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Abstract. This paper responds to recent work in the philosophy of Homotopy Type Theory by James

Ladyman and Stuart Presnell. They consider one of the rules for identity, path induction, and justify it

along ‘pre-mathematical’ lines. I give an alternate justification based on the philosophical framework of

inferentialism. Accordingly, I construct a notion of harmony that allows the inferentialist to say when a

connective or concept is meaning-bearing and this conception unifies most of the prominent conceptions of

harmony through category theory. This categorical harmony is stated in terms of adjoints and says that

any concept definable by iterated adjoints from general categorical operations is harmonious. Moreover,

it has been shown that identity in a categorical setting is determined by an adjoint in the relevant way.

Furthermore, path induction as a rule comes from this definition. Thus we arrive at an account of how path

induction, as a rule of inference governing identity, can be justified on mathematically motivated grounds.

§1. The Challenge to Path Induction. In a recent paper [13], the authors consider
the question of justification for the identity rules in Homotopy Type Theory (HoTT). They
conclude that the justification for the identity rule called path induction in HoTT is too
mathematical to take part in a foundational justification. Whereas the justification in the
HoTT Book [34] is explicitly homotopical, the authors propose a method of justification
that is ‘pre-mathematical’. Accordingly, they supply their own justification for the identity
rules that is intended not to rest on higher mathematical notions like homotopy.

I think this challenge is appropriate. Path induction is surely a subtle and powerful rule
in HoTT and its nature might need both explanation and justification. But I do not think
that the justification given in [13] is sufficient. To meet the challenge in an alternate way,
the paper has three major theses:

1. A mathematically motivated inferentialism should be preferred to the pre-mathematical
requirement.

2. We can justify constants and connectives, like identity, by appeal to a notion of infer-
ential harmony which can be specified in terms of adjoints from category theory.

3. Identity is harmonious in this sense and path induction, its elimination rule in HoTT,
is likewise justified.

§2. Inferentialism. Inferentialism, in our context, is the thesis that the meaning of
the logical concepts (e.g. conjunction, conditional, negation, identity) is determined by the
rules governing them (cf. [21], [32, 33], [27], and Part II of [22]). Although I believe this
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holds for mathematical concepts more broadly — namely ‘informal’ mathematical concepts
— considering only the logical case gives us very precise rules to consider. These rules are
most commonly the rules from natural deduction in the style of Gentzen.1 Using these
rules, we can focus questions of meaning and, I argue, justification of rules of inference.
More specifically, we ask the question whether the rules of inference are at least meaning-
bearing. The way the inferentialist understands when rules are meaning-bearing relates to
the information needed in order to fix the meaning of the connective.

We can take either the introduction rules or the elimination rules for a connective to be
constitutive of its meaning [7, p. 396]. The former view is called verificationism and the
latter pragmatism. These are not to be confused with the empirical verificationisms of the
Vienna Circle (though see [16]) or the pragmatism of Peirce and James. Two prominent
inferentialists, Dummett and Martin-Löf, chose verificationism for their inferentialism, but
Dummett notes that the two conceptions are really not that different. This separation of in-
ferentialisms isn’t particularly helpful in my view since connectives like disjunction and the
existential quantifier are best understood through their elimination rules and connectives
like conjunction and the universal quantifier are best understood through their introduction
rules. This will correspond to the fact that disjunction and existentials are left adjoints
and conjunctions and universals are right adjoints (see Section 4). However, for simplicity,
we will only consider the verificationist perspective when discussing the philosophical view
of inferentialism.

If, for example, we take the meaning of conjunction to be completely determined by the
introduction rule

A B
A ∧B

then we can detach the justification for the rules from the pre-systematic notions of con-
junction. That is, once we have the appropriate introduction rule, we need not concern
ourselves with the thing they were trying to represent when considering the elimination
rule; we have other criteria at that stage. We need only find an appropriate elimination
rule (or a set of elimination rules) to make sure the inferential role taken by a conjunction
is meaning-bearing. The way to ‘derive’ the elimination rule can either be informally done
[17] or formally so [26] but the intuition goes like this: to get a verification of a conjunction
A ∧B, one needs a verification of each conjunct A and B.2 So the elimination rules must
only allow one to derive at most each individual conjunct. Thus we give two rules that
take the conjunction A ∧B and derive either A or B from it. That this is the correct way
to derive the elimination rules is shown by harmony which is discussed in the next section.

1Hilbert-style systems were also meant to capture the meaning of the concepts used in mathematical
inference (e.g. disjunction, conditional) [4] since the development there is so historically tied to that of
Gentzen’s.

2The word “verification” is not synonymous with “proof” in either Dummett’s or Martin-Löf’s writing.
Instead it may be understood as a certain kind of proof; a canonical choice that is compositional in the sense
that it refers only to components of the complex formulae. So although we may prove conjunctions using
different means, we take the verification to be a special form of proof using only the stipulated introduction
rule.
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The above is an example of Martin-Löf’s meaning explanations (for the case of conjunc-
tion) and they are key to the intuitionistic nature of his type theory.3 Similarly, Dummett
used his verificationism to support a preference for intuitionistic logic, for instance in [8].

To coherently talk about this sort of logical inferentialism we need a unified account of
what an inferential role is.4 After all, if we would like to say the meaning of a connective
is determined fully and uniquely by the inference rules governing that connective, we need
a way to talk about these inference rules in a systematic way. One such way is meta-logic,
a method used by many of the authors who endorse this inferentialism [24, 32, 27]. In
this methodological framework, we consider natural deduction rules, possibly in sequent
style, and consider their relations to each other to determine harmony or other inferential
features (e.g. uniqueness of connectives, conservative extension). My account does not use
these tools at its core; it instead uses category theory.

