About this topic
Summary This category concerns approaches which modify quantum mechanics by adding a real dynamical process of wavefunction collapse. Such theories are typically empirically testable, since they agree with the predictions of quantum mechanics on the aggregrate behaviour of large systems but give different predictions on small enough scales. A major challenge for collapse theories is their reconcilation with special relativity.
Key works Ghirardi et al 1986 is the paper which launched the dynamical-collapse program. Tumulka 2006 provides a dynamical collapse theory based on 'flashes' which is compatible with special relativity.
Introductions Ghirardi & Pearle 1990
Related categories

98 found
Order:
1 — 50 / 98
  1. Can We Quarantine the Quantum Blight?Craig Callender - manuscript
    In the science fiction novel Quarantine, Greg Egan imagines a universe where interactions with human observers collapse quantum wavefunctions. Aliens, unable to collapse wavefunctions, tire of being slaughtered by these collapses. In response they erect an impenetrable shield around the solar system, protecting the rest of the universe from human interference and locking humanity into a starless Bubble. When confronting scientific realism and the quantum, many philosophers try to do the theoretical counterpart of this fictional practical strategy. Quantum mechanics is (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2. Does Protective Measurement Tell Us Anything About Quantum Reality?Amit Hagar - manuscript
    An analysis of the two routes through which one may disentangle a quantum system from a measuring apparatus, hence protect the state vector of a single quantum system from being disturbed by the measurement, reveals several loopholes in the argument from protective measurement to the reality of the state vector of a single quantum system.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  3. Macroscopic Quantum Superpositions Cannot Be Measured, Even in Principle.Andrew Knight - manuscript
    I show in this paper why the universality of quantum mechanics at all scales, which implies the possibility of Schrodinger's Cat and Wigner's Friend thought experiments, cannot be experimentally confirmed, and why macroscopic superpositions in general cannot be observed or measured, even in principle. Through the relativity of quantum superposition and the transitivity of correlation, it is shown that from the perspective of an object that is in quantum superposition relative to a macroscopic measuring device and observer, the observer is (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. Consciousness and the Collapse of the Wave Function.David J. Chalmers & Kelvin J. McQueen - forthcoming - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press.
    Does consciousness collapse the quantum wave function? This idea was taken seriously by John von Neumann and Eugene Wigner but is now widely dismissed. We develop the idea by combining a mathematical theory of consciousness (integrated information theory) with an account of quantum collapse dynamics (continuous spontaneous localization). Simple versions of the theory are falsified by the quantum Zeno effect, but more complex versions remain compatible with empirical evidence. In principle, versions of the theory can be tested by experiments with (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  5. If Consciousness Causes Collapse, the Zombie Argument Fails.Mousa Mohammadian - forthcoming - Synthese.
    Many non-physicalists, including Chalmers, hold that the zombie argument succeeds in rejecting the physicalist view of consciousness. Some non-physicalists, including, again, Chalmers, hold that quantum collapse interactionism, i.e., the idea that non-physical consciousness causes collapse of the wave function in phenomena such as quantum measurement, is a viable interactionist solution for the problem of the relationship between the physical world and the non-physical consciousness. In this paper, I argue that if QCI is true, the zombie argument fails. In particular, I (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6. Do Wave Functions Jump? Perspectives on the Work of GianCarlo Ghirardi.Valia Allori, Angelo Bassi, Detlef Duerr & Nino Zanghi (eds.) - 2020 - Springer.
    Book to honor the work of GianCarlo Ghirardi.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  7. On quantum entanglement, counterfactuals, causality and dispositions.Tomasz Bigaj - 2020 - Synthese 197 (10):4161-4185.
    The existence of non-local correlations between outcomes of measurements in quantum entangled systems strongly suggests that we are dealing with some form of causation here. An assessment of this conjecture in the context of the collapse interpretation of quantum mechanics is the primary goal of this paper. Following the counterfactual approach to causation, I argue that the details of the underlying causal mechanism which could explain the non-local correlations in entangled states strongly depend on the adopted semantics for counterfactuals. Several (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  8. La réalité face à la théorie quantique.Louis Marchildon - 2020 - Mεtascience 1:271-292.
