Contents
200 found
Order:
1 — 50 / 200
  1. Mathematical Gettier Cases and Their Implications.Neil Barton - manuscript
    Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed actual) in mathematical (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. Ethics and Mathematics: The Reliability Challenge. Clarke-Doane - manuscript
    It is sometimes alleged that “the reliability challenge” to moral realism is equally compelling against mathematical realism. This allegation is of interest. The reliability challenge to moral realism is increasingly taken to be the most serious challenge to moral realism. However, the specific considerations that are said to motivate it – such as considerations of rational dubitability and evolutionary influence – are widely held not to motivate an analogous challenge to mathematical realism. If it turned out that, in fact, they (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  3. How To Argue (And How Not To).Danny Frederick - manuscript
    I distinguish arguments and arguing and I explain some important logical features of arguments. I then explain how philosophers have been misled, apparently by Euclid, into giving seriously mistaken accounts of arguing. I give a few examples. I then offer a seven-step guide on how to argue. After that, I conclude.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. A Two-Dimensionalist Solution to the Access Problem.Hasen Khudairi - manuscript
    I argue that the two-dimensional intensions of epistemic two-dimensional semantics provide a compelling solution to the access problem.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  5. Making Mathematics Visible: Mathematical Knowledge and How it Differs from Mathematical Understanding.Anne Newstead - manuscript
    This is a grant proposal for a research project conceived and written as a Research Associate at UNSW in 2011. I have plans to spin it into an article.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  6. A Theory of Implicit Commitment for Mathematical Theories.Mateusz Łełyk & Carlo Nicolai -
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains so far an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  7. A Reassessment of Cantorian Abstraction based on the ε-operator.Nicola Bonatti - forthcoming - Synthese.
    Cantor's abstractionist account of cardinal numbers has been criticized by Frege as a psychological theory of numbers which leads to contradiction. The aim of the paper is to meet these objections by proposing a reassessment of Cantor's proposal based upon the set theoretic framework of Bourbaki - called BK - which is a First-order set theory extended with Hilbert's ε-operator. Moreover, it is argued that the BK system and the ε-operator provide a faithful reconstruction of Cantor's insights on cardinal numbers. (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8. Debunking Arguments: Mathematics, Logic, and Modal Security.Justin Clarke-Doane - forthcoming - In Robert Richards and Michael Ruse (ed.), The Cambridge Handbook of Evolutionary Ethics. Cambridge University Press.
    I discuss the structure of genealogical debunking arguments. I argue that they undermine our mathematical beliefs if they undermine our moral beliefs. The contrary appearance stems from a confusion of arithmetic truths with (first-order) logical truths, or from a confusion of reliability with justification. I conclude with a discussion of the cogency of debunking arguments, in light of the above. Their cogency depends on whether information can undermine all of our beliefs of a kind, F, without giving us direct reason (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  10. Transferable and Fixable Proofs.William D'Alessandro - forthcoming - Episteme.
    A proof P of a theorem T is transferable when a typical expert can become convinced of T solely on the basis of their prior knowledge and the information contained in P. Easwaran has argued that transferability is a constraint on acceptable proof. Meanwhile, a proof P is fixable when it’s possible for other experts to correct any mistakes P contains without having to develop significant new mathematics. Habgood-Coote and Tanswell have observed that some acceptable proofs are both fixable and (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  11. Deep Disagreement in Mathematics.Andrew Aberdein - 2023 - Global Philosophy 33 (1):1-27.
    Disagreements that resist rational resolution, often termed “deep disagreements”, have been the focus of much work in epistemology and informal logic. In this paper, I argue that they also deserve the attention of philosophers of mathematics. I link the question of whether there can be deep disagreements in mathematics to a more familiar debate over whether there can be revolutions in mathematics. I propose an affirmative answer to both questions, using the controversy over Shinichi Mochizuki’s work on the abc conjecture (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  12. What is Mathematical Rigor?John Burgess & Silvia De Toffoli - 2022 - Aphex 25:1-17.
    Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematical practice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  13. Mathematics and Metaphilosophy.Justin Clarke-Doane - 2022 - Cambridge: Cambridge University Press.