This shift to category theory is motivated by noting certain connections to the inferential-
ist philosophy, demonstrating how category theory fits in with the philosophical framework.
First, in the practice of category theory, we use naturally inferentialist language to talk
about the objects of a category. The universal characterization of limits and colimits, for
instance, render these important constructions in terms of their role in the structure of
arrows. If we read the arrows as deductions and the product as conjunction, we get a
structural definition of conjunction by referring only to when there exist inferences with
a conjunction as a result.5 But this is precisely a verificationist reading of conjunction.
Similar readings can be given to the other connectives.

The second feature of category theory that indicates a match with an inferentialist phi-
losophy of logic is the Yoneda Lemma. The full build up of the Lemma would take us
too far afield of this section, but I give here a way to interpret this central fact about
categories. We can soundly interpret arrows into an object A as ‘generalized elements’ of
A and considering all such generalized objects of A uniquely characterizes A. Perhaps the
best philosophical gloss of the Yoneda Lemma is due to Urs Schrieber [9]:

One way to look at it is this: for C a category, one wants to look at presheaves
on C as being “generalized objects modeled on C” in the sense that these are
objects that have a sensible rule for how to map objects of C into them. You
can “probe” them by test objects in C. For that interpretation to be consistent,
it must be true that some X in C regarded as just an object of C or regarded as
a generalized object is the same thing. Otherwise it is inconsistent to say that
presheaves on C are generalized objects on C.

The Yoneda lemma ensures precisely that this is the case.

This is all to say something, a bit subtly, about how objects are characterized by arrows. It
is also worth noting that the Yoneda Lemma has two versions: contravariant and covariant.

3It should be noted here that the formal framework of HoTT is based heavily on Martin-Löf Type Theory.
4I take the phrase “inferential role” to indicate the place a complex formula has in the inferential (or

deductive) structure.
5These definitions by universal property match almost exactly with the structural definitions of logical

connectives by Koslow in [11].
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So we can either look at all the ways to probe the object by looking at arrows to it or, to
stretch the metaphor, we can look at all the emissions of the object by looking at arrows
from it. In either case, we get a full picture of the object in question.

This gives us a picture, though only a very brief sketch, of how category theory unifies
conceptions of inferentialism, giving us a mathematical framework in which to systemat-
ically implement the philosophical. Moreover, the fact that inferentialism has such deep
connections to category theory suggests that inferentialism has grounding (conceptual, not
historical) in mathematics and can be considered a mathematically motivated choice of phi-
losophy – though that is not to say that inferentialists will generally appeal to mathematical
methods. However, the power of category theory to systematize notions of inferentialism
will find its most compelling expression in terms of how it unifies the notions of harmony:
notions to which we now turn.

§3. Harmony. To justify path induction, we will show that the identity rules in HoTT
are meaning-bearing. This is established through a notion of harmony that ensures the
rules are balanced and conservative with respect to provability. What this means is the
task we take up now: characterizing harmony. In the end, we will settle on a notion of
harmony based on the categorical notion of adjoint. But the idea of harmony has been
around for a long time in various guises. The impetus comes from a note by Prior [25] in
which a connective “tonk” is introduced as a sort of counterexample or warning to certain
philosophical approaches to logic. With the following rules:

A
tonk-I

A tonk B
and A tonk B

tonk-E
B

we can derive A ` B for any A and B we like. The question being addressed in the ensuing
discussion by Belnap [3], Stevenson [29], and others is whether we need to have a meaning
in mind before we introduce a new connective by the rules governing it. If we are allowed
to introduce whatever connective we like, then tonk is acceptable.

The view is that the problem with tonk is that although the introduction and elimination
rules, considered separately, are fine, making them about the same connective is where we
get into trouble; it is the interaction of rules that harmony considers. After all, tonk-I
is the same as ∨-I and tonk-E is the same as ∧-E, two seemingly fine rules, when about
their respective distinct connectives. Though tonk may not incite the same worry it may
have when it was first discussed, there are three basic conceptions of harmony that have
persisted. We will outline these conceptions before turning to the categorical unification.

There are three major types of harmony:

1. Inversion Principle
2. Strength / Weakness
3. Conservative Extension

I will refer to these as inversion harmony, inferential harmony, and conservative harmony,
respectively. Now, we describe and define each.

3.1. Inversion Harmony. Inversion harmony is due to Prawitz [24] and is proof-
theoretic. It is based on the inversion principle that Prawitz defines as follows:
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Let α be an application of an elimination rule that has B as a consequence.
Then, deductions that satisfy the sufficient condition [. . . ] for deriving the major
premiss of α, when combined with deductions of the minor premisses of α (if
any), already ‘contain’ a deduction of B; the deduction of B is thus obtainable
directly from the given deductions without the addition of α. [24, p. 33]

We take the case of the conditional → to illustrate the inversion principle. Say we have
a derivation of B that looks like this:

[A]

...
B →I

A→ B
D
A →E

B
Since we have a proof D of A, we can replace the assumption [A] by the proof of A. This
allows us to transform the proof to

D
A
...
B

which doesn’t use the →E used in the first derivation (i.e. “without the addition of α”).
This is what Prawitz means that there was already a proof of B ‘contained’ in our original
one that didn’t need (the last two applications of) the rules for implication. This process
is one of local reduction, where we create a proof that does not utilize the steps α.

The inversion principle has a converse, or dual notion. As given above, the fact that it
was→I followed by→E and not the reverse was important. If we call the above procedure
“local reduction”, the reverse would be a local expansion. Again taking as our example
the conditional, we can expand proofs of the form

D
A→ B

to proofs of the form

D
A→ B [A]u

→E .
B →I, u

A→ B
This time we created a longer proof that introduced two unnecessary steps, →E then
→I. This direction, instead of being called “harmony” is usually called “stability” [8, 28].
Stability is not as often required as harmony is, but the characterization in terms of adjoints
later will give us a categorical analogue of stability as well.

