Related categories

376 found
Order:
1 — 50 / 376
Material to categorize
  1. Augustine's Defence of Knowledge Against the Sceptics.Tamer Nawar - 2019 - Oxford Studies in Ancient Philosophy 56:215-265.
    In his Contra Academicos, Augustine offers one of the most detailed responses to scepticism to have come down to us from antiquity. In this paper, I examine Augustine’s defence of the existence of infallible knowledge in Contra Academicos 3. I challenge a number of established views (including those of Myles Burnyeat, Gareth Matthews, and Christopher Kirwan) concerning the nature and merit of Augustine’s defence of knowledge and propose a new understanding of Augustine’s response to scepticism (including his semantic response to (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
Visualization in Mathematics
  1. Research on the Kerr-Newman Black Hole in M82 Confirms Black Hole and White Hole Thermonuclear Binding. Pachankis - 2021 - Academia Letters 8 (3199).
    The article summarized the quadruple weak force electrodynamics on the Kerr-Newman type supermassive compact object on NGC 3034. It used both observational astronomy and data analytical techniques in the qualitative research on cosmology revolved around black hole and white hole juxtapose with nuclear astrophysics and theoretical chemistry.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2. On the Prospects for a Science of Visualization.Ronald A. Rensink - 2014 - In Handbook of Human-Centric Visualization. Springer. pp. 147-175.
    This paper explores the extent to which a scientific framework for visualization might be possible. It presents several potential parts of a framework, illustrated by application to the visualization of correlation in scatterplots. The first is an extended-vision thesis, which posits that a viewer and visualization system can be usefully considered as a single system that perceives structure in a dataset, much like "basic" vision perceives structure in the world. This characterization is then used to suggest approaches to evaluation that (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  3. Visualization as a Stimulus Domain for Vision Science.Ronald A. Rensink - 2021 - Journal of Vision 21 (3):1–18.
    Traditionally, vision science and information/data visualization have interacted by using knowledge of human vision to help design effective displays. It is argued here, however, that this interaction can also go in the opposite direction: the investigation of successful visualizations can lead to the discovery of interesting new issues and phenomena in visual perception. Various studies are reviewed showing how this has been done for two areas of visualization, namely, graphical representations and interaction, which lend themselves to work on visual processing (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  4. Visual Features as Carriers of Abstract Quantitative Information.Ronald A. Rensink - forthcoming - Journal of Experimental Psychology: General.
    Four experiments investigated the extent to which abstract quantitative information can be conveyed by basic visual features. This was done by asking observers to estimate and discriminate Pearson correlation in graphical representations where the first data dimension of each element was encoded by its horizontal position, and the second by the value of one of its visual features; perceiving correlation then requires combining the information in the two encodings via a common abstract representation. Four visual features were examined: luminance, color, (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - forthcoming - Philosophers' Imprint.
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. What Are Mathematical Diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for a (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  7. 'Reasoning Well From Badly Drawn Figures': The Birth of Algebraic Topology.Claudio Bartocci - 2013 - Lettera Matematica 1:13-22.
    In this paper the emergence of Poincaré’s “analysis situs” is described by means of an overview of the original memoir and its supplements. In particular, the genesis of the celebrated “Poincaré conjecture” is discussed.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8. A Diagrammatic Representation of Hegel’s Science of Logic.Jens Lemanski & Valentin Pluder - 2021 - In Stapleton G. Basu A. (ed.), Diagrams 2021: Diagrammatic Representation and Inference. 93413 Cham, Deutschland: Springer. pp. 255-259.
    In this paper, we interpret a 19th century diagram, which is meant to visualise G.W.F. Hegel’s entire method of the `Science of Logic' on the basis of bitwise operations. For the interpretation of the diagram we use a binary numeral system, and discuss whether the anti-Hegelian argument associated with it is valid or not. The reinterpretation is intended to make more precise rules of construction, a stricter binary code and a review of strengths and weaknesses of the critique.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  9. Reconciling Rigor and Intuition.Silvia De Toffoli - 2021 - Erkenntnis 86 (6):1783-1802.
