About this topic
Summary Proponents of decoherence-based interpretations of quantum mechanics aim to solve the measurement problem by appeal to the physical process of decoherence, without committing themselves to the full ontology of the many-worlds interpretation. 
Key works The theory of decoherent histories was developed independently by Robert Griffiths and by Murray Gell-Mann and James Hartle. Roland Omnes further developed and formalized Griffiths' approach. The best places to start are Gell-Mann and Hartle's original article (Gell-Mann & Hartle 1990), and the books by Griffiths (Griffiths 2002) and Omnes (Omnes 1999).
Introductions Griffiths 1999
Related categories

76 found
Order:
1 — 50 / 76
  1. Does Protective Measurement Tell Us Anything About Quantum Reality?Amit Hagar - manuscript
    An analysis of the two routes through which one may disentangle a quantum system from a measuring apparatus, hence protect the state vector of a single quantum system from being disturbed by the measurement, reveals several loopholes in the argument from protective measurement to the reality of the state vector of a single quantum system.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  2. Matters of Time Directionality in Quantum Physics.Jean-Christophe Lindner - manuscript
    This is the second of two reports concerning the issue of time directionality in fundamental theoretical physics. Here a fresh perspective is offered on several aspects of the problem of the interpretation of quantum theory which centers around a reconsideration of the significance of the requirement of time reversal symmetry. Following a critical review of early time-symmetric formulations of quantum mechanics, it is argued that a more consistent approach must overcome the contradictions of the orthodox interpretation that follow from its (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  3. The Role of Decoherence in Quantum Theory.Guido Bacciagaluppi - forthcoming - Stanford Encyclopedia of Philosophy.
    Remove from this list  
     
    Export citation  
     
    Bookmark   8 citations  
  4. The Best of Many Worlds, or, is Quantum Decoherence the Manifestation of a Disposition?Florian J. Boge - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66:135-144.
    In this paper I investigate whether the phenomenon of quantum decoherence, the vanishing of interference and detectable entanglement on quantum systems in virtue of interactions with the environment, can be understood as the manifestation of a disposition. I will highlight the advantages of this approach as a realist interpretation of the quantum formalism, and demonstrate how such an approach can benefit from advances in the metaphysics of dispositions. I will also confront some commonalities with and differences to the many worlds (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  5. Classicality First: Why Zurek’s Existential Interpretation of Quantum Mechanics Implies Copenhagen.Javier Sánchez-Cañizares - 2019 - Foundations of Science 24 (2):275-285.
    Most interpretations of Quantum Mechanics alternative to Copenhagen interpretation try to avoid the dualistic flavor of the latter. One of the basic goals of the former is to avoid the ad hoc introduction of observers and observations as an inevitable presupposition of physics. Non-Copenhagen interpretations usually trust in decoherence as a necessary mechanism to obtain a well-defined, observer-free transition from a unitary quantum description of the universe to classicality. Even though decoherence does not solve the problem of the definite outcomes, (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Simon Friederich: Interpreting Quantum Theory: A Therapeutic Approach: Palgrave Macmillan, New York, 2015, Xiii + 202 Pp. [REVIEW]Florian Boge - 2017 - Erkenntnis 82 (2):443-449.
    Simon Friederich’s Therapeutic Approach to quantum theory (QT) sheds new light on the status of the quantum state. In particular, Friederich presents revisionary ideas on how to exactly differentiate objective from subjective elements of the theory and thereby improves upon previous stabs at an epistemic interpretation of quantum states. The book not only provides interesting perspectives for the cognoscenti but is also written with sufficient care and free of unnecessary technicalities so as to be accessible and worth reading for the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7. Interpretation Neutrality in the Classical Domain of Quantum Theory.Joshua Rosaler - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:54-72.
    I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie-Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  8. “Formal” Versus “Empirical” Approaches to Quantum–Classical Reduction.Joshua Rosaler - 2015 - Topoi 34 (2):325-338.
    I distinguish two types of reduction within the context of quantum-classical relations, which I designate “formal” and “empirical”. Formal reduction holds or fails to hold solely by virtue of the mathematical relationship between two theories; it is therefore a two-place, a priori relation between theories. Empirical reduction requires one theory to encompass the range of physical behaviors that are well-modeled in another theory; in a certain sense, it is a three-place, a posteriori relation connecting the theories and the domain of (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  9. Preface Special Issue Foundations of Physics.Dennis Dieks, Décio Krause & Christian de Ronde - 2014 - Foundations of Physics 44 (12):1245-1245.