The fact that tonk fails inversion harmony can easily be seen by attempting to locally
reduce the detour

A
A tonk B

B
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There is no proof of B ‘contained’ in the proof without using tonk, unless of course A = B.
Local reduction and expansion of derivations contribute to Prawitz’s normalization the-

orem of natural deduction. But we also need to deal with the non-deterministic decision
of when to end a hypothetical derivation allowed by ∨-E, ∃-E, and ⊥-E. For example,
eliminating a disjunction A ∨ B relies on two sub-derivations of some conclusion C from
A and B respectively. The same conclusion can be proved with the application of ∨E
occurring ‘later’ or ‘earlier’ in the proof. Thus we need permutation conversions to ensure
that no matter when you apply these elimination rules, we can arrive at a normal proof.
The permutation conversion for disjunction is as follows:

A ∨B

[A]

D1

C

[B]

D2

C ∨E
C
E
D

7→

A ∨B

[A]

D1

C
E
D

[B]

D2

C
E
D ∨E

D
And though normalization is not the focus of this paper, it is worth noting that per-
mutations will turn out to be the naturalness aspect of adjoints.6 With local reduction,
expansion, and permutations, Prawitz can create an equivalence relation on natural de-
duction derivations with unique normal forms as representatives of their equivalence class.
Though the equality of proofs is an interesting topic, we will not go further into it here.

An important take on inversion harmony is found in type theory. The propositions as
types interpretation allows a quite direct way to think of harmony and stability in type-
theoretic contexts. In their discussion of constructive modal logics, Pfenning and Davies
in [23] use different terms, but the idea is similar, if a bit broader:

Local Soundness: The elimination rules cannot be too strong. No matter how we
apply elimination rules to the result of an introduction rule we cannot gain any new
information. We demonstrate this by showing that we can find a more direct proof of
the conclusion of the elimination which does not first introduce and then eliminate the
connective in question. This is witnessed by a local reduction of the given introduction
and the subsequent elimination.

Local Completeness: The elimination rules are not too weak. There has to always be
a way to apply elimination rules so that we can reconstitute a proof of the original
proposition from the results by applying introduction rules. This is witnessed by a
local expansion of an arbitrary given derivation into some eliminations followed by
some introductions.

Notice that these descriptions even include an information-based analysis of harmony.
Indeed, this language also preempts the inferential harmony which we now turn to.

3.2. Inferential Harmony. Though the various conceptions of harmony use language
that refers to logical strength, as in the description of local soundness and completeness,
inferential harmony makes it the central feature. Through several revisions [31, 30] in
response to tonk-like counterexamples, Tennant created a characterization of harmony

6I owe this insight to Ed Morehouse in discussions and in [20, p. 16].
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that was split up into a strength condition and weakness condition [32]. For simplicity,
Tennant frames inferential harmony in terms of a binary infix connective λ:

Strength: AλB is the strongest conclusion possible under conditions described by λ-I.
Moreover, in order to show this

i. one needs to exploit all the conditions described by λ-I;
ii. one needs to make full use of λ-E; but
iii. one may not make any use of λ-I.

Weakness: AλB is the weakest major premise under the conditions described by λ-E.
Moreover, in order to show this

i. one needs to exploit all the conditions described by λ-E;
ii. one needs to make full use of λ-I; but
iii. one may not make any use of λ-E.

One notable thing about this formulation is in its constraints on how to show the strength
and weakness of AλB. Accordingly, the proof of the two sides of inferential harmony,
strength and weakness, must not fall afoul of the six given conditions.

The notions of strength and weakness, in turn, are analyzed in terms of inferential roles.
The definitions are as follows:

P is the strongest proposition with property F if P has property F and any
proposition with property F is a logical consequence of P .

P is the weakest propositions with property F if P has property F and is a logical
consequence of any proposition with property F .

This too will be handled uniformly by the categorical interpretation of harmony, since
adjoints have a universal property. However, the proof constraints are less part of the
problem of harmony and more a part of the system in which Tennant works, and so we
will not preserve that feature when we move to category theoretic discussions.

An example will help clarify inferential harmony. We will show that implication → is
inferentially harmonious.

Strength: A → B is the strongest proposition implied by Γ whenever Γ ∪ {A} entails
B.

Proof. Clearly A→ B has the property in question. That is, by →E,

A→ B,A ` B .(1)

Now suppose there is a θ that is implied by Γ whenever Γ ∪ {A} implies B. Given 1,
A→ B fits the role of Γ, giving us the desired

A→ B ` θ

a
Note that we used →E fully in 1 but nowhere appealed to →I.

Weakness: A→ B is the weakest proposition that with A implies B.

Proof. Suppose θ is a proposition that with A implies B. By →I, we get
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θ [A]u

B →I,u ,
A→ B

which shows that θ implies A→ B as desired. a
In this proof, we never appealed to →E nor did we use any less than the full →I rule.

The requirement to fully use either λE or λI only arises when we have more than one
I-principle or E-principle. For illustration, we show that A ∧ B satisfies the Strength
requirement in inferential harmony.

Claim 1. A ∧B is the strongest proposition implied by the combination of A and B.

