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Abstract

Leibniz developed several arithmetical interpretations of the asser-
toric syllogistic in a series of drafts from April 1679. In this article,
I present what I take to be one of his most mature articulations of
the arithmetical semantics from that series. I show that the assertoric
syllogistic can be characterized exactly not only in the full divisibility
lattice, as Leibniz implicitly suggests, but in a certain four-element
sublattice thereof. This refinement is also shown to be optimal in the
sense that the assertoric syllogistic is not complete with respect to any
smaller sublattice using Leibniz’s truth conditions.
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1 Introduction

In a series of drafts from April 1679, collected in Couturat [4], Leibniz pro-
posed various arithmetical interpretations of the assertoric syllogistic.1 I will
here focus on what I take to be one of his most mature presentations from
that series, given in Regulæ ex quibus de bonitate consequentiarum formisque
et modis syllogismorum <categoricum> judicari potest, PER NUMEROS [4,
pp. 77–84] (Regulæ de bonitate consequentiarum, for short).2

∗Affiliation: The Saul Kripke Center and Philosophy Program, The Graduate Cen-
ter, CUNY, 365 Fifth Avenue, Room 7118, New York, NY 10016, USA. Email:
yweiss@gradcenter.cuny.edu.

1All translations in this article are my own. Translations from Regulæ de bonitate
consequentiarum [4, pp. 77–84] to some extent follow Parkinson [14, pp. 25–32]. The
critical edition of Aristotle’s Prior Analytics (An. Pr.) is Ross and Minio-Paluello [16].

2Many of the key features of the approach in Regulæ de bonitate consequentiarum—for
example, that terms be represented or interpreted by a pair of coprime integers—are shared
with other drafts including Modus examinandi consequentias per Numeros [4, pp. 70–77]
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In Regulæ de bonitate consequentiarum, Leibniz himself sketches an argu-
ment that can reasonably be regarded as establishing (or nearly establishing)
the soundness of the assertoric syllogistic with respect to his arithmetical se-
mantics. The question of the adequacy of this semantics has been treated by
S lupecki [17, §10, pp. 298–300] and  Lukasiewicz [10, §34, pp. 126–129].

Nevertheless, there are good reasons to be dissatisfied with the S lupecki-
 Lukasiewicz approach. First, the reconstruction of the syllogistic they prove
their results with respect to is deficient for reasons which have been artic-
ulated by Smiley [18, pp. 136–138] and Corcoran [3, §§1.5–6, pp. 94–98].
Second, while S lupecki and others have been able to obtain completeness
theorems of sorts for the syllogistic, as far as I am aware, the issue of what
arithmetical completeness theorem is optimal has not been addressed. In
this article, I will not only obtain the completeness of the syllogistic with
respect to Leibniz’s semantics, but with respect to an optimal refinement
thereof. More specifically, I will identify the smallest arithmetical structure
(up to isomorphism) which exactly characterizes the syllogistic.

The plan of the article is as follows. In Section 2, I review the assertoric
syllogistic and present it in a convenient Gentzen sequent-style formulation.3

I present Leibniz’s arithmetical interpretation of the syllogistic from Reg-
ulæ de bonitate consequentiarum in Section 3. I give proofs of soundness,
completeness, and other results in Section 4. Some concluding remarks are
offered in Section 5.

2 The Syllogistic

I begin with a review of the key features of the traditional assertoric syl-
logistic.4 A categorical proposition is something of the form AxB where

and the fragment Ariew and Garber [1, pp. 14–17] call “A Fragment on Rules for Drawing
Consequences” [4, pp. 89–92]. (On the dating of these, see, e.g., Parkinson [14, pp. xx–xxi]
and Ariew and Garber [1, p. 10].)

In fact, some of the ideas in Regulæ de bonitate consequentiarum are nearly unchanged
even from the first draft in the series. For example, the truth condition for universal
affirmative propositions in Regulæ de bonitate consequentiarum is the natural extension of
a truth condition already articulated in Elementa Characteristicæ universalis [4, p. 42]. I
should note that suitably corrected versions of Leibniz’s earlier arithmetical interpretations
have been studied by Sotirov [20].

3Thus, my formulation of the syllogistic may not be as ‘natural’ as, say, that of Smiley
[18]. Nevertheless, this reconstruction retains the core idea that syllogisms are basically
arguments—not conditionals (pace  Lukasiewicz [10])—and provides a convenient frame-
work for proving metatheorems, which is my central interest here.

4Of course, the locus classicus for the syllogistic is Aristotle’s Prior Analytics (for a
good introduction and translation, consult Smith [19]). The presentation given here will

2



x ∈ {a, e, i, o} and A and B are terms (A is the predicate term and B is the
subject term). The categorical propositions may be read as follows:

1. AaB (universal affirmative) is read: ‘All Bs are As’;

2. AeB (universal negative) is read: ‘No Bs are As’;

3. AiB (particular affirmative) is read: ‘Some B is A’;

4. AoB (particular negative) is read: ‘Some B is not A’.

The quality of a categorical proposition refers to whether it is affirmative or
negative; the (a) and (i) propositions are affirmative while the (e) and (o)
propositions are negative. The quantity of a categorical proposition refers
to whether it is particular or universal; the (a) and (e) propositions are
universal while the (i) and (o) propositions are particular. In accordance
with the traditional square of opposition, the contradictory of AaB (AeB)
is AoB (AiB), and conversely. If p is a categorical proposition, I will often
denote its contradictory by p.