    The foundations of quantum mechanics are attracting new and significant interest in the scientific community due to the recent striking experimental and technical progress in the fields of quantum computation, quantum teleportation and quantum information processing. However, at a more fundamental level the understanding and manipulation of these novel phenomena require not only new laboratory techniques but also new understanding, development and interpretation of the formalism of quantum mechanics itself, a mathematical structure whose connection to what happens in physical reality (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10. On the Ollivier–Poulin–Zurek Definition of Objectivity.Chris Fields - 2014 - Axiomathes 24 (1):137-156.
    The Ollivier–Poulin–Zurek definition of objectivity provides a philosophical basis for the environment as witness formulation of decoherence theory and hence for quantum Darwinism. It is shown that no account of the reference of the key terms in this definition can be given that does not render the definition inapplicable within quantum theory. It is argued that this is not the fault of the language used, but of the assumption that the laws of physics are independent of Hilbert-space decomposition. All evidence (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Quantum Decoherence: A Logical Perspective.Sebastian Fortin & Leonardo Vanni - 2014 - Foundations of Physics 44 (12):1258-1268.
    The so-called classical limit of quantum mechanics is generally studied in terms of the decoherence of the state operator that characterizes a system. This is not the only possible approach to decoherence. In previous works we have presented the possibility of studying the classical limit in terms of the decoherence of relevant observables of the system. On the basis of this approach, in this paper we introduce the classical limit from a logical perspective, by studying the way in which the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Measurements According to Consistent Histories.Elias Okon & Daniel Sudarsky - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):7-12.
    We critically evaluate the treatment of the notion of measurement in the Consistent Histories approach to quantum mechanics. We find such a treatment unsatisfactory because it relies, often implicitly, on elements external to those provided by the formalism. In particular, we note that, in order for the formalism to be informative when dealing with measurement scenarios, one needs to assume that the appropriate choice of framework is such that apparatuses are always in states of well defined pointer positions after measurements. (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  13. How Much Time Does a Measurement Take?Carlos Alexandre Brasil, L. A. de Castro & R. D. J. Napolitano - 2013 - Foundations of Physics 43 (5):642-655.
    We consider the problem of measurement using the Lindblad equation, which allows the introduction of time in the interaction between the measured system and the measurement apparatus. We use analytic results, valid for weak system-environment coupling, obtained for a two-level system in contact with a measurer (Markovian interaction) and a thermal bath (non-Markovian interaction), where the measured observable may or may not commute with the system-environment interaction. Analysing the behavior of the coherence, which tends to a value asymptotically close to (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  14. Exploring Philosophical Implications of Quantum Decoherence.Elise M. Crull - 2013 - Philosophy Compass 8 (9):875-885.
    Quantum decoherence is receiving a great deal of attention today not only in theoretical and experimental physics but also in branches of science as diverse as molecular biology, biochemistry, and even neuropsychology. It is no surprise that it is also beginning to appear in various philosophical debates concerning the fundamental structure of the world. The purpose of this article is primarily to acquaint non-specialists with quantum decoherence and clarify related concepts, and secondly to sketch its possible implications – independent of (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  15. Decoherence: The View From the History and the Philosophy of Science.Amit Hagar - 2012 - Phil. Trans. Royal Soc. London A 375 (1975).
    We present a brief history of decoherence, from its roots in the foundations of classical statistical mechanics, to the current spin bath models in condensed matter physics. We analyze the philosophical import of the subject matter in three different foundational problems, and find that, contrary to the received view, decoherence is less instrumental to their solutions than it is commonly believed. What makes decoherence more philosophically interesting, we argue, are the methodological issues it draws attention to, and the question of (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  16. Veiled Realism? Review of B d'Espagnat's On Physics and Philosophy. [REVIEW]Amit Hagar - 2012 - Physics in Perspective (x).
  17. Quantum Decoherence in a Pragmatist View: Dispelling Feynman’s Mystery. [REVIEW]Richard Healey - 2012 - Foundations of Physics 42 (12):1534-1555.
    The quantum theory of decoherence plays an important role in a pragmatist interpretation of quantum theory. It governs the descriptive content of claims about values of physical magnitudes and offers advice on when to use quantum probabilities as a guide to their truth. The content of a claim is to be understood in terms of its role in inferences. This promises a better treatment of meaning than that offered by Bohr. Quantum theory models physical systems with no mention of measurement: (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Illusory Decoherence.Sam Kennerly - 2012 - Foundations of Physics 42 (9):1200-1209.