Proof. Let the pair of propositions A and B imply θ. Then we derive θ from A ∧B:

A ∧B ∧E1
A

A ∧B ∧E2
B

θ

Note that we use both elimination rules of conjunction; tonkish examples arise when we
do not require using all the E-principles [32]. Note also that no appeal was made to the
introduction rule. a
3.3. Conservative Harmony. If we say that the I-principles and E-principles of a

connective λ are conservatively harmonious, we are ascribing a property to the pair

((λ-I, λ-E), S)

where S is a logical system including (λ-I, λ-E) and possibly other connectives and their
rules. So conservative harmony is only used with respect to a logical system S, where the
two previous conceptions focused only on the I-principles and E-principles of one connective
at a time. Conservative harmony is satisfied if S is a conservative extension of S\(λ-I, λ-
E), the system S without the rules of inference governing λ. This sort of conservative
extension is not one of the theory, nor one of the language, per se. We may think of
this as a systematic conservative extension, introducing new rules of inference. Though
the change occurs in the deductive machinery, the definition of systematic conservativity
is straightforward. Suppose we have languages L and L′ with their respective deductive
systems S and S′, with L′ = L ∪ {λ} for a new operator λ and S′ = S ∪ {(λ-I, λ-E)}.
Then for any formula A of L, A is a theorem in S′ only if A is a theorem in S. In this
case, we’d say that (λ-I, λ-E) is conservatively harmonious with respect to the system S.

Conservative harmony is usually credited to Nuel Belnap’s [3] response to Prior’s Tonk.
There is a further requirement that Belnap imposes for harmony: uniqueness. This is a
crucial requirement for inferentialists as well. Although not necessarily tied to conservative
harmony, uniqueness is usually included and so we include it here as well.

To say what uniqueness means, let σ be a connective with rules of inference R. Then we
say that R ensures the uniqueness of σ when for any new connective σ′, we can show that
when we replace σ with σ′ in all rules of R, the following is derivable

σ(x1, . . . , xn)↔ σ′(x1, . . . , xn) .(2)
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In other words, if σ and σ′ have the same rules, modulo symbol choice, then the connectives
are logically equivalent. Of course, if this did not hold, then we have denied inferentialism
in logic, for two concepts would have the same rules governing them and yet be somehow
distinguishable in the system. Moreover, as illustrated in the example below, this unique-
ness condition requires some sort of inverse behavior between σ-I and σ′-E which amounts
to inverse behavior between σ-I and σ-E since they’re structurally identical.

For an illustration, say we would like to show that the rules of inference governing
conjunction ensure the uniqueness of ∧. To show this, suppose that there is a connective
∧∗ with the following rules of inference:

A B ∧∗I
A ∧∗ B

A ∧∗ B ∧∗E
A

A ∧∗ B ∧∗E
B

Given these rules, which are just the rules for conjunction with ∧∗ replacing ∧, we can
show the necessary biconditional (2) via the following derivations:

A ∧B
A

A ∧B
B ∧∗I

A ∧∗ B

A ∧∗ B
A

A ∧∗ B
B ∧I

A ∧B
In the end, I will not endorse conservative harmony, but I will describe how uniqueness is
satisfied in the categorical setting.

§4. Categorical Harmony. Several authors have noted that inversion harmony is
easily represented for logical connectives by their adjoint definitions in category theory
[10, 20, 18]. However, inversion harmony is not the only sort of harmony that we can
capture with the notion of adjointness in categorical contexts. My definition of categor-
ical harmony largely agrees with Maruyama’s in [18] and so it is worth going over the
presentation there.

First, it is worth mentioning that the goals of this paper are not the same as those in [18].
There, harmony is expressly used to give us a way to judge the degrees of paradoxicality
for Russell’s paradox and Prior’s tonk connective. It is shown that both fail categorical
harmony but in different ways, thus leading to a way to distinguish these pathologies.
I want to use categorical harmony for two alternate goals: to unify the major notions
of harmony as given in the above taxonomy and to address questions of inference rule
legitimacy in recent foundational work, especially in HoTT.

In the following, we heavily rely on the notion of adjoint.

Definition 4.1. Let C and D be categories and L : C→ D and R : D→ C be functors.
Then L is left adjoint to R, and R is right adjoint to L, denoted L a R, if any of the
following equivalent conditions hold: 7

Natural isomorphism: There exists a natural isomorphism

θ : HomD(L(−),−) ' HomC(−, R(−)),

7These definitions are taken from [2].
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which is to say that for any objects C ∈ C and D ∈ D, we have a bijection between the hom
sets

HomD(L(C), D)
θ(C,D)

HomC(C,R(D))

such that for any arrows f : C ′ → C and g : D → D′, the following diagram commutes:

HomD(L(C), D) HomC(C,R(D))

HomD(L(C ′), D′) HomC(C ′, R(D′))

Hom(L(f),g)

θ(C,D)

Hom(f,R(g))

θ(C′,D′)

Universal property of unit: There is a natural transformation, called the unit of the
adjunction L a R,

η : 1C → R ◦ L

that has the following universal property:
For any C ∈ C, D ∈ D, and f : C → R(D), there exists a unique g : L(C) → D such

that

f = R(g) ◦ ηC .

Universal property of counit: There is a natural transformation, called the counit
of the adjunction L a R,

ε : L ◦R→ 1D

that has the following universal property:
For any C ∈ C, D ∈ D, and g : L(C) → D, there exists a unique f : C → R(D) such

that

g = εD ◦ L(f) .

To characterize harmony via adjoints, we first distinguish the universally definable op-
erations, a type of functor, as those that are definable in the general language of category
theory. Two examples would be the diagonal ∆ : C → C × C and the functor 1 : C → 1

that takes all objects in C to the unique object ∗ in the category 1 and all arrows to the
identity arrow on ∗. We then proceed in an iterated way to construct the harmonious
operations by taking adjoints to the universally definable operations and adjoints to any
of these newly acquired operations and so on. We can think of it inductively, namely, that
operations defined by adjunctions to the universally definable operations are harmonious
and if F is harmonious then operations defined by adjunction to F are also harmonious.
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This allows us to already declare that ∧,∨,>, and ⊥ are harmonious,8 since, from [14],

∨ a ∆ a ∧
and

⊥ a 1 a >.
Now, since ∧ is harmoniously produced, we can say that fixed-antecedent conditionals are
also harmonious since we have the adjunction

A ∧ (−) a A=⇒ (−).