    This book discusses the problem of mathematical knowledge, and its broader philosophical ramifications. It argues that the challenge to explain the (defeasible) justification of our mathematical beliefs (‘the justificatory challenge’), arises insofar as disagreement over axioms bottoms out in disagreement over intuitions. And it argues that the challenge to explain their reliability (‘the reliability challenge’), arises to the extent that we could have easily had different beliefs. The book shows that mathematical facts are not, in general, empirically accessible, contra Quine, (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  14. How Does Hands-On Making Attitude Predict Epistemic Curiosity and Science, Technology, Engineering, and Mathematics Career Interests? Evidence From an International Exhibition of Young Inventors.Yuting Cui, Jon-Chao Hong, Chi-Ruei Tsai & Jian-Hong Ye - 2022 - Frontiers in Psychology 13:859179.
    Whether the hands-on experience of creating inventions can promote Students’ interest in pursuing a science, technology, engineering, and mathematics (STEM) career has not been extensively studied. In a quantitative study, we drew on the attitude-behavior-outcome framework to explore the correlates between hands-on making attitude, epistemic curiosities, and career interest. This study targeted students who joined the selection competition for participating in the International Exhibition of Young Inventors (IEYI) in Taiwan. The objective of the invention exhibition is to encourage young students (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15. Objectivity and Rigor in Classical Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2022 - Noesis 38:195-212.
    The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th-century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their distinctive conception of (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  16. Review of Keith Hossack, Knowledge and the Philosophy of Number: What Numbers Are and How They Are Known[REVIEW]James Franklin - 2022 - Philosophia Mathematica 30 (1):127-129.
    Hossack presents a clearly argued case that numbers (cardinals, ordinals, and ratios) are not objects (as Platonists think), nor properties of objects, but properties of quantities.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17. Visual Proofs as Counterexamples to the Standard View of Informal Mathematical Proofs?Simon Weisgerber - 2022 - In Giardino V., Linker S., Burns R., Bellucci F., Boucheix Jm & Viana P. (eds.), Diagrammatic Representation and Inference. Diagrams 2022. Springer, Cham. pp. 37-53.
    A passage from Jody Azzouni’s article “The Algorithmic-Device View of Informal Rigorous Mathematical Proof” in which he argues against Hamami and Avigad’s standard view of informal mathematical proof with the help of a specific visual proof of 1/2+1/4+1/8+1/16+⋯=1 is critically examined. By reference to mathematicians’ judgments about visual proofs in general, it is argued that Azzouni’s critique of Hamami and Avigad’s account is not valid. Nevertheless, by identifying a necessary condition for the visual proof to be considered a proper proof (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  18. Does Anti-exceptionalism about Logic Entail that Logic is A Posteriori?Jessica M. Wilson & Stephen Biggs - 2022 - Synthese 200 (3):1-17.
    The debate between exceptionalists and anti-exceptionalists about logic is often framed as concerning whether the justification of logical theories is a priori or a posteriori (for short: whether logic is a priori or a posteriori). As we substantiate (S1), this framing more deeply encodes the usual anti-exceptionalist thesis that logical theories, like scientific theories, are abductively justified, coupled with the common supposition that abduction is an a posteriori mode of inference, in the sense that the epistemic value of abduction is (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19. The Epistemology of Meta-theoretic Properties of Mathematical Theories: Consistency, Soundness, Categoricity.Matteo Zicchetti - 2022 - Dissertation, University of Bristol
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  20. Dialogue Types, Argumentation Schemes, and Mathematical Practice: Douglas Walton and Mathematics.Andrew Aberdein - 2021 - Journal of Applied Logics 8 (1):159-182.
    Douglas Walton’s multitudinous contributions to the study of argumentation seldom, if ever, directly engage with argumentation in mathematics. Nonetheless, several of the innovations with which he is most closely associated lend themselves to improving our understanding of mathematical arguments. I concentrate on two such innovations: dialogue types (§1) and argumentation schemes (§2). I argue that both devices are much more applicable to mathematical reasoning than may be commonly supposed.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21. Critique of Impure Reason: Horizons of Possibility and Meaning.Steven James Bartlett - 2021 - Salem, USA: Studies in Theory and Behavior.