DEFINITION 1 (Deduction Scheme). A deduction scheme is something
of the form φ, ψ ⇒ θ, where φ, ψ, and θ range over categorical proposition
schemes (i.e., things of the form SxT where x is one of the four logical
connectives—x ∈ {a, e, i, o}—and S and T are term variables), satisfying the
following conditions (where it is supposed θ is of the form PxQ):

1. Exactly three term variables occur among φ, ψ, and θ;

2. Term variable P (the major term) must occur in exactly one of φ and
ψ (the major premise);5

3. Term variable Q (the minor term) must occur in whichever of φ and
ψ term variable P does not occur in (the minor premise).

The remaining term variable is the so-called middle term and, from the
stipulations, clearly must occur in both φ and ψ.

A deduction is a concrete instance of a deduction scheme, that is, some-
thing obtained by substituting terms for term variables (n.b., I am not using
‘deduction’ as a success term here). The countenancing of deduction schemes

not attempt to follow Aristotle religiously.
5The major premise usually comes first, but Aristotle does not always adhere to this

convention (for some discussion, consult Rose [15] and Thom [21]). This, in turn, justifies
the inclusion of Permutation among the rules of GS below.
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may seem to the reader to be a superfluous complication. In fact, I think
the usual term-requirements imposed on the syllogistic really have to be in-
terpreted schematically if deductions such as GaS,GeS ⇒ SeS, endorsed
by Aristotle himself as a syllogism (An. Pr. 2.15, 63b40–64a4), are even
to be grammatical.6 Note that this is perfectly admissible as a deduction
(substituting one term for two different term variables in 2-aee), though it
would not qualify as a deduction scheme under Definition 1 (interpreting the
terms as term variables) even though all of its substitution instances would
be deductions.

Deduction schemes may be classified in four figures according to the place-
ment of the middle term:7

1. First figure: the middle term is the subject in the major premise and
the predicate in the minor premise;

2. Second figure: the middle term is the predicate in both premises;

3. Third figure: the middle term is the subject in both premises;

4. Fourth figure: the middle term is the predicate in the major premise
and the subject in the minor premise.

The following elementary combinatorial fact is well-known but bears em-
phasis since it will play a critical role in what follows:

LEMMA 1. There are exactly 256 deduction schemes.

Proof. In any figure, there are 64 deduction schemes since there are three
categorical proposition schemes and four choices for the logical connective for
each (43 = 64). Given that there are four figures, this yields 4×64 = 256.

As a rule, I will be interested in deduction schemes in this article and will
not generally labor too hard to distinguish these from deductions hereafter.

I will often call ‘correct’ deductions syllogisms (I will mostly try to reserve
the word ‘valid’ for semantics). The syllogistic consists of perfect syllogisms
(analogous, for deductive purposes anyway, to axioms) and various rules for

6I should note that Corcoran [3, p. 99], in his reconstruction of the syllogistic, denies
that deductions such as this are well-formed by denying that expressions such as SeS are
well-formed; he does this despite acknowledging counterexamples from the second book of
the Analytics. Here I register my disagreement with Corcoran (and others) on this point
(cf. Weiss [28, p. 555, n. 14]).

7Aristotle recognized three figures (An. Pr. 1.4–6). The existence of a separate fourth
figure is the subject of a long and not especially interesting historical debate that appears
to hinge on little more than how certain terms are precisely defined.
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deriving other syllogisms.8 The following syllogisms are taken to be perfect
(cf. An. Pr. 1.4):

AaB,BaC ⇒ AaC (Barbara)

AeB,BaC ⇒ AeC (Celarent)

AaB,BiC ⇒ AiC (Darii)

AeB,BiC ⇒ AoC (Ferio)

The rules for deriving other syllogisms fall into certain natural clusters
including conversion rules (which operate on one proposition) and what might
be called shift rules (which operate on multiple propositions and involve shifts
in position):

AeB, p⇒ q

BeA, p⇒ q
(e-Conversion)

AiB, p⇒ q

BiA, p⇒ q
(i-Conversion)

AiB, p⇒ q

BaA, p⇒ q
(a-Conversion)

p, q ⇒ r

q, p⇒ r
(Permutation)

p, q ⇒ r

p, r ⇒ q
(Antilogism)

Call the system so-constituted GS (“Gentzen Syllogistic”). Formally, then,
a syllogism is any of the perfect syllogisms or any deduction which can be
derived from the perfect syllogisms using the displayed rules. If a deduction
p, q ⇒ r is a syllogism, I will write ⊢GS p, q ⇒ r.