    Criteria of acceptability for mathematical proofs are field-dependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my co-author and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this article, I (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  10. A Pre-Formal Proof of Why No Planar Map Needs More Than Four Colours.Bhupinder Singh Anand - manuscript
    Although the Four Colour Theorem is passe, we give an elementary pre-formal proof that transparently illustrates why four colours suffice to chromatically differentiate any set of contiguous, simply connected and bounded, planar spaces; by showing that there is no minimal 4-coloured planar map M. We note that such a pre-formal proof of the Four Colour Theorem highlights the significance of differentiating between: (a) Plato's knowledge as justified true belief, which seeks a formal proof in a first-order mathematical language in order (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11. Iconicity in Mathematical Notation: Commutativity and Symmetry.Theresa Wege, Sophie Batchelor, Matthew Inglis, Honali Mistry & Dirk Schlimm - 2020 - Journal of Numerical Cognition 3 (6):378-392.
    Mathematical notation includes a vast array of signs. Most mathematical signs appear to be symbolic, in the sense that their meaning is arbitrarily related to their visual appearance. We explored the hypothesis that mathematical signs with iconic aspects—those which visually resemble in some way the concepts they represent—offer a cognitive advantage over those which are purely symbolic. An early formulation of this hypothesis was made by Christine Ladd in 1883 who suggested that symmetrical signs should be used to convey commutative (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Multiple Readability in Principle and Practice: Existential Graphs and Complex Symbols.Dirk Schlimm & David Waszek - 2020 - Logique Et Analyse 251:231-260.
    Since Sun-Joo Shin's groundbreaking study (2002), Peirce's existential graphs have attracted much attention as a way of writing logic that seems profoundly different from our usual logical calculi. In particular, Shin argued that existential graphs enjoy a distinctive property that marks them out as "diagrammatic": they are "multiply readable," in the sense that there are several di erent, equally legitimate ways to translate one and the same graph into a standard logical language. Stenning (2000) and Bellucci and Pietarinen (2016) have (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13. Counterexample Search in Diagram‐Based Geometric Reasoning.Yacin Hamami, John Mumma & Marie Amalric - 2021 - Cognitive Science 45 (4):e12959.
    Topological relations such as inside, outside, or intersection are ubiquitous to our spatial thinking. Here, we examined how people reason deductively with topological relations between points, lines, and circles in geometric diagrams. We hypothesized in particular that a counterexample search generally underlies this type of reasoning. We first verified that educated adults without specific math training were able to produce correct diagrammatic representations contained in the premisses of an inference. Our first experiment then revealed that subjects who correctly judged an (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  14. “Always Mixed Together”: Notation, Language, and the Pedagogy of Frege's Begriffsschrift.David E. Dunning - 2020 - Modern Intellectual History 17 (4):1099-1131.
    Gottlob Frege is considered a founder of analytic philosophy and mathematical logic, but the traditions that claim Frege as a forebear never embraced his Begriffsschrift, or “conceptual notation”—the invention he considered his most important accomplishment. Frege believed that his notation rendered logic visually observable. Rejecting the linearity of written language, he claimed Begriffsschrift exhibited a structure endogenous to logic itself. But Frege struggled to convince others to use his notation, as his frustrated pedagogical efforts at the University of Jena illustrate. (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15. The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History.Reviel Netz - 1999 - Cambridge and New York: Cambridge University Press.
    An examination of the emergence of the phenomenon of deductive argument in classical Greek mathematics.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   84 citations  
  16. Visualization in Logic and Mathematics.Paolo Mancosu - 2005 - In Paolo Mancosu, Klaus Frovin Jørgensen & Stig Andur Pedersen (eds.), Visualization, Explanation and Reasoning Styles in Mathematics. Springer. pp. 13-26.
