Works by Mejía, Diego A. (exact spelling)

5 found
Order:
  1.  11
    Coherent Systems of Finite Support Iterations.Vera Fischer, Sy D. Friedman, Diego A. Mejía & Diana C. Montoya - 2018 - Journal of Symbolic Logic 83 (1):208-236.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  7
    Filter-Linkedness and its Effect on Preservation of Cardinal Characteristics.Jörg Brendle, Miguel A. Cardona & Diego A. Mejía - 2021 - Annals of Pure and Applied Logic 172 (1):102856.
    We introduce the property “F-linked” of subsets of posets for a given free filter F on the natural numbers, and define the properties “μ-F-linked” and “θ-F-Knaster” for posets in a natural way. We show that θ-F-Knaster posets preserve strong types of unbounded families and of maximal almost disjoint families. Concerning iterations of such posets, we develop a general technique to construct θ-Fr-Knaster posets (where Fr is the Frechet ideal) via matrix iterations of <θ-ultrafilter-linked posets (restricted to some level of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  26
    Template Iterations with Non-Definable Ccc Forcing Notions.Diego A. Mejía - 2015 - Annals of Pure and Applied Logic 166 (11):1071-1109.
  4.  5
    On Cardinal Characteristics of Yorioka Ideals.Miguel A. Cardona & Diego A. Mejía - 2019 - Mathematical Logic Quarterly 65 (2):170-199.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  2
    Controlling Cardinal Characteristics Without Adding Reals.Martin Goldstern, Jakob Kellner, Diego A. Mejía & Saharon Shelah - forthcoming - Journal of Mathematical Logic:2150018.
    We investigate the behavior of cardinal characteristics of the reals under extensions that do not add new [Formula: see text]-sequences. As an application, we show that consistently the following cardinal characteristics can be different: The characteristics in Cichoń’s diagram, plus [Formula: see text].. We also give constructions to alternatively separate other MA-numbers, namely: MA for [Formula: see text]-Knaster from MA for [Formula: see text]-Knaster; and MA for the union of all [Formula: see text]-Knaster forcings from MA for precaliber.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark