Archive for Mathematical Logic

ISSNs: 0933-5846, 1432-0665

42 found

View year:

  1. Recursive Polish spaces.Tyler Arant - 2023 - Archive for Mathematical Logic 62 (7):1101-1110.
    This paper is concerned with the proper way to effectivize the notion of a Polish space. A theorem is proved that shows the recursive Polish space structure is not found in the effectively open subsets of a space $${\mathcal {X}}$$ X, and we explore strong evidence that the effective structure is instead captured by the effectively open subsets of the product space $$\mathbb {N}\times {\mathcal {X}}$$ N × X.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  7
    On the complexity of the theory of a computably presented metric structure.Caleb Camrud, Isaac Goldbring & Timothy H. McNicholl - 2023 - Archive for Mathematical Logic 62 (7):1111-1129.
    We consider the complexity (in terms of the arithmetical hierarchy) of the various quantifier levels of the diagram of a computably presented metric structure. As the truth value of a sentence of continuous logic may be any real in [0, 1], we introduce two kinds of diagrams at each level: the closed diagram, which encapsulates weak inequalities of the form $$\phi ^\mathcal {M}\le r$$, and the open diagram, which encapsulates strict inequalities of the form $$\phi ^\mathcal {M}< r$$. We show (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3.  5
    Correction to: Towers, mad families, and unboundedness.Vera Fischer, Marlene Koelbing & Wolfgang Wohofsky - 2023 - Archive for Mathematical Logic 62 (7):1159-1160.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  1
    Definable Tietze extension property in o-minimal expansions of ordered groups.Masato Fujita - 2023 - Archive for Mathematical Logic 62 (7):941-945.
    The following two assertions are equivalent for an o-minimal expansion of an ordered group $$\mathcal M=(M,<,+,0,\ldots )$$. There exists a definable bijection between a bounded interval and an unbounded interval. Any definable continuous function $$f:A \rightarrow M$$ defined on a definable closed subset of $$M^n$$ has a definable continuous extension $$F:M^n \rightarrow M$$.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  4
    Ranks based on strong amalgamation Fraïssé classes.Vincent Guingona & Miriam Parnes - 2023 - Archive for Mathematical Logic 62 (7):889-929.
    In this paper, we introduce the notion of $${\textbf{K}} $$ -rank, where $${\textbf{K}} $$ is a strong amalgamation Fraïssé class. Roughly speaking, the $${\textbf{K}} $$ -rank of a partial type is the number “copies” of $${\textbf{K}} $$ that can be “independently coded” inside of the type. We study $${\textbf{K}} $$ -rank for specific examples of $${\textbf{K}} $$, including linear orders, equivalence relations, and graphs. We discuss the relationship of $${\textbf{K}} $$ -rank to other ranks in model theory, including dp-rank and (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6.  4
    On the non-existence of $$\kappa $$-mad families.Haim Horowitz & Saharon Shelah - 2023 - Archive for Mathematical Logic 62 (7):1033-1039.
    Starting from a model with a Laver-indestructible supercompact cardinal $$\kappa $$, we construct a model of $$ZF+DC_{\kappa }$$ where there are no $$\kappa $$ -mad families.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7.  5
    Models of $${{\textsf{ZFA}}}$$ in which every linearly ordered set can be well ordered.Paul Howard & Eleftherios Tachtsis - 2023 - Archive for Mathematical Logic 62 (7):1131-1157.
    We provide a general criterion for Fraenkel–Mostowski models of $${\textsf{ZFA}}$$ (i.e. Zermelo–Fraenkel set theory weakened to permit the existence of atoms) which implies “every linearly ordered set can be well ordered” ( $${\textsf{LW}}$$ ), and look at six models for $${\textsf{ZFA}}$$ which satisfy this criterion (and thus $${\textsf{LW}}$$ is true in these models) and “every Dedekind finite set is finite” ( $${\textsf{DF}}={\textsf{F}}$$ ) is true, and also consider various forms of choice for well-ordered families of well orderable sets in these (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  5
    An AEC framework for fields with commuting automorphisms.Tapani Hyttinen & Kaisa Kangas - 2023 - Archive for Mathematical Logic 62 (7):1001-1032.