    Tous les chercheurs intéressés aux fondements de la théorie quantique s’entendent sur le fait que celle-ci a profondément modifié notre conception de la réalité. Là s’arrête, toutefois, le consensus. Le formalisme de la théorie, non problématique, donne lieu à plusieurs interprétations très différentes, qui ont chacune des conséquences sur la notion de réalité. Cet article analyse comment l’interprétation de Copenhague, l’effondrement du vecteur d’état de von Neumann, l’onde pilote de Bohm et de Broglie et les mondes multiples d’Everett modifient, chacun (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  9. From No-Signaling to Spontaneous Localization Theories.Valia Allori - 2019 - International Journal of Quantum Foundations 5:1-10.
    GianCarlo Ghirardi passed away on June 1st, 201. He would have turned 83 on October 28, 2018. He was without any doubt one of the most prominent theoretical physicists working on the foundation and the philosophy of quantum mechanics. In this paper I review some of his achievements and underline how his research influenced the philosophy of physics community.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  10. Where Does Quanta Meet Mind?Carlos Montemayor & J. de Barros - 2019 - In J. De Barros & Carlos Montemayor (eds.), Quanta and Mind. Springer Verlag.
    The connection between quantum physics and the mind has been debated for almost a hundred years. There are several proposals as to how quantum effects might be relevant to understanding consciousness, including von Neumann’s Consciousness Causes Collapse interpretation (CCC), Penrose’s Orchestrated objective reduction (Orch OR), Atmanspacher quantum emergence theory, or Vitiello’s field theory. In this paper, we examine the CCC, in particular Stapp’s theory of interaction of mind and matter, and discuss how this imposes constraints to possible brain structures. We (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Reality and the Probability Wave.Daniel Shanahan - 2019 - International Journal of Quantum Foundations 5:51-68.
    Effects associated in quantum mechanics with a divisible probability wave are explained as physically real consequences of the equal but opposite reaction of the apparatus as a particle is measured. Taking as illustration a Mach-Zehnder interferometer operating by refraction, it is shown that this reaction must comprise a fluctuation in the reradiation field of complementary effect to the changes occurring in the photon as it is projected into one or other path. The evolution of this fluctuation through the experiment will (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  12. Quantum Mechanics Between Ontology and Epistemology.Florian J. Boge - 2018 - Springer (European Studies in Philosophy of Science).
    This book explores the prospects of rivaling ontological and epistemic interpretations of quantum mechanics (QM). It concludes with a suggestion for how to interpret QM from an epistemological point of view and with a Kantian touch. It thus refines, extends, and combines existing approaches in a similar direction. -/- The author first looks at current, hotly debated ontological interpretations. These include hidden variables-approaches, Bohmian mechanics, collapse interpretations, and the many worlds interpretation. He demonstrates why none of these ontological interpretations can (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. A New Way of Understanding the Wave Function: Shan Gao: The Meaning of the Wave Function. Cambridge: Cambridge University Press, 2017, X+189pp, $140 HB.Nicholas Maxwell - 2018 - Metascience 27 (1):87-90.
    This is a review of a book by Shan Gao called "The meaning of the wave function", Cambridge: Cambridge University Press, 2017.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  14. Relativity Theory May Not Have the Last Word on the Nature of Time: Quantum Theory and Probabilism.Nicholas Maxwell - 2017 - In G. Ghirardi & S. Wuppulur (eds.), Space, Time and the Limits of Human Understanding. Springer. pp. 109-124.
    Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and time (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15. Karl Popper, Science and Enlightenment.Nicholas Maxwell - 2017 - London: UCL Press.
    Karl Popper is famous for having proposed that science advances by a process of conjecture and refutation. He is also famous for defending the open society against what he saw as its arch enemies – Plato and Marx. Popper’s contributions to thought are of profound importance, but they are not the last word on the subject. They need to be improved. My concern in this book is to spell out what is of greatest importance in Popper’s work, what its failings (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Could Inelastic Interactions Induce Quantum Probabilistic Transitions?Nicholas Maxwell - 2017 - In Shan Gao (ed.), Collapse of the Wave Function. Cambridge: Cambridge University Press. pp. 257-273.
    What are quantum entities? Is the quantum domain deterministic or probabilistic? Orthodox quantum theory (OQT) fails to answer these two fundamental questions. As a result of failing to answer the first question, OQT is very seriously defective: it is imprecise, ambiguous, ad hoc, non-explanatory, inapplicable to the early universe, inapplicable to the cosmos as a whole, and such that it is inherently incapable of being unified with general relativity. It is argued that probabilism provides a very natural solution to the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17. Ontology for Collapse Theories.Wayne C. Myrvold - 2017 - In Shan Gao (ed.), Collapse of the Wave Function. Cambridge: Cambridge University Press.