    In the last two decades there has been renewed interest in visualization in logic and mathematics. Visualization is usually understood in different ways but for the purposes of this article I will take a rather broad conception of visualization to include both visualization by means of mental images as well as visualizations by means of computer generated images or images drawn on paper, e.g. diagrams etc. These different types of visualization can differ substantially but I am interested in offering a (...)
    Remove from this list  
    Translate
     
     
    Export citation  
     
    Bookmark   22 citations  
  17. Visualizing in Mathematics.Marcus Giaquinto - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press. pp. 22-42.
    Visual thinking in mathematics is widespread; it also has diverse kinds and uses. Which of these uses is legitimate? What epistemic roles, if any, can visualization play in mathematics? These are the central philosophical questions in this area. In this introduction I aim to show that visual thinking does have epistemically significant uses. The discussion focuses mainly on visual thinking in proof and discovery and touches lightly on its role in understanding.
    Remove from this list  
     
    Export citation  
     
    Bookmark   14 citations  
  18. Universal Intuitions of Spatial Relations in Elementary Geometry.Ineke J. M. Van der Ham, Yacin Hamami & John Mumma - 2017 - Journal of Cognitive Psychology 29 (3):269-278.
    Spatial relations are central to geometrical thinking. With respect to the classical elementary geometry of Euclid’s Elements, a distinction between co-exact, or qualitative, and exact, or metric, spatial relations has recently been advanced as fundamental. We tested the universality of intuitions of these relations in a group of Senegalese and Dutch participants. Participants performed an odd-one-out task with stimuli that in all but one case display a particular spatial relation between geometric objects. As the exact/co-exact distinction is closely related to (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Cognitive Processing of Spatial Relations in Euclidean Diagrams.Yacin Hamami, Milan N. A. van der Kuil, Ineke J. M. van der Ham & John Mumma - 2020 - Acta Psychologica 205:1--10.
    The cognitive processing of spatial relations in Euclidean diagrams is central to the diagram-based geometric practice of Euclid's Elements. In this study, we investigate this processing through two dichotomies among spatial relations—metric vs topological and exact vs co-exact—introduced by Manders in his seminal epistemological analysis of Euclid's geometric practice. To this end, we carried out a two-part experiment where participants were asked to judge spatial relations in Euclidean diagrams in a visual half field task design. In the first part, we (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. Self-Graphing Equations.Samuel Alexander - manuscript
    Can you find an xy-equation that, when graphed, writes itself on the plane? This idea became internet-famous when a Wikipedia article on Tupper’s self-referential formula went viral in 2012. Under scrutiny, the question has two flaws: it is meaningless (it depends on fonts) and it is trivial. We fix these flaws by formalizing the problem.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  21. A Priori Concepts in Euclidean Proof.Peter Fisher Epstein - 2018 - Proceedings of the Aristotelian Society 118 (3):407-417.
    With the discovery of consistent non-Euclidean geometries, the a priori status of Euclidean proof was radically undermined. In response, philosophers proposed two revisionary interpretations of the practice: some argued that Euclidean proof is a purely formal system of deductive logic; others suggested that Euclidean reasoning is empirical, employing concepts derived from experience. I argue that both interpretations fail to capture the true nature of our geometrical thought. Euclidean proof is not a system of pure logic, but one in which our (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22. Tools of Reason: The Practice of Scientific Diagramming From Antiquity to the Present.Greg Priest, Silvia De Toffoli & Paula Findlen - 2018 - Endeavour 42 (2-3):49-59.