    Suppose a quantum experiment includes one or more random processes. Then the results of repeated measurements may appear consistent with irreversible decoherence even if the system’s evolution prior to measurement is reversible and unitary. Two thought experiments are constructed as examples.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19. Generation of Highly Resilient to Decoherence Macroscopic Quantum Superpositions Via Phase-Covariant Quantum Cloning.Francesco De Martini, Fabio Sciarrino, Nicolò Spagnolo & Chiara Vitelli - 2011 - Foundations of Physics 41 (3):492-508.
    In this paper we analyze the resilience to decoherence of the Macroscopic Quantum Superpositions (MQS) generated by optimal phase-covariant quantum cloning according to two coherence criteria, both based on the concept of Bures distance in Hilbert spaces. We show that all MQS generated by this system are characterized by a high resilience to decoherence processes. This analysis is supported by the results of recent MQS experiments of N=3.5×104 particles.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20. Decoherence and Wave Function Collapse.Roland Omnès - 2011 - Foundations of Physics 41 (12):1857-1880.
    The possibility of consistency between the basic quantum principles of quantum mechanics and wave function collapse is reexamined. A specific interpretation of environment is proposed for this aim and is applied to decoherence. When the organization of a measuring apparatus is taken into account, this approach leads also to an interpretation of wave function collapse, which would result in principle from the same interactions with environment as decoherence. This proposal is shown consistent with the non-separable character of quantum mechanics.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Alisa Bokulich * Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism.Michael Berry - 2010 - British Journal for the Philosophy of Science 61 (4):889-895.
  22. The Problem of Identifying the System and the Environment in the Phenomenon of Decoherence.Olimpia Lombardi, Sebastian Fortin & Mario Castagnino - 2010 - In Henk W. de Regt (ed.), Epsa Philosophy of Science: Amsterdam 2009. Springer. pp. 161--174.
    According to the environment-induced approach to decoherence, the split of the Universe into the degrees of freedom which are of direct interest to the observer and the remaining degrees of freedom is absolutely essential for decoherence. However, the EID approach offers no general criterion for deciding where to place the “cut” between system and environment: the environment may be “external” or “internal”. The main purpose of this paper is to argue that decoherence is a relative phenomenon, better understood from a (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Application of Quantum Darwinism to Cosmic Inflation: An Example of the Limits Imposed in Aristotelian Logic by Information-Based Approach to Gödel’s Incompleteness. [REVIEW]Nicolás F. Lori & Alex H. Blin - 2010 - Foundations of Science 15 (2):199-211.
    Gödel’s incompleteness applies to any system with recursively enumerable axioms and rules of inference. Chaitin’s approach to Gödel’s incompleteness relates the incompleteness to the amount of information contained in the axioms. Zurek’s quantum Darwinism attempts the physical description of the universe using information as one of its major components. The capacity of quantum Darwinism to describe quantum measurement in great detail without requiring ad-hoc non-unitary evolution makes it a good candidate for describing the transition from quantum to classical. A baby-universe (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept of “actualization via wave function collapse” is accounted for solely (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25. The Montevideo Interpretation of Quantum Mechanics: Frequently Asked Questions.Rodolfo Gambini & Jorge Pullin - 2009 - Journal of Physics Conference Series 174:012003.
    In a series of recent papers we have introduced a new interpretation of quantum mechanics, which for brevity we will call the Montevideo interpretation. In it, the quantum to classical transition is achieved via a phenomenon called “undecidability” which stems from environmental decoherence supplemented with a fundamental mechanism of loss of coherence due to gravity. Due to the fact that the interpretation grew from several results that are dispersed in the literature, we put together this straightforward-to-read article addressing some of (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26. Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007, Corrected Second Printing, 2008), Xv+416pp., ISBN 978-3-540-35773-5, Hardcover, 74.85 Euro. [REVIEW]N. P. Landsman - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (1):94-95.
  27. Classicality Without Decoherence: A Reply to Schlosshauer. [REVIEW]Leslie Ballentine - 2008 - Foundations of Physics 38 (10):916-922.