It is not hard to show that this system is complete in the sense that all
of the 24 traditional syllogisms (enumerated in Appendix B) are derivable in
it; for an example derivation, see the proof of Theorem 1 below. Moreover,
Darii and Ferio are, as Aristotle himself observed (An. Pr. 1.7, 29b1ff.),
redundant. By GRS (“Gentzen reduced Syllogistic”) I mean GS without
these. Then:

THEOREM 1 (Reduction). ⊢GS p, q ⇒ r if and only if ⊢GRS p, q ⇒ r.

Proof. It clearly suffices to show that Darii and Ferio are provable in GRS.
Here I just give a derivation of Darii (I suppress permutations):

8Exactly what is ‘perfect’ about perfect syllogisms for Aristotle is not important for
anything here. The reader can find some pertinent discussion in Morison [13].
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CeA,AaB ⇒ CeB
AeC,AaB ⇒ CeB
AaB,CiB ⇒ AiC
AaB,BiC ⇒ AiC

This argument proceeds by applying e-Conversion to Celarent, applying An-
tilogism, and finally applying i-Conversion.

In view of Theorem 1 and the slight improvement in simplicity afforded
thereby I will work with GRS hereafter.

3 Leibniz’s Arithmetical Interpretation of the

Syllogistic

In this section, I discuss Leibniz’s arithmetical semantics for the syllogistic
from Regulæ de bonitate consequentiarum. I begin with a formal presentation
of the semantics and then turn to the source material to examine the extent
to which the formal apparatus can be found therein. I end the section with
some remarks on how to interpret the semantics.

The reader will recall that ⟨N, |⟩ is a lattice, where lcm (least common
multiple) is join, gcd (greatest common divisor) is meet, and 1 is the least
element.9 A frame is any sublattice of ⟨N, |⟩; a proper frame is a frame which
includes 1, and an improper frame is a frame which is not proper. Let T be
a countable set of terms. If F = ⟨S, |⟩ with S ⊆ N is a frame, a model (over
F) is a structure M = ⟨S, |, ν⟩ where ν : T → S × S. If ν(A) = (i, j), then
put ν+(A) = i and ν−(A) = j. A model is admissible if for all terms A in T,
gcd(ν+(A), ν−(A)) = 1.10

Given an admissible model M = ⟨S, |, ν⟩, the relation |=M is defined as
follows:

1. |=M AaB if and only if ν+(A)|ν+(B) and ν−(A)|ν−(B);

2. |=M AeB if and only if gcd(ν+(A), ν−(B)) ̸= 1 or gcd(ν−(A), ν+(B)) ̸=
1;

3. |=M AiB if and only if gcd(ν+(A), ν−(B)) = 1 and gcd(ν−(A), ν+(B)) =
1;

9I will assume some familiarity with lattice theory in this article. The reader not
familiar with the basic concepts might consult, for example, Davey and Priestley [5].

10Note that if F is an improper frame (e.g., if F is ⟨{2, 4}, |⟩), there are no admissible
models over F. For the most part, having improper frames around makes no real difference,
for which reason I choose not to proscribe them.
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4. |=M AoB if and only if ν+(A) ∤ ν+(B) or ν−(A) ∤ ν−(B).

DEFINITION 2 (Validity). Extending the definition of |=M, say that the
deduction p, q ⇒ r is valid in an admissible model M (in symbols, |=M p, q ⇒
r) if whenever |=M p and |=M q, then |=M r. Where F = ⟨S, |⟩ is a frame,
say that p, q ⇒ r is valid in F (in symbols, |=F p, q ⇒ r) if |=M p, q ⇒ r
for every admissible model M over F. Then p, q ⇒ r is valid simpliciter (in
symbols, |= p, q ⇒ r) if |=F p, q ⇒ r for every frame F. Where Γ and ∆ are
deductions, the rule Γ

∆
is valid if for every admissible model M, if |=M Γ,

then |=M ∆.

I have cleaned up and, in at least one respect, generalized Leibniz’s own
presentation of his arithmetical interpretation of the syllogistic. Nevertheless,
much of this can be found in his writings. Leibniz implicitly works with the
full lattice ⟨N, |⟩; I have added the notion of a frame as a sublattice thereof
because I will be interested in certain refinements in this article.

Regarding ν, Leibniz writes that any term can be written as two numbers
(leaving ν implicit), one modified by a ‘+’ sign and the other by a ‘-’ sign
[4, p. 78]. Thus, where I might put ν(Pious) = (10, 3), Leibniz would write
+10 − 3 (n.b., not 7).11 Regarding the restriction on admissible models,
Leibniz writes:

Hoc unum tantùm cavendum est ne duo numeri ejusdem Termini
ullum habeant communem divisorem. [4, p. 78]

Only the one thing to be avoided is this: no two numbers of the
same term may have any common divisor.

Clearly, as the subsequent example he discusses illustrates, he must mean
that they lack a common divisor other than 1; this is obviously equivalent to
requiring that their gcd be 1.

