About this topic
Summary This is a catch-all category for work on the interpretation of quantum mechanics which does not fall naturally into the other categories. 
Key works Perhaps the most prominent proposal in this category is the 'quantum Bayesianism' of Caves et al 2007, which treats quantum states as states of information.
Related categories

226 found
1 — 50 / 226
  1. The Quantum Mechanics and Conceptuality: Matter, Histories, Semantics, and Space-Time.Diederik Aerts - 2013 - Scientiae Studia 11 (1):75-99.
    Elaboramos aquí una nueva interpretación propuesta recientemente de la teoría cuántica, según la cual las partículas cuánticas son consideradas como entidades conceptuales que median entre los pedazos de materia ordinaria los cuales son considerados como estructuras de memoria para ellos. Nuestro objetivo es identificar qué es lo equivalente para el ámbito cognitivo humano de lo que el espacio-tiempo físico es para el ámbito de las partículas cuánticas y de la materia ordinaria. Para ello, se identifica la noción de "historia" como (...)
  2. Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory. [REVIEW]Diederik Aerts - 2009 - Foundations of Science 14 (4):361-411.
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and (...)
  3. The Liar-Paradox in a Quantum Mechanical Perspective.Diederik Aerts, Jan Broekaert & Sonja Smets - 1999 - Foundations of Science 4 (2):115-132.
    In this paper we concentrate on the nature of the liar paradox asa cognitive entity; a consistently testable configuration of properties. We elaborate further on a quantum mechanical model (Aerts, Broekaert and Smets, 1999) that has been proposed to analyze the dynamics involved, and we focus on the interpretation and concomitant philosophical picture. Some conclusions we draw from our model favor an effective realistic interpretation of cognitive reality.
  4. Many-Measurements or Many-Worlds? A Dialogue.Diederik Aerts & Massimiliano Sassoli de Bianchi - 2015 - Foundations of Science 20 (4):399-427.
    Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the (...)
  5. On the Traversal Time of Barriers.Horst Aichmann & Günter Nimtz - 2014 - Foundations of Physics 44 (6):678-688.
    Fifty years ago Hartman studied the barrier transmission time of wave packets (J Appl Phys 33:3427–3433, 1962). He was inspired by the tunneling experiments across thin insulating layers at that time. For opaque barriers he calculated faster than light propagation and a transmission time independent of barrier length, which is called the Hartman effect. A faster than light (FTL or superluminal) wave packet velocity was deduced in analog tunneling experiments with microwaves and with infrared light thirty years later. Recently, the (...)
  6. Many Worlds and Schrodinger's First Quantum Theory.V. Allori, S. Goldstein, R. Tumulka & N. Zanghi - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
  7. Book Review of "Quantum Theory: A Philosopher's Overview" by S. Cannavo. [REVIEW]Valia Allori - 2010 - International Studies in the Philosophy of Science 24 (3):330-333.
    Book Review of "Quantum Mechanics- a Philosopher's Overview," by Salvator Cannavo.
  8. La storia del gatto che era sia vivo che morto.Valia Allori - 2009 - In Enrico Giannetto (ed.), Da Archimede a Majorana: la fisica nel suo divenire. Guaraldi. pp. 273-283.
    Questa è la breve storia , forse un poco romanzata, del gatto che, se non forse il più citato, è di sicuro il più bistrattato della storia della fisica e della filosofia: il gatto di Schrödinger.
  9. Decoherence and the Classical Limit of Quantum Mechanics.Valia Allori - 2002 - Dissertation, University of Genova, Italy
    In my dissertation (Rutgers, 2007) I developed the proposal that one can establish that material quantum objects behave classically just in case there is a “local plane wave” regime, which naturally corresponds to the suppression of all quantum interference.
  10. Seven Steps Toward the Classical World.Valia Allori, Detlef Duerr, Nino Zanghi & Sheldon Goldstein - 2002 - Journal of Optics B 4:482–488.
    Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard quantum mechanics only the wave function or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics, which, like classical mechanics, is a theory about real objects. In Bohmian terms, the problem of the classical (...)
  11. Predictions and Primitive Ontology in Quantum Foundations: A Study of Examples.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghi - 2013 - British Journal for the Philosophy of Science (2):axs048.
    A major disagreement between different views about the foundations of quantum mechanics concerns whether for a theory to be intelligible as a fundamental physical theory it must involve a ‘primitive ontology’ (PO), i.e. variables describing the distribution of matter in four-dimensional space–time. In this article, we illustrate the value of having a PO. We do so by focussing on the role that the PO plays for extracting predictions from a given theory and discuss valid and invalid derivations of predictions. To (...)