    Schlosshauer has criticized the conclusion of Wiebe and Ballentine (Phys. Rev. A 72:022109, 2005) that decoherence is not essential for the emergence of classicality from quantum mechanics. I reply to the issues raised in his critique, which range from the interpretation of quantum mechanics to the criterion for classicality, and conclude that the role of decoherence in these issues is much more restricted than is often claimed.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Quantum Mechanics at the Crossroads, James Evans, Alan S. Thorndike. Springer, Berlin (2007). 249pp., Hardcover, US$ 69.95, ISBN: 978-3-540-32663-. [REVIEW]Larsson Jan-Åke - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (1):229-230.
  29. Decoherence And Ontology.Roland Omnès - 2008 - Ontology Studies: Cuadernos de Ontología:55-63.
  30. Interpreting Quantum Interference Using a Berry’s Phase-Like Quantity.M. J. Rave - 2008 - Foundations of Physics 38 (12):1073-1081.
    We show that quantum interference can be interpreted in terms of a phase invariant quantity, not unlike the Berry’s phase. Under this interpretation, closed loops in time become fundamental quantum entities, and all quantum states become periodic. Decoherence is then seen to occur naturally as a consequence. This formalism, although counterintuitive, provides another useful way of assigning meaning to quantum probabilities and quasi-probabilities.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31. A General Conceptual Framework for Decoherence in Closed and Open Systems.Mario Castagnino, Roberto Laura & Olimpia Lombardi - 2007 - Philosophy of Science 74 (5):968-980.
    In this paper we argue that the formalisms for decoherence originally devised to deal just with closed or open systems can be subsumed under a general conceptual framework, in such a way that they cooperate in the understanding of the same physical phenomenon. This new perspective dissolves certain conceptual difficulties of the einselection program but, at the same time, shows that the openness of the quantum system is not the essential ingredient for decoherence. †To contact the authors, please write to: (...)
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  32. Decision Theory and Information Propagation in Quantum Physics.Alan Forrester - 2007 - Studies in History and Philosophy of Modern Physics 38 (4):815-831.
    In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule pk=|ψk|2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129–3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415–438] to deriving the Born rule for quantum probabilities on the grounds that it courts (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  33. Between Classical and Quantum.Nicolaas P. Landsman - 2007 - Handbook of the Philosophy of Science 2:417--553.
    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. For example, we sketch how certain intuitive ideas of the founders of quantum theory have fared in the light of current mathematical knowledge. One such idea that has certainly stood the test of time is (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   57 citations  
  34. Quantum Observables Algebras and Abstract Differential Geometry: The Topos-Theoretic Dynamics of Diagrams of Commutative Algebraic Localizations.Elias Zafiris - 2007 - International Journal of Theoretical Physics 46 (2):319-382.
    We construct a sheaf-theoretic representation of quantum observables algebras over a base category equipped with a Grothendieck topology, consisting of epimorphic families of commutative observables algebras, playing the role of local arithmetics in measurement situations. This construction makes possible the adaptation of the methodology of Abstract Differential Geometry (ADG), à la Mallios, in a topos-theoretic environment, and hence, the extension of the “mechanism of differentials” in the quantum regime. The process of gluing information, within diagrams of commutative algebraic localizations, generates (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. The Decoherence Puzzle.P. C. E. Stamp - 2006 - Studies in History and Philosophy of Modern Physics 37 (3):467-497.
  36. Self‐Induced Decoherence and the Classical Limit of Quantum Mechanics.Mario Castagnino & Olimpia Lombardi - 2005 - Philosophy of Science 72 (5):764-776.
    In this paper we argue that the emergence of the classical world from the underlying quantum reality involves two elements: self-induced decoherence and macroscopicity. Self-induced decoherence does not require the openness of the system and its interaction with the environment: a single closed system can decohere when its Hamiltonian has continuous spectrum. We show that, if the system is macroscopic enough, after self-induced decoherence it can be described as an ensemble of classical distributions weighted by their corresponding probabilities. We also (...)
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  37. Quantum Decoherence and the Approach to Equilibrium.Meir Hemmo & Orly Shenker - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (4):626-648.
    We discuss a recent proposal by Albert to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function of Ghirardi, Rimini and Weber. We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems, \eg Joos and Zeh and Zurek and Paz. This paper presents the two approaches and discusses their advantages. The problems they (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  38. The Role of Decoherence in Quantum Mechanics.Guido Bacciagaluppi - 2003 - Stanford Encyclopedia of Philosophy.