Leibniz gives the truth conditions sketched above for each of the cate-
gorical propositions, or conditions that are straightforwardly equivalent. For
example, a true universal affirmative is one in which:

numerus characteristicus subjecti [. . . ] per prædicati numerum
characteristicum ejusdem notæ [. . . ] exactè (id est ita ut nihil
maneat residuum) dividi potest. [4, p. 78]

The characteristic number of the subject can be divided exactly
(that is, so that nothing remains) by the characteristic number
of the same sign belonging to the predicate.

11With Glashoff [7, p. 176], it is hard to disagree that Leibniz’s notation is a bit unfor-
tunate.
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In Regulæ de bonitate consequentiarum, Leibniz does not give a suitable
definition of validity and his procedure for showing the validity of certain
rules even suggests a misunderstanding. In particular, his argument for the
validity of subalternation, that is,

AiB, p⇒ q

AaB, p⇒ q
(Subalternation)

uses a concrete interpretation (i.e., particular numbers) rather than proceed-
ing generally as required [4, pp. 80–81].12 In fact, however, the sort of rea-
soning Leibniz employs in this argument does straightforwardly generalize,
as I will show below in discussing a-Conversion.13 Moreover, in other texts,
Leibniz endorses approximately the definition of validity that I have given
above:

Si nosse volumus an aliqua figura procedat vi formæ, videmus
an contradictorium conclusionis sit compatibile cum præmissis,
id est an numeri reperiri possint satisfacientes simul præmissis
et contradictoriæ conclusionis; quodsi nulli reperiri possunt, con-
cludet argumentum vi formæ. [4, p. 247]

If we want to know whether some figure proceeds by virtue of its
form, we see whether the contradictory of the conclusion is com-
patible with the premises, that is, whether numbers can be found
that simultaneously satisfy the premises and the contradictory
of the conclusion; if none such can be found, the argument will
conclude by virtue of its form.14

Some remarks are in order about how Leibniz regarded his semantics. The
motivation for producing some kind of arithmetical interpretation appears to
be intimately related to a long-held ambition of Leibniz to produce a universal
calculus for expressing all thought and reasoning as clearly as arithmetical
notions and relations are expressed.15 The basic orientation of the proposed

12Note that Subalternation is plainly admissible in GRS by application of i-Conversion
and a-Conversion in succession.

13This observation is also made by van Rijen [25, p. 201]: “At first sight, Leibniz seems
to base these proofs on the properties of the actual pairs of numbers he has assigned to
the terms of these sentences. His argumentation ist [sic], however, perfectly general.”

14This translation to some extent follows Ariew and Garber [1, p. 18].
15The details of this Leibnizian program and how the arithmetization of the syllogistic

fits into it are beyond the scope of this article, but the reader can find some relevant
discussion in Gerhardt [6, Ch. XI, pp. 184–189] (translated as ‘Preface to a Universal
Characteristic’ in Ariew and Garber [1, pp. 5–10]), Kneale and Kneale [9, pp. 327–331],
Parkinson [14, pp. xvii–xxiii], Marshall, Jr. [11, p. 241], Glashoff [7, pp. 161–162], Uckelman
[22, §3], van Rooij [26, p. 181], and Arthur [2, Ch. 2].
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arithmetical semantics comes out most clearly from considering the truth
condition for universal affirmatives (this is also one of the most entrenched
features of Leibniz’s various arithmetical interpretations of the syllogistic;
see Footnote 2).

In an extensional semantics, ‘all men are rational’ would be true if and
only if everything in the extension of the subject (man) is in the extension
of the predicate (rational), that is, if and only if the subject is contained
in the predicate. In Leibniz’s intensional semantics, the truth condition
for universal affirmatives is rather the converse: the predicate is contained
in (i.e., divides) the subject. Thus, as the concept man, say, contains the
concept rational, it comes out true that all men are rational.16

While the intuitions undergirding the ao-fragment of the logic are, there-
fore, pretty clear, it is less clear what intuitions underpin the ie-fragment.
Historically, it appears that Leibniz came to these other truth conditions—
and the dual-integer assignments required for them—in an ad hoc way after
discovering inadequacies in his previous arithmetical treatments of particu-
lar affirmatives.17 Whatever might be said for these conditions in retrospect
(see, e.g., van Rooij [26, p. 184]), I will leave this matter here.

I have been using the term ‘semantics’ throughout as logicians of a cer-
tain bent are wont to do—that is, as a synonym for model theory or, more
narrowly, a model theory with some sort of intuition to back it up. To the ex-
tent that this model theory tracks at least some intuitions about intensional
containment, I take it that Leibniz has offered a semantics for the syllogistic
in the narrower sense.18

4 Results

Leibniz gives arguments for the validity of several of the conversion rules in
Regulæ de bonitate consequentiarum. In some cases, the argument is essen-
tially trivial. For example, in the case of i-Conversion, the result is immediate
from the commutativity of gcd. The most sophisticated case he considers,
which I have already mentioned, is that of Subalternation; I will largely re-

16For further discussion of extensional vs. intensional semantics in the context of Leib-
niz’s treatment of the syllogistic, consult Glashoff [8, §1] and van Rooij [26].

17For some pertinent discussion of this point, consult van Rijen [25, pp. 196–197], Sotirov
[20, p. 391], Glashoff [7, p. 174], Uckelman [22, p. 433], and van Rooij [26, pp. 182–183].

