a : ϕ(x)} are very common in mathematics, for exam-
ple a ∩ b = {x ∈ a : x ∈ b}. Combined with the axioms of pair, union and
power set, the Axiom of Subsets is very powerful indeed. This axiom has the
impredicative element that the formula ϕ(x) in {x ∈ a : ϕ(x)} can have quan-
tifiers and because these quantifiers range over the entire universe of sets the set
{x ∈ a : ϕ(x)} itself is also in the range of the quantifiers. We can remove
this impredicativity by requiring that all quantifiers in ϕ(x) are bounded i.e. of
the form ∀y ∈ z or ∃y ∈ z. However, this limits the applicability of the ax-
iom seriously and leads to completely different kind of set theory, the so called
Kripke-Platek set theory (see [4]).

6. Axiom Schema of Replacement: Suppose a is a set. If there is a way to asso-
ciate to every element i of a a new set ai, then we can form a new set {ai : i ∈ a},
that is, a set which has all the ai, where i ∈ a, as elements, and nothing else.
More exactly, for any formula ϕ(x, ~y) we have the following axiom:

∀x∀x1...∀xn(∀u∀z∀z′((u ∈ x ∧ ϕ(u, z, ~x) ∧ ϕ(u, z′, ~x))→ z = z′)
→ ∃y∀z(z ∈ y ↔ ∃u(u ∈ x ∧ ϕ(u, z, ~x)))).

This axiom introduced by Fraenkel is needed e.g. in transfinite recursion.

7. Axiom of Infinity: This axiom simply says that there is an infinite set. More
exactly,

∃x(∃y(y ∈ x ∧ ∀z¬(z ∈ y)) ∧ ∀y(y ∈ x→ ∃z(y ∈ z ∧ z ∈ x))).
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There are many ways to write this axiom, all equivalent, given the other axioms.
The particular formulation here yields the set A = {∅, {∅}, {{∅}}, ...}. It is easy
to see on the basis of the Axiom of Extensionality that all elements of this set A
are different.

8. Axiom of Foundation: This axiom says that every set has an element which is
minimal with respect to ∈, that is

∀x∃y(x ∩ y = ∅).

This is the most useless axiom (of set theory) that anyone ever invented. In fact
there are reasons to claim that no-one ever used this axiom! However, since the
intuitive idea of sets is that they were “created” in stages, with elements of a
set having been created before the set itself, then of course every set has an ∈-
minimal element, namely the one that was ‘created first”. Since we do not really
think sets were created—creation being a mere metaphor—there is hardly any
mathematical example where this axioms turns up. Set theorists count it in for
their internal aesthetic reasons. Its usefulness is not based in what it gives but
rather in that we can live without the circular sets it excludes.

5 Axiom of Choice
The Axiom of Choice is one of the axioms of set theory but we treat it here separately
from the others because it is of a slightly different character. The Axiom of Choice
states that if a set a of non-empty sets is given, then there is a function f such that
f(x) ∈ x for all x ∈ a. That is, the function f picks one element from each of those
non-empty sets. There are so many equivalent formulations of this axiom that books
have been written about it. The most notable is the Well-Ordering Principle: every set
is equipollent with an ordinal (see e.g. [12, p. 45]).

The Axiom of Choice is the only axiom of ZFC which brings arbitrariness or ab-
stractness into set theory, often with examples that can be justifiably called pathologi-
cal, like the Banach-Tarski Paradox (see above). Every other axiom states the existence
of some set and specifies what the set is. The Axiom of Union says the new set is the
union

⋃
i∈ABi, the Axiom of Power Set says the new set is the powerset {B : B ⊆ A},

the Axiom of Subsets states that the new set is of the form {b ∈ a : ϕ(b)}.
Because of the abstractness brought about by the Axiom of Choice it has received

criticism and some authors always mention explicitly if they use it in their work. The
main problem in working without the Axiom of Choice is that there is no clear alter-
native and just leaving it out leaves many areas of mathematics, like measure theory,
without proper foundation.

A basic problem with an axiom like the Axiom of Choice is that it has a formula-
tions which are rather obvious, like the formulation above, and equivalent formulations
which are completely unbelievable, like the Well-Ordering Principle. If one thinks of
formulations that make it look obvious, one would like to accept it, but when one looks
at the unbelievable consequences one would like to reject it. So which way to go?
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It is sometimes wrongly believed that the problem of the Axiom of Choice is in that
no-one knows which element to choose from each non-empty set. This is not the point.
If a set a is non-empty, i.e. it is not the case that every set is not in a, then by the laws
of logic there must be a set in a. This does not require the Axiom of Choice as it is
simply a consequence of provability of ¬∀x¬A→ ∃xA. The problem is how to make
infinitely many such choices.

6 Independence results
In set theory it is relatively easy to formulate questions that have turned out to be impos-
sible to decide on the basis of the axioms. The most famous of these is the Continuum
Hypothesis, already proposed by Cantor. The Continuum Hypothesis claims that every
uncountable set of reals is equipollent with the entire set of reals R (see discussion on
Continuum Hypothesis in Section 3.4).

The undecidability of a sentence on the basis of any axioms, set theory or not, can
be proved by producing two models of the axioms, one where the sentence is true and
another where it is false. In the case of the Continuum Hypothesis such two models
have indeed been produced (see e.g. [12, chapters 13 and 14]). The two models, one
due to Kurt Gödel and the other due to Paul Cohen, have led to an extensive study of
models of set theory, and a profusion of different kinds of models have been uncov-
ered. Most of these models are constructed by a method called forcing. This highly
interesting method has turned out to be of relevance also outside set theory.

