This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related categories

340 found
Order:
1 — 50 / 340
  1. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These ontological (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. Frege's Theorem in Plural Logic.Simon Hewitt - manuscript
    A version of Frege's theorem can be proved in a plural logic with pair abstraction. We talk through this and discuss the philosophical implications of the result.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Title Blinded for Review.Hasen Khudairi - manuscript
  4. Frege's Theorem and Foundations for Arithmetic.Edward N. Zalta - Spring 2015 - In Stanford Encyclopedia of Philosophy.
    The principal goal of this entry is to present Frege's Theorem (i.e., the proof that the Dedekind-Peano axioms for number theory can be derived in second-order logic supplemented only by Hume's Principle) in the most logically perspicuous manner. We strive to present Frege's Theorem by representing the ideas and claims involved in the proof in clear and well-established modern logical notation. This prepares one to better prepared to understand Frege's own notation and derivations, and read Frege's original work (whether in (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. Frege’s Theory of Real Numbers: A Consistent Rendering.Francesca Boccuni & Marco Panza - forthcoming - Review of Symbolic Logic:1-44.
    Frege's definition of the real numbers, as envisaged in the second volume of Grundgesetze der Arithmetik, is fatally flawed by the inconsistency of Frege's ill-fated Basic Law V. We restate Frege's definition in a consistent logical framework and investigate whether it can provide a logical foundation of real analysis. Our conclusion will deem it doubtful that such a foundation along the lines of Frege's own indications is possible at all.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Kant Versus Frege on Arithmetic.Nora Grigore - forthcoming - Axiomathes:1-19.
    Kant's claim that arithmetical truths are synthetic is famously contradicted by Frege, who considers them to be analytical. It may seem that this is a mere dispute about linguistic labels, since both Kant and Frege agree that arithmetical truths are a priori and informative, and, therefore, it is only a matter of how one chooses to call them. I argue that the choice between calling arithmetic “synthetic” or “analytic” has a deeper significance. I claim that the dispute is not a (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7. Stipulations Missing Axioms in Frege's Grundgesetze der Arithmetik.Gregory Landini - forthcoming - History and Philosophy of Logic:1-36.
    Frege's Grundgesetze der Arithmetik offers a conception of cpLogic as the study of functions. Among functions are included those that are concepts, i.e. characteristic functions whose values are the logical objects that are the True/the False. What, in Frege's view, are the objects the True/the False? Frege's stroke functions are themselves concepts. His stipulation introducing his negation stroke mentions that it yields [...]. But curiously no accommodating axiom is given, and there is no such theorem. Why is it that some (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  8. Review of "Frege: Philosophy of Mathematics". [REVIEW]Marco Antonio Ruffino - forthcoming - Manuscrito.
    In this review I briefly explain the most important points of each chapter of Dummett's book, and critically discuss some of them. Special attention is given to the criticisms of Crispin Wright's interpretation of Frege's Platonism, and also to Dummett's interpretation of the role(s) of the context principle in Frege's thought.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  9. Linnebo's Abstractionism and the Bad Company Problem.J. P. Studd - forthcoming - Theoria.
    In Thin Objects: An Abstractionist Account, Linnebo offers what he describes as a “simple and definitive” solution to the bad company problem facing abstractionist accounts of mathematics. “Bad” abstraction principles can be rendered “good” by taking abstraction to have a predicative character. But the resulting predicative axioms are too weak to recover substantial portions of mathematics. Linnebo pursues two quite different strategies to overcome this weakness in the case of set theory and arithmetic. I argue that neither infinitely iterated abstraction (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10. Logic and Sets.Marta Vlasáková - forthcoming - Logic and Logical Philosophy:1.
    The notion of the extension of a concept has been used in logic for a long time. It is usually considered to be closely connected to the intuitive notion of a set and thus seems as though it should be embedded into set theory. However, there are significant differences between this “logical” concept of set and the notion of set (class) as defined via standard axiomatic systems of set theory; it may, therefore, be quite misleading to consider the two concepts (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11. Frege’s View of the Context Principle After 1890.Krystian Bogucki - 2022 - Grazer Philosophische Studien 99 (1):1-29.
    The aim of this article is to examine Frege’s view of the context principle in his mature philosophical doctrine. Here, the author argues that the context principle is embodied in the contextual explanation of value-ranges presented in Basic Laws of Arithmetic. The contextual explanation of value-ranges plays essentially the same role as the context principle in The Foundations of Arithmetic. It is supposed to show how a reference to natural numbers is possible. Moreover, the author argues against the view that (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12. Frege's Theorem and Mathematical Cognition.Lieven Decock - 2022 - In Francesca Boccuni & Andrea Sereni (eds.), Origins and Varieties of Logicism: On the Logico-Philosophical Foundations of Logicism. New York: Routledge. pp. 372-394.
  13. Resolving Frege’s Other Puzzle.Eric Snyder, Richard Samuels & Stewart Shapiro - 2022 - Philosophica Mathematica 30 (1):59-87.
    Number words seemingly function both as adjectives attributing cardinality properties to collections, as in Frege’s ‘Jupiter has four moons’, and as names referring to numbers, as in Frege’s ‘The number of Jupiter’s moons is four’. This leads to what Thomas Hofweber calls Frege’s Other Puzzle: How can number words function as modifiers and as singular terms if neither adjectives nor names can serve multiple semantic functions? Whereas most philosophers deny that one of these uses is genuine, we instead argue that (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Frege's Curiously Two-Dimensional Concept-Script.Landon D. C. Elkind - 2021 - Journal for the History of Analytical Philosophy 9 (11).
    In this paper I argue that the two-dimensional character of Frege’s Begriffsschrift plays an epistemological role in his argument for the analyticity of arithmetic. First, I motivate the claim that its two-dimensional character needs a historical explanation. Then, to set the stage, I discuss Frege’s notion of a Begriffsschrift and Kant’s epistemology of mathematics as synthetic a priori and partly grounded in intuition, canvassing Frege’s sharp disagreement on these points. Finally, I argue that the two-dimensional character of Frege’s notations play (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15. A filosofia da matemática de Frege no contexto do neokantismo.Gottfried Gabriel, Sven Schlotter, Lucas A. D. Amaral & Rafael R. Garcia - 2021 - Kant E-Prints 16 (2):363-376.
    Há muitos pontos de concordância entre Frege e os neokantianos. Isso vale especialmente para os representantes do neokantismo da teoria do valor ou do Sudoeste alemão na tradição de Hermann Lotze. Não discutiremos aqui todos os aspectos dessa proximidade; de acordo com o tema que propomos, ficaremos restritos à filosofia da matemática. A primeira parte do artigo tratará da relação entre aritmética e geometria, mostrando surpreendentes semelhanças entre Frege e o neokantiano Otto Liebmann. A segunda parte discutirá as diferentes recepções (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  16. Arithmetic, Logicism, and Frege’s Definitions.Timothy Perrine - 2021 - International Philosophical Quarterly 61 (1):5-25.
    This paper describes both an exegetical puzzle that lies at the heart of Frege’s writings—how to reconcile his logicism with his definitions and claims about his definitions—and two interpretations that try to resolve that puzzle, what I call the “explicative interpretation” and the “analysis interpretation.” This paper defends the explicative interpretation primarily by criticizing the most careful and sophisticated defenses of the analysis interpretation, those given my Michael Dummett and Patricia Blanchette. Specifically, I argue that Frege’s text either are inconsistent (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17. Mr. Frege, The Platonist.Daniel Sierra - 2021 - Logiko-Filosofskie Studii 2 (Vol 19):136-144.
    Even though Frege is a major figure in the history of analytic philosophy, it is not surprising that there are still issues surrounding his views, interpreting them, and labeling them. Frege’s view on numbers is typically termed as ‘Platonistic’ or at least a type of Platonism (Reck 2005). Still, the term ‘Platonism’ has views and assumptions ascribed to it that may be misleading and leads to mischaracterizations of Frege’s outlook on numbers and ideas. So, clarification of the term ‘Platonism’ is (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  18. Saying Something About a Concept: Frege on Statements of Number.Mark Textor - 2021 - History and Philosophy of Logic 42 (1):60-71.
    The paper gives a historically informed reconstruction of Frege's view of statements of number. The reconstruction supports Frege's claim that a statement can be 'about a concept' although it does...
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19. Why Did Frege Reject the Theory of Types?Wim Vanrie - 2021 - British Journal for the History of Philosophy 29 (3):517-536.
    I investigate why Frege rejected the theory of types, as Russell presented it to him in their correspondence. Frege claims that it commits one to violations of the law of excluded middle, but this complaint seems to rest on a dogmatic refusal to take Russell’s proposal seriously on its own terms. What is at stake is not so much the truth of a law of logic, but the structure of the hierarchy of the logical categories, something Frege seems to neglect. (...)
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  20. The Bad Company Objection and the Extensionality of Frege’s Logic.Vincenzo Ciccarelli - 2020 - Perspectiva Filosófica 47 (2):231-247.
    According to the Bad Company objection, the fact that Frege’s infamous Basic Law V instantiates the general definitional pattern of higher-order abstraction principles is a good reason to doubt the soundness of this sort of definitions. In this paper I argue against this objection by showing that the definitional pattern of abstraction principles – as extrapolated from §64 of Frege’s Grundlagen– includes an additional requirement (which I call the specificity condition) that is not satisfied by the Basic Law V while (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  21. The Metametaphysics of Neo-Fregeanism.Matti Eklund - 2020 - In Ricki Bliss & James Miller (eds.), The Routledge Handbook of Metametaphysics. Routledge.
  22. Quine’s Proxy-Function Argument for the Indeterminacy of Reference and Frege’s Caesar Problem.Dirk Greimann - 2020 - Manuscrito 44 (3):70-108.
    In his logical foundation of arithmetic, Frege faced the problem that the semantic interpretation of his system does not determine the reference of the abstract terms completely. The contextual definition of number, for instance, does not decide whether the number 5 is identical to Julius Caesar. In a late writing, Quine claimed that the indeterminacy of reference established by Frege’s Caesar problem is a special case of the indeterminacy established by his proxy-function argument. The present paper aims to show that (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Extensions, Numbers and Frege’s Project of Logic as Universal Language.Nora Grigore - 2020 - Axiomathes 30 (5):577-588.
    Frege’s famous definition of number famously uses the concept of “extension”. Extensions, in the Fregean framework, are susceptible to bringing many difficulties, and, some say, even paradoxes. Therefore, neo-logicist programs want to avoid the problems and to replace the classical Fregean definition of number with Hume’s Principle. I argue that this move, even if it makes sense from a computational point of view, is at odds with Frege’s larger philosophical project. For Frege, I claim, extensions were an important part of (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  24. Extensions, Numbers and Frege’s Project of Logic as Universal Language.Nora Grigore - 2020 - Axiomathes 30 (5):577-588.
    Frege’s famous definition of number famously uses the concept of “extension”. Extensions, in the Fregean framework, are susceptible to bringing many difficulties, and, some say, even paradoxes. Therefore, neo-logicist programs want to avoid the problems and to replace the classical Fregean definition of number with Hume’s Principle. I argue that this move, even if it makes sense from a computational point of view, is at odds with Frege’s larger philosophical project. For Frege, I claim, extensions were an important part of (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  25. Extensions, Numbers and Frege’s Project of Logic as Universal Language.Nora Grigore - 2020 - Axiomathes 30 (5):577-588.
    Frege’s famous definition of number famously uses the concept of “extension”. Extensions, in the Fregean framework, are susceptible to bringing many difficulties, and, some say, even paradoxes. Therefore, neo-logicist programs want to avoid the problems and to replace the classical Fregean definition of number with Hume’s Principle. I argue that this move, even if it makes sense from a computational point of view, is at odds with Frege’s larger philosophical project. For Frege, I claim, extensions were an important part of (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  26. Numbers, Empiricism and the A Priori.Olga Ramírez Calle - 2020 - Logos and Episteme 11 (2):149-177.
    The present paper deals with the ontological status of numbers and considers Frege´s proposal in Grundlagen upon the background of the Post-Kantian semantic turn in analytical philosophy. Through a more systematic study of his philosophical premises, it comes to unearth a first level paradox that would unset earlier still than it was exposed by Russell. It then studies an alternative path that, departing from Frege’s initial premises, drives to a conception of numbers as synthetic a priori in a more Kantian (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Reflections on Frege’s Theory of Real Numbers†.Peter Roeper - 2020 - Philosophia Mathematica 28 (2):236-257.
    ABSTRACT Although Frege’s theory of real numbers in Grundgesetze der Arithmetik, Vol. II, is incomplete, it is possible to provide a logicist justification for the approach he is taking and to construct a plausible completion of his account by an extrapolation which parallels his theory of cardinal numbers.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28. The Principle of Equivalence as a Criterion of Identity.Ryan Samaroo - 2020 - Synthese 197 (8):3481-3505.
    In 1907 Einstein had the insight that bodies in free fall do not “feel” their own weight. This has been formalized in what is called “the principle of equivalence.” The principle motivated a critical analysis of the Newtonian and special-relativistic concepts of inertia, and it was indispensable to Einstein’s development of his theory of gravitation. A great deal has been written about the principle. Nearly all of this work has focused on the content of the principle and whether it has (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  29. Neologicism, Frege's Constraint, and the Frege‐Heck Condition.Eric Snyder, Richard Samuels & Stewart Shapiro - 2020 - Noûs 54 (1):54-77.
    One of the more distinctive features of Bob Hale and Crispin Wright’s neologicism about arithmetic is their invocation of Frege’s Constraint – roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. In particular, they maintain that, if adopted, Frege’s Constraint adjudicates in favor of their preferred foundation – Hume’s Principle – and against alternatives, such as the Dedekind-Peano axioms. In what follows we establish two main claims. First, we show (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Abstract Objects and Semantics: An Essay on Prospects and Problems with Abstraction Principles as a Means of Justifying Reference to Abstract Objects.Gnatek Zuzanna - 2020 - Dissertation, Trinity College, Dublin
  31. Frege on Referentiality and Julius Caesar in Grundgesetze Section 10.Bruno Bentzen - 2019 - Notre Dame Journal of Formal Logic 60 (4):617-637.
    This paper aims to answer the question of whether or not Frege's solution limited to value-ranges and truth-values proposed to resolve the "problem of indeterminacy of reference" in section 10 of Grundgesetze is a violation of his principle of complete determination, which states that a predicate must be defined to apply for all objects in general. Closely related to this doubt is the common allegation that Frege was unable to solve a persistent version of the Caesar problem for value-ranges. It (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  32. Hilbertian Structuralism and the Frege-Hilbert Controversy†.Fiona T. Doherty - 2019 - Philosophia Mathematica 27 (3):335-361.
    ABSTRACT This paper reveals David Hilbert’s position in the philosophy of mathematics, circa 1900, to be a form of non-eliminative structuralism, predating his formalism. I argue that Hilbert withstands the pressing objections put to him by Frege in the course of the Frege-Hilbert controversy in virtue of this early structuralist approach. To demonstrate that this historical position deserves contemporary attention I show that Hilbertian structuralism avoids a recent wave of objections against non-eliminative structuralists to the effect that they cannot distinguish (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Formal Arithmetic Before Grundgesetze.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 497-537.
    A speculative investigation of how Frege's logical views change between Begriffsschrift and Grundgesetze and how this might have affected the formal development of logicism.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. The Basic Laws of Cardinal Number.Richard Kimberly Heck - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 1-30.
    An overview of what Frege accomplishes in Part II of Grundgesetze, which contains proofs of axioms for arithmetic and several additional results concerning the finite, the infinite, and the relationship between these notions. One might think of this paper as an extremely compressed form of Part II of my book Reading Frege's Grundgesetze.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. The Problem of Fregean Equivalents.Joongol Kim - 2019 - Dialectica 73 (3):367-394.
    It would seem that some statements like ‘There are exactly four moons of Jupiter’ and ‘The number of moons of Jupiter is four’ have the same truth-conditions and yet differ in ontological commitment. One strategy to resolve this paradoxical phenomenon is to insist that the statements have not only the same truth-conditions but also the same ontological commitments; the other strategy is to reject the presumption that they have the same truth-conditions. This paper critically examines some popular versions of these (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  36. Frege’s Constraint and the Nature of Frege’s Foundational Program.Marco Panza & Andrea Sereni - 2019 - Review of Symbolic Logic 12 (1):97-143.