18I do not claim that he has offered a semantics in any other sense—for example, a
semantics of the terms used in syllogistic reasoning. Leibniz at least at some points seems
to have thought that it is possible, though very hard, to get true characteristic numbers
for all concepts (see, e.g., [6, Ch. XI, p. 189] and [4, p. 85]). But such numbers clearly are
not necessary for giving a formal semantics of a formal calculus such as the syllogistic.
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produce his argument for this in considering a-Conversion in the proof of
Theorem 2.

LEMMA 2. For any admissible model M and for any categorical proposition
p, exactly one of |=M p and |=M p obtains.

Proof. The truth conditions for a and o-propositions are opposed, and simi-
larly for e and i-propositions, from which the result is immediate.

THEOREM 2 (Soundness). If ⊢GRS p, q ⇒ r, then |= p, q ⇒ r.

Proof. It suffices to show that Barbara and Celarent, as well as the rules
of GRS, are valid. I examine just the cases of Celarent, a-Conversion, and
Antilogism.

Ad Celarent, suppose there were an admissible model M = ⟨S, |, ν⟩ such
that |=M AeB, |=M BaC, and ̸|=M AeC. Then either gcd(ν+(A), ν−(B)) ̸= 1
or gcd(ν−(A), ν+(B)) ̸= 1 (because |=M AeB). In the first case, 1 ̸=
gcd(ν+(A), ν−(B))|ν−(B)|ν−(C) (from |=M BaC) and gcd(ν+(A), ν−(B))|ν+(A),
from which it follows that gcd(ν+(A), ν−(C)) ̸= 1, contradicting ̸|=M AeC.
The second case is symmetric, which yields the result.

Ad a-Conversion, suppose there were an admissible model M = ⟨S, |, ν⟩
such that |=M AiB, p⇒ q but ̸|=M BaA, p⇒ q. Then, clearly, |=M BaA and
̸|=M AiB.19 From |=M BaA and the admissibility requirement, ν+(B)|ν+(A),
ν−(B)|ν−(A), gcd(ν+(A), ν−(A)) = 1, and gcd(ν+(B), ν−(B)) = 1. From
̸|=M AiB, either gcd(ν+(A), ν−(B)) ̸= 1 or gcd(ν−(A), ν+(B)) ̸= 1. In the
first case, gcd(ν+(A), ν−(B)) > 1; so as gcd(ν+(A), ν−(B))|ν−(B)|ν−(A)
and gcd(ν+(A), ν−(B))|ν+(A), gcd(ν+(A), ν−(A)) ̸= 1, a contradiction. The
second case is symmetric.

Ad Antilogism, suppose there were an admissible model M = ⟨S, |, ν⟩
such that |=M p, q ⇒ r and ̸|=M p, r ⇒ q. Then |=M r̄ and ̸|=M q̄ imply ̸|=M r
and |=M q by Lemma 2. Since |=M p and (ex hypothesi) |=M p, q ⇒ r, this is
impossible.

I turn now to showing completeness. I will prove completeness with re-
spect to a particular finite frame, namely, F6 = ⟨{1, 2, 3, 6}, |⟩. That is, I will
show that any deduction scheme other than the traditional 24 fails (i.e., has
a false instance) in an admissible model over F6. Given that the traditional
24 syllogisms are provable in GRS, this yields the result.

THEOREM 3 (Completeness). If |= p, q ⇒ r, then ⊢GRS p, q ⇒ r.

19From this point the argument is essentially Leibniz’s argument for Subalternation, but
abstracted from the concrete integers he uses in his treatment [4, pp. 80–81].
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Proof. In view of Lemma 1, it is feasible to tackle this by a brute-force
procedure. I wrote a Python script that cycled through all admissible models
over F6 finding countermodels to instances of all 256 deduction schemes other
than the traditional 24 syllogisms. A bit intellectually lazy, perhaps, but it
also seems to me to be in keeping with the spirit of Leibniz’s Calculemus!
and pioneering efforts in computing. Pseudocode for the script can be found
in Appendix A.

For the flavor, anyway, here is a countermodel over F6 the program found
for AeB,BeC ⇒ AiC (1-eei): ν(A) = (1, 2), ν(B) = (2, 3), and ν(C) =
(6, 1). Clearly, then, |=M AeB because gcd(ν−(A), ν+(B)) = 2, |=M BeC
because gcd(ν−(B), ν+(C)) = 3, and ̸|=M AiC because gcd(ν−(A), ν+(C)) =
2, which suffices.

Thus, I have shown that |=F6
p, q ⇒ r implies ⊢GRS p, q ⇒ r. The

theorem as stated now follows from the definitional fact that |= p, q ⇒ r
implies |=F6

p, q ⇒ r.

Although Theorem 3 is really an improvement on Leibniz’s own implicitly
suggested result, it bears pointing out that GRS is complete with respect to
the whole divisibility lattice:

COROLLARY 1. GRS is complete with respect to ⟨N, |⟩.