And as a sharpening of the analogy between universal quantifiers and conjunctions on the
one hand and existential quantifiers and disjunctions on the other, we point out that they
have the same ‘parity’: both universal quantifiers and conjunctions are right adjoints and
both existential and disjunctions are left adjoints. The functor with respect to which the
quantifiers are adjoint is analogous to the diagonal functor. Instead of doubling up objects
X → 〈X,X〉, we have a weakening functor π that add hypotheses to contexts (like in a
sequent calculi). Then, although there are many details left out like closure conditions on
the category in question (cf. [1, §2.5]), we have

∀ a π a ∃.
And since weakening is surely a universally definable operation, we have the quantifiers
as harmonious, which is rarely even asked for while simulataneously giving mathematical
clarity to the analogy with conjunction and disjunction.

But there are two things about this iterative conception of logical operations that need
to be explicitly stated:

1. We must define new operations by a single adjunction.
2. A logical constant must be defined as an adjoint of an already existing operation,

namely not to itself.

Now we justify the claim that categorical harmony unifies the other conceptions.

4.0.1. Inversion Harmony. Given these characterizations of adjoints, we give categorical
semantics to (intuitionistic) natural deduction. Each of the usual connectives can be defined
as an adjoint to a functor. First, let us define the category that will simplify the exposition
of harmony, following [20].

Let L be a set of well-formed formulae that is closed under some inductive term con-
structors and let `L be a preorder9 on L.

Definition 4.2. A category of provability (L,`L) = L is defined by

8Although we use the logical symbols here, these are usually called product, coproduct, terminal object,
and initial object, respectively. They do not always exist in a category, but for our purposes, we are
assuming they do. For instance, the functor denoted by ∧ is the product functor (−) × (−) : C × C → C
that takes two objects to their binary product. This is the categorical equivalent to conjunction. Similarly,
the other logical notions defined by adjunction are defined as functors, since adjunction is defined in terms
of functors on categories.

9A preorder is a reflexive and transitive relation. So we have that for A,B,C ∈ L, both that A `L A
and if A `L B and B `L C then A `L C.
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• The objects are A,B,C, . . . ∈ L;
• The arrows are derivability claims: there is an arrow p : A→ B if and only if A `L B.

Since any category of provability is a preorder, there is at most one arrow between any
two formulae. This simplifies the hom set definition of adjunction, since each hom set is
either empty or a singleton. This provides a sort of flattened version of adjunction that
allows a formulation in terms of biconditionals. Let L = (L,`L) and L′ = (L′,`L′) be
categories of provability as just defined. Now suppose we have two functors F : L → L′
and G : L′ → L. Then F a G when for A ∈ L and B ∈ L′ we have the biconditional

F (A)→ B

A→ G(B)

We can now begin characterizing the usual connectives as adjoints in categories of prov-
ability. Define the diagonal ∆ : L → L × L on objects by ∆(A) = (A,A). The definition
extends obviously to arrows.

Definition 4.3. Define conjunction as the right adjoint to the diagonal:

∆ a ∧ .

This gives us the biconditional

(A,A)→ (B,C)

A→ B ∧ C
which amounts to

A `L B A `L C

A `L B ∧ C
which is a sequent description of ∧I.

For ∧E, we look to the counit. The counit gives us the biconditional

A ∧B `L A A ∧B `L B .
A ∧B `L A ∧B

And since `L is reflexive, we have an arrow on the bottom. Thus we get our E-principles
A ∧B `L A and A ∧B `L B.

We have local reduction by the universal property of the counit. That is, two proofs of
the form

D1

A

D2

B
A ∧B
A

and

D1

A

D2

B
A ∧B
B

are uniquely associated to two proofs of the form

D1

A
and

D2

B
.
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To see this, we take D1 : Γ → A and D2 : Γ → B creating an arrow (D1,D2) : ∆(Γ) →
(A,B). By the universal property of the counit, this gives us a unique arrow f : Γ→ A∧B
such that

(D1,D2) = ε(A,B) ◦∆(f).

And since the counit is given by the pair of ‘projections’ (p1, p2) : A ∧ B → (A,B) and
f = 〈D1,D2〉, we get

(D1,D2) = (p1, p2) ◦∆〈D1,D2〉,
giving us the local reduction. In the other direction of the counit, we get that

id = 〈p1, p2〉
which allows us to expand

A ∧B to
A ∧B p1

A
A ∧B p2

B ∧I
A ∧B

where we understand ∧I as the deduction given by the adjunction when we have an arrow
to both A and B. The expansion is really only repeating the fact that the conjunction is
the Cartesian product in the category.

We take disjunction as another example that will finish our discussion of the relation
between categorical and inversion harmony. This case is illustrative for both the existence
of permutations and the fact that duality in logic is represented by duality of the unit and
counit. Where we used properties of the counit in the case of conjunction, for disjunction,
as a left adjoint, we will exploit properties of the unit in establishing inversion harmony.10

Definition 4.4. Define disjunction as the left adjoint to the diagonal:

∨ a ∆ .

This gives us the (‘upside down’) biconditional

(A,B)→ (C,C)

A ∨B → C
which amounts to

A `L C B `L C

A ∨B `L C

which is a sequent description of ∨E.11

For ∨I, we look to the unit. The unit gives us the biconditional

A `L A ∨B B `L A ∨B
.