    In this chapter, I will discuss what it takes for a dynamical collapse theory to provide a reasonable description of the actual world. I will start with discussions of what is required, in general, of the ontology of a physical theory, and then apply it to the quantum case. One issue of interest is whether a collapse theory can be a quantum state monist theory, adding nothing to the quantum state and changing only its dynamics. Although this was one of (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Primitive Ontology and the Classical World.Valia Allori - 2016 - In R. Kastner, J. Jeknic-Dugic & G. Jaroszkiewicz (eds.), Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific. pp. 175-199.
    In this paper I present the common structure of quantum theories with a primitive ontology, and discuss in what sense the classical world emerges from quantum theories as understood in this framework. In addition, I argue that the primitive ontology approach is better at answering this question than the rival wave function ontology approach or any other approach in which the classical world is nonreductively ‘emergent:’ even if the classical limit within this framework needs to be fully developed, the difficulties (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  19. Lessons of Bell's Theorem: Nonlocality, Yes; Action at a Distance, Not Necessarily.Wayne C. Myrvold - 2016 - In Shan Gao Mary Bell (ed.), Quantum Nonlocality and Reality: 50 Years of Bell's Theorem. Cambridge: Cambridge University Press. pp. 238-260.
    Fifty years after the publication of Bell's theorem, there remains some controversy regarding what the theorem is telling us about quantum mechanics, and what the experimental violations of Bell inequalities are telling us about the world. This chapter represents my best attempt to be clear about what I think the lessons are. In brief: there is some sort of nonlocality inherent in any quantum theory, and, moreover, in any theory that reproduces, even approximately, the quantum probabilities for the outcomes of (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Primitive Ontology in a Nutshell.Valia Allori - 2015 - International Journal of Quantum Foundations 1 (2):107-122.
    The aim of this paper is to summarize a particular approach of doing metaphysics through physics - the primitive ontology approach. The idea is that any fundamental physical theory has a well-defined architecture, to the foundation of which there is the primitive ontology, which represents matter. According to the framework provided by this approach when applied to quantum mechanics, the wave function is not suitable to represent matter. Rather, the wave function has a nomological character, given that its role in (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  21. Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  22. Laws of Nature and the Reality of the Wave Function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Four Tails Problems for Dynamical Collapse Theories.Kelvin J. McQueen - 2015 - Studies in the History and Philosophy of Modern Physics 49:10-18.
    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  24. Review Of: Christopher G. Timpson, Quantum Information Theory and the Foundations of Quantum Mechanics. [REVIEW]Michael E. Cuffaro - 2014 - Philosophy of Science 81 (4):681-684,.
  25. Primitive Ontology and the Structure of Fundamental Physical Theories.Valia Allori - 2013 - In Alyssa Ney & David Z. Albert (eds.), The Wave Function: Essays in the Metaphysics of Quantum Mechanics. Oxford University Press.
    For a long time it was believed that it was impossible to be realist about quantum mechanics. It took quite a while for the researchers in the foundations of physics, beginning with John Stuart Bell [Bell 1987], to convince others that such an alleged impossibility had no foundation. Nowadays there are several quantum theories that can be interpreted realistically, among which Bohmian mechanics, the GRW theory, and the many-worlds theory. The debate, though, is far from being over: in what respect (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  26. On the Metaphysics of Quantum Mechanics.Valia Allori - 2013 - In Soazig Lebihan (ed.), Precis de la Philosophie de la Physique. Vuibert.
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the wave function evolves in (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  27. A Conservative Solution to the Stochastic Dynamical Reduction Problem: Case of Spin-Z Measurement of a Spin-1/2 Particle.T. Halabi - 2013 - Foundations of Physics 43 (10):1252-1256.
    Stochastic dynamical reduction for the case of spin-z measurement of a spin-1/2 particle describes a random walk on the spin-z axis. The measurement’s result depends on which of the two points: spin-z=±ħ/2 is reached first. Born’s rule is recovered as long as the expected step size in spin-z is independent of proximity to endpoints. Here, we address the questions raised by this description: (1) When is collapse triggered, and what triggers it? (2) Why is the expected step size in spin-z (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  28. Veiled Realism? Review of B d'Espagnat's On Physics and Philosophy. [REVIEW]Amit Hagar - 2012 - Physics in Perspective (x).
