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Abstract

Hilbert’s Finitism: Historical, Philosophical,

and Metamathematical Perspectives

by

Richard Zach

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Paolo Mancosu, Cochair

Professor Jack H. Silver, Cochair

In the 1920s, David Hilbert proposed a research program with the aim of providing mathe-

matics with a secure foundation. This was to be accomplished by first formalizing logic and

mathematics in their entirety, and then showing—using only so-called finitistic principles—

that these formalizations are free of contradictions.

In the area of logic, the Hilbert school accomplished major advances both in introducing

new systems of logic, and in developing central metalogical notions, such as completeness

and decidability. The analysis of unpublished material presented in Chapter 2 shows that

a completeness proof for propositional logic was found by Hilbert and his assistant Paul

Bernays already in 1917–18, and that Bernays’s contribution was much greater than is

commonly acknowledged. Aside from logic, the main technical contribution of Hilbert’s

Program are the development of formal mathematical theories and proof-theoretical inves-

tigations thereof, in particular, consistency proofs. In this respect Wilhelm Ackermann’s

1924 dissertation is a milestone both in the development of the Program and in proof theory

in general. Ackermann gives a consistency proof for a second-order version of primitive

recursive arithmetic which, surprisingly, explicitly uses a finitistic version of transfinite in-

duction up toωωω
. He also gave a faulty consistency proof for a system of second-order

arithmetic based on Hilbert’sε-substitution method. Detailed analyses of both proofs in
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Chapter 3 shed light on the development of finitism and proof theory in the 1920s as prac-

ticed in Hilbert’s school.

In a series of papers, Charles Parsons has attempted to map out a notion of mathematical

intuition which he also brings to bear on Hilbert’s finitism. According to him, mathemati-

cal intuition fails to be able to underwrite the kind of intuitive knowledge Hilbert thought

was attainable by the finitist. It is argued in Chapter 4 that the extent of finitistic knowl-

edge which intuition can provide is broader than Parsons supposes. According to another

influential analysis of finitism due to W. W. Tait, finitist reasoning coincides with primitive

recursive reasoning. The acceptance of non-primitive recursive methods in Ackermann’s

dissertation presented in Chapter 3, together with additional textual evidence presented

in Chapter 4, shows that this identification is untenable as far as Hilbert’s conception of

finitism is concerned. Tait’s conception, however, differs from Hilbert’s in important re-

spects, yet it is also open to criticisms leading to the conclusion that finitism encompasses

more than just primitive recursive reasoning.



i

Es ist gar nicht richtig, daß der Forscher der

Wahrheit nachstellt, sie stellt ihm nach. Er

erleidet sie.

— Robert Musil
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Chapter 1

Introduction

1.1 David Hilbert and the Foundations of Mathematics

David Hilbert was born on January 23, 1862 in Königsberg (now Kaliningrad). He

studied at K̈onigsberg from 1880 to 1884, receiving his doctorate in 1885 under Friedrich

Lindemann. He received thevenia docendiin 1886, in 1892 was appointedAusseror-

dentlicher Professorand finally becameOrdinarius in 1893. In 1895, he accepted a chair

at the University of G̈ottingen, where he remained until his retirement in 1930. He died in

1943 in G̈ottingen.

Freudenthal (1973) distinguishes six parts in Hilbert’s mathematical work. Until 1893

Hilbert worked on the theory of algebraic forms, 1894–99 on algebraic number theory,

1899–1903 on the foundations of geometry, 1904–1909 on analysis, 1912–1914 on theo-

retical physics, and after 1918 on the foundations of mathematics. This division, however,

obscures the fact that Hilbert was interested in foundational questions almost continuously

from the mid-1890s onwards. His work on axiomatic geometry, culminating in the publica-

tion of the extremely influentialGrundlagen der Geometrie(1899), marked the beginning

of an area of interest, and a research program, which he continued to pursue till the end of

his career: the axiomatic method. In contrast to the Euclidean conception of axiomatics, ac-

cording to which the axioms expressed intuitive truths about space, Hilbert took the aim of

axiomatics to provide implicit definitions of the geometrical concepts.1 As such, the main

value of axiomatics is that it lays bare the logical relationships between the concepts so
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defined and between the various axioms. Since for Hilbert, the antecedently given intended

model of the axiomatic theory loses relevance for the axiomatic development, the questions

of completeness, independence, and consistency of the axioms are of primary importance.

For geometry, the problem of consistency can be solved by providing an arithmetical (in

fact, analytical) interpretation of the axioms, thus reducing the question of consistency to

the consistency of the arithmetic of the reals. The consistency of arithmetic (in this general

sense) is then the ultimate problem for the foundation of mathematics.

It is not surprising then that the question of providing a non-reductive consistency proof

for arithmetic was the second problem Hilbert posed as one of his catalog of open problems

in mathematics, presented at the International Congress of Mathematicians in Paris in 1900

(1900a). And indeed his interest in the axiomatic method, and in foundational questions

such as consistency and completeness never subsided. It was only overshadowed, as it

were, by more specific interests such as theoretical physics. But even there, the method-

ology was very much in line with his foundational outlook. Not only did Hilbert himself

consider complete, consistent axiomatizations the crowning achievements of scientific dis-

ciplines, he actively encouraged work in this direction by his students. In particular, he

took an active interest in the work of Zermelo—who taught in Göttingen between 1899 and

1910—on the axiomatization of set theory, and in the axiomatization of physics.2

Hilbert’s work on the foundations of geometry, the debate with Frege and the develop-

ment of set theory and the discovery of the set-theoretical paradoxes made it clear to Hilbert

that a closer investigation of the foundations of mathematics was needed. The first order

of business was, of course, the consistency proof for arithmetic. Aside from the “Prob-

lems” lecture, Hilbert had explicitly formulated this as a desideratum in his (1900b). After

the impact of the paradoxes, however, it became clear that such a proof required a deeper

understanding of logic. In 1904, he writes:

It is my opinion that all the difficulties touched upon [i.e., the paradoxes]
can be overcome and that we can provide a rigorous and completely satisfy-
ing foundation for the notion of number, and in fact by a method hat I would
call axiomaticand whose fundamental idea I wish to develop briefly in what
follows.

Arithmetic is often considered to be part of logic, and the traditional fun-
damental logical notions are usually presupposed when it is a question of es-
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tablishing a foundation for arithmetic. If we observe attentively, however, we
realize that in the traditional exposition of the laws of logic certain fundamen-
tal arithmetic notions are already used, for example, the notion of set and, to
some extent, also that of number. Thus we find ourselves turning in a circle,
and that is why a partly simultaneous development of the laws of logic and
arithmetic is required if paradoxes are to be avoided.3

Hilbert continues in this paper to give a first formal calculus for number theory which

represents numbers as strings of 1’s, and sketches a direct consistency proof for it. A

first attempt at a development of logic can be found in a lecture course the following year

(Hilbert 1905a) (See Chapter 2). Subsequently he turned his immediate attention to work

in other areas of mathematics and theoretical physics. He did, however, actively support

others who worked on foundational questions in Göttingen, in particular Ernst Zermelo

and Leonard Nelson.4 He also continued to teach classes on issues related to foundational

questions. The list of courses Hilbert gave in Göttingen up to 1917 include the following:5

1. Logische Principien des mathematischen Denkens (Summer 1905) (Hilbert 1905a,

1905b)

2. Zahlbegriff und Prinzipienfragen der Mathematik (Summer 1908) (Hilbert 1908)

3. Prinzipien der Mathematik (Seminar, Winter 1908/09)

4. Elemente und Prinzipienfragen der Mathematik (Summer 1910) (Hilbert 1910)

5. Logische Grundlagen der Mathematik (Winter 1911/12)6

6. Grundlagen der Mathematik und Physik (Summer 1913) (Hilbert 1913)

7. Probleme und Prinzipien der Mathematik (Winter 14/15)

8. Mengenlehre (Winter 1916/17)

9. Mengenlehre (Summer 1917) (Hilbert 1917)

While foundational questions were clearly on Hilbert’s mind between 1905 and 1917,7

his published work in those years centered mostly on integral equations and theoretical

physics (from 1912 onwards). It was not until 1917 that he returned to his foundational

investigations with full force. Weyl (1944) put the motivation for this shift thus:
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One hears a lout rumbling of the old problems in his Zürich address,Ax-
iomatisches Denken[(Hilbert 1918a, 1918b)], of 1917. Meanwhile the diffi-
culties concerning the foundations of mathematics had reached a critical stage,
and the situation cried for repair. Under the impact of undeniable antinomies
in set theory, Dedekind and Frege had revoked their own work on the nature
of numbers and arithmetical propositions, Bertrand Russell had pointed out
the hierarchy of types which, unless one decides to “reduce” them by sheer
force, undermine the arithmetical theory of the continuum; and finally L. E. J.
Brouwer by his intuitionism had opened our eyes and made us see how far
generally accepted mathematics goes beyond such statements as can claim real
meaning and truth founded on evidence. [. . . ]

Hilbert was not willing to make the heavy sacrifices which Brouwer’s stand-
point demanded, and he saw, at least in outline, a way by which the cruel
mutilation could be avoided. At the same time he was alarmed by signs of
wavering loyalty within the ranks of mathematicians, some of whom openly
sided with Brouwer. My own article on theGrundlagenkrise[Weyl (1921)],
written in the excitement of the first postwar years in Europe, is indicative of
the mood. Thus Hilbert returns to the problem of foundations in earnest. He is
convinced that complete certainty can be restored without “committing treason
to our science.”

Hilbert’s reaction, and his work on the foundations of mathematics after 1917 can be di-

vided into two parts: The first part, executed between 1917 and 1924, was a thorough

investigation of logic. The second part is Hilbert’s Program proper: thwarting the intu-

itionist Putschby carrying out his goals of 1900–05 of giving a direct consistency proof of

arithmetic.

1.2 Hilbert, Bernays, and Logic

It is clear that no attempt at giving rigorous proofs of consistency or completeness of

axiomatic systems can succeed without a clear understanding of the nature and status of

logical inference. For, to say that something is or is not derivable from the axioms, the

language and the rules of inference have to be laid out. When Hilbert began his work on

axiomatics, formal logical systems in the tradition of Frege–Peano–Russell were in their

infancy and certainly not widely accepted in mathematical circles. So inFoundations of

Geometry, while making significant conceptual advances in axiomatic geometry, Hilbert
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formulated axioms and theorems in German. A first interest in logical notation arises in

his work of 1904 and 1905; the notations and systems used there however stand in the

algebraic tradition (in particular, Schröder was a main influence). These systems were

hardly adequate for Hilbert’s aims.8 It was not until Russell and Whitehead’sPrincipia

(1910, 1913) became known in Göttingen around 1914 that a formal framework suited to

Hilbert’s aims was available.9

Hilbert adopted Russell’s framework and notation in his lectures onPrinzipien der

Mathematikduring the Winter Semester of 1917–18. The preceding Fall, Hilbert had been

joined in G̈ottingen by Paul Bernays as his assistant. With Hilbert’s metatheoretical outlook

already in place since his early work on axiomatics, it was only natural to treat the logical

axiomatics ofPrincipia like any other axiomatic system. And, as for any other axiomatic

system, the prime concerns were consistency and completeness. Russell, as did his prede-

cessors Frege and Peano, considered formal logic to be a language which, free from the

imprecision of natural language, allowed the logically perfect formulation of mathematics.

As it was seen as a universal language, however, it was not a consideration for Russell to

treat the system itself as an object of investigation of the kind that Hilbert desired. It was

thus a significant break with and advance over the logical tradition to even pose questions

such as completeness for a logical system. The formulation of the question of complete-

ness for the logical formalism ofPrincipia thus marks a milestone in the development of

modern logic. It fell to Bernays to solve the problem thus posed, to prove the completeness

theorem for propositional logic.

In fact, two different notions of completeness were involved. One was the syntactic

notion which now is known as Post completeness: a system is complete, if the addition of

any underivable sentence renders the system inconsistent.10 Bernays took this a step further

and saw that the propositional calculus admits a very simple interpretation—a semantics—

based on truth values. The corresponding notion of completeness is then the usual one:

any sentence which is true under every truth-value assignment (everyvalid sentence) is

derivable from the axioms.

In Chapter 2 below, I trace the development of Hilbert’s logical thinking from its begin-

nings in 1905 through the study of propositional calculi in Hilbert’s school in the 1920s.

The main contribution is certainly the one just mentioned: truth-value semantics for propo-
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sitional logic and the proof of completeness. Abrusci (1989), Moore (1997), and Sieg

(1999) have already pointed out the importance of the 1917–18 lecture notes in the de-

velopment of logic in Hilbert’s school and in the development of first-order logic in the

1920s in general, and Sieg in particular has shown how these lectures were the basis of

Hilbert and Ackermann’sGrundz̈uge der Theoretischen Logikof 1928. My contribution

in Chapter 2 consists mainly in giving a more detailed account of the results on proposi-

tional logic obtained by Hilbert and Bernays, in particular in Bernays’sHabilitationsschrift

of 1918, but goes beyond earlier work both in terms of the depth with which the mate-

rial is covered and in scope. The 1917–18 lectures were only the beginning of a strand of

work on logic and metalogic in Hilbert’s school, including work on the decision problem.

The decision problem for first-order logic was tightly bound up with the aim of finding a

completeness proof for the first-order predicate calculus (the “restricted calculus of func-

tions” in Hilbert’s terminology). This aim was stated in the 1917–18 lectures, but since

completeness in the syntactic sense does not hold for first-order logic (an early result due

to Ackermann), a development of model theory of first-order logic was needed first. The

decision problem, one of Hilbert’s main aims for metamathematics in the 1920s, was al-

ready at issue in the lectures from 1905, and has its roots in Hilbert’s belief, first explicitly

stated in the Paris address, that “in mathematics, there is no ignorabimus,”, i.e., that every

mathematical question can be solved either affirmatively or negatively The questions of

completeness and decidability thus became closely linked in the 1920s, with Ackermann

(1928b), Behmann (1921), and Bernays and Schönfinkel (1928) working on special cases

throughout the 1920s.11 In this line of research of the Hilbert school, Bernays deserves

credit for proving for the first time, in his (1918), the decidability of an axiomatic logical

calculus, viz., the propositional fragment ofPrincipia.12

When Hilbert came to propose, in 1921 (Hilbert 1922c), his program for a proof-

theoretic foundation of mathematics, the beginnings of a logical calculus suitable for the

formalization of mathematics and a framework for metamathematical investigations thereof

were already in place. Two things needed to be done, still: a separation in the axiomatic

system of the finitistically unproblematical connectives (conjunction, disjunction, implica-

tion) from the problematic negation, and an extension to first- and higher-order systems.

The former developments were carried out by Bernays (and are outlined in Chapter 2), the
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latter resulted in the development of theε-formalism. This development is traced in the first

half of Chapter 3, where I show how, on the one hand, the rejection of Russell’s logicist

approach to the foundations of mathematics by Hilbert around 1920 and the influence of

Brouwer’s criticisms of the law of the excluded middle and the axiom of choice (in its clas-

sical meaning) for infinite totalities lead Hilbert to include a logical version of the choice

principle in his systems. This logical choice principle is encoded in theε-calculus:εxA(x)

chooses a witnessx for which A(x) is true. This development was crucial both for proof

theory, as systems based on theε-calculus became the testing ground for Hilbert’s quest for

consistency proofs. The main advantage of theε-calculus is that it not only allows defini-

tion of the quantifiers (and thus extends the systems to higher orders) in an almost logic-free

manner (i.e., the quantifiers are represented by terms), but it also allows the formulation of

the principle of induction in a way that was amenable to Hilbert’s proof-theoretic approach.

1.3 Hilbert’s Proof-Theoretical Program

Hilbert’s proposal for a proof-theoretic grounding of mathematics was prompted, as

already noted, by Brouwer’s attacks on classical mathematics and Weyl’s subsequent con-

version to intuitionism.13 The force with which Weyl, Hilbert’s star student, condemned

classical mathematics and endorsed intuitionism is conveyed clearest in the opening para-

graph of (1921):

The antinomies of set theory are usually treated as border conflicts con-
cerning only the most remote provinces of the mathematical realm, and as
in no way endangering the inner soundness and security of the realm and its
proper core provinces. The statements on these disturbances of the peace that
authoritative sources have given (with the intention to deny or mediate) mostly
do not have the character of a conviction born out of thoroughly investigated
evidence that rests firmly on itself. Rather, they belong to the sort of one-half
to three-quarters honest attempts of self-delusion that are so common in polit-
ical and philosophical thought. Indeed, any sincere and honest reflection has
to lead to the conclusion that these inadequacies in the border provinces of
mathematics must be counted as symptoms. They reveal what is hidden by the
outwardly shining and frictionless operation in the center: namely, the inner
groundlessness of the foundations upon which rests the superstructure of the
realm.
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Weyl’s and Brouwer’s proposed solutions to this “groundlessness” of mathematics, how-

ever, were out of the question for Hilbert, who famously characterized it as a “dictatorship

of prohibitions” and suggested that restricting mathematics in the intuitionistic fashion was

akin to denying a boxer the use of his fists. Hilbert’s proposed alternative—which should

“clear the good name of mathematics once and for all”—was a combination of the ax-

iomatic method he had developed over the preceding 30 years, and an intuitive (in the

sense of Kant) metamathematics, free from objectionable (impredicative or infinitistic) as-

sumptions which would serve as the basis for consistency proofs of the axiomatic systems.

The old aim of Hilbert’s foundational thought, formal axiomatics, was thus supple-

mented with a philosophical foundation which was to make the direct consistency proofs

for arithmetic and analysis possible. This philosophical view is the “finitist standpoint”.

Hilbert first outlined his basic position in (1922c):

As we saw, the abstract operation with general concept-scopes and con-
tents has proved to be inadequate and uncertain. Instead, as a precondition for
the application of logical inference and for the activation of logical operations,
something must already be given in representation [in der Vorstellung]: certain
extra-logical discrete objects, which exist intuitively as immediate experience
before all thought. If logical inference is to be certain, then these objects must
be capable of being completely surveyed in all their parts, and their presenta-
tion, their difference, their succession (like the objects themselves) must exist
for us immediately, intuitively, as something that cannot be reduced to some-
thing else. Because I take this standpoint, the objects [Gegensẗande] of number
theory are for me—in direct contrast to Dedekind and Frege—the signs them-
selves, whose shape [Gestalt] can be generally and certainly recognized by
us—independently of space and time, of the special conditions of the produc-
tion of the sign, and of insignificant differences in the finished product [foot-
note:In this sense, I call signs of the same shape “the same sign” for short.]
The solid philosophical attitude that I think is required for the grounding of
pure mathematics—as well as for all scientific thought, understanding, and
communication—is this:In the beginning was the sign.

It was applied by Hilbert and his students in the program of finding consistency proofs for

mathematics. The distinction between the finitistic, contentual metamathematics and the

formal, axiomatic development of mathematics itself is explained later in the same paper:

[W]e can achieve an analogous point of view if we move to a higher level
of contemplation, from which the axioms, formulae, and proofs of the math-
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ematical theory are themselves the objects of a contentual investigation. But
for this purpose the usual contentual ideas of the mathematical theory must be
replaced by formulae and rules, and imitated by formalisms. In other words,
we need to have a strict formalization of the entire mathematical theory, inclu-
sive of its proofs, so that—following the example of the logical calculus—the
mathematical inferences and definitions become a formal part of the edifice
of mathematics. The axioms, formulae, and proofs that make up this formal
edifice are precisely what the number-signs were in the construction of elemen-
tary number theory which I described earlier; and with them alone, as with the
number-signs in number theory, contentual thought takes place—i.e., only with
them is actual thought practices. In this way the contentual thoughts (which of
course we can never wholly do without or eliminate) are removed elsewhere—
to a higher plane, as it were; and at the same time it becomes possible to draw
a sharp and systematic distinction in mathematics between the formulae and
formal proofs on the one hand, and the contentual ideas on the other.

In the present paper my task is to show how this basic idea can be carried
out in a rigorous and unobjectionable manner, and to show that our problem of
proving the consistency of the axioms of arithmetic and analysis are thereby
solved.

The program of formalization of mathematics and of consistency proofs was developed in

a number of courses in the early 1920s, in particular:

1. Probleme der mathematischen Logik (Summer 1920) (Hilbert 1920b)

2. Grundlagen der Mathematik (Winter 1921–22) (Hilbert 1922b, 1922a)

3. Logische Grundlagen der Mathematik (Winter 1922–23), co-taught with Bernays

(Hilbert and Bernays 1923b, 1923a)

In these courses, both the preferred axiomatics (using theε-calculus) and the preferred

method of consistency proofs (theε-substitution method) were laid out. The work begun in

there was carried on by Wilhelm Ackermann, who attempted to extend Hilbert’s ideas for a

consistency proof to all of analysis in his 1924 dissertation, “Grounding on the tertium non

datur using Hilbert’s theory of consistency” (1924a, 1924b).

Chapter 3 contains a thorough study of both the developments of axiomatic systems for

arithmetic and analysis as they were carried out by Hilbert and Bernays in these courses,

in particular the development of theε-calculus and its use in axiomatizing mathematics,
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but also an in-depth evaluation of Ackermann’s work. Theε-substitution method had been

presented in a very basic form by Hilbert in the courses of 1921–22 and 1922–23 as well

as in (1923), but it fell to Ackermann to make it work for the general case. The applica-

tion of Hilbert’s finitist standpoint in Ackermann’s consistency proofs provides a deeper

insight into what methods Hilbert considered to be available to the finitist. In his published

writings, Hilbert never goes beyond the basic idea of numerals as sequences of strokes and

the primitive ways of reasoning about them. It is only in the practice of finitism that the

extent of finitist, contentual mathematics becomes evident. In the second half of Chapter 3,

I show how Ackermann used a form of transfinite induction, which was nevertheless ac-

cepted as finitist, to prove the consistency of a second-order version of what is now known

as primitive recursive arithmetic PRA. This theory permits formalization of the Ackermann

function, the prime example of a non-primitive recursive function. Together with an analy-

sis of passages in later writings of Bernays on the nature of finitistic reasoning, this shows

that the Ackermann function and other, non-primitive recursive notions and methods of

proof, fell within the finitist standpoint as originally conceived by Hilbert. This is inter-

esting in the light of the characterization of finitism advanced by (Tait 1981), according

to which finitismcoincideswith primitive recursive reasoning, and provides evidence that

finitism as conceived by Hilbert is not restricted to primitive recursive methods.

The last section of Chapter 3 is devoted to an analysis of Ackermann’s attempted con-

sistency proof for analysis. This proof is based on Hilbert’sε-substitution method. The

idea of this method is, roughly, that theε-termsεxA(x) occurring in a formal proof—which

represent numerical witnesses and do the duty of quantifiers—are replaced by actual num-

bers, resulting in an essentially quantifier-free proof. The method by which the numerical

substitutions for theε-terms is found is simple enough for the basic cases considered by

Hilbert, but soon becomes extremely complex. It is thus not surprising that Ackermann’s

proof only succeeds for a rather restricted fragment of arithmetic: in modern terminol-

ogy, first-order arithmetic with induction restricted to open formulas. Ackermann claimed,

however, that the proof goes through for a much larger fragment of analysis (essentially, el-

ementary analysis with arithmetic comprehension). With the work of von Neumann (1927)

and a study of the proof by Bernays, who was preparing a manuscript that was to become

the monumentalGrundlagen der Mathematik(Hilbert and Bernays 1934, 1939), gaps in
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the proof soon become evident. It is worth noting that Ackermann and Bernays considered

the proof to be correct for the entire first-order fragment of arithmetic up until Gödel’s in-

completeness results became known in 1930 (Gödel 1931). These results showed that the

program of consistency proofs cannot be carried out in the way Hilbert had envisaged.

1.4 Finitism

In the final chapter, I turn to an investigation of the finitist standpoint itself. This is

the most obscure, yet also most philosophically influential part of Hilbert’s position. The

idea that there is a way in which knowledge of numerical equations is a privileged sort of

mathematical knowledge resonates with many mathematicians and philosophers of math-

ematics, and so it is not surprising that finitism has remained an area of interest both for

proof theorists and philosophers of mathematics.

Even though G̈odel’s results show that there is no way to give a consistency proof

even for first-order arithmetic with the means available to the finitist, it has been claimed

that relative consistency proofs using finitistic principles (in practice, primitive recursive

principles) have philosophical import. Such projects of relative consistency proofs are the

aim of work in so-called relativized Hilbert programs, examples of which abound in the

recent proof-theoretic literature.14 There is thus ample motivation for assessing the possible

worth for the current debate on the philosophy of mathematics of a finitistic position.

Such an assessment has been attempted by a number of philosophers, foremost among

them Kreisel (1960, 1958, 1965, 1970), Tait (1968, 1981, 2000) and Parsons (1979–80,

1994, 1998a).15 All three approaches attempt a reconstruction of finitism, taking Hilbert’s

remarks as their starting point, and yield more or less definite characterizations of the

strength of finitist reasoning. In Chapter 4, I focus on the approaches of Parsons and Tait.

For Parsons, the defining characteristic of finitism is its intuitive nature. Using his own

account of mathematical intuition, Parsons criticizes what he calls Hilbert’s Thesis, that

proofs according to the finitist method, in particular, primitive recursive proofs, yield intu-

itive knowledge of the theorems thus proved. His conclusion is mostly negative: intuition

does not suffice to ground primitive recursive reasoning. I hope to have shown that Par-
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sons’ arguments for this negative result are at best inconclusive. It is in any case doubtful

that an intuitive foundation is necessary for establishing the epistemic priority of finitist

reasoning required by its application in relativized Hilbert programs. Tait has argued in

fact, that Hilbert was simply wrong to believe that finitist reasoning corresponds to any

kind of intuitive knowledge about numbers. For him, the special character of finitism lies

in that its objects, constructions, and methods of proof are distinguished by being implicit

in the notion of number itself and thus presupposed by all non-trivial mathematical reason-

ing about numbers. His thesis is that these constructions and methods of proof are exactly

those which can be effected in primitive recursive arithmetic. I argue that this conception of

finitism, although weaker than Parsons’ and perhaps Hilbert’s own, are all that is required

for finitism to do the work it is supposed to do when it is invoked in recent proof-theoretical

work, but argue against Tait that finitism surpasses primitive recursive reasoning. My ar-

gument is based both on the historical evidence from finitistic practice (as presented in

the analysis of Ackermann’s consistency proofs in Chapter 3, and textual evidence from

Hilbert and Bernays presented in Chapter 4), and more conceptual arguments in favor of

accepting nested recursion as finitistic.

Notes

1. Hilbert’s view on axiomatics spurned an interesting debate with Frege, who held contra

Hilbert that the axioms of geometry are propositional, i.e., express determinate truths. This of

course was in conflict with Hilbert’s view, famously expressed in his remark that “it must be possi-

ble to replace in all geometric statements the wordspoint, line, planewith table, chair, beermug.”

For an analysis of the Frege-Hilbert debate, see Kambartel (1975) and Resnik (1974, 1980).

2. See Moore (1978) and (1982) for Zermelo’s work on set theory and Corry (1997) for Hilbert’s

role in the axiomatization of physical theories.

3. Hilbert (1905c, p. 131).

4. On Hilbert’s foundational interests before 1917, and his engagement for Husserl, Zermelo,

and Nelson, see Peckhaus (1990).

5. Not all these courses were on genuinely foundational questions (logic, axiomatics). For in-

stance, (1908) (and the first three quarters of (1910)) dealt with questions of constructibility with
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compass and straightedge, and the quadrature of the circle.

6. No lecture notes for this course, or for those listed in (7) and (8) are available, but the classes

were listed in theVorlesungsverzeichnisseof the University.

7. See Sieg (1999), especially Part A, for more on the development of Hilbert’s foundational

interests in this period.

8. But compare the use Zermelo made of them in his (1908).

9. The influence of Russell’s work was not merely in the area of notation. For the impact

on Hilbert’s philosophical views, mediated especially through his student Heinrich Behmann, see

Mancosu (1999a, 200?).

10. The first occurrence of something like this notion was in Hilbert (1905c, p. 182).

11. The results of Bernays and Schönfinkel (1928) were already found several years before their

publication. Scḧonfinkel was in G̈ottingen in the early part of the 1920s. A draft of the paper in

Scḧonfinkel’s hand is contained in the Bernays Nachlaß, ETH Zürich Library, WHS, Hs. 974.282.

The manuscript lists a number of courses on the first page; these courses were given in the Winter

Semester of 1923–23. It this respect it might also be worth pointing out that Schönfinkel (1924) was

originally written in 1920—Scḧonfinkel spoke on the results to the Göttingen Mathematical Society

on December 7, 1920—and prepared for publication by Behmann. A draft of the paper is contained

in Behmann’sNachlaß.

12. Löwenheim (1915) showed that satisfiability of (a system equivalent to) monadic first-order

logic is decidable; the result was not formulated, however, as a decidability result. Moreover, what

was at issue for Hilbert was decidability of the question ofderivabilityof a theorem in an axiomatic

system.

13. Brouwer’s views of the time were presented in his papers (1919, 1921), which were pre-

sented in 1919 and 1920, respectively. Weyl’s conversion to intuitionism occurred in 1920, when he

gave the talk on which (1921) was based at the University of Hamburg, July 28–30. The intuition-

istic and predicativistic foundations of mathematics were widely discussed in Göttingen: already

in 1917 (on November 20), Bernays reported on Weyl’sDas Kontinuum(Weyl 1918), on May 11,

1920, Weyl himself spoke on the subject, and on February 1 and 8, 1921, Courant and Bernays gave

talks on “the new arithmetical theories of Brouwer and Weyl.” Two weeks later, on February 21 and

22, 1921, Hilbert presented his program to the mathematical audience in Göttingen under the title

“Eine neue Grundlegung des Zahlbegriffs [A new grounding of the number concept].” (Announce-

ments of these talks can be found in theJahresberichte der Deutschen Mathemaiker-Vereinigung,
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2. Abteilung.).

14. See in particular Sieg (1988, 1990), Feferman (1988, 1993b, 1993b) and Simpson (1988).

15. Detlefsen (1986) is of course a classic, but his aims are largely orthogonal to mine.
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Chapter 2

Completeness before Post: Bernays,

Hilbert, and the Development of

Propositional Logic

2.1 Introduction

Paul Bernays is best known today for being Hilbert’s primary collaborator on foun-

dational matters in the G̈ottingen of the 1920s. He both shaped and helped execute the

research project now known as Hilbert’s program. TheGrundlagenbuch(Hilbert and Ber-

nays 1934, 1939), the decidability of the so-called Bernays-Schönfinkel class of first-order

formulas (Bernays and Schönfinkel 1928), and his work on axiomatic set theory (Ber-

nays 1958) are considered to be his major contributions to the foundations of mathematics.

Bernays is also the author of a number of influential papers on philosophy of mathematics,

and the details and refinements of Hilbert’s mature philosophical views certainly owe much

to him. His mathematical work in the early 1920s however, is little known and even less

appreciated.

Bernays came to G̈ottingen in the Fall of 1917, at Hilbert’s invitation.1 For the fol-

lowing 17–odd years, Bernays worked in Göttingen as his assistant. His main task was

to collaborate with Hilbert in his foundational work, in particular, to assist in the prepa-

ration of Hilbert’s lecture courses and in preparing polished typescripts of these lectures.
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Many of these lecture notes are preserved at the library of the Department of Mathematics

at the University of G̈ottingen, and in Hilbert’sNachlaßat the Nieders̈achsische Staats-

und Universiẗatsbibliothek. Hilbert’s lectures have recently received much attention, since

they provide a much more nuanced and detailed way of understanding the development not

only of Hilbert’s views on the foundations of mathematics, but on the development of first-

order logic in the 20s. Moore (1997) and Sieg (1999) discuss, inter alia, the lecture notes

for the course on the “Principles of Mathematics” (Hilbert 1918c).2 I, too, want to focus

on these notes, and on Bernays’sHabilitationsschrift(Bernays 1918), of which only parts

were published (1926). My central concern, however, shall be the results on propositional

logic contained therein. These results include: explicit semantics for propositional logic

using truth values, decidability of the set of valid propositional formulas, completeness

of the axiom systems considered relative to that semantics, as well as what is now called

Post completeness, consistency and independence results, general three- and four-valued

matrices, and rule-based derivation systems.

All these results were obtained independently of logicians to whom they are usually

credited (notably Pierce, Wittgenstein, Post, and Łukasiewicz).3 Far be it from me to dis-

pute their priority. After all, Hilbert and Bernays’s work remained unpublished, and in

some respects the work by those other logicians investigates the questions at hand more

deeply or is more precise than Hilbert and Bernays’s. I do think, however, that a detailed

exposition of the results may provide clues to the development of logic in the 1920s, in

particular in the Hilbert school.

While I believe that all of the results on propositional logic in question are interesting

in their own right, some of my discussion also has significant bearing on the understanding

of the development of first-order logic and Hilbert’s foundational program as a whole.

For instance, one of the conclusions of a close look at the historical record will be that

the seminal early results on propositionaland first-orderlogic were in large part due to

Bernays.

About hisHabilitationsschriftof 1918, Bernays said:

[It] was certainly of a mathematical character. But the opinion at the time
was that foundational investigations connected to mathematical logic were not
taken seriously. They were considered amusing, playful. I had a similar ten-
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dency, and so did not take it seriously either. I was not very ambitious to get
it published in time, and it appeared only much later, and then only in part
[. . . ] And so some of what I had achieved there was not duly recognized in the
expositions of the development of mathematical logic.4

The present paper is in part an attempt to answer this complaint.

In §2, I give an exposition of the ideas contained in the lecture notes and in theHabil-

itationsschriftconcerning semantics and completeness. Since there is significant overlap

between Hilbert’s lecture and Bernays’s Habilitationsschrift, a discussion of the issue of

authorship of the relevant passages is in order. This is the topic of§3. In §4, I present the

parts of the Habilitationsschrift dealing with dependence and independence of axioms.§5
deals with Bernays’s efforts to provide an axiomatization of propositional logic based on

rules as opposed to axioms, an approach influencing later axiomatic developments and also

Gentzen’s sequent calculus. In§6, I try to provide several hints as to how this early work

by Bernays and Hilbert influenced the further direction that logical investigations took in

the G̈ottingen of the 1920s.

2.2 Semantics, Normal Forms, Completeness

2.2.1 Prehistory: Hilbert’s Lectures onLogical Principles of

Mathematical Thought1905

In the Summer semester of 1905, Hilbert holds a course on “Logical principles of math-

ematical thought” (Hilbert 1905a). A detailed exposition of the lectures and their historical

context is given by Peckhaus (1990), to whom much of the discussion in this section is

indebted (see also his 1994, 1995). These lectures are highly interesting, for they contain

developments of axiom systems not only for arithmetic and geometry, but also thermo-

dynamics and probability theory. In them, Hilbert first discusses set theory and the para-

doxes. In Chapter V (“The logical calculus”), we then read: “The paradoxes we have just

introduced show sufficiently that an examination and redevelopment of the foundations of

mathematics and logic is urgently necessary.”5

Following a discussion of the purpose of logic and of the significance of contradictions,
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Hilbert develops propositional logic algebraically, using ideas from his first Heidelberg

lecture given the year before (1905c). Hilbert lays down the following axioms:

Axiom I. If X ≡Y6 then one can always replaceX by Y andY by X.
Axiom II. From 2 propositionsX, Y a new one results (“additively”)

Z≡ X +Y

Axiom III. From 2 propositionsX, Y a new one results in a different way
(“multiplicatively”)

Z≡ X ·Y

The following identities hold for these “operations”:

IV. X +Y ≡Y +X VI. X ·Y ≡Y ·X
V. X +(Y +Z)≡ (X +Y)+Z VII. X · (Y ·Z)≡ (X ·Y) ·Z

VIII. X · (Y +Z)≡ X ·Y +X ·Z

[. . . ] There are 2 definite propositions 0, 1, and for each propositionX a dif-
ferent propositionX is defined, so that the following identities hold:

IX. X +X ≡ 1 X. X ·X ≡ 0
XI. 1 +1≡ 1 XII. 1 ·X ≡ X7

Hilbert’s intuitive explanations make clear thatX, Y, andZ stand for propositions,+ for

conjunction,· for disjunction, · for negation, 1 for falsity, and 0 for truth.8 The axioms

are followed by a discussion of the system from an algebraic standpoint. Hilbert points

out how the axioms with the exception of (XI) also apply to arithmetic, and discusses the

correspondence between negation and subtraction. Then he poses the main metatheoretical

questions:

It would now have to be investigated in how far the axioms are dependent
and independent of one another [. . . ] What would be most important here,
however, is the proof that the 12 axioms do not contradict each other, i.e., that
using the process defined one cannot obtain a proposition which contradicts
the axioms, say,X + X = 0. These are only hints which have not been carried
out completely as of yet, and one still has free reign in the details; generally
speaking this whole section supplies material for the ultimate solution of the
interesting questions, rather than give the ultimate solution.9

These questions are to be solved 12 years later in the lectures from 1917–18 and in

Bernay’sHabilitationsschrift. It is interesting to note that Hilbert has all the tools in hand to
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give the solution already in 1905. We even find a nonderivability proof using an arithmetical

interpretation of the axioms on p. 233: The axioms (XI) and (XII) are not derivable from

the other axioms together withX + 0≡ X andX ·0≡ 0 (interpret+ and· as ordinary sum

and product of reals, and takeX to be 1−X.)

Hilbert proceeds to establish a number of consequences of the axioms in the style of

algebraic proofs, in particular, de Morgan’s laws. There is no distinction between conse-

quence and the material conditional,X |Y10 “Y follows fromX [aus X folgt Y]” is defined

by X ·Y ≡ 0. Given this definition, it seems problematic to use nested conditionals, but

subsequent examples indicate thatX | Y is intended also as an abbreviation forX ·Y not

only for the equationX ·Y = 0.

Hilbert then proves that every propositional formula can be brought into one of two

normal forms. First one uses DeMorgan’s laws repeatedly to see that every sentence can

be written as sums and products of primitive propositions and their negations. Using the

distributive law, this can be rewritten as a sum of products. Hilbert then uses a number

of ways to simplify these, and claims (erroneously) that the resulting conjunctive normal

form is unique up to reordering of conjuncts.11 Using duality, it is then proved that every

expression can also be brought into a disjunctive normal form.

Hilbert also discusses consequence at length. The system of propositional logic is in-

tended as a background framework for other axiomatic theories. The axioms of those the-

ories are interpreted as “correct” propositions, and the calculus is intended to make clear

which propositions follow from the axioms according to the definition of consequence:Y

follows fromX if X ·Y = 0. Hilbert proves the following about this notion of consequence:

A propositionY follows from another propositionX if and only if it is of
the formA ·X, whereA is some proposition. To deduce is to multiply correct
propositions with arbitrary propositions.12

This theorem leads Hilbert to identify proofs with such factorsA. The normal form

theorem then provides the first proof of decidability of the propositional calculus. In the

lecture on mathematical problems (Hilbert 1900a, p. 262), Hilbert discussed the issue of

the decidability of every mathematical problem and proclaimed that “in mathematics there

is no ignorabimus.” The decidability of the propositional calculus is an example of what

Hilbert is looking for:
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I now want to point out what is probably the most important application
of the normal form of a proposition and its uniqueness. We will—and this is
a restriction we have to impose for the time being—take a finite number of
propositionsa, b, c, . . . (axioms about the things considered or proper names)
as given. Then there can be only a finite number of propositions (that is, propo-
sitions built up from these basic propositions), for every one can be brought
into the form of a sum of products [conjunction of disjunctions] in basically
a unique way. Every basic proposition appears in any summand [conjunct]
only in the first dimension and any product [disjunction] appears only once as
a summand [conjunct]. Every correct proposition must follow from the sum
of the axiomsa+ b+ · · · by multiplication with a certain factorA (proof) and
for this A there are only finitely many [possible] forms by what has just been
said. So it turns out that for every theorem there are onlyfinitely many possi-
bilities of proof, and thus we have solved, in the most primitive case at hand,
the old problem that it must be possible to achieve any correct result by afinite
proof. This problem was the original starting point of all my investigations in
our field, and the solution to this problem in the most general case[,] the proof
that there can be no “ignorabimus” in mathematics, has to remain the ultimate
goal.13

There are many difficulties with this passage. First of all, if one takes the axioms of

a theory to be a finite set of unanalyzed propositionsa, b, c, . . . , the propositional con-

sequences of such a theory will not cover any significant number of their logical conse-

quences. Taking the passage at face value, what we get is essentially a decision procedure

for the propositional consequences of a set of variables. The argument can, however, eas-

ily be modified to apply to consequences of a finite set of propositional formulas.14 This

would not get us too far either, but Hilbert after all acknowledges that we are here dealing

only with “a most primitive case.” The next difficulty arises from Hilbert’s earlier error of

claiming that the normal form for a given formula is unique. For Hilbert’s procedure to

work, we would not only have to be able to enumerate all possible proofsA, but also be

able to check ifA·(a+b+ · · ·) = Y. This would presumably have to be done by comparing

normal forms, since no other method—e.g., truth tables—is available. But normal forms

are not unique, so there is no guarantee that the left and right side will result in the same

one.15 Lastly, the worry about the existence of a finite proof of any correct proposition

is puzzling. It is not that the proof itself has to be finite what is important, but that there

are only finitely many possibilities for a proof; we may decide, after finitely many steps,
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whether there is a proof or not.

All these difficulties aside, the main point is still notable. Here, in 1905, one of Hilbert’s

aims in the foundations of mathematics is made almost explicit, namely the aim to provide

decision procedures for logic on the one hand, and particular systems of mathematics and

science, e.g., arithmetic, on the other.

2.2.2 The Structure ofPrinzipien der Mathematik

In the years following 1905, Hilbert’s interest in the foundations of mathematics seems

to have subsided. He does not follow up his groundbreaking ideas of 1905 until around

1917, when he returns with full force to his work on axiomatics.16 In September 1917,

Hilbert delivers his lecture on “axiomatic thought” in Zürich, and invites Bernays to come

to Göttingen as his assistant. In the Winter semester 1917–18 Hilbert teaches a course on

the “Principles of mathematics.” The lecture notes to that course are preserved in the library

of the Department of Mathematics at the University of Göttingen.17 They are divided into

two parts: Part A (62 pages) on the axiomatic method contains an exposition of axiomatic

geometry; Part B (pp. 63–246, 184 pages) deals with mathematical logic. The material in

Part B is new and interesting. It starts out with a discussion of propositional calculus in the

style of algebraic logic in Section 1 (pp. 63–80). The propositional calculus is extended to

a calculus of classes in Section 2 (pp. 81–107), and a theory of syllogisms is developed. In

Section 3, the limitations of the class calculus are used to motivate the introduction of the

calculus of functions, i.e., first-order logic with quantifiers (pp. 108–129). This calculus

of functions is formally introduced and studied in Section 4 (pp. 129–187). Section 5

(pp. 188–246) deals with the extended calculus of functions (i.e., second-order logic), as

well as with induction, the definition of identity, the paradoxes, type theory, and the axiom

of reducibility.18

From a historical point of view, the last two sections of Part B are the most interest-

ing ones. The development of geometry in Part A is standard, and overlaps both with the

Foundations of Geometry(Hilbert 1903) and the material presented in numerous courses

on axiomatic geometry taught by Hilbert at Göttingen. The propositional calculus pre-

sented in Section 1 of Part B is exactly the same as the one developed in Hilbert’s 1905
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course. There are two notable differences in the presentation. The 1917–18 notes contain

an independence proof similar to the one in (Hilbert 1905a), as well as a proof of consis-

tency of the axioms of propositional logic. In contrast to the independence proof, which

uses an arithmetic interpretation, consistency is proved by restricting the range to only the

propositions 0 and 1, and defining sum and product case-by-case:

Restrict the domain of propositions by allowing only the propositions 0
and 1, and interpret the equations in accordance with this as proper identities.
Furthermore, define sum and product by the 8 equations

0+0 = 0 0×0 = 0
0+1 = 1 0×1 = 0
1+0 = 1 1×0 = 0
1+1 = 1 1×1 = 1

which are characterized by turning into correct arithmetical equations, if one
replaces the symbolic sum by the maximum of the summands and the symbolic
product by the minimum of the factors. Declare the proposition 1 to be the
negation of the proposition 0 and the proposition 0 to be the negation of 1.

These definitions in any case do not lead to a contradiction, for each one
of them defines a new symbol. On the other hand, one can establish by finitely
many tries that all the axioms I–XII are satisfied by these definitions. These
axioms therefore cannot result in a contradiction either. Thus the question of
consistency of our calculus can be completely resolved.19

What is interesting here is that, while Hilbert thought that an arithmetical interpretation

is good enough to establish independence results, something more basic is needed to show

consistency. The first sentence in the last paragraph just quoted indicates that Hilbert had

scruples regarding the use of arithmetic correctness of equations to establish consistency.

He simply wanted to avoid appeal to infinite structures at this point.

The second difference is a much more elaborate discussion of consequence. The def-

inition is the same as in 1905 (only the symbol for implication changes to→), but now

a number of properties are proved that one would expect of a system of logic: For anyX

andY, X→ X, X +Y→ X, if X→Y thenY→ X, and others. A discussion of “proofs as

multiplication” and of decidability is missing, however.

Taking this notion of consequence as a starting point, Hilbert takes on an investiga-

tion of how much of mathematical reasoning can be accommodated in the propositional

calculus. In Section 2 (Predicate calculus and class calculus), the propositional calculus
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is reinterpreted as first, a calculus of predicates, and second, a calculus of classes (exten-

sions of predicates). These reinterpretations are then used to account for the Aristotelian

syllogisms in the framework of the calculus. Naturally it is ultimately found (in Section 3:

Transition to the calculus of functions) to be insufficient for a foundation of mathematics,

for it is unable to deal with relations between individuals or with nested quantifiers. This

leads Hilbert to introduce the function calculus, first by example (the difference between

convergence and uniform convergence), and then finally, as an axiom system.

Section 4, entitled “Systematic presentation of the function calculus,” contains a pre-

sentation of the function calculus, i.e., first-order logic, organized as follows:

4.1. Axioms of the function calculus (pp. 129–140)

4.2. The system of logical propositional formulas (pp. 140–153)

4.3. The complete system of logical formulas (pp. 154–179)

4.4. Examples of applications of the function calculus (pp. 180–187)

Section 5 of Part B of the lecture notes discusses the extended function calculus, i.e.,

higher-order logic. It includes discussions of definitions of number, set theory, paradoxes

and type theory.

Let me now turn to a discussion of the propositional fragment of the function calculus

as developed in 4.1 and 4.2. For discussion of the full first-order logic and the later parts of

the lecture notes, the interested reader is referred to the papers by Moore (1997) and Sieg

(1999).

2.2.3 The Propositional Calculus

The propositional fragment of the function calculus is investigated separately in Sub-

section 2 of Section 4. Syntax and axioms are modeled after the propositional fragment of

Principia Mathematica(Whitehead and Russell 1910). The language consists of proposi-

tional variables [Aussage-Zeichen]X, Y, Z, . . . , as well as signs for particular propositions,

and the connectives· (negation) and× (disjunction). The conditional, conjunction, and

equivalence are introduced as abbreviations. Expressions are defined by recursion:

1. Every propositional variable is an expression.

2. If α is an expression, so isα.
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3. If α andβ are expressions, so areα×β, α→ β, α + β andα = β.20

Hilbert introduces a number of conventions, e.g., thatX×Y may be abbreviated toXY,

and the usual conventions for precedence of the connectives. Finally, the logical axioms

are introduced. Group I of the axioms of the function calculus gives the formal axioms for

the propositional fragment (unabbreviated forms are given on the right, recall thatXY is

“X or Y”):
1. XX→ X XXX
2. X→ XY X(XY)
3. XY→YX XY(YX)
4. X(YZ)→ (XY)Z X(YZ)((XY)Z)
5. (X→Y)→ (ZX→ ZY) XY(ZX(ZY))
The formal axioms are postulated as correct formulas [richtige Formel], and we have

the following two rules of derivation (“contentual axioms”):

a. Substitution: From a correct formula another one is obtained by replacing all occur-

rences of a propositional variable with an expression.

b. If α andα→ β are correct formulas, thenβ is also correct.

Although the calculus is very close to the one given inPrincipia Mathematica, there are

some important differences. Russell uses (2′) X→YX and (4′) X(YZ)→Y(XZ) instead of

(2) and (4).Principia also does not have an explicit substitution rule.21 The fact that Hilbert

realizes that such a rule must be included in the calculus illustrates how Hilbert’s axiomatic

method makes the presentation of logic in 1917–18 much clearer than Schröder’s algebra

of logic and much closer to the modern conception of logic as calculus than Russell’s

Principia. But the division between syntax and semantics is not quite complete. The

calculus is not regarded as concerned with uninterpreted formulas; it is not separated from

its interpretation. (This is also true of the first-order part, see Sieg (1999), B3.) Also, the

notion of a “correct formula” which occurs in the presentation of the calculus is intended

not as a concept defined, as it were, by the calculus (as we would nowadays define the term

“provable formula” for instance), but rather should be read as a semantic stipulation: The

axioms are true, and from true formulas we arrive at more true formulas using the rules of

inference.22 Read this way, the statement of modus ponens is not that much clearer than

the one given inPrincipia: “Everything implied by a true proposition is true.” (*1.1)
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Hilbert goes on to give a number of derivations and proves additional rules. These serve

as stepping stones for more complicated derivations. First, however, he proves a normal

form theorem, just as he did in the 1905 lectures, to establish decidability and complete-

ness. In the new propositional calculus, however, Hilbert needs to prove that arbitrary

subformulas can be replaced by equivalent formulas, that is, that the rule of replacement is

a dependent rule.23 He does so by establishing the admissibility of rule (c): Ifϕ(α), α→ β,

andβ→ α are provable, then so isϕ(β).24 With that, the admissibility of using commu-

tativity, associativity, distributivity, and duality inside formulas is quickly established, and

Hilbert obtains the normal form theorem just as he did for the first propositional calculus

in the 1905 lectures. Normal forms again play an important role in proofs of decidability

and now also completeness.

2.2.4 Consistency and Completeness

“This system of axioms would have to be called inconsistent if it were to derive two

formulas from it which stand in the relation of negation to one another.”25 That the system

of axioms is not inconsistent in this sense is proved, again, using an arithmetical interpre-

tation. The propositional variables are interpreted as ranging over the numbers 0 and 1,×
is just multiplication andX is just 1−X. One sees that the five axioms represent functions

which are constant equal to 0, and that the two rules preserve that property. Now ifα is

derivable,α represents a function constant equal to 1, and thus is underivable.

Why did Hilbert not use this straightforward arithmetical interpretation to prove con-

sistency for the first propositional calculus in 1905 or earlier in the lectures (Section 4.1)?

If it was his concern that an infinite interpretation should not be used to establish consis-

tency of such a basic system as that of propositional logic, then the numbers 0 and 1 alone

would do just as well. One possible explanation is that up until the introduction of the new

propositional calculus based on thePrincipia system, conjunction and disjunction were

both primitives. Giving an arithmetical interpretation for these systems would thus have re-

quired finding an interpretation which also satisfies 1+ 1 = 1. Simply taking congruences

modulo 2 does not do the trick here. Only when+ is taken as a defined symbol can one

take the congruences modulo 2 as an interpretation of the axioms. Compared to the consis-
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tency proof in Section 4.1 using true and false propositions, the arithmetical interpretation

is further away again from truth-value semantics for propositional logic.

Let us now turn to the question ofcompleteness. We want to call the system
of axioms under consideration complete if we always obtain an inconsistent
system of axioms by adding a formula which is so far not derivable to the
system of basic formulas.26

This is the first time that completeness is formulated as a precise mathematical question

to be answered for a system of axioms. Before this, Hilbert (1905a, p. 13) had formulated

completeness as the question of whether the axioms suffice to prove all “facts” of the the-

ory in question. Aside from that, completeness had always beenpostulatedas one of the

axioms. In theFoundations of Geometry, for instance, we find axiom V(2), stating that it is

not possible to extend the system of points, lines, and planes by adding new entities so that

the other axioms are still satisfied. In (Hilbert 1905a), such an axiom is also postulated for

the real numbers. Following its formulation, we read:

This last axiom is of a general kind and has to be added to every axiom
system whatsoever in some form. It is of special importance in this case, as we
shall see. Following this axiom, the system of numbers has to be so that when-
ever new elements are added contradictions arise, regardless of the stipulations
made about them. If there are things which can be adjoined to the system
without contradiction, then in truth they already belong to the system.27

We see here that the formulation of completeness of the axioms arises directly out of

the completeness axioms of Hilbert’s earlier axiomatic systems, only that this time com-

pleteness is a theoremaboutthe system. I shall return to this issue in the final section.

The completeness proof in the 1917–18 lectures itself is an ingenious application of

the normal form theorem: Every formula is interderivable with a conjunctive normal form.

As has been proven earlier, a conjunction is provable if and only if each of its conjuncts is

provable. A disjunction of propositional variables and negations of propositional variables

is provable only if it represents a function which is constant equal to 0, as the consistency

proof shows. A disjunction of this kind is equal to 0 if and only if it contains a variable and

its negation, and conversely, every such disjunction is provable. So a formula is provable

if and only if every conjunct in its normal form contains a variable and its negation. Now
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suppose thatα is an underivable formula. Its conjunctive normal formβ is also underivable,

so it must contain a conjunctγ where every variable occurs only negated or unnegated

but not both. Ifα were added as a new axiom, thenβ and γ would also be derivable.

By substitutingX for every unnegated variable andX for every negated variable inγ, we

would obtainX as a derivable formula (after some simplification), and the system would

be inconsistent.

In a footnote, the result is used to establish the converse of the characterization of

provable formulas used for the consistency proof: every formula representing a function

which is constant equal to 0 is provable. For, supposing there were such a function which

was not provable, following the consistency proof above, adding this formula to the axioms

would not make the system inconsistent, and this would contradict syntactic completeness

(Hilbert 1918c, p. 153).

2.2.5 The Contribution of Bernays’sHabilitationsschrift

We have seen that the lecture notes toPrinciples of Mathematics1917–18 contain con-

sistency and completeness proofs (relative to a syntactic completeness concept) for the

propositional calculus ofPrincipia Mathematica. They also implicitly contain the familiar

truth-value semantics and a proof of semantic soundness and completeness. In hisHabil-

itationsschrift(Bernays 1918), Bernays fills in the last gaps between these remarks and a

completely modern presentation of propositional logic.

Bernays introduces the propositional calculus in a purely formal manner. The concept

of a formula is defined and the axioms and rules of derivation are laid out almost exactly

as done in the lecture notes.§2 of (Bernays 1918) is entitled “Logical interpretation of

the calculus. Consistency and completeness.” Here Bernays first gives the interpretation

of the propositional calculus, which is the motivation for the calculi in Hilbert’s earlier

lectures (Hilbert 1905a, 1918c). The reversal of the presentation—first calculus, then its

interpretation—makes it clear that Bernays is fully aware of a distinction between syntax

and semantics, a distinction not made precise in Hilbert’s earlier writings.28 There, the

calculi were always introduced with the logical interpretation built in, as it were. Bernays

writes:
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The axiom system we set up would not be of particular interest, were it not
capable of an important contentual interpretation.

Such an interpretation results in the following way:
The variables are taken as symbols forpropositions(sentences).
That propositions are either true or false, and not both simultaneously, shall

be viewed as their characteristic property.
The symbolic product shall be interpreted as the connection of two propo-

sitions by “or,” where this connection should not be understood in the sense
of a proper disjunction, which excludes the case of both propositions holding
jointly, but rather so that “X or Y” holds (i.e., is true) if and only if at least one
of the two propositionsX, Y holds.29

Similar truth-functional interpretations of the other connectives are given as well. Ber-

nays then defines what a provable and what a valid formula is, thus making the syntax-

semantics distinction explicit:

The importance of our axiom system for logic rests on the following fact:
If by a “provable” formula we mean a formula which can be shown to be cor-
rect according to the axioms [footnote in text: It seems to me to be necessary
to introduce the concept of a provable formula in addition to that of a correct
formula (which is not completely delimited) in order to avoid a circle], and by
a “valid” formula one that yields a true proposition according to the interpreta-
tion given for any arbitrary choice of propositions to substitute for the variables
(for arbitrary “values” of the variables), then the following theorem holds:

Every provable formula is a valid formula and conversely.
The first half of this claim may be justified as follows: First one verifies that

all basic formulas are valid. For this one only needs to consider finitely many
cases, for the expressions of the calculus are all of such a kind that in their
logical interpretation their truth or falsehood is determined uniquely when it
is determined of each of the propositions to be substituted for the variables
whether it is true or false. The content of these propositions is immaterial, so
one only needs to consider truth and falsity as values of the variables.30

Everything one would expect of a modern discussion of propositional logic is here: A

formal system, a semantics in terms of truth values, soundness and completeness relative to

that semantics. As Bernays points out, the consistency of the calculus, of course, follows

from its soundness. Lest the reader—recall that the intended readership includes Hilbert

and his colleagues among the Göttingen faculty—have reservations about the “logical in-

terpetation,” Bernays points out that the interpretation of the variables by truth values is of
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no consequence, the same results could be obtained by an arithmetical interpretation using

0 and 1.

The semantic completeness of the calculus is proved in§3, along the lines of the foot-

note in (Hilbert 1918c) mentioned above. What may be pointed out here is that the formu-

lation of syntactic completeness given by Bernays is slightly different from the lectures and

independent of the presence of a negation sign: it is impossible to add an unprovable for-

mula to the axioms without thus making all formulas provable. Bernays sketches the proof

of syntactic completeness along the lines of Hilbert’s lectures, but leaves out the details of

the derivations.

Bernays also addresses the question of decidability. Decidability was not addressed at

all in the lecture notes, even though Hilbert had posed it as one of the fundamental problems

in the investigation of the calculus of logic. In his talk in Zürich in 1917, he said that an

axiomatization of logic cannot be satisfactory until the question of decidability by a finite

number of operations is understood and solved (Hilbert 1918a, p. 413,¶41–42). Bernays

gives this solution for the propositional calculus by observing that

[t]his consideration does not only contain the proof for the completeness of
our axiom system, but also provides a uniform method by which one can decide
after finitely many applications of the axioms whether an expression of the
calculus is a provable formula or not. To decide this, one need only determine a
normal form of the expression in question and see whether at least one variable
occurs negated and unnegated as a factor in each simple product. If this is the
case, then the expression considered is a provable formula, otherwise it is not.
The calculus therefore can be completely trivialized.31

2.2.6 A Brief Comparison with Post’s thesis

Emil L. Post’s dissertation of 1920 (Post 1921) is the locus classicus for all of the basic

metatheoretical results about the propositional calculus.32 It contains an explicit account

of the truth table method, and the fundamental theorem that a formula is provable from

the axioms ofPrincipia33 if and only if it defines a truth function which is always equal

to ‘+’ (true). From the fundamental theorem, Post deduces a number of consequences.

Among them are, for instance, that the truth table method provides a decision procedure for

derivability in the propositional calculus and that the addition of any unprovable formula
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yields an inconsistent system (inconsistency is understood here alternatively as proving

both a formula and its negation, and as proving every formula). Post uses the term “closed”

for systems which are such that the addition of an unprovable formula makes all formulas

provable (p. 177).

Post’s paper contains a number of other contributions. These are, on the one hand, a dis-

cussion of truth-functional completeness, and on the other, the introduction of many-valued

logics. We will see later that Bernays’s approach to proving independence of the axioms

involved something very much like many-valued logics. It might also be pointed out that

some of the discussion of truth-functional completeness can also be found in Bernays. On

pp. 16–19 of (Bernays 1918), Bernays makes a number of remarks which are relevant here.

For instance, there we find the claim that “all relationships between truth and falsity of

propositions can be expressed using conjunction (‘and’), disjunction (exlusive ‘or’) and

negation, so and thus also using the symbolism of our calculus.”34 Another remark con-

cerns the equivalence of formulas in propositional logic. Two formulas are defined to be

equivalent ifα∼ β is provable (‘∼’ is the Principia notation for the biconditional; Hilbert

uses ‘=’). By the completeness theorem, this is the case if and only ifα∼ β is valid. From

this, Bernays shows that any formula is equivalent to one containing only negation and

disjunction, or only negation and conjunction, or only negation and implication, and that

corresponding claims for negation and equivalence or conjunction and disjunction do not

hold. What we do not find, however, is aproof that every truth function can be represented

by, say, negation and disjunction. A proof of this can be found in lecture notes to a course

by Hilbert given in 1920 (Hilbert 1920a, pp. 18–19), the same year that Post submitted his

dissertation.

The discussion of the fragment without negation leads Bernays to pose the question of

whether there might be an axiom system in which all and only the provable negation-free

propositional formulas are derivable. He claims that this can in fact be done, but does not

give an axiomatization. We shall return to this question in Section 2.5.
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2.3 Hilbert or Bernays?

It is well known that Bernays played an important role in the development of Hilbert’s

program in the 1920s, and that he wrote the monumentalGrundlagen der Mathematik

(Hilbert and Bernays 1934, 1939) essentially alone, of course using Hilbert’s ideas.35 Man-

cosu (1998b, p. 175) stresses Bernays’s contributions to the program in giving “more ex-

plicit discussion of the central philosophical topics surrounding Hilbert’s program,” and in

clarifying Hilbert’s views. Of course, there are also Bernays’s published contributions to

the program, for instance the work on the Entscheidungsproblem with Schönfinkel (Ber-

nays and Scḧonfinkel 1928), and the investigations of the propositional calculus in the

Habilitationsschrift. Through contact with his colleagues in Göttingen, Bernays had great

influence on technical developments, and his contributions and suggestions are acknowl-

edged not only by Hilbert himself. I would like to argue here that Bernays was in fact

instrumental already for the technical advances made in 1917–18, and that the develop-

ment of propositional and first-order logic in (Hilbert 1918c) is at least as much due to

Bernays as it is to Hilbert. Moore (1997) and Sieg (1999) point out that these advances are

not only the formulation of calculi for propositional and first-order logic, but in particular

the investigation of meta-logical questions about these calculi: consistency, completeness,

decidability. These are the questions that Hilbert (1918a) emphasized as important ques-

tions to be answered for the calculus of logic. Their solution is in large part due to Bernays.

The winter term of 1917–18 was Bernays’s first semester as Hilbert’s assistant in Göttin-

gen. Bernays characterized his duties as assistant as follows: “So I was [Hilbert’s] assis-

tant. That job was not like what assistants usually do here [in Zürich], helping the students

with exercises and such. I had nothing to do with that. On the one hand, we discussed

foundational questions, and on the other I helped with the preparation of his lectures and

prepared lecture notes.”36 Bernays held an appointment asaußerplanm̈aßiger Assistent,

which meant that he did not have a regular position which carried a salary, but that he re-

lied on stipends. Hilbert urged Bernays to obtain thevenia legendiso that he would be able

to teach courses. Bernays submitted his application for theHabilitation on 9 July 1918, it

included theHabilitationsschrift(Bernays 1918).37 Bernays gave hisProbevorlesungon

23 December 1918, and the dean of the Faculty of Philosophy granted thevenia legendion
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14 January 1919.38 TheHabilitationsschriftcontains page references to the lecture notes

for the 1917–18 lectures, so the lecture notes must have been finished by the time Bernays

submitted the thesis in July 1918. The winter term lasted from 1 October 1917 to 2 Febru-

ary 1918—approximately 15 weeks of classes. The course onPrinzipien der Mathematik

was given on Thursdays, 9–11 am. Bernays’s own shorthand notes, which he took during

the lecture, survive in hisNachlaßin Zürich.39 Bernays marked the end of each lecture

with a horizontal line, and thus a comparison with the lecture notes makes it possible to

ascertain which parts of the lecture were given when. Approximately, we find the follow-

ing: The first seven lectures correspond the Part A on geometry. The first version of the

propositional calculus is developed in the next three lectures, corresponding to pp. 63–80

of (Hilbert 1918c). The predicate and class calculi are discussed in the next two lectures,

corresponding to pp. 81–129. Already it is remarkable that the typewritten notes contain

a lot of material that is not contained in Bernays’s notes, e.g., the extended discussion of

syllogisms on pp. 99–105. The last three lectures cover the following: the axioms and rules

of the restricted function calculus (corresponding to pp. 129–135); application to infer-

ences with a singular premise (pp. 180–181), the extended function calculus, definition of

identity, number, sets (pp. 188–194), paradoxes (pp. 209–218); and paradoxes continued.

We see that key parts of the lecture notes were apparently not covered in the lecture: the

sections on derivations of theorems and rules in the propositional calculus (pp. 140–179)

including consistency and completeness are completely missing from Bernays’s notes, as

is the last section on type theory (pp. 219–245); the sections on the extended function

calculus, set theory and the paradoxes were only briefly sketched. In total, 117 pages—

almost the latter half of the lecture notes—correspond to three two-hour lectures, 8 pages

of shorthand notes out of 55. Not surprisingly, while the typescript keeps very closely to

the structure of the lectures for the first one hundred pages or so (half-empty pages where

a lecture ended, references to subjects discussed “the last time”), these last 117 read more

like a monograph than like lecture notes.

The documentary record thus strongly suggests the following: The important results

on the propositional and the restricted function calculus were obtained after the lectures

were given, approximately in the period February–May 1918, when Bernays elaborated

his notes to the lecture. TheHabilitationsschriftwas written after the lecture notes were
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completed, in the Spring of 1918. Some additional circumstantial evidence can be adduced

for the thesis that the additional parts of the lecture notes, including the important results,

are due in large part to Bernays. For one, the completeness proof is referred to a number

of times by members of the Hilbert school. Bernays mentions it in the introduction of the

Habilitationsschrift, where he states that proofs of consistency and completeness can be

found in the 1917–18 lecture notes, before he gives the proof itself. We have seen that

these proofs were not given in the actual lectures, and so these remarks must be understood

as merely pointing the reader to the details of the normal form theorem (which was not

proved in theHabilitationsschrift) rather than crediting Hilbert with the results. The pub-

lished version (Bernays 1926) does not mention Hilbert’s lectures at all. Behmann (1922a)

presents the decision procedure based on the completeness proof and refers in this connec-

tion only to Bernays (1918), although Behmann is certainly aware of the 1917–18 lectures

(they are quoted on p. 165, and he almost certainly took the class). In the notes to a course

on mathematical logic given in G̈ottingen in the summer term 1922, Behmann writes:

These questions [of independence] concerning the axiomatics of elemen-
tary propositions were treated a few years ago by the Göttingen mathematician
Bernays (Habilitationsschrift, unfortunately not published), and, one may well
say, given a complete and satisfactory answer. [. . . ] Bernays also rigorously
proved completeness, i.e., has shown that every universally valid elementary
proposition can indeed be derived from the basic formulas according to the
basic rules.40

The most convincing piece of evidence may be the following remark by Bernays:

My knowledge [of logic] was very incomplete at the time, in 1917. Before
Hilbert took up the [investigation of the foundations of mathematics] directly
again, which he had started much earlier [in (Hilbert 1905c)], he did not imme-
diately lecture on that, but he gave a course on mathematical logic. And I was
in charge of writing up [ausarbeiten] that lecture course, and I did this in such
a way that I avoided free variables. I had looked at Russell a little bit, and first
I found it too broad and did not like it in all respects, but in particular I did not
understand what it means to say “for allx, F(x), thenF(y) follows.” In fact,
the application of free variables is something technical. These are two ways
to represent generality. One has generality on the one hand through bound
variables and on the other through free variables. There is no such difference
in natural langauge. So I avoided free variables at first. This is a possible
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way of approach, and later others have also done it this way. So that was a
lecture course, which was written up, and then was filed in the library of the
Mathematical Institute.41

Bernays’s testimony here clearly indicates that the formulation of the quantifier axioms

in (Hilbert 1918c) is due to him. It explains the particular form of these axioms, and why

they differ so much from the corresponding postulates ofPrincipia Mathematicaand from

later presentations (e.g., in Hilbert and Ackermann (1928),42 which are otherwise based

closely on the lecture notes from 1917–18). We may infer from this that the extent of

Bernays’s influence on the formulation and presentation of the results in the lecture notes

from 1917–18 goes far beyond merely typing up what Hilbert said. Some of the results

may or may not be due to Bernays. For instance, it is possible that Hilbert simply did

not have enough time to present the completeness proof, but told Bernays to include it in

the typescript. Given the amount of material that was not covered in the lecture, and the

character of Hilbert and Bernays’s working relationship, it is clear that a large amount of

that material must have been worked out by Bernays alone. The fact that something as

central as the formulation of the quantifier axioms is due to Bernays shows that it is very

likely that he was the author of the parts of the lecture notes not covered in the lecture

itself, and even that much of the material that was covered is in fact due to him. Be that as

it may, the insights and results that are certainly due to Bernays—a clear syntax-semantics

distinction, formulation of semantic completeness, independence results—are important

enough to earn Bernays a prominent place in the history of the subject.

Why did Bernays not claim the results as his? A possible explanation may be his pro-

nounced modesty.43 (By the same token, if the results were exclusively Hilbert’s, Bernays

would have made a point of noting that when he presented the proofs, e.g., in Bernays

(1926) and Bernays and Schönfinkel (1928).) Also recall the then prevalent tendency de-

scribed by Bernays in a quote in§1 above, not to take mathematical logic seriously—at the

time, he may well have thought of the results as not worth mentioning.
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2.4 Dependence and Independence

Consistency and independence are the requirements that Hilbert laid down for axiom

systems of mathematics time and again. Consistency was established—but the “contribu-

tions to the axiomatic treatment” of propositional logic could not be complete without a

proof that the axioms investigated are independent. In fact, however, the axiom system for

the propositional calculus, slightly modified from the postulates in (*1) ofPrincipia Math-

ematica, is not independent. Axiom 4 is provable from the other axioms. Bernays devotes

§4 of theHabilitationsschriftto give the derivation, and also the inter-derivability of the

original axioms ofPrincipia (2′) and (4′) with the modified versions (2) and (4) in presence

of the other axioms. Together the derivations also establish the dependence of (*1.5) from

the other propositional postulates inPrincipia.

Independence is of course more challenging. The method Bernays uses is not new, but

it is applied masterfully. Hilbert had already used arithmetical interpretations in Hilbert

(1905a) to show that some axioms are independent of the others. The idea was the same

as that originally used to show the independence of the parallel postulate in Euclidean ge-

ometry: To show that an axiomα is independent, give a model in which all axioms but

α are true, the inference rules are sound, butα is false. Schr̈oder was the first to apply

that method to logic.§12 of hisAlgebra of Logic(Schr̈oder 1890) gives a proof that one

direction of the distributive law is independent of the axioms of logic introduced up to

that point. The interpretation he gives is that of the “calculus of algorithms,” developed in

detail in Appendix 4. Bernays combines Schröder’s idea with Hilbert’s arithmetical inter-

pretation and the idea of the consistency proof for the first propositional calculus in Hilbert

(1918c) (interpreting the variables as ranging over a certain finite number of propositions,

and defining the connectives by tables). He gives six “systems” to show that each of the

five axioms (and a number of other formulas) is independent of the others. The systems

are, in effect, finite matrices. He introduces the method as follows:

In each of the following independence proofs, the calculus will be reduced
to a finite system (a finite group in the wider sense of the word [footnote: that
is, without assuming the associative law or the unique invertability of com-
position]), where for each element a composition (“symbolic product”) and a
”negation” is defined. The reduction is given by letting the variables of the
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calculus refer to elements of the system as their values. The “correct formu-
las” are characterized in each case as those formulas which only assume values
from a certain subsystemT for arbitrary values of the variables occurring in
it.44

In the published version (Bernays 1926), the elements of the subsystemT are called

ausgezeichnete Werte—designated values. The term is commonly used today.

I shall not go into the details of the derivations and independence proofs.45 Let me

just say that Bernays’s method was of some importance in the investigation of alternative

logics. For instance, Heyting (1930) used it to prove the independence of his axiom system

for intuitionistic logic and G̈odel (1932) was influenced by it when he defined a sequence of

sentencesFn so that eachFn is independent of intuitionistic propositional calculus together

with all Fi , i > n.46 The many-valued logics G̈odel used to show this are now called Gödel

logics. It may be debated whether Bernays’s systems can properly be called many-valued

logics,but they certainly had the distinction of being useful in proving independence results

in logic, an achievement considered important.

2.5 Axioms and Rules

In the final section of hisHabilitationsschrift, Bernays considers the question of whether

some of the axioms of the propositional calculus may be replaced by rules. This seems like

a natural question, given the relationship between inference and implication: For instance,

axiom 5 suggests the following rule of inference: (Recall thatαβ is Hilbert’s notation for

the disjunction ofα andβ. See§2.3 for a list of the axioms and rules.)

α→ β
γα→ γβ

c

which Bernays used earlier as a derived rule. Indeed, axiom 5 is in turn derivable using this

rule and the other axioms and rules. Bernays considers a number of possible rules

α→ β

β→ γ
α→ γ d αα

α r1
α

αβ r2
αβ
βα r3

α(βγ)
(αβ)γ r4

ϕ(αα)
ϕ(α) R1

ϕ(αβ)
ϕ(βα) R3
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and shows that the following sets of axioms and rules are equivalent (and hence, complete

for propositional logic):

1. Axioms: 1, 2, 3, 5; rules: a, b

2. Axioms: 1, 2, 3; rules: a, b, c

3. Axioms: 2, 3; rules: a, b, c, r1

4. Axioms: 2; rules: a, b, c, r1, R3

5. Axioms:XX47; rules: a, b, c, r1, r2, r3, r4

Bernays also shows, using the same method as before, that these axiom systems are

independent, and also the following independence results:48

6. Rule c is independent of axioms: 1, 2, 3; rules: a, b, d (showing that in (2), rule c

cannot in turn be replaced by d);

7. Rule r2 is independent of axioms: 1, 3, 5; rules: a, b, (thus showing that in (1) and

(2), axiom 2 cannot be replaced by rule r2);

8. Rule r3 is independent of axioms: 1, 2; rules: a, b, c (showing similarly, that in (1)

and (2), rule r3 cannot replace axiom 3);

9. Rule R3 is independent of axioms:XX, 3; rules: a, b (showing that R3 is stronger

than r3, since 3 is provable from R3 andXX );

10. Rule R1 is independent of axioms:XX, 1; rules: a, b (showing that R1 is stronger

than r1, since 1 is provable fromXX and R1);

11. Axiom 2 is independent of axioms:XX, 1, 3, 5; rules: a, b, and

12. Axiom 2 is independent of axioms:XX; rules: a, b, c, r1, R3 (showing that in (5),

XX together with r2 is weaker than axiom 2).



38

The detailed study exhibits, in particular, a sensitivity to the special status of rules like

R3, where subformulas have to be substituted. The discussion foreshadows developments

of formal language theory in the 1960s. Bernays also mentions that a rule (corresponding

to axiom 1), allowing inference ofϕ(α) from ϕ(αβ) would be incorrect (and hence, “there

is no such generalization of r1”).

Bernays’s discussion of axioms and rules, together with his discussion of expressibility

in the “Supplementary remarks to§2–3” (discussed above at the end of Section 2.2.6),

shows his acute sensitivity for subtle questions regarding logical calculi. His remarks are

quite opposed to the then-prevalent tendency (e.g., Sheffer and Nicod) to find systems

with fewer and fewer axioms, and foreshadow investigations of relative strength of various

axioms and rules of inference, e.g., of Lewis’s modal systems, or more recently of the

various systems of substructural logics.

At the end of the “Supplementary remarks,” Bernays isolates the positive fragment of

propositional logic (i.e., the provable formulas not containing negation; here+ and→ are

considered primitives) and claimed that he had an axiomatization of it. He did not give an

axiom system, but stated that it is possible to choose a finite number of provable sentences

as axioms so that completeness follows by a method exactly analogous to the proof given

in §3. The remark suggests that Bernays was aware that the completeness proof is actually

a proof schema, in the following sense. Whenever a system of axioms is given, one only

has to verify that all the equivalences necessary to transform a formula into conjunctive

normal form are theorems of that system. Then completeness follows just as it does for the

axioms ofPrincipia.

In his next set of lectures on the “logical calculus” given in the Winter semester of

1920,49 Hilbert makes use of the fact that that these equivalences are the important pre-

requisite for completeness. The propositional calculus we find there is markedly different

from the one in Hilbert (1918c) and Bernays (1918), but the influences are clearly visible.

The connectives are all primitive, not defined, this time. The sole axiom isXX, and the

rules of inference are:

X
XY

b2

X
Y

X +Y
b3
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plus the rule (b4), stating: “Every formula resulting from a correct formula by transforma-

tion is correct.” “Transformation” is meant as transformation according to the equivalences

needed for normal forms: commutativity, associativity, de Morgan’s laws,X andX, and

the definitions of→ and= (biconditional). These transformations work in both directions,

and also on subformulas of formulas (as did R1 and R3 above).50 One equivalence corre-

sponding to modus ponens must be added, it is:(X +X)Y is intersubstitutable withY.

Anyone familiar with the work done on propositional logic elsewhere might be puzzled

by this seemingly unwieldy axiom system. It would seem that the system in Hilbert (1920a)

is a step backward from the elegance and simplicity of thePrincipia axioms. Adjustments,

if they are to be made at all, it would seem, should go in the direction of even more sim-

plicity, reducing the number of primitives (as Sheffer did) and the number of axioms (as in

the work of Nicod and later Łukasiewicz). Hilbert is motivated by different concerns. He

was not only interested in the simplicity of his axioms, but in their efficiency. Decidability,

in particular, supersedes considerations of independence and elegance. The presentation

in Hilbert (1920a) is designed to provide a decision procedure which is not only efficient,

but also more intuitive to use for a mathematician trained in algebraic methods. Bernays’s

study of inference rules made clear, on the other hand, that such an approach can in princi-

ple be reduced to the axiomatics ofPrincipia. One may ask whether the truth table method

is not just as efficient a decision procedure. As any computer scientist working in auto-

mated theorem proving knows, truth tables are the worst possible decision procedure for

propositional logic—exponential not only in the worst case, but ineverycase. In a sim-

ilar vein, the subsequent work on the decision problem is not strictly axiomatic, but uses

transformation rules and normal forms. The rationale is formulated by Behmann:

The form of presentation will not be axiomatic, rather, the needs of prac-
tical calculation shall be in the foreground. The aim is thus not to reduce ev-
erything to a number (as small as possible) of logically independent formulas
and rules; on the contrary, I will give as many rules with as wide an applica-
tion as possible, as I consider appropriate to the practical need. The logical
dependence of rules will not concern us, insofar as they are merely of indepen-
dent practical importance. [. . . ] Of course, this is not to say that an axiomatic
development is of no value, nor does the approach taken here preempt such a
development. I just found it advisable not to burden an investigation whose
aim is in large part the exhibition of new results with such requirements, as can
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later be met easily by a systematic treatment of the entire field.51

Such a systematic treatment, of course, was necessary if Hilbert’s ideas regarding his

logic and foundation of mathematics were to find followers. Starting in (1922c) and (1923),

Hilbert presents the logical calculus not in the form ofPrincipia, but by grouping the ax-

ioms governing the different connectives. In (1922c), we find the “axioms of logical con-

sequence,” in (1923), “axioms of negation.” The first occurrence of axioms for conjunction

and disjunction seems to be in a class taught jointly by Hilbert and Bernays during Win-

ter 1922–23, and in print in Ackermann’s dissertation (Ackermann 1924b). The project of

replacing the artificial axioms ofPrincipia with more intuitive axioms grouped by the con-

nectives they govern, and the related idea of considering subsystems such as the positive

fragment, is Bernays’s. In 1918, he had already noted that one could refrain from taking

+ and→ as defined symbols and consider the problem of finding a complete axiom sys-

tem for the positive fragment. The notes to the lecture course from 1922–23 (Hilbert and

Bernays 1923a, p. 17) indicate that the material in question was presented by Bernays. In

1923, he gives a talk entitled “The role of negation in propositional logic:”

In axiomatizing the propositional calculus, the predominant tendency is to
reduce the number of basic connectives and therewith the number of axioms.
One can also, on the other hand, sharply distinguish the various connectives;
in particular, it would be of interest to investigate the role of negation.52

The emphasis of separating negation from the other connectives is of course necessi-

tated by Hilbert’s considerations on finitism as well.53

Full presentations of the axioms of propositional logic are also to be found in (Hilbert

1928a), and in slightly modified form in a course on logic taught by Bernays in 1929–30.

The axiom system we find there is almost exactly the one later included in (Hilbert and

Bernays 1934).

I. A→ (B→ A)

(A→ (A→ B))→ (A→ B)

(A→ (B→C))→ (B→ (A→C))

(B→C)→ ((A→ B)→ (A→C))
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II. A& B→ A

A& B→ B

(A→ B)→ ((A→C)→ (A→ B& C))

III. A→ A∨B

B→ A∨B

(B→ A)→ ((C→ A)→ (B∨C→ A))

IV. (A∼ B)→ (A→ B)

(A∼ B)→ (B→ A)

(A→ B)→ ((B→ A)→ (A∼ B))

V. (A→ B)→ (B→ A)

(A→ A)→ A

A→ A

A→ A54

The algebraic perspective, evident only a few years earlier by the adoption of asso-

ciativity, commutativity, and distributivity as axioms in some way or other, is completely

lacking here. On the other hand, the influence of Frege is palpable in groups I, IV, and V.

In (1927), Bernays claims that the axioms in groups I–IV provide an axiomatization of the

positive fragment, and raises the question of a decision procedure. This is where he first

follows up on his his claim in (1918) that such an axiomatization is possible.

2.6 Lasting Influences

Let me now summarize the advances made by Bernays and Hilbert and try to put them

in the historical context of the development of mathematical logic and the foundations

of mathematics. The most important of these contributions are certainly the distinction
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between syntax and semantics, the formulation of syntactic and semantic completeness,

the proof of completeness for the propositional calculus, and the proof of decidability.

The history of the the concept(s) of completeness of an axiomatic system has yet to

be written. The need for such a history, however, is apparent; completeness is the most

fundamental property—alongside consistency—that an axiom system can have, and proofs

of completeness and incompleteness of some kind or another count among the most cel-

ebrated results of mathematical logic. One need only mention the names of Gödel and

Tarski in this connection to illustrate its importance. Although I cannot undertake the task

of providing this history here, I want to indicate some of its milestones, since the work of

Hilbert and Bernays I have been discussing is probably among the most important.