Proof. Suppose ̸⊢GRS p, q ⇒ r; by Theorem 3, ̸|=F6
p, q ⇒ r. If M = ⟨F6, ν⟩

is a rejecting countermodel, put M′ = ⟨N, |, ν⟩. It is clear that, for any s,
|=M s if and only if |=M′

s. It follows that ̸|=⟨N,|⟩ p, q ⇒ r, as desired.

I will now show that the completeness of GRS with respect to F6—or any
proper frame isomorphic to F6—is the optimal result.20 I show this by demon-
strating that a minimum of 4 elements are needed to falsifyAeB,BeC ⇒ AiC
(1-eei); this is not a valid deduction (see the proof of Theorem 3 above). I
first show something properly stronger:

THEOREM 4. AeB,BeC ⇒ AiC (1-eei) is valid in any frame that is a
chain.21

Proof. Let M = ⟨S, |, ν⟩ be an arbitrary admissible model over a frame that
is a chain. Suppose that |=M AeB and |=M BeC. Four cases can be distin-
guished on the given assumptions:

1. gcd(ν+(A), ν−(B)) ̸= 1 and gcd(ν+(B), ν−(C)) ̸= 1;

20Since every deduction is (vacuously) valid over any improper frame, clearly GRS
cannot be complete with respect to any improper frame.

21A frame F = ⟨S, |⟩ is a chain if for all j, k ∈ S, j|k or k|j.
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2. gcd(ν+(A), ν−(B)) ̸= 1 and gcd(ν−(B), ν+(C)) ̸= 1;

3. gcd(ν−(A), ν+(B)) ̸= 1 and gcd(ν+(B), ν−(C)) ̸= 1;

4. gcd(ν−(A), ν+(B)) ̸= 1 and gcd(ν−(B), ν+(C)) ̸= 1.

Cases 1 and 4 cannot actually occur. Consider the first case. By admissibility,
gcd(ν+(B), ν−(B)) = 1, and so because M is a chain, ν+(B) = 1 or ν−(B) =
1. Clearly, then, either gcd(ν+(A), ν−(B)) = 1 or gcd(ν+(B), ν−(C)) = 1, a
contradiction. The fourth case is ruled out in the same way.

Now consider the second case. Clearly, ν+(A) ̸= 1 and ν+(C) ̸= 1.
By admissibility and the fact that M is a chain, then, ν−(A) = 1 and
ν−(C) = 1, from which it clearly follows that gcd(ν+(A), ν−(C)) = 1 and
gcd(ν−(A), ν+(C)) = 1, that is, |=M AiC. The third case is dispatched
similarly.

In light of Theorem 4, it should be emphasized that I have not shown that
GRS is complete with respect to just any arbitrary four-element sublattice of
⟨N, |⟩. In particular, GRS is not complete with respect to any four-element
chain, for example, F8 = ⟨{1, 2, 4, 8}, |⟩.

COROLLARY 2. GRS is not complete with respect to any sublattice of
⟨N, |⟩ smaller than F6.

Proof. Any lattice (a fortiori, any sublattice of ⟨N, |⟩) with one, two, or three
elements is a chain. The result follows immediately from this fact and The-
orem 4.

Corollary 2 shows that the arithmetical completeness theorem I have
obtained in Theorem 3 is the best possible result. As far as I know this
observation is novel to this article and even other (i.e., non-arithmetical)
‘intensional’ completeness results for the syllogistic have not delivered the
optimal result vis-à-vis cardinality.22

5 Concluding Remarks

In this article, I presented one of Leibniz’s most mature (relative to April
1679) arithmetical interpretations of the assertoric syllogistic and proved
soundness and completeness. I proved that the syllogistic is not only complete
with respect to ⟨N, |⟩, as Leibniz implicitly suggested, but also with respect

22For example, the completeness theorem of Glashoff [8] (cf. Martin [12]), even in the
three-term case, delivers completeness with respect to a larger structure.
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to the four-element sublattice F6 = ⟨{1, 2, 3, 6}, |⟩. Further, I showed that
this is the best of all possible results.

Leibniz’s arithmetical semantics is richly suggestive in at least two differ-
ent ways, both of which already have stimulated further research and could
stimulate more yet. While I have followed Leibniz in focusing on the divisi-
bility lattice and sublattices thereof, it is clear that Leibniz’s semantics could
instead be formulated in a more abstract lattice-theoretic setting. For exam-
ple, one could focus on abstract semilattices with least or greatest elements.
Developments along such lines (and also for richer term logics) have been
pursued by, for example, van Rooij [26, §§4, 6].23

Another direction for research which Leibniz’s pioneering work suggests
is to examine other logics characterizable in ⟨N, |⟩. Weiss [27] showed that
both positive intuitionistic logic and (semilattice) relevance logic are exactly
characterizable in this lattice using truth conditions adapted from Urquhart
[23]. It would be of considerable interest to identify the modal logic of this
structure with the standard Kripke truth conditions. As far as I am aware,
this is an open problem (it clearly must be at least as strong as S4.2).
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Elvira Mayordomo, and Lúıs Mendes Gomes, editors, Programs, Proofs,
Processes, volume 6158 of Lecture Notes in Computer Science, pages
427–437, Berlin, 2010. Springer.