  29. Relativistic State Reduction Dynamics.Daniel J. Bedingham - 2011 - Foundations of Physics 41 (4):686-704.
    A mechanism describing state reduction dynamics in relativistic quantum field theory is outlined. The mechanism involves nonlinear stochastic modifications to the standard description of unitary state evolution and the introduction of a relativistic field in which a quantized degree of freedom is associated to each point in spacetime. The purpose of this field is to mediate in the interaction between classical stochastic influences and conventional quantum fields. The equations of motion are Lorentz covariant, frame independent, and do not result in (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  30. Larc: A State Reduction Theory of Quantum Measurement. [REVIEW]Michael Simpson - 2011 - Foundations of Physics 41 (10):1648-1663.
    This proposes a new theory of Quantum measurement; a state reduction theory in which reduction is to the elements of the number operator basis of a system, triggered by the occurrence of annihilation or creation (or lowering or raising) operators in the time evolution of a system. It is from these operator types that the acronym ‘LARC’ is derived. Reduction does not occur immediately after the trigger event; it occurs at some later time with probability P t per unit time, (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Collapse Theories as Beable Theories.Guido Bacciagaluppi - 2010 - Manuscrito 33 (1):19-54.
    I discuss the interpretation of spontaneous collapse theories, with particular reference to Bell's suggestion that the stochastic jumps in the evolution of the wave function should be considered as local beables of the theory. I develop this analogy in some detail for the case of non-relativistic GRW-type theories, using a generalisation of Bell's notion of beables to POV measures. In the context of CSL-type theories, this strategy appears to fail, and I discuss instead Ghirardi and co-workers' mass-density interpretation and its (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32. La storia del gatto che era sia vivo che morto.Valia Allori - 2009 - In Enrico Giannetto (ed.), Da Archimede a Majorana: la fisica nel suo divenire. Guaraldi. pp. 273-283.
    Questa è la breve storia , forse un poco romanzata, del gatto che, se non forse il più citato, è di sicuro il più bistrattato della storia della fisica e della filosofia: il gatto di Schrödinger.
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  33. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of “actualization via wave function collapse” is accounted for solely (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle.Wayne C. Myrvold & Joy Christian (eds.) - 2009 - Springer.
    Part I Introduction -/- Passion at a Distance (Don Howard) -/- Part II Philosophy, Methodology and History -/- Balancing Necessity and Fallibilism: Charles Sanders Peirce on the Status of Mathematics and its Intersection with the Inquiry into Nature (Ronald Anderson) -/- Newton’s Methodology (William Harper) -/- Whitehead’s Philosophy and Quantum Mechanics (QM): A Tribute to Abner Shimony (Shimon Malin) -/- Bohr and the Photon (John Stachel) -/- Part III Bell’s Theorem and Nonlocality A. Theory -/- Extending the Concept of an (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  35. On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the Occasion of His 70th Birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Remove from this list   Direct download (15 more)  
     
    Export citation  
     
    Bookmark   88 citations  
  36. Fundamental Physical Theories: Mathematical Structures Grounded on a Primitive Ontology.Valia Allori - 2007 - Dissertation, Rutgers
    In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about a clear three-dimensional (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  37. Probability in GRW Theory.Roman Frigg & Carl Hoefer - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):371-389.
    GRW Theory postulates a stochastic mechanism assuring that every so often the wave function of a quantum system is `hit', which leaves it in a localised state. How are we to interpret the probabilities built into this mechanism? GRW theory is a firmly realist proposal and it is therefore clear that these probabilities are objective probabilities (i.e. chances). A discussion of the major theories of chance leads us to the conclusion that GRW probabilities can be understood only as either single (...)
    Remove from this list   Direct download (12 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  38. Interpreting Quantum Mechanics. A Realist View in Schrödinger's Vein.Lars-Göran Johansson - 2007 - Ashgate.
    Presenting a realistic interpretation of quantum mechanics and, in particular, a realistic view of quantum waves, this book defends, with one exception, ...
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  39. Empty Waves in Bohmian Quantum Mechanics.Peter J. Lewis - 2007 - British Journal for the Philosophy of Science 58 (4):787 - 803.
    There is a recurring line of argument in the literature to the effect that Bohm's theory fails to solve the measurement problem. I show that this argument fails in all its variants. Hence Bohm's theory, whatever its drawbacks, at least succeeds in solving the measurement problem. I briefly discuss a similar argument that has been raised against the GRW theory.
    Remove from this list   Direct download (12 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  40. Is the Quantum World Composed of Propensitons?Nicholas Maxwell - 2007 - In Mauricio Suarez (ed.), Probabilities, Causes and Propensities in Physics. Springer. pp. 221-243.