    In this paper, we introduce an AEC framework for studying fields with commuting automorphisms. Fields with commuting automorphisms are closely related to difference fields. Some authors define a difference ring (or field) as a ring (or field) together with several commuting endomorphisms, while others only study one endomorphism. Z. Chatzidakis and E. Hrushovski have studied in depth the model theory of ACFA, the model companion of difference fields with one automorphism. Our fields with commuting automorphisms generalize this setting. We have (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  3
    A syntactic approach to Borel functions: some extensions of Louveau’s theorem.Takayuki Kihara & Kenta Sasaki - 2023 - Archive for Mathematical Logic 62 (7):1041-1082.
    Louveau showed that if a Borel set in a Polish space happens to be in a Borel Wadge class $$\Gamma $$, then its $$\Gamma $$ -code can be obtained from its Borel code in a hyperarithmetical manner. We extend Louveau’s theorem to Borel functions: If a Borel function on a Polish space happens to be a $$ \underset{\widetilde{}}{\varvec{\Sigma }}\hbox {}_t$$ -function, then one can find its $$ \underset{\widetilde{}}{\varvec{\Sigma }}\hbox {}_t$$ -code hyperarithmetically relative to its Borel code. More generally, we prove (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  2
    Mathias and silver forcing parametrized by density.Giorgio Laguzzi, Heike Mildenberger & Brendan Stuber-Rousselle - 2023 - Archive for Mathematical Logic 62 (7):965-990.
    We define and investigate versions of Silver and Mathias forcing with respect to lower and upper density. We focus on properness, Axiom A, chain conditions, preservation of cardinals and adding Cohen reals. We find rough forcings that collapse $$2^\omega $$ 2 ω to $$\omega $$ ω, while others are surprisingly gentle. We also study connections between regularity properties induced by these parametrized forcing notions and the Baire property.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  3
    Consistency and interpolation in linear continuous logic.Mahya Malekghasemi & Seyed-Mohammad Bagheri - 2023 - Archive for Mathematical Logic 62 (7):931-939.
    We prove Robinson consistency theorem as well as Craig, Lyndon and Herbrand interpolation theorems in linear continuous logic.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12.  4
    Questions on cardinal invariants of Boolean algebras.Mario Jardón Santos - 2023 - Archive for Mathematical Logic 62 (7):947-963.
    In the book Cardinal Invariants on Boolean Algebras by J. Donald Monk many such cardinal functions are defined and studied. Among them several are generalizations of well known cardinal characteristics of the continuum. Alongside a long list of open problems is given. Focusing on half a dozen of those cardinal invariants some of those problems are given an answer here, which in most of the cases is a definitive one. Most of them can be divided in two groups. The problems (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13.  5
    A criterion for the strong cell decomposition property.Somayyeh Tari - 2023 - Archive for Mathematical Logic 62 (7):871-887.
    Let $$ {\mathcal {M}}=(M, <, \ldots ) $$ be a weakly o-minimal structure. Assume that $$ {\mathcal {D}}ef({\mathcal {M}})$$ is the collection of all definable sets of $$ {\mathcal {M}} $$ and for any $$ m\in {\mathbb {N}} $$, $$ {\mathcal {D}}ef_m({\mathcal {M}}) $$ is the collection of all definable subsets of $$ M^m $$ in $$ {\mathcal {M}} $$. We show that the structure $$ {\mathcal {M}} $$ has the strong cell decomposition property if and only if there is (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  2
    The small index property for countable superatomic boolean algebras.J. K. Truss - 2023 - Archive for Mathematical Logic 62 (7):991-1000.