As we have seen, one of the roots of completeness as a property of axiom systems is

the completeness axiom that Hilbert introduced in (1900b). The axiom was not present

in the first edition ofFoundations of Geometry, but was included in the French translation

of 1900, and then in the second German edition of 1903.55 In the lectures from 1905 and

again in “Axiomatic thought” (Hilbert 1918a) the axiom was formulated as the requirement

that the addition of entities (numbers) to a model of the axioms would result in inconsisten-

cies. In 1906, writing in G̈ottingen, Johannes Mollerup discusses Hilbert’s axiomatization

of the reals, and—without explicitly criticizing Hilbert on this issue—shifts the focus from

completeness as something to be stipulated to something to be proven. He writes: “So

we have two requirements for an axiom system, namelyfirst an arithmetical requirement

of consistency, andseconda set-theoretic requirement of completeness” (Mollerup 1907,

p. 237). K̈onig (1914, p. 209) also criticizes Hilbert’s use of the completeness axiom, stat-

ing that “the ‘completeness axiom’ is an intuition we should come to have of a completed

thought-system; ‘completeness’ is an assumption which cannot even be formulated as an

‘axiom’ in our synthesis; just as the assumption of consistency cannot be so formulated.”56

Hilbert did not address or acknowledge these criticism explicitly, and the completeness

axiom survives in subsequent editions of theFoundations of Geometry. In the lectures

from 1917–18, however, completeness is first formulated as a property of the propositional

calculus in the form: whenever a hitherto non-derivable formula is added to the system, the

system becomes inconsistent. The shift from talking about adding elements to talking about

adding formulas (new axioms) may be explained in one of two ways: Possibly Hilbert and
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Bernays agreed that completeness should not be formulated as an axiom, but should be a

property which one should prove about the system, and then the formulation corresponding

to Post completeness seems to be the straightforward adaptation. On the other hand, if we

take into account that the “elements” described by an axiom for propositional logicare

propositions, then Post completeness says about propositions exactly the same thing that

the completeness axiom says about the reals. Such an interpretation of propositions as the

“things” that an axiom system is about is actually hinted at by Hilbert (1905a, pp. 257–

58), and is supported by Hilbert’s comparison of Russell’s axiom of reducibility to the

completeness axiom in 1918 (reported in Mancosu (1999a,§8)).

By 1921 at least, Hilbert is well aware of the difference between the requirement ex-

pressed by the completeness axiom and completeness of axiom system in the syntactic

sense, which is equivalent to the requirement that it proves or refutes every formula of

the language.57 The latter requirement is obviously closely related to Hilbert’s “no ig-

norabimus,” the conviction that every well-posed mathematical question can be answered

positively or negatively. Where and how does the shift from the completeness axiom to the

question of completenessof the axioms occur? Was it the recognition that in the context

of logic the two amount to the same, and that syntactic completeness also makes the in-

formal question of completeness (“We will have to require that all other facts of the area

in question are consequences of the axioms.”58) more precise? I cannot give an answer to

this interesting and important question here. The issues are complicated enough to warrant

their own extended treatment.59

The question of semantic completeness arises only when one makes a clear distinction

between syntax and semantics. In 1917, Hilbert is still heavily influenced by Russell and

Whitehead’sPrincipia, and the influence is clearly visible in the lecture notes from 1917–

18. But already there, Hilbert brings his view of axiomatics to bear: Derivation rules are

formulated with more care, the expressions of the system are defined recursively, and we

find metatheoretical results stated and proved which Russell and Whitehead considered

misplaced because they could not be formulated within the system. But, as Sieg (1999)

points out, the axiom systems still come with a built-in interpretation, as it were. Bernays

(1918) makes the division between syntax and semantics complete.60 The axioms and

rules are stated purely formally—the study of the axiom system would be idle, were it not
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possible to give a “logical interpretation.” This logical interpretation is precisely truth-value

semantics for the propositional calculus. Now the semantical concept of completeness

arises naturally: every valid formula is formally derivable.

The main application of the completeness proof, besides establishing that the propo-

sitional calculus provides an adequate formalization of the domain of propositional logic,

is that of its decidability. The decision problem is vaguely formulated in (Hilbert 1900b)

and (1918a), but in Bernays’sHabilitationsschriftwe find a model example of what a de-

cision procedure looks like. This procedure serves as the model for subsequent attacks on

theEntscheidungsproblem. For these attacks, however, axiomatics is put aside in favor of

semantic methods. Behmann seems to be the first to state the decision problem explicitly:

A general [set of] instructions shall be exhibited, according to which the
correctness or falsityof an arbitrary given claim, which can be formulated
with logical means, can be decided after a finite number of steps; this aim shall
be realized at least within the bounds—which are to be determined exactly—
within which its realization is in fact possible.61

The decision problem was, of course, another great problem on which Hilbert’s students

were working fervently in the 1920s. We have seen how the early work by Bernays and

Hilbert in 1917–18 provides a paradigm for the solution. A decision procedure should be

a determinate method to answer, in a finite number of steps, whether a logical formula is

provable. But one should not forget that Bernays’s decision procedure not only provides a

model for whatkindof result was to be proved, buthowit should be proved. The method of

transformation to normal forms, which was used by Behmann, Schönfinkel, and ultimately

Gödel, can be traced back to Bernays’sHabilitationsschrift(Bernays 1918) and Hilbert’s

1905 lectures. With the semantic completeness and the work of Behmann (1922a), a shift

towards semantic methods occurred, which was foreshadowed by semantic procedures for

deciding validity and equivalence of propositional formulas in Hilbert (1920a).

It is not until 1928 that completeness resurfaces. At the Congress of Mathematicians in

Bologna, Hilbert poses the syntactical completeness of arithmetic and the semantic com-

pleteness of first order logic as problems of the foundations of mathematics (Hilbert 1928b,

1929).62 (In the 1917–18 lectures, it was already conjectured that the function calculus

was not Post complete. This was subsequently proved by Ackermann.) Completeness of
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first-order logic was also posed as a question in the book with Ackermann (Hilbert and

Ackermann 1928). The question is solved a year later in Gödel’s dissertation (G̈odel 1929,

Gödel 1930).63

The metalogical investigations of Bernays on independence and axioms versus rules in

1918 laid the groundwork for several later developments. On the one hand, they provided

a rigorous justification for the “algebraic” methods of manipulating formulas (e.g., of “ap-

plying” the law of associativity to subformulas) that were used as the official formulation

of propositional logic until about 1923. At that time the strictures of Hilbert’s developing

finitism made it clear that distinctions must be made between the unproblematic connec-

tives (disjunction, conjunction, and in particular the conditional, or “consequence”), and

the problematic part, namely negation and the quantifiers. Here, too, Bernays’s investiga-

tions helped satisfy these strictures by separating the axioms for the unproblematic notions

from those for the problematic ones. In the notation ofPrinicipia, this would not have

been possible: there, the unproblematic notion of consequence was even defined in terms

of negation (and disjunction).

The development of clear and intuitive axioms for propositional logic, and the investi-

gations of the extent to which axioms can be replaced by rules undoubtedly also had great

influence on Gentzen’s development of natural deduction and the sequent calculus. Ber-

nays was still teaching in G̈ottingen at the time when Gentzen was preparing his thesis

(Gentzen 1934), and in all likelihood was in close contact with him. Bernays was work-

ing closely with Paul Hertz throughout the 1920s, and Hertz’s work on axiom systems is

commonly acknowledged to be one of Gentzen’s main sources.64 The picture is far from

complete, however, and it seems well worth filling in the details. In the course of this, in

particular in a reexamination of Hertz’s work on logic, it may well be that further important

contributions by Bernays may come to light.

Notes

1. Hilbert issued the invitation in September 1917 at the occasion of Hilbert’s talk on axiomatic

thought in Z̈urich. Reid (1970, p. 151) reports that the invitation was made in the Spring of 1917.

Bernays, however, reported the former version in (Bernays 1976b), in an interview on 25 July 1977
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(Bernays 1977), and even in a letter to Reid (27 November 1968, Bernays Nachlaß, WHS, ETH

Zürich, Hs 975.3775). As far as I can see, there is no evidence for Reid’s version.

2. See also Abrusci (1989).

3. Pierce, Wittgenstein, and Post are commonly credited with the truth-table method of deter-

mining propositional validity; Post for the completeness of propositional calculus; and Pierce, Post,

and Łukasiewicz for the invention of many-valued logics. The method of using many-valued matri-

ces for independence proofs was also discovered independently by Łukasiewicz and Tarski.

4. “[Sie] hatte zwar durchaus mathematischen Character, aber so die damalige Auffassung war

die, dass man diese Grundlagenuntersuchungen, die an die mathematische Logik anknüpften, dass

man die mathematisch nicht für voll genommen hat, nicht wahr, ja, das ist ja so ganz nett, das ist so

halb spielerisch, nicht wahr, [. . . ] und ich war auch so in der Tendenz [. . . ] und habe das sozusagen

auch nicht so ganz für voll genommen, und da [. . . ] hatte ich keinen solchen Eifer, das rechtzeitig

zu publizieren, und das ist erst sehr viel später, und doch eigentlich nicht ganz vollständig, son-

dern bloss mit gewissen Partien herausgekommen [. . . ] so ist das, ist Manches zum Beispiel in den

Darstellungen der Entwicklung der mathematischen Logik ist das zum Teil nicht, nicht wahr, ent-

sprechend zum Ausdruck gekommen, was ich da in dieser Arbeit hatte.” Interview, 25 July 1977

(Bernays 1977); also reported by Specker (1979). All translations are mine except where English

translations are noted in the bibliography. It might be interesting to list some historical accounts

and how they treat Bernays. Jørgensen (1931), who in other respects provides a very comprehen-

sive account of the developments in symbolic logic up to 1930, mentions neither Post nor Bernays in

connection with completeness or independence results. Kneale and Kneale (1962) treat Bernays’s

independence proofs in depth and give his completeness proof, but credit it to Post. Bocheński

(1956) mentions Post in connection with the decision procedure for propositional logic, but does

not mention Bernays. Church (1956) cites Bernays’s results on dependence and independence, but

does not mention him in connection with consistency, completeness, or decidabilty. Surma (1973)

makes no mention of Bernays at all.

5. “Die Paradoxien, die wir im voranstehenden kennen gelernt haben, zeigen zur Genüge, dass

eine Pr̈ufung und Neuauff̈uhrung der Grundlagen der Mathematik und Logik unbedingt nötig ist.”

(Hilbert 1905a), p. 215

6. A marginal note on p. 224 instructs: “write more simply= ‘equal’ ”.

7. (Hilbert 1905a), pp. 225–228.

8. “We may think of 0—if we want to proceed intuitively—as the proposition which ‘expres-
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ses nothing’ and which therefore is the ideally correct one; we may call every proposition identi-

cal to 0 acorrect [richtige] or maybe betternon-contradictory[widerspruchslose] proposition . . . ”

(Hilbert 1905a), p. 226

9. “Es müßte nun untersucht werden, wie weit die Axiome von einander unabhängig sind [. . . ]

Das Wichtigste aber ẅare hier der Nachweis, dass die 12 Axiome sich nicht widersprechen, d.h. daß

man aus ihnen durch die festgelegten Proceße [sic] keine Aussage herleiten kann, die den Axiomen

widerspricht,X + X ≡ 0 etwa. Das sind alles hier nur Andeutungen, die noch keineswegs vollkom-

men durchgef̈uhrt sind, und man hat in Einzelheiten noch sehr viel freie Hand;überhaupt liefert

dieser ganze Abschnitt vorläufig eigentlich mehr Materialien zu einer endgültigen Lösung der inter-

essierenden Fragen, als eine endgültige Lösung von ihnen.” (Hilbert 1905a), pp. 230–31

10. The notationX |Y was introduced in (Hilbert 1905c), this is changed toX→Y in a marginal

note on p. 236. The influence of Frege is obvious here: “b follows froma” is motivated as excluding

the second of the four possibilities:a+b, a+b, a+b, a+b, compareBegriffsschriftFrege (1879),

§5.

11. When proving a similar normal form theorem for the calculus in (Hilbert 1918c, p. 149), the

fact that normal forms are not unique is pointed out in a footnote. Even if the procedure outlined by

Hilbert were deterministic and would thus produce unique normal forms for every formula, different

formulas may still have different normal forms, a fact which will become important below.

12. “Eine AussageY folgt aus einer andernX dann und nur dann, wenn sie von der FromA ·X
ist, woA irgend eine Aussage ist. Schliessen heisst richtige Aussagen mit irgend welchen Aussagen

multiplizieren.” (Hilbert 1905a), p. 246.

13. “Ich will hier noch auf eine, wohl die wichtigste Anwendung der Normalform einer Aus-

sage und ihrer Eindeutigkeit hinweisen. Wir wollen—und darauf müssen wir und zun̈achst be-

schr̈anken—eine endliche Anzahl von Aussagena, b, c. . . (Axiomeüber die behandelten Dinge oder

Eigennamen) zu Grund legen. Dann kann esüberhaupt nur endlich viele Aussagen darüber (d.h. aus

diesen Grundaussagen zusammengesetzte Aussagen) geben; denn jede läßt sich auf eine Summe

von Produkten im wesentlichen eindeutig bringen, wo in jedem Summand dieselbe Grundaussage

nur in der ersten Dimension erscheinen und dasselbe Produkt auch nur einmal als Summand auftre-

ten kann. Jede richtige Aussage muß aus der Summe der Axiomea+ b+ · · · durch einen gewissen

Multiplikator A folgen (Beweis), und f̈ur diesesA gibt es nach dem gesagten auch nur endlich viele

Formen. So ergibt sich hier, daß für jeden Satz nurendlich viele Beweism̈oglichkeitenexistieren,

und wir haben damit in dem vorliegenden primitivsten Falle das alte Problem gelöst, daß jedes rich-
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tige Resultat sich durch einenendlichen Beweiserzielen lassen muß. Dies Problem war eigentlich

der Ausgangspunkt aller meiner Untersuchungen auf unserem Gebiete und die Erledigung dieses

Problemes im allerallgemeinsten Falle der Beweis, daß es in der Mathematik kein “Ignorabimus”

geben kann, muß auch das letzte Ziel bleiben.” (Hilbert 1905a), pp. 248–9.

14. This correction is made by Hilbert later in the lectures (p. 257), see also Peckhaus (1990,

pp. 70–72).

15. Of course it would be enough to know that there are only finitely many normal forms, and

we can check all of these. But Hilbert does not have a deterministic and finite procedure to produce

all these.

16. I do not mean to suggest that Hilbert was not interested in the foundations of mathematics

during this period. Sieg (1999) has pointed out that Hilbert lectured a number of times on foun-

dations of mathematics and physics during that time. These lectures, however, contain far less of

logical interest than those of 1905 or those after 1917; most of them were courses on “elementary

mathematics from a higher standpoint,” a topic on which Klein had also often lectured. Even though

Hilbert may not himself have worked much on the subject, there is a lot of activity in foundations of

mathematics in G̈ottingen at the time, as the list of lectures in the Mathematical Society published in

theJahresberichte der Deutschen Mathematiker-Vereinigungshows. Mancosu (1999a) gives a sur-

vey of the developments going on in the early 1910s. He stresses in particular the role of Heinrich

Behmann in introducing the mathematicians in Göttingen to thePrincipia Mathematica.

17. (Hilbert 1918c), call number 6817a.44a

18. Heinrich Behmann was completing his dissertation entitled “The antinomy of transfinite

number and its solution by Russell and Whitehead” [Die Antinomie der transfiniten Zahl und ihre

Auflösung durch Russell und Whitehead] under Hilbert in the Spring of 1918 (see Mancosu (1999a));

it would be interesting to compare it with the presentation of the paradoxes and type theory in the

1917–18 lectures.

19. “Man beschr̈anke den Bereich der Aussagen, indem manüberhaupt nur die beiden Aussagen

0 und 1 zul̈asst, und deute dementsprechend die Gleichungen als eigentliche Identitäten. Ferner

definiere man Summe und Produkt durch die 8 Gleichungen [. . . ] welche dadurch characterisiert

sind, dass sie in richtige arithmetische Gleichungenübergehen, sofern man die symbolische Summe

durch den Maximalwert der Summanden und das symbolische Produkt durch den Minimalwert der

Faktoren ersetzt. Als Gegenteil der Aussage 0 erkläre man die Aussage 1 und als Gegenteil von 1

die Aussage 0.
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Diese Definitionen f̈uhren jedenfalls zu keinem Widerspruch, da in jeder von ihnen ein neu-

es Zeichen erklärt wird. Andererseits kann man durch endlich viele Versuche feststellen, dass bei

den getroffenen Festsetzungen allen Axiomen I–XII Genüge geleistet wird. Diese Axiome können

daher gleichfalls keinen Widerspruch ergeben. So lässt sich f̈ur unseren Kalk̈ul die Frage der Wi-

derspruchslosigkeit vollkommen zur Entscheidung bringen.” (Hilbert 1918c), p. 70

20. Where Hilbert (1918c) uses ‘=’, Bernays (1918) uses the Russellian ‘∼’.

21. The use of substitution is indicated at the beginning of *2. A substitution rule was ex-

plicitly included in the system of Russell (1906), and Russell also acknowledged its necessity later

(e.g., in the introduction to the second edition ofPrincipia). For a discussion of the origin of the

propositional calculus ofPrincipia and the tacit inference rules used there, see O’Leary (1988).

22. This becomes clear from Bernays (1918), who makes a point of distinguishing between

correct and provable formulas, in order “to avoid a circle.” In (Hilbert 1920a, p. 8), we read: “It is

now the first task of logic to find those combinations of propositions, which are always, i.e., without

regard for the content of the basic propositions,correct.”

23. This rule is tacitly used inPrincipia, but Russell’s view that logic is universal prevented him

from formulating it as a rule. Replacement “can be proved in each separate case, but not generally

[. . . ]” (Whitehead and Russell 1910, p. 115).

24. (Hilbert 1918c), p. 144. There is actually a gap in the proof. Hilbert argues that since

multiple substitutions can be reduced to successive single substitutions, only the cases whereϕ(α)

is α, αγ andγα need to be considered. Somewhere, however, induction has to play a role. What

should be done is to prove that wheneverα→ β andβ→ α is provable then so areα→ β, β→ α,

αγ→ γα and γα→ γβ, and then argue by induction on the depth of the occurrence ofα in ϕ.

Compare in this regard Post’s (1921, p. 170) proof of essentially the same result; his proof uses

induction on the complexity of formulas.

25. “Dieses System von Axiomen wäre als widerspruchsvoll zu bezeichen, falls sich daraus zwei

Formeln ableiten liessen, die zueinander in der Beziehung des Gegemteils stehen.” (Hilbert 1918c),

p. 150.

26. “Wenden wir uns nun zu der Frage derVollständigkeit. Wir wollen das vorgelegte Axiom-

en-System vollsẗandig nennen, falls durch die Hinzufügung einer bisher nicht ableitbaren Formel

zu dem System der Grundformeln stets ein widerspruchsvolles Axiomensystem entsteht.” (Hilbert

1918c, p. 152).

27. “Dieses letzte Axiom tr̈agt einen durchaus allgemeinen Character und ist in jedem Axio-
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mensystem irgendwelcher Art in gewisser Form anzufügen; hier ist es, wie wir sehen werden, von

ganz besonderer Bedeutung. Das Zahlensystem soll nach ihm so beschaffen sein, daß bei jeder

Anfügung neuer Elemente Widersprüche auftreten, was für Festsetzungen man auchüber sie treffe;

lassen sich Dinge angeben die sich widerspruchslos anfügen lassen, so m̈ussen sie dem Systeme in

Wahrheit schon angehören.” (Hilbert 1905a), p. 17

28. The possibility for such a move was of course already implicit in Hilbert’s earlier writings

on the foundations of geometry.

29. “Das aufgestellte Axiomen-System könnte kein besonderes Interesse beanspruchen, wenn

es nicht einer bedeutsamen inhaltlichen Interpretation fähig ẅare.

Eine solche Interpretation ergibt sich auf folgende Art:

Die Variablen fasse man als Symbole für Aussagen(Sätze) auf.

Als characteristische Eigenschaft der Aussagen soll angesehen werden, dass sie entweder wahr

oder falsch und nicht beides zugleich sind.

Das symbolische Produkt deute man als die Verknüpfung zweier Aussagen durch ‘oder,’ wobei

diese Verkn̈upfung nicht im Sinne der eigentlichen Disjunktion zu verstehen ist, welche das Zu-

sammenbestehen der beiden Aussagen ausschliesst, sondern vielmer derart, dass ‘X oderY’ dann

und nur dann zutrifft (d.h. wahr ist), wenn mindestens eine der beiden AussagenX, Y zutrifft.”

(Bernays 1918), pp. 3–4.

30. “Die Bedeutsamkeit unseres Axiomen-Systems für die Logik beruht nun auf folgender Tat-

sache: Versteht man unter einer ‘beweisbaren’ Formel eine solche, die sich gemäss den Axiomen als

richtige Formel erweisen lässt [footnote: Den Begriff der beweisbaren Formel neben dem der rich-

tigen Formel (welcher nicht vollständig abgegrenzt ist) einzuführen, erscheint mir zur Vermeidung

eines Zirkels als notwendig.], und unter einer ‘allgemeingültigen’ Formel eine solche, die im Sinne

der angegebenen Deutung bei beliebiger Wahl der für die variablen einzusetztenden Aussagen (also

für beliebige ‘Werte’ der Variablen) stets eine wahre Aussage ergibt, so gilt der Satz:

Jede beweisbare Formel ist eine allgemeingültige Formel und umgekehrt.

Was zun̈achst die erste Ḧalfte dieser Behauptung betrifft, so lässt sie sich folgendermassen be-

gründen: Man verifiziert zuerst, dass sämtliche Grundformeln allgemeingültige Formeln sind. Hier-

zu hat man nur endlich viele Fälle auszuprobieren, denn die Ausdrücke des Kalk̈uls sind alle von

der Art, dass bei der logischen Interpretation ihre Wahrheit und Falschheit eindeutig bestimmt ist,

wenn von jeder der für die Variablen einzusetzenden Aussagen feststeht, ob sie wahr oder falsch ist,

während imübrigen der Inhalt dieser Aussagen gleichgültig ist, sodass man als Wert der Variablen
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anstatt der Aussagen nur Wahrheit und Falschheit zu betrachten braucht.” (Bernays 1918), p. 6.

31. “Diese Betrachtung enthält nicht allein den Beweis für die Vollsẗandigkeit unseres Axiom-

en-Systems, sondern sie liefert unsüberdies noch ein einheitliches Verfahren, durch welches man

bei jedem Ausdruck des Kalküls nach endlich vielen Anwendungen der Axiome entscheiden kann,

ob er eine beweisbare Formel ist oder nicht. Zum Zweck dieser Entscheidung braucht man nur für

den betreffenden Ausdruck eine Normalform zu bestimmen und nachzusehen, ob darin bei jedem

der einfachen Produkte mindestens eine Variable sowohl unüberstrichen wiëuberstrichen als Glied

vorkommt. Trifft dies zu, so ist der untersuchte Ausdruck eine beweisbare Formel, andernfalls ist er

es nicht. Der Kalk̈ul lässt sich demnach vollkommen trivialisieren.” (Bernays 1918), pp. 15–16.

32. For biographical information on Post and his influences, see Davis (1994). Davis (1995)

points out that some of the clarifications that Hilbert and Bernays achieved, e.g., the distinction

between syntax and semantics, correct and provable formulas, and between theorems about the

calculus and theorems in the calculus, were also seen by Lewis (1918), who strongly influenced

Post. In fact, the last of the distinctions just mentioned is emphasized by Post.

33. Recall that the axioms investigated by Hilbert and Bernays are not precisely the axioms of

Principia. While Hilbert and Bernays augment the axiom system with an unrestricted substitution

rule, Post’s substitution rule allows only substitution of formulas containing one connective.

34. “In der Tat lassen sich ja alle Beziehungen zwischen Wahrheit und Falschheit von Aussagen

mit Hülfe der Konjunktion (‘und’), der Disjunktion (ausschliessendes ‘oder’) und der Negation, also

auch durch die Symbolik unseres Kalküls zum Ausdruck bringen, und sofern solche Beziehungen

für beliebige Aussagen gelten, müssen die ihnen entsprechenden symbolischen Ausdrücke in dem

definierten Sinne allgemeingültige Formeln sein.” (Bernays 1918), p. 16.

35. “Hilbert hat ja da [an denGrundlagen der Mathematik] eigentlich nicht mitgearbeitet, was

da benutzt wurde waren sehr viele Gedanken von Hilbert, aber an der Ausgestaltung hat er eigentlich

nicht mitgearbeitet, auch schon eigentlich beim ersten Band nicht und beim zweiten schon gar

nicht.” Interview, 27 August 1977 (Bernays 1977).

36. “[A]lso da war ich damals [Hilberts] Assistent [. . . ] [die] Assistentenbeschäftigung, das ist

nicht so eine Bescḧaftigung, wie sie hier [in Z̈urich] im allgemeinen die Assistenten haben, die den

Studenten helfen bei den̈Ubungen, damit hatte ich gar nichts zu tun, sondern das war ganz privatim

bei Hilbert, also daß wir einerseits diskutiertenüber die grunds̈atzlichen Fragen und dann auch, daß

ich ihm für seine Vorlesungen zum Teil half, bei den Vorbereitungen mithalf und Ausarbeitungen

machte.” Interview, 25 July 1977 (Bernays 1977).



52

37. Habilitationsakte Paul Bernays, Gemeinsames Prüfungsamt der mathematisch-naturwissen-

schaftlichen Fakulẗaten, Universiẗat Göttingen.

38. Bernays Papers, ETH Library/WHS, Hs 976.3.

39. Bernays, “Kolleg von Hilberẗuber Grundlagen. Zu meiner Göttinger Habilitationsschrift.”

Unpublished manuscript. Bernays Nachlaß, ETH Zürich Library/WHS, Hs 973.184

40. “Diese Fragen, die die Axiomatik der elementaren Verknüpfungsaussagen betreffen, sind

vor wenigen Jahren von dem Göttinger Mathemathiker Bernays behandelt worden (Habilitations-

schrift, leider nicht gedruckt) und man kann wohl sagen zu einem vollständigen und befriedigendem

Abschluß gebracht worden. [. . . ] Bernays hat die Vollständigkeit ebenfalls streng bewiesen, also

gezeigt, daß jede allgemeingültige elementare Verkn̈upfungsaussage tatsächlich aus den Grund-

formeln nach den Grundregeln abgeleitet werden kann [. . . ]. ” (Behmann 1922b), p. 97.

41. “Damals zum Beispiel ja, auch meine eigenen Kentnisse waren da noch sehr sehr unvoll-

sẗanding, als ich da zunächst, zum Beispiel, 1917, damals. Wie gesagt, zuerst bevor Hilbert direkt

an seine Sache wieder ging, die er ja schon viel früher angefangen hatte, da war, da hat er noch nicht

gleich dar̈uber gelesen, sondern er hatüber mathematische Logik gelesen, eine Vorlesung. Und die

hab ich auch ausgearbeitet und die hab ich, nicht wahr, und zwar in solcher Weise, daß ich die frei-

en, das hab ich Ihnen glaub ich erzählt, daß ich die freien Variablen vermieden habe. Bei Russell

hatte ich mir so ein bißchen einiges angekuckt aber erstens war mir dasüberhaupt zu breit diese

Art der Behandlung, sagte mir nicht in jeder Hinsicht zu, aber insbesondere hab ich das nicht recht

verstanden, was das heisst für allex, F(x) dann folgtF(y). Tats̈achlich ist ja auch die Anwendung

der freien Variablen, das ist etwas Technisches, nicht wahr. Es sind eigentlich zwei Arten der Dar-

stellung der Allgemeinheit. Man hat die Allgemeinheit eben einerseits durch die gebunde Variable

und andererseits durch die freie Variable. Solch einen Unterschied gibt es nicht in der gewöhnli-

chen Sprache, nicht wahr. Nun hab ich also da zunächst die freien Variablen vermieden. Das ist ein

mögliches Verfahren, das ist auch später wieder von anderen manchmal gemacht worden so. Das ist

also eine Vorlesung, die ist ausgearbeitet worden und hat auch nachher da im Hilbertschen, da im

Lesezimmer vom Institut gestanden.” Interview, 27 August 1977 (Bernays 1977)

42. The use of free variables was also avoided in lectures on theLogik-Kalk̈ul (Hilbert 1920a).

Free variables are first used in Hilbert’s talks of 1922 (Hilbert 1922c, 1923) and in lectures taught

by Hilbert and Bernays in 1922–23 (Hilbert and Bernays 1923b, 1923a).

43. See, e.g., Lauener’s (1978) testimony.

44. “Es wird also bei jedem der folgenden Unabhängigkeits-Beweise der Kalkül auf ein endli-
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ches System (eine endliche Gruppe im weiteren Sinne des Wortes [footnote in text: Das heisst ohne

Voraussetzung des assoziativen Gesetzes und der eindeutigen Umkehrbarkeit der Komposition])

zurückgef̈uhrt, für dessen Elemente eine Komposition (‘symbolisches Produkt’) und eine ‘Negati-

on’ definiert ist, und diese Zurückführung findet in der Weise statt, dass die Variablen des Kalküls

auf die Elemente jenes Systems als ihre Werte bezogen werden. Die ‘richtigen Formeln’ sollen je-

desmal dadurch characterisiert sein, dass sie für beliebige Werte der vorkommenden Variablen nur

Werte eines gewissen TeilsystemsT annehmen.” (Bernays 1926), pp. 27–28.

45. The interested reader may consult Kneale and Kneale (1962), pp. 689–694, and, of course,

Bernays (1926). The method was discovered independently by Łukasiewicz (1924), who announced

results simlar to those of Bernays. Let me remark in passing that Bernays’s first system defines

Łukasiewicz’s 3-valued implication.

46. Gödel (1932) quotes the independence proofs given by Hilbert (1928a).

47.XX, of course, is the principle of the excluded middle, and is synonymous in the system

with X→ X.

48. These results extend the method of the previous sections insofar as the independence of

rules is also proved. To do this, it is shown that an instance of the premise(s) of a rule always takes

designated values, but the corresponding instance of the conclusion does not. This extension of the

matrix method for proving independence was later rediscovered by Huntington (1935).

49. According to theVerzeichnis der Vorlesungenfor the semester, the course was announced

under the title “Formal logic and its epistemological value [Formale Logik und ihr erkenntnistheo-

retischer Wert].” The term lasted 5 January 1920–31 March 1920. Lecture notes by Bernays survive

at the library of the Institute of Mathematics at the University of Göttigen (Hilbert 1920a).

50. This is not stated explicitly, but is evident from the derivation on p. 11.

51. Behmann (1922a), p. 167.

52. “Bei der Axiomatisierung des Aussagenkalküls herrscht die Tendenz vor, die Anzahl der

Grundverkn̈upfungen und damit die der Axiome zu reduzieren. Man kann aber andererseits auch

die Rolle der verschiedenen Verknüpfungen scharf voneinander sondern; insbesondere ist es von

Interesse, die Rolle der Negation zu untersuchen.” Talk given in the Mathematical Society at Göttin-

gen, 20 February 1923, as reported inJahresbericht der Deutschen Mathematiker-Vereinigung, 2.

Abteilung, vol. 32 (1922), p. 22.

53. Compare, e.g., the logical axioms in (Hilbert 1922c) and (Hilbert 1923). In the latter paper,

Hilbert notes: “In (Hilbert 1922c) I had still avoided [the negation sign]; as it turned out, the sign
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for ‘not’ can be used in the present, slightly modified presentation of my theory without danger.”

(Hilbert 1923, p. 152) He could not have avoided the negation sign if the whole calculus was based

on it.

54. Paul Bernays, notes to “Mathematische Logik,” lecture course held Winter semester 1929–

30, Universiẗat Göttingen. Unpublished shorthand manuscript. Bernays Nachlaß, WHS, ETH

Zürich, Hs 973.212. The signs ‘&’ and ‘∨’ were is first used as signs for conjunction and disjunction

in (Hilbert and Bernays 1923b). The third axiom of group I and the second axiom of group V are

missing from the system given in (Hilbert and Bernays 1934). The first (Simp), third (Comm), and

fourth axiom (Syll) of group I are investigated in the published version of theHabilitationsschrift

(Bernays 1926), but not in the original version (1918).

55. For a discussion of the history of Hilbert’sFoundations of Geometry, and in particular of

the completeness axiom, see Toepell (1986, pp. 254–256) and Birkhoff and Bennett (1987).

56. “Ebenso ist das ‘Vollständigkeitsaxiom’ eine an dem fertigen Denkbereiche zu erlangen-

de Anschauung; die ‘Vollständigkeit’ ist ein Postulat, das in unserer Syntheseüberhaupt nicht als

‘Axiom’ des Denkbereichs gefaßt werden kann; ebensowenig wie das Postulat der Widerspruchs-

losigkeit.” (König 1914), p. 209. K̈onig’s book was known in G̈ottingen: Felix Bernstein reported

on it in the Mathematical Society on 16 February 1915. Compare also Baldus’ (1928) critique of

Hilbert’s axiom of completeness.

57. See Hilbert (1922b), pp. 18–19, where both the distinction and the equivalence are pointed

out.

58. “Weiters interessiert uns dieVollständigkeitdes Axiomensystems. Wir werden verlangen

müssen, dass allëubrigen Thatsachen des vorgelegten Wissensbereiches Folgerungen aus den Axio-

men sind,” (Hilbert 1905a), p. 13.

59. I would like to just mention as two more possible influences the work of the American

postulate theorists (Huntington, Veblen) on categoricity (see Corcoran (1980, 1981) and Scanlan

(1991)), and the exchange between Husserl and Hilbert on completeness in 1901, recently analyzed

by Majer (1997) and Hill (1995).

60. The pivotal role that Bernays (1918) played in the shift from syntactic to semantic com-

pleteness is stressed by Moore (1997).

61. “Es soll eine ganz bestimmte allgemeine Vorschrift angegeben werden, dieüber die Richtig-

keit oder Falschheit einer beliebig vorgelegten mit rein logischen Mitteln darstellbaren Behauptung

nach einer endlichen Anzahl von Schritten zu entscheiden gestattet, oder zum mindesten dieses
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Ziel innerhalb derjenigen — genau festzulegenden — Grenzen verwirklicht werden, innerhalb de-

ren seine Verwirklichung tatsächlich m̈oglich ist.” (Behmann 1922a), p. 166, emphasis mine. This

was Behmann’sHabilitationsschrift, he received hisvenia legendiin July 1921. Behmann spoke

on his results to the mathematical society in Göttingen on 10 May 1921, the talk was entitled “Das

Entscheidungsproblem der mathematischen Logik” (Jahresberichte der Deutschen Mathematiker-

Vereinigung, 2. Abteilung, vol. 30 (1921), p. 47). The manuscript of the talk survives in the

Behmann Papers in Erlangen. This seems to be the first documented use of the expression “Entschei-

dungsproblem.” Behmann had requested leave from his teaching duties in late September 1920 to

work on his Habilitation, the problem was probably formulated in its full generality sometime in

early to mid-1920.

62. The notion of syntactic completeness of a theory is closely related to what we now call

“complete theories.,” i.e., theories which either prove or refute every sentence of the language.

Hilbert (1929) proposes the proof of syntactic completeness of arithmetic as a finitistic analog of

the proof of completeness in the sense of categoricity. That completeness and categoricity are not

the same was realized only with Skolem’s discovery of nonstandard models.

63. See Moore (1997) and Dreben and van Heijenoort (1986) for a discussion of Gödel’s moti-

vations and influences.

64. See in this regard the introduction to Gentzen (1969), and Došen (1993).
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Chapter 3

The Practice of Finitism: Epsilon

Calculus and Consistency Proofs in

Hilbert’s Program

3.1 Introduction

Hilbert first presented his philosophical ideas based on the axiomatic method and con-

sistency proofs in the years 1904 and 1905, following his exchange with Frege on the nature

of axiomatic systems and the publication of Russell’s Paradox. In the text of Hilbert’s ad-

dress to the International Congress of Mathematicians in Heidelberg, we read:

Arithmetic is often considered to be part of logic, and the traditional fun-
damental logical notions are usually presupposed when it is a question of es-
tablishing a foundation of arithmetic. If we observe attentively, however, we
realize that in the traditional exposition of the laws of logic certain fundamen-
tal arithmetic notions are already used, for example, the notion of set and, to
some extent, also that of number. Thus we find ourselves turning in a circle,
and that is why a partly simultaneous development of the laws of logic and
arithmetic is required if paradoxes are to be avoided.1

When Hilbert returned to his foundational work with full force in 1917, he seems at first

to have been impressed with Russell’s and Whitehead’s work in thePrincipia, which—

they thought—succeeded in developing large parts of mathematics without using sets. By
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1920, however, Hilbert returned to his earlier conviction that a reduction of mathematics to

logic is not likely to succeed. Instead, he takes Zermelo’s axiomatic set theory as a suitable

framework for developing mathematics. He localizes the failure of Russell’s logicism in its

inability to provide the existence results necessary for analysis:

The axiomatic method used by Zermelo is unimpeachable and indispens-
able. The question whether the axioms include a contradiction, however, re-
mains open. Furthermore the question poses itself if and in how far this axiom
system can be deduced from logic. [. . . T]he attempt to reduce set theory to
logic seems promising because sets, which are the objects of Zermelo’s ax-
iomatics, are closely related to the predicates of logic. Specifically, sets can be
reduced to predicates.

This idea is the starting point for Frege’s, Russell’s, and Weyl’s investiga-
tions into the foundations of mathematics.2

The logicist project runs into a difficulty when, given a second-order predicateS to which

a set of sets is reduced, we want to know that there is a predicate to which the union of the

sets reduces. This predicate would be(∃P)(P(x) & S(P))—x is in the union of the sets in

S if there is a setP of whichx is a member and which is a member ofS.

We have to ask ourselves, what “there is a predicateP” is supposed to
mean. In axiomatic set theory “there is” always refers to a basic domainB.
In logic we could also think of the predicates comprising a domain, but this
domain of predicates cannot be seen as something given at the outset, but the
predicates must be formed through logical operations, and the rules of con-
struction determine the domain of predicates only afterwards.

From this we see that in the rules of logical construction of predicates ref-
erence to the domain of predicates cannot be allowed. For otherwise acirculus
vitiosuswould result.3

Here Hilbert is echoing the predicativist worries of Poincaré and Weyl. However, Hilbert

rejects Weyl’s answer to the problem, viz., restricting mathematics to predicatively ac-

ceptable constructions and inferences, as unacceptable in that it amounts to “a return to the

prohibition policies of Kronecker.” Russell’s proposed solution, on the other hand, amounts

to giving up the aim of reduction to logic:

Russell starts with the idea that it suffices to replace the predicate needed
for the definition of the union set by one that is extensionally equivalent, and
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which is not open to the same objections. He is unable, however, to exhibit
such a predicate, but sees it as obvious that such a predicate exists. It is in this
sense that he postulates the “axiom of reducibility,” which states approximately
the following: “For each predicate, which is formed by referring (once or mul-
tiple times) to the domain of predicates, there is an extensionally equivalent
predicate, which does not make such reference.

With this, however, Russell returns from constructive logic to the axiomatic
standpoint. [. . . ]

The aim of reducing set theory, and with it the usual methods of analysis,
to logic, has not been achieved today and maybe cannot be achieved at all.4

With this, Hilbert rejects the logicist position as failed. At the same time, he rejects the

restrictive positions of Brower, Weyl, and Kronecker. The axiomatic method provides a

framework which can accommodate the positive contributions of Brouwer and Weyl, with-

out destroying mathematics through a Kroneckerian “politics of prohibitions.” For Hilbert,

the unfettered progress of mathematics, and science in general, is a prime concern. This is

a position that Hilbert had already stressed in his lectures before the 1900 and 1904 Inter-

national Congresses of Mathematics, and which is again of paramount importance for him

with the conversion of Weyl to Brouwer’s intuitionism.

Naturally, the greater freedom comes with a price attached: the axiomatic method, in

contrast to a foundation based on logical principles alone, does not itself guarantee consis-

tency. Thus, a proof of consistency is needed.

3.2 Early Consistency Proofs

Ever since his work on geometry in the 1890s, Hilbert had an interest in consistency

proofs. The approaches he used prior to the foundational program of the 1920s were almost

always relative consistency proofs. Various axiomatic systems, from geometry to physics,

were shown to be consistent by giving arithmetical (in a broad sense, including arithmetic

of the reals) interpretations for these systems, with one exception—a prototype of a finitis-

tic consistency proof for a weak arithmetical system in Hilbert (1905c). This was Hilbert’s

first attempt at a “direct” consistency proof for arithmetic, i.e., one not based on a reduc-

tion to another system, which he had posed as the second of his famous list of problems

(Hilbert 1900a).
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When Hilbert once again started working on foundational issues following the war, the

first order of business was a formulation of logic. This was accomplished in collabora-

tion with Bernays between 1917 and 1920 (see Sieg (1999) and Chapter 2 (Zach 1999)),

included the establishment of metatheoretical results like completeness, decidability, and

consistency for propositional logic in 1917/18, and was followed by ever more nuanced

axiom systems for propositional and predicate logic. This first work in purely logical ax-

iomatics was soon extended to include mathematics. Here Hilbert followed his own pro-

posal, made first in 1905,5 to develop mathematics and logic simultaneously. The extent

of this simultaneous development is nowhere clearer than in Hilbert’s lecture course of

1921/22, where theε-operator is first used as both a logical notion, representing the quan-

tifiers, and an arithmetical notion, representing induction in the form of the least number

principle. Hilbert realized then that a consistency proof for all of mathematics is a difficult

undertaking, best attempted in stages:

Considering the great variety of connectives and interdependencies exhib-
ited by arithmetic, it is obvious from the start that we will the not be able to
solve the problem of proving consistency in one fell swoop. We will instead
first consider the simplest connectives, and then proceed to ever higher oper-
ations and inference methods, whereby consistency has to be established for
each extension of the system of signs and inference rules, so that these ex-
tensions do not endanger the consistency [result] established in the preceding
stage.