A ∨B `L A ∨B
10For the cases of >,⊥,→,∀, ∃, see [20]. The method for showing right adjoints satisfy inversion harmony

is generalizable from the conjunction case and the left adjoints are dual to these in the sense to follow.
11Morehouse points out in [20, p. 64–66] that in the categorical setting, we have to be careful about

context internalization and that this isn’t quite the right ∨E. Since we’re not sticking exactly to Gentzen’s
sequent calculus, it is a minor point.
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And since `L is reflexive, we have an arrow on the bottom. Thus we get our I-principles
A `L A ∨B and B `L A ∨B.

The unit for this adjunction is the pair (inl, inr) corresponding to the two disjunction
introductions. Take the derivations

A
A ∨B

A
D1

C

B
D2

C
C

and B
A ∨B

A
D1

C

B
D2

C .
C

Dual to the case of conjunction, we use the universal property of the unit to derive

(D1,D2) = ∆[D1,D2] ◦ (inl, inr)

Which allows us to reduce the two above derivations to
A
D1

C

and
B
D2

C
as desired. The naturality of adjoints, in this case the codomain part, gives us

[D1,D2] ◦ E = [D1 ◦ E ,D2 ◦ E ].

This allows us to get the permutation rules we desire, providing a way to move later
derivations E into the minor branch of a deduction:

A ∨B

A
D1

C

B
D2

C ∨E
C
E
D

7→

A ∨B

A
D1

C
E
D

B
D2

C
E
D ∨E .

D
Finally, using the biconditional from the unit, we get that

id = [inr, inl]

which gives us the expansion from

A ∨B to A ∨B
A

A ∨B
B

A ∨B .
A ∨B

4.0.2. Inferential Harmony. The strength and weakness conditions in inferential har-
mony are satisfied by the universal properties of the connectives. Indeed, the structuralist
logic from [11] exemplifies this approach to logic via universal definitions of the connec-
tives. Since universal properties are closely related to adjoints, we immediately see that
since ∨,∧,→,⊥,>,∀,∃ are defined by adjoints, they have the desired properties.

For example, continuing the case of conjunction and disjunction, we note that these
are represented by the Cartesian product and coproduct respectively. Being defined by
adjoints, the product and coproduct functors satisfy the strength and weakness conditions:

1. The conjunction A ∧B is the weakest proposition that implies both A and B.
2. The conjunction A ∧B is the strongest proposition that is implied by the pair A,B.
3. The disjunction A ∨ B is the weakest proposition that implies some C when both A

and B imply C.
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4. The disjunction A ∨B is the strongest proposition that is implied by either A or B.

We need only state the universal properties of the respective adjoints to get these facts:
The Cartesian product A × B comes with two projections π1 : A × B → A and π2 :

A × B → B such that for any f1 : X → A and f2 : X → B, there exists a unique arrow
〈f1, f2〉 : X → A×B such that the following diagram commutes:

X

A A×B B .

f1 f2〈f1,f2〉

π1 π2

Thus (1) is achieved. Further, if we take some X that is implied by both A and B, i.e.
arrows a : A → X and b : B → X, then we merely compose with the projections to get
two arrows (a ◦ π1), (b ◦ π2) : A×B → X, giving us (2).

The coproduct A+B comes with two injections inl : A→ A+B and inr : B → A+B such
that for any g1 : A→ X and g2 : B → X, there exists a unique arrow [g1, g2] : A+B → X
such that the following diagram commutes:

X

A A+B B .

g1

inl

[g1,g2]

inr

g2

Dual to conjunction, this gives us (4) from above. To get (3), we take a proposition X
that implies C whenever both A and B imply C. But then using A+B as C, we get that
X → A+B since we already have the required arrows inl : A→ A+B and inr : B → A+B.

Now we must consider the ‘way we proved’ the above facts, since inferential harmony
restricts our proof methods, but as we’ll see, this part can be dispensed with in categorical
harmony. Let’s take the case of conjunction’s weakness to show how the above follows
Tennant’s description of harmony from Section 3.2:

i. We exploited all the conditions of ∧E because we considered both projections, i.e. the
two eliminators for products/conjunctions.

ii. We made full use of ∧I by getting an arrow X → A×B through the two arrows X → A
and X → B.

iii. We didn’t use ∧E in the sense that we didn’t use the fact that the counit of the
adjunction gives us the two arrows π1 and π2.

This last requirement, however, is not quite right. The difference really is in the framework
that we are using; where inferential harmony uses natural deduction and some sort of
constrained informal proof, we use categorical deduction. I am inclined to think that the
framework used in [32] is responsible for the many conditions on how we establish harmony.
Categorical harmony has no such complication. In some sense, everything comes from the
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adjunction and so cannot really be separated into what ‘we use’ and ‘what we do not
use’. So although we abandon this small feature of inferential harmony, I take it to be an
unburdening of harmony and a positive feature of categorical harmony that it need not
deal with aspects that are difficult to establish. We do not lose the ability to distinguish
between the sorts of connectives that are avoided in [32].

Therefore, we have captured all the (important) parts of inferential harmony with cate-
gorical harmony.

4.0.3. Conservative Harmony. As alluded to earlier, I will not be capturing conservative
harmony in its full sense with categorical harmony. Conservative extensions aren’t really
part of the categorical framework and I contend that this is not a shortcoming. The most
important aspect of Belnap’s harmony for the inferentialist is not the conservativity, but the
uniqueness of connectives in the sense described in Section 3.3 since uniqueness warrants
the claim that the connectives have unique inferential roles.