  12. E' completa la descrizione della realta' fisica fornita dalla meccanica quantistica?Valia Allori & Nino Zanghi - 2007 - Il Protagora 9:163-180.
    In this paper (in Italian) we discuss how quantum theories can be thought of as having the same structure. If so, even the theories that appear to be about the wave function are incomplete, even if in a way which is very different from the one Einstein proposed.
  13. A Geometric Approach to Quantum Mechanics.J. Anandan - 1991 - Foundations of Physics 21 (11):1265-1284.
    It is argued that quantum mechanics is fundamentally a geometric theory. This is illustrated by means of the connection and symplectic structures associated with the projective Hilbert space, using which the geometric phase can be understood. A prescription is given for obtaining the geometric phase from the motion of a time dependent invariant along a closed curve in a parameter space, which may be finite dimensional even for nonadiabatic cyclic evolutions in an infinite dimensional Hilbert space. Using the natural metric (...)
  14. Properties of QBist State Spaces.D. M. Appleby, Åsa Ericsson & Christopher A. Fuchs - 2011 - Foundations of Physics 41 (3):564-579.
    Every quantum state can be represented as a probability distribution over the outcomes of an informationally complete measurement. But not all probability distributions correspond to quantum states. Quantum state space may thus be thought of as a restricted subset of all potentially available probabilities. A recent publication (Fuchs and Schack, arXiv:0906.2187v1, 2009) advocates such a representation using symmetric informationally complete (SIC) measurements. Building upon this work we study how this subset—quantum-state space—might be characterized. Our leading characteristic is that the inner (...)
  15. Should We Fear Quantum Torment?István Aranyosi - 2012 - Ratio 25 (3):249-259.
    The prospect, in terms of subjective expectations, of immortality under the no-collapse interpretation of quantum mechanics is certain, as pointed out by several authors, both physicists and, more recently, philosophers. The argument, known as quantum suicide, or quantum immortality, has received some critical discussion, but there hasn't been any questioning of David Lewis's point that there is a terrifying corollary to the argument, namely, that we should expect to live forever in a crippled, more and more damaged state, that barely (...)
  16. A Discussion on Finite Quasi-Cardinals in Quasi-Set Theory.Jonas Rafael Becker Arenhart - 2011 - Foundations of Physics 41 (8):1338-1354.
    Quasi-set theory Q is an alternative set-theory designed to deal mathematically with collections of indistinguishable objects. The intended interpretation for those objects is the indistinguishable particles of non-relativistic quantum mechanics, under one specific interpretation of that theory. The notion of cardinal of a collection in Q is treated by the concept of quasi-cardinal, which in the usual formulations of the theory is introduced as a primitive symbol, since the usual means of cardinal definition fail for collections of indistinguishable objects. In (...)
  17. Is Quantum Mechanics Pointless?Frank Arntzenius - 2003 - Philosophy of Science 70 (5):1447-1457.
    There exist well‐known conundrums, such as measure‐theoretic paradoxes and problems of contact, which, within the context of classical physics, can be used to argue against the existence of points in space and space‐time. I examine whether quantum mechanics provides additional reasons for supposing that there are no points in space and space‐time.
  18. Dispositions as the Foundation for Feynman's Formulation of Quantum Mechanics.Jerrold L. Aronson - 1997 - Dialectica 51 (1):35–64.
  19. The Structure and Interpretation of Quantum Mechanics.Jerrold L. Aronson - 1992 - International Studies in Philosophy 24 (1):107-107.
  20. O problema ontológico da consciência na mecânica quântica.Raoni Wohnrath Arroyo - 2015 - Dissertation, Universidade Estadual de Maringá
    Quantum mechanics is an area of Physics that deals with subatomic phenomena. It can be extracted from a vision of the physical world which contradicts many aspects of our everyday perception, prompting many philosophical debates and admitting different interpretations. Among the wide range of problems within the interpretation of quantum theory, there is the measurement problem. Some philosophical aspects of the problems concerning the notion of “measurement” in quantum mechanics are analyzed in order to identify how the problem arises in (...)
  21. A Unified Explanation of Quantum Phenomena? The Case for the Peer‐to‐Peer Simulation Hypothesis as an Interdisciplinary Research Program.Marcus Arvan - 2014 - Philosophical Forum 45 (4):433-446.