Another important aspect is that, following our plan for the complete for-
malization of arithmetic, we have to develop the proper mathematical formal-
ism in connection with the formalism of the logical operations, so that—as I
have expressed it—a simultaneous construction of mathematics and logic is
executed.6

Hilbert had rather clear ideas, once the basic tools both of proof and of formalization were

in place, of what the stages should be. In an addendum to the lecture course onGrundla-

gen der Mathematik, taught by Hilbert and Bernays in 1922–23,7 he outlined them. The

first stage had already been accomplished: Hilbert gave consistency proofs for calculi of

propositional logic in his 1917/18 lectures. Stage II consist in the elementary calculus of

free variables, plus equality axioms and axioms for successor and predecessor. The axioms



60

are:

1. A→ B→ A 2. (A→ A→ B)→ A→ B

3. (A→ B→C)→ (B→ A→C) 4. (B→C)→ (A→ B)→ A→C

5. A&B→ A 6. A&B→ B

7. A→ B→ A&B 8. A→ A∨B

9. B→ A∨B 10. (A→C)→ (B→C)→ A∨B→C

11. A→ A→ B 12. (A→ B)→ (A→ B)→ B

13. a = a 14. a = b→ A(a)→ A(b)

15. a+1 6= 0 16. δ(a+1) = a8

In Hilbert’s systems, Latin letters are variables; in particular,a, b, c, . . . , are individual

variables andA, B, C, . . . , are formula variables. The rules of inference are modus ponens

and substitution for individual and formula variables.

Hilbert envisaged his foundational project as a stepwise “simultaneous development of

logic and mathematics,” in which axiomatic systems for logic, arithmetic, analysis, and

finally set theory would be developed. Each stage would require a proof of consistency

before the next stage is developed. In a handwritten supplement to the typescript of the

1922–23 lecture notes on the foundations of arithmetic, Hilbert presents a rough overview

of what these steps might be:

Outline. Stage II was elementary calculation, axioms 1–16.
Stage III. Now elementary number theory

Schema for definition of functions by recursion and modus ponens
will add the schema of induction to modus ponens
even if this coincides in substance with the results of intuitively obtained num-
ber theory, we are now dealing with formulas, e.g,a+b = b+a.

Stage IIII. Transfinite inferences and parts of analysis
Stage V. Higher-order variables and set theory. Axiom of choice.
Stage VI. Numbers of the 2nd number class, full transfinite induction.

Higher types. Continuum problem, transfinite induction for numbers in the
2nd number class.

Stage VII. (1) Replacement of infinitely many definitional schemata by one
axiom. (2) Analysis and set theory. At level 4, again the full theorem of the
least upper bound.

Stage VIII. Formalization of well ordering.9
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3.2.1 The Propositional Calculus and the Calculus of Elementary

Computation

Step I had been achieved in 1917–18. Already in the lectures from the Winter term

1917/18, Hilbert and Bernays had proved that the propositional calculus is consistent. This

was done first by providing an arithmetical interpretation, where they stressed that only

finitely many numbers had to be used as “values” (0 and 1). The proof is essentially a

modern proof of the soundness of propositional logic: A truth value semantics is introduced

by associating which each formula of the propositional calculus a truth function mapping

tuples of 0 and 1 (the values of the propositional variables) to 0 or 1 (the truth value of the

formula under the corresponing valuation). A formula is calledcorrect if it corresponds

to a truth function which always takes the value 1. It is then showed that the axioms are

correct, and that modus ponens preserves correctness. So every formula derivable in the

propositional calculus is correct. SinceA andA cannot both be correct, they cannot both be

derivable, and so the propositional calculus is consistent.

It was very important for Hilbert that the model for the propositional calculus thus pro-

vided by{0,1} was finite. As such, its existence, and the admissibility of the consistency

proof was beyond question. This lead him to consider the consistency proof for the propo-

sitional calculus to be the prime example for for a consistency proofby exhibitionin his

1921/22 lectures on the foundations of mathematics. The consistency problem in the form

of a demand for a consistency proof for an axiomatic system which neither proceeds by

exhibiting a model, nor by reducing consistency of a system to the consistency of another,

but by providing a metamathematical proof that no derivation of a contradiction is possible,

is first formulated in lectures in the Summer term of 1920. Here we find a first formulation

of an arithmetical system and a proof of consistency. The system consists of the axioms

1 = 1

(a = b) → (a+1 = b+1)

(a+1 = b+1) → (a = b)

(a = b) → ((a = c)→ (b = c)).

The notes contain a proof that these four axioms, together with modus ponens, do not allow
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the derivation of the formula

a+1 = 1.

The proof itself is not too interesting, and I will not reproduce it here.10 The system con-

sidered is quite weak. It does not even contain all of propositional logic: negation only

appears as inequality, and only formulas with at most two ‘→’ signs are derivable. Not

evena = a is derivable. It is here, nevertheless, that we find the first statement of the most

important ingredient of Hilbert’s project, namely, proof theory:

Thus we are led to make the proofs themselves the object of our investi-
gation; we are urged towards aproof theory, which operates with the proofs
themselves as objects.

For the way of thinking of ordinary number theory the numbers are then
objectively exhibitable, and the proofs about the numbers already belong to
the area of thought. In our study, the proof itself is something which can be
exhibited, and by thinking about the proof we arrive at the solution of our
problem.

Just as the physicist examines his apparatus, the astronomer his position,
just as the philosopher engages in critique of reason, so the mathematician
needs his proof theory, in order to secure each mathematical theorem by proof
critique.11

This project is developed in earnest in two more lecture courses in 1921–22 and 1922–

23. These lectures are important in two respects. First, it is here that the axiomatic systems

whose consistency is to be proven are developed. This is of particular interest for an under-

standing of the relationship of Hilbert to Russell’s project in thePrincipia and the influence

of Russell’s work both on Hilbert’s philosophy and on the development of axiomatic sys-

tems for mathematics.12 Sieg (1999) has argued that, in fact, Hilbert was a logicist for a

brief period around the time of his paper “Axiomatic Thought” (Hilbert 1918a). However,

as noted in Section 3.1, Hilbert soon became critical of Russell’s type theory, in particular

of the axiom of reducibility. Instead of taking the system ofPrincipia as the adequate for-

malization of mathematics the consistency of which was to be shown, Hilbert proposed a

new system. The guiding principle of this system was the “simultaneous development of

logic and mathematics”—as opposed to a development of mathematics out of logic—which

he had already proposed in Hilbert (1905c, p. 176). The cornerstone of this development

is theε-calculus. The second major contribution of the 1921–22 and 1922–23 lectures are
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the consistency proofs themselves, including theHilbertsche Ansatzfor theε-substitution

method, which were the direct precursors to Ackermann’s dissertation of 1924.

In contrast to the first systems of 1920, here Hilbert uses a system based on full propo-

sitional logic with axioms for equality, i.e., the elementary calculus of free variables:

I. Logical axioms
a) Axioms of consequence
1) A→ B→ A
2) (A→ A→ B)→ A→ B
3) (A→ B→C)→ B→ A→C
4) (B→C)→ (A→ B)→ A→C

b) Axioms of negation
5) A→ A→ B
6) (A→ B)→ (A→ B)→ B
II. Arithmetical axioms
a) Axioms of equality
7) a = a
8) a = b→ Aa→ Ab
b) Axioms of number
9) a+1 6= 0
10) δ(a+1) = a13

Here, ‘+1’ is a unary function symbol. The rules of inference are substitution (for individ-

ual and formula variables) and modus ponens.

Hilbert’s idea for how a finitistic consistency proof should be carried out is first pre-

sented here. The idea is this: suppose a proof of a contradiction is available. We may

assume that the end formula of this proof is 06= 0.

1. Resolution into proof threads.First, we observe that by duplicating part of the proof

and leaving out steps, we can transform the derivation to one where each formula

(except the end formula) is used exactly once as the premise of an inference. Hence,

the proof is in tree form.

2. Elimination of variables.We transform the proof so that it contains no free variables.

This is accomplished by proceeding backwards from the end formula: The end for-

mula contains no free variables. If a formula is the conclusion of a substitution rule,
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the inference is removed. If a formula is the conclusion of modus ponens it is of the

form
A A→B

B′

whereB′ results fromB by substituting terms for free variables. If these variables

also occur inA, we substitute the same terms for them. Variables inA which do not

occur inB are replaced with 0. This yields a formulaA′ not containing variables.14

The inference is replaced by
A′ A′→B′

B′

3. Reduction of functionals.The remaining derivation contains a number of terms (func-

tionals in Hilbert’s parlance) which now have to be reduced to numerical terms (i.e.,

standard numerals of the form(. . .(0+1)+ · · ·)+1). In this case, this is done easily

by rewriting innermost subterms of the formδ(0) by 0 andδ(n + 1) by n. In later

stages, the set of terms is extended by function symbols introduced by recursion, and

the reduction of functionals there proceeds by calculating the function for given nu-

merical arguments according to the recursive definition. This will be discussed in the

next section.

In order to establish the consistency of the axiom system, Hilbert suggests, we have

to find a decidable (konkret feststellbar) property of formulas so that every formula in a

derivation which has been transformed using the above steps has the property, and the

formula 0 6= 0 lacks it. The property Hilbert proposes to use iscorrectness. This is not to

be understood as truth in a model. The formulas still occurring in the derivation after the

transformation are all Boolean combinations of equations between numerals. An equation

between numeralsn = m is correct if n andm are syntactically equal, and the negation of

an equality is correct ofm andn are not syntactically equal.

If we call a formula which does not contain variables or functionals other
than numerals an “explicit [numerical] formula”, then we can express the result
obtained thus: Every provable explicit [numerical] formula is end formula of a
proof all the formulas of which are explicit formulas.

This would have to hold in particular of the formula 06= 0, if it were prov-
able. The required proof of consistency is thus completed if we show that there
can be no proof of the formula which consists of only explicit formulas.
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To see that this is impossible it suffices to find a concretely determinable
[konkret feststellbar] property, which first of all holds of all explicit formulas
which result from an axiom by substitution, which furthermore transfers from
premises to end formula in an inference, which however does not apply to the
formula 06= 0.15

Hilbert now defines the notion of a (conjunctive) normal form and gives a procedure to

transform a formula into such a normal form. He then provides the wanted property:

With the help of the notion of a normal form we are now in a position to
exhipit a property which distinguishes the formula 06= 0 from the provable
explicit formulas.

We divide the explicit formulas into “correct” and “incorrect.” The explicit
atomic formulas are equations withnumeralson either side [of the equality
symbol]. We call such anequation correct, if the numerals on either side
coincide, otherwise we call itincorrect. We call aninequalitywith numerals
on either sidecorrect if the two numerals aredifferent, otherwise we call it
incorrect.

In the normal form of an arbitrary explicit formula, each disjunct has the
form of an equation or an inequality with numerals on either side.

We now call ageneral explicit formula correctif in the corresponding nor-
mal form each disjunction which occurs as a conjunct (or which constitutes the
normal form) contains a correct equation or a correct inequality. Otherwise we
call the formulaincorrect. [. . . ]

According to this definition, the question of whether an explicit formula is
correct or incorrect isconcretely decidablein every case. Thus the “tertium
non datur” holds here. . .16

This use in the 1921–22 lectures of the conjunctive normal form of a propositional formula

to define correctness of Boolean combinations of equalities between numerals goes back to

the 1917–18 lecture notes,17 where transformation into conjunctive normal form and testing

whether each conjunct contains bothA and A was proposed as a test for propositional

validity. Similarly, here a formula iscorrect if each conjunct in its conjunctive normal

form contains a correct equation or a correct inequality.18 In the 1922–23 lectures, the

definition involving conjunctive normal forms is replaced by the usual inductive definition

of propositional truth and falsehood by truth tables (Hilbert and Bernays 1923a, p. 21).

Armed with the definition of correct formula, Hilbert can prove that the derivation resulting

from a proof by transforming it according to (1)–(3) above contains only correct formulas.



66

Since 06= 0 is plainly not correct, there can be no proof of 06= 0 in the system consisting

of axioms (1)–(10). The proof is a standard induction on the length of the derivation: the

formulas resulting from the axioms by elimination of variables and reduction of functionals

are all correct, and modus ponens preserves correctness.19

3.2.2 Elementary Number Theory with Recursion and Induction Rule

The system of stage III consists of the basic system of the elementary calculus of free

variables and the successor function, extended by the schema of defining functions by

primitive recursion and the induction rule.20 A primitive recursive definition is a pair of

axioms of the form

ϕ(0,b1, . . . ,bn) = a(b1, . . . ,bn)

ϕ(a+1,b1, . . . ,bn) = b(a,ϕ(a),b1, . . . ,bn)

wherea(b1, . . . ,bn) contains only the variablesb1, . . . , bn, andb(a,c,b1, . . . ,bn) contains

only the variablesa, c, b1, . . . ,bn. Neither contains the function symbolϕ or any function

symbols which have not yet been defined.

The introduction of primitive recursive definitions and the induction rule serves, first of

all, the purpose of expressivity. Surely any decent axiom system for arithmetic must pro-

vide the means of expressing basic number-theoretic states of affairs, and this includes

addition, subtraction, multiplication, division, greatest common divisor, etc. The gen-

eral schema of primitive recursion is already mentioned in the Kneser notes for 1921–22

(Hilbert 1922a, Heft II, p. 29), and is discussed in some detail in the notes for the lectures

of the following year (Hilbert and Bernays 1923a, pp. 26–30).

It may be interesting to note that in the 1922–23 lectures, there are no axioms for ad-

dition or multiplication given before the general schema for recursive definition. This sug-

gests a change in emphasis during 1922, when Hilbert realized the importance of primitive

recursion as an arithmetical concept formation. He later continued to develop the notion,

hoping to capture all number theoretic functions using an extended notion of primitive re-

cursion and to solve the continuum problem with it. This can be seen from the attempt

at a proof of the continuum hypothesis in (1926), and Ackermann’s paper on “Hilbert’s
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construction of the reals” (1928a), which deals with hierarchies of recursive functions. The

general outlook in this regard is also markedly different from Skolem’s (1923), which is

usually credited with the definition of primitive recursive arithmetic.21

Hilbert would be remiss if he would not be including induction in his arithmetical axiom

systems. As he already indicates in the 1921–22 lectures, however, the induction principle

cannot be formulated as an axiom without the help of quantifiers.

We are still completely missing the axiom of complete induction. One
might think it would be

{Z(a)→ (A(a)→ A(a+1))}→ {A(1)→ (Z(b)→ A(b))}

That is not it, for takea = 1. The hypothesis must hold forall a. We have,
however, no means to bring theall into the hypothesis. Our formalism does
not yet suffice to write down the axiom of induction.

But as a schema we can: We extend our methods of proof by the following
schema.

K(1) K(a)→ K(a+1)
Z(a)→ K(a)

Now it makes sense to ask whether this schema can lead to a contradiction.22

The induction schema is thus necessary in the formulation of the elementary calculus only

because quantifiers are not yet available. Subsequently, induction will be subsumed in the

ε-calculus.

The consistency proof for stage II is extended to cover also the induction schema and

primitive recursive definitions. Both are only sketched: Step (3), reduction of functionals, is

extended to cover terms containing primitive recursive functions by recursively computing

the value of the innermost term containing only numerals. Both in the 1921–22 and the

1922–23 sets of notes by Kneser, roughly a paragraph is devoted to these cases (the official

sets of notes for both lectures do not contain the respective passages).

How do we proceed for recursions? Suppose aϕ(z) occurs. Either [z is]
0, then we replace it bya. Or [it is of the form] ϕ(z+1): [replace it with]
b(z,ϕ(z)). Claim: These substitutions eventually come to an end, if we replace
innermost occurrences first.23

The claim is not proved, and there is no argument that the process terminates even for terms

containing several different, nested primitive recursively defined function symbols.
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For the induction schema, Hilbert hints at how the consistency proof must be extended.

Combining elimination of variables and reduction of functionals we are to proceed upwards

in the proof as before until we arrive at an instance of the induction schema:

K(1) K(a)→ K(a+1)
Z(z)→ K′(z)

By copying the proof ending in the right premise, substituting numerals 1, . . . ,y (where

z = y + 1) for a and applying the appropriate substitutions to the other variables inK we

obtain a proof ofZ(z)→ K′(z) without the last application of the induction schema.

With the introduction of theε-calculus, the induction rule is of only minor importance,

and its consistency is never proved in detail until Hilbert and Bernays (1934, pp. 298–99).

3.2.3 Theε-Calculus and the Axiomatization of Mathematics

In the spirit of the “simultaneous development of logic and mathematics,” Hilbert takes

the next step in the axiomatization of arithmetic by employing a principle taken from Zer-

melo’s axiomatization of set theory: the axiom of choice. Hilbert and Bernays had dealt

in detail with quantifiers in lectures in 1917–18 and 1920, but they do not directly play a

significant role in the axiom systems Hilbert develops for mathematics. Rather, the first-

and higher-order calculi for which consistency proofs are proposed, are based instead on

choice functions. The first presentation of these ideas can be found in the 1921–22 lec-

ture notes by Kneser (the official notes do not contain these passages). The motivation

is that in order to deal with analysis, one has to allow definitions of functions which are

not finitary. These concept formations, necessary for the development of mathematics free

from intuitionist restrictions, include definition of functions from undecidable properties,

by unbounded search, and choice.

Not finitely (recursively) defined is, e.g.,ϕ(a) = 0 if there is ab so that
a5 + ab3 + 7 is prime, and= 1 otherwise. But only with these numbers and
functions the real mathematical interest begins, since the solvability in finitely
many steps is not foreseeable. We have the conviction, that such questions,
e.g., the value ofϕ(a), are solvable, i.e., thatϕ(a) is also finitely definable.
We cannot wait on this, however, we must allow such definitions for otherwise
we would restrict the free practice of science. We also need the concept of a
function of functions.24
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The concepts which Hilbert apparently takes to be fundamental for this project are the

principle of the excluded middle and the axiom of choice, in the form of second-order

functionsτ andα. The axioms for these functions are

1. τ( f ) = 0→ (Z(a)→ f (a) = 1)

2. τ( f ) 6= 0→ Z(α( f ))

3. τ( f ) 6= 0→ f (α( f )) 6= 1

4. τ( f ) 6= 0→ τ( f ) = 1

The intended interpretation is:τ( f ) = 0 if f is always 1 and= 1 if one can choose anα( f )

so thatf (α( f )) 6= 1.

The introduction ofτ andα allows Hilbert to replace universal and existential quanti-

fiers, and also provides the basis for proofs of the axiom of induction and the least upper

bound principle. Furthermore, Hilbert claims, the consistency of the resulting system can

be seen in the same way used to establish the consistency of stage III (primitive recur-

sive arithmetic). From a proof of a numerical formula usingτ’s andα’s, these terms can be

eliminated by finding numerical substitutions which turn the resulting formulas into correct

numerical formulas.

These proofs are sketched in the last part of the 1921–22 lecture notes by Kneser

(Hilbert 1922a).25 In particular, the consistency proof contains the entire idea of the

Hilbertsche Ansatz, theε-substitution method:

First we show that we can eliminate all variables, since here also only free
variables occur. We look for the innermostτ andα. Below these there are only
finitely defined [primitive recursive] functionsϕ, ϕ′. Some of these functions
can be substituted forf in the axioms in the course of the proof. 1:τ(ϕ) =
0→ (Z(a)→ ϕ(a) = 1), wherea is a functional. If this isnot used, we set
all α(ϕ) andτ(ϕ) equal to zero. Otherwise we reducea andϕ(a) and check
whetherZ(a)→ ϕ(a) = 1 is correct everywhere it occurs. If it is correct, we
setτ[ϕ] = 0, α[ϕ] = 0. If it is incorrect, i.e., ifa = z, ϕ(z) 6= 1, we letτ(ϕ) = 1,
α(ϕ) = z. After this replacement, the proof remains a proof. The formulas
which take the place of the axioms are correct.

(The idea is: if a proof is given, we can extract an argument from it for
whichϕ = 1.) In this way we eliminate theτ andα and applications of [axioms]
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(1)–(4) and obtain a proof of 16= 1 from I–V and correct formulas, i.e., from
I–V,

τ( f ,b) = 0 → {Z(a)→ f (a,b) = 1}
τ( f ,b) 6= 0 → Z( f (α,b))
τ( f ,b) 6= 0 → f (α( f ,b),b) 6= 1

τ( f ,b) 6= 0 → τ( f ,b) = 126

Although not formulated as precisely as subsequent presentations, all the ingredients of

Hilbert’s ε-substitution method are here. The only changes that are made en route to the

final presentation of Hilbert’s sketch of the case for oneε and Ackermann’s are mostly

notational. In (Hilbert 1923), a talk given in September 1922, the two functionsτ andα

are merged to one function (also denotedτ), which in addition provides theleastwitness

for τ( f (a)) 6= 1. There theτ function is also applied directly to formulas. In fact,τaA(a)

is the primary notion, denoting the least witnessa for which A(a) is false;τ( f ) is defined

asτa( f (a) = 0). Interestingly enough, the sketch given there for the substitution method is

for theτ-function for functions, not formulas, just as it was in the 1921–22 lectures.

The most elaborate discussion of theε-calculus can be found in Hilbert’s and Bernays’s

course of 1922–23. Here, again, the motivation for theε-function is Zermelo’s axiom of

choice:

What are we missing?

1. As far as logic is concerned: we have had the propositional calculus ex-
tended by free variables, i.e., variables for which arbitrary functionals
may be substituted. Operating with “all” and “there is” is still missing.

2. We have added the induction schema, but without consistency proof and
also on a provisional basis, with the intention of removing it.

3. So far only the arithmetical axioms which refer to whole numbers. The
above shortcomings prevent us from building up analysis (limit concept,
irrational number).

These 3 points already give us a plan and goals for the following.
We turn to (1). It is clear that a logic without “all’—“there is” would be

incomplete, I only recall how the application of these concepts and of the so-
called transfinite inferences has brought about major problems. We have not
yet addressed the question of the applicability of these concepts to infinite to-
talities. Now we could proceed as we did with the propositional calculus:
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Formulate a few simple [principles] as axioms, from which all others follow.
Then the consistency proof would have to be carried out—according to our
general program: with the attitude that a proof is a figure given to us. Signif-
icant obstacles to the consistency proof because of the bound variables. The
deeper investigation, however, shows that the real core of the problem lies at a
different point, to which one usually only pays attention later, and which also
has only been noticed in the literature of late.27

At the corresponding place in the KneserMitschrift, Hilbert continues:

[This core lies] in Zermelo’saxiom of choice. [. . . ] The objections [of
Brouwer and Weyl] are directed against the choice principle. But they should
likewise be directed against “all” and “there is”, which are based on the same
basic idea.

We want to extend the axiom of choice. To each proposition with a variable
A(a) we assign an object for which the proposition holds only if is holds in
general. So, a counterexample, if one exists.

ε(A), an individual logical function. [. . . ]ε satisfies thetransfinite axiom:

(16) A(εA)→ Aa

e.g.,Aameans:a is corrupt.εA is Aristides.28

Hilbert goes on to show how quantifiers can be replaced byε-terms. The correspond-

ing definitional axioms are already included in Hilbert (1923), i.e.,A(εA) ≡ (a)A(a) and

A(εA) ≡ (∃a)A(a). Next, Hilbert outlines a derivation of the induction axioms using the

ε-axioms. For this, it is necessary to require that the choice function takes the minimal

value, which is expressed by the additional axiom

εA 6= 0→ A(δ(εA)).

With this addition, Hilbert combined theκ function of (Hilbert 1922c) and theµ function

of (1923) with theε function. Bothκ (“k” for Kleinstes, least) andµ had been introduced

there as functions of functions giving the least value for which the function differs from 0.

In (1923, pp. 161–162), Hilbert indicates that the axiom of induction can be derived using

theµ function, and credits this to Dedekind (1888).

The third issue Hilbert addresses is that of dealing with real numbers, and extending the

calculus to analysis. A first step can be carried out at stage IV by considering a real number

as a function defining an infinite binary expansion. A sequence of reals can then be given
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by a function with two arguments. Already in Hilbert (1923) we find a sketch of the proof

of the least upper bound principle for such a sequence of reals, using theπ function:

πA(a) =
{

0 if (a)A(a)

1 otherwise

The general case of sets of reals needs function variables and second-orderε andπ. These

are briefly introduced asε f A with the axioms

Aε f A → A f

( f )A f → π f A f = 0

( f )A f → π f A f = 1

The last two lectures transcribed in (Hilbert and Bernays 1923a) are devoted to a sketch of

theε substitution method. The proof is adapted from Hilbert (1923), replacingε f with εA,

also deals withπ, and covers the induction axiom in its form for theε-calculus.29 During

the last lecture, Bernays also extends the proof to second-orderε’s.

If we have afunction variable:

Aε f A f → A f

[. . . ] Supposeε only occurs withA (e.g., f 0 = 0, f f 0 = 0). How will we
eliminate the function variables? We simply replacef c by c. This does not
apply toboundvariables. For those we take some fixed function, e.g.,δ and
carry out the reduction with it. Then we are left with, e.g.,Aδ→ Aϕ. This,
when reduced, is either correct or incorrect. In the latter case,Aϕ is incorrect.
Then we substituteϕ everywhere forε f A f . Then we end up withAϕ→ Aψ.
That is certainly correct, sinceAϕ is incorrect.30

The last development regarding theε-calculus before Ackermann’s dissertation is the

switch to the dual notation. Both (Hilbert 1923) and (Hilbert and Bernays 1923a) use

εA as denoting a counterexample forA, whereas at least from Ackermann’s dissertation

onwards,εA denotes a witness. Correspondingly, Ackermann uses the dual axiomA(a)→
A(εaA(a)). Although it is relatively clear that the supplement to the 1922–23 lectures

(Hilbert and Bernays 1923a)—24 sheets in Hilbert’s hand—are Hilbert’s notes based on

which he and partly Bernays presented the 1922–23 lectures, parts of it seem to have been
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altered or written after the conclusion of the course. Sheets 12–14 contain a sketch of the

proof of the axiom of induction from the standard, dualε axioms; the same proof for the

original axioms can be found on sheets 8–11.

This concludes the development of mathematical systems using theε-calculus and con-

sistency proofs for them presented by Hilbert himself. We now turn to the more advanced

and detailed treatment in Wilhelm Ackermann’s (1924b) dissertation.

3.3 Ackermann’s Dissertation

Wilhelm Ackermann was born in 1896 in Westphalia. He studied mathematics, physics,

and philosophy in G̈ottingen between 1914 and 1924, serving in the army in World War

I from 1915–1919. He completed his studies in 1924 with a dissertation, written under

Hilbert, entitled “Begr̈undung des ‘tertium non datur’ mittels der Hilbertschen Theorie der

Widerspruchsfreiheit” (Ackermann 1924a, 1924b), the first major contribution to proof the-

ory and Hilbert’s Program. In 1927 he decided for a career as a high school teacher rather

than a career in academia, but remained scientifically active. His major contributions to

logic include the function which carries his name—an example of a recursive but not prim-

itive recursive function (Ackermann 1928a), the consistency proof for arithmetic using the

ε-substitution method (Ackermann 1940), and his work on the decision problem (Acker-

mann 1928b, 1954). He served as co-author, with Hilbert, of the influential logic textbook

Grundz̈uge der theoretischen Logik(Hilbert and Ackermann 1928). He died in 1962.31

Ackermann’s 1924 dissertation is of particular interest since it is the first non-trivial

example of what Hilbert considered to be a finitistic consistency proof. Von Neumann’s

paper of 1927 does not entirely fit into the tradition of the Hilbert school, and we have no

evidence of the extent of Hilbert’s involvement in its writing. Later consistency proofs, in

particular those by Gentzen and Kalmár, were written after G̈odel’s incompleteness results

were already well-known and their implications understood by proof theorists. Acker-

mann’s work, on the other hand, arose entirely out of Hilbert’s research project, and there

is ample evidence that Hilbert was aware of the range and details of the proof. Hilbert

was Ackermann’s dissertation advisor, approved the thesis, was editor ofMathematische
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Annalen,where the thesis was published, and corresponded with Ackermann on correc-

tions and extensions of the result. Ackermann was also in close contact with Paul Bernays,

Hilbert’s assistant and close collaborator in foundational matters. Ackermann spent the

first half of 1925 in Cambridge, supported by a fellowship from the International Educa-

tion Board (founded by John D. Rockefeller, Jr., in 1923). In his letter of recommendation

for Ackermann, Hilbert writes:

In his thesis “Foundation of the ‘tertium non datur’ using Hilbert’s theory
of consistency,” Ackermann has shown in the most general case that the use
of the words “all” and “there is,” of the “tertium non datur,” is free from con-
tradiction. The proof uses exclusively primitive and finite inference methods.
Everything is demonstratded, as it were, directly on the mathematical formal-
ism.

Ackermann has here surmounted considerable mathematical difficulties
and solved a problem which is of first importance to the modern efforts di-
rected at providing a new foundation for mathematics.32

Further testimony of Hilbert’s high esteem for Ackermann can be found in the draft of a

letter to Russell asking for a letter of support to the International Education Board, where

he writes that “Ackermann has taken my classes on foundations of mathematics in recent

semesters and is currently one of the best masters of the theory which I have developed

here.”33

Ackermann’s work provides insight into two important issues relating to Hilbert’s pro-

gram as it concerns finitistic consistency proofs. First, it provides historical insight into

the aims and development of Hilbert’s Program: The first part of the program called for an

axiomatization of mathematics. These axiomatizations were then the objects of metamath-

ematical investigations: the aim was to find finitistic consistency proofs for them. Which

areas of mathematics were supposed to be covered by the consistency proofs, how were

they axiomatized, what is the strength of the systems so axiomatized? We have already

seen what Hilbert’s roadmap for the project of axiomatization was. Ackermann’s disserta-

tion provides the earliest example of a formal system stronger than elementary arithmetic.

The second aim, the metamathematical investigation of the formal systems obtained, also

poses historical questions: When did Ackermann, and other collaborators of Hilbert (in

particular, Bernays and von Neumann) achieve the results they sought? Was Ackermann’s



75

proof correct, and if not, what parts of it can be made to work?

The other information we can extract from an analysis of Ackermann’s work is what

methods were used or presupposed in the consistency proofs that were given, and thus,

what methods were sanctioned by Hilbert himself as falling under the finitist standpoint.

Such an analysis of the methods used are of a deeper, conceptual interest. There is a

fundamental division between Hilbert’s philosophical remarks on finitism on the one hand,

and the professed goals of the program on the other. In these comments, rather little is

said about the concept formations and proof methods that a finitist, according to Hilbert, is

permitted to use. In fact, most of Hilbert’s remarks deal with the objects of finitism, and

leave the finitistically admissible forms of definition and proof to the side. These, however,

are the questions at issue in contemporary conceptual analyses of finitism. Hilbert’s relative

silence on the matter is responsible for the widespread—and largely correct—opinion that

Hilbert was too vague on the question of what constitutes finitism to unequivocally define

the notion, and therefore later commentators have had enough leeway to disagree widely

on the strength of the finitist standpoint while still claiming to have explicated Hilbert’s

own concept.

3.3.1 Second-order Primitive Recursive Arithmetic

In Ackermann (1924b), the system of stage III is extended by second-order variables for

functions. The schema of recursive definition is then extended to include terms containing

such variables. In the following outline, I shall follow Ackermann and adopt the notation

of subscripting function symbols and terms by variables to indicate that these variables do

not occur freely but rather as placeholders for functions. For instance,aa( f (a)) indicates

that the terma does not contain the variablea free, but rather that the functionf (a) appears

as a functional argument, i.e., that the term is of the forma(λa. f (a)). The schema of

second-order primitive recursion is the following:

ϕ~bi
(0, ~f (~bi),~c) = a~bi

(~f (~bi),~c)

ϕ~bi
(a+1, ~f (~bi),~c) = b~bi

(a,ϕ~di
(a, ~f (~di),~c), ~f (~bi))
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To clarify the subscript notation, compare this with the schema of second-order primitive

recursion usingλ-abstraction notation:

ϕ(0,λ~bi .~f (~bi),~c) = a(λ~bi .~f (~bi),~c)

ϕ(a+1,λ~bi .~f (~bi),~c) = b(a,ϕ(a,λ~di .~f (~di),~c),λ~bi .~f (~bi))

Using this schema, it is possible to define the Ackermann function. This was already

pointed out in Hilbert (1926), although it was not until Ackermann (1928a) that it was

shown that the function so defined cannot be defined by primitive recursion without func-

tion variables. Ackermann (1928a) defines the function as follows. First it is observed that

the iteration function

ρc(a, f (c),b) = f (. . . f ( f︸ ︷︷ ︸
a f ’s

(b)) . . .)

can be defined by second-order primitive recursion:

ρc(0, f (c),b) = b

ρc(a+1, f (c),b) = f (ρc(a, f (c),b))

Furthermore, we have two auxiliary functions

ι(a,b) =
{

1 if a = b

0 if a 6= b
and λ(a,b) =

{
0 if a 6= b

1 if a = b

which are primitive recursive, as well as addition and multiplication. The terma(a,b) is

short forι(a,1) · ι(a,0) ·b+ λ(a,1); we then have

a(a,b) =


0 if a = 0

1 if a = 1

b otherwise

The Ackermann function is defined by

ϕ(0,b,c) = b+c

ϕ(a+1,b,c) = ρd(c,ϕ(a,b,d),a(a,b)).
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In more suggestive terms,

ϕ(0,b,c) = b+c

ϕ(1,b,c) = b·c

ϕ(a+1,b,c) = ϕ(a,b,ϕ(a,b, . . .ϕ(a,b,b) · · ·))︸ ︷︷ ︸
c times

The system of second-order primitive recursive arithmetic 2PRA− used in Ackermann

(1924b) consists of axioms (1)–(15) of Hilbert and Bernays (1923b, see Section 3.2), axiom

(16) was replaced by

16. a 6= 0→ a = δ(a)+1,

plus defining equations for both first- and second-order primitive recursive functions. There

is no induction rule (which is usually included in systems of primitive recursive arithmetic),

although the consistency proof given by Ackermann can easily be extended to cover it.

3.3.2 The Consistency Proof for the System without Epsilons

Allowing primitive recursion axioms for functions which contain function variables is

a natural extension of the basic calculus of stages III and IIII, and is necessary in order

to be able to introduce sufficiently complex functions. Hilbert seems to have thought that

by extending primitive recursion in this way, or at least by building an infinite hierarchy

of levels of primitive recursions using variables of higher types, he could account forall

the number theoretic functions, and hence for all real numbers (represented as decimal

expansions). In the spirit of the stage-by-stage development of systems of mathematics and

consistency proofs, it is of course necessary to show the consistency of the system of stage

IIII, which is the system presented by Ackermann. As before, it makes perfect sense to first

establish the consistency for the fragment of stage IIII not containing the transfiniteε and

π functions. In Section 4 of his dissertation, Ackermann undertakes precisely this aim.

The proof is a direct extension of the consistency proof of stage III, the elementary

calculus of free variables with basic arithmetical axioms and primitive recursive defini-

tions, i.e., PRA. This proof had already been presented in Hilbert’s lectures in 1921–22
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and 1922–23. The idea here is the same: put a given, purported proof of 06= 0 into tree

form, eliminate variables, and reduce functionals. The remaining figure consists entirely

of correct formulas, where correctness of a formula is a syntactically defined and easily

decidable property. The only complication for the case where function variables are also

admitted is the reduction of functionals. It must be shown that every functional, i.e., every

term of the language, can be reduced to a numeral on the basis of the defining recursion

equations. For the original case, this could be done by a relatively simple inductive proof.

For the case of 2PRA−, it is not so obvious.

Ackermann locates the difficulty in the following complication. Suppose you have a

functionalϕb(2,b(b)), whereϕ is defined by

ϕb(0, f (b)) = f (1)+ f (2)

ϕb(a+1, f (b)) = ϕb(a, f (b))+ f (a) · f (a+1)

Here,b(b) is a term which denotes a function, and so there is no way to replace the variable

b with a numeral before evaluating the entire term. In effect, the variableb is bound (in

modern notation, the term might be more suggestively writtenϕ(2,λb.b(b)).) In order to

reduce this term, we apply the recursion equations forϕ twice and end up with a term like

b(1)+b(2)+b(0) ·b(1)+b(1) ·b(2).

The remainingb’s might in turn containϕ, e.g.,b(b) might beϕc(b,δ(c)), in which case

the above expression would be

ϕc(1,δ(c))+ ϕc(2,δ(c))+ ϕc(0,δ(c)) ·ϕc(1,δ(c))+ ϕc(1,δ(c)) ·ϕc(2,δ(c)).

By contrast, reducing a termψ(z) whereψ is defined by first-order primitive recursion

results in a term which does not containψ, but only the function symbols occurring on the

right-hand side of the defining equations forψ.34

To show that the reduction indeed comes to an end if innermost subterms are reduced

first, Ackermann proposes to assign indices to terms and show that each reduction reduces

this index. The indices are, essentially, ordinal notations< ωωω
. Since this is probably

the first proof using ordinal notations, it may be of some interest to repeat and analyze it
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in some detail here. In my presentation, I stay close to Ackermann’s argument and only

change the notation for ranks, indices, and orders: Where Ackermann uses sequences of

natural numbers, I will use the more perspicuous ordinal notations. Note again, however,

that Ackermann does not explicitly use ordinal notations.

Suppose the primitive recursive functions are arranged in a linear order according to the

order of definition. We writeϕ < ψ if ϕ occurs beforeψ in the order of definition, i.e.,ψ

cannot be used in the defining equations forϕ. Suppose further that we are given a specific

term t. The notion ofsubordinationis defined as follows: an occurrence of a function

symbolξ in t is subordinate to an occurrence ofϕ, if ϕ is the outermost function symbol

of a subterms, the occurrence ofξ is in s, and the subterm ofs with outermost function

symbolξ contains a bound variableb in whose scope the occurrence ofϕ is (this includes

the case whereb happens to be bound byϕ itself).35 In other words,t is of the form

t′(. . .ϕb(. . .ξ(. . .b. . .) . . .) . . .)

The rank rk(t,ϕ) of anoccurrenceof a function symbolϕ with respect tot is defined as

follows: If there is no occurrence ofψ> ϕ which is subordinate toϕ in t, thenrk(t,ϕ) = 1.

Otherwise,

rk(t,ϕ) = max{rk(t,ψ) : ψ> ϕ is subordinate toϕ}+1.

The rankr(t,ϕ) of a termt with respect to a function symbolϕ is the maximum of the

ranks of occurrences ofϕ or ψ > ϕ in t. (If neither ϕ nor ψ > ϕ occur in t, that means

r(t,ϕ) = 0.

Ackermann now goes on to define the indices and orderings on these indices; the proof

proceeds by induction on these orderings. The indices correspond to ordinal notations in

modern terminology, and the orderings imposed are order-isomorphic to well-orderings of

typeωωω
. Ackermann does of course not use ordinals to define these indices; he stresses

that he is only dealing with finite sequences of numbers, on which an elaborate order is

imposed. Rather than appeal to the well-orderedness ofωωω
, he gives a more direct ar-

gument that by repeatedly proceeding to indices which are smaller in the imposed order

one eventually has to reach the index which consists of all 0. To appreciate the flavor of

Ackermann’s definitions, consider the following quote where he defines the rank and index

of a term:
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Each of the functionals out of which the given functional is constructed has a
definite rank with respect to the last, the next-to-last, etc., until the first recur-
sive function. Each such combination of ranks is characterized by [a sequence
of] n ordered numbers [the order oft in my notation]. We now want to order
all these finitely many rank combinations. Taking two different rank combina-
tions, we write the corresponding numbers on top of one another, i.e, first the
rank with respect to the last, then those with respect to the next-to-last func-
tion, etc. At some point the numbers are different for the first time. We now
call that rank combination higher which has the greater number at this point.
In this manner we order all the finitely many rank combinations occuring in the
given functional. For each rank combination we then write down, how many
functionals of that kind occur in the given functional. We will call the totality
of these numbers the index of the functional.36

We assign to a subterms of t a sequence of ranks ofψn, . . . ,ψ0 with respect tos, where

ψ0< · · ·<ψn are all function symbols occurring int. This is theorder [Rangkombination]

of s:

o(s) = 〈r(s,ψn), . . . , r(s,ψ0)〉

In modern notation, we may think of this as an ordinal notation corresponding to an ordinal

< ωω, specifically,o(s) corresponds to

ωn · r(s,ψn) ·+ · · ·+ ω · r(s,ψ1) ·+r(s,ψ0)

Now consider the set of all distinct subterms oft of a given ordero which are not numerals.