[23] Alasdair Urquhart. Semantics for relevant logics. Journal of Symbolic
Logic, 37(1):159–169, 1972.

[24] Bas C. van Fraassen. Facts and tautological entailments. Journal of
Philosophy, 66(15):477–487, 1969.

[25] Jeroen van Rijen. Some misconceptions about Leibniz and the calculi
of 1679. Studia Leibnitiana, 21(2):196–204, 1989.

[26] Robert van Rooij. Leibnizian intensional semantics for syllogistic rea-
soning. In Roberto Ciuni, Heinrich Wansing, and Caroline Willkommen,
editors, Recent Trends in Philosophical Logic, volume 41 of Trends in
Logic, pages 179–194. Springer, Cham, 2014.

[27] Yale Weiss. A characteristic frame for positive intuitionistic and rele-
vance logic. Studia Logica, 109(4):687–699, 2021.

[28] Yale Weiss. Did Aristotle endorse Aristotle’s thesis? A case study in
Aristotle’s metalogic. Notre Dame Journal of Formal Logic, 63(4):551–
579, 2022.

A Pseudocode

The “core code” on which Theorem 3 is based in presented below. It has
a very straightforward implementation in Python.24 The program is run by
calling ‘figures(i)’ on a given integer i (e.g., on 6, to yield the main result of
this article).

24I have trimmed out certain basic utility functions and made certain parts more collo-
quial. But what I’ve given here is very nearly the Python code.

15



def u n i v e r s a l a f f i r m a t i v e ( pred icate , sub j e c t ) :
i f sub j e c t [ 0 ] % pred i ca t e [ 0 ] == 0 and sub j e c t [ 1 ] % pred i ca t e [ 1 ] == 0 :

return True
return False

def p a r t i c u l a r n e g a t i v e ( pred icate , sub j e c t ) :
return not u n i v e r s a l a f f i r m a t i v e ( pred icate , sub j e c t )

def p a r t i c u l a r a f f i r m a t i v e ( pred icate , sub j e c t ) :
i f gcd ( p r ed i ca t e [ 0 ] , sub j e c t [ 1 ] ) == 1 and gcd ( p r ed i ca t e [ 1 ] , sub j e c t [ 0 ] ) == 1 :

return True
return False

def u n i v e r s a l n e g a t i v e ( pred icate , sub j e c t ) :
return not p a r t i c u l a r a f f i r m a t i v e ( pred icate , sub j e c t )

def c a t e g o r i c a l h a n d l e r ( pred icate , subject , constant ) :
i f constant == ’ a ’ :

return u n i v e r s a l a f f i r m a t i v e ( pred icate , sub j e c t )
e l i f constant == ’ i ’ :

return p a r t i c u l a r a f f i r m a t i v e ( pred icate , sub j e c t )
e l i f constant == ’ o ’ :

return p a r t i c u l a r n e g a t i v e ( pred icate , sub j e c t )
e l i f constant == ’ e ’ :

return u n i v e r s a l n e g a t i v e ( pred icate , sub j e c t )
else :

return

def f i r s t f i g u r e ( i n t s ) :
constants = [ ’ a ’ , ’ i ’ , ’ o ’ , ’ e ’ ]
admi s s i b l e s = copr ime pa i r s ( i n t s )
t r i c o n s t a n t s = constants ˆ3
t r i a d m i s s i b l e s = admi s s i b l e s ˆ3
for con in t r i c o n s t a n t s :

pval = True
for i n t e r p r e t a t i o n in t r i a d m i s s i b l e s :

i f c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 0 ] , i n t e r p r e t a t i o n [ 1 ] , con [ 0 ] ) and
c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 1 ] , i n t e r p r e t a t i o n [ 2 ] , con [ 1 ] ) and
not c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 0 ] , i n t e r p r e t a t i o n [ 2 ] , con [ 2 ] ) :

print ( ”Countermodel  to  1 s t  f i g u r e  ” + str ( con ) + ”  :  ” + str ( i n t e r p r e t a t i o n ) )
pval = False
break

i f pval :
print ( ”No  countermodel  to  1 s t  f i g u r e  ” + str ( con ) )

return

def s e c o n d f i g u r e ( i n t s ) :
constants = [ ’ a ’ , ’ i ’ , ’ o ’ , ’ e ’ ]
admi s s i b l e s = copr ime pa i r s ( i n t s )
t r i c o n s t a n t s = constants ˆ3
t r i a d m i s s i b l e s = admi s s i b l e s ˆ3
for con in t r i c o n s t a n t s :

pval = True
for i n t e r p r e t a t i o n in t r i a d m i s s i b l e s :

i f c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 0 ] , i n t e r p r e t a t i o n [ 1 ] , con [ 0 ] ) and
c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 0 ] , i n t e r p r e t a t i o n [ 2 ] , con [ 1 ] ) and
not c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 1 ] , i n t e r p r e t a t i o n [ 2 ] , con [ 2 ] ) :

