This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related categories

313 found
Order:
1 — 50 / 313
  1. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These ontological (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. Frege's Theorem in Plural Logic.Simon Hewitt - manuscript
    A version of Frege's theorem can be proved in a plural logic with pair abstraction. We talk through this and discuss the philosophical implications of the result.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Frege's Theorem and Foundations for Arithmetic.Edward N. Zalta - Spring 2015 - In Stanford Encyclopedia of Philosophy.
    The principal goal of this entry is to present Frege's Theorem (i.e., the proof that the Dedekind-Peano axioms for number theory can be derived in second-order logic supplemented only by Hume's Principle) in the most logically perspicuous manner. We strive to present Frege's Theorem by representing the ideas and claims involved in the proof in clear and well-established modern logical notation. This prepares one to better prepared to understand Frege's own notation and derivations, and read Frege's original work (whether in (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Review of "Frege: Philosophy of Mathematics". [REVIEW]Marco Antonio Ruffino - forthcoming - Manuscrito.
    In this review I briefly explain the most important points of each chapter of Dummett's book, and critically discuss some of them. Special attention is given to the criticisms of Crispin Wright's interpretation of Frege's Platonism, and also to Dummett's interpretation of the role(s) of the context principle in Frege's thought.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  5. Neologicism, Frege's Constraint, and the Frege‐Heck Condition.Eric Snyder, Richard Samuels & Stewart Shapiro - forthcoming - Noûs.
    One of the more distinctive features of Bob Hale and Crispin Wright’s neologicism about arithmetic is their invocation of Frege’s Constraint – roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. In particular, they maintain that, if adopted, Frege’s Constraint adjudicates in favor of their preferred foundation – Hume’s Principle – and against alternatives, such as the Dedekind-Peano axioms. In what follows we establish two main claims. First, we show (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Logic and Sets.Marta Vlasáková - forthcoming - Logic and Logical Philosophy:1.
    The notion of the extension of a concept has been used in logic for a long time. It is usually considered to be closely connected to the intuitive notion of a set and thus seems as though it should be embedded into set theory. However, there are significant differences between this “logical” concept of set and the notion of set (class) as defined via standard axiomatic systems of set theory; it may, therefore, be quite misleading to consider the two concepts (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7. Arithmetic, Logicism, and Frege’s Definitions.Timothy Perrine - 2021 - International Philosophical Quarterly 61 (1):5-25.
    This paper describes both an exegetical puzzle that lies at the heart of Frege’s writings—how to reconcile his logicism with his definitions and claims about his definitions—and two interpretations that try to resolve that puzzle, what I call the “explicative interpretation” and the “analysis interpretation.” This paper defends the explicative interpretation primarily by criticizing the most careful and sophisticated defenses of the analysis interpretation, those given my Michael Dummett and Patricia Blanchette. Specifically, I argue that Frege’s text either are inconsistent (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  8. The Metametaphysics of Neo-Fregeanism.Matti Eklund - 2020 - In Ricki Bliss & James Miller (eds.), The Routledge Handbook of Metametaphysics. Routledge.
  9. Extensions, Numbers and Frege’s Project of Logic as Universal Language.Nora Grigore - 2020 - Axiomathes 30 (5):577-588.
    Frege’s famous definition of number famously uses the concept of “extension”. Extensions, in the Fregean framework, are susceptible to bringing many difficulties, and, some say, even paradoxes. Therefore, neo-logicist programs want to avoid the problems and to replace the classical Fregean definition of number with Hume’s Principle. I argue that this move, even if it makes sense from a computational point of view, is at odds with Frege’s larger philosophical project. For Frege, I claim, extensions were an important part of (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. Extensions, Numbers and Frege’s Project of Logic as Universal Language.Nora Grigore - 2020 - Axiomathes 30 (5):577-588.
    Frege’s famous definition of number famously uses the concept of “extension”. Extensions, in the Fregean framework, are susceptible to bringing many difficulties, and, some say, even paradoxes. Therefore, neo-logicist programs want to avoid the problems and to replace the classical Fregean definition of number with Hume’s Principle. I argue that this move, even if it makes sense from a computational point of view, is at odds with Frege’s larger philosophical project. For Frege, I claim, extensions were an important part of (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  11. Extensions, Numbers and Frege’s Project of Logic as Universal Language.Nora Grigore - 2020 - Axiomathes 30 (5):577-588.