    In my 2013 article, “A New Theory of Free Will”, I argued that several serious hypotheses in philosophy and modern physics jointly entail that our reality is structurally identical to a peer-to-peer (P2P) networked computer simulation. The present paper outlines how quantum phenomena emerge naturally from the computational structure of a P2P simulation. §1 explains the P2P Hypothesis. §2 then sketches how the structure of any P2P simulation realizes quantum superposition and wave-function collapse (§2.1.), quantum indeterminacy (§2.2.), wave-particle duality (§2.3.), (...)
  22. Quantum-Like Model for Decision Making Process in Two Players Game.Masanari Asano, Masanori Ohya & Andrei Khrennikov - 2011 - Foundations of Physics 41 (3):538-548.
    In experiments of games, players frequently make choices which are regarded as irrational in game theory. In papers of Khrennikov (Information Dynamics in Cognitive, Psychological and Anomalous Phenomena. Fundamental Theories of Physics, Kluwer Academic, Norwell, 2004; Fuzzy Sets Syst. 155:4–17, 2005; Biosystems 84:225–241, 2006; Found. Phys. 35(10):1655–1693, 2005; in QP-PQ Quantum Probability and White Noise Analysis, vol. XXIV, pp. 105–117, 2009), it was pointed out that statistics collected in such the experiments have “quantum-like” properties, which can not be explained in (...)
  23. Clarifications and Specifications. A Conversation with Henry Stapp.Harald Atmanspacher - 2006 - Journal of Consciousness Studies 13 (9):67-85.
  24. Quantum Information as a General Paradigm.Gennaro Auletta - 2005 - Foundations of Physics 35 (5):787-815.
    Quantum–mechanical systems may be understood in terms of information. When they interact, they modify the information they carry or represent in two, and only two, ways: by selecting a part of the initial amount of (potential) information and by sharing information with other systems. As a consequence, quantum systems are informationally shielded. These features are shown to be general features of nature. In particular, it is shown that matter arises from quantum–mechanical processes through the constitution of larger ensembles that share (...)
  25. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference.Guido Bacciagaluppi - 2009 - Cambridge University Press.
    The 1927 Solvay conference was perhaps the most important meeting in the history of quantum theory. Contrary to popular belief, the interpretation of quantum theory was not settled at this conference, and no consensus was reached. Instead, a range of sharply conflicting views were presented and extensively discussed, including de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schrödinger's wave mechanics. Today, there is no longer an established or dominant interpretation of quantum theory, so it is important to re-evaluate (...)
  26. Is Logic Empirical?Guido Bacciagaluppi - unknown
    The philosophical debate about quantum logic between the late 1960s and the early 1980s was generated mainly by Putnam's claims that quantum mechanics empirically motivates introducing a new form of logic, that such an empirically founded quantum logic is the `true' logic, and that adopting quantum logic would resolve all the paradoxes of quantum mechanics. Most of that debate focussed on the latter claim, reaching the conclusion that it was mistaken. This chapter will attempt to clarify the possible misunderstandings surrounding (...)
  27. Interpreting Quantum Mechanics According to a Pragmatist Approach.Manuel Bächtold - 2008 - Foundations of Physics 38 (9):843-868.
    The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
  28. Beyond Measure: Modern Physics, Philosophy, and the Meaning of Quantum Theory.J. E. Baggott - 2003 - Oxford University Press.
    Quantum theory is one the most important and successful theories of modern physical science. It has been estimated that its principles form the basis for about 30 per cent of the world's manufacturing economy. This is all the more remarkable because quantum theory is a theory that nobody understands. The meaning of Quantum Theory introduces science students to the theory's fundamental conceptual and philosophical problems, and the basis of its non-understandability. It does this with the barest minimum of jargon and (...)
  29. Why Linear? An Illustration Using a Geometric Model of Quantum Interaction.Paul Baird - 2016 - Springer Lecture Notes in Computer Science 9535:101-112.
    Quantum mechanics is a linear theory. This is a strange fact. Why should nature be so convenient? Perhaps linearity is simply a consequence of small perturbations against a relatively uniform background. This can be formalized within the mathematical notions of weak solution and linearization. The true picture is unlikely to be so and some more appropriate framework may be required to deal with theories where this uniformity is lost, such as for example quantum gravity. A geometric model of quantum interaction (...)
  30. Study on a Possible Darwinian Origin of Quantum Mechanics.C. Baladrón - 2011 - Foundations of Physics 41 (3):389-395.
    A sketchy subquantum theory deeply influenced by Wheeler’s ideas (Am. J. Phys. 51:398–404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics (...)