Thedegree d(t,o) of o in t is the cardinality of that set. Theindex j(t) of t is the sequence

of degrees ordered in the same way as the orders, i.e.,

j(t) = 〈o : d(s,o)〉

whereo ranges over all orders of subterms oft. In modern notation, this can be seen as an

ordinal notation such an index corresponding to an ordinal of the form

∑
o

ωô ·d(t,o)

where the sum again ranges over the orderso of subterms oft, andô is the ordinal corre-

sponding to the ordero.. Obviously, this is an ordinal< ωωω
.
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Suppose a termt not containingε or π is given. Lets be an innermost constant subterm

which is not a numeral, we may assume it is of the formϕb̄(z1, . . . ,zn,u1, . . . ,um) where

ui is a term with at least one variable bound byϕ and which doesn’t contain a constant

subterm. We have two cases:

(1) s does not contain bound variables, i.e.,m= 0. The order ofs is a sequence with 1 in

thek-th place, and 0 everywhere else (whereϕ = ψk), which corresponds toωk. Evaluating

the terms by recursion results in a terms′ in which only function symbols of lower index

occur. Hence, the first non-zero component of the order ofs′ is further to the right than

i (in the corresponding ordinal, the highest exponent in the order ofs′ is less thani), and

soo(s′) < o(s). Furthermore, since no variable which is bound int can occur ins′ (since

no such variable occurs ins), replacings by s′ in t does not result in new occurrences of

function symbols which are subordinate to any other. Thus the number of subterms in the

termt′ which results from such a replacement with orders> o(s) remains the same, while

the number of subterms of ordero(s) is reduced by 1. Hence,j(t′)< j(t).

(2) s does contain bound variables. For simplicity, assume that there is one numeral

argument and one functional argument, i.e.,s is of the formϕb(z,c(b)). In this case, all

function symbols occurring inc(b) are subordinate toϕ, or otherwisec(b) would contain a

constant subterm.37 Thus, the rank ofc(b) in t with respect toψi is less that the rank ofs

with respect toψi .

We reduce the subterms to a subterms′ by applying the recursion.s′ does not contain

the function symbolϕ. We want to show that replacings by s′ in t lowers the index oft.

First, note that when substituting a terma for b in c(b), the order of the resultingc(a)

with respect toϕ is the maximum of the orders ofc(b) anda, since none of the occurrences

of function symbols ina contain bound variables whose scope begins outside ofa, and so

none of these variables are subordinate to any function symbols inc(b).

Now we prove the claim by induction onz. Suppose the defining equation forϕ is

ϕb(0, f (b)) = ab( f (b))

ϕb(a+1, f (b)) = bb(ϕc(a, f (c)),a, f (b)).

If z = 0, thens′ = ab(c(b)). At a place wheref (b) is an argument to a function,f (b)

is replaced byc(d), andd is not in the scope of anyϕ (sincea doesn’t containϕ). For
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instance,ab( f (b)) = 2+ ψd(3, f (d)). Such a replacement cannot raise theϕ-rank of s′

above that ofc(b). The termc might also be used in places where it is not a functional

argument, e.g., ifab( f (b)) = f (ψ( f (2))). By a simple induction on the nesting off ’s in

ab( f (b)) it can be seen that theϕ-rank ofs′ is the same as that ofc(b): For c(d) whered

does not containc, theϕ-rank ofc(d) equals that ofc(b) by the note above and the fact that

d does not containϕ. If d does contain a nestedc, then by induction hypothesis and the first

case, itsϕ-rank is the same as that ofc(b). By the note, again, the entire subterm has the

sameϕ-rank asc(b).

The case ofϕb(z+1,c(b)) is similar. Here, the first replacement is

bb(ϕc(z,c(c)),z,c(b)).

Further recursion replacesϕc(z,c(c)) by another term which, by induction hypothesis, has

ϕ-rank less than or equal to that ofc(b). The same considerations as in the base case show

that the entire term also has aϕ-rank no larger thanc(b).

We have thus shown that eliminating the function symbolϕ by recursion from an in-

nermost constant term reduces theϕ-rank of the term at least by one and does not increase

theψ j -ranks of any subterms for anyj > i.

In terms of ordinals, this shows that at least one subterm of ordero was reduced to

a subterm of ordero′ < o, all newly introduced subterms have order< o, and the order

of no old subterm increased. Thus, the index of the entire term was reduced. (In the

corresponding ordinal notations, the factorωô ·n changed toωô · (n−1)).

We started with a given constant function, which we characterized by a
determinate index. We replaced aϕb(z,c(b)) within that functional by another
functional, where theϕ-rank decreased and the rank with respect to functions
to the right ofϕ [i.e., which come afterϕ in the order of definition] did not
increase. Now we apply the same operation to the resulting functional. After
finitely many steps we obtain a functional which contains no function symbols
at all, i.e., it is a numeral.

We have thus shown: a constant functional, which does not containε and
π, can be reduced to a numeral in finitely many steps.38
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3.3.3 Ordinals, Transfinite Induction, and Finitism

It is quite remarkable that the earliest extensive and detailed technical contribution

to the finitist project would make use of transfinite induction in a way not dissimilar to

Gentzen’s later proof by induction up toε0. This bears on a number of questions regard-

ing Hilbert’s understanding of the strength of finitism. In particular, it is often said that

Gentzen’s proof is not finitist, because it uses transfinite induction. However, Ackermann’s

original consistency proof for 2PRA− also uses transfinite induction, using an index sys-

tem which is essentially an ordinal notation system, just like Gentzen’s. If it is granted that

Ackermann’s proof is finitistic, but Gentzen’s is not, i.e., transfinite induction up toωωω
is

finitistic but not up toε0, then where—and why—should the line be drawn? Furthermore,

the consistency proof of 2PRA− is in essence a—putatively finitistic—explanation of how

to compute second order primitive recursive functions, and a proof that the computation

procedure defined by them always terminates. In other words, it is a finitistic proof that

second order primitive recursive functions are well defined.39

Ackermann was completely aware of the involvement of transfinite induction in this

case, but he sees in it no violation of the finitist standpoint.

The disassembling of functionals by reduction does not occur in the sense
that a finite ordinal is decreased each time an outermost function symbol is
eliminated. Rather, to each functional corresponds as it were a transfinite ordi-
nal number as its rank, and the theorem, that a constant functional is reduced
to a numeral after carrying out finitely many operations, corresponds to the
other [theorem], that if one descends from a transfinite ordinal number to ever
smaller ordinal numbers, one has to reach zero after a finite number of steps.
Now there is naturally no mention of transfinite sets or ordinal numbers in our
metamathematical investigations. It is however interesting, that the mentioned
theorem about transfinite ordinals can be formulated so that there is nothing
transfinite about it.40

Without appealing to the well-orderedness of the corresponding ordinals, it remains to

argue finitistically that the finite sequences of numbers ordered in the appropriate manner

are also well-ordered. Ackermann does not attempt this for the entire class of sequences of

sequences of numbers needed in the proof (corresponding toωωω
), but only forω2.

Consider a transfinite ordinal number less thanω ·ω. Each such ordinal
number can be written in the form:ω ·n + m, wheren andm are finite num-
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bers. Hence such an ordinal can also be characterized by a pair of finite num-
bers(n,m), where the order of these numbers is of course significant. To the
descent in the series of ordinals corresponds the following operation on the
number pair(n,m). Either the first numbern remains the same, then the num-
ber m is replaced by a smaller numberm′. Or the first numbern is made
smaller; then I can put an arbitrary number in the second position, which can
also be larger thanm. It is clear that one has to reach the number pair(0,0)
after finitely many steps. For after at mostm+ 1 steps I reach a number pair,
where the first number is smaller thann. Let (n′,m′) be that pair. After at most
m′+ 1 steps I reach a number pair in which the first number is again smaller
thann′, etc. After finitely many steps one reaches the number pair(0,0) in this
fashion, which corresponds to the ordinal number 0. In this form, the men-
tioned theorem contains nothing transfinite whatsoever; only considerations
which are acceptable in metamathematics are used. The same holds true if one
does not use pairs but triples, quadruples, etc. This idea is not only used in the
following proof that the reduction of functionals terminates, but will also be
used again and again later on, especially in the finiteness proof at the end of
the work.41

Over ten years later, Ackermann discusses the application of transfinite induction for

consistency proofs in correspondence with Bernays. Gentzen’s consistency proof had been

published (Gentzen 1936), and Gentzen asks, through Bernays,

whether you [Ackermann] think that the method of proving termination
[Endlichkeitsbeweis] by transfinite induction can be applied to the consistency
proof of your dissertation. I would like it very much, if that were possible.42

In his reply, Ackermann recalls his own use of transfinite ordinals in the 1924 dissertation.

I just realized now, as I am looking at my dissertation, that I operate with
transfinite ordinals in a similar fashion as Gentzen.43

A year and a half later, Ackermann mentions the transfinite induction used in his disserta-

tion again:

I do not know, by the way, whether you are aware (I did at the time not
consider it as a transgression beyond the narrower finite standpoint), that trans-
finite inferences are used in my dissertation. (Cf., e.g., the remarks in the last
paragraph on page 13 and the following paragraph of my dissertation).44
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These remarks may be puzzling, since they seem to suggest that Bernays was not familiar

with Ackermann’s work. This is clearly not the case. Bernays corresponded with Ack-

erman extensively in the mid-20s about theε-substitution method and the decision prob-

lem, and had clearly studied Ackermann’s dissertation. Neither Bernays nor Hilbert are on

record objecting to the methods used in Ackermann’s dissertation. It can thus be concluded

that Ackermann’s use of transfinite induction was considered acceptable from the finitist

standpoint.

3.3.4 Theε-Substitution Method

As we have seen above, Hilbert had outlined an idea for a consistency proof for systems

involving ε-terms already in early 1922 (Hilbert 1922a), and a little more precisely in his

talk of 1922 (Hilbert 1923) and in the 1922–23 lectures (Hilbert and Bernays 1923a). Let

us review theAnsatzin the notation used in 1924: Suppose a proof involves only oneε

termεaA(a) and correspondingcritical formulas

A(ki)→ A(εaA(a)),

i.e., substitution instances of the transfinite axiom

A(a)→ A(εaA(a)).

We replaceεaA(a) everywhere with 0, and transform the proof as before by rewriting it

in tree form (“dissolution into proof threads”), eliminating free variables and evaluating

numerical terms involving primitive recursive functions. Then the critical formulas take

the form

A(zi)→ A(0),

wherezi is the numerical term to whichki reduces. A critical formula can now only be false

if A(zi) is true andA(0) is false. If that is the case, repeat the procedure, now substituting

zi for εaA(a). This yields a proof in which all initial formulas are correct and noε terms

occur.

If critical formulas of the second kind, i.e., substitution instances of the induction ax-

iom,

εaA(a) 6= 0→ A(δεaA(a)),
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also appear in the proof, the witnessz has to be replaced with the leastz′ so thatA(z′) is

true.

The challenge was to extend this procedure to (a) cover more than oneε-term in the

proof, (b) take care of nestedε-terms, and lastly (c) extend it to second-orderε’s and terms

involving them, i.e,ε f Aa( f (a)). This is what Ackermann set out to do in the last part of

his dissertation, and what he and Hilbert thought he had accomplished.45

The system for which Ackermann attempted to give a consistency proof consisted of

the system of second-order primitive recursive arithmetic (see Section 3.3.1 above) together

with the transfinite axioms:

1. A(a)→ A(εaA(a)) Aa( f (a))→ Aa((ε f Ab( f (b)))(a))
2. A(εaA(a))→ πaA(a) = 0 Aa(ε f Ab( f (b))(a))→ π f Aa( f (a)) = 0
3. A(εaA(a))→ πaA(a) = 1 Aa(ε f Ab( f (b))(a))→ π f Aa( f (a)) = 1
4. εaA(a) 6= 0→ A(δ(εaA(a)))46

The intuitive interpretation ofε and π, based on these axioms, is obvious:εaA(a) is a

witness forA(a) if one exists, andπaA(a) = 1 if A(a) is false for alla, and= 0 otherwise.

Theπ functions are not necessary for the development of mathematics in the axiom system.

They do, however, serve a function in the consistency proof, viz., to keep track of whether

a value of 0 forεaA(a) is a “default value” (i.e., a trial substitution for whichA(a) may or

may not be true) or an actual witness (a value for whichA(a) has been found to be true).

I shall now attempt to give an outline of theε-substitution procedure defined by Ack-

ermann. For simplicity, I will leave the case of second-orderε-terms (i.e., those involving

ε f ) to the side.

An ε-term is an expression of the formεaA(a), wherea is the only free variable inA,

and similarly for aπ-term. For the purposes of the discussion below, we will not specifically

refer toπ’s unless necessary, and most definitions and operations apply equally toε-terms

and π-terms. If a formulaA(a) or an ε-term εaA(a) contains no variable-free subterms

which are not numerals, we call themcanonical. Canonical formulas andε-terms are

indicated by a tilde:εaÃ(a).

The main notion in Ackermann’s proof is that of atotal substitutionS (Gesamterset-

zung). It is a mapping of canonicalε- andπ-terms to numerals and 0 or 1, respectively.

When canonicalε-terms in a proof are successively replaced by their values under the
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mapping, a total substitution reduces the proof to one not containing anyε’s. If S maps

εaÃ(a) to z andπaÃ(a) to i, then we say that̃A(a) receives a(z, i) substitution underSand

write S(Ã(a)) = (z, i).

It is of course not enough to define a mapping from the canonicalε-termsoccuring in

the proof to numerals: The proof may contain, e.g.,εaA(a,ϕ(εbB(b))). To reduce this to

a numeral, we first need a valuez for the termεbB(b). ReplacingεbB(b) by z, we obtain

εaA(a,ϕ(z)). Suppose the valueϕ(z) is z′. The total substitution then also has to specify a

substitution forεaA(a,z′).

Given a total substitutionS, a proof is reduced to anε-free proof as follows: First

all ε-free terms are evaluated. (Such terms contain only numerals and primitive recursive

functions; these are computed and the term replaced by the numeral corresponding to the

value of the term) Now lete11, e12, . . . be all the innermost (canonical)ε- or π-terms in

the proof, i.e., allε- or π-terms which do not themselves contain nestedε- or π-terms or

constant (variable-fee) subterms which are not numerals. The total substitution specifies

a numeral substitution for each of these. Replace eache1i by its corresponding numeral.

Repeat the procedure until the only remaining terms are numerals. We write|e|S for the

result of applying this procedure to the expression (formula or term)e. Note that|e|S is

canonical.

Based on this reduction procedure, Ackermann defines a notion of subordination of

canonical formulas. Roughly, a formulãB(b) is subordinate tõA(a) if in the process of

reducing some formulãA(z), an ε-term εbB̃(b) is replaced by a numeral. For instance,

a = b is subordinate toa = εb(a = b). Indeed, ifÃ(a) is a = εb(a = b), then the reduction

of Ã(z) ≡ z = εb(z = b) would use a replacement for theε-term belonging toB̃(z = b).47

It is easy to see that this definition corresponds to the notion of subordination as defined

in Hilbert and Bernays (1939). Anε-expressionis an expression of the formεaA(a). If

εaA(a) contains no free variables, it is called anε-term. If an ε-term εbB(b) occurs in

an expression (and is different from it), it is said to benestedin it. If an ε-expression

εbB(a,b) occurs in an expression in the scope ofεa, then it issubordinateto that expres-

sion. Accordingly, we can define the degree of anε-term and the rank of anε-expression

as follows: Anε-term with no nestedε-subterms is of degree 1; otherwise its degree is

the maximum of the degrees of its nestedε-subterms+1. The rank of anε-expression
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with no subordinateε-expressions is 1; otherwise it is the maximum of the ranks of its

subordinateε-expressions+1. If B̃(b) is subordinate tõA(a) according to Ackermann’s

definition, thenεbB̃(b) is subordinate in the usual sense toεaÃ(a), and the rank ofεbB̃(b)

is less than that ofεaÃ(a). The notion of degree corresponds to an ordering of canonical

formulas used for the reduction according to a total substitution in Ackermann’s procedural

definition: First allε-terms of degree 1 (i.e., all innermostε-terms) are replaced, resulting

(after evaluation of primitive recursive functions) in a partially reduced proof. The for-

mulas corresponding to innermostε-terms now are reducts ofε-terms of degree 2 in the

original proof. The canonical formulas corresponding toε-terms of degree 1 are called the

formulas oflevel 1, the canonical formulas corresponing to the innermostε-terms in the

results of the first reduction step are the formulas of level 2, and so forth.

The consistency proof proceeds by constructing a sequenceS1, S2, . . . of total substitu-

tions together with bookkeeping functionsfi(Ã(a), j)→{0,1},48 which eventually results

in a solving substitution, i.e., a total substitution which reduces the proof to one which

contains only correctε-free formulas. We begin with a total substitutionS1 which assigns

(0,1) to all canonical formulas, and setf1(Ã(a),1) = 1 for all Ã(a) for which S1 assigns

a value. IfSi is a solving substitution, the procedure terminates. Otherwise, the next total

substitutionSi+1 is obtained as follows: IfSi is not a solving substitution, at least one of

the critical formulas in the proof reduces to an incorrect formula. We have three cases:

1. Either anε-axiomA(a)→ A(εaA(a)) or a π-axiom of the first kindA(εaA(a))→
πaA(a) = 0 reduces to a false formula of the form̃A(z)→ Ã(0) or Ã(0)→ 1 = 0,

andSi(Ã(a)) = (0,1). Pick one such̃A(a) of lowest level (i.e.,εaA(a) of lowest

degree).

If Ã(0)→ 1= 0 is incorrect,Ã(0) must be correct; letSi+1(Ã(a)) = (0,0). Otherwise

Ã(z)→ Ã(0) is incorrect and hencẽA(z) must be correct; then letSi+1(Ã(a)) =

(z,0). In either case, setfi+1(Ã(a), i +1) = 1.

For other formulasB̃(b), Si+1(B̃(b)) = Sj(B̃(b)) where j is the greatest index≤ i

such thatfi(B̃(b), j) = 1. Si+1(B̃(b)) = (0,1) if no such j exists (i.e.,B̃(b) has

never before received an example substitution). Also, letfi+1(B̃(b), i + 1) = 1. For

all canonical formulas̃C(c), let fi+1(C̃(c), j) = fi(C̃(c), j) for j ≤ i.
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2. Case (1) does not apply, but at least one of the minimality axiomsεaA(a) 6= 0→
A(δ(εaA(a)) reduces to a false formula,z 6= 0→ Ã(z− 1). This is only possible

if Si(Ã(a)) = (z,0). Again, pick the one of lowest level, and letSi+1(Ã(a)) = (z−
1,0) and fi+1(Ã(a), i + 1) = 1. Substitutions for other formulas and bookkeeping

functions are defined as in case (1).

3. Neither case (1) nor (2) applies, but some instance of anε-axiom of the formA(a)→
A(εaA(a)) or of aπ-axiom of the formA(εaA(a))→ πaA(a) = 1, e.g.,Ã(a)→ Ã(z))

or Ã(z)→ 0 = 1, reduces to an incorrect formula. We then haveSi(Ã(a)) = (z,0)

(since otherwise case (1) would apply). In either case,|Ã(z))|Si must be incorrect.

Let j be the least index whereSj(Ã(a)) = (z,0) and fi(Ã(a)), j) = 1. At the pre-

ceding total substitutionSj−1, Sj(Ã(a)) = (0,1) or Sj−1(A(a)) = (z + 1,0), and

|A(z)|Sj−1 is correct. Ã(z) thus must reduce to different formulas underSj−1 and

underSi , which is only possible if a formula subordinate toÃ reduces differently

underSj−1 andSi .

For example, supposẽA(a) is really Ã(a,εbB̃(a,b)). Then the correspondingε-

axiom would be

Ã(a,εbB̃(a,b))→ Ã(εaÃ(a,εbB̃(a,b))︸ ︷︷ ︸
εaÃ(a)

,εbB̃(εaÃ(a,εbB̃(a,b))︸ ︷︷ ︸
εaÃ(a)

,b))

An instance thereof would be

Ã(a,εbB̃(a,b)→ Ã(εaÃ(a,εbB̃(a,b)),εbB̃(εaÃ(a,εbB̃(a,b)),b)).

This formula, under a total substitution withSi(Ã(a,εbB̃(a,b))) = (z,0) reduces to

Ã(a,εbB̃(a,b)→ Ã(z,εbB̃(z,b))

The consequent of this conditional, i.e.,Ã(z), can reduce to different formulas under

Si andSj−1 only if εbB̃(z,b) receives different substitutions underSi andSj−1, and

B̃(a,b) is subordinate tõA(a).

The next substitution is now defined as follows: Pick an innermost formula sub-

ordinate toÃ(a) which changes substitutions, saỹB(b). For all formulasC̃(c)
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which are subordinate tõB(b) as well asB̃(b) itself, we set fi+1(C̃(c),k) = 1

for j ≤ k ≤ i + 1 and fi+1(C̃(c),k) = 0 for all other formulas. Fork < j we set

fi+1(C̃(c),n) = fi(C̃(c),k) for all C̃(c). The next substitutionSi+1 is now given by

Si+1(C̃(c)) = Sk(C̃(c)) for k greatest such thatfi+1(C̃(c),k) = 1 or= (0,1) if no such

k exists.

Readers familiar with the substitution method defined in Ackermann (1940) will note the

following differences:

a. Ackermann (1940) uses the notion of atype of an ε-term and instead of defining

total substitutions in terms of numeral substitutions for canonicalε-terms, assigns a

function of finite support toε-types. This change is merely a notational convenience,

as these functional substitutions can be recovered from the numeral substitutions for

canonicalε-terms. For example, ifSassigns the substitutions to the canonical terms

on the left, then a total substitution in the sense of Ackermann (1940) would assign

the functiong on the right to the typeεaÃ(a,b):

S(Ã(a,z1) = z′1 g(εaÃ(a,b))(z1) = z′1

S(Ã(a,z3) = z′2 g(εaÃ(a,b))(z2) = z′2

S(Ã(a,z2) = z′3 g(εaÃ(a,b))(z3) = z′3

b. In case (2), dealing with the least number (induction) axiom, the next substitution is

defined by reducing the substituted numeralz by 1, whereas in (Ackermann 1940),

we immediately proceed to the leastz′ such thatÃ(z′) is correct. This makes the

procedure converge more slowly, but also suggests that in certain cases (depending

on which other critical formulas occur in the proof), the solving substitution does not

necessarily provide example substitutions which are, in fact, least witnesses.

c. The main difference in the method lies in case (3). Whereas in (1940), example

substitutions for allε-types of rank lower than that of the changedεaÃ(a) are re-

tained, and all others are reset to initial substitutions (functions constant equal to 0),

in (1924b), only the substitutions of someε-terms actually subordinate toεaÃ(a) are

retained, while others are not reset to initial substitutions, but to substitutions defined

at some previous stage.
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3.3.5 Assessment and Complications

A detailed analysis of the method and of the termination proof given in the last part

of Ackermann’s dissertation must wait for another occasion, if only for lack of space. A

preliminary assessment can, however, already be made on the basis of the outline of the

substitution process above. Modulo some needed clarification in the definitions, the pro-

cess is well-defined and terminates at least for proofs containing only least-number axioms

(critical formulas corresponding to axiom (4)) of rank 1. The proof that the procedure

terminates (§9 of Ackermann (1924b)) is opaque, especially in comparison to the proof

by transfinite induction for primitive recursive arithmetic. The definition of a substitution

method for second-orderε-terms is insufficient, and in hindsight it is clear that a correct

termination proof for this part could not have been given with the methods available.49

Leaving aside, for the time being, the issue of what wasactuallyproved in Ackermann

(1924b), the question remains of what wasbelievedto have been proved at the time. The

system, as given in (1924b), had two major shortcomings: A footnote, added in proof,

states:

[The formation ofε-terms] is restricted in that a function variablef (a) may
not be substituted by a functionala(a), in which a occurs in the scope of an
ε f .50

This applies in particular to the second-orderε-axioms

Aa( f (a))→ Aa(ε f Ab( f (b))(a)).

If we view ε f Ab( f (b))(a) as the function “defined by”A, and hence theε-axiom as the

ε-calculus analog of the comprehension axiom, this amounts roughly to a restriction to

arithmetic comprehension, and thus a predicative system. This shortcoming, and the fact

that the restriction turns the system into a system of predicative mathematics was pointed

out by von Neumann (1927).

A second lacunae was the omission of an axiom ofε-extensionality for second-order

ε-terms, i.e.,

(∀ f )(A( f )
 B( f ))→ ε f A( f ) = ε f B( f ),
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which corresponds to the axiom of choice. Both problems were the subject of correspon-

dence with Bernays in 1925.51 A year later, Ackermann is still trying to extend and correct

the proof, now usingε-types:

I am currently working again on theε f -proof and am pushing hard to finish
it. I have already told you that the problem can be reduced to one of number
theory. To prove the number-theoretic theorem seems to me, however, equally
hard as the problem itself. I am now again taking the approach, which I have
tried several times previously, to extend the definition of a ground type so that
evenε with free function variables receive a substitution. This approach seems
to me the most natural, and the equality axioms( f )(A( f )
 B( f ))→ ε f A f ≡
ε f B f would be treated simultaneously. I am hopeful that the obstacles previ-
ously encountered with this method can be avoided, if I use theεa formalism
and use substitutions for theε f which may containεa instead of functions de-
fined withoutε. I have, however, only thought through some simple special
cases.52

In 1927, Ackermann developed a second proof ofε-substitution, using some of von Neu-

mann’s ideas (in particular, the notion of anε-type,Grundtyp). The proof is unfortunately

not preserved in its entirety, but references to it can be found in the correspondence. On

April 12, 1927, Bernays writes to Ackermann:

Finally I have thought through your newer proof for consistency of theεa’s
based on what you have written down for me befor your departure, and believe
that I have seen the proof to be correct.53

Ackermann also refers to the proof in a letter to Hilbert from 1933:

As you may recall, I had at the time a second proof for the consistency of
the εa’s. I never published that proof, but communicated it to Prof. Bernays
orally, who then verified it. Prof. Bernays wrote to me last year that the result
does not seem to harmonize with the work of Gödel.54

In Hilbert’s address to the International Congress of Mathematicians (Hilbert 1928a), the

success of Ackermann’s and von Neumann’s work onε-substitution for first-order systems

is also taken for granted. Although Hilbert poses the extension of the proof to second-order

systems as an open problem, there seems no doubt in his mind that the solution is just

around the corner.55
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It might be worthwhile to mention at this point that at roughly the same time a third

attempt to find a satisfactory consistency proof was made. This attempt was based not on

ε-substituion, but on Hilbert’s so-called unsuccessful proof (verungl̈uckter Beweis).

While working on theGrundlagenbuch, I found myself motivated to re-
think Hilbert’s second consistency proof for theε-axiom, the so-called “unsuc-
cessful” proof, and it now seems to me that it can be fixed after all.56

This proof bears a striking resemblance to the proof the firstε-theorem in (Hilbert and Ber-

nays 1939) and to a seven-page sketch in Bernays’s hand of a “consistency proof for the

logical axiom of choice” found bound with lecture notes to Hilbert’s course on “Elements

and principles of mathematics” of 1910.57 This “unsuccessful” proof seems to me to be

another but independent contribution to the development of logic and theε-calculus, in-

dependent of the substituion method. Note that Bernays’s proof of Herbrand’s theorem in

(Hilbert and Bernays 1939) is based on the (second)ε-theorem is the first correct published

proof of that important result.

The realization that the consistency proof even for first-orderε’s was problematic came

only with Gödel’s incompleteness results. In a letter dated March 10, 1931, von Neumann

presents an example that shows that in the most recent version of Ackermann’s proof,

the length of the substitution process not only depends on the rank and degree ofε-terms

occurring in the proof, but also on numerical values used as substitutions. He concludes:

I think that this answers the question, which we recently discussed when
going through Ackermann’s modified proof, namely whether an estimate of the
length of the correction process can be made uniformly and independently of
numerical substituends, in the negative. At this point the proof of termination
of the procedure (for the next higher degree, i.e., 3) has a gap.58

There is no doubt that the discussion of the consistency proof was precipitated by Gödel’s

results, as both von Neumann and Bernays were aware of these results, and at least von

Neumann realized the implications for Hilbert’s Program and the prospects of a finitistic

consistency proof for arithmetic. Bernays corresponded with Gödel on the relevance of

Gödel’s result for the viability of the project of consistency proofs just before and after von

Neumann’s counterexample located the difficulty in Ackermann’s proof. On January 18,

1931, Bernays writes to G̈odel:
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If one, as does von Neumann, assumes as certain that any finite considera-
tion can be formulated in the framework of SystemP—I think, as you do too,
that this is not at all obvious—one arrives at the conclusion that a finite proof
of consistency ofP is impossible.

The puzzle, however, remained unresolved for Bernays even after von Neumann’s example,

as he writes to G̈odel just after the exchange with von Neumann, on April 20, 1931:

The confusion here is probably connected to that about Ackermann’s proof
for the consistency of number theory (SystemZ), which I have not so far been
able to clarify.

That proof—on which Hilbert has reported in his Hamburg talk on the
“foundations of mathematics”.59 [. . . ]—I have repeatedly thought through and
found correct. On the basis of your results one must now conclude that this
proof cannot be formalized within SystemZ; indeed, this must hold even if
one restricts the system whose consistency is to be proved by leaving only
addition and multiplication as recursive definitions. On the other hand, I do
not see which part of Ackermann’s proof makes the formalization withinZ

impossible, in particular if the problem is so restricted.60

Gödel’s results thus led Bernays, and later Ackermann to reexamine the methods used in the

consistency proofs. A completion of the project had to wait until 1940, when Ackermann

was able to carry through the termination proof based on transfinite induction—following

Gentzen (1936)—onε0.

3.4 Conclusion

With the preceding exposition and analysis of the development of axiomatizations of

logic and mathematics and of Hilbert and Ackermann’s consistency proofs I hope to have

answered some open questions regarding the historical development of Hilbert’s Program.

Hilbert’s technicalproject and its evolution is without doubt of tremendous importance to

the history of logic and the foundations of mathematics in the 20th century. Moreover, an

understanding of the technical developments can help to inform an understanding of the

history and prospects of thephilosophicalproject. The lessons drawn in the discussion, in

particular, of Ackermann’s use of transfinite induction, raise more questions. The fact that

transfinite induction in the form used by Ackermann was so readily accepted as finitist, not
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just by Ackermann himself, but also by Hilbert and Bernays leaves open two possibilities:

either they were simply wrong in taking the finitistic nature of Ackermann’s proof for

granted and the use of transfinite induction simply cannot be reconciled with the finitist

standpoint as characterized by Hilbert and Bernays in other writings, or the common view

of what Hilbert thought the finitist standpoint to consist in must be revised. Specifically,

it seems that the explanation of why transfinite induction is acceptable stresses one aspect

of finitism while downplaying another: theobjectsof finitist reasoning are—finite and—

intuitively given, whereas the methods of proof were not required to have the epistemic

strength that the finitist standpoint is usually thought to require (i.e., to guarantee, in one

sense or another, the intuitive evidence of the resulting theorems). Of course, the question

of whether Hilbert can make good on his claims that finitistic reasoning affords this intutive

evidence of its theorems is one of the main difficulties in a philosphical assessment of the

project (see, e.g., Parsons (1998a)).

I have already hinted at the implications of a study of the practice of finitism for philo-

sophical reconstructions of the finitist view (in note 39). We are of course free to latch on

to this or that aspect of Hilbert’s ideas (finitude, intuitive evidence, or surveyability) and

develop a philosophical view around it. Such an approach can be very fruitful, and have

important and inightful results (as, e.g, the example of Tait’s (1981) work shows). The

question is to what extent such a view should be accepted as a reconstruction of Hilbert’s

view as long as it makes the practice of the technical project come out off base. Surely

rational reconstruction is governed by something like a principle of charity. Hilbert and his

students, to the extent possible, should be construed so that what they preached is reflected

in their practice. This requires, of course, that we know what the practice was. If nothing

else, I hope to have provided some of the necessary data for that.

Notes

1. Hilbert (1905c, p. 131). For a general discussion of Hilbert’s views around 1905, see Peck-

haus (1990, Chapter 3).

2.
”
Die vonZERMELO benutze axiomatische Methode ist zwar unanfechtbar und unentbehrlich.

Es bleibt dabei doch die Frage offen, ob die aufgestellten Axiome nicht etwa einen Widerspruch
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einschliessen. Ferner erhebt sich die Frage, ob und inwieweit sich das Axiomensystem aus der

Logik ableiten l̈asst. [. . . D]er Versuch einer Zurückführung auf die Logik scheint besonders deshalb

aussichtsvoll, weil zwischen Mengen, welche ja die Gegenstände inZERMELOs Axiomatik bilden,

und den Pr̈adikaten der Logik ein enger Zusammenhang besteht. Nämlich die Mengen lassen sich

auf Pr̈adikate zur̈uckführen.

Diesen Gedanken habenFREGE, RUSSEL[L ] und WEYL zum Ausgangspunkt genommen bei

ihren Untersuchungen̈uber die Grundlagen der Mathematik.“ Hilbert (1920b, pp. 27–28).

3.
”
Wir müssen uns n̈amlich fragen, was es bedeuten soll:

”
es gibt ein Pr̈adikatP.“ In der axio-

matischen Mengentheorie bezieht sich das
”
es gibt“ immer auf den zugrunde gelegten BereichB. In

der Logik k̈onnen wir zwar auch die Prädikate zu einem Bereich zusammengefasst denken; aber die-

ser Bereich der Prädikate kann hier nicht als etwas von vorneherein Gegebenes betrachtet werden,

sondern die Pr̈adikate m̈ussen durch logische Operationen gebildet werden, und durch die Regeln

der Konstruktion bestimmt sich erst nachträglich der Pr̈adikaten-Bereich.

Hiernach ist ersichtlich, dass bei den Regeln der logischen Konstruktion von Prädikaten die

Bezugnahme auf den Prädikaten-Bereich nicht zugelassen werden kann. Denn sonst ergäbe sich ein

circulus vitiosus.“ (Hilbert 1920b, p. 31).

4. “RUSSELLgeht von dem Gedanken aus, dass es genügt, das zur Definition der Vereinigungs-

menge unbrauchbare Prädikat durch ein sachlich gleichbedeutendes zu ersetzen, welches nicht dem

gleichen Einwande unterliegt. Allerdings vermag er ein solches Prädikat nicht anzugeben, aber er

sieht es als ausgemacht an, dass ein solches existiert. In diesem Sinne stellt er sein
”
Axiom der

Reduzierbarkeit“ auf, welches ungefähr folgendes besagt:
”
Zu jedem Pr̈adikat, welches durch (ein-

oder mehrmalige) Bezugnahme auf den Prädikatenbereich gebildet ist, gibt es ein sachlich gleich-

bedeutendes Prädikat, welches keine solche Bezugnahme aufweist.

Hiermit kehrt aberRUSSELL von der konstruktiven Logik zu dem axiomatischen Standpunkt

zurück. [. . . ]

Das Ziel, die Mengenlehre und damit die gebräuchlichen Methoden der Analysis auf die Logik

zurückzuf̈uhren, ist heute nicht erreicht und ist vielleichtüberhaupt nicht erreichbar.” (Hilbert 1920b,

pp. 32–33).

5. “. . . zur Vermeidung von Paradoxien ist daher eine teilweise gleichzeitige Entwicklung der

Gesetze der Logik und der Arithmetik erforderlich.” (Hilbert 1905c, p. 176).

6. “In Anbetracht der grossen Mannigfaltigkeit von Verknüpfungen und Zusammenhängen, wel-

che die Arithmetik aufweist, ist es von vornherein ersichtlich, dass wir die Aufgabe des Nachweises
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der Widerspruchslosigkeit nicht mit einem Schlage lösen k̈onnen. Wir werden vielmehr so vorge-

hen, dass wir zun̈achst nur die einfachsten Verknüpfungen betrachten und dann schrittweise immer

höhere Operationen und Schlussweisen hinzunehmen, wobei dann für jede Erweiterung des Sy-

stems der Zeichen und der Uebergangsformeln einzeln der Nachweis zu erbringen ist, dass sie die

auf der vorherigen Stufe festgestellte Widerspruchsfreiheit nicht aufheben.

Ein weiterer wesentlicher Gesichtspunkt ist, dass wir, gemäss unserem Plan der restlosen For-

malisierung der Arithmetik, den eigentlich mathematischen Formalismus im Zusammenhang mit

dem Formalismus der logischen Operationen entwickeln müssen, sodass—wie ich es ausgedrückt

habe—ein simultaner Aufbau von Mathematik und Logik ausgeführt wird.” (Hilbert 1922b, pp. 8a–

9a). The passage is not contained in Kneser’s notes (Hilbert and Bernays 1923a) to the same course.

7. The notes by Kneser (Hilbert and Bernays 1923a) do not contain the list of systems below.

The version of theε-calculus used in the addendum is the same as that used in Kneser’s notes, and

differs from the presentation in Ackermann (1924b), submitted February 20, 1924.

8. Hilbert and Bernays (1923b, pp. 17, 19).

9. “Disposition. Stufe II war elementares Rechnen Axiome 1–16

Stufe III. Nun elementare Zahlentheorie

Schema f̈ur Def. von Funktionen durch Rekursion u. Schlussschema

wollen [?] unser Schlussschema noch das Induktionsschema hinzuziehen

Wenn auch inhaltlich das wesentlich mit den Ergebnissen der anschauliche gewonnenen [?] Zah-

lenth.übereinstimmt, so doch jetzt Formeln z.B.a+b = b+a.

Stufe IIII. Transfinite Schlussweise u. teilweise Analysis

Stufe V. Ḧohere Variablen-Gattungen u. Mengenlehre. Auswahlaxiom

Stufe VI. Zahlen d[er] 2ten Zahlkl[asse], Volle transfin[ite] Induktion. Ḧohere Typen. Continu-

umsproblem, transfin[ite] Induktion für Zahlen der 2ten Zahlkl.

Stufe VII. 1.) Ersetzung der∞ vielen Definitionsschemata durch ein Axiom. 2.) Analysis u[nd]

Mengenlehre. Auf der 4ten Stufe nochmals der volle Satz von der oberen Grenze

Stufe VIII. Formalisierung der Wohlordnung. ” (Hilbert and Bernays 1923a;Ergänzung, sheet 1).

10. The proof can also be found in Hilbert (1922c, pp. 171–173); cf. Mancosu (1998a, pp. 208–

210).

11. “Somit sehen wir uns veranlasst, die Beweise als solche zum Gegenstand der Untersuchung

zu machen; wir werden zu einer Art vonBeweistheoriegedr̈angt, welche mit den Beweisen selbst

als Gegenständen operiert.
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Für die Denkweise der geẅohnlichen Zahlentheorie sind die Zahlen das gegenständlich-Auf-

weisbare, und die Beweise der Sätzeüber die Zahlen fallen schon in das gedankliche Gebiet. Bei

unserer Untersuchung ist der Beweis selbst etwas Aufweisbares, und durch das Denkenüber den

Beweis kommen wir zur L̈osung unseres Problems.

Wie der Physiker seinen Apparat, der Astronom seinen Standort untersucht, wie der Philosoph

Vernunft-Kritik übt, so braucht der Mathematiker diese Beweistheorie, um jeden mathematischen

Satz durch eine Beweis-Kritik sicherstellen zu können.” Hilbert (1920b, pp. 39–40). Almost the

same passage is found in Hilbert (1922c, pp. 169–170), cf. Mancosu (1998a, p. 208).

12. For a detailed discussion of these influences, see Mancosu (1999a).

13. (Hilbert 1922b, part 2, p. 3). Kneser’sMitschrift of these lectures contains a different system

which does not include negation. Instead, numerical inequality is a primitive. This system is also

found in Hilbert’s first talks on the subject in Copenhagen and Hamburg in Spring and Summer

of 1921. Hilbert (1923), a talk given in September 1922, and Kneser’s notes to the course of

Winter Semester 1922–23 (Hilbert and Bernays 1923b) do contain the new system with negation.

This suggests that the developments of Hilbert’s 1921–22 lectures were not incorporated into the

published version of Hilbert’s Hamburg talk (1922c). Although (1922c) was published in 1922, and

a footnote to the title says “This communication is essentially the content of the talks which I have

given in the Spring of this year in Copenhagen [. . . ] and in the Summer in Hamburg [. . . ],” it is

clear that the year in question is 1921, when Hilbert addressed the Mathematisches Seminar of the

University of Hamburg, July 25–27, 1921. A report of the talks was published by Reidemeister in

Jahrbuch der Deutschen Mathematiker-Vereinigung30, 2. Abt. (1921), 106. Hilbert and Bernays

(1923b) also have separate axioms for conjunction and disjunction, while in (1923) it is extended it

by quantifiers.

14. The procedure whereby we pass fromA to A′ is simple in this case, provided we keep track

of which variables are substituted for below the inference. In general, the problem of deciding

whether a formula is a substitution instance of another, and to calculate the substitution which

would make the latter syntactically identical to the former is known asmatching. Although not

computationally difficult, it is not entirely trivial either.

15. “Nennen wir eine Formel, in der keine Variablen und keine Funktionale ausser Zahlzei-

chen vorkommen, eine
”
explizite [numerische] Formel“, so können wir das gefundene Ergebnis so

aussprechen: Jede beweisbare explizite [numerische] Formel ist Endformel eines Beweises, dessen

sämtliche Formeln explizite Formeln sind.
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Dieses m̈usste insbesondere von der Formel 06= 0 gelten, wenn sie beweisbar wäre. Der verlang-

te Nachweis der Widerspruchsfreiheit ist daher erbracht, wenn wir zeigen, dass es keinen Beweis

der Formel geben kann, der aus lauter expliziten Formeln besteht.