    Frege’s famous definition of number famously uses the concept of “extension”. Extensions, in the Fregean framework, are susceptible to bringing many difficulties, and, some say, even paradoxes. Therefore, neo-logicist programs want to avoid the problems and to replace the classical Fregean definition of number with Hume’s Principle. I argue that this move, even if it makes sense from a computational point of view, is at odds with Frege’s larger philosophical project. For Frege, I claim, extensions were an important part of (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  12. Numbers, Empiricism and the A Priori.Olga Ramírez Calle - 2020 - Logos and Episteme 11 (2):149-177.
    The present paper deals with the ontological status of numbers and considers Frege´s proposal in Grundlagen upon the background of the Post-Kantian semantic turn in analytical philosophy. Through a more systematic study of his philosophical premises, it comes to unearth a first level paradox that would unset earlier still than it was exposed by Russell. It then studies an alternative path that, departing from Frege’s initial premises, drives to a conception of numbers as synthetic a priori in a more Kantian (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Reflections on Frege’s Theory of Real Numbers†.Peter Roeper - 2020 - Philosophia Mathematica 28 (2):236-257.
    ABSTRACT Although Frege’s theory of real numbers in Grundgesetze der Arithmetik, Vol. II, is incomplete, it is possible to provide a logicist justification for the approach he is taking and to construct a plausible completion of his account by an extrapolation which parallels his theory of cardinal numbers.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14. The Principle of Equivalence as a Criterion of Identity.Ryan Samaroo - 2020 - Synthese 197 (8):3481-3505.
    In 1907 Einstein had the insight that bodies in free fall do not “feel” their own weight. This has been formalized in what is called “the principle of equivalence.” The principle motivated a critical analysis of the Newtonian and special-relativistic concepts of inertia, and it was indispensable to Einstein’s development of his theory of gravitation. A great deal has been written about the principle. Nearly all of this work has focused on the content of the principle and whether it has (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  15. Saying Something About a Concept: Frege on Statements of Number.Mark Textor - 2020 - History and Philosophy of Logic 42 (1):60-71.
    The paper gives a historically informed reconstruction of Frege's view of statements of number. The reconstruction supports Frege's claim that a statement can be 'about a concept' although it does...
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16. Why Did Frege Reject the Theory of Types?Wim Vanrie - 2020 - British Journal for the History of Philosophy:1-20.
    I investigate why Frege rejected the theory of types, as Russell presented it to him in their correspondence. Frege claims that it commits one to violations of the law of excluded middle, but this complaint seems to rest on a dogmatic refusal to take Russell’s proposal seriously on its own terms. What is at stake is not so much the truth of a law of logic, but the structure of the hierarchy of the logical categories, something Frege seems to neglect. (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  17. Frege on Referentiality and Julius Caesar in Grundgesetze Section 10.Bruno Bentzen - 2019 - Notre Dame Journal of Formal Logic 60 (4):617-637.
    This paper aims to answer the question of whether or not Frege's solution limited to value-ranges and truth-values proposed to resolve the "problem of indeterminacy of reference" in section 10 of Grundgesetze is a violation of his principle of complete determination, which states that a predicate must be defined to apply for all objects in general. Closely related to this doubt is the common allegation that Frege was unable to solve a persistent version of the Caesar problem for value-ranges. It (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  18. Hilbertian Structuralism and the Frege-Hilbert Controversy†.Fiona T. Doherty - 2019 - Philosophia Mathematica 27 (3):335-361.
    ABSTRACT This paper reveals David Hilbert’s position in the philosophy of mathematics, circa 1900, to be a form of non-eliminative structuralism, predating his formalism. I argue that Hilbert withstands the pressing objections put to him by Frege in the course of the Frege-Hilbert controversy in virtue of this early structuralist approach. To demonstrate that this historical position deserves contemporary attention I show that Hilbertian structuralism avoids a recent wave of objections against non-eliminative structuralists to the effect that they cannot distinguish (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Formal Arithmetic Before Grundgesetze.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 497-537.