    This is a second Philpapers record for this book which links only to HAL's downloadable copies of the work. Please refer to the main Philpapers entry for this book which can be found by searching under the book's title. ●●●●● PLEASE NOTE: This is the corrected 2nd eBook edition, 2021. ●●●●● _Critique of Impure Reason_ has now also been published in a printed edition. To reduce the otherwise high price of this scholarly, technical book of nearly 900 pages and make (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  22. Modal Security.Justin Clarke-Doane & Dan Baras - 2021 - Philosophy and Phenomenological Research 102 (1):162-183.
    Modal Security is an increasingly discussed proposed necessary condition on undermining defeat. Modal Security says, roughly, that if evidence undermines (rather than rebuts) one’s belief, then one gets reason to doubt the belief's safety or sensitivity. The primary interest of the principle is that it seems to entail that influential epistemological arguments, including Evolutionary Debunking Arguments against moral realism and the Benacerraf-Field Challenge for mathematical realism, are unsound. The purpose of this paper is to critically examine Modal Security in detail. (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  23. Neues System der philosophischen Wissenschaften im Grundriss. Band II: Mathematik und Naturwissenschaft.Dirk Hartmann - 2021 - Paderborn: Mentis.
    Volume II deals with philosophy of mathematics and general philosophy of science. In discussing theoretical entities, the notion of antirealism formulated in Volume I is further elaborated: Contrary to what is usually attributed to antirealism or idealism, the author does not claim that theoretical entities do not really exist, but rather that their existence is not independent of the possibility to know about them.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24. Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - 2021 - Analytic Philosophy 62 (3):252-274.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  25. Impurity in Contemporary Mathematics.Ellen Lehet - 2021 - Notre Dame Journal of Formal Logic 62 (1):67-82.
    Purity has been recognized as an ideal of proof. In this paper, I consider whether purity continues to have value in contemporary mathematics. The topics (e.g., algebraic topology, algebraic geometry, category theory) and methods of contemporary mathematics often favor unification and generality, values that are more often associated with impurity rather than purity. I will demonstrate this by discussing several examples of methods and proofs that highlight the epistemic significance of unification and generality. First, I discuss the examples of algebraic (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  26. Why Did Weyl Think That Emmy Noether Made Algebra the Eldorado of Axiomatics?Iulian D. Toader - 2021 - Hopos: The Journal of the International Society for the History of Philosophy of Science 11 (1):122-142.
    This paper argues that Noether's axiomatic method in algebra cannot be assimilated to Weyl's late view on axiomatics, for his acquiescence to a phenomenological epistemology of correctness led Weyl to resist Noether's principle of detachment.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27. Euclid's Error: The Mathematics behind Foucault, Deleuze, and Nietzsche.Ilexa Yardley - 2021 - Intelligent Design Center.
    We have to go all the way back to Euclid, and, actually, before, to figure out the basis for representation, and therefore, interpretation. Which is, pure and simple, the conservation of a circle. As articulated by Foucault, Deleuze, and Nietzsche. 'Pi' (in mathematics) is the background state for everything (a.k.a. 'mind').Providing the explanation for (and the current popularity, and, thus, the 'genius' behind) NFT (non fungible tokens). 'Reality' has, finally, caught up with the 'truth.'.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  28. Mathematics is Ontology? A Critique of Badiou's Ontological Framing of Set Theory.Roland Bolz - 2020 - Filozofski Vestnik 2 (41):119-142.
    This article develops a criticism of Alain Badiou’s assertion that “mathematics is ontology.” I argue that despite appearances to the contrary, Badiou’s case for bringing set theory and ontology together is problematic. To arrive at this judgment, I explore how a case for the identification of mathematics and ontology could work. In short, ontology would have to be characterised to make it evident that set theory can contribute to it fundamentally. This is indeed how Badiou proceeds in Being and Event. (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  29. The ethics–mathematics analogy.Justin Clarke-Doane - 2020 - Philosophy Compass 15 (1).