    It is shown that all the countable superatomic boolean algebras of finite rank have the small index property.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  4
    Structure of semisimple rings in reverse and computable mathematics.Huishan Wu - 2023 - Archive for Mathematical Logic 62 (7):1083-1100.
    This paper studies the structure of semisimple rings using techniques of reverse mathematics, where a ring is left semisimple if the left regular module is a finite direct sum of simple submodules. The structure theorem of left semisimple rings, also called Wedderburn-Artin Theorem, is a famous theorem in noncommutative algebra, says that a ring is left semisimple if and only if it is isomorphic to a finite direct product of matrix rings over division rings. We provide a proof for the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  5
    A topological completeness theorem for transfinite provability logic.Juan P. Aguilera - 2023 - Archive for Mathematical Logic 62 (5):751-788.
    We prove a topological completeness theorem for the modal logic $$\textsf{GLP}$$ GLP containing operators $$\{\langle \xi \rangle :\xi \in \textsf{Ord}\}$$ { ⟨ ξ ⟩ : ξ ∈ Ord } intended to capture a wellordered sequence of consistency operators increasing in strength. More specifically, we prove that, given a tall-enough scattered space X, any sentence $$\phi $$ ϕ consistent with $$\textsf{GLP}$$ GLP can be satisfied on a polytopological space based on finitely many Icard topologies constructed over X and corresponding to the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17.  1
    Involutive symmetric Gödel spaces, their algebraic duals and logic.A. Di Nola, R. Grigolia & G. Vitale - 2023 - Archive for Mathematical Logic 62 (5):789-809.
    It is introduced a new algebra$$(A, \otimes, \oplus, *, \rightharpoonup, 0, 1)$$(A,⊗,⊕,∗,⇀,0,1)called$$L_PG$$LPG-algebra if$$(A, \otimes, \oplus, *, 0, 1)$$(A,⊗,⊕,∗,0,1)is$$L_P$$LP-algebra (i.e. an algebra from the variety generated by perfectMV-algebras) and$$(A,\rightharpoonup, 0, 1)$$(A,⇀,0,1)is a Gödel algebra (i.e. Heyting algebra satisfying the identity$$(x \rightharpoonup y ) \vee (y \rightharpoonup x ) =1)$$(x⇀y)∨(y⇀x)=1). The lattice of congruences of an$$L_PG$$LPG-algebra$$(A, \otimes, \oplus, *, \rightharpoonup, 0, 1)$$(A,⊗,⊕,∗,⇀,0,1)is isomorphic to the lattice of Skolem filters (i.e. special type ofMV-filters) of theMV-algebra$$(A, \otimes, \oplus, *, 0, 1)$$(A,⊗,⊕,∗,0,1). The variety$$\mathbf {L_PG}$$LPGof$$L_PG$$LPG-algebras (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  3
    The axiom of choice in metric measure spaces and maximal $$\delta $$-separated sets.Michał Dybowski & Przemysław Górka - 2023 - Archive for Mathematical Logic 62 (5):735-749.
    We show that the Axiom of Countable Choice is necessary and sufficient to prove that the existence of a Borel measure on a pseudometric space such that the measure of open balls is positive and finite implies separability of the space. In this way a negative answer to an open problem formulated in Górka (Am Math Mon 128:84–86, 2020) is given. Moreover, we study existence of maximal $$\delta $$ δ -separated sets in metric and pseudometric spaces from the point of (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  5
    Glivenko sequent classes and constructive cut elimination in geometric logics.Giulio Fellin, Sara Negri & Eugenio Orlandelli - 2023 - Archive for Mathematical Logic 62 (5):657-688.