    Recent discussions on Fregean and neo-Fregean foundations for arithmetic and real analysis pay much attention to what is called either ‘Application Constraint’ or ‘Frege Constraint’, the requirement that a mathematical theory be so outlined that it immediately allows explaining for its applicability. We distinguish between two constraints, which we, respectively, denote by the latter of these two names, by showing how$AC$generalizes Frege’s views while$FC$comes closer to his original conceptions. Different authors diverge on the interpretation of$FC$and on whether it applies to (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  37. Frege’s Philosophy of Geometry.Matthias Schirn - 2019 - Synthese 196 (3):929-971.
    In this paper, I critically discuss Frege’s philosophy of geometry with special emphasis on his position in The Foundations of Arithmetic of 1884. In Sect. 2, I argue that that what Frege calls faculty of intuition in his dissertation is probably meant to refer to a capacity of visualizing geometrical configurations structurally in a way which is essentially the same for most Western educated human beings. I further suggest that according to his Habilitationsschrift it is through spatial intuition that we (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  38. On the Philosophical Significance of Frege’s Constraint.Andrea Sereni - 2019 - Philosophia Mathematica 27 (2):244–275.
    Foundational projects disagree on whether pure and applied mathematics should be explained together. Proponents of unified accounts like neologicists defend Frege’s Constraint (FC), a principle demanding that an explanation of applicability be provided by mathematical definitions. I reconsider the philosophical import of FC, arguing that usual conceptions are biased by ontological assumptions. I explore more reasonable weaker variants — Moderate and Modest FC — arguing against common opinion that ante rem structuralism (and other) views can meet them. I dispel doubts (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Neologicism for Real – Are We There Yet?Rafal Urbaniak - 2019 - In Bartłomiej Skowron (ed.), Contemporary Polish Ontology. De Gruyter. pp. 181-204.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  40. The Geometrical Basis of Arithmetical Knowledge: Frege & Dehaene.Sorin Costreie - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):361-370.
    Frege writes in Numbers and Arithmetic about kindergarten-numbers and “an a priori mode of cognition” that they may have “a geometrical source.” This resembles recent findings on arithmetical cognition. In my paper, I explore this resemblance between Gottlob Frege’s later position concerning the geometrical source of arithmetical knowledge, and some current positions in the literature dedicated to arithmetical cognition, especially that of Stanislas Dehaene. In my analysis, I shall try to mainly see to what extent logicism is compatible with intuitionism.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41. Julius Caesar and the Numbers.Nathan Salmón - 2018 - Philosophical Studies 175 (7):1631-1660.
    This article offers an interpretation of a controversial aspect of Frege’s The Foundations of Arithmetic, the so-called Julius Caesar problem. Frege raises the Caesar problem against proposed purely logical definitions for ‘0’, ‘successor’, and ‘number’, and also against a proposed definition for ‘direction’ as applied to lines in geometry. Dummett and other interpreters have seen in Frege’s criticism a demanding requirement on such definitions, often put by saying that such definitions must provide a criterion of identity of a certain kind. (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Frege’s Critique of Formalism.Sören Stenlund - 2018 - In Gisela Bengtsson, Simo Säätelä & Alois Pichler (eds.), New Essays on Frege: Between Science and Literature. Springer. pp. 75-86.
    This paper deals with Frege’s early critique of formalism in the philosophy of mathematics. Frege opposes meaningful arithmetic, according to which arithmetical formulas express a sense and arithmetical rules are grounded in the reference of the signs, to formal arithmetic, exemplified in particular by J. Thomae, whose “formal standpoint”, according to Frege, is that arithmetic should be understood as a manipulation of meaningless figures. However, Frege’s discussion of Thomae’s analogy between arithmetic and chess shows that Frege does not understand his (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Frege's Cardinals Do Not Always Obey Hume's Principle.Gregory Landini - 2017 - History and Philosophy of Logic 38 (2):127-153.
    Hume's Principle, dear to neo-Logicists, maintains that equinumerosity is both necessary and sufficient for sameness of cardinal number. All the same, Whitehead demonstrated in Principia Mathematica's logic of relations that Cantor's power-class theorem entails that Hume's Principle admits of exceptions. Of course, Hume's Principle concerns cardinals and in Principia's ‘no-classes’ theory cardinals are not objects in Frege's sense. But this paper shows that the result applies as well to the theory of cardinal numbers as objects set out in Frege's Grundgesetze. (...)