This inferentially important point is given in the categorical setting as the uniqueness of
adjoints up to isomorphism:

Theorem 4.1. Given a functor F : C→ D with right adjoints U, V : D→ C,

F a U and F a V
we then have U ∼= V . Likewise for left adjoints.

Which we can read in the following way:

A connective λ defined by adjunction is unique in the sense that anything also
defined by that adjoint is logically equivalent to λ.

This ensures inferential uniqueness, up to logical equivalence, for all those connectives
defined by adjunction.

4.1. Inferentialism Again. The inferentialism laid out in Section 2 focused on how
introduction rules may satisfy the, admittedly somewhat vague, requirement of being
meaning-bearing. This is referred to as a verificationist perspective. As Dummett points
out, we could also take the elimination rules to be constitutive of the meaning of the con-
nective. He calls this inferentialist position pragmatism. He notes in [8], that the two
formulations are equivalent but he picks verificationism for his exposition; Martin-Löf does
as well.

This distinction is not entirely helpful, in my view. It requires picking a uniform mode
of fixing meaning, independent of the connective in question and we are told that verifica-
tionism and pragmatism are equivalent, but as far as I can make out, no argument is given
for this equivalence.

Categorical harmony, however, gives us a way to improve upon both of these aspects
of inferentialism. For the first, namely the supposition of there being only one way to
fix meaning, we instead distinguish connectives by whether they are defined by left or by
right adjoints to universally definable operations. To my mind, the introduction rules for
disjunction are not nearly as central to disjunction as the elimination rules are. Indeed,
argument by cases (the elimination rule) seems to be much more plausibly constitutive
of the meaning of disjunction. We see that reflected in categorical harmony by the fact
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that disjunction is defined as a left adjoint. Similarly, the non-specificity of the existential
quantifier — by that I am referring to the fact that the existential quantifier merely asserts
the existence of some object satisfying the formula — is captured by the elimination
rule. This is reflected again in the fact that existentials are defined as left adjoints. We
can rephrase this nice analogy between positive connectives (i.e ∨,∃,⊥) and left adjoints
by referring back to the Yoneda Lemma since this tells us that we can characterize the
connective by what we might deduce from it.

Similarly, right adjoints capture the negative connectives, namely conjunction and the
universal quantifier. Likewise, the covariant Yoneda Lemma gives us the inferentialist
reading of these connectives.

Categorical harmony also gives a sense in which verification and pragmatism are ‘equiv-
alent’: they are both instances of adjunctions. Although this is not, we suspect, what
Dummett had in mind, it allows us to consider the two inferentialisms as part of the same
idea, namely definable by adjoints to universally definable operations. This unity allows
us to dispense with the dichotomy, in terms of choosing which inferentialism to use, of
verificationism and pragmatism while at the same time allowing us to see the interesting
relationship between the two in a clearer light.

§5. Justifying Path Induction. With this robust notion of categorical harmony, we
can now come back and say something about path induction. The situation in HoTT is
a bit more complex than in Gentzen-style natural deduction. Accordingly, we generalize
from the pre-order category to a hyperdoctrine (see Lawvere’s work in [14, 15]) that allows
proof-relevance. I will not reproduce all of the details — which can be found in [35]— but
the main point is that identity in a hyperdoctrine is determined by adjunction.

From the categorical details, we can give a characterization of identity in terms of its
inferential role:

Identity is that relation that implies all and only reflexive relations.

This is a universal property and a definition by an adjoint to a general (hyperdoctrinal)
categorical operation of diagonals and terminal objects. Thus identity in a hyperdoctrine
satisfies categorical harmony.

Let us give a very brief description of identity in the hyperdoctrine, though we leave
out some technical details since it would require describing hyperdoctrines in full detail.
Equality predicates are defined via adjoints to simple functors. The equality predicate on
a type A which we write as EqA will be defined via a left adjoint to the substitution along
the diagonal. In general, the diagonal ∆A : A → A × A gives rise to the the substitution
∆∗A : P(A×A)→ P(A) between predicates over A×A and A respectively. We call ∆∗A the
contraction functor and takes predicates over two argument in A to predicates just over
A. We define the equality attribute (relation or predicate) on A × A to be left adjoint to
∆∗A applied to the terminal object of P(A) which we call > (consider this to be the ‘always
true predicate’). In hyperdoctrines, we denote the left adjoint with an existential symbol.

We define the equality relation to be ∃∆A
applied to this always true predicate. That is,

EqA := ∃∆A
(>)
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For clarity, the following picture shows us how EqA is derived given the diagonal morphism:

A

A×A

∆A gives us

P(A)

P(A×A)

∃∆A a ∆∗A

>

EqA

Putting this in our familiar inference rule format, we get the following biconditional for
any relation R ∈ P(A×A):

EqA → R

> → ∆∗A(R)

This can be roughly read as “Equality on A implies the relation R if and only if . . . ” and
so we see how this gives an inferentially specified sufficient and necessary condition for the
identity relation. Adding variables and replacing notation by more familiar ones, we get:

EqA(x, y) ` R(x, y)

` R(x, x)

which justifies our characterization of identity’s inferential role.
Furthermore, this definition of identity allows path induction as a rule12 and so we now

have two theses:

1. Identity is a concept determined by adjoint and so has a meaning-bearing inferential
role, being categorically harmonious;

2. The inferential role of identity in these hyperdoctrines indeed provides a justification
for path induction.

To reiterate, it may help to outline our justification of path induction. We constructed
a notion of harmony that allows the logical inferentialist to say when a connective or con-
cept is meaning-bearing and this conception unified most of the prominent conceptions of
harmony. This categorical harmony was stated in terms of adjoints and so any concept
definable by iterated adjoints from general categorical operations was harmonious. It has
been shown that identity in a categorical setting is determined by an adjoint [15]. Further-
more, path induction as a rule comes from this definition. Thus we arrive at an account of
how path induction, as a rule of inference governing identity, can be justified.