  23. Basic Mathematical Cognition.David Gaber & Dirk Schlimm - 2015 - WIREs Cognitive Science 4 (6):355-369.
    Mathematics is a powerful tool for describing and developing our knowledge of the physical world. It informs our understanding of subjects as diverse as music, games, science, economics, communications protocols, and visual arts. Mathematical thinking has its roots in the adaptive behavior of living creatures: animals must employ judgments about quantities and magnitudes in the assessment of both threats (how many foes) and opportunities (how much food) in order to make effective decisions, and use geometric information in the environment for (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   3 citations  
  24. A Fresh Look at Research Strategies in Computational Cognitive Science: The Case of Enculturated Mathematical Problem Solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods from (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  25. Naturalizing Logico-Mathematical Knowledge: Approaches From Philosophy, Psychology and Cognitive Science.Markus Pantsar - 2019 - Philosophical Quarterly 69 (275):432-435.
    Naturalizing Logico-Mathematical Knowledge: Approaches from Philosophy, Psychology and Cognitive Science. Edited by Bangu Sorin.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26. The Epistemology of Mathematical Necessity.Catherine Legg - 2018 - In Peter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah Perez-Kriz & Francesco Bellucci (eds.), Diagrammatic Representation and Inference10th International Conference, Diagrams 2018, Edinburgh, UK, June 18-22, 2018, Proceedings. Berlin: Springer-Verlag. pp. 810-813.
    It seems possible to know that a mathematical claim is necessarily true by inspecting a diagrammatic proof. Yet how does this work, given that human perception seems to just (as Hume assumed) ‘show us particular objects in front of us’? I draw on Peirce’s account of perception to answer this question. Peirce considered mathematics as experimental a science as physics. Drawing on an example, I highlight the existence of a primitive constraint or blocking function in our thinking which we might (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27. A Perceptual Account of Symbolic Reasoning.David Landy, Colin Allen & Carlos Zednik - 2014 - Frontiers in Psychology 5.
    People can be taught to manipulate symbols according to formal mathematical and logical rules. Cognitive scientists have traditionally viewed this capacity—the capacity for symbolic reasoning—as grounded in the ability to internally represent numbers, logical relationships, and mathematical rules in an abstract, amodal fashion. We present an alternative view, portraying symbolic reasoning as a special kind of embodied reasoning in which arithmetic and logical formulae, externally represented as notations, serve as targets for powerful perceptual and sensorimotor systems. Although symbolic reasoning often (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   12 citations  
  28. A Diagrammatic Representation for Entities and Mereotopological Relations in Ontologies.José M. Parente de Oliveira & Barry Smith - 2017 - In CEUR, vol. 1908.
    In the graphical representation of ontologies, it is customary to use graph theory as the representational background. We claim here that the standard graph-based approach has a number of limitations. We focus here on a problem in the graph-based representation of ontologies in complex domains such as biomedical, engineering and manufacturing: lack of mereotopological representation. Based on such limitation, we proposed a diagrammatic way to represent an entity’s structure and various forms of mereotopological relationships between the entities.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29. From Euclidean Geometry to Knots and Nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  30. Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012--2014. Zurich, Switzerland: Birkhäuser. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  31. An Inquiry Into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2015 - In Gabriele Lolli, Giorgio Venturi & Marco Panza (eds.), From Logic to Practice. Zurich, Switzerland: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   13 citations  
  32. ‘Chasing’ the Diagram—the Use of Visualizations in Algebraic Reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  33. The Advantages of Bringing Infinity to a Finite Place: Penrose Diagrams as Objects of Intuition.Aaron Sidney Wright - 2014 - Historical Studies in the Natural Sciences 44 (2):99-139.
  34. On the Norms of Visual Argument: A Case for Normative Non-Revisionism.David Godden - 2017 - Argumentation 31 (2):395-431.
    Visual arguments can seem to require unique, autonomous evaluative norms, since their content seems irreducible to, and incommensurable with, that of verbal arguments. Yet, assertions of the ineffability of the visual, or of visual-verbal incommensurability, seem to preclude counting putatively irreducible visual content as functioning argumentatively. By distinguishing two notions of content, informational and argumentative, I contend that arguments differing in informational content can have equivalent argumentative content, allowing the same argumentative norms to be rightly applied in their evaluation.