Um diese Unm̈oglichkeit einzusehen, genügt es, eine konkret feststellbare Eigenschaft zu fin-

den, die erstens allen den expliziten Formeln zukommt, welche durch Einsetzung aus einem Axiom

entstehen, die ferner bei einem Schluss sich von den Prämissen auf die Endformelübertr̈agt, die

dagegen nicht auf die Formel 06= 0 zutrifft.” (Hilbert 1922b, part 2, pp. 27–28).

16. “Wir teilen die expliziten Formeln in
”
richtige“ und

”
falsche“ ein. Die expliziten Primfor-

meln sind Gleichungen, auf deren beiden SeitenZahlzeichenstehen. Eine solcheGleichungnennen

wir richtig, wenn die beiderseits stehenden Zahlzeichenübereinstimmen; andernfalls nennen wir sie

falsch. EineUngleichung, auf deren beiden Seiten Zahlzeichen stehen, nennen wirrichtig, falls die

beiden Zahlzeichenverschiedensind; sonst nen[n]en wir siefalsch.

In der Normalform einer beliebigen expliziten Formel haben alle Disjunktionsglieder die Gestalt

von Gleichungen oder Ungleichungen, auf deren beiden Sieten Zahlzeichen stehen.

Wir nennen nun eineallgemeine explizite Formel richtig, wenn in der zugeḧorigen Normalform

jede als Konjunktionsglied auftretende (bezw. die ganze Normalform ausmachende) Disjunktion

eine richtige Gleichung oder eine richtige Ungleichung als Glied enthält. Andernfalls nennen wir

die Formelfalsch. [. . . ]

Nach der gegebenen Definition lässt sich die Frage, ob eine explizierte [sic] Formel richtig

oder falsch ist, in jed[e]m Fallekonkret entscheiden. Hier gilt also das
”
tertium non datur“ [. . . ]”

(Hilbert 1922b, part 2, p. 33).

17. Hilbert (1918c, pp. 149–150). See also Section 2.2.3 (Zach 1999, Section 2.3).

18. A sketch of the consistency proof is found in the KneserMitschrift to the 1921–22 lectures

(Hilbert 1922a) in Heft II, pp. 23–32 and in the official notes by Bernays (Hilbert 1922b, part 2,

pp. 19–38). The earlier KneserMitschrift leaves out step (1), and instead of eliminating variables

introduces the notion ofeinsetzungsrichtig(correctness under substitution, i.e., every substitution

instance is correct). These problems were avoided in the official Bernays typescript. The Kneser

notes did contain a discussion of recursive definition and induction, which is not included in the

official notes; more about these in the next section.

19. In the 1921–22 lectures, it is initially argued that the result of applying transformations (1)–

(3) results in aproof of the same end formula (if substitutions are added to the initial formulas).

Specifically, it is suggested that the result of applying elimination of variables and reduction of
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functionals to the axioms results in formulas which are substitution instances of axioms. It was

quickly realized that this is not the case. (When Bernays presented the proof in the 1922–23 lectures

on December 14, 1922, he comments that the result of the transformation need not be a proof

(Hilbert and Bernays 1923b, p. 21). The problem is the axiom of equality

a = b→ (A(a)→ A(b)).

TakingA(c) to beδ(c) = c, a substitution instance would be

0+1+1 = 0→ (δ(0+1+1) = 0+1+1→ δ(0) = 0)

This reduces to

0+1+1 = 0→ (0+1 = 0+1+1→ 0 = 0)

which is not a substitution instance of the equality axiom. The consistency proof itself is not affected

by this, since the resulting formula is still correct (in Hilbert’s technical sense of the word). The

official notes to the 1921–22 lectures contain a 2-page correction in Bernays’s hand (Hilbert 1922b,

part 2, between pp. 26 and 27).

20. The induction rule is not used in (Ackermann 1924b), since he deals with stage III only in

passing and attempts a consistency proof for all of analysis. There, the induction rule is superseded

by an ε-based induction axiom. For a consistency proof of stage III alone, an induction rule is

needed, since an axiom cannot be formulated without quantifiers (orε). The induction rule was

introduced for stage III in the Kneser notes to the 1921–22 lectures (Hilbert 1922a; Heft II, p. 32)

and the 1922–23 lectures (Hilbert and Bernays 1923b, p. 26). It is not discussed in the official notes

or the publications from the same period (Hilbert 1922c, 1923).

21. The general tenor, outlook, and aims of Skolem’s work are sufficiently different from that

of Hilbert to suggest there was no influence either way. Skolem states in his concluding remarks

that he wrote the paper in 1919, after reading Russell and Whitehead’sPrincipia Mathematica.

However, neither Hilbert nor Bernays’s papers contain an offprint or manuscript of Skolem’s paper,

nor correspondence. Skolem is not cited in any of Hilbert’s, Bernays’s, or Ackermann’s papers of

the period, although the paper is referenced in (Hilbert and Bernays 1934).

22. “Uns fehlt noch ganz das Ax[iom] der vollst[ändigen] Induktion. Man k̈onnte meinen, es

wäre

{Z(a)→ (A(a)→ A(a+1))}→ {A(1)→ (Z(b)→ A(b))}
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Das ist es nicht; denn man setzea = 1. Die Voraussetzung muß für alle a gelten. Wir haben aber

noch gar kein Mittel, dasAlle in die Voraussetzung zu bringen. Unser Formalismus reich noch nicht

hin, das Ind.ax. aufzuschreiben.

Aber als Schema k̈onnen wir es: Wir erweitern unsere Beweismethoden durch das nebenstehen-

de Schema
K(1) K(a)→ K(a+1)

Z(a)→ K(a)

Jetzt ist es vern̈unftig, zu fragen, ob dies Schema zum Wspruch führen kann.” (Hilbert 1922a, p. 32).

Z is the predicate expressing “is a natural number,” it disappears from later formulations of the

schema.

23. “Wie ist es bei Rekursionen?ϕ(z) komme vor. Entweder 0, dann setzten wira dafür. Oder

ϕ(z + 1): b(z,ϕz). Beh[auptung]: Das Einsetzen kommt zu einem Abschluß, wenn wir zu innerst

anfangen.” (Hilbert and Bernays 1923a, p. 29)

24. “Nicht endlich (durch Rek[ursion]) definiert ist z.B.ϕ(a) = 0 wenn es einb gibt, so daß

a5 + ab3 + 7 Primz[ahl] ist sonst= 1. Aber erst bei solchen Zahlen und Funktionen beginnt das

eigentliche math[ematische] Interesse, weil dort die Lösbarkeit in endlich vielen Schritten nicht

vorauszusehen ist. Wir haben dieÜberzeugung, daß solche Fragen wie nach dem Wertϕ(a) lösbar,

d.h. daßϕ(a) doch endlich definierbar ist. Darauf können wir aber nicht warten: wir m̈ussen solche

Definitionen zulassen, sonst würden wir den freien Betrieb der Wissenschaft einschränken. Auch

den Begriff der Funktionenfunktion brauchen wir.” (Hilbert 1922a, Heft III, pp. 1–2).

25. A full proof is given by Ackermann (1924b).

26. “Als erstes zeigt man, daß man alle Variablen fortschaffen kann, weil auch hier nur freie

Var[iable] vorkommen. Wir suchen die innerstenτ undα. Unter diesen stehen nur endlich definierte

Funkt[ionen]ϕ, ϕ′. . . Unter diesen k̈onnen einige im Laufe des Beweises für f in die Ax[iome]

eingesetzt sein. 1:τ(ϕ) = 0→ (Z(a→ϕa = 1) woa ein Funktional ist. Wenn diesnichtbenutzt wird,

setze ich alleα(ϕ) undτ(ϕ) gleich Null. Sonst reduziere icha undϕ(a) und sehe, obZ(a→ϕ(a) = 1

in allen . . . wo sie vorkommt, richtig ist. Ist die richtig, so setze ichτ = 0 α = 0. Ist sie falsch, d.h.

is a = z ϕ(z 6= 1, so setzen wirτ(ϕ) = 1, α(ϕ) = z. Dabei bleibt der Beweis Beweis. Die an Stelle

der Axiome gesetzten Formeln sind richtig.

Der Gedanke ist: wenn ein Beweis vorliegt, so kann ich aus ihm ein Argument finden für das

ϕ = 1 ist). So beseitigt man schrittweise dieτ und α aund Anwendungen von 1 2 3 4 und erhält

einen Beweis von 16= 1 aus I–V und richtigen Formeln d.h. aus I–V,

τ( f ,b) = 0 → {Z(a)→ f (a,b) = 1}
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τ( f ,b) 6= 0 → Z( f (α,b))

τ( f ,b) 6= 0 → f (α( f ,b),b) 6= 1

τ( f ,b) 6= 0 → τ( f ,b) = 1”

(Hilbert 1922a), Heft III, 3–4. The lecture is dated February 23, 1922.

27. “Was fehlt uns?

1. in logischer Hinsicht. Wir haben nur gehabt den Aussagenkalkül mit der Erweiterung auf

freie Variable d.h. solche für die beliebige Funktionale eingesetzt werden konnten. Es fehlt

das Operieren mit
”
alle“ und

”
es gibt“.

2. Wir haben das Induktionsschema hinzugefügt, ohne W[iderspruchs]-f[reiheits] Beweis und

auch nur provisorisch, also in der Absicht, es wegzuschaffen.

3. Bisher nur die arithmethischen Axiome genau [?] die sich auf ganze Zahlen beziehen. Und

die obigen M̈angel verhindern uns ja natürlich die Analysis aufzubauen (Grenzbegriff, Irra-

tionalzahl).

Diese 3 Punkte liefern schon Disposition und Ziele für das Folgende.

Wir wenden uns zu 1.) Es ist ja an sich klar, dass eine Logik ohne
”
alle“—

”
es gibt“ Sẗuckwerk

wäre, ich erinnere wie gerade in der Anwendung dieser Begriffe, und den sogennanten transfiniten

Schlussweisen die Hauptschwierigkeiten entstanden. Die Frage der Anwendbarkeit dieser Begriffe

auf∞ Gesamtheiten haben wir noch nicht behandelt. Nun könnten wir so verfahren, wie wir es beim

Aussagen-Kalk̈ul gemacht haben: einige, möglichst einfache [???] als Axiome zu formalisieren, aus

denen sich [sic] dann allëubrigen folgen. Dann m̈usste der W-f Beweis geführt werden—unserem

allgem[einen] Programm gem̈ass: mit unserer Einstellung, dass Beweis eine vorliegende Figur ist.

Für den W-f Beweis grosse Schwierigkeiten wegen der gebundenen Variabeln. Die tiefere Unter-

suchung zeigt aber, dass der eigentliche Kern der Schwierigkeit an einer anderen Stelle liegt, auf

die man geẅohnlich erst sp̈ater Acht giebt und die auch in der Litteratur erst später wahrgenommen

worden ist.”(Hilbert and Bernays 1923b;Ergänzung, sheets 3–4).

28. “[Dieser Kern liegt] beimAuswahlaxiomvon Zermelo. [. . . ] Die Einẅande richten sich

gegen das Auswahlprinzip. Sie müßten sich aber ebenso gegen
”
alle“ und

”
es gibt“ richten, wobei

derselbe Grundgedanke zugrunde liegt.

Wir wollen das Auswahlaxiom erweitern. Jeder Aussage mit einer VariablenA(a) ordnen wir

ein Ding zu, f̈ur das die Aussage nur dann gilt, wenn sie allgemein gilt. Also ein Gegenbeispiel,

wenn es existiert.
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ε(A), eine individuelle logische Funktion. [. . . ]ε gen̈uge demtransfiniten Axiom:

(16) A(εA)→ Aa

z.B. Aa heiße:a ist bestechlich.εA ist Aristides.” (Hilbert and Bernays 1923a, pp. 30–31). The

lecture is dated February 1, 1922, given by Hilbert. The corresponding part of Hilbert’s notes

for that lecture in (Hilbert and Bernays 1923b; Ergänzung, sheet 4) contains page references to

(Hilbert 1923; pp. 152 and 156, paras. 4–6 and 17–19 of the English translation), and indicates the

changes made for the lecture, specifically, to replaceτ by ε.

29. See section 3.3.4 on theε-substitution method.

30. “Wenn wir eineFunktionsvariablehaben:

Aε f A f → A f

(π fällt fort)?ε kommenur mit A vor (z.B. f 0= 0, f f 0= 0). Wie werden wir die Funktionsvariablen

ausschalten? Stattf c setzen wir einfachc. Auf die gebundenentrifft das nicht zu. F̈ur diese nehmen

wir probeweise eine bestimmte Funktion z.B.δa und führen damit die Reduktion durch. Dann steht

z.B.Aδ→Aϕ. Diese reduziert ist r[ichtig] oder f[alsch]. Im letzten Falle isAϕ falsch. Dann setzen

wir überallϕ für ε f A f . Dann stehtAϕ→ Aψ. Das ist sicherr[ichtig] daAϕ f[alsch] ist.” (Hilbert

and Bernays 1923a, pp. 38–39).

31. For a more detailed survey of Ackermann’s scientific contributions, see Hermes (1967). A

very informative discussion of Ackermann’s scientific correspondence can be found in Ackermann

(1983).

32. “In seiner Arbeit
”
Begr̈undung des

”
Tertium non datur“ mittels der Hilbertschen Theorie

der Widerspruchsfreiheit“ hat Ackermann im allgemeinsten Falle gezeigt, dass der Gebrauch der

Worte
”
alle“ und

”
es gibt“, des

”
Tertium non datur“ widerspruchsfrei ist. Der Beweis erfolgt unter

ausschliesslicher Benutzung primitiver und endlicher Schlussweisen. Es wird alles an dem mathe-

matischen Formalismus sozusagen direkt demonstriert.

Ackermann hat damit unter Ueberwindung erheblicher mathematischer Schwierigkeiten ein

Problem gel̈ost, das bei den modernene auf eine Neubegründung der Mathematik gerichteten Bestre-

bungen an erster Stelle steht.” Hilbert-Nachlaß, Niedersächsische Staats- und Universitätsbibliothek

Göttingen, Cod. Ms. Hilbert 458, sheet 6, no date. The three-page letter was evidently written in

response to a request by the President of the International Education Board, dated May 1, 1924.

33. “Ich bemerke nur, dass Ackermann meine Vorlesungenüber die Grundlagen der Math-

[ematik] in den letzten Semestern gehört hat und augenblicklich einer der besten Herren der Theorie
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ist, die ich hier entwickelt habe.”ibid., sheet 2. The draft is dated March 19, 1924, and does not

mention Russell by name. Sieg (1999), however, quotes a letter from Russell’s wife to Hilbert dated

May 20, 1924, which responds to an inquiry by Hilbert concerning Ackermann’s stay in Cam-

bridge. Later in the letter, Hilbert expresses his regret that the addressee still has not been able

to visit Göttingen. Sieg documents Hilbert’s effort in the preceding years to effect a meeting in

Göttingen; it is therefore quite likely that the addressee was Russell.

34. See Section 4.3.3 for a discussion of primitive recursion.

35. Ackermann only requires thatb be bound by the occurrence ofϕ, but this is not enough for

his proof.

36. “Jedes der Funktionale, aus denen sich unser vorliegendes Funktional aufbaut, hat einen be-

stimmten Rang bez̈uglich der letzten, der vorletzten usw. bis ersten Rekursionsfunktion. Jede der-

artige Rangkombination wird durchn geordnete Zahlen gekennzeichnet. Alle diese endlich vielen

verschiedenen Rangkombinationen, die bei unserem Funktional auftreten, wollen wir nun ordnen.

Bei zwei verschiedenen Rangkombinationen schreiben wir die entsprechenden Zahlen untereinan-

der, also zuerst den Rang bezüglich der letzten, dann der vorletzten Funktion usw. An irgendeiner

Stelle sind dann die untereinanderstehenden Zahlen zuerst verschieden. Diejenige Rangkombinati-

on heißt nun die ḧohere, bei der an der betreffenden Stelle die größere Zahl steht. In dieser Weise

ordnen wir alle die endlich vielen verschiedenen Rangkombinationen, die bei dem vorliegeneden

Funktional auftreten. Zu jeder Rangkombination schreieben wir dann auf, wieviel Funktionale die-

ser Art in dem vorliegenden vorkommen. Die Gesamtheit dieser Zahlen wollen wir den Index des

Funktionals nennen.” (Ackermann 1924b, p. 15).

37. According to Ackermann’s definition of subordination, this would not be true. A subterm

of c(b) might contain a bound variable and thus not be a constant subterm, but the variable could be

bound by a function symbol int other than the occurrence ofϕ under consideration. See note 35.

38. Ackermann (1924b, p. 18)

39. Tait (1981) argues that finitism coincides with primitive recursive arithmetic, and that there-

fore the Ackermann function is not finitistic. Tait does not present this as a historical thesis, and

his conceptual analysis remains unaffected by the piece of historical evidence presented here. For

further evidence (dating however mostly from after 1931) see Section 4.3.4 (Zach 1998,§5) and

Tait’s response in (2000).

40. “Der Abbau der Funktional durch Reduktion erfolgt nicht in dem Sinne, daß jedesmal beim

Herausschaffen einesäuseren Funktionszeichens sich eine endliche Ordnungszahl, die man einem



105

Funktional als Rang zuordnen kann, erniedrigt, sondern jedem Funktional entspricht gewisserma-

ßen eine transfinite ordnungszahl als Rang, und der Satz, daß man nach Ausführung von endlich

vielen Operationen ein konstantes Funktional auf ein Zahlzeichen erducziert hat, entspricht dem

anderen, da’s, wenn man von einer transfiniten Ordnungszahl zu immer kleineren Ordnungszahlen

zurückgeht, man nach endlich vielen Schritten zur Null kommen muß. Nun ist natürlich bei unseren

metamathematischen̈Uberlegungen von tarnsfiniten mengen und Ordnungszahlen keine Rede. Es

ist aber interessant, daß der erwähnte Satz̈uber die transfiniten Ordnungszahlen sich in ein Gewand

kleiden l̈aßt, in dem ihm vom tarnsfiniten gar nichts mehr anhaftet.” (Ackermann 1924b, pp. 13–14).

41. “Betrachten wir etwa eine transfinite Ordnungszahl, die vorω ·ω steht. Jede derartige Or-

dungszahl l̈ast sich in der Form schreiben:ω ·n+m, wo n undm endliche Zahlen sind. Man kann

also eine derartige Ordnungszahl auch durch ein Paar endlicher Zahlen(n,m) characterisieren, wo-

bei es naẗurlich auf die Reiehnfolge dieser Zahlen ankommt. Dem Zurückgehen in der Reihe der

Ordnungszahlen entspricht folgende Operation mit dem Zahlenpaar(n,m). Entweder behalte ich

die erste Zahln bei; dann setzte ich an Stelle vonm eine kleinere Zahlm′. Oder aber ich erniedrige

die erste Zahln; dann daf ich an diese zweite Stelle eine beliebige zahl setzten, die also größer sein

kann alsm. Es ist klar, daß man so nach endlich vielen Schritten zu dem Zahlenpaar(0,0) kommen

muß. Denn nach ḧochstensm+1 Schritten komme ich zu einem Zahlenpaar, bei dem die erste Zahl

kleiner ist alsn. Es sei dies(n′,m′). Nach ḧochstensm′+ 1 Schritten komme ich dann zu einem

Zahlenpaar, bei dem die erste Zahl wieder kleiner ist alsn′, usw. Nach endlich vielen Schritten

kommt man so zum Zahlenpaar(0,0), das der ordnungszahl 0 entspricht. In dieser Form enthält

der genannte Satz durchaus nicht transfinites; es werden nur solcheÜberlegungen benutzt, wie sie

in der Metamathematik zuläsig sind. Analoges gilt, falls man nicht Paare endlicher zahlen, sondern

Tripel, Quadrupel usw. benutzt. Dieser Gedanke wird nun nicht nur bei denfolgenden Beweisen

dafür, daß man mit der Reduktion der Funktional zu Ende kommt, benutzt, sondern er wird auch

sp̈ater immer wieder angewandt, insbesondere bei dem Endlichkeitsbeweis am Schluß der Arbeit.”

(Ackermann 1924b, p. 14).

42. “[Gentzen fragt,] ob Sie der Meinung sind, dass sich die Methode des Endlichkeitsbeweises

durch transfinite Induktion auf den Wf-Beweis Ihrer Dissertation anwenden lasse. Ich würde es sehr

begr̈ussen, wenn das ginge.” Bernays to Ackermann, November 27, 1936, Bernays Papers, ETH

Zürich Library/WHS, Hs 975.100.

43. “Mir f ällt übrigens jetzt, wo ich gerade meine Dissertation zur Hand nehme, auf, dass dort in

ganzähnlicher Weise mit transfiniten Ordnungszahlen operiert wird wie bei Gentzen.” Ackermann



106

to Bernays, December 5, 1936, Bernays Papers, ETH Zürich Library/WHS, Hs 975.101.

44. “Ich weissübrigens nicht, ob Ihnen bekannt ist (ich hatte das seiner Zeit nicht als Ueber-

schreitung des engeren finiten Standpunktes empfunden), dass in meiner Dissertation transfinite

Schl̈usse benutzt werden. (Vgl. z.B. die Bemerkungen letzter Abschnitt Seite 13 und im nächst-

folgenden Abschnitt meiner Dissertation.” Ackermann to Bernays, June 29, 1938, Bernays papers,

ETH-Zürich, Hs 975.114. The passage Ackermann refers to is the one quoted above.

45. Theε-substitution method was subsequently refined by von Neumann (1927) and Hilbert

and Bernays (1939). Ackermann (1940) gives a consistency proof for first-order arithmetic, using

ideas of Gentzen (1936). See also (Tait 1965) and (Mints 1994). Useful introductions to theε-

substitution method of Ackermann (1940) and to theε-notation in general can be found in Moser

(2000) and Leisenring (1969), respectively.

46. Ackermann (1924b, p. 8). Theπ-functions were already present (Hilbert 1922a) as theτ-

function and also occur in (Hilbert and Bernays 1923a). They were dropped from later presentations.

47. It is not clear whether the definition is supposed to apply to the formulas with free variables

(i.e., toa = b anda = εb(a = b) in the example) or to the corresponding substituion instances. The

proof following the definition on p. 21 of (Ackermann 1924b) suggests the former, however, later

in the procedure for defining a sequence of total substitutions it is suggested that theε-expressions

corresponding to formulas subordinate toÃ(a) receive substitutions—but according to the definition

of a total substitution onlyε-terms(εb(z = b) in the example) receive substitutions.

48. The bookkeeping functions are introduced here and are not used by Ackermann. The basic

idea is that that in case (3), substitutions for some formulas are discarded, and the next substitution

is given the “last” total substitution where the substitution for the formula was not yet marked as

discarded. Instead of explicit bookkeeping, Ackermann uses the notion of a formula being “remem-

bered” as having its value not discarded.

49. With the restriction on second-orderε-terms imposed by Ackermann, and discussed below,

the system for which a consistency proof was claimed is essentially elementary analysis, a pred-

icative system. A consistency proof using theε-substitution method for this system was given by

Mints and Tupailo (1996).

50. Ackermann (1924b, p. 9)

51. Ackermann to Bernays, June 25, 1925, Bernays Papers, ETH Zürich, Hs. 975.96.

52. “Ich habe augenblicklich denε f -Beweis wieder vorgenommen, und versuche mit aller Ge-

walt da zum Abschluß zu kommen. Daß sich das Problem auf ein zahlentheoretisches reduzieren
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läßt, hatte ich Ihnen damals ja schon mitgeteilt. Den zahlentheoretischen Satz allgemein zu be-

weisen scheint mir aber ebenso schwierig wie das ganze Problem. Ich habe nun den schon mehr-

fach von mir versuchten Weg wieder eingeschlagen, den Begriff des Grundtyps so zu erweitern,

das auch dieε mit freien Funktionsvariablen eine Ersetzung bekommen. Dieser Weg scheint ja

auch der naẗurlichste, und die Gleichheitsaxiome( f )(A( f )
 B( f ))→ ε f A f ≡ ε f B f würden dann

gleich mitbehandelt. Ich habe einige Hoffnung, daß die sich früher auf diesem Weg einstellenden

Schwierigkeiten vermieden werden können, wenn ich denεa-Formalismus benutze und statt ohne

ε definierte Funktionen, solche zur Ersetzung für die ε f nehme, die einεa enthalten k̈onnen. Ich

habe mir aber erst einfache Spezialfälle überlegt.” Ackermann to Bernays, March 31, 1926. ETH

Zürich/WHS, Hs 975.97. Although Ackermann’s mention of “ground types” precedes the publi-

cation of von Neumann (1927), the latter paper was submitted for publication alread on July 29,

1925.

53. “Letzthin habe ich mir Ihren neueren Beweis der Widerspruchsfr[eiheit] für dieεa an Hand

dessen, was Sie mir vor Ihrer Abreise aufschrieben, genauerüberlegt und glaube diesen Beweis

als richtig eingesehen zu haben.” Bernays to Ackermann, April 12, 1927, in the posession of Hans

Richard Ackermann. Bernays continues to remark on specifics of the proof, roughly, that when

example substitutions forε-types are revised (the situation corresponding to case (3) in Ackermann’s

original proof), the substitutions for types of higher rank have to be reset to the initial substitution.

He gives an example that shows that if this is not done, the procedure does not terminate. He also

suggests that it would be more elegant to treat all types of the same rank at the same time and

gives an improved estimate for the number of steps necessary. Note that the reference to “εa’s”

(as opposed toε f ) suggest that the proof was only for the first-order case. A brief sketch of the

proof is also contained in a letter from Bernays to Weyl, dated January 5, 1928 (ETH Zürich/WHS,

Hs. 91.10a).

54. “Wie Sie sich vielleicht erinnern, hatte ich damals einen 2. Beweis für die Widerspruchs-

freiheit derεa. Dieser Beweis ist von mir nie publiziert worden, sondern nur Herrn Prof. Bernays

mündlich mitgeteilt worden, der sich auch damals von seiner Richtigkeitüberzeugte. Prof. Bernays

schrieb mir nun im vergangenen Jahre, daß das Ergebnis ihm mit der Gödelschen Arbeit nicht zu har-

monisieren scheine.” Ackermann to Hilbert, August 23, 1933, Hilbert-Nachlaß, Niedersächsische

Staats- und Universitätsbibliothek, Cod. Ms. Hilbert 1. Ackermann did not then locate the difficulty,

and even a year and a half later (Ackermann to Bernays, December 8, 1934, ETH Zürich/WHS, Hs

975.98) suggested a way that a finitistic consistency proof of arithmetic could be found based on
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work of Herbrand and Bernays’s drafts for the second volume ofGrundlagen.

55. “Problem I. The consistency proof of theε-axiom for the function variablef . We have

the outline of a proof. Ackermann has already carried it out to the extent that the only remaining

task consists in the proof of an elementary finiteness theorem that is purely arithmetical.” Hilbert

(1928a), translated in Mancosu (1999a, p. 229). The extension toε-extensionality is Problem III.

56. “Anlässlich der Arbeit f̈ur das Grundlagenbuch sah ich mich dazu angetrieben, den zweiten

Hilbertschen Wf.-Beweis f̈ur dasε-Axiom, den sogenannten
”
verungl̈uckten“ Beweis, nochmals zu

überlegen, und es scheint mir jetzt, dass dieser sich doch richtig stellen lässt.” Bernays to Acker-

mann, October 16, 1929, in the possession of Hans Richard Ackermann. Bernays continues with a

detailed exposition of the proof, but concludes that the proof probably cannot be extended to include

induction, for whichε-substitution seems better suited.

57. The sketch bears the title “Wf.-Beweis für das logische Auswahl-Axiom”, and is inserted in

the front ofElemente und Prinzipienfragen der Mathematik, Sommer-Semester 1910. Library of the

Mathematisches Institut, Universität Göttingen, 16.206t14. A note in Hilbert’s hand says “Einlage

in W.S. 1920.” However, theε-Axiom used is the more recent versionAb→ AεaAa and not the

original, dualAεaAa→ Ab. It is thus very likely that the sketch dates from after 1923.

58. “Ich glaube, dass damit die Frage, die wir bei der Durchsprechung des modifizierten Acker-

mannschen Beweises zuletzt diskutierten, ob nämlich eine L̈angen-Abscḧatzung f̈ur das Korrigier-

Verfahren unabḧangig von der Gr̈osse der Zahlen-Substituenden gleichmässig m̈oglich sei, vernei-

nend beantwortet ist. An diesem Punkte ist dann der Nachweis des endlichen Abbrechens dieses

Verfahrens (f̈ur den n̈achsten Grad, d.h. 3) jedenfalls lückenhaft.” von Neumann to Bernays, March

10, 1931, Bernays Papers, ETH Zürich/WHS, Hs. 975.3328. Von Neumann’s example can be found

in Hilbert and Bernays (1939, p. 123).

59. Hilbert (1928a)

60. In a letter dated May 3, 1931, Bernays suggests that the problem lies with certain types of

recursive definitions The Bernays–Gödel correspondence will shortly be published in Volume IV

of Gödel’s collected works. For more on the reception of Gödel’s results by Bernays and von

Neumann, see Dawson (1988) and Mancosu (1999b).
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Chapter 4

Finitism and Mathematical Knowledge

4.1 Introduction

The years between the two World Wars was a remarkable time in philosophy and par-

ticularly in logic and the foundations of mathematics. It saw the rise of logical positivism

in Vienna, Berlin and Prague; it was the time of Wittgenstein of the Tractatus, of the Polish

school of logic, of G̈odel, Ramsey, Skolem, and Turing. It was also the time of one of the

grandest research projects in the philosophy of mathematics: Hilbert’s Program. Hilbert’s

motivation for proposing the project was a range of criticisms brought by other mathe-

maticians. They charged that a number of mathematical principles, such as impredicative

definitions, the axiom of choice, and the law of excluded middle for infinite totalities, were

contradictory, false, or at least were unfounded assumptions. His proposed solution, in

short, was to prove the consistency of formalized mathematics on the basis of what he

called “finitist” reasoning.

It is widely believed that Hilbert’s project in its original formulation can’t be made to

work. The main reason for this widespread belief is that Gödel’s second incompleteness

theorem shows that a consistency proof of a formalization of a reasonably strong part of

mathematics must use principles outside of that area. Hence, the principles required for a

consistency proof of a non-finitist area of mathematics must themselves include non-finitist

principles (as long as all finitistic reasoning can be formalized in the non-finitist theory). So

it may seem that the study of Hilbert’s program and the surrounding issues is at best of his-
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torical interest. One of the points I would like to make here will be that this is not so. I will

try to make this point not by arguing directly that this or that part of Hilbert’s philosophy

of mathematics can be salvaged. Rather, I want to show how historically informed reflec-

tion on Hilbert’s ideas, and more importantly, more recentcriticismsof Hilbert’s ideas, can

contribute to parts of the current debate in the philosophy of mathematics.

The style of doing philosophy of mathematics of the 20s was supplanted in the 50s and

60s by a very different style: Platonism in mathematics became a dominant view, and the

debate revolved mainly about the issue of the metaphysical status of mathematical objects.

More recently, some of the classics of philosophy of mathematics have found their way

back into the literature. For instance, logicism has been resurrected to some extent by

the work of Boolos (1998, Part II) and Wright and Hale (2001), and both Tait (1986) and

Maddy (1997) have appealed to Wittgenstein in the formulation of their positions. Hilbert’s

work, of course, is no exception. There are two aspects to his views of mathematics which

I think are still highly relevant today: One is the strategy of providing support for an area

of mathematics by providing a proof of consistency using epistemologically privileged

principles. Such a strategy is still used in so-called revised Hilbert programs of providing

proof-theoretic reductions of one area of mathematics to another, where such reductions

are carried out by finitist means. Another aspect of Hilbert’s work is the notion of finitism

itself.

A discussion of the latter aspect raises both historical and conceptual questions. On

the one hand, a comprehensive discussion of finitism requires an elucidation of both intent

(What characterizes finitistic reasoning? What are the objects of finitistic reasoning?) and

extent (What methods of reasoning can be justified by Hilbert as finitist? What methods

were accepted as finitist?) of Hilbert had in mind when he spoke of the “finitist stand-

point.” On the other hand—if, as seems likely, Hilbert did not give a unique characteriza-

tion of finitism—it is necessary to determine what the best way(s) to characterize finitism

from a current standpoint are. In this vein, conceptual reconstructions of finitism have been

attempted in more recent writings (in particular by Tait (1981, 2000), Parsons (1979–80,

1994), and Kreisel (1960, 1970)), and these reconstructions differ in both their starting

points and their conclusions. For instance, Tait takes it that finitistic reasoning is charac-

terized by being a minimal mode of reasoning underlying all mathematical thought about
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numbers, Parsons focuses on the notion of finitism as the domain of intuitive mathematical

evidence, and Kreisel sees the surveyability of the domain of finitistic objects as character-

istic. From these starting points, the analyses of these authors arrive at different extensional

characterizations of what is finitistically provable.

I shall first take up the issue of the relevance of the notion of finitistic reasoning and ev-

idence to current issues in the philosophy of mathematics. I shall then attack the historical

question of what Hilbert (and his contemporaries) took finitism to consist in. Finally, I shall

assess and compare the more recent reconstructions and criticisms of finitism of Parsons

and Tait.

4.2 The Significance of Finitism

Finitism, as Hilbert understood it, is a methodological position that a philosopher of

mathematics might take for a particular philosophical purpose. For Hilbert, the purpose was

to show that formal mathematical reasoning is free from contradictions, and hence enjoys

a status of security that had been put into doubt by his predicativist and intuitionist critics.

But other purposes can be imagined: rather than attempting to ground all of mathematics

in a formalistic fashion, we could imagine someone giving a reductivist account of mathe-

matics, or a broadly instrumentalist or fictionalist account without reference to a particular

formalism. As an example, consider Field’s (1980) fictionalism: Field attempted to show

that mathematics is conservative over a nominalistic formulation of physics. The proof of

the conservativity result employed abstract—platonistic—methods. He was promptly crit-

icized on this point. In response, he argued that he succeeded in showing that Platonism

(motivated by the indispensability arguments) is led ad absurdum by his result. The proof

is acceptable on platonistic grounds, and thus a platonist would have to concede, so Field,

that mathematics is not indispensable after all. He could, however, just have bitten the bul-

let, argued that a version of finitism is nominalistically acceptable, and attempted to show

that the conservativity result can be obtained on stricter grounds. (I am not suggesting that

it is likely that such a stronger result can be obtained, but as an illustration of my point.)

The scope of the foundational project undertaken also need not necessarily be all of
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higher mathematics. So-called relativized Hilbert programs are projects of exactly this

kind. Examples of these are Feferman’s work on explicit mathematics and predicative

subsystems of analysis, and to some extent also the Friedman-Simpson program of reverse

mathematics. What is common to these approaches to mathematical foundations is that

proof theoretic reductions are given of systems of classical mathematics to more restricted

systems. The reduction is carried out using finitist means; and from this fact philosophical

significance of these reduction is derived.

A foundational reduction, in Feferman’s sense (1988, 1993a) is accomplished if it can

be shown that a body of mathematics which is justified by a foundational frameworkF1

(e.g, finitary, constructive, predicative, infinitary, set-theoretic) can already be justified, in

a certain sense, in a weaker, or stricter foundational frameworkF2. This is in general not

possible in a wholesale fashion, however, partial foundational reductions can and have been

achieved. Suppose a theoryT1 is justified by a foundational frameworkF1, and a theoryT2

by a weaker frameworkF2. A proof theoretic reduction ofT1 to T2 (conservative forΦ) is

a partial recursive functionf such that

1. Wheneverx is (the code of) a proof inT1 of a formula (with code)y in Φ, then f (x)

is (the code of) a proof ofy in T2, and

2. T2 proves the formalization of (1).

If there is such a functionf , we writeT1≤ T2[Φ]. Now if T1 is directly justified by a foun-

dational frameworkF1, andT2 by F2, then, so Feferman, a proof-theoretic reduction that

establishesT1 ≤ T2[Φ] is a partial foundational reduction ofF1 to F2. Clause (2) in the

definition ensures that the reduction (the functionf ) itself is justified by the weaker frame-

work F2. In the reductions achieved in practice, it turns out thatf is actually primitive

recursive and the formalization of (1) can even be proved in primitive recursive arithmetic

PRA. Since PRA is directly justified by the finitistic framework, such partial foundational

reductions are therefore all justified finitistically. Feferman’s main philosophical conclu-

sion from the possibility of giving such foundational reductions is this: The main argument

for set-theoretical realism is the Quine-Putnam indispensability argument, which proceeds

from the premises that set-theory is indispensable to science. Feferman has shown, first,
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that much, if not all, of scientifically applicable mathematics can actually be formalized

in much weaker systems (e.g., Feferman’s systemW, which is justified by a predicative

foundational framework), and second, that predicative mathematics can be reduced to the

countably infinite (in the sense that there is a partial foundational reduction of predicative

mathematics to countably infinite mathematics, given by a proof-theoretic reduction ofW

to Peano ArithmeticPA). He concludes that,

even if one accepts the indispensability argument, practically nothing philo-
sophically definite can be said of the entities which are then supposed to have
the same status—ontologically and epistemologically—as the entities of nat-
ural science. That being the case, what do the indispensability arguments
amount to? As far as I’m concerned, they are completely vitiated. (Fefer-
man 1993b)

But even independently of the question of mathematical realism and of the scope and force

of the indispensability arguments, proof-theoretic reductions give precise answers to ques-

tions of the relation between foundational frameworks. Since a proof-theoretic reduction

of T1 to T2 also yields a consistency proof ofT1 in T2 (i.e., a relative consistency result),

establishing a proof-theoretic reduction also provides a solution to Hilbert’s program rel-

ativized toT1 andT2. Feferman summarizes the importance of proof-theoretic reductions

thus:

In general, the kinds of results presented here serve to sharpen what is to
be said in favor of, or in opposition to, the various philosophies of mathemat-
ics such as finitism, predicativism, constructivism, and set-theoretical realism.
Whether or not one takes one or another of these philosophies seriously for on-
tological and/or epistemological reasons, it is important to know which parts
of mathematics are in the end justifiable on the basis of the respective philoso-
phies and which are not. The uninformed common view—that adopting one of
the non-platonistic positions means pretty much giving up mathematics as we
know it—needs to be drastically corrected, and that should also no longer serve
as the last-ditch stand of set-theoretical realism. On the other hand, would-
be nonplatonists must recognize the now clearly marked sacrifices required
by such a commitment and should have well-thought out reasons for making
them.1
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4.3 Finitism in Hilbert

4.3.1 Numbers and Numerals

Hilbert conceived of his finitistic view of numbers in reaction and contrast to the logicist

conception of number, which was supposed to yield a reduction of the number concept to

broadly logical concepts. In Frege’s view, numbers are extensions of certain concepts (For

him, extensions of concepts, i.e., classes, are a logical notion). Russell took over this

conception and tried to avoid the use of classes inPrincipia by use of his no-class theory.2

Hilbert found this reduction of numbers to logical notions circular. In 1905, e.g., he writes:

Arithmetic is often considered to be a part of logic, and the traditional
fundamental logical notions are usually presupposed when it is a question of
establishing a foundation for arithmetic. If we observe attentively, however, we
realize that in the traditional exposition of the laws of logic certain fundamental
arithmetic notions are already used, for example, the notion of set and, to some
extent, also that of number. Thus we find ourselves turning in a circle, and that
is why a partly simultaneous development of the laws of logic and of arithmetic
is required if paradoxes are to be avoided.(Hilbert 1905c, p. 131).

Although around 1917 Hilbert was leaning towards Russell’s viewpoint, he abandoned

logicism a few years later. Bernays (1930, p. 243) made the disagreements between logi-

cism and Hilbert’s view very clear, and asserted that Frege’s definition of cardinal numbers

(“Numbers,” Anzahlen) conceals the epistemologically essential characteristics of math-

ematics. Hilbert’s finitistic viewpoint is not concerned with an analysis of the Number

concept in the line of the Fregean project, but with a methodological program that presents

an analysis of a certain minimal mode of numerical reasoning which is epistemologically

grounded and serves to secure higher mathematics. Like Wittgenstein’s proverbial ladder,

the finitistic viewpoint can be abandoned once it provides this secure foundation.3 Securing

higher mathematics through consistency proofs does not and cannot presuppose a general

analysis of Number. The Fregean analysis requires concepts and their extensions, entities

which the finitist cannot consider; and Russell’s solution was rejected because of the use

of the axiom of reducibility. Hilbert attempts to account for numerical reasoning in terms

of finite sequences, at first introduced as sequences of strokes. After 1923 Hilbert and Ber-

nays are careful to distinguish between these “finitistic numbers” and the general concept
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of number (in either ordinal or cardinal sense), and usually refer to them as “numerals”

(Ziffern).

Hilbert is interested in an account of elementary number theoretic reasoning which sat-

isfies certain constraints of immediacy, intuitiveness, and certainty. These requirements of

the methodological program translate into requirements on the subject matter of contentual

finitistic arithmetic [inhaltliche finite Arithmetik]. According to Hilbert, the numerals are

“concretely” given and surveyable by us. We have some immediate access to them which

allows us to gain knowledge of finitary number-theoretic facts. The interesting question

here is: What are the numerals exactly, and how do we have knowledge of them? It seems

clear that Hilbert wants some sort of intuition to be the source of knowledge, so we might

pose the question the other way around: What sort of intuition is the “primitive arithmetical

intuition” and what do we have an intuition of when we engage in the “primitive mode of

arithmetical thought”? Recent philosophy of mathematics would put the question in terms

such as the following: Are the numerals physical objects? Mental constructions? Token or

type? Abstract or concrete?