    A speculative investigation of how Frege's logical views change between Begriffsschrift and Grundgesetze and how this might have affected the formal development of logicism.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20. The Basic Laws of Cardinal Number.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 1-30.
    An overview of what Frege accomplishes in Part II of Grundgesetze, which contains proofs of axioms for arithmetic and several additional results concerning the finite, the infinite, and the relationship between these notions. One might think of this paper as an extremely compressed form of Part II of my book Reading Frege's Grundgesetze.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21. The Problem of Fregean Equivalents.Joongol Kim - 2019 - Dialectica 73 (3):367-394.
    It would seem that some statements like ‘There are exactly four moons of Jupiter’ and ‘The number of moons of Jupiter is four’ have the same truth-conditions and yet differ in ontological commitment. One strategy to resolve this paradoxical phenomenon is to insist that the statements have not only the same truth-conditions but also the same ontological commitments; the other strategy is to reject the presumption that they have the same truth-conditions. This paper critically examines some popular versions of these (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22. Frege’s Constraint and the Nature of Frege’s Foundational Program.Marco Panza & Andrea Sereni - 2019 - Review of Symbolic Logic 12 (1):97-143.
    Recent discussions on Fregean and neo-Fregean foundations for arithmetic and real analysis pay much attention to what is called either ‘Application Constraint’ or ‘Frege Constraint’, the requirement that a mathematical theory be so outlined that it immediately allows explaining for its applicability. We distinguish between two constraints, which we, respectively, denote by the latter of these two names, by showing how$AC$generalizes Frege’s views while$FC$comes closer to his original conceptions. Different authors diverge on the interpretation of$FC$and on whether it applies to (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Frege’s Philosophy of Geometry.Matthias Schirn - 2019 - Synthese 196 (3):929-971.
    In this paper, I critically discuss Frege’s philosophy of geometry with special emphasis on his position in The Foundations of Arithmetic of 1884. In Sect. 2, I argue that that what Frege calls faculty of intuition in his dissertation is probably meant to refer to a capacity of visualizing geometrical configurations structurally in a way which is essentially the same for most Western educated human beings. I further suggest that according to his Habilitationsschrift it is through spatial intuition that we (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24. On the Philosophical Significance of Frege’s Constraint.Andrea Sereni - 2019 - Philosophia Mathematica 27 (2):244–275.
    Foundational projects disagree on whether pure and applied mathematics should be explained together. Proponents of unified accounts like neologicists defend Frege’s Constraint (FC), a principle demanding that an explanation of applicability be provided by mathematical definitions. I reconsider the philosophical import of FC, arguing that usual conceptions are biased by ontological assumptions. I explore more reasonable weaker variants — Moderate and Modest FC — arguing against common opinion that ante rem structuralism (and other) views can meet them. I dispel doubts (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  25. The Geometrical Basis of Arithmetical Knowledge: Frege & Dehaene.Sorin Costreie - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):361-370.
    Frege writes in Numbers and Arithmetic about kindergarten-numbers and “an a priori mode of cognition” that they may have “a geometrical source.” This resembles recent findings on arithmetical cognition. In my paper, I explore this resemblance between Gottlob Frege’s later position concerning the geometrical source of arithmetical knowledge, and some current positions in the literature dedicated to arithmetical cognition, especially that of Stanislas Dehaene. In my analysis, I shall try to mainly see to what extent logicism is compatible with intuitionism.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  26. Julius Caesar and the Numbers.Nathan Salmón - 2018 - Philosophical Studies 175 (7):1631-1660.
    This article offers an interpretation of a controversial aspect of Frege’s The Foundations of Arithmetic, the so-called Julius Caesar problem. Frege raises the Caesar problem against proposed purely logical definitions for ‘0’, ‘successor’, and ‘number’, and also against a proposed definition for ‘direction’ as applied to lines in geometry. Dummett and other interpreters have seen in Frege’s criticism a demanding requirement on such definitions, often put by saying that such definitions must provide a criterion of identity of a certain kind. (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27. Frege’s Critique of Formalism.Sören Stenlund - 2018 - In Gisela Bengtsson, Simo Säätelä & Alois Pichler (eds.), New Essays on Frege: Between Science and Literature. Springer. pp. 75-86.