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  35. The Psychology and Philosophy of Natural Numbers.Oliver R. Marshall - 2017 - Philosophia Mathematica (1):nkx002.
    ABSTRACT I argue against both neuropsychological and cognitive accounts of our grasp of numbers. I show that despite the points of divergence between these two accounts, they face analogous problems. Both presuppose too much about what they purport to explain to be informative, and also characterize our grasp of numbers in a way that is absurd in the light of what we already know from the point of view of mathematical practice. Then I offer a positive methodological proposal about the (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  36. Crossing Curves: A Limit to the Use of Diagrams in Proofs†: Articles.Marcus Giaquinto - 2011 - Philosophia Mathematica 19 (3):281-307.
    This paper investigates the following question: when can one reliably infer the existence of an intersection point from a diagram presenting crossing curves or lines? Two cases are considered, one from Euclid's geometry and the other from basic real analysis. I argue for the acceptability of such an inference in the geometric case but against in the analytic case. Though this question is somewhat specific, the investigation is intended to contribute to the more general question of the extent and limits (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  37. The Iconic Logic of Peirce's Graphs.Jesse Norman - 2004 - Mind 113 (452):783-787.
  38. Perceiving Necessity.Catherine Legg & James Franklin - 2017 - Pacific Philosophical Quarterly 98 (3).
    In many diagrams one seems to perceive necessity – one sees not only that something is so, but that it must be so. That conflicts with a certain empiricism largely taken for granted in contemporary philosophy, which believes perception is not capable of such feats. The reason for this belief is often thought well-summarized in Hume's maxim: ‘there are no necessary connections between distinct existences’. It is also thought that even if there were such necessities, perception is too passive or (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  39. Diagrams of the Past: How Timelines Can Aid the Growth of Historical Knowledge.Marc Champagne - 2016 - Cognitive Semiotics 9 (1):11-44.
    Historians occasionally use timelines, but many seem to regard such signs merely as ways of visually summarizing results that are presumably better expressed in prose. Challenging this language-centered view, I suggest that timelines might assist the generation of novel historical insights. To show this, I begin by looking at studies confirming the cognitive benefits of diagrams like timelines. I then try to survey the remarkable diversity of timelines by analyzing actual examples. Finally, having conveyed this (mostly untapped) potential, I argue (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  40. Content Aggregation, Visualization and Emergent Properties in Computer Simulations.Gordana Dodig-Crnkovic, Juan M. Durán & D. Slutej - 2010 - In Kai-Mikael Jää-Aro & Thomas Larsson (eds.), SIGRAD 2010 – Content aggregation and visualization. Linköping University Electronic Press. pp. 77-83.
    With the rapidly growing amounts of information, visualization is becoming increasingly important, as it allows users to easily explore and understand large amounts of information. However the field of information visualiza- tion currently lacks sufficient theoretical foundations. This article addresses foundational questions connecting information visualization with computing and philosophy studies. The idea of multiscale information granula- tion is described based on two fundamental concepts: information (structure) and computation (process). A new information processing paradigm of Granular Computing enables stepwise increase of (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  41. What Diagrams Argue in Late Imperial Chinese Combinatorial Texts.Andrea Bréard - 2015 - Early Science and Medicine 20 (3):241-264.
    Attitudes towards diagrammatic reasoning and visualization in mathematics were seldom spelled out in texts from pre-modern China, although illustrations figure prominently in mathematical literature since the eleventh century. Taking the sums of finite series and their combinatorial interpretation as a case study, this article investigates the epistemological function of illustrations from the eleventh to the nineteenth century that encode either the mathematical objects themselves or represent their related algorithms. It particularly focuses on the two illustrations given in Wang Lai’s Mathematical (...)
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  42. On the Status and Role of Instrumental Images in Contemporary Science: Some Epistemological Issues.Hermínio Martins - 2014 - Scientiae Studia 12 (SPE):11-36.