    Ethics and mathematics have long invited comparisons. On the one hand, both ethical and mathematical propositions can appear to be knowable a priori, if knowable at all. On the other hand, mathematical propositions seem to admit of proof, and to enter into empirical scientific theories, in a way that ethical propositions do not. In this article, I discuss apparent similarities and differences between ethical (i.e., moral) and mathematical knowledge, realistically construed -- i.e., construed as independent of human mind and languages. (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Ptolemy’s Philosophy: Mathematics as a Way of Life. By Jacqueline Feke. Princeton: Princeton University Press, 2018. Pp. xi + 234. [REVIEW]Nicholas Danne - 2020 - Metaphilosophy 51 (1):151-155.
  31. Measuring the present: What is the duration of ‘now’?Brittany A. Gentry - 2020 - Synthese 198 (10):9357-9371.
    Presentists argue that only the present is real. In this paper, I ask what duration the present has on a presentist’s account. While several answers are available, each of them requires the adoption of a measure and, with that adoption, additional work must be done to define the present. Whether presentists conclude that a reductionist account of duration is acceptable, that duration is not an applicable concept for their notion of the present, that the present has a duration of zero, (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Cognitive processing of spatial relations in Euclidean diagrams.Yacin Hamami, Milan N. A. van der Kuil, Ineke J. M. van der Ham & John Mumma - 2020 - Acta Psychologica 205:1--10.
    The cognitive processing of spatial relations in Euclidean diagrams is central to the diagram-based geometric practice of Euclid's Elements. In this study, we investigate this processing through two dichotomies among spatial relations—metric vs topological and exact vs co-exact—introduced by Manders in his seminal epistemological analysis of Euclid's geometric practice. To this end, we carried out a two-part experiment where participants were asked to judge spatial relations in Euclidean diagrams in a visual half field task design. In the first part, we (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Peacocke on magnitudes and numbers.Øystein Linnebo - 2020 - Philosophical Studies 178 (8):2717-2729.
    Peacocke’s recent The Primacy of Metaphysics covers a wide range of topics. This critical discussion focuses on the book’s novel account of extensive magnitudes and numbers. First, I further develop and defend Peacocke’s argument against nominalistic approaches to magnitudes and numbers. Then, I argue that his view is more Aristotelian than Platonist because reified magnitudes and numbers are accounted for via corresponding properties and these properties’ application conditions, and because the mentioned objects have a “shallow nature” relative to the corresponding (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. The Principle of Equivalence as a Criterion of Identity.Ryan Samaroo - 2020 - Synthese 197 (8):3481-3505.
    In 1907 Einstein had the insight that bodies in free fall do not “feel” their own weight. This has been formalized in what is called “the principle of equivalence.” The principle motivated a critical analysis of the Newtonian and special-relativistic concepts of inertia, and it was indispensable to Einstein’s development of his theory of gravitation. A great deal has been written about the principle. Nearly all of this work has focused on the content of the principle and whether it has (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  36. 私は奇妙なループです」のレビュー(I am a Strange Loop) by Douglas Hofstadter (2007) (レビュー改訂2019).Michael Richard Starks - 2020 - In 地獄へようこそ 赤ちゃん、気候変動、ビットコイン、カルテル、中国、民主主義、多様性、ディスジェニックス、平等、ハッカー、人権、イスラム教、自由主義、繁栄、ウェブ、カオス、飢餓、病気、暴力、人工知能、戦争. Las Vegas, NV, USA: Reality Press. pp. 102-118.