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein almost put (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  41. Bloch's Paradox and the Nonlocality of Chance.Brian A. Woodcock - 2007 - International Studies in the Philosophy of Science 21 (2):137 – 156.
    I show how an almost exclusive focus on the simplest case - the case of a single particle - along with the commonplace conception of the single-particle wave function as a scalar field on spacetime contributed to the perception, first brought to light by I. Bloch, that there existed a contradiction between quantum theory with instantaneous state collapses and special relativity. The incompatibility is merely apparent since treating wave-function values as hypersurface dependent avoids the contradiction. After clarifying confusions which fueled (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42. A Model of Wavefunction Collapse in Discrete Space-Time.Shan Gao - 2006 - International Journal of Theoretical Physics 45 (10):1965-1979.
    We give a new argument supporting a gravitational role in quantum collapse. It is demonstrated that the discreteness of space-time, which results from the proper combination of quantum theory and general relativity, may inevitably result in the dynamical collapse of thewave function. Moreover, the minimum size of discrete space-time yields a plausible collapse criterion consistent with experiments. By assuming that the source to collapse the wave function is the inherent random motion of particles described by the wave function, we further (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   10 citations  
  43. A Relativistic Version of the Ghirardi–Rimini–Weber Model.Roderich Tumulka - 2006 - Journal of Statistical Physics 125:821-840.
    Remove from this list  
     
    Export citation  
     
    Bookmark   79 citations  
  44. A Philosopher Looks at Quantum Mechanics (Again).Hilary Putnam - 2005 - British Journal for the Philosophy of Science 56 (4):615-634.
    A Philosopher Looks at Quantum Mechanics’ (Putnam [1965]) explained why the interpretation of quantum mechanics is a philosophical problem in detail, but with only the necessary minimum of technicalities, in the hope of making the difficulties intelligible to as wide an audience as possible. When I wrote it, I had not seen Bell ([1964]), nor (of course) had I seen Ghirardi et al. ([1986]). And I did not discuss the ‘Many Worlds’ interpretation. For all these reasons, I have decided to (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark   45 citations  
  45. Ghirardi GianCarlo, Sneaking a Look at God's Cards. Unraveling the Mysteries of Quantum Mechanics, Princeton University Press, Princeton, NJ (2004) ISBN 0-691-12139-7 (512pp, US$ 35), Translated From the Italian by Gerald Malsbary. [REVIEW]V. Vedral - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (4):730-731.
  46. Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy.John Stewart Bell - 2004 - Cambridge University Press.
    This book comprises all of John Bell's published and unpublished papers in the field of quantum mechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of our current understanding of (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   343 citations  
  47. The Problem of Ontology for Spontaneous Collapse Theories.Bradley Monton - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):407-421.
    The question of how to interpret spontaneous collapse theories of quantum mechanics is an open one. One issue involves what link one should use to go from wave function talk to talk of ordinary macroscopic objects. Another issue involves whether that link should be taken ontologically seriously. In this paper, I ague that the link should be taken ontologically seriously; I argue against an ontology consisting solely of the wave function. I then consider three possible links: the fuzzy link, the (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  48. Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  49. Wavefunction Collapse and Random Walk.Brian Collett & Philip Pearle - 2003 - Foundations of Physics 33 (10):1495-1541.
    Wavefunction collapse models modify Schrödinger's equation so that it describes the rapid evolution of a superposition of macroscopically distinguishable states to one of them. This provides a phenomenological basis for a physical resolution to the so-called “measurement problem.” Such models have experimentally testable differences from standard quantum theory. The most well developed such model at present is the Continuous Spontaneous Localization (CSL) model in which a universal fluctuating classical field interacts with particles to cause collapse. One “side effect” of this (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50. On the Property Structure of Realist Collapse Interpretations of Quantum Mechanics and the so-Called "Counting Anomaly".Roman Frigg - 2003 - International Studies in the Philosophy of Science 17 (1):43 – 57.
    The aim of this article is twofold. Recently, Lewis has presented an argument, now known as the "counting anomaly", that the spontaneous localization approach to quantum mechanics, suggested by Ghirardi, Rimini, and Weber, implies that arithmetic does not apply to ordinary macroscopic objects. I will take this argument as the starting point for a discussion of the property structure of realist collapse interpretations of quantum mechanics in general. At the end of this I present a proof of the fact that (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   10 citations  
1 — 50 / 98