Some of the most fruitful sources on the topic of Hilbert’s conception of finitism are his

1922 and 1926 papers, Bernays’s exchange with Müller (Müller 1923, Bernays 1923), as

well as the relevant sections in Hilbert and Bernays (1934, 1939). In 1905, Hilbert gives a

first finitistic account of number theory in terms of strokes and equality signs. We note that

no identification of certain (sequences of) signs with numbers is made, rather, the sequences

of 1’s and =’s are divided into two classes, the class of entities (these are the sequences of

the form “1. . .1 = 1. . .1” with equal numbers of ‘’s on the left and right) and the class of

nonentities; the former are thetrue propositions. Hence we have here a finitistic account,

not of numbers, but of numerical truth.4

In his programmatic paper “The new grounding of mathematics,” (1922c) we read:

As we saw, the abstract operation with general concept-scopes and con-
tents has proved to be inadequate and uncertain. Instead, as a precondition for
the application of logical inference and for the activation of logical operations,
something must already be given in representation [in der Vorstellung]: certain
extra-logical discrete objects, which exist intuitively as immediate experience
before all thought. If logical inference is to be certain, then these objects must
be capable of being completely surveyed in all their parts, and their presenta-
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tion, their difference, their succession (like the objects themselves) must exist
for us immediately, intuitively, as something that cannot be reduced to some-
thing else. Because I take this standpoint, the objects [Gegensẗande] of number
theory are for me—in direct contrast to Dedekind and Frege—the signs them-
selves, whose shape [Gestalt] can be generally and certainly recognized by
us—independently of space and time, of the special conditions of the produc-
tion of the sign, and of insignificant differences in the finished product [foot-
note:In this sense, I call signs of the same shape “the same sign” for short.]
The solid philosophical attitude that I think is required for the grounding of
pure mathematics—as well as for all scientific thought, understanding, and
communication—is this:In the beginning was the sign.5

Hilbert continues with an explicit account of numbers as signs built up from 1’s and

+’s. He writes:

The sign 1 is a number.
A sign which begins with 1 and ends with 1, and such that in between +

always follows 1 and 1 always follows +, is likewise a number [. . . ]
These number-signs, which are numbers and which completely make up

the numbers, are themselves the objects of our consideration, but have other-
wise nomeaningof any sort. (Hilbert 1922c, pp. 202–203)

Hilbert’s account was criticized by the philosopher Aloys Müller, and some of the

points he made were well taken. Following Müller’s criticism, Hilbert (and Bernays)

change the account slightly.

1. The term “sign” connotates having a meaning, but the number-signs are supposed to

have no meaning attached to them. To avoid ambiguity, Hilbert and Bernays sub-

sequently use the term ‘numeral’ [Ziffer] instead of “number-sign.” For, I suppose,

similar reasons, they also cease to use the word ‘number’ in this context, i.e., af-

ter Hilbert (1922c), no identification of numbers with numerals is made. This is in

keeping with my remark above that Hilbert is not after an analysis of the number

concept in general. Hilbert does, however, give an account of how numeralsfunction

as numbers in the sense of cardinal numbers,Anzahlen.6

2. The particular shape of the signs is immaterial. Bernays clarifies that what is impor-

tant is that some objects of the same type are put together in a (finite) sequence.
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[. . . T]he special shapes “1” and “1+ 1” are inessential. If we disre-
garded the connection to habit, it would even be advisable, in order to
emphasize the principle, to take as numerical signs figures of the type

· · · · · ·

(which are thus constituted merely of points). And, of course, stars, verti-
cal strokes, circles and other shapes could just as well be chosen instead of
points. One could also take a time sequence, say, of similar noises, instead
of a spatial sequence.

But it is essential thatspecimens of equal shape be joined in the same
sort of arrangement[Zusammensetzung]. (Bernays 1923, p. 224)

Sometimes Hilbert’s view is presented as if Hilbert claimed that the numbers are signs

on paper. It is important to stress that this is a misrepresentation, that the numerals are

not physical objects in the sense that truths of elementary number theory are dependent

only on external physical facts or even physical possibilities (e.g., on what sorts of stroke

symbols it is possible to write down). Hilbert makes too much of the fact that for all we

know, neither the infinitely small nor the infinitely large are actualized in physical space

and time.7 Hilbert must certainly hold that the number of strokes in a numeral is at least

potentially infinite. It is also essential to the conception that the numerals are sequences

of one kind of sign, and that they are somehow dependent on being grasped as such a

sequence, that they do not exist independently of our intuition of them.8 Only our seeing

or using “1111” as a sequence of 4 strokes as opposed to a sequence of 2 symbols of the

form “11” makes “1111” into the numeral that it is. Would two stones lying side by side

count as a numeral of the same kind as 11? If yes, then pretty much everything would be a

numeral. If no, what decides whether somethingis? The obvious alternative would be that

numerals are mental constructions. However, Bernays denies also this, writing that “the

objects of intuitive number theory, the number signs, are, according to Hilbert, also not

‘created by thought’. But this does not mean that they exist independently of theirintuitive

construction, to use the Kantian term that is quite appropriate here.” Bernays (1923, p. 226).

Kitcher considers this option as well. If the numerals were mental constructions, he writes,

it seems that we shall have to accept many 3’s (the array of three strokes I
am currently contemplating, the array you are currently contemplating, the ar-
ray I contemplated yesterday, etc.). So our discourse about numberssimpliciter
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should be replaced with talk aboutX’s numbern at timet. Arithmetical knowl-
edge is immediately vulnerable to all kinds of scepticism. Perhaps ‘My 2 att
plus my 2 att equals my 4 att ’ holds for some pastt (not all, for I have not
always been alive, nor always awake). But what of the future? What of your
2’s to which I am forbidden access? And what is the status of arithmetic before
anyone ever constructed a stroke-symbol?9

Kitcher’s alternative is to hold that, whatever the numerals are, the strokes on paper or

the stroke sequences I am contemplating represent these numerals. According to Hilbert

and Bernays, the numerals are given in our representation, but they are not merely subjec-

tive “mental cartoons” (Kitcher’s term).

If we want [. . . ] the ordinal numbers as definite objects free of all inessen-
tial elements, then in each case we have to take the mere schema of the rel-
evant figure of repetition [Wiederholungsfigur] as an object; this requires a
very high abstraction. We are free, however, to represent these purely formal
objects by concrete objects (“number signs”); these contain then inessential,
arbitrarily added properties, which, however, are also easily grasped as such.
(Bernays 1930, p. 244)

One version of this view would be to hold that the numerals aretypesof stroke-symbols

as represented in intuition. This is the interpretation that Tait (1981, pp. 438–39) gives. At

first glance, this seems to be a viable reading of Hilbert. It takes care of the difficulties that

the reading of numerals-as-tokens (both physical and mental) faces, and it gives an account

of how numerals can be dependent on their intuitive construction while at the same time

not being created by thought. The reasoning that leads Tait to put forward his reading lies

in several constraints that Hilbert and Bernays put on the numerals. Theirshape10 (but

not they themselves) are supposed to be independent of place and time, independent of

the circumstances of production, independent of inessential differences in execution, and

capable of secure recognition in all circumstances (Hilbert 1922c, p. 163). Tait infers from

this that identity between numerals is type identity, and hence, that numerals should be

construed as types of stroke symbols.

Types are usually considered to be abstract objects, however, not located in space or

time. Taking the numerals as intuitive representations of sign types might commit us to

taking these abstract objects as existing independently of their intuitive representation. That
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numerals are “space- and timeless” is a consequence that already Müller thought could be

drawn from Hilbert’s statements, and that was in turn disavowed by Bernays.11 The reason

is that a view on which numerals are space- and timeless objects existing independently of

us would be committed to them existing simultaneously as a completed totality, and this is

exactly what Hilbert is objecting to.

It is by no means compatible, however, with Hilbert’s basic thoughts to
introduce the numbers as ideal objects “with quite different determinations
from those of sensible objects,” “which exist entirely independent of us.” By
this we would go beyond the domain of the immediately certain. In particular,
this would be evident in the fact that we would consequently have to assume
the numbersas all existing simultaneously.But this would mean to assume
at the outset that which Hilbert considers to be problematic. (Bernays 1923,
pp. 225–26)

This is not to say that it isincoherentto consider the numbers as being abstract objects,

only that the finitistic viewpoint prohibits such a view. Bernays goes on to say:

Hilbert’s theory does not exclude the possibility of a philosophical attitude
which conceives of the numbers [but not the finitist’s numerals] as existing,
non-sensible objects (and thus the same kind of ideal existence would then have
to be attributed to transfinite numbers as well, and in particular to the numbers
of the so-called second number class). Nevertheless the aim of Hilbert’s theory
is to make such an attitude dispensable for the foundation of the exact sciences.
(Bernays 1923, p. 226)

Another open question in this regard is exactly what Hilbert meant by “concrete.” He

very likely does not use it in the same sense as it is used today, i.e., as characteristic of

spatio-temporal physical objects in contrast to “abstract” objects. However, sign types

certainly are different from full-fledged abstracta like pure sets in that all their tokens are

concrete. Parsons takes account of this difference by using the term “quasi-concrete” for

such abstracta. Tait, on the other hand, thinks that even the tokens are not concrete physical

objects, but abstract themselves.

The considerations outlined so far should have convinced the reader by now that the

view is not as simple to make sense of as one might be inclined to think on a cursory

reading of “On the infinite.” On the one hand, for instance, the numerals are supposed to be
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objective, not merely created by thought, on the other hand they should not be independent

of their intuitive representation. They need to be concrete and surveyable, but they also

cannot be physical objects. The situation is not alleviated by the fact that it is not even

clear what Hilbert means by “intuition” in this regard. Kitcher argues that it is sensuous

intuition, and argues that this kind of intuition cannot meet all of Hilbert’s requirements.

Mancosu (1998b) has shown that Hilbert and Bernays at first held the intuition involved

to be empirical, but later in the 1920s turned to pure intuition as the source of certainty in

elementary contentual arithmetic.

Many of the problems discussed so far arise because Hilbert considers contentual finite

mathematics to be about certain entities, the numerals, and we are puzzled by their episte-

mological and ontological status. Not only that, but Niebergall and Schirn (1998) argue that

assumptions of infinity are implicitly made by Hilbert’s finitism. If they are right, then the

question of whether numerals are tokens or types is the least of Hilbert’s problems. Their

argument depends in part on assuming that Hilbert’s contentual mathematics does have a

standard referential semantics; that, say, “2+ 2 = 4” is true in virtue of the properties of

the numerals that “2” and “4” refer to. What if we tried to make sense of finite mathe-

matics without assuming standard semantics, without assuming that there are entities (the

numerals “11” and “1111”) that “2” and “4” refer to and which make “2+2 = 4” true?

A promising avenue which has been suggested by Kitcher (1976) is that in order to

accommodate all of the finitist’s requirements on numbers, the so-called standard account

of mathematical truth must be abandoned. On the standard account, statements involving

number terms are supposed to be analyzed in the same way as statements involving physical

object terms are, i.e., the terms refer and the truth conditions of sentences in which they

occur are given by Tarski’s semantics. Benacerraf (1973) argues that the virtue of the

standard account is that it provides a “homogeneous semantical theory in which semantics

for the propositions of mathematics parallel the semantics for the rest of the language.”

Such a theory is part one of two requirements a theory of mathematical truth must fulfill, the

other is that it “mesh with a reasonable epistemology.” Given the foundational character of

the finitist viewpoint and its explicit (and only) goal, namely to give an account of truth for

(a fragment of) arithmetic which issecure, it is reasonable to allow the second requirement

to be the more important one.12
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In many places Hilbert does seem to expound something like the standard account. For

instance, in (Hilbert 1926, p. 377) he introduces first the numerals, which are supposed to

“have no meaning at all by themselves.” Contentual arithmetic, however, requires, besides

the numerals, other signs “that mean something and serve to convey information, for exam-

ple the sign 2 as an abbreviation for the numeral 11.” There are also passages that suggest a

non-standard reading, both have been mentioned before. In the early (1905c), the numerals

are not introduced as an independent notion, but only in the context of identity statements.

All we are given there are conditions of when an expression of the form ‘1. . . 1 = 1. . . 1’

should count as a true proposition. In the response to Müller’s criticism of Hilbert, Ber-

nays introduces a distinction between the numerals [Zahlzeichen] and the notion of cardinal

number [Anzahl]. He writes:

It should also be noted that the contentual character of theNumber[Anzahl]
concept is indeed compatible with the purely figural character of the number
signs. The figures are used as tools forcounting, and by counting one arrives
at the determination of cardinal number[. . . ]

One here has to recognize that the cardinal numbers are only defined in the
context of the entireNumber statement.For example, it will not be explained
what “the Number five” is, but only what it means for the Number five to apply
to a given totality of things. (Bernays 1923, p. 225)

We find two very interesting ideas here. Bernays suggests a non-standard reading of

Number statements quite explicitly. His formulation is very close to Russell’s “meaning

in use” of integral sign or class abstraction inPrincipia Mathematica.The other idea is

that the numerals are tools for counting. Hand (1989, 1990) has presented a non-standard

account of finitistic number theory which takes up this idea. Since in this account truth

conditions for finitistic statements take center stage, let me now turn to a discussion of

statements.

4.3.2 Statements

We can find in Hilbert’s writings three distinctions of mathematical (1) contentual vs.

formal, (2) finitistic vs. infinitistic, and (3) real vs. ideal.13 Contentual mathematics is

comprised of those statements that we make based on our intuition of concrete objects.
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This includes statements we make about numerals, but also those about formulas and for-

mal derivations. These are concrete objects given in intuition, we can come to know about

them directly. Formal discourse starts where we leave the grounds of intuition and instead

proceed from an axiomatic standpoint. According to Hilbert, all mathematical discourse,

“mathematics proper,” [die eigentliche Mathematik] is to be formalized and thus becomes

a “stock of provable formulas” Hilbert (1922c, p. 211). Whereas contentual mathematics

deals with those statements and ways of reasoning that are justified on finite grounds, for-

malized mathematics appeals also to completed infinities, uses unbounded quantification,

the unrestricted principle of the excluded middle. The exact nature of the “finitistic stand-

point” is subject to debate and historical analysis. Hilbert and Bernays acknowledge that

they have not drawn the distinction precisely:

[W]e have introduced the expression ‘finitistic’ [finit] not as a sharply de-
lineated term, but only as the name of methodical guideline, which enables
us to recognize certain kinds of concept-formations and ways of reasoning as
definitely finitistic and others as definitely not finitistic. This guideline, how-
ever, does not provide us with a precise demarcation between those [concept-
formations and ways of reasoning] which accord with the requirements of the
finitistic method and those that do not.14

We find, however, certain examples in Hilbert’s and Bernays’s writing of what falls within

this standpoint. First there are the basic equalities and inequalities in the contentual sense

between numerals; these are finitistically justified statements. We are also allowed to in-

troduce certain computable functions, however, not as functions in the sense of abstract

objects, i.e., sets of ordered pairs of numbers, but only as descriptions of methods of con-

struction (see discussion in the next section). As a mode of reasoning, induction on propo-

sitions with “elementary intuitive content” is finitistically acceptable.15 The question then

arises to what extent general statements can be finitistically interpreted. The following

quote from an unpublished manuscript by Bernays elaborates on the relevant passage in

(Hilbert 1926, p. 378):

We have to distinguish between such statements which express adiagnosis
(a direct assertion) and those which express an insight, such as: “‘a + b’ is
always the same numeral as ‘b+a’”, or a claim of consistency.

The second kind of statements are not obviously capable of negation, also
they cannot be taken as thehypothesis in a conditional statement; rather, an
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assumptionin finite reasoning can only ever refer to adiagnosis(like in a
physical thought experiment).

This implies that a proof of existence by refutation of a universal judg-
ment cannot (obviously) be transferred into finite reasoning—while the proof
of a universal judgment by refutation of an existential assumption can be trans-
ferred to the finite immediately by replacing the assumption that a certain thing
exists by the assumption that the thing isgiven.16

A more detailed discussion of this question can be found in§2 of GrundlagenI:

For the characterization of the finitistic standpoint we may emphasize some
general considerations concerning the use of logical forms of judgment in fini-
tist thought [logische Urteilsformen im finiten Denken], which we shall exem-
plify in the case of propositions aboutnumerals.17

A universaljudgment about numerals can be interpreted finitistically only
in a hypothetical sense, i.e., as a proposition about any given numeral. Such
a judgment pronounces a law which must verify itself in each given particular
case.

An existential sentenceabout numerals, i.e., a sentence of the form “there
is a numeraln with the propertyA(n),” is to be understood finitistically as a
“partial judgment,” i.e., as an incomplete communication of a more specific
proposition consisting in either a direct exhibition of a numeral with the prop-
ertyA(n), or the exhibition of a process to obtain such a numeral,—where part
of the exhibition of such a process is a determinate bound for the sequence of
actions to be performed.

Those judgments combining a universal proposition with an existential as-
sertion have to be finitistically interpreted correspondingly. For instance, a
sentence of the form “for each numeralk with the propertyA(k) there is a
numerall, for which B(k, l) holds,” has to be finitistically understood as an
incomplete communication of a process which makes it possible to find, for
each given numeralk with the propertyA(k), a numerall which stands in the
relationB(k, l) to k.18

It is clear that the negation of a finitistic statement need not be a finitistic statement,

more precisely: A finitistic interpretation for a contentual statement about numerals does

not, by itself, yield a finitistic interpretation of the negation of the statement. This is what

it means for a finitist statement to be “incapable of being negated:” From the inability, or

even impossibility, to see thatA(k) for each given numeralk, it does not follow that we

have a witnessl, or even a bound on such, for¬A(l). At this point, Hilbert and Bernays
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propose the formalization of mathematics and the introduction of ideal elements, i.e., un-

bounded quantifiers, to retain the simplicity of classical logic. In formalized mathematics,

we have real statements (roughly, these are quantifier-free formulas) which admit of a con-

tentual, finitistic interpretation, and ideal statements which round out the theory, but appeal

or presuppose infinite totalities, and thus do not have a finite, contentual interpretation.

Now how is the semantics of the basic finitistic statements explicated? Hand (1990)

discusses aniterativistic tendency in Hilbert’s views on the issue. The basic idea is that we

have the capacity to count intransitively, i.e., to count without counting any thing (in partic-

ular, not the natural numbers). The numerals are, so to speak, a crutch for us to remember

when we are supposed to stop counting. An equality between numerals is then, e.g., to be

understood as the assertion that in counting the strokes in both strings simultaneously, we

will stop at the same point (in contrast to the view that identity is “figural correspondence”);

an inequality the statement that we can count further on one numeral than on another (in

contrast to the idea that one numeral extends beyond the other).

This view has a certain appeal. After all, as a matter of developmental and histori-

cal fact, the concept of number had its origins in the human capacity tocount. We count

fingers, we count cattle, eventually, we just count. The phenomenon of counting without

counting any thing, it seems to me, is much better explained as engaging in an iterative

mental procedure than as naming, in succession, the members of the natural number se-

quence (whatever those are). Such a conception, argues Hand (1990), is at work in some

places in Hilbert’s finitism. He supports his view mainly by textual evidence from Hilbert’s

(1905c) and (1926). I believe that there are even stronger suggestions in this direction in

Grundlagen.

For instance, in “On the infinite,” the numerals are introduced in a very pictorial way,

as sequences of strokes. A few years later, when even Hilbert is becoming convinced

that empirical intuition will not do the trick of providing arithmetic with a secure and

philosophically acceptable footing, Bernays writes:

The ordinal number is in and of itself also not determined as object; it
is only a place marker [Stellenzeiger]. We can objectively standardize it by
choosing as aplace marker the simplest structure from those that originate
in the form of the succession.. . . [W]e have an inital thing and a process;
the objects are then the initial thing itself and further the objects one obtains,
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beginning with the intial thing, through a single or repeated application of that
process. (Bernays 1930, p. 244)

In Grundlagenthe idea is made more concrete:

In number theory, we have an initial object and a process of succession
[Prozeß des Fortschreitens]. For both we must settle on a particular intu-
itive representation. The particular kind of representation is inessential, but
the choice, once made, must be retained throughout the whole of the theory.
We choose as initial object the numeral 1 and as process of succession the
attachment of 1.

The objects which we obtain from the numeral 1 by applying the process
of succession, such as

1,11,1111,

are figures of the following kind: The start with 1, they end in 1; each 1 which
does not already form the end of the figure is followed by an attached 1. They
are obtained through application of the process of succession, that is by an
assemblingwhich concretely comes to an end, and this assembling can be
undone by a stepwisedisassembling.19

The idea we are given here is that the object of number theory is an iterative process,

and this iterative process is representable in intuition. This iterative process is basic, the

numerals only help us, so to speak, to keep track of how far the iteration has proceeded.

This is necessary since a crucial aspect of the iterative process is that it can bereversed.

This is the basis for induction and recursion in finitistic mathematics.

The import the iterativist account has for semantics is that it no longer requires deno-

tations for the terms of arithmetic. The numerals do not stand for anything, they just give

us information on how to verify or falsify arithmetical statements. Equalities between nu-

merals are true, not if the numerals are the same or they have the same form, but if they

both give the same bound on the process of succession. If we can start counting and both

numerals tell us to stop at the same time, they are equal.

4.3.3 Finitistic Functions

The issue is a little more involved when considering more complex arithmetical terms,

e.g., sums and products. If numbers are controls on iteration, then how do we get the func-

tions of arithmetic? Well, by iteration of course. A finitistic function, or more precisely, its
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definition, is a way of communicating a certain procedure which allows us to obtain from

certain numerals another numeral. The operations that this procedure may appeal to are

assembling and disassembling numerals and iterating (previously defined) operations. This

is all that is needed to give truth conditions for equalities between arithmetical terms: Use

the definition of the function to obtain an explicit bound on iteration and we have reduced

the question to an equality between numerals.

How much of this is present in Hilbert’s writings? Hilbert nowhere discusses a general

notion of finitistic function explicitly. Discussions of particular functions in the context of

the finitistic standpoint are limited to addition and multiplication. In (1922c), addition is

not introduced as an operation on numerals, but as part of the definition of numeral: We

are told that numerals are sequences of the form 1, 1+ 1, 1+ 1+ 1, etc. In (1926), the

‘+’ sign serves to communicate concatenation of numerals. Concatenation is, however, not

thought of as a directly as an operation: 111+11= 11111 is not intended as the statement

that theoperation+ applied to the numerals 111 and 11 yields 11111, but rather that

111 juxtaposed with 11 is the same numeral as 11111. It is not until Bernays’s (1930)

that addition and multiplication on numerals are explicitly conceived of asoperationson

finitistic objects. However, from about 1922 onwards, primitive recursion is part of the

formalized mathematical systems that Hilbert and his students develop and investigate, and

consistency proofs for these systems appeal to recursive procedures (e.g., to reduce terms

occurring in a proof and containing function symbols for primitive recursive functions to

numerals; see Chapter 2). Even inGrundlagen, the initial explanation of addition is still

much dependent on the visual image of numerals as sequences of strokes, but addition is

understood as an operation of concatenation.

If a numeralb corresponds to a part ofa, then the rest is again a numeralc;
thus we obtain the numerala by appendingc to b, in the manner in which the
1 which startsc is appended to the 1 in whichb ends according to the process
of succession. We call this kind of composition of numeralsadditionand use
for it the sign +.20

However, the definition of multiplication agrees much more with the idea of definition of

a function by iteration. A first discussion of this can be found in (Bernays 1930), where

exponentiation is also treated:
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Let us consider, for example, the number 10101000
. We can arrive at this

number in a finitistic way as follows: We start from the number 10 which we
represent, according to one of our earlier standardizations, by the figure

1 1 1 1 1 1 1 1 1

Let nowz be any number that is represented by a corresponding figure. If in
the previous figure we replace every 1 by the figurez, then we obtain again, as
we can intuitively make clear to ourselves, a number figure that for the purpose
of communication is denoted by “10×z”. In this manner we obtain the process
of a decuplication of a number. From this we arrive at the process of transition
from a to 10a, as follows. We let the number 10 correspond to the first 1 in
a and to every affixeda we apply the process of decuplication, and we keep
going until we exhaust the figurea. The number obtained by means of the last
process of decuplication is denoted by 10a. (Bernays 1930, p. 249)

In Grundlagen, Bernays gives a similar characterization of multiplication in general:

Multiplication can be defined as follows:a ·b denotes the numeral obtained
from b by replacing, during its construction, always the 1 by the numerala, so
that one first formsa and then appendsa instead of each appending of 1 in the
construction ofb.21

It is clear, however, that the general notion of finitistic function is based on itera-

tion/recursion, and Hilbert could as well have given an explanation of addition and mul-

tiplication in these terms, without appeal to the picture of sequences of strokes and their

geometrical manipulation. This is evident from the discussion of recursion:

[O]ne point still requires a basic discussion, the method ofrecursive defi-
nition. Let us see what this method consists in: A new function symbol, sayϕ,
is introduced, and the [corresponding] function is defined by two equations. In
the simplest case, these equations are of the form:

ϕ(1) = a

ϕ(n+1) = ψ(ϕ(n),n).

Here,a is a numeral andψ a function which is formed from previously known
functions by composition, so thatψ(b,c) can be computed for given numerals
b, c and gives another numeral as value. [. . . ]

It is not immediately clear, which sense may be assigned to this method of
definition. For its elucidation we must first make the notion of function precise.
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A function, for us, is an intuitive instruction on the basis of which to each given
numeral another numeral is assigned. A pair of equations of the above kind—
called a “recursion”—is to be understood as anabbreviated communicationof
the following instruction:

Let m be any numeral. Ifm = 1, so let the numerala be assigned tom.
Otherwise,m has the formb+1. One then writes down schematically:

ψ(ϕ(b),b).

Now if b = 1, so one replaces thereinϕ(b) by a; otherwiseb again has the
form c+1, and one then replacesϕ(b) by

ψ(ϕ(c),c).

Again, eitherc = 1 or c is of the formd + 1. In the former case one replaces
ϕ(c) by a, in the latter case by

ψ(ϕ(d),d).

Repeating this process in any case terminates. For the numerals

b,c,d, . . . ,

which we obtain one after the other, develop through thedisassembling of the
numeralm, and this must terminate just like the assembling ofm does. When
we arrive at 1 in this process of disassembling, thenϕ(1) is replaced bya;
the signϕ does then no longer occur in the resulting figure. Rather, the only
function symbol occurring, possibly in multiple superposition, isψ and the
innermost arguments are numerals. Thus we have arrived at a computable
expression; forψ was supposed to be a function already known. This com-
putation must be executed from the inside out, and the numeral thus obtained
shall be assigned to the numeralm.22

We see how this conception of computation fits in with the iterativist conception of

finitistic truth: An equation between arithmetical terms is evaluated, by iteration, until we

arrive at an equation between numerals. The numerals themselves are mnemonic devices,

in principle dispensable, for effecting this procedure. This corresponds precisely to Hand’s

“canonical verifications.”

4.3.4 Finitism and PRA

Let me now make some remarks on Tait’s claim that the finitistically acceptable func-

tions are exactly the primitive recursive ones. There is no question that the primitive re-

cursive functions are finitistic, since they are all given by recursive definitions of the above
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kind. But are theyall the finitistic functions? It seems to me that they cannot be. For

any description of an iterative procedure that allows us, given a term involving the function

symbols introduced, to arrive at a numeral as “value” of the term, using only iteration and

substitution (in particular, no unbounded search), should count as finitistic, if the primitive

recursive ones do. Such a function is, e.g., the Ackermann function, which is well known

not to be primitive recursive. I believe there is ample evidence inGrundlagenthat Hilbert

considered it to be finitistic.

Tait did consider the issue of the Ackermann function being finitistic, as part of an

objection to Kreisel’s (1960) characterization of finitistic functions as the provably total

functions of first-order Peano arithmetic. The issue is that Kreisel points out23 that in

“On the infinite,” Hilbert explicitly discusses the Ackermann function. Tait’s argument

against the conclusion, based on this fact, that we should regard it as finitistic is that Hilbert

introduces the Ackermann function in the context of a theory of functions of higher types,

and these higher types are certainly not finitistic. It is true that in Hilbert (1926) introduces

the Ackermann function by recursion on higher types, but it can also be introduced by

nested recursion on two arguments. If it is correct that all that is needed for a function to be

finitistic is that it be given by a process of recursion which allows the computation of the

“value” by successive rewriting of numerals, then this definition would certainly make the

Ackermann function finitistic. In fact, there is rather explicit evidence that the Ackermann

function was considered to be finitistic, inGrundlagen. In §7 of the first volume, Hilbert

and Bernays discuss (what is now called) primitive recursive arithmetic. This is a formal

theory, all of whose statements, however, arereal, i.e., finitistically meaningful:

This recursive number theory is close to intuitive number theory as consid-
ered in§2, as all of its formulasadmit of a finitistic contentual interpretation.
This contentual interpretability is a result of the verifiability of all derivable
formulas of recursive number theory, [a fact] which we have already stated.
Indeed, in this area verifiability has the character of a direct contentual inter-
pretation, and it was because of this that the proof of consistency was so easy
to give here.

The difference of recursive number theory vis a vis intuitive number theory
consists in its formal restrictions; its only method of concept-formation, aside
from explicit definition, is the schema of recursion, and also the methods of
deduction are strictly limited.
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We may, however, admit certainextensions of the schema of recursionas
well as of the induction schema, without taking away what is characteristic of
the method of recursive number theory. We shall now discuss these briefly.24

Hilbert and Bernays then go on to introduce course-of-values recursion, simultane-

ous recursion (which can both be reduced to primitive recursion), nested recursion [ver-

schr̈ankte rekursion], the Ackermann function, and nested induction, and prove that the

Ackermann function is not primitive recursive. The most conclusive statements, however,

we find in the second volume:

Certain methods offinitistic mathematics which go beyond recursive num-
ber theory(in the original sense) have been discussed in§7 [of volume I of
Grundlagen], namely the introduction of functions by nested recursion [e.g.,
Ackermann’s function] and the more general induction schemata.25

A few pages later, we read:

The original narrow concept of a finitistic proposition amounts in the field
of number theory to admitting as finitistic number-theoretic propositions only
such propositions which can be expressed in the formalism of [primitive] recur-
sive number theory, possiblyincluding symbols for certain computable number-
theoretic function (of one or more arguments), but without use of formula
variables, or which admit a stricter interpretation through a formula of such
a form.26

Elsewhere, we read that “contentual finite arithmetic [is formalized by] recursive num-

ber theory.”27 This remark is made in the context of arithmetization of syntax, and I take its

force to be that the methods used in arithmetization are primitive recursive and hence fini-

tistic, rather than making a programmatic identification of finitistic with primitive recursive.

In a footnote, the reader is referred to the passage from p. 325 of the first volume quoted

above, where the relationship between contentual arithmetic and recursive arithmetic is

discussed. That passage suggests that Hilbert and Bernays considered finite arithmetic as

partially but not necessarily completely formalized by primitive recursive arithmetic. It

also suggests that theverifiability of formulas is the criterion of finitistic meaningfulness.

Verifiability here is defined as follows: Every true equality or inequality between numerals

is verifiable. Every boolean combination of verifiable formulas is verifiable. A formula
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containing free individual variables (but no formula variables or bound variables) is verifi-

able if every instance resulting by substituting numerals for the free variables is verifiable

(1939, pp. 229, 238; 1970, pp. 228, 237). A closed formula containing primitive recur-

sive function symbols is verifiable if the formula resulting from calculating the primitive

recursive terms occurring in it is verifiable (1939, 1970, p. 297). If the function can be

calculated, it is finitistic? It is obvious that some restriction must be placed on the notion

of calculability involved here. Without restrictions, every total general recursive function

would be finitistic, and any formula containing symbols for total recursive functions would

be verifiable in that sense. The restriction would most likely have to do with being able

to see that the calculation process comes to an end, and this is precisely the issue in the

question of whether the Ackermann function should be considered finitistic. Bernays was

aware that there is a substantial difference between primitive and nested recursion in this

respect, and the issue comes up when he proves that primitive recursion can be replaced

by theµ-operator (Hilbert and Bernays 1934, pp. 421–22; 1968, pp. 430–431).28 Much

later, he took nested recursions (in the sense ofverschr̈ankte Rekursionenconsidered in

GrundlagenI) to be finitist on the grounds that they could be computed by a sequence of

replacements of terms, the number of which is bounded. In a letter to Gödel from 1970, he

writes:

These nested recursions [. . . ] appear to me to be finite in the same sense
as the primitive recursions, i.e., if one regards them as a statement of a com-
putation procedure where one can recognize that the function defined by the
respective process satisfies the recursion equations (for every system of nu-
meral values [Ziffernwerte] of the arguments). Indeed, the computation of the
value of a function according to a nested recursion, when the numeral values
of the arguments are given, comes down to the application of several prim-
itive recursions, the number of which is determined by a numeral argument
[Ziffernargument].29

It is consistent with Hilbert’s early writings that finitism, as originally conceived in the

early 1920s, does not surpass primitive recursive methods. In all likelihood, Hilbert and

Bernays did not think they had to address the issue explicitly. The Ackermann function

had not been discovered when the finitistic standpoint was first formulated, and in any case

it was probably thought initially that primitive recursive methods suffice for metamathe-
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matics. Tait (2000) suggests that the remarks inGrundlagenhave to be read in light of

Gödel’s incompleteness theorems—Hilbert mentions the necessity to “exploit the finitist

standpoint in a sharper form” in the preface toGrundlagenI—and that therefore it is un-

clear whether any discussion of finitism by Hilbert or Bernays after 1931 does not already

include an extension of the original view.30 As I have discussed in Chapter 3, however,

even though finitistic principles of definitions of functions were hardly discussed before

Grundlagen, non-primitive recursive methods were used, and clearly accepted as finitistic,

in the consistency proofs given long before Gödel’s results, specifically, in Ackermann’s

1924 dissertation. In summary, the finitistic standpoint as conceived and applied by Hilbert,

Bernays, Ackermann, and others, goes beyond reasoning in primitive recursive arithmetic.

4.4 The Status of Finitism

Since the proof-theoretic reductions sought are finitistic, the significance of the project

of foundational reductions thus rests, in part at least, on an account of the status of finitism.

Presumably, the restricted methods the finitist has access to should be epistemologically

privileged. I will argue that there are two distinct parts to Hilbert’s characterization of the

finite standpoint. One is, so to speak, from the bottom up. Adopting a Kantian framework,

he takes it as a given that our faculty of intuition provides us with the objects of elementary

intuitive arithmetic, the stroke symbols. Knowledge of these objects is immediate and

unproblematic, since no concepts are involved. Now it is one thing to claim that the objects

of finite “contentual” arithmetic are intuitively given to us, and quite another to claim that

on the basis of our access to these stroke symbols we can gain knowledge of the rather

complex sort of propositions like the consistency statement for Peano arithmetic. So even

if we leave aside reservations about the involvement of Kant’s notion of intuition or more

general concerns about whether and how access to stroke symbols is possible in a way

that has bearing on mathematical knowledge, there is still work to be done to explain how

intuitive knowledge of stroke symbols extends to knowledge of the interesting foundational

claims like the consistency statement. In other words, anyone who wants to invoke the

finitist standpoint for foundational purposes will have to give a theory of finitist proof:
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what the acceptable methods of proof are, and how they transfer the epistemological status

of the intuitive knowledge of stroke symbols and their basic relationships to knowledge of

less basic but finitistically provable propositions.

Another way to characterize the finitist viewpoint is from the top down, as that area

of mathematical reasoning which is basic to all exercise of mathematical thought. Such a

consideration shines through at points in Hilbert’s writings. In the oft-cited passage where

Hilbert speaks of the “extra-logical concrete objects that exist intuitively as immediate ex-

perience before all thought”, namely the objects of contentual finite arithmetic, he calls

their existence a “condition for the use of logical inferences and and the performance of

logical operations” (Hilbert 1926, p. 376). In “The Grounding of Elementary Number The-

ory” (Hilbert 1931), he calls the finitistic standpoint the “fundamental mode of thought that

[he] hold[s] to be necessary for mathematics and for all scientific thought, understanding,

and communication, and without which mental activity is not possible at all.” It is this con-

sideration that is central to W. W. Tait’s analysis and reconstruction of finitism (Tait 1981).

So we have here two fundamentally different approaches to thinking about finitism, or

any part of mathematics for which epistemological priority of some sort is claimed: One

taking its starting point in a notion of intuition and intuitive knowledge, where the main

question is: how far can this intuitive knowledge take us? The other approach proceeds

in the reverse direction: Rather than appealing to a notion of intuition which serves as the

foundation of finitist knowledge, it is argued that finitist reasoning forms a core of math-

ematical principles, a Cartesian foundation immune to sceptical doubt about the certainty

of mathematics. Both are views taken in characterizations and criticisms of finitism in the

literature: the first by Parsons (1998a), the second by Tait (1981).

I should point out that I have nothing to say aboutradical scepticism about mathematics

of the sort held by so-called ultra-finitists. Just as in epistemology there is an important

difference between scepticism about sense experience and scepticism about what Descartes

called “clear and distinct ideas,” so it makes sense here to distinguish between taking certain

notions of mathematics (e.g., impredicative definitions, strong set existence assumptions,

or the existence of the continuum) as prima facie problematic while leaving others to the

side (e.g., the existence of a successor to every natural number.)
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4.5 Parsons’ Criticism of Finitism as Intuitive Knowledge

In a recent paper, Charles Parsons (1998a) attempts an evaluation of the epistemological

status of finitist reasoning. He does this in the framework of his own theory of mathemat-

ical intuition, which he has elaborated in a series of papers (1979–80, 1998b, 2000). I

will not concern myself here with this notion of intuition, although I agree with Parsons

that it shares essential features with Hilbert’s finitist intuition of stroke symbols. Indeed,

Hilbert’s writings were a major influence on Parsons. But the intuition both Hilbert and

Parsons stress is an intuitionof objects, while what is at stake here is intuitionthat, or

more generally, propositional intuitive knowledge. In order for any broadly finitist project

to get off the ground, the finitist has to show that the truths required for carrying out the

relevant foundational work can be known, and that this knowledge has epistemic features

which make it suitable to provide the foundational work with the philosophical import it is

claimed to have. In the context of finitism, this comes down to what Parsons calls Hilbert’s

Thesis:

A proof of a proposition according to the finitary method yields intuitive know-
ledge of that proposition. In particular, this is true of proofs in primitive recur-
sive arithmetic.

I could not find anything close to an explicit formulation of this thesis in Hilbert’s

writings, and Parsons does not offer any, either. There is indirect support offered for the

thesis as a correct interpretation of what Hilbert thought: that Hilbert appealed explicitly to

Kant, that such a notion of intuitionthat can be found in Kant, and that Bernays speaks of

finitism as the “domain of intuitive evidence.” Aside from the matter of Hilbert-exegesis,

however, we should ask: is the thesis a requirement for the finitist’s goal? But first, we

must understand what intuitive propositional knowledge is.

Parsons writes:

Intuitive knowledge, as I understand it, is knowledge that is based on intuition
in an appropriate way. In the case of singular propositional knowledge, it will
typically be based on intuition of the objects the proposition is about.

This applies straightforwardly to Hilbert’s most basic examples, those of finitary proposi-

tions of the form of equalities and inequalities between stroke symbols and sums of stroke
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symbols. If we follow Parsons’ analogy of mathematical intuition with perception, then

one would be inclined to agree that a proposition such as that expressed by the equation

|||+ ||= |||||

can be known in the relevant sense. So let us suppose that Parsons is right in that a specifi-

cally mathematical kind of intuition can provide access to the stroke symbols here in a man-

ner analogous to the access provided by ordinary sense perception to the physical tokens

representing them printed on this page. There is are three difficulties for finitist knowledge

still to be surpassed:

1. The question raised by practical limitations to the intuitability of strings of unbounded

complexity,

2. the question of the status of propositions involving recursively defined functions, and

3. the question of knowledge of general—as opposed to singular—propositions.

I will leave (1) to the side for the time being. It is a question that has to be dealt with

when explaining the notion of intuition itself, and I hardly have anything to add to Parsons’

discussion on the matter. In fact, it comes down to the “radical scepticism” mentioned—

and excluded from discussion—above. (2) and (3), on the other hand, have to be addressed

independently. For on the notion of intuition under consideration, it is hard to see how

such propositions can be directly grounded in intuition. You may “intuit” that three strokes

concatenated with two strokes make five strokes, but it is harder to see how intuitionof

can directly provide knowledge of a finitistic procedure producing a certain result, or of a

general claim being true. At some point, finitistic proof has to play a role. For example, the

consistency claims Hilbert was considering took something of the following form: for any

intuitively given object of a certain kind, viz., a formal derivation, a finite procedure yields

a finitistic object of another kind, viz., a derivation which can be seen to have something

other than “0= 1” as its last formula. If every derivation could be directly intuited to have

this property, there would be no need for proof.

Note also that this goes farther than the issue of a mere practical impossibility for the

notion of intuition to produce the required result. At best, I can concede that the conclusion
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of a bounded induction can be directly intuited, by having intuitions, together or succes-

sively, of the individual steps in the induction. But I can see no way to intuit a general

finitistic statement in the same way. To do so would require to have an intuition of all

infinitely many cases at the same time, and that is hardly within the scope of a notion of

intuition that claims to be finitist.31

A simple example will illustrate the point: To see that 2·3 = 3·2, I can intuit the result

of replacing each stroke in the stroke symbol|| with ||| on the one hand, and also each

stroke in||| by the entire figure||, and then see, intuitively, that the results are the same.