    A constructivisation of the cut-elimination proof for sequent calculi for classical, intuitionistic and minimal infinitary logics with geometric rules—given in earlier work by the second author—is presented. This is achieved through a procedure where the non-constructive transfinite induction on the commutative sum of ordinals is replaced by two instances of Brouwer’s Bar Induction. The proof of admissibility of the structural rules is made ordinal-free by introducing a new well-founded relation based on a notion of embeddability of derivations. Additionally, conservativity for (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20.  2
    Towers, mad families, and unboundedness.Vera Fischer, Marlene Koelbing & Wolfgang Wohofsky - 2023 - Archive for Mathematical Logic 62 (5):811-830.
    We show that Hechler’s forcings for adding a tower and for adding a mad family can be represented as finite support iterations of Mathias forcings with respect to filters and that these filters are $${\mathcal {B}}$$ B -Canjar for any countably directed unbounded family $${\mathcal {B}}$$ B of the ground model. In particular, they preserve the unboundedness of any unbounded scale of the ground model. Moreover, we show that $${\mathfrak {b}}=\omega _1$$ b = ω 1 in every extension by the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  4
    The structure of $$\kappa $$ -maximal cofinitary groups.Vera Fischer & Corey Bacal Switzer - 2023 - Archive for Mathematical Logic 62 (5):641-655.
    We study \(\kappa \) -maximal cofinitary groups for \(\kappa \) regular uncountable, \(\kappa = \kappa ^{. Revisiting earlier work of Kastermans and building upon a recently obtained higher analogue of Bell’s theorem, we show that: Any \(\kappa \) -maximal cofinitary group has \({ many orbits under the natural group action of \(S(\kappa )\) on \(\kappa \). If \(\mathfrak {p}(\kappa ) = 2^\kappa \) then any partition of \(\kappa \) into less than \(\kappa \) many sets can be realized as the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  3
    Bachmann–Howard derivatives.Anton Freund - 2023 - Archive for Mathematical Logic 62 (5):581-618.
    It is generally accepted that H. Friedman’s gap condition is closely related to iterated collapsing functions from ordinal analysis. But what precisely is the connection? We offer the following answer: In a previous paper we have shown that the gap condition arises from an iterative construction on transformations of partial orders. Here we show that the parallel construction for linear orders yields familiar collapsing functions. The iteration step in the linear case is an instance of a general construction that we (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23.  6
    Some implications of Ramsey Choice for families of $$\varvec{n}$$ -element sets.Lorenz Halbeisen & Salome Schumacher - 2023 - Archive for Mathematical Logic 62 (5):703-733.
    For \(n\in \omega \), the weak choice principle \(\textrm{RC}_n\) is defined as follows: _For every infinite set_ _X_ _there is an infinite subset_ \(Y\subseteq X\) _with a choice function on_ \([Y]^n:=\{z\subseteq Y:|z|=n\}\). The choice principle \(\textrm{C}_n^-\) states the following: _For every infinite family of_ _n_-_element sets, there is an infinite subfamily_ \({\mathcal {G}}\subseteq {\mathcal {F}}\) _with a choice function._ The choice principles \(\textrm{LOC}_n^-\) and \(\textrm{WOC}_n^-\) are the same as \(\textrm{C}_n^-\), but we assume that the family \({\mathcal {F}}\) is linearly orderable (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  3
    Independent families and some notions of finiteness.Eric Hall & Kyriakos Keremedis - 2023 - Archive for Mathematical Logic 62 (5):689-701.
    In \(\textbf{ZF}\), the well-known Fichtenholz–Kantorovich–Hausdorff theorem concerning the existence of independent families of _X_ of size \(|{\mathcal {P}} (X)|\) is equivalent to the following portion of the equally well-known Hewitt–Marczewski–Pondiczery theorem concerning the density of product spaces: “The product \({\textbf{2}}^{{\mathcal {P}}(X)}\) has a dense subset of size |_X_|”. However, the latter statement turns out to be strictly weaker than \(\textbf{AC}\) while the full Hewitt–Marczewski–Pondiczery theorem is equivalent to \(\textbf{AC}\). We study the relative strengths in \(\textbf{ZF}\) between the statement “_X_ has (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  4
    Generic existence of interval P-points.Jialiang He, Renling Jin & Shuguo Zhang - 2023 - Archive for Mathematical Logic 62 (5):619-640.