    The controversy over imageless thought versus picture thinking , with the recent reconsideration of model-based reasoning in the physical sciences is briefly examined. The main focus of the article is on the role of instrumentally elicited images in the sciences, especially in the physical sciences, with special reference to optics, experimental particle physics and observational astronomy, against the background of the civilization of digital images, though to some degree every scientific discipline is implicated. Imaging, today chiefly in the mode of (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  43. Words, Proofs, and Diagrams.David Barker-Plummer, David I. Beaver, Johan van Benthem & Patrick Scotto di Luzio (eds.) - 2002 - Center for the Study of Language and Inf.
    The past twenty years have witnessed extensive collaborative research between computer scientists, logicians, linguists, philosophers, and psychologists. These interdisciplinary studies stem from the realization that researchers drawn from all fields are studying the same problem. Specifically, a common concern amongst researchers today is how logic sheds light on the nature of information. Ancient questions concerning how humans communicate, reason and decide, and modern questions about how computers should communicate, reason and decide are of prime interest to researchers in various disciplines. (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  44. “Things Unreasonably Compulsory”: A Peircean Challenge to a Humean Theory of Perception, Particularly With Respect to Perceiving Necessary Truths.Catherine Legg - 2014 - Cognitio 15 (1):89-112.
    Much mainstream analytic epistemology is built around a sceptical treatment of modality which descends from Hume. The roots of this scepticism are argued to lie in Hume’s (nominalist) theory of perception, which is excavated, studied and compared with the very different (realist) theory of perception developed by Peirce. It is argued that Peirce’s theory not only enables a considerably more nuanced and effective epistemology, it also (unlike Hume’s theory) does justice to what happens when we appreciate a proof in mathematics.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  45. Prolegomena to a Cognitive Investigation of Euclidean Diagrammatic Reasoning.Yacin Hamami & John Mumma - 2013 - Journal of Logic, Language and Information 22 (4):421-448.
    Euclidean diagrammatic reasoning refers to the diagrammatic inferential practice that originated in the geometrical proofs of Euclid’s Elements. A seminal philosophical analysis of this practice by Manders (‘The Euclidean diagram’, 2008) has revealed that a systematic method of reasoning underlies the use of diagrams in Euclid’s proofs, leading in turn to a logical analysis aiming to capture this method formally via proof systems. The central premise of this paper is that our understanding of Euclidean diagrammatic reasoning can be fruitfully advanced (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Review of P. Mancosu, K. F. Jørgensen, and S. A. Pedersen (Eds.), Visualization, Explanation and Reasoning Styles in Mathematics[REVIEW]Jean Paul Van Bendegem - 2006 - Philosophia Mathematica 14 (3):378-391.
    What is philosophy of mathematics and what is it about? The most popular answer, I suppose, to this question would be that philosophers should provide a justification for our presently most cherished mathematical theories and for the most important tool to develop such theories, namely logico-mathematical proof. In fact, it does cover a large part of the activity of philosophers that think about mathematics. Discussions about the merits and faults of classical logic versus one or other ‘deviant’ logics as the (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47. The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark   91 citations  
  48. Proof: Its Nature and Significance.Michael Detlefsen - 2008 - In Bonnie Gold & Roger A. Simons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America. pp. 1.
    I focus on three preoccupations of recent writings on proof. -/- I. The role and possible effects of empirical reasoning in mathematics. Do recent developments (specifically, the computer-assisted proof of the 4CT) point to something essentially new as regards the need for and/or effects of using broadly empirical and inductive reasoning in mathematics? In particular, should we see such things as the computer-assisted proof of the 4CT as pointing to the existence of mathematical truths of which we cannot have a (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   7 citations  
  49. Exploiting the Potential of Diagrams in Guiding Hardware Reasoning.Kathryn Fisler - 1996 - In Gerard Allwein & Jon Barwise (eds.), Logical Reasoning with Diagrams. Oxford University Press. pp. 225--256.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 376