    This paper deals with Frege’s early critique of formalism in the philosophy of mathematics. Frege opposes meaningful arithmetic, according to which arithmetical formulas express a sense and arithmetical rules are grounded in the reference of the signs, to formal arithmetic, exemplified in particular by J. Thomae, whose “formal standpoint”, according to Frege, is that arithmetic should be understood as a manipulation of meaningless figures. However, Frege’s discussion of Thomae’s analogy between arithmetic and chess shows that Frege does not understand his (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Frege's Cardinals Do Not Always Obey Hume's Principle.Gregory Landini - 2017 - History and Philosophy of Logic 38 (2):127-153.
    Hume's Principle, dear to neo-Logicists, maintains that equinumerosity is both necessary and sufficient for sameness of cardinal number. All the same, Whitehead demonstrated in Principia Mathematica's logic of relations that Cantor's power-class theorem entails that Hume's Principle admits of exceptions. Of course, Hume's Principle concerns cardinals and in Principia's ‘no-classes’ theory cardinals are not objects in Frege's sense. But this paper shows that the result applies as well to the theory of cardinal numbers as objects set out in Frege's Grundgesetze. (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  29. Philosophy of Mathematics.Øystein Linnebo - 2017 - Princeton, NJ: Princeton University Press.
    Mathematics is one of the most successful human endeavors—a paradigm of precision and objectivity. It is also one of our most puzzling endeavors, as it seems to deliver non-experiential knowledge of a non-physical reality consisting of numbers, sets, and functions. How can the success and objectivity of mathematics be reconciled with its puzzling features, which seem to set it apart from all the usual empirical sciences? This book offers a short but systematic introduction to the philosophy of mathematics. Readers are (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   6 citations  
  30. Frege sobre Kant: uma motivação filosófica do logicismo.Manuela Teles - 2017 - Con-Textos Kantianos 6:207-236.
    Em 1882, Frege escreveu a Anton Marty que o seu projeto era provar que as leis fundamentais da aritmética são analíticas no sentido de Kant. A resposta a esta carta foi assinada por Carl Stumpf, que aconselhou Frege a escrever sobre as suas motivações para a criação da linguagem formal que apresentou na sua Begriffsschrift, escrita três anos antes. Os Grundlagen der Arithmetik, que Frege publicou dois anos depois, podem ser vistos como o seu resultado por seguir o conselho de (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  31. Frege on Mathematical Progress.Patricia Blanchette - 2016 - In Sorin Costreie (ed.), Early Analytic Philosophy – New Perspectives on the Tradition. Springer. pp. 3 - 19.
    Frege claims that mathematical theories are collections of thoughts, and that scientific continuity turns on thought-identity. This essay explores the difficulties posed for this conception of mathematics by the conceptual development canonically involved in mathematical progress. The central difficulties are that mathematical development often involves sufficient conceptual progress that mature versions of theories do not involve easily-recognizable synonyms of their earlier versions, and that the introduction of new elements in the domains of mathematical theories would seem to conflict with Frege’s (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. The Breadth of the Paradox.Patricia Blanchette - 2016 - Philosophia Mathematica 24 (1):30-49.
    This essay examines Frege's reaction to Russell's Paradox and his views about the grounding of existence claims in mathematics. It is argued that Frege's strict requirements on existential proofs would rule out the attempt to ground arithmetic in. It is hoped that this discussion will help to clarify the ways in which Frege's position is both coherent and significantly different from the neo-logicist position on the issues of: what's required for proofs of existence; the connection between models, consistency, and existence; (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Frege's Cardinals and Neo-Logicism.Roy T. Cook - 2016 - Philosophia Mathematica 24 (1):60-90.
    Gottlob Frege defined cardinal numbers in terms of value-ranges governed by the inconsistent Basic Law V. Neo-logicists have revived something like Frege's original project by introducing cardinal numbers as primitive objects, governed by Hume's Principle. A neo-logicist foundation for set theory, however, requires a consistent theory of value-ranges of some sort. Thus, it is natural to ask whether we can reconstruct the cardinal numbers by retaining Frege's definition and adopting an alternative consistent principle governing value-ranges. Given some natural assumptions regarding (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  34. Frege's Recipe.Roy T. Cook & Philip A. Ebert - 2016 - Journal of Philosophy 113 (7):309-345.