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Nominalization, Specification, and Investigation.Richard Lawrence - 2017 - Dissertation, University of California, Berkeley
    Frege famously held that numbers play the role of objects in our language and thought, and that this role is on display when we use sentences like "The number of Jupiter's moons is four". I argue that this role is an example of a general pattern that also encompasses persons, times, locations, reasons, causes, and ways of appearing or acting. These things are 'objects' simply in the sense that they are answers to questions: they are the sort of thing we (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45. Philosophy of Mathematics.Øystein Linnebo - 2017 - Princeton, NJ: Princeton University Press.
    Mathematics is one of the most successful human endeavors—a paradigm of precision and objectivity. It is also one of our most puzzling endeavors, as it seems to deliver non-experiential knowledge of a non-physical reality consisting of numbers, sets, and functions. How can the success and objectivity of mathematics be reconciled with its puzzling features, which seem to set it apart from all the usual empirical sciences? This book offers a short but systematic introduction to the philosophy of mathematics. Readers are (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  46. Frege sobre Kant: uma motivação filosófica do logicismo.Manuela Teles - 2017 - Con-Textos Kantianos 6:207-236.
    Em 1882, Frege escreveu a Anton Marty que o seu projeto era provar que as leis fundamentais da aritmética são analíticas no sentido de Kant. A resposta a esta carta foi assinada por Carl Stumpf, que aconselhou Frege a escrever sobre as suas motivações para a criação da linguagem formal que apresentou na sua Begriffsschrift, escrita três anos antes. Os Grundlagen der Arithmetik, que Frege publicou dois anos depois, podem ser vistos como o seu resultado por seguir o conselho de (...)
    Remove from this list  
    Translate
     
     
    Export citation  
     
    Bookmark  
  47. The Breadth of the Paradox.Patricia Blanchette - 2016 - Philosophia Mathematica 24 (1):30-49.
    This essay examines Frege's reaction to Russell's Paradox and his views about the grounding of existence claims in mathematics. It is argued that Frege's strict requirements on existential proofs would rule out the attempt to ground arithmetic in. It is hoped that this discussion will help to clarify the ways in which Frege's position is both coherent and significantly different from the neo-logicist position on the issues of: what's required for proofs of existence; the connection between models, consistency, and existence; (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Frege on Mathematical Progress.Patricia Blanchette - 2016 - In Sorin Costreie (ed.), Early Analytic Philosophy – New Perspectives on the Tradition. Springer. pp. 3 - 19.
    Frege claims that mathematical theories are collections of thoughts, and that scientific continuity turns on thought-identity. This essay explores the difficulties posed for this conception of mathematics by the conceptual development canonically involved in mathematical progress. The central difficulties are that mathematical development often involves sufficient conceptual progress that mature versions of theories do not involve easily-recognizable synonyms of their earlier versions, and that the introduction of new elements in the domains of mathematical theories would seem to conflict with Frege’s (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Frege's Cardinals and Neo-Logicism.Roy T. Cook - 2016 - Philosophia Mathematica 24 (1):60-90.
    Gottlob Frege defined cardinal numbers in terms of value-ranges governed by the inconsistent Basic Law V. Neo-logicists have revived something like Frege's original project by introducing cardinal numbers as primitive objects, governed by Hume's Principle. A neo-logicist foundation for set theory, however, requires a consistent theory of value-ranges of some sort. Thus, it is natural to ask whether we can reconstruct the cardinal numbers by retaining Frege's definition and adopting an alternative consistent principle governing value-ranges. Given some natural assumptions regarding (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  50. Frege's Recipe.Roy T. Cook & Philip A. Ebert - 2016 - Journal of Philosophy 113 (7):309-345.
    In this paper, we present a formal recipe that Frege followed in his magnum opus “Grundgesetze der Arithmetik” when formulating his definitions. This recipe is not explicitly mentioned as such by Frege, but we will offer strong reasons to believe that Frege applied it in developing the formal material of Grundgesetze. We then show that a version of Basic Law V plays a fundamental role in Frege’s recipe and, in what follows, we will explicate what exactly this role is and (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 340