    A P-point ultrafilter over \(\omega \) is called an interval P-point if for every function from \(\omega \) to \(\omega \) there exists a set _A_ in this ultrafilter such that the restriction of the function to _A_ is either a constant function or an interval-to-one function. In this paper we prove the following results. (1) Interval P-points are not isomorphism invariant under \(\textsf{CH}\) or \(\textsf{MA}\). (2) We identify a cardinal invariant \(\textbf{non}^{**}({\mathcal {I}}_{\tiny {\hbox {int}}})\) such that every filter base (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26.  2
    Ideals with Smital properties.Marcin Michalski, Robert Rałowski & Szymon Żeberski - 2023 - Archive for Mathematical Logic 62 (5):831-842.
    A \(\sigma \) -ideal \(\mathcal {I}\) on a Polish group \((X,+)\) has the Smital Property if for every dense set _D_ and a Borel \(\mathcal {I}\) -positive set _B_ the algebraic sum \(D+B\) is a complement of a set from \(\mathcal {I}\). We consider several variants of this property and study their connections with the countable chain condition, maximality and how well they are preserved via Fubini products. In particular we show that there are \(\mathfrak {c}\) many maximal invariant \(\sigma (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  2
    Sets of real numbers closed under Turing equivalence: applications to fields, orders and automorphisms.Iván Ongay-Valverde - 2023 - Archive for Mathematical Logic 62 (5):843-869.
    In the first half of this paper, we study the way that sets of real numbers closed under Turing equivalence sit inside the real line from the perspective of algebra, measure and orders. Afterwards, we combine the results from our study of these sets as orders with a classical construction from Avraham to obtain a restriction about how non trivial automorphism of the Turing degrees (if they exist) interact with 1-generic degrees.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  5
    Wellfoundedness proof with the maximal distinguished set.Toshiyasu Arai - 2023 - Archive for Mathematical Logic 62 (3):333-357.
    In Arai (An ordinal analysis of a single stable ordinal, submitted) it is shown that an ordinal \(\sup _{N is an upper bound for the proof-theoretic ordinal of a set theory \(\mathsf {KP}\ell ^{r}+(M\prec _{\Sigma _{1}}V)\). In this paper we show that a second order arithmetic \(\Sigma ^{1-}_{2}{\mathrm {-CA}}+\Pi ^{1}_{1}{\mathrm {-CA}}_{0}\) proves the wellfoundedness up to \(\psi _{\varOmega _{1}}(\varepsilon _{\varOmega _{{\mathbb {S}}+N+1}})\) for each _N_. It is easy to interpret \(\Sigma ^{1-}_{2}{\mathrm {-CA}}+\Pi ^{1}_{1}{\mathrm {-CA}}_{0}\) in \(\mathsf {KP}\ell ^{r}+(M\prec _{\Sigma _{1}}V)\).
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  6
    An infinitary propositional probability logic.Stefano Baratella - 2023 - Archive for Mathematical Logic 62 (3):291-320.
    We introduce a logic for a class of probabilistic Kripke structures that we call type structures, as they are inspired by Harsanyi type spaces. The latter structures are used in theoretical economics and game theory. A strong completeness theorem for an associated infinitary propositional logic with probabilistic operators was proved by Meier. By simplifying Meier’s proof, we prove that our logic is strongly complete with respect to the class of type structures. In order to do that, we define a canonical (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30.  4
    On forcing over $$L(\mathbb {R})$$.Daniel W. Cunningham - 2023 - Archive for Mathematical Logic 62 (3):359-367.