    In this paper, we present a formal recipe that Frege followed in his magnum opus “Grundgesetze der Arithmetik” when formulating his definitions. This recipe is not explicitly mentioned as such by Frege, but we will offer strong reasons to believe that Frege applied it in developing the formal material of Grundgesetze. We then show that a version of Basic Law V plays a fundamental role in Frege’s recipe and, in what follows, we will explicate what exactly this role is and (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Frege on Sense Identity, Basic Law V, and Analysis.Philip A. Ebert - 2016 - Philosophia Mathematica 24 (1):9-29.
    The paper challenges a widely held interpretation of Frege's conception of logic on which the constituent clauses of basic law V have the same sense. I argue against this interpretation by first carefully looking at the development of Frege's thoughts in Grundlagen with respect to the status of abstraction principles. In doing so, I put forth a new interpretation of Grundlagen §64 and Frege's idea of ‘recarving of content’. I then argue that there is strong evidence in Grundgesetze that Frege (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. Frege’s ‘On the Foundations of Geometry’ and Axiomatic Metatheory.Günther Eder - 2016 - Mind 125 (497):5-40.
    In a series of articles dating from 1903 to 1906, Frege criticizes Hilbert’s methodology of proving the independence and consistency of various fragments of Euclidean geometry in his Foundations of Geometry. In the final part of the last article, Frege makes his own proposal as to how the independence of genuine axioms should be proved. Frege contends that independence proofs require the development of a ‘new science’ with its own basic truths. This paper aims to provide a reconstruction of this (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Is Frege's Definition of the Ancestral Adequate?Richard Heck - 2016 - Philosophia Mathematica 24 (1):91-116.
    Why should one think Frege's definition of the ancestral correct? It can be proven to be extensionally correct, but the argument uses arithmetical induction, and that seems to undermine Frege's claim to have justified induction in purely logical terms. I discuss such circularity objections and then offer a new definition of the ancestral intended to be intensionally correct; its extensional correctness then follows without proof. This new definition can be proven equivalent to Frege's without any use of arithmetical induction. This (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38. On the Nature, Status, and Proof of Hume’s Principle in Frege’s Logicist Project.Matthias Schirn - 2016 - In Sorin Costreie (ed.), Early Analytic Philosophy – New Perspectives on the Tradition. Springer Verlag.
    Sections “Introduction: Hume’s Principle, Basic Law V and Cardinal Arithmetic” and “The Julius Caesar Problem in Grundlagen—A Brief Characterization” are peparatory. In Section “Analyticity”, I consider the options that Frege might have had to establish the analyticity of Hume’s Principle, bearing in mind that with its analytic or non-analytic status the intended logical foundation of cardinal arithmetic stands or falls. Section “Thought Identity and Hume’s Principle” is concerned with the two criteria of thought identity that Frege states in 1906 and (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Number Sentences and Specificational Sentences: Reply to Moltmann.Robert Schwartzkopff - 2016 - Philosophical Studies 173 (8):2173-2192.
    Frege proposed that sentences like ‘The number of planets is eight’ be analysed as identity statements in which the number words refer to numbers. Recently, Friederike Moltmann argued that, pace Frege, such sentences be analysed as so-called specificational sentences in which the number words have the same non-referring semantic function as the number word ‘eight’ in ‘There are eight planets’. The aim of this paper is two-fold. First, I argue that Moltmann fails to show that such sentences should be analysed (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Fragments of Frege’s Grundgesetze and Gödel’s Constructible Universe.Sean Walsh - 2016 - Journal of Symbolic Logic 81 (2):605-628.
    Frege's Grundgesetze was one of the 19th century forerunners to contemporary set theory which was plagued by the Russell paradox. In recent years, it has been shown that subsystems of the Grundgesetze formed by restricting the comprehension schema are consistent. One aim of this paper is to ascertain how much set theory can be developed within these consistent fragments of the Grundgesetze, and our main theorem shows that there is a model of a fragment of the Grundgesetze which defines a (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  41. Logicism as Making Arithmetic Explicit.Vojtěch Kolman - 2015 - Erkenntnis 80 (3):487-503.