§6. Challenge reconsidered. In this section, I will examine the justification for path
induction given in [13]. Path induction is the following rule of inference in HoTT:

x :A, y :A, p :IdA(x, y) ` C(x, y, p) Type x :A ` t(x) :C(x, x, reflx)

x :A, y :A, p :IdA(x, y) ` J(t;x, y, p) :C(x, y, p)

where A is a type. This allows us to construct a term J of a type C dependent on
an identification of two terms of A as long as we’ve given a term of that type for the

12The proof that path induction is derivable from the definition of identity in a hyperdoctrine can be
found in the appendix to [35]. The proof there is due to Steve Awodey.
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trivial identification.13 This identity rule is motivated by the fact that the type theory is
dependent and intensional. So we don’t want reflection of ‘external’ identity in ‘internal’
identity, but something that still acts like a congruence. This rule seems quite different
than the usual rule for identity elimination for some predicate P :

P (x) x = y

P (y)

This, among other aspects of the identity type in HoTT, is cause enough to examine
whether the rule is properly justified.

In [12], we get a deeper understanding of why this is of foundational concern. If the
justification for path induction requires the homotopy interpretation given in [34], then
how can the putative foundation of HoTT be autonomous? After all, homotopy is part
of mathematics and it seems circular to allow it into the justification of a foundation of
mathematics. The authors explicitly cite the ‘pre-mathematical’ requirement given in [19]
when they say that a justification of the rules of inference must be given “a grounding or
basis in pre-mathematical ideas” [12, p. 3]. The pre-mathematical requirement amounts
to requiring that a justification of, say, path induction is independent of mathematical
knowledge, experience, observation, or history of mathematics. I believe that this pre-
mathematical requirement is too strong: it ignores the value of mathematical experience
and practice.

The strictness of this requirement can be illustrated by considering how axiomatic set
theory would fare. It may be admitted for the sake of argument that pairing, extensionality,
and even powerset would be justifiable without any mathematical experience whatsoever.
It seems unlikely, however, that the axioms of infinity, replacement, or choice could be so
justified. After all, the development of our most trusted foundations comes after many
years of trial and error, of testing the axioms to see what kind of mathematics it gives
us. It is thus problematic to require that foundations be derived entirely from our pre-
mathematical notions; mathematics is complex and the design of a foundational system
has to take into consideration the framework it intends to capture. The requirement may
amount to a restriction to naive foundations.

Of course, there is the response that although we have historically grounded foundations
in what we have learned in mathematics, we can still require that there be a different, purer
justification that does not require such mathematical experience. That is, we can avoid
the historically ‘accidental’ justification and achieve real justification by appealing only to
pre-mathematical notions. This response makes it clear, however, the extreme measures
we must go to to satisfy the criterion. We arrive at a foundation like axiomatic set theory,
being motivated by problems with the antimonies, consistency, flourishing philosophies of
mathematics at the turn of the 20th century, and methodological questions, and are then
required to forget all that to really justify the end result. The burden in this case seems to
be clearly on the defender of the pre-mathematical requirement to tell us why going back
to square one is needed or even desirable.

13The word “identification” refers to terms of the identity type. In the above formulation, the trivial
identification is reflx.
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Now let us look at how path induction is to be justified in this framework, according to
the argument in [13]. In lieu of using homotopy, the justification rests on two principles:
substitution salva veritate and the uniqueness principle for identity types. The former is
called transport in the HoTT literature and matches the standard identity elimination rule
that allows us to transport terms of one type to another:14

p :IdA(x, y) q :P (x)

J(p)(q) :P (y)

This reflects our pre-mathematical notion that identical terms should be substitutable in
all cases without affecting ‘truth-value’.

The second principle is not as straightforward. The intuition behind it states that the
identity type is really only inhabited by the trivial self-identifications, up to some other
identity type. If we simply said that the identity type is only inhabited by the trivial
identifications, the type theory would become extensional, thus losing a crucial feature of
HoTT. So we have to say something more careful. Define the dependent sum

Ea :≡
∑
x:A

IdA(a, x).

So Ea is the “singleton type” [6] that consists of pairs (b, p) where b :A and p : IdA(a, b).
The uniqueness principle for identity types then states that the following type is always
inhabited: ∏

(b,p):Ea

IdEa((a, refla), (b, p)).

This principle states that each pair in Ea is propositionally identical to (a, refla). In the
HoTT literature, this is called contractibility of the identity type.

These two principles together are sufficient for path induction, as shown in [5]. And this
concludes the pre-mathematical justification of path induction. However, on the face of
it, it seems not to be very pre-mathematical, especially given the second principle. How
are we to justify, without mathematical knowledge, the claim that identity types should
be inhabited by terms identical to the trivial identification up to propositional identity
over Ea? Although I think this is patently not pre-mathematical, I will not dwell on
the point here. So instead of analyzing an admissible splitting-up of the rule, we should
analyze whether the rule works with others that govern the same concept, in our case
identity. It is also worth noting that with this expanded notion of harmony, we are not
concerned with notions of ‘logicality’ as an avenue of justification. We do not need to
claim that harmony is a sufficient condition for an operation or relation to be logical in
order to say that it does justificatory work. Indeed, instead of considering the logicality
of identity as a relation, we have considered the universal character of the identity type,
which gives us insight into why the identity rules work the way they do. This way, we
avoid the pre-mathematical requirement and instead use the inferentialist conception of

14Here I leave out the other terms that J is dependent on to increase readability.
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justification. Is the elimination rule harmonious with its introduction rule? Yes, path
induction is determined by the adjoint which defines identity.
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