The basic idea of forcing is that instead of trying to build directly a model where
something we are interested in is true, we settle with something less. We settle with
contemplating what finite pieces of information, called conditions, “force” to be true,
if ever a model based on them was constructed. For example, if we have a name Ȧ for a
set of natural numbers, then the condition {0 ∈ Ȧ, 1 /∈ Ȧ} forces Ȧ to contain 0 but not
1, and this condition leaves it open whether e.g. 2 is in Ȧ or not. We form a particular
infinite sequence of conditions called a generic sequence and build a model, called a
generic model from that sequence. Remarkably, a sentence is true in the generic model
if and only if some condition in the generic sequence forces it to be true. This can be
done in such a manner that the Continuum Hypothesis is forced to be true or false in
the generic model according to our will. If we want the Continuum Hypothesis to be
true we use one kind of condition and if we want it to be false we use another kind of
condition. For more on forcing see [12, Chapter 14] and [15, Chapter VII].

Forcing has turned out to have a connection to both modal and intuitionistic logic.
This connection arises from the fact that we can think of the set of forcing conditions
as the frame of a Kripke structure. For example, a condition p is said to force ¬ϕ if
and only if no extension of p forces ϕ. This is exactly the same as the definition of the
truth of a negated sentence of intuitionistic logic at a node of a Kripke structure.

The philosophical importance of forcing is manifold. It represents a useful weak
truth definition, and as such one which can be used in different parts of philosophical
logic. It uncovers a huge gap in what the axioms of set theory decide leading to the
philosophical question, whether there is ultimately any true universe of mathematical
objects. Skeptics say that Gödel’s Incompleteness Theorem casts a doubt on the ex-
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istence of mathematical objects, and Cohen’s forcing, especially the independence of
the Continuum Hypothesis, was the last blow which to many people totally shattered
the idea of a platonist reality of mathematics. The opposite view is that mathemat-
ical objects form a definite unique reality of their own and the results of Gödel and
Cohen merely manifest an inherent underdetermination of the axioms of set theory in
uncovering what is true in this invisible world and what is not.

7 Some recent work

7.1 Descriptive Set Theory
A set A is said to be definable if there is a formula ϕ(x) such that A is the set of sets
b that satisfy ϕ(x). Since there are only countably many formulas there can be only
countably many definable sets. However, if we allow parameters, we get more defin-
able sets. Typical parameters that are sometimes allowed are on the one hand ordinal
numbers and on the other hand real numbers. Descriptive Set Theory is an important
sector of set theory which concentrates on sets that are definable with real parame-
ters. The basic ideology is that the arbitrariness or pathology brought by the Axiom of
Choice is only manifested in the realm of undefinable sets. The sets we actually work
with are a fortiori definable—otherwise we could not talk about them! Seminal results
of Martin-Steel-Woodin ([17]) show that assuming so called large cardinals, phenom-
ena like the Banach-Tarski Paradox do not occur among definable sets. In other words,
large cardinals remove the negative effect of arbitrariness that the Axiom of Choice
brings to set theory. The abstract arbitrary sets are there, and are needed for the gen-
eral theory, but they do not disturb the world of definable sets with their paradoxical
counter-intuitive properties. Current work in Descriptive Set Theory further empha-
sizes this and at the same time brings set theory closer and closer to classical analysis,
topology and measure theory (see e.g. [5]).

7.2 Non well-founded set theory
The Non-well-founded set theory of Peter Aczel ([2]) takes on the empirical fact that
the Axiom of Foundation is not really a necessary axiom. So non-well-founded set
theory replaces the Axiom of Foundation with its ultimate strongest possible denial:
any combination of circularity in the ∈-relation is manifested by some sets. Circularity
comes up naturally in computer science: the state of a program may very well come
back to itself. Of course, the common sense view is that then the program is in a loop
and can be “dismissed” as a program with a bug. However, another common sense view
is that most programs can enter a loop, and some programs, like operating systems, are
even expected to come back to the same state time after time. It has turned out that
non-well-founded set theory can be used to model conveniently processes in computer
science (see e.g. [3]).
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7.3 Constructive set theory
Constructive set theory drops classical logic from set theory. As a result, ¬∀x¬ϕ(x)
is not anymore a guarantee for ∃xϕ(x). For us to assert ∃xϕ(x) we have to have a
construction of an x and a proof that ϕ(x). At first sight this seems to have devastating
consequences for set theory. However, if we just adopt constructive logic but do not
change the axioms we do not gain much ([11]). To really make a difference in the
direction of constructive mathematics, one has to rethink the axioms. One approach
gaining popularity is the Constructive Zermelo Fraenkel Set Theory CZF (see [1]).
The goal of CZF is to offer a simple intuitive foundation for constructive mathematics
in the same way as ZFC offers one for classical mathematics.

8 Historical Remarks and Further Reading
Set theory was launched by Georg Cantor (see [6] and [7]) in 1874. There are many
elementary books providing an introduction to set theory, for example [8], [9], [18],
[16]. Textbooks covering a wide spectrum of modern set theory are [13] and [14]. A
colossal recent source of advanced set theory is [10].
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