    This paper aims to shed light on the broader significance of Frege’s logicism against the background of discussing and comparing Wittgenstein’s ‘showing/saying’-distinction with Brandom’s idiom of logic as the enterprise of making the implicit rules of our linguistic practices explicit. The main thesis of this paper is that the problem of Frege’s logicism lies deeper than in its inconsistency : it lies in the basic idea that in arithmetic one can, and should, express everything that is implicitly presupposed so that (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42. Grundlagen, Section 64: Frege's Discussion of Definitions by Abstraction in Historical Context.Paolo Mancosu - 2015 - History and Philosophy of Logic 36 (1):62-89.
    I offer in this paper a contextual analysis of Frege's Grundlagen, section 64. It is surprising that with so much ink spilled on that section, the sources of Frege's discussion of definitions by abstraction have remained elusive. I hope to have filled this gap by providing textual evidence coming from, among other sources, Grassmann, Schlömilch, and the tradition of textbooks in geometry for secondary schools . In addition, I put Frege's considerations in the context of a widespread debate in Germany (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  43. Did Frege Commit a Cardinal Sin?A. C. Paseau - 2015 - Analysis 75 (3):379-386.
    Frege’s _Basic Law V_ is inconsistent. The reason often given is that it posits the existence of an injection from the larger collection of first-order concepts to the smaller collection of objects. This article explains what is right and what is wrong with this diagnosis.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Frege, Indispensability, and the Compatibilist Heresy.Andrea Sereni - 2015 - Philosophia Mathematica 23 (1):11-30.
    In Grundgesetze, Vol. II, §91, Frege argues that ‘it is applicability alone which elevates arithmetic from a game to the rank of a science’. Many view this as an in nuce statement of the indispensability argument later championed by Quine. Garavaso has questioned this attribution. I argue that even though Frege's applicability argument is not a version of ia, it facilitates acceptance of suitable formulations of ia. The prospects for making the empiricist ia compatible with a rationalist Fregean framework appear (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Frege Meets Brouwer.Stewart Shapiro & Øystein Linnebo - 2015 - Review of Symbolic Logic 8 (3):540-552.
    We show that, by choosing definitions carefully, a version of Frege's theorem can be proved in intuitionistic logic.
    Remove from this list   Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark   4 citations  
  46. Frege on the Foundation of Geometry in Intuition.Jeremy Shipley - 2015 - Journal for the History of Analytical Philosophy 3 (6).
    I investigate the role of geometric intuition in Frege’s early mathematical works and the significance of his view of the role of intuition in geometry to properly understanding the aims of his logicist project. I critically evaluate the interpretations of Mark Wilson, Jamie Tappenden, and Michael Dummett. The final analysis that I provide clarifies the relationship of Frege’s restricted logicist project to dominant trends in German mathematical research, in particular to Weierstrassian arithmetization and to the Riemannian conceptual/geometrical tradition at Göttingen. (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Three Kantian Strands in Frege’s View of Arithmetic.Gilead Bar-Elli - 2014 - Journal for the History of Analytical Philosophy 2 (7).
    On the background of explaining their different notions of analyticity, their different views on definitions, and some aspects of Frege’s notion of sense, three important Kantian strands that interweave into Frege’s view are exposed. First, Frege’s remarkable view that arithmetic, though analytic, contains truths that “extend our knowledge”, and by Kant’s use of the term, should be regarded synthetic. Secondly, that our arithmetical knowledge depends on a sort of a capacity to recognize and identify objects, which are given us in (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48. Frege on Formality and the 1906 Independence-Test.Patricia A. Blanchette - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. De Gruyter. pp. 97-118.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Frege's Theorem. [REVIEW]P. Ebert - 2014 - Philosophical Quarterly 64 (254):166-169.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Predicative Frege Arithmetic and ‘Everyday’ Mathematics.Richard Heck - 2014 - Philosophia Mathematica 22 (3):279-307.
    The primary purpose of this note is to demonstrate that predicative Frege arithmetic naturally interprets certain weak but non-trivial arithmetical theories. It will take almost as long to explain what this means and why it matters as it will to prove the results.
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 313