    ホフスタッター牧師による原理主義自然主義教会からの最新の説教。彼のはるかに有名な(または容赦ない哲学的誤りで悪名高い)作品ゴーデル、エッシャー、バッハのように、それは表面的な妥当性を持っていますが、こ れが哲学的なものと実際の科学的問題を混ぜ合わせた横行するサイエンティズムであることを理解すれば(つまり、唯一の本当の問題は、私たちがプレイすべき言語ゲームです)、その後、ほとんどすべての関心が消えます 。進化心理学とヴィトゲンシュタインの仕事に基づく分析のフレームワークを提供しています(最近の著作で更新されて以来)。 現代の2つのシス・エムスの見解から人間の行動のための包括的な最新の枠組みを望む人は、私の著書「ルートヴィヒ・ヴィトゲンシュタインとジョン・サールの第2回(2019)における哲学、心理学、ミンと言語の論 理的構造」を参照することができます。私の著作の多くにご興味がある人は、運命の惑星における「話す猿--哲学、心理学、科学、宗教、政治―記事とレビュー2006-2019 第3回(2019)」と21世紀4日(2019年)の自殺ユートピア妄想st Century 4th ed (2019)などを見ることができます .
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  37. Can the Pyrrhonian Sceptic Suspend Belief Regarding Scientific Definitions?Benjamin Wilck - 2020 - History of Philosophy & Logical Analysis 23 (1):253-288.
    In this article, I tackle a heretofore unnoticed difficulty with the application of Pyrrhonian scepticism to science. Sceptics can suspend belief regarding a dogmatic proposition only by setting up opposing arguments for and against that proposition. Since Sextus provides arguments exclusively against particular geometrical definitions in Adversus Mathematicos III, commentators have argued that Sextus’ method is not scepticism, but negative dogmatism. However, commentators have overlooked the fact that arguments in favour of particular geometrical definitions were absent in ancient geometry, and (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38. Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Wigner’s Puzzle on Applicability of Mathematics: On What Table to Assemble It?Cătălin Bărboianu - 2019 - Axiomathes 1:1-30.
    Attempts at solving what has been labeled as Eugene Wigner’s puzzle of applicability of mathematics are still far from arriving at an acceptable solution. The accounts developed to explain the “miracle” of applied mathematics vary in nature, foundation, and solution, from denying the existence of a genuine problem to designing structural theories based on mathematical formalism. Despite this variation, all investigations treated the problem in a unitary way with respect to the target, pointing to one or two ‘why’ or ‘how’ (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40. Functional explanation in mathematics.Matthew Inglis & Juan Pablo Mejía Ramos - 2019 - Synthese 198 (26):6369-6392.
    Mathematical explanations are poorly understood. Although mathematicians seem to regularly suggest that some proofs are explanatory whereas others are not, none of the philosophical accounts of what such claims mean has become widely accepted. In this paper we explore Wilkenfeld’s suggestion that explanations are those sorts of things that generate understanding. By considering a basic model of human cognitive architecture, we suggest that existing accounts of mathematical explanation are all derivable consequences of Wilkenfeld’s ‘functional explanation’ proposal. We therefore argue that (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  41. Cognitive and Computational Complexity: Considerations from Mathematical Problem Solving.Markus Pantsar - 2019 - Erkenntnis 86 (4):961-997.
    Following Marr’s famous three-level distinction between explanations in cognitive science, it is often accepted that focus on modeling cognitive tasks should be on the computational level rather than the algorithmic level. When it comes to mathematical problem solving, this approach suggests that the complexity of the task of solving a problem can be characterized by the computational complexity of that problem. In this paper, I argue that human cognizers use heuristic and didactic tools and thus engage in cognitive processes that (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  42. Quine and the Incoherence of the Indispensability Argument.Michael J. Shaffer - 2019 - Logos and Episteme 10 (2):207-213.
    It is an under-appreciated fact that Quine's rejection of the analytic/synthetic distinction, when coupled with some other plausible and related views, implies that there are serious difficulties in demarcating empirical theories from pure mathematical theories within the Quinean framework. This is a serious problem because there seems to be a principled difference between the two disciplines that cannot apparently be captured in the orthodox Quienan framework. For the purpose of simplicity let us call this Quine's problem of demarcation. In this (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  43. ¿Qué significa paraconsistente, indescifrable, aleatorio, computable e incompleto? Una revisión de la Manera de Godel: explota en un mundo indecible (Godel’s Way: exploits into an undecidable world) por Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160P (2012) (revisión revisada 2019).Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 44-63.