But to have intuitive knowledge of the general statementx · y = y · x seems to require an

infinity of such insights.

This brings us back to the beginning, and to the question what sense we can give to the

phrase “intuitive knowledge” as it is used in the context of general finitistic propositions.

This is a kind of propositional knowledge, of knowledgethat. What would make such

knowledge qualify as intuitive, specifically, what would qualify it as finitist? Surely it must

be finitistically stated, and dealing only with finitistic objects. For instance, we cannot have

intuitive knowledge of infinite sets, and we cannot have intuitive knowledge of unrestricted

existence claims. But more must be true: it must be arrived at by finitistically acceptable

means—by finitistic proof. Parsons takes this to mean that there is a property—“intuitive

evidence”—which the basic finitistic propositions have. They have this property because

intuition, that is, intuition of the stroke symbols, immediately gives it to us. In order for the

finitist to be able to claim intuitive evidence for all finitistically provable propositions he

would have to argue that the finitistically acceptable methods of inference preserve intuitive

evidence. However, Parsons does not tell us what intuitive evidence is in general, and

neither does Hilbert. The strategy that Parsons uses to argue for and against various parts

of Hilbert’s Thesis, however, suggests the following:

A proposition is intuitively evident if it is arrived at either directly by intuition
or by reasoning which is minimal for any reasoning about intuitively given
objects.

In arguing for the sub-thesis that propositional inference preserves intuitive evidence, for

instance, he writes:



137

[I]t should be clear that what is assumed, the basic logic of identity and mini-
mal propositional logic, is minimal for reasoning about objects.

And for the case of induction he continues:

We can’t make for induction the claim we made for logical reasoning [. . . ],
that it is basic for reasoning in general, or for reasoning about objects. It has
rather the character of being basic to reasoning about objects in a particular
domain, the objects obtained from an initial element by arbitrary finite iteration
of a given operation. [. . . ] If we admit some conception of the domain of
strings as intuitive, it seems we ought to admit induction as preserving intuitive
knowledge. (Parsons 1998a, pp. 258–259)

Parsons goes further in his assessment of primitive recursion. Primitive recursion differs

from logical inference and induction in that it is not a principle of reasoning, rather, it is a

principle of definition. In short, it is the principle that allows the finitist to introduce new

procedures operating on strings by stipulating what the result of the procedure is for an

initial string, and explains how to reduce the application of the procedure to a string to an

application to its predecessor. In formal terms, we may introduce a functor by explaining

what the functor applied to 1 is, and how to reduce an application tox+1 to an application

to x. The definiens, in each case, can only make reference to functors already introduced.

The question here, again, is whether defining functors by primitive recursion and using

functors so defined in finitist proofs preserves intuitive evidence. Parsons, who is commit-

ted to a notion of intuitive evidence resting on that of intuitionof, viz., intuition of stroke

symbols, sees a need to provide an answer to this question. And here we are in a similar

situation as in that of induction above: At best, it seems, we can have an intuition of the

sequence of strings needed to compute the result of a particular primitive recursion. For

example, consider exponentiation. The exponentiation function can be recursively defined

from multiplication. To see that 23 is well defined, we could fall back on the intuitions we

have of 2, 2· 2, and 2· 2 · 2. But to show that in general 2x is well defined, we can give

no singular intuition of a finite sequence of strokes which would provide us with immedi-

ate insight that this is the case. We would have to give a proof using induction, but either

the statement on which we are inducing is not finitist—it would contain an unbounded

quantifier—or we would have to use a non-finitist object, the exponentiation procedure it-

self. Here we would be assuming already that induction preserves intuitive evidence. And
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that, as we have seen above, cannot be made intuitively evident other than by arguing that

induction is implicit in finitist intuition itself.

In Parsons’ discussion of recursion the strain between the bottom-up and the top-down

approach becomes apparent. While in the case of logical inference and induction, Parsons

is content to fall back on a top-down approach, in the case of recursion he demands a non-

circular argument to the effect that exponentiation is well-defined. He claims that such

an argument cannot be given, for the following reason. Parikh’s Theorem (1971) states

that the exponentiation function is not provably recursive in formal theories of arithmetic

where induction is restricted to formulas without unbounded quantifiers, and the functions

allowed are bounded by polynomials.32 An independent argument that a function defined

by primitive recursion is well-defined, and that its defining equations are intuitively known,

should be convertible into a proof in that theory that the defined function is total. Parsons

concludes from this that it is not possible to give a finitist proof that exponentiation is well

defined using only addition, multiplication, and induction. The cogency of this argument

rests on the assumptions that a difference in the strength of two formal theories (in this case,

polynomially bounded arithmeticI∆0 and stronger theories such as elementary function

arithmetic or primitive recursive arithmetic—some theory that proves that exponentiation

is total) implies a difference in the intuitive evidence we can have of the theorems of each.

Leaving aside the question of whether or under what conditions a formal theory cor-

rectly formalizes a body of informal discourse, it seems natural to grant that if a theory es-

tablishes (directly or indirectly, e.g., by explicit definition or coding) a theorem of a prima

facie stronger theory, the epistemic strength of the (prima facie) weaker theory extends to

the stronger theory. In other words, it would be sufficient to establish the intuitive character

of exponentiation if the totality of the exponentiation function (using a suitable translation)

were provable in a theory which itself is directly justified by intuition. The question at

hand, and which is the issue in the assumption, is whether it is also necessary. This seems

to me to require additional argument. It is certainly not the case without a separate assump-

tion. For instance, formal arithmetic without multiplication or induction is weaker than a

theory resulting by adding multiplication and its defining axioms. Both theories, however,

are justified by intuition in Parsons’ sense.
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It is not at all obvious to me why addition and multiplication should be the only func-

tions which can be independently seen to be finitistically acceptable functions. It seems

quite conceivable that there are “easily” computable functions which can be independently

seen to be well-defined, but which also cannot be shown to be total inI∆0. Here is a possi-

ble example: Parsons conjectures that a finitistic proof that exponentiation is well defined

should be formalizable inI∆0. The kinds of proofs (e.g., that addition and multiplication

are intuitive) proceed by arguing about strings, and replacement of strings by others.I∆0

in fact allows coding of strings, and so it would be natural to suppose that to formalize an

intuitive proof of the well-definedness of a function, the coding mechanisms available in

I∆0 would be used. However,I∆0 cannot prove that in a string a symbol can be substituted

by another string Krajı́ček (1995, p. 66). But substitution of strings seems to be intuitively

well-defined—it is the kind of operation that Parsons uses to motivate that multiplication is

well defined.

Parsons suggests that feasible computability plays a role in considerations of whether a

given function being well-defined is intuitive. For instance, he argues that polynomial-time

computability is a necessary feature of intuitive functions (and that hence exponentiation

is not intuitive), and his remarks at the end of Section 6 of his paper suggest that he would

be inclined to accept the polynomial-time computable functions as intuitive (provided that

they are closed under bounded recursion, an open question). On the other hand, he thinks it

is necessary and sufficient for a function to be intuitive that it is∆0-definable and provably

total in I∆0. But those functions are just the linear-time computable ones,33 and it would be

surprising if it turned out that the classes of polynomial-time and of linear-time computable

functions coincide. If they do not, then there are plenty more feasible functions which will

not be∆0-definable and provably total inI∆0.

All of this suggests that Parsons’ argument for why no independent justification for the

intuitiveness of exponentiation can be given falls short. Even if it were conceded that expo-

nentiation does require independent justification, that leaves the possibility open that there

might be principles which, in concert with addition, multiplication, and induction provide

such an intuitive justification. A look at the literature on bounded arithmetic shows that

such is often the case: slight variations in the formulation of the language or the principles

allowed may cause significant differences in the strength of the theories.
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Bernays has given finitist accounts of computing the multiplication and the exponentia-

tion functions. Roughly, to multiply 10 by 10, we should imagine a string of 10 strokes, and

then replace each stroke by the stroke sequence for 10 itself. Parsons takes this as more or

less unproblematic. Similarly, Bernays suggests, we can compute the exponentiation func-

tion: to intuitively construct 1010, imagine two sequences of 10 strokes. For each stroke

in the first, apply the procedure—which we’ve just seen can be intuitively constructed—of

multiplying by 10 to the second sequence. When we are done, we will have constructed a

sequence of 1010 strokes. Parsons is not satisfied that this provides an intuitive construction.

Let me take a closer look.

Take multiplication again. We are given two stroke sequences,x andy, and want to

intuitively construct their product. Bernays explains that this is done by replacing each

stroke inx by a copy ofx. Now recall thatx andy are determined as stroke sequences: their

sole and determining characteristic is that they are formed from 1 by appending strokes.

So the replacement of the strokes inx has to proceed one-by-one if we are to keep strictly

to what is intuitive aboutx andy. In other words, the procedure is: for the first stroke inx,

construct a copy ofy, and for each additional stroke inx, append a copy ofy to what has

been constructed up to that point. In the end we getx concatenated copies ofy. But now

the difference to the case of exponentiation is only in the kind of operation that has to be

performed for each stroke inx: addition ofy in one case, multiplication byy in the other.

But I don’t see what could be special about multiplication byy that makes iteration of it

problematic that would not make concatenation ofy, or concatenation of the previously

constructed string plusy just as problematic. But these procedures define functions which

are perfectly acceptable by Parsons’ criteria:x ·y andy· (1+ · · ·+x). On the other hand, it

might be the idea of iteration of a procedure itself is what Parsons thinks causes problems

for exponentiation. But if so, I don’t see how multiplication can survive them, either.

So if there is anything problematic about the evidence that primitive recursion is well

defined, it is the notion of finite iteration itself. But in any specific instance of a primitive

recursive calculation, the argument serving as the control on the iteration is intuitively

given, and as such is finite. So in any calculation of a primitive recursively defined function

with intuitively given arguments, there can be no question that the calculation is finite.

The recursive definition itself provides a procedure for obtaining the intuitive construction
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of the result through all intermediate steps. The fact that a recursively defined function

in general is well defined, i.e., that its computation terminates for each stroke string as

argument and not just for a particular given string, does never directly enter into finitistic

proofs. At most, it does so as a presupposition. But that presupposition is of a kind with the

presupposition that every stroke symbol can be extended by appending another stroke. In

a similar, although more complex fashion, then-fold iteration of a functor can be extended

by adding another functor in front. The supposition that the arbitrary finite iteration of the

functor is well defined presupposes only that the functor itself is well defined. But this is

not a problem of circularity, only of bootstrapping. If we have intuitive access to the basic

functions, as Parsons agrees, we can work our way up through all the primitive recursive

functions one at a time. Of course, the proposition that all primitive recursive functions are

well defined is not finitist; but it is also not used nor needed by the finitist.

4.6 Tait’s Analysis of Finitism

At the outset I outlined my interest in considering the epistemic status of finitism.

Finitism has been used to provide reductions of one area of mathematics to another, where

the notion of reduction involved is a technical, proof-theoretical notion rather than the usual

one of ontological reduction. The epistemic value of such reductions rests in large part on

the assumption that finitism is in a sense epistemically privileged. I have discussed one

sense in which this assumption can and has been supported. Following Hilbert’s writings,

Parsons has sketched an account of mathematical intuition which aims to have the features

Hilbert claimed for his notion of intuition in the formulations of the finitist standpoint. Par-

sons is doubtful that such a notion of intuition can serve to imbue all finitist propositions

provable by primitive recursive methods with intuitive evidence. I have tried to argue that

Parsons doubts are unfounded. If they can indeed be put aside, however, the question still

remains whether Parsons’ notion of intuition itself can stand up to critical analysis. I have

not attempted to provide such an analysis, however, even if Parsons’ notion of intuition

ultimately cannot be sustained, there is still another way to argue for the special status of

finitism; the way I called “top-down” above.
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W. W. Tait (1981) proceeded in exactly this way in his explication of finitism. In con-

trast to Parsons, he does not consider intuitive evidence to be the distinguishing mark of

finitism. Rather, he holds that it embodies the principles implicit in any kind of mathemat-

ical reasoning about numbers. To be precise: he argues that primitive recursive arithmetic

embodies these principles, infers that finitism must at least include primitive recursive arith-

metics, and finally offers support for the thesis that nothing exceeding primitive recursion

has claim to the title “finitism.” As we have seen in the discussion of Parsons, the criti-

cal questions of the admissibility of induction, and, I have argued, of iteration and with it

primitive recursion, ultimately have to be answered by arguing that they are implicit in the

notion of finite sequence.

The crucial difference between Tait’s conception of finitism and Parsons (as well as

Hilbert’s own) is that according to Tait there is no ultimate epistemological foundation for

finitism. He argues that,

[. . . ] no absolute conception of security is realized by finitism or any other
kind of mathematical reasoning. Rather, the special role of finitism consists
in the circumstance that it is a minimal kind of reasoning presupposed by all
nontrivial mathematical reasoning about numbers. And for this reason it isin-
dubitablein a Cartesian sense that there is no preferred or even equally prefer-
able ground on which to stand and criticize it. Thus finitism is fundamental
to number-theoretical mathematics even if it is not a foundation in the sense
Hilbert wished. (Tait 1981, p. 525)

In terms of the significance of finitism for the projects outlined in Section 4.2, a defense

of finitism being fundamental in this sense seems to me to be sufficient. For if there is

any mathematical knowledge at all, anything that is fundamental to number-theoretical

mathematics in the sense alluded to by Tait would enjoy whatever status is conferred on

the items of mathematical knowledge by one’s preferred epistemology, either directly by

inclusion under those items or indirectly as a condition of mathematical knowledge. The

additional thesis that finitism is epistemologically privileged only requires the plausible

thesis that some areas of mathematics are more secure, or better justified than others. That

thesis is certainly widely held (e.g., by all those who find that it makes sense to distinguish

between the foundational frameworks mentioned in Section 4.2) and certainly is supported

both by every-day and properly mathematical practice.
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The difficulty that Tait faces here is that it is unclear whether finitistic reasoning, or in

any case primitive recursive reasoning, is indeed “a minimal kind of reasoning presupposed

by all nontrivial mathematical reasoning about numbers.” The issue here is both with “pre-

supposed” and “nontrivial.” Some areas of mathematics do not rely on the entirety of prim-

itive recursive methods; at least some nontrivial results can be obtained without using the

full force primitive recursive reasoning. But one may presuppose certain constructions and

principles without actually using them. So even if there are nontrivial results which never

appeal to the totality of all numbers, or to the general principles of primitive recursive defi-

nitions, the existence of the numbers and the validity of the principles they do appeal to are

justified only by the existence of the entire number sequence and the validity of primitive

recursive methods in general. This is plausible enough for the first part: a mathematician

engaged in such a limited enterprise would surely answer affirmatively when asked: “So

you only use and prove things about numbers less than 1010, but 1010 is still a number,

right?” One might be inclined to simply deny that she is working with numbers in the

usual sense if she were to answer in the negative, but rather on elements of a certain finite

structure which she denotes by numerals. It is less plausible for the second part: definition

schemas can be given for classes of functions which are significantly smaller than the class

of primitive recursive functions, and yet allow formulation and proof of nontrivial results.

The classes of elementary functions E and the polynomial-time computable functions P are

examples of prominent such classes. Formal systems are known which characterize these

classes in the same way that PRA characterizes the primitive recursive functions, and these

formal systems allow the derivation of nontrivial theorems.

The analogy that Tait draws between his and Church’s thesis might suggest that to

complain that since it is possible to precisely circumscribe proper subclasses of finitis-

tic functions and theorems as an argument against the thesis is no less fallacious than it

would be to complain that general recursiveness is not a characterization of computability

because there are well-circumscribed sub-recursive classes of functions. But whereas the

computable functions are the maximal class of functions that are, well, computable; the

finitistic functions (and finitistic reasoning) answer to a minimality condition: they are the

minimal class whose existence is presupposed by the general notion of Number. And so

to defuse the objection, it should be specified what it is to be presupposed in that notion,
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either directly or indirectly by closure conditions. This is exactly what Tait does: For Tait

the finitistic functions are those that come with, as it were, the basic finitist type of Number.

These functions are the constant 0 function and the successor function. The finitist func-

tions are the class of functions including these basic functions, closed under composition

and primitive recursion. Clearly, the weak point here is that it is not beyond doubt that

primitive recursion is a construction implicit in the notion of Number, and that hence the

finitist functions must be closed under primitive recursion. It is made plausible by the par-

ticular elegance and simplicity of the scheme, and the fact that primitive recursion, when

it is viewed asn-fold iteration of composition, corresponds exactly to the iteration of the

successor which is the defining characteristic of Number. Tait writes,

Suppose that we havek:B andg:B→ B and an arbitraryn:N. n is built up
from 0 by iteratingm 7→m′:

0,1,2, . . . ,n = 0′′...′

By using exactly the same iteration, the same′′ . . .′, we may build upf n:B:

k,gk,ggk, . . . , f n = g. . .gk

We may express this construction by means of the equations

f 0≡ k f n′ ≡ g( f n)

and we say thatf :N → B is defined fromk and g by primitive recursion.
(Tait 1981, pp. 531–32)

So to make it plausible that a nontrivial and yet less inclusive class of functions is a ri-

val candidate for the title “finitist functions”, it would have to be shown that the closure

conditions, i.e., the ways of constructing new functions from initial functions, are presup-

posed by the notion of Number in a similarly well-motivated way. This seems to be not

the case for the examples suggested above, the classes of P and E of polynomial-time and

elementary functions. In the case of P, the machine-independent characterization is given

by the system PV of Cobham (1965). In PV, the basic type is not Number as constructed

by iterated application of the successor function, but by iterated applications of two succes-

sor function, essentially resulting in binary representations. Correspondingly, the recursion

schema used is (bounded)recursion on notation. If the two successors are denoteds0, s1,
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then recursion on notation is the following principle of definition: If functionsg, h0, andh1

are already defined, then a functionf is defined by

f (0) = g

f (s0x) = h0( f (x))

f (s1x) = h1( f (x)).

So while recursion on notation may well be said to be a construction implicit in the notion

of binary notations, it isn’t implicit in the same obvious way in Number. Furthermore for

boundedrecursion on notation, forf to be defined it has to satisfy in addition thatf x≤ `x
for all x (` a function already defined). This means that we have only succeeded in defining

a function f if f satisfies the bound (in PV, a new function symbolf is introduced only

if PV proves that the function defined by the three equations is bounded). But this can

hardly be seen to be a restriction implicit in the notion of binary representation. Indeed

in the case of finitist functions a circle threatens: Finitist functions were introduced to

explain finitist proof, but if the definition of a finitist function requires a (finitist) proof that

the function defined satisfies the bound, then finitist function would presuppose and not

explain finitist proof. In the case of elementary functions, the basic type is the same as in

the case of primitive recursion, but the construction by which we obtain new functions is

bounded addition and multiplication. That addition and multiplication are definable using

the constructions is a result in need of proof, not something that obviously flows from the

notion of Number; the boundedness requirement introduces the same difficulties as above.

What this shows, I think, is that Tait’s claim that finitist reasoning is “a minimal kind

of reasoning presupposed by all nontrivial mathematical reasoning about numbers” is not a

definition, but a consequence of the analysis; the analysis presupposes that any class delim-

ited as the finitist functions (and by extension, the finitist principles of reasoning) must not

only be “minimal” and “nontrivial”, but also closed under all constructions implicit in the

notion of Number. Only this rules out the rival classes which are closed under weaker con-

structions than primitive recursion. This, however, opens up the possibility that the finitist

could come to see more than just primitive recursion as being implicit in Number. We have

already seen, in Section 4.3.4, that Hilbert, Bernays, and Ackermann accepted more than

primitive recursive functions and principles as finitist. In particular, 2-fold nested recursion,
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sufficient to define the Ackermann function, was accepted.

The schema ofk-fold nested recursion is this:

f (x,0,y2, . . . ,yk) = 0
...

f (x,y1, . . . ,yk−1,0) = 0

f (x,y′1, . . . ,y
′
k) = g(x,y1, . . .yk, t1, . . . , tk), where

ti = f (x,y′1, . . . ,y
′
i−1,yi ,h

i
1(x,y1, . . . ,yk, f (x,y′1, . . . ,y

′
k−1,yk), . . .

f i
k−i(x,y1, . . . ,yk, f (x,y′1, . . . ,y

′
k−1,yk))

For k = 1, this is just primitive recursion. If the reason that we must accept primitive

recursion as finitistic is that the computation of a function proceeds in “exactly the same

way” as the construction of a numeral, then this is in a way also true of functions defined

by k-fold nested recursion. For to compute such a function, it is also only necessary to pass

from the computation required forn′ to the computation forn, although now we have to

keep track of several recursion arguments (but only a fixed numberk).

In (2000), Tait addresses an objection of Ignjatovič (1994), that “one cannot rule out

the possibility that any basis sufficient to justify what is formalized in [PRA] and which

satisfies some necessary closure properties in order to be acceptable as an epistemologically

distinguished system of methods, is also sufficient to justifyε0-induction.” Tait’s response

is that to go beyond PRA would require the introduction of higher types, and the restriction

to finitist types is warranted as an “epistemologically distinguished system of methods.”

It is, however, hard to see in what wayk-fold nested recursion introduces higher types; it

certainly doesn’t mention type variables. Yet thek-fold recursive functions are exactly the

ωωk
-recursive ones.34 This leads to the conclusion that, at the very least, there is not a

single notion of finitist function, but a hierarchy, corresponding to the level of complexity

of iterations one is prepared to accept as implicit in the simple iteration required for an

understanding on Number.35
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4.7 Conclusion

There are two fundamentally different kinds of sceptical doubts about number-theoretic

reasoning: The doubt that there might not be a potential infinity of numbers, that the suc-

cessor operation is not total; and the doubt that there are certain inferences or constructions

which are unwarranted even once the successor operation (the general notion of Number)

is accepted. The finitist in Hilbert’s sense is not concerned with the first kind, and it is

the second kind that motivates the discussions of acceptable inferences and constructions

in the work of Hilbert, Parsons, and Tait. Several different aspects of Hilbert’s charac-

terization of finitism have been analyzed in the literature: that finitism is the domain of

intuitive evidence by Parsons, that finitism is a minimal kind of reasoning implicit in, or

presupposed by, all reasoning about Number by Tait. These two concerns correspond to

two different views about what the appropriate way to characterize finitism is: the bottom-

up approach, arguing for the existence of a special kind of intuition which applies to finitist

objects and argue that this intuition underwrites a notion of intuitive evidence which en-

compasses all finitistically provable propositions, and the top-down approach, arguing that

finitistic principles are basic to mathematical reasoning, that finitism thus constitutes a core

of mathematics, and characterizing finitism as that which must be included in that core.

The bottom-up approach receives its epistemic status from the notion of intuition; in the

top-down approach the epistemic primacy of finitism results from the picture that different

parts of mathematics have different epistemic status, and that finitism, as the most basic

area of mathematical reasoning about number, is thus also the epistemically most secure.

Notes

1. Feferman (1993a). See also Hofweber (2000) for a discussion of the relation of proof-

theoretic reductions to other kinds of reductions, e.g., ontological and theory reduction.

2. For a discussion of this effort, see Chihara (1973, Ch. 1).

3. This is methodological point is made clear in a letter from Bernays to Rosza Péter, probably

from around 1940 (Bernays Papers, ETH Library/WHS, Hs. 975:3473).

4. See Hilbert (1905c, p. 131f). In a course at Göttingen, Hilbert went even further in the
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development of this idea, see Peckhaus (1990), Chapter 3.

5. Hilbert (1922c, p. 202), repeated almost verbatim in Hilbert (1926, p. 376). This is the text

of a talk given in Hamburg, July 25–27, 1921.

6. This account is based on our ability to put finite collections of objects into one-to-one cor-

respondences with the strokes making up a numeral. This ability accounts for the usefulness of

contentual number theory. The account is indicated in passing by Bernays (1923, p. 225) and devel-

oped in detail by Hilbert and Bernays (1934, pp. 28–29).

7. In particular in Hilbert (1926).

8. “[The numbers do not] exist independently of theirintuitive construction.” (Bernays 1923,

p. 226).

9. Kitcher (1976, pp. 107–108). Frege (1884/1980,§27) advanced essentially the same criticism

against Schloemilch.

10. “Figures [i.e., numerals]arenot shapes, theyhavea shape” (Bernays 1923, p. 159)

11. “These objects must be [. . . ] space- and timeless [. . . ]” (Müller 1923, p. 158)

12. Benacerraf and Putnam (1983) also finds a non-standard account in Hilbert’s view of math-

ematics. That account, however, does not concern the contentual mathematics we are interested

in, but formalized mathematics. According to Benacerraf, Hilbert’s account of formalized mathe-

matics is non-standard since unbounded quantifiers—since they are finitistically meaningless—are

not evaluated according to standard semantics, but based on the derivability of sentences containing

them from axioms systems that have been shown to be consistent.

13. For a discussion of these distinctions, see Sinac.eur (1993).

14. “Es stellt sich nun die Frage ein, ob dennüberhaupt die finiten Methoden imstande sind, den

bereich der in(Zµ) formalisierbaren Schlußweisen zuüberschreiten.

Diese Frage ist freilich, so wie sie eben formuliert ist, nicht präzise; denn wir haben den Aus-

druck
”
finit“ ja nicht als einen scharf abgegrenzten Terminus eingeführt, sondern nur als bezeich-

nung einer methodischen Richtlinie, die uns zwar ermöglicht, gewisse Arten der Begriffsbildung

und des Schließens mit Bestimmtheit als finit, gewisse andere mit Bestimmtheit als nicht finit zu er-

kennen, die aber dennoch keine genaue Scheidelinie liefert zwischen solchen, die ihnen nicht mehr

gen̈ugen.” Hilbert and Bernays (1939, pp. 347–48; 1970, p. 361).

15.Aussagen mit elementar anschaulichem Inhalt. I propose to read this as: propositions which

permit a finitistic interpretation (see below). See Bernays (1922, p. 221) for the distinction between

the form of induction discussed here, “the narrower form of induction,” and the full schema of in-
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duction on arbitrary formulas. This distinction is essential for the rebuttal, by Hilbert, of Poincaré’s

and Becker’s charge of circularity in Hilbert’s theory. For this, see Mancosu (1998b).

16. “Wir haben bei den Aussagen zu unterscheiden zwischen solchen, die einenBefund(eine

direkte Feststellung) ausdrücken und solchen die eine Einsicht zum Ausdruck bringen, wie:
”
a+b“

ist stehts dasselbe Zahlzeichen wieb+a“, oder z.B. die Behauptung einer Widerspruchsfreiheit.

Die Aussagen der zweiten Art sind nicht ohne weiteres negationsfähig; auch k̈onnen sie nicht in

dieVoaussetzung eine Bedingungssatzesgenommen werden; vielmehr kann sich im finiten Schlies-

sen eineAnnahmeimmer nur auf einenBefundbeziehen (entsprechend wie bei einem physikali-

schen Gedanken-Experiment).

Hieraus ergibt sich, dass ein Beweis einer Existenz durch Widerlegung eines allgemeinen Ur-

teils sich nicht (ohne weiteres) ins finite Schliessenübertragen l̈asst—ẅahrend der Beweis eines

allgemeinen Satzes durch Widerlegung einer Existenz-Annahme sofort ins Finite zuübertragen ist,

indem man die Annahme dass ein gewisses Ding existiere, durch die Annahme ersetzt, dass das

Ding vorgelegtist.” Paul Bernays, “Zur finiten Einstellung,” Manuscript, 1 p., no date but written

after 1925. Hilbert-Nachlaß, Niedersächsische Staats- und Universitätsbibliothek G̈ottingen, Cod.

Ms. Hilbert 685:9.

17. I take the word “exemplify” to imply that the same forms of judgment also apply to other

finitistically acceptable concept-formations, e.g., functions defined by recursion.

18. “Zur Characterisierung des finiten Standpunktes seien noch einige allgemeine Gesichts-

punkte hervorgehoben, betreffend den Gebrauch der logischen Urteilsformen im finiten Denken,

wobei wir zur Exemplifizierung Assagen̈uberZiffern betrachten wollen.

Ein allgemeinesUrteil über Ziffern kann finit nur im hypothetischen Sinn gedeutet werden, d. h.

als eine Aussagëuber jedwede vorgelegte Ziffer. Ein solches Urteil spricht ein Gesetz aus, das sich

an jedem vorliegenden Einzelfall verifizieren muß.

Ein Existenzsatz̈uber Ziffern, also ein Satz von der Form
”
es gibt eine Ziffern von der Ei-

genschaftA(n)“, ist finit aufzufassen als ein
”
Partialurteil“, d. h. als eine unvollständige Mitteilung

einer genauer bestimmten Aussage, welche entweder in der direkten Angabe einer Ziffer von der

EigenschaftA(n) oder der Angabe eines Verfahrens zur Gewinnung einer solchen Ziffer besteht,—

wobei zur Angabe eines Verfahrens gehört, daß f̈ur die Reihe der auszuführenden Handlungen eine

bestimmte Grenze aufgewiesen wird.

In entsprechender Weise sind diejenigen Urteile finit zu interpretieren, in denen eine allgemeine

Aussage mit einer Existenzbehauptung verknüpft ist. So hat man z. B. einen Satz von der Form
”
zu
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jeder Zifferk von der EigenschaftA(k) gibt es eine Zifferl, für welcheB(k, l) gilt“, finit aufzufassen

als unvollsẗandige Mitteilung von einem Verfahren, welches gestattet, zu jeder vorgelegten Zifferk

von der EigenschaftA(k) eine Zifferl zu finden, welche zuk in der BeziehungB(k, l) steht.“ (Hilbert

and Bernays 1934, 1968, pp. 32–33).

19. “In der Zahlentheorie haben wir ein Ausgangsobjekt und einen Prozeß des Fortschreitens.

Beides m̈ussen wir in bestimmter Weise anschaulich festlegen. Die besondere Art der Festlegung ist

dabei unwesentlich, nur muß die einmal getroffene Wahl für die ganze Theorie beibehalten werden.

Wir wählen als Ausgangsding die Ziffer 1 und als Prozeß des Fortschreitens das Anhängen von 1.

Die Dinge, die wir, ausgehend von der Ziffer 1, durch Anwendung des Fortschreitungsprozesses

erhalten, wie z. B.

1,11,1111,

sind Figuren von folgender Art: sie beginnen mit 1, sie enden mit 1; auf jede 1, die nicht schon

das Ende der Figur bildet, folgt ine angehängte 1. Sie werden durch Anwendung des Fortschrei-

tungsprozesses, also durch einen konkret zum Abschluß kommendenAufbauerhalten, und dieser

Aufbau l̈aßt sich daher auch durch einen schrittweisenAbbaurückg̈angig machen.” (Hilbert and

Bernays 1934, 1968, p. 20–21).

20. “Wenn eine Zifferb mit einem Teilsẗuck vona übereinstimmt, so ist das Reststück wieder-

um eine Zifferc; man erḧalt also die Ziffera, indem manc anb ansetzt, in der Weise, daß die 1,

mit welcherc beginnt, an die 1, mit welcherb endigt, nach der Art des Fortschreitungsprozesses an-

geḧangt wird. Diese Art der Zusammensetzung von Ziffern bezeichnen wir alsAdditionund wenden

dafür das Zeichen+ an.” (Hilbert and Bernays 1934, 1968, p. 22).

21. “DieMultiplikation kann folgendermaßen definiert werden:a ·b bedeutet die Ziffer, die man

aus der Zifferb erḧalt, indem man beim Aufbau immer die 1 durch die Ziffera ersetzt, so daß man

also zun̈achsta bildet und anstatt jedes in der Bildung vonb vorkommenden Anf̈ugens von 1 das

Ansetzen vonb ausf̈uhrt.” (Hilbert and Bernays 1934, 1968, p. 24).

22. “[N]ur noch ein Punkt bedarf hier der grundsätzlichen Er̈orterung, das Verfahren derrekur-

siven Definition. Vergegenẅartigen wir uns, worin dieses Verfahren besteht: Ein neues Funktions-

zeichen, etwaϕ wird eingef̈uhrt, und die Definition der Funktion geschieht durch zwei Gleichungen,

welche im einfachsten Falle die Form haben:

ϕ(1) = a

ϕ(n+1) = ψ(ϕ(n),n).
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Hierbei ista eine Ziffer undψ eine Funktion, die aus bereits bekannten Funktionen durch Zusam-

mensetzung gebildet ist, so daßψ(b,c) für gegebene Ziffernb, c berechnet werden kann und als

Wert wieder eine Ziffer liefert.

Es ist nicht ohne weiteres klar, welcher Sinn diesem Definitionsverfahren zukommt. Zur Er-

klärung ist zun̈achst der Funktionsbegriff zu präzisieren. Unter einerFunktionverstehen wir hier

eine anschauliche Anweisung, auf grund deren einer vorgelegten Ziffer, bzw. einem Paar, einem

Tripel,. . . von Ziffern, wieder eine Ziffer zugeordnet wird. Ein Gleichungspaar der obigen Art—wir

nennen ein solches eine
”
Rekursion“—haben wir anzusehen als eineabgek̈urzte Mitteilungfolgen-

der Anweisung:

Es seim irgendeine Ziffer. Wennm = 1 ist, so werdem die Ziffer a zugeordnet. Andernfalls

hatm die Formb+1. Man schreibe dann zunächst schematisch auf:

ψ(ϕ(b),b).

Ist nunb = 1 so ersetze man hierinϕ(b) durcha; andernfalls hat wiederb die Formc+1, und man

ersetze dannϕ(b) durch

ψ(ϕ(c),c).

Nun ist wieder entwederc = 1 oderc von der Formd+ 1. Im ersten Fall ersetze manϕ(c) durcha,

im zweiten Fall durch

ψ(ϕ(d),d).

Die Fortsetzung dieses Verfahrens führt jedenfalls zu einem Abschluß. Denn die Ziffern

b,c,d, . . . ,

welche wir der Reihe nach erhalten, entstehen durch denAbbau der Zifferm, und dieser muß ebenso

wie der Aufbau vonm zum Abschluß gelangen. Wenn wir beim Abbau bis zu 1 gekommen sind,

dann wirdϕ(1) durcha ersetzt; das Zeichenϕ kommt dann in der entstehenden Figur nicht mehr

vor, vielmehr tritt als Funktionszeichen nurψ, eventuell in mehrmaliger̈Uberlagerung, auf, und

die innersten Argumente sind Ziffern. Damit sind wir zu einem berechenbaren Ausdruck gelangt;

dennψ soll ja eine bereits bekannte Funktion sein. Diese Berechnung hat man nun von innen her

auszuf̈uhren, und die dadurch gewonnene Ziffer soll der Zifferm zugeordnet werden.” (Hilbert and

Bernays 1934, 1968, pp. 25–26).

23. “For instance, Tait refers to (Hilbert 1926) as a source concerning Hilbert’s notion of a fini-

tist proof, goes on to say ‘it is difficult perhaps to determine what Hilbert really had in mind’ and
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argues that Ackermann’s enumeration of the primitive recursive functions is not finitist. But what-

ever else may be in doubt, Hilbert’s own notion asused in(1926) certainly includes Ackermann’s

function since it is explicitly mentioned!” (Kreisel 1970, p. 514, n. 43)

24. “Diese rekursive Zahlentheorie steht insoferne der anschaulichen Zalentheorie, wie wir si im

§2 betrachtet haben, nahe, als ihre Formeln sämtlich einer inhaltlichen Deutung fähig sind. Diese

inhaltliche Deutbarkeit ergibt sich aus der bereits festgestellten Verifizierbarkeit aller ableitbaren

Formeln der rekursiven Zahlentheorie. In der Tat hat in diesem Gebiet die Verifizierbarkeit den

Character einer direkten inhaltlichen Interpretation, und der Nachweis der Widerspruchsfreiheit war

daher auch hier so leicht zu erbringen.

Der Unterschied der rekursiven Zahlentheorie gegenüber der anschaulichen Zahlentheorie be-

steht in ihrer formalen Gebundenheit; sie hat als einzige Methode der Begriffsbildung, außer der

expliziten Definition, das Rekursionsschema zur Verfügung, und auch die Methoden der Ableitung

sind fest umgrenzt.

Allerdings k̈onnen wir, ohne der rekursiven Zahlentheorie das Charakteristische ihrer Methode

zu nehmen, gewisseErweiterungen des Schemas der Rekursionsowie auch des Induktionsschemas

zulassen. Auf diese wollen wir noch kurz zu sprechen kommen.” (Hilbert and Bernays 1934, p. 325;

1968, p. 330). I am reading this passage so that “what is characteristic of the method of recursive

number theory” to be the availability of a direct contentual, i.e., finitistic interpretation. Tait (2000),

by contrast, takes this phrase to refer to the kinds of definitions and rules of inference available

in it, so that the scope of “certain extensions of the schema of recursion” would be only those

extensions which can be reduced to primitive recursion, and not nested recursion. Since in the

ensuing discussion, Bernays keeps stressing that the extensions discussed all have the character of

a “recursion by which a procedure for stepwise successive computation of one or more functions is

formalized” (p. 334) and that the introduction of the Ackermann function has the “required property

of a formalized computation procedure” (p. 335) it seems to me thatthat is what Bernays takes to

be the issue here. And as such, the Ackermann function does not violate “what is characteristic of

the method of of recursive number theory.” In any case, Tait concedes that the Ackermann function

is not rejectd as finitist.

25. “Gewisseüber die rekursive Zahlentheorie (im ursprünglichen Sinn) hinausgehende Ver-

fahren der finiten Mathematik haben wir bereits im§7 besprochen, n̈amlich die Einf̈uhrung von

Funktionen durch verschränkte Rekursionen und die allgemeineren Induktionsschemata.” (Hilbert

and Bernays 1939, p. 340; 1970, p. 354). Emphasis mine.
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26. “Der urspr̈ungliche engere Begriff der der finiten Aussage kommt im Gebiet der Zahlentheo-

rie darauf hinaus, daß als finite zahlenthoretische Aussagen nur solche Aussagen zugelassen sind,

die sich im Formalismus der rekursiven Zahlentheorie, eventuell unter Hinzunahme von Symbo-

len für gewisse berechenbare zahlentheoretische Funktionen (von einem oder mehreren Argumen-

ten), jedoch ohne Benutzung von Formelvariablen darstellen oder die eine verschärfte Interpretation

durch eine Aussage von dieser Form gestatten.” (Hilbert and Bernays 1939, p. 348; 1970, p. 362).

Emphasis mine. The “original concept of finitism” refers to the conception of finitistic meaning-

fulness first introduced, in contrast to some slight extensions that are discussed subsequently, in

particular, admission of implications with a universal antecedent and inductions with premises of

such a form. The passage occurs in the context of considering the question of whether there are

finitistic principles which go beyond number theoryZ.

27. Hilbert and Bernays (1939, p. 214; 1970, p. 224). This passage was pointed out by Tait

(2000).

28. For a discussion of nested recursion and the issues coming up in computing functions de-

fined by nested recursion, see Tait (1961).

29. Bernays to G̈odel, January 7, 1970. Bernays Papers, ETH Zürich/WHS, Hs. 975:1745.

30. Tait also mentions a passage from the preface to the second volume, where Bernays speaks

of an extension of the finite standpoint. That passage, however, discusses specifically the methods

used in Gentzen’s consistency proof, i.e., transfinite induction up toε0.

31. Compare this with Kant’s notion of intuition and geometrical knowledge: In that case we

could conceivably buy the idea of intuition directly producing knowledge of a general geometrical

theorem: The requisite geometrical proof is one diagram, and constructing the diagram in intuition

provides knowledge of the theorem. But the case of finitist number theory is different in that there

is no generic numeral which can take the place of the diagram.

32. Parikh’s Theorem is this: Ifϕ(x,y) represents a recursive functionf (x) which is provably

total in I∆0, i.e.,I∆0 ` (∀x)(∃y)ϕ(x,y), then there is a polynomialp such thatf (x)≤ p(x) for all x.

33. See H́ajek and Pudĺak (1993, p. 320) and Parikh (1971).

34. This follows from Tait’s Theorem (Tait 1961), see also Rose (1984, Chapter 3).

35. I believe that Hilbert would have agreed to such a view, or at least not have drawn the line

at k = 1, the primitive recursive functions. It is conceivable that stronger recursion schemata exist

which take us all the way through the< ε0-recursive functions. Even if all these were accepted

as finitistic, as Kreisel (1960, 1970) does, still a qualitatively different extension of proof methods



154

would be required to attain a system strong enough to prove the consistency of arithmetic.



155

Bibliography

Abrusci, Vito Michele. (1989). David Hilbert’sVorlesungenon logic and the foundations

of mathematics. In Giovanna Corsi, Corrado Mangione, and Massimo Mugnai (Eds.),

Atti del Convegno Internazionale di Storia della Logica, Le teorie delle modalità. 5–8
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pp. 44–59). Oxford: Oxford University Press.

Ewald, William Bragg (Ed.). (1996).From Kant to Hilbert. A Source Book in the Founda-

tions of Mathematics(Vol. 2). Oxford: Oxford University Press.

Feferman, Solomon. (1988). Hilbert’s Program relativized: Proof-theoretial and fonda-

tional reductions.Journal of Symbolic Logic53(2), 364–284.

Feferman, Solomon. (1993a). What rests on what? The proof-theoretic analysis of math-

ematics. In Johannes Czermak (Ed.),Philosophy of Mathematics. Proceedings of

the Fifteenth International Wittgenstein-Symposium, Part 1(pp. 147–171). Vienna:
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