Year:

  1. Fermat’s Last Theorem Proved in Hilbert Arithmetic. III. The Quantum-Information Unification of Fermat’s Last Theorem and Gleason’s Theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2.  54
    Fermat’s Last Theorem Proved in Hilbert Arithmetic. II. Its Proof in Hilbert Arithmetic by the Kochen-Specker Theorem with or Without Induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
 Previous issues
  
Next issues