    En ' Godel’s Way ', tres eminentes científicos discuten temas como la indecisión, la incompleta, la aleatoriedad, la computabilidad y la paraconsistencia. Me acerco a estas cuestiones desde el punto de vista de Wittgensteinian de que hay dos cuestiones básicas que tienen soluciones completamente diferentes. Existen las cuestiones científicas o empíricas, que son hechos sobre el mundo que necesitan ser investigados observacionalmente y cuestiones filosóficas en cuanto a cómo el lenguaje se puede utilizar inteligiblemente (que incluyen ciertas preguntas en matemáticas (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  44. Reseña de ‘I am a Strange Loop’ (Soy un Lazo Extraño) de Douglas Hofstadter (2007) (revisión revisada 2019).Michael Richard Starks - 2019 - In Delirios Utópicos Suicidas en el Siglo 21 La filosofía, la naturaleza humana y el colapso de la civilización Artículos y reseñas 2006-2019 4a Edición. Las Vegas, NV USA: Reality Press. pp. 205-221.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  45. Mathematical shortcomings in a simulated universe.Samuel Alexander - 2018 - The Reasoner 12 (9):71-72.
    I present an argument that for any computer-simulated civilization we design, the mathematical knowledge recorded by that civilization has one of two limitations. It is untrustworthy, or it is weaker than our own mathematical knowledge. This is paradoxical because it seems that nothing prevents us from building in all sorts of advantages for the inhabitants of said simulation.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  46. Towards an Account of Epistemic Luck for Necessary Truths.James Henry Collin - 2018 - Acta Analytica 33 (4):483-504.
    Modal epistemologists parse modal conditions on knowledge in terms of metaphysical possibilities or ways the world might have been. This is problematic. Understanding modal conditions on knowledge this way has made modal epistemology, as currently worked out, unable to account for epistemic luck in the case of necessary truths, and unable to characterise widely discussed issues such as the problem of religious diversity and the perceived epistemological problem with knowledge of abstract objects. Moreover, there is reason to think that this (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  47. Wittgenstein und die Philosophie der Mathematik.Bromand Joachim & Reichert Bastian (eds.) - 2018 - Mentis Verlag.
    Ludwig Wittgenstein selbst hielt seine Überlegungen zur Mathematik für seinen bedeutendsten Beitrag zur Philosophie. So beabsichtigte er zunächst, dem Thema einen zentralen Teil seiner Philosophischen Untersuchungen zu widmen. Tatsächlich wird kaum irgendwo sonst in Wittgensteins Werk so deutlich, wie radikal die Konsequenzen seines Denkens eigentlich sind. Vermutlich deshalb haben Wittgensteins Bemerkungen zur Mathematik unter all seinen Schriften auch den größten Widerstand provoziert: Seine Bemerkungen zu den Gödel’schen Unvollständigkeitssätzen bezeichnete Gödel selbst als Nonsens, und Alan Turing warf Wittgenstein vor, dass aufgrund (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  48. Thin Objects: An Abstractionist Account.Øystein Linnebo - 2018 - Oxford: Oxford University Press.
    Are there objects that are “thin” in the sense that their existence does not make a substantial demand on the world? Frege famously thought so. He claimed that the equinumerosity of the knives and the forks suffices for there to be objects such as the number of knives and the number of forks, and for these objects to be identical. The idea of thin objects holds great philosophical promise but has proved hard to explicate. This book attempts to develop the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  49. Early numerical cognition and mathematical processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  50. Cardinals, Ordinals, and the Prospects for a Fregean Foundation.Eric Snyder, Stewart Shapiro & Richard Samuels - 2018 - In Anthony O'Hear (ed.), Metaphysics. Cambridge University Press.
    There are multiple formal characterizations of the natural numbers available. Despite being inter-derivable, they plausibly codify different possible applications of the naturals – doing basic arithmetic, counting, and ordering – as well as different philosophical conceptions of those numbers: structuralist, cardinal, and ordinal. Nevertheless, some influential philosophers of mathematics have argued for a non-egalitarian attitude according to which one of those characterizations is more “legitmate” in virtue of being “more basic” or “more fundamental”. This paper addresses two related issues. First, (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 200