print ( ”Countermodel  to  2nd  f i g u r e  ” + str ( con ) + ”  :  ” + str ( i n t e r p r e t a t i o n ) )
pval = False
break

i f pval :
print ( ”No  countermodel  to  2nd  f i g u r e  ” + str ( con ) )

return

def t h i r d f i g u r e ( i n t s ) :
constants = [ ’ a ’ , ’ i ’ , ’ o ’ , ’ e ’ ]
admi s s i b l e s = copr ime pa i r s ( i n t s )
t r i c o n s t a n t s = constants ˆ3
t r i a d m i s s i b l e s = admi s s i b l e s ˆ3
for con in t r i c o n s t a n t s :

pval = True
for i n t e r p r e t a t i o n in t r i a d m i s s i b l e s :

i f c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 0 ] , i n t e r p r e t a t i o n [ 1 ] , con [ 0 ] ) and
c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 2 ] , i n t e r p r e t a t i o n [ 1 ] , con [ 1 ] ) and
not c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 0 ] , i n t e r p r e t a t i o n [ 2 ] , con [ 2 ] ) :

print ( ”Countermodel  to  3 rd  f i g u r e  ” + str ( con ) + ”  :  ” + str ( i n t e r p r e t a t i o n ) )
pval = False
break

i f pval :
print ( ”No  countermodel  to  3 rd  f i g u r e  ” + str ( con ) )

return

def f o u r t h f i g u r e ( i n t s ) :
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constants = [ ’ a ’ , ’ i ’ , ’ o ’ , ’ e ’ ]
admi s s i b l e s = copr ime pa i r s ( i n t s )
t r i c o n s t a n t s = constants ˆ3
t r i a d m i s s i b l e s = admi s s i b l e s ˆ3
for con in t r i c o n s t a n t s :

pval = True
for i n t e r p r e t a t i o n in t r i a d m i s s i b l e s :

i f c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 0 ] , i n t e r p r e t a t i o n [ 1 ] , con [ 0 ] ) and
c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 2 ] , i n t e r p r e t a t i o n [ 0 ] , con [ 1 ] ) and
not c a t e g o r i c a l h a n d l e r ( i n t e r p r e t a t i o n [ 1 ] , i n t e r p r e t a t i o n [ 2 ] , con [ 2 ] ) :

print ( ”Countermodel  to  4 th  f i g u r e  ” + str ( con ) + ”  :  ” + str ( i n t e r p r e t a t i o n ) )
pval = False
break

i f pval :
print ( ”No  countermodel  to  4 th  f i g u r e  ” + str ( con ) )

return

def f i g u r e s ( i ) :
i n t s = d i v i s o r s o f ( i )
print ( ” Finding  a l l  v a l i d  deduct ions  over  ( ” + str ( i ) + ” , | ) : ” )
print ( )
f i r s t f i g u r e ( i n t s )
print ( )
s e c o n d f i g u r e ( i n t s )
print ( )
t h i r d f i g u r e ( i n t s )
print ( )
f o u r t h f i g u r e ( i n t s )
return

B Valid Deduction Schemes

I present all of the standard valid deduction schemes (syllogisms) here to-
gether with their traditional names and shorthands.25

25This material is fairly standard and is adapted from Thom [21, p. 54] (cf. Kneale and
Kneale [9, pp. 67ff.]). This number includes the so-called “subaltern moods.”
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Figure Traditional Name Shorthand Scheme
1st Barbara 1-aaa AaB,BaC ⇒ AaC
1st Celarent 1-eae AeB,BaC ⇒ AeC
1st Darii 1-aii AaB,BiC ⇒ AiC
1st Ferio 1-eio AeB,BiC ⇒ AoC
1st Barbari 1-aai AaB,BaC ⇒ AiC
1st Celaront 1-eao AeB,BaC ⇒ AoC
2nd Cesare 2-eae BeA,BaC ⇒ AeC
2nd Camestres 2-aee BaA,BeC ⇒ AeC
2nd Festino 2-eio BeA,BiC ⇒ AoC
2nd Baroco 2-aoo BaA,BoC ⇒ AoC
2nd Camestrop 2-aeo BaA,BeC ⇒ AoC
2nd Cesaro 2-eao BeA,BaC ⇒ AoC
3rd Darapti 3-aai AaB,CaB ⇒ AiC
3rd Felapton 3-eao AeB,CaB ⇒ AoC
3rd Disamis 3-iai AiB,CaB ⇒ AiC
3rd Datisi 3-aii AaB,CiB ⇒ AiC
3rd Bocardo 3-oao AoB,CaB ⇒ AoC
3rd Ferison 3-eio AeB,CiB ⇒ AoC
4th Bramantip 4-aai BaA,CaB ⇒ AiC
4th Camenes 4-aee BaA,CeB ⇒ AeC
4th Dimaris 4-iai BiA,CaB ⇒ AiC
4th Fesapo 4-eao BeA,CaB ⇒ AoC
4th Fresison 4-eio BeA,CiB ⇒ AoC
4th Camenos 4-aeo BaA,CeB ⇒ AoC

Table 1: The Figures
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