  31. Towards a Nominalization of Quantum Mechanics.Mark Balaguer - 1996 - Mind 105 (418):209-226.
  32. A Dynamic-Logical Perspective on Quantum Behavior.A. Baltag & S. Smets - 2008 - Studia Logica 89 (2):187-211.
    In this paper we show how recent concepts from Dynamic Logic, and in particular from Dynamic Epistemic logic, can be used to model and interpret quantum behavior. Our main thesis is that all the non-classical properties of quantum systems are explainable in terms of the non-classical flow of quantum information. We give a logical analysis of quantum measurements (formalized using modal operators) as triggers for quantum information flow, and we compare them with other logical operators previously used to model various (...)
  33. The Logic of Quantum Programs.Alexandru Baltag & Sonja Smets - unknown
    We present a logical calculus for reasoning about information flow in quantum programs. In particular we introduce a dynamic logic that is capable of dealing with quantum measurements, unitary evolutions and entanglements in compound quantum systems. We give a syntax and a relational semantics in which we abstract away from phases and probabilities. We present a sound proof system for this logic, and we show how to characterize by logical means various forms of entanglement (e.g. the Bell states) and various (...)
  34. New Information-Theoretic Foundations for Quantum Statistics.William Band & James L. Park - 1976 - Foundations of Physics 6 (3):249-262.
    When the state of a physical system is not fully determined by available data, it should be possible nevertheless to make a systematic guess concerning the unknown state by applying the principles of information theory. The resulting theoretical blend of informational and mechanical constructs should then constitute a modern structure for statistical physics. Such a program has been attempted by a number of authors, most notably Jaynes, with seeming success. However, we demonstrated in a recent publication that the standard list (...)
  35. The Preferred-Basis Problem and the Quantum Mechanics of Everything.Jeffrey A. Barrett - 2005 - British Journal for the Philosophy of Science 56 (2):199-220.
    argued that there are two options for what he called a realistic solution to the quantum measurement problem: (1) select a preferred set of observables for which definite values are assumed to exist, or (2) attempt to assign definite values to all observables simultaneously (1810–1). While conventional wisdom has it that the second option is ruled out by the Kochen-Specker theorem, Vink nevertheless advocated it. Making every physical quantity determinate in quantum mechanics carries with it significant conceptual costs, but it (...)
  36. Relativistic Quantum Mechanics Through Frame-Dependent Constructions.Jeffrey A. Barrett - 2005 - Philosophy of Science 72 (5):802-813.
    This paper is concerned with the possibility and nature of relativistic hidden-variable formulations of quantum mechanics. Both ad hoc teleological constructions of spacetime maps and frame-dependent constructions of spacetime maps are considered. While frame-dependent constructions are clearly preferable, they provide neither mechanical nor causal explanations for local quantum events. Rather, the hiddenvariable dynamics used in such constructions is just a rule that helps to characterize the set of all possible spacetime maps. But while having neither mechanical nor causal explanations of (...)
  37. Combining Relativity and Quantum Mechanics: Schrödinger's Interpretation of Ψ. [REVIEW]A. O. Barut - 1988 - Foundations of Physics 18 (1):95-105.
    The incongruence between quantum theory and relativity theory is traced to the probability interpretation of the former. The classical continium interpretation of ψ removes the difficulty. How quantum properties of matter and light, and in particular the radiative problems, like spontaneous emission and Lamb shift, may be accounted in a first quantized Maxwell-Dirac system is discussed.
  38. 'Against the Stream';--Schrodinger's Interpretation of Quantum Mechanics.M. Beller - 1997 - Studies in History and Philosophy of Science Part B 28 (3):421-432.
  39. 'Against the Stream'—Schrödinger's Interpretation of Quantum Mechanics.Mara Beller - 1997 - Studies in History and Philosophy of Science Part B 28 (3):421-432.
  40. Book Reviews. [REVIEW]Gordon Belot - 1997 - International Studies in the Philosophy of Science 11 (3):305-313.
  41. Statistics, Symmetry, and the Conventionality of Indistinguishability in Quantum Mechanics.Darrin W. Belousek - 2000 - Foundations of Physics 30 (1):1-34.
    The question to be addressed is, In what sense and to what extent do quantum statistics for, and the standard formal quantum-mechanical description of, systems of many identical particles entail that identical quantum particles are indistinguishable? This paper argues that whether or not we consider identical quantum particles as indistinguishable is a matter of theory choice underdetermined by logic and experiment.