    Given that \(L(\mathbb {R})\models {\text {ZF}}+ {\text {AD}}+{\text {DC}}\), we present conditions under which one can generically add new elements to \(L(\mathbb {R})\) and obtain a model of \({\text {ZF}}+ {\text {AD}}+{\text {DC}}\). This work is motivated by the desire to identify the smallest cardinal \(\kappa \) in \(L(\mathbb {R})\) for which one can generically add a new subset \(g\subseteq \kappa \) to \(L(\mathbb {R})\) such that \(L(\mathbb {R})(g)\models {\text {ZF}}+ {\text {AD}}+{\text {DC}}\).
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  31.  2
    Big Ramsey degrees in universal inverse limit structures.Natasha Dobrinen & Kaiyun Wang - 2023 - Archive for Mathematical Logic 62 (3):471-503.
    We build a collection of topological Ramsey spaces of trees giving rise to universal inverse limit structures, extending Zheng’s work for the profinite graph to the setting of Fraïssé classes of finite ordered binary relational structures with the Ramsey property. This work is based on the Halpern-Läuchli theorem, but different from the Milliken space of strong subtrees. Based on these topological Ramsey spaces and the work of Huber-Geschke-Kojman on inverse limits of finite ordered graphs, we prove that for each such (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  32.  4
    Preservation properties for products and sums of metric structures.Mary Leah Karker - 2023 - Archive for Mathematical Logic 62 (3):427-469.
    This paper concerns product constructions within the continuous-logic framework of Ben Yaacov, Berenstein, Henson, and Usvyatsov. Continuous-logic analogues are presented for the direct product, direct sum, and almost everywhere direct product analyzed in the work of Feferman and Vaught. These constructions are shown to possess a number of preservation properties analogous to those enjoyed by their classical counterparts in ordinary first-order logic: for example, each product preserves elementary equivalence in an appropriate sense; and if for \(i\in \mathbb {N}\) \(\mathcal {M}_i\) (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  2
    On the topological dynamics of automorphism groups: a model-theoretic perspective.Krzysztof Krupiński & Anand Pillay - 2023 - Archive for Mathematical Logic 62 (3):505-529.
    We give a model-theoretic treatment of the fundamental results of Kechris-Pestov-Todorčević theory in the more general context of automorphism groups of not necessarily countable structures. One of the main points is a description of the universal ambit as a certain space of types in an expanded language. Using this, we recover results of Kechris et al. (Funct Anal 15:106–189, 2005), Moore (Fund Math 220:263–280, 2013), Ngyuen Van Thé (Fund Math 222: 19–47, 2013), in the context of automorphism groups of not (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  4
    Tameness in generalized metric structures.Michael Lieberman, Jiří Rosický & Pedro Zambrano - 2023 - Archive for Mathematical Logic 62 (3):531-558.
    We broaden the framework of metric abstract elementary classes (mAECs) in several essential ways, chiefly by allowing the metric to take values in a well-behaved quantale. As a proof of concept we show that the result of Boney and Zambrano (Around the set-theoretical consistency of d-tameness of metric abstract elementary classes, arXiv:1508.05529, 2015) on (metric) tameness under a large cardinal assumption holds in this more general context. We briefly consider a further generalization to partial metric spaces, and hint at connections (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  2
    $$sQ_1$$ -degrees of computably enumerable sets.Roland Sh Omanadze - 2023 - Archive for Mathematical Logic 62 (3):401-417.
    We show that the _sQ_-degree of a hypersimple set includes an infinite collection of \(sQ_1\) -degrees linearly ordered under \(\le _{sQ_1}\) with order type of the integers and each c.e. set in these _sQ_-degrees is a hypersimple set. Also, we prove that there exist two c.e. sets having no least upper bound on the \(sQ_1\) -reducibility ordering. We show that the c.e. \(sQ_1\) -degrees are not dense and if _a_ is a c.e. \(sQ_1\) -degree such that \(o_{sQ_1}, then there exist (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36.  3
    Correction to: Generalization of Shapiro’s theorem to higher arities and noninjective notations.Dariusz Kalociński & Michał Wrocławski - 2023 - Archive for Mathematical Logic 62 (1):289-290.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37.  3
    Type space functors and interpretations in positive logic.Mark Kamsma - 2023 - Archive for Mathematical Logic 62 (1):1-28.