    Interference phenomena are a well-known and crucial feature of quantum mechanics, the two-slit experiment providing a standard example. There are situations, however, in which interference effects are (artificially or spontaneously) suppressed. We shall need to make precise what this means, but the theory of decoherence is the study of (spontaneous) interactions between a system and its environment that lead to such suppression of interference. This study includes detailed modelling of system-environment interactions, derivation of equations (‘master equations’) for the (reduced) state (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   60 citations  
  39. When Worlds Collide: Quantum Probability From Observer Selection? [REVIEW]Robin Hanson - 2003 - Foundations of Physics 33 (7):1129-1150.
    In Everett's many worlds interpretation, quantum measurements are considered to be decoherence events. If so, then inexact decoherence may allow large worlds to mangle the memory of observers in small worlds, creating a cutoff in observable world size. Smaller world are mangled and so not observed. If this cutoff is much closer to the median measure size than to the median world size, the distribution of outcomes seen in unmangled worlds follows the Born rule. Thus deviations from exact decoherence can (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  40. Remarks on the Direction of Time in Quantum Mechanics.Meir Hemmo - 2003 - Philosophy of Science 70 (5):1458-1471.
    I argue that in the many worlds interpretation of quantum mechanics time has no fundamental direction. I further discuss a way to recover thermodynamics in this interpretation using decoherence theory (Zurek and Paz 1994). Albert's proposal to recover thermodynamics from the collapse theory of Ghirardi et al. (1986) is also considered.
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Quantum Decoherence and the Approach to Equilibrium.Meir Hemmo & Orly Shenker - 2003 - Philosophy of Science 70 (2):330-358.
    We discuss a recent proposal by Albert (1994a; 1994b; 2000, ch. 7) to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function by Ghirardi, Rimini, and Weber (1986). We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems (e.g., Joos and Zeh 1985; Zurek and Paz 1994). This paper presents the two approaches (...)
    Remove from this list   Direct download (13 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  42. Consistent Quantum Theory - Robert B. Griffiths, Cambridge, 2001, Pp. 400, US $95, ISBN 0521803497.R. Omnes - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (2):329-331.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  43. Seven Steps Toward the Classical World.Valia Allori, Detlef Duerr, Nino Zanghi & Sheldon Goldstein - 2002 - Journal of Optics B 4:482–488.
    Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard quantum mechanics only the wave function or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics, which, like classical mechanics, is a theory about real objects. In Bohmian terms, the problem of the classical (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  44. Consistent Quantum Theory.Robert B. Griffiths - 2002 - Cambridge UP.
    A clear and accessible presentation of quantum theory, suitable for researchers yet accessible to graduates.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   56 citations  
  45. Remarks on Space-Time and Locality in Everett's Interpretation.Guido Bacciagaluppi - 2001 - In T. Placek & J. Butterfield (eds.), Non-Locality and Modality. Kluwer Academic Publishers. pp. 105--122.
    Interpretations that follow Everett's idea that the universal wave function contains a multiplicity of coexisting realities, usually claim to give a completely local account of quantum mechanics. That is, they claim to give an account that avoids both a non-local collapse of the wave function, and the action at a distance needed in hidden variable theories in order to reproduce the quantum mechanical violation of the Bell inequalities. In this paper, I sketch how these claims can be substantiated in two (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  46. Can We Explain Thermodynamics By Quantum Decoherence?Meir Hemmo & Orly Shenker - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):555-568.
    Can we explain the laws of thermodynamics, in particular the irreversible increase of entropy, from the underlying quantum mechanical dynamics? Attempts based on classical dynamics have all failed. Albert (1994a,b; 2000) proposed a way to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wavefunction of Ghirardi, Rimini and Weber (1986). In this paper we propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  47. Book Review: Quantum Measurements and Decoherence. Models and Phenomenology. By Michael B. Mensky. [REVIEW]H. -Hv Borzeszkowski - 2000 - Foundations of Physics 30 (11):1991-1994.
  48. Revised Proof of the Uniqueness Theorem for ‘No Collapse’ Interpretations of Quantum Mechanics.Jeffrey Bub, Rob Clifton & Sheldon Goldstein - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (1):95-98.
    We show that the Bub-Clifton uniqueness theorem (1996) for 'no collapse' interpretations of quantum mechanics can be proved without the 'weak separability' assumption.
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Review Articles-Decoherence and the Appearance of a Classical World in Quantum Theory.Matthew J. Donald - 1999 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 30 (3):437-442.
  50. Consistent Histories and Quantum Measurements.Robert Griffiths - 1999 - Physics Today (52):26-31.
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 76