  42. Statistical Inference and Quantum Mechanical Measurement.Rodney W. Benoist, Jean-Paul Marchand & Wolfgang Yourgrau - 1977 - Foundations of Physics 7 (11-12):827-833.
    We analyze the quantum mechanical measuring process from the standpoint of information theory. Statistical inference is used in order to define the most likely state of the measured system that is compatible with the readings of the measuring instrument and the a priori information about the correlations between the system and the instrument. This approach has the advantage that no reference to the time evolution of the combined system need be made. It must, however, be emphasized that the result is (...)
  43. What Econometrics Cannot Teach Quantum Mechanics.J. Berkovitz - 1995 - Studies in History and Philosophy of Science Part B 26 (2):163-200.
    Cartwright (1989) and Humphreys (1989) have suggested theories of probabilistic causation for singular events, which are based on modifications of traditional causal linear modelling. On the basis of her theory, Cartwright offered an allegedly local, and non-factorizable, common-cause model for the EPR experiment. In this paper I consider Cartwright's and Humphrey's theories. I argue that, provided plausible assumptions obtain, local models for EPR in the framework of these theories are committed to Bell inequalities, which are violated by experiment.
  44. Alisa Bokulich * Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism.M. Berry - 2010 - British Journal for the Philosophy of Science 61 (4):889-895.
  45. Role of Space-Time in Jaina's Syādvada & Quantum Theory.Filita P. Bharucha - 1993 - Sri Satguru Publications.
  46. Non-Locality and Possible Worlds. A Counterfactual Perspective on Quantum Entanglement.Tomasz Bigaj - 2006 - Ontos Verlag.
    This book uses the formal semantics of counterfactual conditionals to analyze the problem of non-locality in quantum mechanics. Counterfactual conditionals enter the analysis of quantum entangled systems in that they enable us to precisely formulate the locality condition that purports to exclude the existence of causal interactions between spatially separated parts of a system. They also make it possible to speak consistently about alternative measuring settings, and to explicate what is meant by quantum property attributions. The book develops the possible-world (...)
  47. Three-Valued Logic, Indeterminacy and Quantum Mechanics.Tomasz Bigaj - 2001 - Journal of Philosophical Logic 30 (2):97-119.
    The paper consists of two parts. The first part begins with the problem of whether the original three-valued calculus, invented by J. Łukasiewicz, really conforms to his philosophical and semantic intuitions. I claim that one of the basic semantic assumptions underlying Łukasiewicz's three-valued logic should be that if under any possible circumstances a sentence of the form "X will be the case at time t" is true (resp. false) at time t, then this sentence must be already true (resp. false) (...)
  48. Entanglement of a Single Spin-1 Object: An Example of Ubiquitous Entanglement. [REVIEW]Sinem Binicioǧlu, M. Ali Can, Alexander A. Klyachko & Alexander S. Shumovsky - 2007 - Foundations of Physics 37 (8):1253-1277.
    Using a single spin-1 object as an example, we discuss a recent approach to quantum entanglement. [A.A. Klyachko and A.S. Shumovsky, J. Phys: Conf. Series 36, 87 (2006), E-print quant-ph/0512213]. The key idea of the approach consists in presetting of basic observables in the very definition of quantum system. Specification of basic observables defines the dynamic symmetry of the system. Entangled states of the system are then interpreted as states with maximal amount of uncertainty of all basic observables. The approach (...)
  49. Quantum Mechanics, Correlations, and Relational Probability.Fernando Birman - 2009 - Critica 41 (1):3-22.
    This article sets forth and discusses the Ithaca Interpretation of Quantum Mechanics (IIQM). Section 1 presents the standard formalism of quantum mechanics and the measurement problem. Section 2 sketches Everett’s interpretation as a preamble to IIQM. Section 3 sets out IIQM’s central claim: it is possible to make sense of quantum mechanics by taking as the proper (and only) subject of physics the correlations among subsystems. Section 4 introduces a theorem of quantum mechanics, the SSC theorem, which supports this claim. (...)
  50. The Concept of Measurement and Time Symmetry in Quantum Mechanics.M. Bitbol - 1988 - Philosophy of Science 55 (3):349-375.
    The formal time symmetry of the quantum measurement process is extensively discussed. Then, the origin of the alleged association between a fixed temporal direction and quantum measurements is investigated. It is shown that some features of such an association might arise from epistemological rather than purely physical assumptions. In particular, it is brought out that a sequence of statements bearing on quantum measurements may display intrinsic asymmetric properties, irrespective of the location of corresponding measurements in time t of the Schrodinger (...)
1 — 50 / 226