    We construct a 2-equivalence \(\mathfrak {CohTheory}^{op }\simeq \mathfrak {TypeSpaceFunc}\). Here \(\mathfrak {CohTheory}\) is the 2-category of positive theories and \(\mathfrak {TypeSpaceFunc}\) is the 2-category of type space functors. We give a precise definition of interpretations for positive logic, which will be the 1-cells in \(\mathfrak {CohTheory}\). The 2-cells are definable homomorphisms. The 2-equivalence restricts to a duality of categories, making precise the philosophy that a theory is ‘the same’ as the collection of its type spaces (i.e. its type space functor). (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  4
    The additive structure of integers with the lower Wythoff sequence.Mohsen Khani & Afshin Zarei - 2023 - Archive for Mathematical Logic 62 (1):225-237.
    We have provided a model-theoretic proof for the decidability of the additive structure of integers together with the function f mapping x to $$\lfloor \varphi x\rfloor $$ where $$\varphi $$ is the golden ratio.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  3
    Computable scott sentences for quasi–Hopfian finitely presented structures.Gianluca Paolini - 2023 - Archive for Mathematical Logic 62 (1):55-65.
    We prove that every quasi-Hopfian finitely presented structure _A_ has a _d_- \(\Sigma _2\) Scott sentence, and that if in addition _A_ is computable and _Aut_(_A_) satisfies a natural computable condition, then _A_ has a computable _d_- \(\Sigma _2\) Scott sentence. This unifies several known results on Scott sentences of finitely presented structures and it is used to prove that other not previously considered algebraic structures of interest have computable _d_- \(\Sigma _2\) Scott sentences. In particular, we show that every (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40.  5
    Positive logics.Saharon Shelah & Jouko Väänänen - 2023 - Archive for Mathematical Logic 62 (1):207-223.
    Lindström’s Theorem characterizes first order logic as the maximal logic satisfying the Compactness Theorem and the Downward Löwenheim-Skolem Theorem. If we do not assume that logics are closed under negation, there is an obvious extension of first order logic with the two model theoretic properties mentioned, namely existential second order logic. We show that existential second order logic has a whole family of proper extensions satisfying the Compactness Theorem and the Downward Löwenheim-Skolem Theorem. Furthermore, we show that in the context (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41.  3
    Pseudointersection numbers, ideal slaloms, topological spaces, and cardinal inequalities.Jaroslav Šupina - 2023 - Archive for Mathematical Logic 62 (1):87-112.
    We investigate several ideal versions of the pseudointersection number \(\mathfrak {p}\), ideal slalom numbers, and associated topological spaces with the focus on selection principles. However, it turns out that well-known pseudointersection invariant \(\mathtt {cov}^*({\mathcal I})\) has a crucial influence on the studied notions. For an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal J})\) introduced by Borodulin-Nadzieja and Farkas (Arch. Math. Logic 51:187–202, 2012), and an invariant \(\mathfrak {p}_\mathrm {K}({\mathcal I},{\mathcal J})\) introduced by Repický (Real Anal. Exchange 46:367–394, 2021), we have $$\begin{aligned} \min \{\mathfrak (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  8
    Second order arithmetic as the model companion of set theory.Giorgio Venturi & Matteo Viale - 2023 - Archive for Mathematical Logic 62 (1):29-53.
    This is an introductory paper to a series of results linking generic absoluteness results for second and third order number theory to the model theoretic notion of model companionship. Specifically we develop here a general framework linking Woodin’s generic absoluteness results for second order number theory and the theory of universally Baire sets to model companionship and show that (with the required care in details) a $$\Pi _2$$ -property formalized in an appropriate language for second order number theory is forcible (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
 Previous issues
  
Next issues